Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.53
      1 /*	$NetBSD: pmap.c,v 1.53 2009/03/14 14:46:05 dsl Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.53 2009/03/14 14:46:05 dsl Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/proc.h>
     75 #include <sys/user.h>
     76 #include <sys/queue.h>
     77 #include <sys/systm.h>
     78 #include <sys/pool.h>
     79 #include <sys/device.h>
     80 
     81 #include <uvm/uvm.h>
     82 
     83 #include <machine/cpu.h>
     84 #include <machine/pcb.h>
     85 #include <machine/powerpc.h>
     86 
     87 #include <powerpc/spr.h>
     88 #include <machine/tlb.h>
     89 
     90 /*
     91  * kernmap is an array of PTEs large enough to map in
     92  * 4GB.  At 16KB/page it is 256K entries or 2MB.
     93  */
     94 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
     95 void *kernmap;
     96 
     97 #define MINCTX		2
     98 #define NUMCTX		256
     99 
    100 volatile struct pmap *ctxbusy[NUMCTX];
    101 
    102 #define TLBF_USED	0x1
    103 #define	TLBF_REF	0x2
    104 #define	TLBF_LOCKED	0x4
    105 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    106 
    107 typedef struct tlb_info_s {
    108 	char	ti_flags;
    109 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    110 	u_int	ti_va;
    111 } tlb_info_t;
    112 
    113 volatile tlb_info_t tlb_info[NTLB];
    114 /* We'll use a modified FIFO replacement policy cause it's cheap */
    115 volatile int tlbnext;
    116 
    117 static int tlb_nreserved = 0;
    118 static int pmap_bootstrap_done = 0;
    119 
    120 /* Event counters */
    121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    122 	NULL, "cpu", "tlbmiss");
    123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    124 	NULL, "cpu", "tlbhit");
    125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    126 	NULL, "cpu", "tlbflush");
    127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    128 	NULL, "cpu", "tlbenter");
    129 
    130 struct pmap kernel_pmap_;
    131 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    132 
    133 int physmem;
    134 static int npgs;
    135 static u_int nextavail;
    136 #ifndef MSGBUFADDR
    137 extern paddr_t msgbuf_paddr;
    138 #endif
    139 
    140 static struct mem_region *mem, *avail;
    141 
    142 /*
    143  * This is a cache of referenced/modified bits.
    144  * Bits herein are shifted by ATTRSHFT.
    145  */
    146 static char *pmap_attrib;
    147 
    148 #define PV_WIRED	0x1
    149 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    150 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    151 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    152 #define PV_CMPVA(va,pv)	(!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
    153 
    154 struct pv_entry {
    155 	struct pv_entry *pv_next;	/* Linked list of mappings */
    156 	vaddr_t pv_va;			/* virtual address of mapping */
    157 	struct pmap *pv_pm;
    158 };
    159 
    160 /* Each index corresponds to TLB_SIZE_* value. */
    161 static size_t tlbsize[] = {
    162 	1024, 		/* TLB_SIZE_1K */
    163 	4096, 		/* TLB_SIZE_4K */
    164 	16384, 		/* TLB_SIZE_16K */
    165 	65536, 		/* TLB_SIZE_64K */
    166 	262144, 	/* TLB_SIZE_256K */
    167 	1048576, 	/* TLB_SIZE_1M */
    168 	4194304, 	/* TLB_SIZE_4M */
    169 	16777216, 	/* TLB_SIZE_16M */
    170 };
    171 
    172 struct pv_entry *pv_table;
    173 static struct pool pv_pool;
    174 
    175 static int pmap_initialized;
    176 
    177 static int ctx_flush(int);
    178 
    179 inline struct pv_entry *pa_to_pv(paddr_t);
    180 static inline char *pa_to_attr(paddr_t);
    181 
    182 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    183 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    184 
    185 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    186 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    187 
    188 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    189 
    190 
    191 inline struct pv_entry *
    192 pa_to_pv(paddr_t pa)
    193 {
    194 	int bank, pg;
    195 
    196 	bank = vm_physseg_find(atop(pa), &pg);
    197 	if (bank == -1)
    198 		return NULL;
    199 	return &vm_physmem[bank].pmseg.pvent[pg];
    200 }
    201 
    202 static inline char *
    203 pa_to_attr(paddr_t pa)
    204 {
    205 	int bank, pg;
    206 
    207 	bank = vm_physseg_find(atop(pa), &pg);
    208 	if (bank == -1)
    209 		return NULL;
    210 	return &vm_physmem[bank].pmseg.attrs[pg];
    211 }
    212 
    213 /*
    214  * Insert PTE into page table.
    215  */
    216 int
    217 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    218 {
    219 	int seg = STIDX(va);
    220 	int ptn = PTIDX(va);
    221 	u_int oldpte;
    222 
    223 	if (!pm->pm_ptbl[seg]) {
    224 		/* Don't allocate a page to clear a non-existent mapping. */
    225 		if (!pte)
    226 			return (0);
    227 		/* Allocate a page XXXX this will sleep! */
    228 		pm->pm_ptbl[seg] =
    229 		    (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    230 		    UVM_KMF_WIRED | UVM_KMF_ZERO);
    231 	}
    232 	oldpte = pm->pm_ptbl[seg][ptn];
    233 	pm->pm_ptbl[seg][ptn] = pte;
    234 
    235 	/* Flush entry. */
    236 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    237 	if (oldpte != pte) {
    238 		if (pte == 0)
    239 			pm->pm_stats.resident_count--;
    240 		else
    241 			pm->pm_stats.resident_count++;
    242 	}
    243 	return (1);
    244 }
    245 
    246 /*
    247  * Get a pointer to a PTE in a page table.
    248  */
    249 volatile u_int *
    250 pte_find(struct pmap *pm, vaddr_t va)
    251 {
    252 	int seg = STIDX(va);
    253 	int ptn = PTIDX(va);
    254 
    255 	if (pm->pm_ptbl[seg])
    256 		return (&pm->pm_ptbl[seg][ptn]);
    257 
    258 	return (NULL);
    259 }
    260 
    261 /*
    262  * This is called during initppc, before the system is really initialized.
    263  */
    264 void
    265 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    266 {
    267 	struct mem_region *mp, *mp1;
    268 	int cnt, i;
    269 	u_int s, e, sz;
    270 
    271 	tlbnext = tlb_nreserved;
    272 
    273 	/*
    274 	 * Allocate the kernel page table at the end of
    275 	 * kernel space so it's in the locked TTE.
    276 	 */
    277 	kernmap = (void *)kernelend;
    278 
    279 	/*
    280 	 * Initialize kernel page table.
    281 	 */
    282 	for (i = 0; i < STSZ; i++) {
    283 		pmap_kernel()->pm_ptbl[i] = 0;
    284 	}
    285 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    286 
    287 	/*
    288 	 * Announce page-size to the VM-system
    289 	 */
    290 	uvmexp.pagesize = NBPG;
    291 	uvm_setpagesize();
    292 
    293 	/*
    294 	 * Get memory.
    295 	 */
    296 	mem_regions(&mem, &avail);
    297 	for (mp = mem; mp->size; mp++) {
    298 		physmem += btoc(mp->size);
    299 		printf("+%lx,",mp->size);
    300 	}
    301 	printf("\n");
    302 	ppc4xx_tlb_init();
    303 	/*
    304 	 * Count the number of available entries.
    305 	 */
    306 	for (cnt = 0, mp = avail; mp->size; mp++)
    307 		cnt++;
    308 
    309 	/*
    310 	 * Page align all regions.
    311 	 * Non-page aligned memory isn't very interesting to us.
    312 	 * Also, sort the entries for ascending addresses.
    313 	 */
    314 	kernelstart &= ~PGOFSET;
    315 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    316 	for (mp = avail; mp->size; mp++) {
    317 		s = mp->start;
    318 		e = mp->start + mp->size;
    319 		printf("%08x-%08x -> ",s,e);
    320 		/*
    321 		 * Check whether this region holds all of the kernel.
    322 		 */
    323 		if (s < kernelstart && e > kernelend) {
    324 			avail[cnt].start = kernelend;
    325 			avail[cnt++].size = e - kernelend;
    326 			e = kernelstart;
    327 		}
    328 		/*
    329 		 * Look whether this regions starts within the kernel.
    330 		 */
    331 		if (s >= kernelstart && s < kernelend) {
    332 			if (e <= kernelend)
    333 				goto empty;
    334 			s = kernelend;
    335 		}
    336 		/*
    337 		 * Now look whether this region ends within the kernel.
    338 		 */
    339 		if (e > kernelstart && e <= kernelend) {
    340 			if (s >= kernelstart)
    341 				goto empty;
    342 			e = kernelstart;
    343 		}
    344 		/*
    345 		 * Now page align the start and size of the region.
    346 		 */
    347 		s = round_page(s);
    348 		e = trunc_page(e);
    349 		if (e < s)
    350 			e = s;
    351 		sz = e - s;
    352 		printf("%08x-%08x = %x\n",s,e,sz);
    353 		/*
    354 		 * Check whether some memory is left here.
    355 		 */
    356 		if (sz == 0) {
    357 		empty:
    358 			memmove(mp, mp + 1,
    359 				(cnt - (mp - avail)) * sizeof *mp);
    360 			cnt--;
    361 			mp--;
    362 			continue;
    363 		}
    364 		/*
    365 		 * Do an insertion sort.
    366 		 */
    367 		npgs += btoc(sz);
    368 		for (mp1 = avail; mp1 < mp; mp1++)
    369 			if (s < mp1->start)
    370 				break;
    371 		if (mp1 < mp) {
    372 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    373 			mp1->start = s;
    374 			mp1->size = sz;
    375 		} else {
    376 			mp->start = s;
    377 			mp->size = sz;
    378 		}
    379 	}
    380 
    381 	/*
    382 	 * We cannot do pmap_steal_memory here,
    383 	 * since we don't run with translation enabled yet.
    384 	 */
    385 #ifndef MSGBUFADDR
    386 	/*
    387 	 * allow for msgbuf
    388 	 */
    389 	sz = round_page(MSGBUFSIZE);
    390 	mp = NULL;
    391 	for (mp1 = avail; mp1->size; mp1++)
    392 		if (mp1->size >= sz)
    393 			mp = mp1;
    394 	if (mp == NULL)
    395 		panic("not enough memory?");
    396 
    397 	npgs -= btoc(sz);
    398 	msgbuf_paddr = mp->start + mp->size - sz;
    399 	mp->size -= sz;
    400 	if (mp->size <= 0)
    401 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
    402 #endif
    403 
    404 	for (mp = avail; mp->size; mp++)
    405 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    406 			atop(mp->start), atop(mp->start + mp->size),
    407 			VM_FREELIST_DEFAULT);
    408 
    409 	/*
    410 	 * Initialize kernel pmap and hardware.
    411 	 */
    412 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    413 	pmap_kernel()->pm_ctx = KERNEL_PID;
    414 	nextavail = avail->start;
    415 
    416 	evcnt_attach_static(&tlbmiss_ev);
    417 	evcnt_attach_static(&tlbhit_ev);
    418 	evcnt_attach_static(&tlbflush_ev);
    419 	evcnt_attach_static(&tlbenter_ev);
    420 
    421 	pmap_bootstrap_done = 1;
    422 }
    423 
    424 /*
    425  * Restrict given range to physical memory
    426  *
    427  * (Used by /dev/mem)
    428  */
    429 void
    430 pmap_real_memory(paddr_t *start, psize_t *size)
    431 {
    432 	struct mem_region *mp;
    433 
    434 	for (mp = mem; mp->size; mp++) {
    435 		if (*start + *size > mp->start &&
    436 		    *start < mp->start + mp->size) {
    437 			if (*start < mp->start) {
    438 				*size -= mp->start - *start;
    439 				*start = mp->start;
    440 			}
    441 			if (*start + *size > mp->start + mp->size)
    442 				*size = mp->start + mp->size - *start;
    443 			return;
    444 		}
    445 	}
    446 	*size = 0;
    447 }
    448 
    449 /*
    450  * Initialize anything else for pmap handling.
    451  * Called during vm_init().
    452  */
    453 void
    454 pmap_init(void)
    455 {
    456 	struct pv_entry *pv;
    457 	vsize_t sz;
    458 	vaddr_t addr;
    459 	int i, s;
    460 	int bank;
    461 	char *attr;
    462 
    463 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    464 	sz = round_page(sz);
    465 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    466 	s = splvm();
    467 	pv = pv_table = (struct pv_entry *)addr;
    468 	for (i = npgs; --i >= 0;)
    469 		pv++->pv_pm = NULL;
    470 	pmap_attrib = (char *)pv;
    471 	memset(pv, 0, npgs);
    472 
    473 	pv = pv_table;
    474 	attr = pmap_attrib;
    475 	for (bank = 0; bank < vm_nphysseg; bank++) {
    476 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
    477 		vm_physmem[bank].pmseg.pvent = pv;
    478 		vm_physmem[bank].pmseg.attrs = attr;
    479 		pv += sz;
    480 		attr += sz;
    481 	}
    482 
    483 	pmap_initialized = 1;
    484 	splx(s);
    485 
    486 	/* Setup a pool for additional pvlist structures */
    487 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
    488 	    IPL_VM);
    489 }
    490 
    491 /*
    492  * How much virtual space is available to the kernel?
    493  */
    494 void
    495 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    496 {
    497 
    498 #if 0
    499 	/*
    500 	 * Reserve one segment for kernel virtual memory
    501 	 */
    502 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
    503 	*end = *start + SEGMENT_LENGTH;
    504 #else
    505 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    506 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    507 #endif
    508 }
    509 
    510 #ifdef PMAP_GROWKERNEL
    511 /*
    512  * Preallocate kernel page tables to a specified VA.
    513  * This simply loops through the first TTE for each
    514  * page table from the beginning of the kernel pmap,
    515  * reads the entry, and if the result is
    516  * zero (either invalid entry or no page table) it stores
    517  * a zero there, populating page tables in the process.
    518  * This is not the most efficient technique but i don't
    519  * expect it to be called that often.
    520  */
    521 extern struct vm_page *vm_page_alloc1(void);
    522 extern void vm_page_free1(struct vm_page *);
    523 
    524 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    525 
    526 vaddr_t
    527 pmap_growkernel(vaddr_t maxkvaddr)
    528 {
    529 	int s;
    530 	int seg;
    531 	paddr_t pg;
    532 	struct pmap *pm = pmap_kernel();
    533 
    534 	s = splvm();
    535 
    536 	/* Align with the start of a page table */
    537 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
    538 	     kbreak += PTMAP) {
    539 		seg = STIDX(kbreak);
    540 
    541 		if (pte_find(pm, kbreak))
    542 			continue;
    543 
    544 		if (uvm.page_init_done) {
    545 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    546 		} else {
    547 			if (!uvm_page_physget(&pg))
    548 				panic("pmap_growkernel: no memory");
    549 		}
    550 		if (!pg)
    551 			panic("pmap_growkernel: no pages");
    552 		pmap_zero_page((paddr_t)pg);
    553 
    554 		/* XXX This is based on all phymem being addressable */
    555 		pm->pm_ptbl[seg] = (u_int *)pg;
    556 	}
    557 	splx(s);
    558 	return (kbreak);
    559 }
    560 
    561 /*
    562  *	vm_page_alloc1:
    563  *
    564  *	Allocate and return a memory cell with no associated object.
    565  */
    566 struct vm_page *
    567 vm_page_alloc1(void)
    568 {
    569 	struct vm_page *pg;
    570 
    571 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    572 	if (pg) {
    573 		pg->wire_count = 1;	/* no mappings yet */
    574 		pg->flags &= ~PG_BUSY;	/* never busy */
    575 	}
    576 	return pg;
    577 }
    578 
    579 /*
    580  *	vm_page_free1:
    581  *
    582  *	Returns the given page to the free list,
    583  *	disassociating it with any VM object.
    584  *
    585  *	Object and page must be locked prior to entry.
    586  */
    587 void
    588 vm_page_free1(struct vm_page *pg)
    589 {
    590 #ifdef DIAGNOSTIC
    591 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    592 		printf("Freeing invalid page %p\n", pg);
    593 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
    594 #ifdef DDB
    595 		Debugger();
    596 #endif
    597 		return;
    598 	}
    599 #endif
    600 	pg->flags |= PG_BUSY;
    601 	pg->wire_count = 0;
    602 	uvm_pagefree(pg);
    603 }
    604 #endif
    605 
    606 /*
    607  * Create and return a physical map.
    608  */
    609 struct pmap *
    610 pmap_create(void)
    611 {
    612 	struct pmap *pm;
    613 
    614 	pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
    615 	memset(pm, 0, sizeof *pm);
    616 	pm->pm_refs = 1;
    617 	return pm;
    618 }
    619 
    620 /*
    621  * Add a reference to the given pmap.
    622  */
    623 void
    624 pmap_reference(struct pmap *pm)
    625 {
    626 
    627 	pm->pm_refs++;
    628 }
    629 
    630 /*
    631  * Retire the given pmap from service.
    632  * Should only be called if the map contains no valid mappings.
    633  */
    634 void
    635 pmap_destroy(struct pmap *pm)
    636 {
    637 	int i;
    638 
    639 	if (--pm->pm_refs > 0) {
    640 		return;
    641 	}
    642 	KASSERT(pm->pm_stats.resident_count == 0);
    643 	KASSERT(pm->pm_stats.wired_count == 0);
    644 	for (i = 0; i < STSZ; i++)
    645 		if (pm->pm_ptbl[i]) {
    646 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    647 			    PAGE_SIZE, UVM_KMF_WIRED);
    648 			pm->pm_ptbl[i] = NULL;
    649 		}
    650 	if (pm->pm_ctx)
    651 		ctx_free(pm);
    652 	free(pm, M_VMPMAP);
    653 }
    654 
    655 /*
    656  * Copy the range specified by src_addr/len
    657  * from the source map to the range dst_addr/len
    658  * in the destination map.
    659  *
    660  * This routine is only advisory and need not do anything.
    661  */
    662 void
    663 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    664 	  vsize_t len, vaddr_t src_addr)
    665 {
    666 }
    667 
    668 /*
    669  * Require that all active physical maps contain no
    670  * incorrect entries NOW.
    671  */
    672 void
    673 pmap_update(struct pmap *pmap)
    674 {
    675 }
    676 
    677 /*
    678  * Garbage collects the physical map system for
    679  * pages which are no longer used.
    680  * Success need not be guaranteed -- that is, there
    681  * may well be pages which are not referenced, but
    682  * others may be collected.
    683  * Called by the pageout daemon when pages are scarce.
    684  */
    685 void
    686 pmap_collect(struct pmap *pm)
    687 {
    688 }
    689 
    690 /*
    691  * Fill the given physical page with zeroes.
    692  */
    693 void
    694 pmap_zero_page(paddr_t pa)
    695 {
    696 
    697 #ifdef PPC_4XX_NOCACHE
    698 	memset((void *)pa, 0, PAGE_SIZE);
    699 #else
    700 	int i;
    701 
    702 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    703 		__asm volatile ("dcbz 0,%0" :: "r"(pa));
    704 		pa += CACHELINESIZE;
    705 	}
    706 #endif
    707 }
    708 
    709 /*
    710  * Copy the given physical source page to its destination.
    711  */
    712 void
    713 pmap_copy_page(paddr_t src, paddr_t dst)
    714 {
    715 
    716 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    717 	dcache_flush_page(dst);
    718 }
    719 
    720 /*
    721  * This returns != 0 on success.
    722  */
    723 static inline int
    724 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    725 {
    726 	struct pv_entry *pv, *npv = NULL;
    727 	int s;
    728 
    729 	if (!pmap_initialized)
    730 		return 0;
    731 
    732 	s = splvm();
    733 	pv = pa_to_pv(pa);
    734 	if (!pv->pv_pm) {
    735 		/*
    736 		 * No entries yet, use header as the first entry.
    737 		 */
    738 		pv->pv_va = va;
    739 		pv->pv_pm = pm;
    740 		pv->pv_next = NULL;
    741 	} else {
    742 		/*
    743 		 * There is at least one other VA mapping this page.
    744 		 * Place this entry after the header.
    745 		 */
    746 		npv = pool_get(&pv_pool, PR_NOWAIT);
    747 		if (npv == NULL) {
    748 			if ((flags & PMAP_CANFAIL) == 0)
    749 				panic("pmap_enter_pv: failed");
    750 			splx(s);
    751 			return 0;
    752 		}
    753 		npv->pv_va = va;
    754 		npv->pv_pm = pm;
    755 		npv->pv_next = pv->pv_next;
    756 		pv->pv_next = npv;
    757 		pv = npv;
    758 	}
    759 	if (flags & PMAP_WIRED) {
    760 		PV_WIRE(pv);
    761 		pm->pm_stats.wired_count++;
    762 	}
    763 	splx(s);
    764 	return (1);
    765 }
    766 
    767 static void
    768 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    769 {
    770 	struct pv_entry *pv, *npv;
    771 
    772 	/*
    773 	 * Remove from the PV table.
    774 	 */
    775 	pv = pa_to_pv(pa);
    776 	if (!pv)
    777 		return;
    778 
    779 	/*
    780 	 * If it is the first entry on the list, it is actually
    781 	 * in the header and we must copy the following entry up
    782 	 * to the header.  Otherwise we must search the list for
    783 	 * the entry.  In either case we free the now unused entry.
    784 	 */
    785 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    786 		if (PV_ISWIRED(pv)) {
    787 			pm->pm_stats.wired_count--;
    788 		}
    789 		if ((npv = pv->pv_next)) {
    790 			*pv = *npv;
    791 			pool_put(&pv_pool, npv);
    792 		} else
    793 			pv->pv_pm = NULL;
    794 	} else {
    795 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    796 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    797 				break;
    798 		if (npv) {
    799 			pv->pv_next = npv->pv_next;
    800 			if (PV_ISWIRED(npv)) {
    801 				pm->pm_stats.wired_count--;
    802 			}
    803 			pool_put(&pv_pool, npv);
    804 		}
    805 	}
    806 }
    807 
    808 /*
    809  * Insert physical page at pa into the given pmap at virtual address va.
    810  */
    811 int
    812 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
    813 {
    814 	int s;
    815 	u_int tte;
    816 	int managed;
    817 
    818 	/*
    819 	 * Have to remove any existing mapping first.
    820 	 */
    821 	pmap_remove(pm, va, va + PAGE_SIZE);
    822 
    823 	if (flags & PMAP_WIRED)
    824 		flags |= prot;
    825 
    826 	managed = 0;
    827 	if (vm_physseg_find(atop(pa), NULL) != -1)
    828 		managed = 1;
    829 
    830 	/*
    831 	 * Generate TTE.
    832 	 */
    833 	tte = TTE_PA(pa);
    834 	/* XXXX -- need to support multiple page sizes. */
    835 	tte |= TTE_SZ_16K;
    836 #ifdef	DIAGNOSTIC
    837 	if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
    838 		(PME_NOCACHE | PME_WRITETHROUG))
    839 		panic("pmap_enter: uncached & writethrough");
    840 #endif
    841 	if (flags & PME_NOCACHE)
    842 		/* Must be I/O mapping */
    843 		tte |= TTE_I | TTE_G;
    844 #ifdef PPC_4XX_NOCACHE
    845 	tte |= TTE_I;
    846 #else
    847 	else if (flags & PME_WRITETHROUG)
    848 		/* Uncached and writethrough are not compatible */
    849 		tte |= TTE_W;
    850 #endif
    851 	if (pm == pmap_kernel())
    852 		tte |= TTE_ZONE(ZONE_PRIV);
    853 	else
    854 		tte |= TTE_ZONE(ZONE_USER);
    855 
    856 	if (flags & VM_PROT_WRITE)
    857 		tte |= TTE_WR;
    858 
    859 	if (flags & VM_PROT_EXECUTE)
    860 		tte |= TTE_EX;
    861 
    862 	/*
    863 	 * Now record mapping for later back-translation.
    864 	 */
    865 	if (pmap_initialized && managed) {
    866 		char *attr;
    867 
    868 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    869 			/* Could not enter pv on a managed page */
    870 			return 1;
    871 		}
    872 
    873 		/* Now set attributes. */
    874 		attr = pa_to_attr(pa);
    875 #ifdef DIAGNOSTIC
    876 		if (!attr)
    877 			panic("managed but no attr");
    878 #endif
    879 		if (flags & VM_PROT_ALL)
    880 			*attr |= PMAP_ATTR_REF;
    881 		if (flags & VM_PROT_WRITE)
    882 			*attr |= PMAP_ATTR_CHG;
    883 	}
    884 
    885 	s = splvm();
    886 
    887 	/* Insert page into page table. */
    888 	pte_enter(pm, va, tte);
    889 
    890 	/* If this is a real fault, enter it in the tlb */
    891 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    892 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    893 	}
    894 	splx(s);
    895 
    896 	/* Flush the real memory from the instruction cache. */
    897 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    898 		__syncicache((void *)pa, PAGE_SIZE);
    899 
    900 	return 0;
    901 }
    902 
    903 void
    904 pmap_unwire(struct pmap *pm, vaddr_t va)
    905 {
    906 	struct pv_entry *pv;
    907 	paddr_t pa;
    908 	int s;
    909 
    910 	if (!pmap_extract(pm, va, &pa)) {
    911 		return;
    912 	}
    913 
    914 	pv = pa_to_pv(pa);
    915 	if (!pv)
    916 		return;
    917 
    918 	s = splvm();
    919 	while (pv != NULL) {
    920 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    921 			if (PV_ISWIRED(pv)) {
    922 				PV_UNWIRE(pv);
    923 				pm->pm_stats.wired_count--;
    924 			}
    925 			break;
    926 		}
    927 		pv = pv->pv_next;
    928 	}
    929 	splx(s);
    930 }
    931 
    932 void
    933 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
    934 {
    935 	int s;
    936 	u_int tte;
    937 	struct pmap *pm = pmap_kernel();
    938 
    939 	/*
    940 	 * Have to remove any existing mapping first.
    941 	 */
    942 
    943 	/*
    944 	 * Generate TTE.
    945 	 *
    946 	 * XXXX
    947 	 *
    948 	 * Since the kernel does not handle execution privileges properly,
    949 	 * we will handle read and execute permissions together.
    950 	 */
    951 	tte = 0;
    952 	if (prot & VM_PROT_ALL) {
    953 
    954 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    955 		/* XXXX -- need to support multiple page sizes. */
    956 		tte |= TTE_SZ_16K;
    957 #ifdef DIAGNOSTIC
    958 		if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
    959 			(PME_NOCACHE | PME_WRITETHROUG))
    960 			panic("pmap_kenter_pa: uncached & writethrough");
    961 #endif
    962 		if (prot & PME_NOCACHE)
    963 			/* Must be I/O mapping */
    964 			tte |= TTE_I | TTE_G;
    965 #ifdef PPC_4XX_NOCACHE
    966 		tte |= TTE_I;
    967 #else
    968 		else if (prot & PME_WRITETHROUG)
    969 			/* Uncached and writethrough are not compatible */
    970 			tte |= TTE_W;
    971 #endif
    972 		if (prot & VM_PROT_WRITE)
    973 			tte |= TTE_WR;
    974 	}
    975 
    976 	s = splvm();
    977 
    978 	/* Insert page into page table. */
    979 	pte_enter(pm, va, tte);
    980 	splx(s);
    981 }
    982 
    983 void
    984 pmap_kremove(vaddr_t va, vsize_t len)
    985 {
    986 
    987 	while (len > 0) {
    988 		pte_enter(pmap_kernel(), va, 0);
    989 		va += PAGE_SIZE;
    990 		len -= PAGE_SIZE;
    991 	}
    992 }
    993 
    994 /*
    995  * Remove the given range of mapping entries.
    996  */
    997 void
    998 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
    999 {
   1000 	int s;
   1001 	paddr_t pa;
   1002 	volatile u_int *ptp;
   1003 
   1004 	s = splvm();
   1005 	while (va < endva) {
   1006 
   1007 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
   1008 			pa = TTE_PA(pa);
   1009 			pmap_remove_pv(pm, va, pa);
   1010 			*ptp = 0;
   1011 			ppc4xx_tlb_flush(va, pm->pm_ctx);
   1012 			pm->pm_stats.resident_count--;
   1013 		}
   1014 		va += PAGE_SIZE;
   1015 	}
   1016 
   1017 	splx(s);
   1018 }
   1019 
   1020 /*
   1021  * Get the physical page address for the given pmap/virtual address.
   1022  */
   1023 bool
   1024 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1025 {
   1026 	int seg = STIDX(va);
   1027 	int ptn = PTIDX(va);
   1028 	u_int pa = 0;
   1029 	int s;
   1030 
   1031 	s = splvm();
   1032 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
   1033 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1034 	}
   1035 	splx(s);
   1036 	return (pa != 0);
   1037 }
   1038 
   1039 /*
   1040  * Lower the protection on the specified range of this pmap.
   1041  *
   1042  * There are only two cases: either the protection is going to 0,
   1043  * or it is going to read-only.
   1044  */
   1045 void
   1046 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1047 {
   1048 	volatile u_int *ptp;
   1049 	int s, bic;
   1050 
   1051 	if ((prot & VM_PROT_READ) == 0) {
   1052 		pmap_remove(pm, sva, eva);
   1053 		return;
   1054 	}
   1055 	bic = 0;
   1056 	if ((prot & VM_PROT_WRITE) == 0) {
   1057 		bic |= TTE_WR;
   1058 	}
   1059 	if ((prot & VM_PROT_EXECUTE) == 0) {
   1060 		bic |= TTE_EX;
   1061 	}
   1062 	if (bic == 0) {
   1063 		return;
   1064 	}
   1065 	s = splvm();
   1066 	while (sva < eva) {
   1067 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1068 			*ptp &= ~bic;
   1069 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1070 		}
   1071 		sva += PAGE_SIZE;
   1072 	}
   1073 	splx(s);
   1074 }
   1075 
   1076 bool
   1077 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1078 {
   1079 	paddr_t pa;
   1080 	char *attr;
   1081 	int s, rv;
   1082 
   1083 	/*
   1084 	 * First modify bits in cache.
   1085 	 */
   1086 	pa = VM_PAGE_TO_PHYS(pg);
   1087 	attr = pa_to_attr(pa);
   1088 	if (attr == NULL)
   1089 		return false;
   1090 
   1091 	s = splvm();
   1092 	rv = ((*attr & mask) != 0);
   1093 	if (clear) {
   1094 		*attr &= ~mask;
   1095 		pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1096 	}
   1097 	splx(s);
   1098 	return rv;
   1099 }
   1100 
   1101 
   1102 /*
   1103  * Lower the protection on the specified physical page.
   1104  *
   1105  * There are only two cases: either the protection is going to 0,
   1106  * or it is going to read-only.
   1107  */
   1108 void
   1109 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1110 {
   1111 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1112 	vaddr_t va;
   1113 	struct pv_entry *pvh, *pv, *npv;
   1114 	struct pmap *pm;
   1115 
   1116 	pvh = pa_to_pv(pa);
   1117 	if (pvh == NULL)
   1118 		return;
   1119 
   1120 	/* Handle extra pvs which may be deleted in the operation */
   1121 	for (pv = pvh->pv_next; pv; pv = npv) {
   1122 		npv = pv->pv_next;
   1123 
   1124 		pm = pv->pv_pm;
   1125 		va = pv->pv_va;
   1126 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1127 	}
   1128 	/* Now check the head pv */
   1129 	if (pvh->pv_pm) {
   1130 		pv = pvh;
   1131 		pm = pv->pv_pm;
   1132 		va = pv->pv_va;
   1133 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1134 	}
   1135 }
   1136 
   1137 /*
   1138  * Activate the address space for the specified process.  If the process
   1139  * is the current process, load the new MMU context.
   1140  */
   1141 void
   1142 pmap_activate(struct lwp *l)
   1143 {
   1144 #if 0
   1145 	struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
   1146 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1147 
   1148 	/*
   1149 	 * XXX Normally performed in cpu_fork().
   1150 	 */
   1151 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1152 	pcb->pcb_pm = pmap;
   1153 #endif
   1154 }
   1155 
   1156 /*
   1157  * Deactivate the specified process's address space.
   1158  */
   1159 void
   1160 pmap_deactivate(struct lwp *l)
   1161 {
   1162 }
   1163 
   1164 /*
   1165  * Synchronize caches corresponding to [addr, addr+len) in p.
   1166  */
   1167 void
   1168 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1169 {
   1170 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1171 	int msr, ctx, opid, step;
   1172 
   1173 	step = CACHELINESIZE;
   1174 
   1175 	/*
   1176 	 * Need to turn off IMMU and switch to user context.
   1177 	 * (icbi uses DMMU).
   1178 	 */
   1179 	if (!(ctx = pm->pm_ctx)) {
   1180 		/* No context -- assign it one */
   1181 		ctx_alloc(pm);
   1182 		ctx = pm->pm_ctx;
   1183 	}
   1184 	__asm volatile("mfmsr %0;"
   1185 		"li %1, %7;"
   1186 		"andc %1,%0,%1;"
   1187 		"mtmsr %1;"
   1188 		"sync;isync;"
   1189 		"mfpid %1;"
   1190 		"mtpid %2;"
   1191 		"sync; isync;"
   1192 		"1:"
   1193 		"dcbf 0,%3;"
   1194 		"icbi 0,%3;"
   1195 		"add %3,%3,%5;"
   1196 		"addc. %4,%4,%6;"
   1197 		"bge 1b;"
   1198 		"mtpid %1;"
   1199 		"mtmsr %0;"
   1200 		"sync; isync"
   1201 		: "=&r" (msr), "=&r" (opid)
   1202 		: "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
   1203 		  "K" (PSL_IR | PSL_DR));
   1204 }
   1205 
   1206 
   1207 /* This has to be done in real mode !!! */
   1208 void
   1209 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1210 {
   1211 	u_long i, found;
   1212 	u_long msr;
   1213 
   1214 	/* If there's no context then it can't be mapped. */
   1215 	if (!pid)
   1216 		return;
   1217 
   1218 	__asm( 	"mfpid %1;"		/* Save PID */
   1219 		"mfmsr %2;"		/* Save MSR */
   1220 		"li %0,0;"		/* Now clear MSR */
   1221 		"mtmsr %0;"
   1222 		"mtpid %4;"		/* Set PID */
   1223 		"sync;"
   1224 		"tlbsx. %0,0,%3;"	/* Search TLB */
   1225 		"sync;"
   1226 		"mtpid %1;"		/* Restore PID */
   1227 		"mtmsr %2;"		/* Restore MSR */
   1228 		"sync;isync;"
   1229 		"li %1,1;"
   1230 		"beq 1f;"
   1231 		"li %1,0;"
   1232 		"1:"
   1233 		: "=&r" (i), "=&r" (found), "=&r" (msr)
   1234 		: "r" (va), "r" (pid));
   1235 	if (found && !TLB_LOCKED(i)) {
   1236 
   1237 		/* Now flush translation */
   1238 		__asm volatile(
   1239 			"tlbwe %0,%1,0;"
   1240 			"sync;isync;"
   1241 			: : "r" (0), "r" (i));
   1242 
   1243 		tlb_info[i].ti_ctx = 0;
   1244 		tlb_info[i].ti_flags = 0;
   1245 		tlbnext = i;
   1246 		/* Successful flushes */
   1247 		tlbflush_ev.ev_count++;
   1248 	}
   1249 }
   1250 
   1251 void
   1252 ppc4xx_tlb_flush_all(void)
   1253 {
   1254 	u_long i;
   1255 
   1256 	for (i = 0; i < NTLB; i++)
   1257 		if (!TLB_LOCKED(i)) {
   1258 			__asm volatile(
   1259 				"tlbwe %0,%1,0;"
   1260 				"sync;isync;"
   1261 				: : "r" (0), "r" (i));
   1262 			tlb_info[i].ti_ctx = 0;
   1263 			tlb_info[i].ti_flags = 0;
   1264 		}
   1265 
   1266 	__asm volatile("sync;isync");
   1267 }
   1268 
   1269 /* Find a TLB entry to evict. */
   1270 static int
   1271 ppc4xx_tlb_find_victim(void)
   1272 {
   1273 	int flags;
   1274 
   1275 	for (;;) {
   1276 		if (++tlbnext >= NTLB)
   1277 			tlbnext = tlb_nreserved;
   1278 		flags = tlb_info[tlbnext].ti_flags;
   1279 		if (!(flags & TLBF_USED) ||
   1280 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1281 			u_long va, stack = (u_long)&va;
   1282 
   1283 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
   1284 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1285 			     (flags & TLBF_USED)) {
   1286 				/* Kernel stack page */
   1287 				flags |= TLBF_USED;
   1288 				tlb_info[tlbnext].ti_flags = flags;
   1289 			} else {
   1290 				/* Found it! */
   1291 				return (tlbnext);
   1292 			}
   1293 		} else {
   1294 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1295 		}
   1296 	}
   1297 }
   1298 
   1299 void
   1300 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1301 {
   1302 	u_long th, tl, idx;
   1303 	tlbpid_t pid;
   1304 	u_short msr;
   1305 	paddr_t pa;
   1306 	int s, sz;
   1307 
   1308 	tlbenter_ev.ev_count++;
   1309 
   1310 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1311 	pa = (pte & TTE_RPN_MASK(sz));
   1312 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1313 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1314 	tl |= ppc4xx_tlbflags(va, pa);
   1315 
   1316 	s = splhigh();
   1317 	idx = ppc4xx_tlb_find_victim();
   1318 
   1319 #ifdef DIAGNOSTIC
   1320 	if ((idx < tlb_nreserved) || (idx >= NTLB)) {
   1321 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1322 	}
   1323 #endif
   1324 
   1325 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1326 	tlb_info[idx].ti_ctx = ctx;
   1327 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1328 
   1329 	__asm volatile(
   1330 		"mfmsr %0;"			/* Save MSR */
   1331 		"li %1,0;"
   1332 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
   1333 		"mtmsr %1;"			/* Clear MSR */
   1334 		"mfpid %1;"			/* Save old PID */
   1335 		"mtpid %2;"			/* Load translation ctx */
   1336 		"sync; isync;"
   1337 #ifdef DEBUG
   1338 		"andi. %3,%3,63;"
   1339 		"tweqi %3,0;" 			/* XXXXX DEBUG trap on index 0 */
   1340 #endif
   1341 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
   1342 		"sync; isync;"
   1343 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
   1344 		"sync; isync;"
   1345 	: "=&r" (msr), "=&r" (pid)
   1346 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
   1347 	splx(s);
   1348 }
   1349 
   1350 void
   1351 ppc4xx_tlb_init(void)
   1352 {
   1353 	int i;
   1354 
   1355 	/* Mark reserved TLB entries */
   1356 	for (i = 0; i < tlb_nreserved; i++) {
   1357 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1358 		tlb_info[i].ti_ctx = KERNEL_PID;
   1359 	}
   1360 
   1361 	/* Setup security zones */
   1362 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1363 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1364 	 * Z3 - full access regardless of TLB entry permissions
   1365 	 */
   1366 
   1367 	__asm volatile(
   1368 		"mtspr %0,%1;"
   1369 		"sync;"
   1370 		::  "K"(SPR_ZPR), "r" (0x1b000000));
   1371 }
   1372 
   1373 /*
   1374  * ppc4xx_tlb_size_mask:
   1375  *
   1376  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1377  */
   1378 static int
   1379 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1380 {
   1381 	int 			i;
   1382 
   1383 	for (i = 0; i < __arraycount(tlbsize); i++)
   1384 		if (size <= tlbsize[i]) {
   1385 			*mask = (i << TLB_SIZE_SHFT);
   1386 			*rsiz = tlbsize[i];
   1387 			return (0);
   1388 		}
   1389 	return (EINVAL);
   1390 }
   1391 
   1392 /*
   1393  * ppc4xx_tlb_mapiodev:
   1394  *
   1395  * 	Lookup virtual address of mapping previously entered via
   1396  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1397  * 	need to waste extra storage for reserved mappings. Note
   1398  * 	that reading TLBHI also sets PID, but all reserved mappings
   1399  * 	use KERNEL_PID, so the side effect is nil.
   1400  */
   1401 void *
   1402 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1403 {
   1404 	paddr_t 		pa;
   1405 	vaddr_t 		va;
   1406 	u_int 			lo, hi, sz;
   1407 	int 			i;
   1408 
   1409 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1410 	for (i = 0; i < tlb_nreserved; i++) {
   1411 		__asm volatile (
   1412 		    "	tlbre %0,%2,1 	\n" 	/* TLBLO */
   1413 		    "	tlbre %1,%2,0 	\n" 	/* TLBHI */
   1414 		    : "=&r" (lo), "=&r" (hi)
   1415 		    : "r" (i));
   1416 
   1417 		KASSERT(hi & TLB_VALID);
   1418 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1419 
   1420 		pa = (lo & TLB_RPN_MASK);
   1421 		if (base < pa)
   1422 			continue;
   1423 
   1424 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1425 		if ((base + len) > (pa + sz))
   1426 			continue;
   1427 
   1428 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1429 		return (void *)(va);
   1430 	}
   1431 
   1432 	return (NULL);
   1433 }
   1434 
   1435 /*
   1436  * ppc4xx_tlb_reserve:
   1437  *
   1438  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1439  */
   1440 void
   1441 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1442 {
   1443 	u_int 			lo, hi;
   1444 	int 			szmask, rsize;
   1445 
   1446 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1447 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1448 	KASSERT(! pmap_bootstrap_done);
   1449 	KASSERT(tlb_nreserved < NTLB);
   1450 
   1451 	/* Resolve size. */
   1452 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1453 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1454 		    size, tlb_nreserved);
   1455 
   1456 	/* Real size will be power of two >= 1024, so this is OK. */
   1457 	pa &= ~(rsize - 1); 	/* RPN */
   1458 	va &= ~(rsize - 1); 	/* EPN */
   1459 
   1460 	lo = pa | TLB_WR | flags;
   1461 	hi = va | TLB_VALID | szmask;
   1462 
   1463 #ifdef PPC_4XX_NOCACHE
   1464 	lo |= TLB_I;
   1465 #endif
   1466 
   1467 	__asm volatile(
   1468 	    "	tlbwe %1,%0,1 	\n" 	/* write TLBLO */
   1469 	    "	tlbwe %2,%0,0 	\n" 	/* write TLBHI */
   1470 	    "   sync 		\n"
   1471 	    "	isync 		\n"
   1472 	    : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
   1473 
   1474 	tlb_nreserved++;
   1475 }
   1476 
   1477 /*
   1478  * We should pass the ctx in from trap code.
   1479  */
   1480 int
   1481 pmap_tlbmiss(vaddr_t va, int ctx)
   1482 {
   1483 	volatile u_int *pte;
   1484 	u_long tte;
   1485 
   1486 	tlbmiss_ev.ev_count++;
   1487 
   1488 	/*
   1489 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1490 	 * Physical RAM is expected to live in this range, care must be taken
   1491 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1492 	 * code.
   1493 	 */
   1494 	if (ctx != KERNEL_PID || va >= VM_MIN_KERNEL_ADDRESS) {
   1495 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1496 		if (pte == NULL) {
   1497 			/* Map unmanaged addresses directly for kernel access */
   1498 			return 1;
   1499 		}
   1500 		tte = *pte;
   1501 		if (tte == 0) {
   1502 			return 1;
   1503 		}
   1504 	} else {
   1505 		/* Create a 16MB writable mapping. */
   1506 #ifdef PPC_4XX_NOCACHE
   1507 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
   1508 #else
   1509 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1510 #endif
   1511 	}
   1512 	tlbhit_ev.ev_count++;
   1513 	ppc4xx_tlb_enter(ctx, va, tte);
   1514 
   1515 	return 0;
   1516 }
   1517 
   1518 /*
   1519  * Flush all the entries matching a context from the TLB.
   1520  */
   1521 static int
   1522 ctx_flush(int cnum)
   1523 {
   1524 	int i;
   1525 
   1526 	/* We gotta steal this context */
   1527 	for (i = tlb_nreserved; i < NTLB; i++) {
   1528 		if (tlb_info[i].ti_ctx == cnum) {
   1529 			/* Can't steal ctx if it has a locked entry. */
   1530 			if (TLB_LOCKED(i)) {
   1531 #ifdef DIAGNOSTIC
   1532 				printf("ctx_flush: can't invalidate "
   1533 					"locked mapping %d "
   1534 					"for context %d\n", i, cnum);
   1535 #ifdef DDB
   1536 				Debugger();
   1537 #endif
   1538 #endif
   1539 				return (1);
   1540 			}
   1541 #ifdef DIAGNOSTIC
   1542 			if (i < tlb_nreserved)
   1543 				panic("TLB entry %d not locked", i);
   1544 #endif
   1545 			/* Invalidate particular TLB entry regardless of locked status */
   1546 			__asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
   1547 			tlb_info[i].ti_flags = 0;
   1548 		}
   1549 	}
   1550 	return (0);
   1551 }
   1552 
   1553 /*
   1554  * Allocate a context.  If necessary, steal one from someone else.
   1555  *
   1556  * The new context is flushed from the TLB before returning.
   1557  */
   1558 int
   1559 ctx_alloc(struct pmap *pm)
   1560 {
   1561 	int s, cnum;
   1562 	static int next = MINCTX;
   1563 
   1564 	if (pm == pmap_kernel()) {
   1565 #ifdef DIAGNOSTIC
   1566 		printf("ctx_alloc: kernel pmap!\n");
   1567 #endif
   1568 		return (0);
   1569 	}
   1570 	s = splvm();
   1571 
   1572 	/* Find a likely context. */
   1573 	cnum = next;
   1574 	do {
   1575 		if ((++cnum) > NUMCTX)
   1576 			cnum = MINCTX;
   1577 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1578 
   1579 	/* Now clean it out */
   1580 oops:
   1581 	if (cnum < MINCTX)
   1582 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1583 	if (ctx_flush(cnum)) {
   1584 		/* oops -- something's wired. */
   1585 		if ((++cnum) > NUMCTX)
   1586 			cnum = MINCTX;
   1587 		goto oops;
   1588 	}
   1589 
   1590 	if (ctxbusy[cnum]) {
   1591 #ifdef DEBUG
   1592 		/* We should identify this pmap and clear it */
   1593 		printf("Warning: stealing context %d\n", cnum);
   1594 #endif
   1595 		ctxbusy[cnum]->pm_ctx = 0;
   1596 	}
   1597 	ctxbusy[cnum] = pm;
   1598 	next = cnum;
   1599 	splx(s);
   1600 	pm->pm_ctx = cnum;
   1601 
   1602 	return cnum;
   1603 }
   1604 
   1605 /*
   1606  * Give away a context.
   1607  */
   1608 void
   1609 ctx_free(struct pmap *pm)
   1610 {
   1611 	int oldctx;
   1612 
   1613 	oldctx = pm->pm_ctx;
   1614 
   1615 	if (oldctx == 0)
   1616 		panic("ctx_free: freeing kernel context");
   1617 #ifdef DIAGNOSTIC
   1618 	if (ctxbusy[oldctx] == 0)
   1619 		printf("ctx_free: freeing free context %d\n", oldctx);
   1620 	if (ctxbusy[oldctx] != pm) {
   1621 		printf("ctx_free: freeing someone esle's context\n "
   1622 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1623 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1624 #ifdef DDB
   1625 		Debugger();
   1626 #endif
   1627 	}
   1628 #endif
   1629 	/* We should verify it has not been stolen and reallocated... */
   1630 	ctxbusy[oldctx] = NULL;
   1631 	ctx_flush(oldctx);
   1632 }
   1633 
   1634 
   1635 #ifdef DEBUG
   1636 /*
   1637  * Test ref/modify handling.
   1638  */
   1639 void pmap_testout(void);
   1640 void
   1641 pmap_testout()
   1642 {
   1643 	vaddr_t va;
   1644 	volatile int *loc;
   1645 	int val = 0;
   1646 	paddr_t pa;
   1647 	struct vm_page *pg;
   1648 	int ref, mod;
   1649 
   1650 	/* Allocate a page */
   1651 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1652 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1653 	loc = (int*)va;
   1654 
   1655 	pmap_extract(pmap_kernel(), va, &pa);
   1656 	pg = PHYS_TO_VM_PAGE(pa);
   1657 	pmap_unwire(pmap_kernel(), va);
   1658 
   1659 	pmap_kremove(va, PAGE_SIZE);
   1660 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1661 	pmap_update(pmap_kernel());
   1662 
   1663 	/* Now clear reference and modify */
   1664 	ref = pmap_clear_reference(pg);
   1665 	mod = pmap_clear_modify(pg);
   1666 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1667 	       (void *)(u_long)va, (long)pa,
   1668 	       ref, mod);
   1669 
   1670 	/* Check it's properly cleared */
   1671 	ref = pmap_is_referenced(pg);
   1672 	mod = pmap_is_modified(pg);
   1673 	printf("Checking cleared page: ref %d, mod %d\n",
   1674 	       ref, mod);
   1675 
   1676 	/* Reference page */
   1677 	val = *loc;
   1678 
   1679 	ref = pmap_is_referenced(pg);
   1680 	mod = pmap_is_modified(pg);
   1681 	printf("Referenced page: ref %d, mod %d val %x\n",
   1682 	       ref, mod, val);
   1683 
   1684 	/* Now clear reference and modify */
   1685 	ref = pmap_clear_reference(pg);
   1686 	mod = pmap_clear_modify(pg);
   1687 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1688 	       (void *)(u_long)va, (long)pa,
   1689 	       ref, mod);
   1690 
   1691 	/* Modify page */
   1692 	*loc = 1;
   1693 
   1694 	ref = pmap_is_referenced(pg);
   1695 	mod = pmap_is_modified(pg);
   1696 	printf("Modified page: ref %d, mod %d\n",
   1697 	       ref, mod);
   1698 
   1699 	/* Now clear reference and modify */
   1700 	ref = pmap_clear_reference(pg);
   1701 	mod = pmap_clear_modify(pg);
   1702 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1703 	       (void *)(u_long)va, (long)pa,
   1704 	       ref, mod);
   1705 
   1706 	/* Check it's properly cleared */
   1707 	ref = pmap_is_referenced(pg);
   1708 	mod = pmap_is_modified(pg);
   1709 	printf("Checking cleared page: ref %d, mod %d\n",
   1710 	       ref, mod);
   1711 
   1712 	/* Modify page */
   1713 	*loc = 1;
   1714 
   1715 	ref = pmap_is_referenced(pg);
   1716 	mod = pmap_is_modified(pg);
   1717 	printf("Modified page: ref %d, mod %d\n",
   1718 	       ref, mod);
   1719 
   1720 	/* Check pmap_protect() */
   1721 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1722 	pmap_update(pmap_kernel());
   1723 	ref = pmap_is_referenced(pg);
   1724 	mod = pmap_is_modified(pg);
   1725 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
   1726 	       ref, mod);
   1727 
   1728 	/* Now clear reference and modify */
   1729 	ref = pmap_clear_reference(pg);
   1730 	mod = pmap_clear_modify(pg);
   1731 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1732 	       (void *)(u_long)va, (long)pa,
   1733 	       ref, mod);
   1734 
   1735 	/* Reference page */
   1736 	val = *loc;
   1737 
   1738 	ref = pmap_is_referenced(pg);
   1739 	mod = pmap_is_modified(pg);
   1740 	printf("Referenced page: ref %d, mod %d val %x\n",
   1741 	       ref, mod, val);
   1742 
   1743 	/* Now clear reference and modify */
   1744 	ref = pmap_clear_reference(pg);
   1745 	mod = pmap_clear_modify(pg);
   1746 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1747 	       (void *)(u_long)va, (long)pa,
   1748 	       ref, mod);
   1749 
   1750 	/* Modify page */
   1751 #if 0
   1752 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1753 	pmap_update(pmap_kernel());
   1754 #endif
   1755 	*loc = 1;
   1756 
   1757 	ref = pmap_is_referenced(pg);
   1758 	mod = pmap_is_modified(pg);
   1759 	printf("Modified page: ref %d, mod %d\n",
   1760 	       ref, mod);
   1761 
   1762 	/* Check pmap_protect() */
   1763 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1764 	pmap_update(pmap_kernel());
   1765 	ref = pmap_is_referenced(pg);
   1766 	mod = pmap_is_modified(pg);
   1767 	printf("pmap_protect(): ref %d, mod %d\n",
   1768 	       ref, mod);
   1769 
   1770 	/* Now clear reference and modify */
   1771 	ref = pmap_clear_reference(pg);
   1772 	mod = pmap_clear_modify(pg);
   1773 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1774 	       (void *)(u_long)va, (long)pa,
   1775 	       ref, mod);
   1776 
   1777 	/* Reference page */
   1778 	val = *loc;
   1779 
   1780 	ref = pmap_is_referenced(pg);
   1781 	mod = pmap_is_modified(pg);
   1782 	printf("Referenced page: ref %d, mod %d val %x\n",
   1783 	       ref, mod, val);
   1784 
   1785 	/* Now clear reference and modify */
   1786 	ref = pmap_clear_reference(pg);
   1787 	mod = pmap_clear_modify(pg);
   1788 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1789 	       (void *)(u_long)va, (long)pa,
   1790 	       ref, mod);
   1791 
   1792 	/* Modify page */
   1793 #if 0
   1794 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1795 	pmap_update(pmap_kernel());
   1796 #endif
   1797 	*loc = 1;
   1798 
   1799 	ref = pmap_is_referenced(pg);
   1800 	mod = pmap_is_modified(pg);
   1801 	printf("Modified page: ref %d, mod %d\n",
   1802 	       ref, mod);
   1803 
   1804 	/* Check pmap_pag_protect() */
   1805 	pmap_page_protect(pg, VM_PROT_READ);
   1806 	ref = pmap_is_referenced(pg);
   1807 	mod = pmap_is_modified(pg);
   1808 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
   1809 	       ref, mod);
   1810 
   1811 	/* Now clear reference and modify */
   1812 	ref = pmap_clear_reference(pg);
   1813 	mod = pmap_clear_modify(pg);
   1814 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1815 	       (void *)(u_long)va, (long)pa,
   1816 	       ref, mod);
   1817 
   1818 	/* Reference page */
   1819 	val = *loc;
   1820 
   1821 	ref = pmap_is_referenced(pg);
   1822 	mod = pmap_is_modified(pg);
   1823 	printf("Referenced page: ref %d, mod %d val %x\n",
   1824 	       ref, mod, val);
   1825 
   1826 	/* Now clear reference and modify */
   1827 	ref = pmap_clear_reference(pg);
   1828 	mod = pmap_clear_modify(pg);
   1829 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1830 	       (void *)(u_long)va, (long)pa,
   1831 	       ref, mod);
   1832 
   1833 	/* Modify page */
   1834 #if 0
   1835 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1836 	pmap_update(pmap_kernel());
   1837 #endif
   1838 	*loc = 1;
   1839 
   1840 	ref = pmap_is_referenced(pg);
   1841 	mod = pmap_is_modified(pg);
   1842 	printf("Modified page: ref %d, mod %d\n",
   1843 	       ref, mod);
   1844 
   1845 	/* Check pmap_pag_protect() */
   1846 	pmap_page_protect(pg, VM_PROT_NONE);
   1847 	ref = pmap_is_referenced(pg);
   1848 	mod = pmap_is_modified(pg);
   1849 	printf("pmap_page_protect(): ref %d, mod %d\n",
   1850 	       ref, mod);
   1851 
   1852 	/* Now clear reference and modify */
   1853 	ref = pmap_clear_reference(pg);
   1854 	mod = pmap_clear_modify(pg);
   1855 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1856 	       (void *)(u_long)va, (long)pa,
   1857 	       ref, mod);
   1858 
   1859 
   1860 	/* Reference page */
   1861 	val = *loc;
   1862 
   1863 	ref = pmap_is_referenced(pg);
   1864 	mod = pmap_is_modified(pg);
   1865 	printf("Referenced page: ref %d, mod %d val %x\n",
   1866 	       ref, mod, val);
   1867 
   1868 	/* Now clear reference and modify */
   1869 	ref = pmap_clear_reference(pg);
   1870 	mod = pmap_clear_modify(pg);
   1871 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1872 	       (void *)(u_long)va, (long)pa,
   1873 	       ref, mod);
   1874 
   1875 	/* Modify page */
   1876 #if 0
   1877 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1878 	pmap_update(pmap_kernel());
   1879 #endif
   1880 	*loc = 1;
   1881 
   1882 	ref = pmap_is_referenced(pg);
   1883 	mod = pmap_is_modified(pg);
   1884 	printf("Modified page: ref %d, mod %d\n",
   1885 	       ref, mod);
   1886 
   1887 	/* Unmap page */
   1888 	pmap_remove(pmap_kernel(), va, va+1);
   1889 	pmap_update(pmap_kernel());
   1890 	ref = pmap_is_referenced(pg);
   1891 	mod = pmap_is_modified(pg);
   1892 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1893 
   1894 	/* Now clear reference and modify */
   1895 	ref = pmap_clear_reference(pg);
   1896 	mod = pmap_clear_modify(pg);
   1897 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1898 	       (void *)(u_long)va, (long)pa, ref, mod);
   1899 
   1900 	/* Check it's properly cleared */
   1901 	ref = pmap_is_referenced(pg);
   1902 	mod = pmap_is_modified(pg);
   1903 	printf("Checking cleared page: ref %d, mod %d\n",
   1904 	       ref, mod);
   1905 
   1906 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1907 	pmap_kenter_pa(va, pa, VM_PROT_ALL);
   1908 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1909 }
   1910 #endif
   1911