pmap.c revision 1.53 1 /* $NetBSD: pmap.c,v 1.53 2009/03/14 14:46:05 dsl Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.53 2009/03/14 14:46:05 dsl Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/user.h>
76 #include <sys/queue.h>
77 #include <sys/systm.h>
78 #include <sys/pool.h>
79 #include <sys/device.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/cpu.h>
84 #include <machine/pcb.h>
85 #include <machine/powerpc.h>
86
87 #include <powerpc/spr.h>
88 #include <machine/tlb.h>
89
90 /*
91 * kernmap is an array of PTEs large enough to map in
92 * 4GB. At 16KB/page it is 256K entries or 2MB.
93 */
94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 void *kernmap;
96
97 #define MINCTX 2
98 #define NUMCTX 256
99
100 volatile struct pmap *ctxbusy[NUMCTX];
101
102 #define TLBF_USED 0x1
103 #define TLBF_REF 0x2
104 #define TLBF_LOCKED 0x4
105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106
107 typedef struct tlb_info_s {
108 char ti_flags;
109 char ti_ctx; /* TLB_PID assiciated with the entry */
110 u_int ti_va;
111 } tlb_info_t;
112
113 volatile tlb_info_t tlb_info[NTLB];
114 /* We'll use a modified FIFO replacement policy cause it's cheap */
115 volatile int tlbnext;
116
117 static int tlb_nreserved = 0;
118 static int pmap_bootstrap_done = 0;
119
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbenter");
129
130 struct pmap kernel_pmap_;
131 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
132
133 int physmem;
134 static int npgs;
135 static u_int nextavail;
136 #ifndef MSGBUFADDR
137 extern paddr_t msgbuf_paddr;
138 #endif
139
140 static struct mem_region *mem, *avail;
141
142 /*
143 * This is a cache of referenced/modified bits.
144 * Bits herein are shifted by ATTRSHFT.
145 */
146 static char *pmap_attrib;
147
148 #define PV_WIRED 0x1
149 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
150 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
151 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
152 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
153
154 struct pv_entry {
155 struct pv_entry *pv_next; /* Linked list of mappings */
156 vaddr_t pv_va; /* virtual address of mapping */
157 struct pmap *pv_pm;
158 };
159
160 /* Each index corresponds to TLB_SIZE_* value. */
161 static size_t tlbsize[] = {
162 1024, /* TLB_SIZE_1K */
163 4096, /* TLB_SIZE_4K */
164 16384, /* TLB_SIZE_16K */
165 65536, /* TLB_SIZE_64K */
166 262144, /* TLB_SIZE_256K */
167 1048576, /* TLB_SIZE_1M */
168 4194304, /* TLB_SIZE_4M */
169 16777216, /* TLB_SIZE_16M */
170 };
171
172 struct pv_entry *pv_table;
173 static struct pool pv_pool;
174
175 static int pmap_initialized;
176
177 static int ctx_flush(int);
178
179 inline struct pv_entry *pa_to_pv(paddr_t);
180 static inline char *pa_to_attr(paddr_t);
181
182 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
183 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
184
185 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
186 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
187
188 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
189
190
191 inline struct pv_entry *
192 pa_to_pv(paddr_t pa)
193 {
194 int bank, pg;
195
196 bank = vm_physseg_find(atop(pa), &pg);
197 if (bank == -1)
198 return NULL;
199 return &vm_physmem[bank].pmseg.pvent[pg];
200 }
201
202 static inline char *
203 pa_to_attr(paddr_t pa)
204 {
205 int bank, pg;
206
207 bank = vm_physseg_find(atop(pa), &pg);
208 if (bank == -1)
209 return NULL;
210 return &vm_physmem[bank].pmseg.attrs[pg];
211 }
212
213 /*
214 * Insert PTE into page table.
215 */
216 int
217 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
218 {
219 int seg = STIDX(va);
220 int ptn = PTIDX(va);
221 u_int oldpte;
222
223 if (!pm->pm_ptbl[seg]) {
224 /* Don't allocate a page to clear a non-existent mapping. */
225 if (!pte)
226 return (0);
227 /* Allocate a page XXXX this will sleep! */
228 pm->pm_ptbl[seg] =
229 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
230 UVM_KMF_WIRED | UVM_KMF_ZERO);
231 }
232 oldpte = pm->pm_ptbl[seg][ptn];
233 pm->pm_ptbl[seg][ptn] = pte;
234
235 /* Flush entry. */
236 ppc4xx_tlb_flush(va, pm->pm_ctx);
237 if (oldpte != pte) {
238 if (pte == 0)
239 pm->pm_stats.resident_count--;
240 else
241 pm->pm_stats.resident_count++;
242 }
243 return (1);
244 }
245
246 /*
247 * Get a pointer to a PTE in a page table.
248 */
249 volatile u_int *
250 pte_find(struct pmap *pm, vaddr_t va)
251 {
252 int seg = STIDX(va);
253 int ptn = PTIDX(va);
254
255 if (pm->pm_ptbl[seg])
256 return (&pm->pm_ptbl[seg][ptn]);
257
258 return (NULL);
259 }
260
261 /*
262 * This is called during initppc, before the system is really initialized.
263 */
264 void
265 pmap_bootstrap(u_int kernelstart, u_int kernelend)
266 {
267 struct mem_region *mp, *mp1;
268 int cnt, i;
269 u_int s, e, sz;
270
271 tlbnext = tlb_nreserved;
272
273 /*
274 * Allocate the kernel page table at the end of
275 * kernel space so it's in the locked TTE.
276 */
277 kernmap = (void *)kernelend;
278
279 /*
280 * Initialize kernel page table.
281 */
282 for (i = 0; i < STSZ; i++) {
283 pmap_kernel()->pm_ptbl[i] = 0;
284 }
285 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
286
287 /*
288 * Announce page-size to the VM-system
289 */
290 uvmexp.pagesize = NBPG;
291 uvm_setpagesize();
292
293 /*
294 * Get memory.
295 */
296 mem_regions(&mem, &avail);
297 for (mp = mem; mp->size; mp++) {
298 physmem += btoc(mp->size);
299 printf("+%lx,",mp->size);
300 }
301 printf("\n");
302 ppc4xx_tlb_init();
303 /*
304 * Count the number of available entries.
305 */
306 for (cnt = 0, mp = avail; mp->size; mp++)
307 cnt++;
308
309 /*
310 * Page align all regions.
311 * Non-page aligned memory isn't very interesting to us.
312 * Also, sort the entries for ascending addresses.
313 */
314 kernelstart &= ~PGOFSET;
315 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
316 for (mp = avail; mp->size; mp++) {
317 s = mp->start;
318 e = mp->start + mp->size;
319 printf("%08x-%08x -> ",s,e);
320 /*
321 * Check whether this region holds all of the kernel.
322 */
323 if (s < kernelstart && e > kernelend) {
324 avail[cnt].start = kernelend;
325 avail[cnt++].size = e - kernelend;
326 e = kernelstart;
327 }
328 /*
329 * Look whether this regions starts within the kernel.
330 */
331 if (s >= kernelstart && s < kernelend) {
332 if (e <= kernelend)
333 goto empty;
334 s = kernelend;
335 }
336 /*
337 * Now look whether this region ends within the kernel.
338 */
339 if (e > kernelstart && e <= kernelend) {
340 if (s >= kernelstart)
341 goto empty;
342 e = kernelstart;
343 }
344 /*
345 * Now page align the start and size of the region.
346 */
347 s = round_page(s);
348 e = trunc_page(e);
349 if (e < s)
350 e = s;
351 sz = e - s;
352 printf("%08x-%08x = %x\n",s,e,sz);
353 /*
354 * Check whether some memory is left here.
355 */
356 if (sz == 0) {
357 empty:
358 memmove(mp, mp + 1,
359 (cnt - (mp - avail)) * sizeof *mp);
360 cnt--;
361 mp--;
362 continue;
363 }
364 /*
365 * Do an insertion sort.
366 */
367 npgs += btoc(sz);
368 for (mp1 = avail; mp1 < mp; mp1++)
369 if (s < mp1->start)
370 break;
371 if (mp1 < mp) {
372 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
373 mp1->start = s;
374 mp1->size = sz;
375 } else {
376 mp->start = s;
377 mp->size = sz;
378 }
379 }
380
381 /*
382 * We cannot do pmap_steal_memory here,
383 * since we don't run with translation enabled yet.
384 */
385 #ifndef MSGBUFADDR
386 /*
387 * allow for msgbuf
388 */
389 sz = round_page(MSGBUFSIZE);
390 mp = NULL;
391 for (mp1 = avail; mp1->size; mp1++)
392 if (mp1->size >= sz)
393 mp = mp1;
394 if (mp == NULL)
395 panic("not enough memory?");
396
397 npgs -= btoc(sz);
398 msgbuf_paddr = mp->start + mp->size - sz;
399 mp->size -= sz;
400 if (mp->size <= 0)
401 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
402 #endif
403
404 for (mp = avail; mp->size; mp++)
405 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
406 atop(mp->start), atop(mp->start + mp->size),
407 VM_FREELIST_DEFAULT);
408
409 /*
410 * Initialize kernel pmap and hardware.
411 */
412 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
413 pmap_kernel()->pm_ctx = KERNEL_PID;
414 nextavail = avail->start;
415
416 evcnt_attach_static(&tlbmiss_ev);
417 evcnt_attach_static(&tlbhit_ev);
418 evcnt_attach_static(&tlbflush_ev);
419 evcnt_attach_static(&tlbenter_ev);
420
421 pmap_bootstrap_done = 1;
422 }
423
424 /*
425 * Restrict given range to physical memory
426 *
427 * (Used by /dev/mem)
428 */
429 void
430 pmap_real_memory(paddr_t *start, psize_t *size)
431 {
432 struct mem_region *mp;
433
434 for (mp = mem; mp->size; mp++) {
435 if (*start + *size > mp->start &&
436 *start < mp->start + mp->size) {
437 if (*start < mp->start) {
438 *size -= mp->start - *start;
439 *start = mp->start;
440 }
441 if (*start + *size > mp->start + mp->size)
442 *size = mp->start + mp->size - *start;
443 return;
444 }
445 }
446 *size = 0;
447 }
448
449 /*
450 * Initialize anything else for pmap handling.
451 * Called during vm_init().
452 */
453 void
454 pmap_init(void)
455 {
456 struct pv_entry *pv;
457 vsize_t sz;
458 vaddr_t addr;
459 int i, s;
460 int bank;
461 char *attr;
462
463 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
464 sz = round_page(sz);
465 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
466 s = splvm();
467 pv = pv_table = (struct pv_entry *)addr;
468 for (i = npgs; --i >= 0;)
469 pv++->pv_pm = NULL;
470 pmap_attrib = (char *)pv;
471 memset(pv, 0, npgs);
472
473 pv = pv_table;
474 attr = pmap_attrib;
475 for (bank = 0; bank < vm_nphysseg; bank++) {
476 sz = vm_physmem[bank].end - vm_physmem[bank].start;
477 vm_physmem[bank].pmseg.pvent = pv;
478 vm_physmem[bank].pmseg.attrs = attr;
479 pv += sz;
480 attr += sz;
481 }
482
483 pmap_initialized = 1;
484 splx(s);
485
486 /* Setup a pool for additional pvlist structures */
487 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
488 IPL_VM);
489 }
490
491 /*
492 * How much virtual space is available to the kernel?
493 */
494 void
495 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
496 {
497
498 #if 0
499 /*
500 * Reserve one segment for kernel virtual memory
501 */
502 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
503 *end = *start + SEGMENT_LENGTH;
504 #else
505 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
506 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
507 #endif
508 }
509
510 #ifdef PMAP_GROWKERNEL
511 /*
512 * Preallocate kernel page tables to a specified VA.
513 * This simply loops through the first TTE for each
514 * page table from the beginning of the kernel pmap,
515 * reads the entry, and if the result is
516 * zero (either invalid entry or no page table) it stores
517 * a zero there, populating page tables in the process.
518 * This is not the most efficient technique but i don't
519 * expect it to be called that often.
520 */
521 extern struct vm_page *vm_page_alloc1(void);
522 extern void vm_page_free1(struct vm_page *);
523
524 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
525
526 vaddr_t
527 pmap_growkernel(vaddr_t maxkvaddr)
528 {
529 int s;
530 int seg;
531 paddr_t pg;
532 struct pmap *pm = pmap_kernel();
533
534 s = splvm();
535
536 /* Align with the start of a page table */
537 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
538 kbreak += PTMAP) {
539 seg = STIDX(kbreak);
540
541 if (pte_find(pm, kbreak))
542 continue;
543
544 if (uvm.page_init_done) {
545 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
546 } else {
547 if (!uvm_page_physget(&pg))
548 panic("pmap_growkernel: no memory");
549 }
550 if (!pg)
551 panic("pmap_growkernel: no pages");
552 pmap_zero_page((paddr_t)pg);
553
554 /* XXX This is based on all phymem being addressable */
555 pm->pm_ptbl[seg] = (u_int *)pg;
556 }
557 splx(s);
558 return (kbreak);
559 }
560
561 /*
562 * vm_page_alloc1:
563 *
564 * Allocate and return a memory cell with no associated object.
565 */
566 struct vm_page *
567 vm_page_alloc1(void)
568 {
569 struct vm_page *pg;
570
571 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
572 if (pg) {
573 pg->wire_count = 1; /* no mappings yet */
574 pg->flags &= ~PG_BUSY; /* never busy */
575 }
576 return pg;
577 }
578
579 /*
580 * vm_page_free1:
581 *
582 * Returns the given page to the free list,
583 * disassociating it with any VM object.
584 *
585 * Object and page must be locked prior to entry.
586 */
587 void
588 vm_page_free1(struct vm_page *pg)
589 {
590 #ifdef DIAGNOSTIC
591 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
592 printf("Freeing invalid page %p\n", pg);
593 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
594 #ifdef DDB
595 Debugger();
596 #endif
597 return;
598 }
599 #endif
600 pg->flags |= PG_BUSY;
601 pg->wire_count = 0;
602 uvm_pagefree(pg);
603 }
604 #endif
605
606 /*
607 * Create and return a physical map.
608 */
609 struct pmap *
610 pmap_create(void)
611 {
612 struct pmap *pm;
613
614 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
615 memset(pm, 0, sizeof *pm);
616 pm->pm_refs = 1;
617 return pm;
618 }
619
620 /*
621 * Add a reference to the given pmap.
622 */
623 void
624 pmap_reference(struct pmap *pm)
625 {
626
627 pm->pm_refs++;
628 }
629
630 /*
631 * Retire the given pmap from service.
632 * Should only be called if the map contains no valid mappings.
633 */
634 void
635 pmap_destroy(struct pmap *pm)
636 {
637 int i;
638
639 if (--pm->pm_refs > 0) {
640 return;
641 }
642 KASSERT(pm->pm_stats.resident_count == 0);
643 KASSERT(pm->pm_stats.wired_count == 0);
644 for (i = 0; i < STSZ; i++)
645 if (pm->pm_ptbl[i]) {
646 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
647 PAGE_SIZE, UVM_KMF_WIRED);
648 pm->pm_ptbl[i] = NULL;
649 }
650 if (pm->pm_ctx)
651 ctx_free(pm);
652 free(pm, M_VMPMAP);
653 }
654
655 /*
656 * Copy the range specified by src_addr/len
657 * from the source map to the range dst_addr/len
658 * in the destination map.
659 *
660 * This routine is only advisory and need not do anything.
661 */
662 void
663 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
664 vsize_t len, vaddr_t src_addr)
665 {
666 }
667
668 /*
669 * Require that all active physical maps contain no
670 * incorrect entries NOW.
671 */
672 void
673 pmap_update(struct pmap *pmap)
674 {
675 }
676
677 /*
678 * Garbage collects the physical map system for
679 * pages which are no longer used.
680 * Success need not be guaranteed -- that is, there
681 * may well be pages which are not referenced, but
682 * others may be collected.
683 * Called by the pageout daemon when pages are scarce.
684 */
685 void
686 pmap_collect(struct pmap *pm)
687 {
688 }
689
690 /*
691 * Fill the given physical page with zeroes.
692 */
693 void
694 pmap_zero_page(paddr_t pa)
695 {
696
697 #ifdef PPC_4XX_NOCACHE
698 memset((void *)pa, 0, PAGE_SIZE);
699 #else
700 int i;
701
702 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
703 __asm volatile ("dcbz 0,%0" :: "r"(pa));
704 pa += CACHELINESIZE;
705 }
706 #endif
707 }
708
709 /*
710 * Copy the given physical source page to its destination.
711 */
712 void
713 pmap_copy_page(paddr_t src, paddr_t dst)
714 {
715
716 memcpy((void *)dst, (void *)src, PAGE_SIZE);
717 dcache_flush_page(dst);
718 }
719
720 /*
721 * This returns != 0 on success.
722 */
723 static inline int
724 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
725 {
726 struct pv_entry *pv, *npv = NULL;
727 int s;
728
729 if (!pmap_initialized)
730 return 0;
731
732 s = splvm();
733 pv = pa_to_pv(pa);
734 if (!pv->pv_pm) {
735 /*
736 * No entries yet, use header as the first entry.
737 */
738 pv->pv_va = va;
739 pv->pv_pm = pm;
740 pv->pv_next = NULL;
741 } else {
742 /*
743 * There is at least one other VA mapping this page.
744 * Place this entry after the header.
745 */
746 npv = pool_get(&pv_pool, PR_NOWAIT);
747 if (npv == NULL) {
748 if ((flags & PMAP_CANFAIL) == 0)
749 panic("pmap_enter_pv: failed");
750 splx(s);
751 return 0;
752 }
753 npv->pv_va = va;
754 npv->pv_pm = pm;
755 npv->pv_next = pv->pv_next;
756 pv->pv_next = npv;
757 pv = npv;
758 }
759 if (flags & PMAP_WIRED) {
760 PV_WIRE(pv);
761 pm->pm_stats.wired_count++;
762 }
763 splx(s);
764 return (1);
765 }
766
767 static void
768 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
769 {
770 struct pv_entry *pv, *npv;
771
772 /*
773 * Remove from the PV table.
774 */
775 pv = pa_to_pv(pa);
776 if (!pv)
777 return;
778
779 /*
780 * If it is the first entry on the list, it is actually
781 * in the header and we must copy the following entry up
782 * to the header. Otherwise we must search the list for
783 * the entry. In either case we free the now unused entry.
784 */
785 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
786 if (PV_ISWIRED(pv)) {
787 pm->pm_stats.wired_count--;
788 }
789 if ((npv = pv->pv_next)) {
790 *pv = *npv;
791 pool_put(&pv_pool, npv);
792 } else
793 pv->pv_pm = NULL;
794 } else {
795 for (; (npv = pv->pv_next) != NULL; pv = npv)
796 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
797 break;
798 if (npv) {
799 pv->pv_next = npv->pv_next;
800 if (PV_ISWIRED(npv)) {
801 pm->pm_stats.wired_count--;
802 }
803 pool_put(&pv_pool, npv);
804 }
805 }
806 }
807
808 /*
809 * Insert physical page at pa into the given pmap at virtual address va.
810 */
811 int
812 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
813 {
814 int s;
815 u_int tte;
816 int managed;
817
818 /*
819 * Have to remove any existing mapping first.
820 */
821 pmap_remove(pm, va, va + PAGE_SIZE);
822
823 if (flags & PMAP_WIRED)
824 flags |= prot;
825
826 managed = 0;
827 if (vm_physseg_find(atop(pa), NULL) != -1)
828 managed = 1;
829
830 /*
831 * Generate TTE.
832 */
833 tte = TTE_PA(pa);
834 /* XXXX -- need to support multiple page sizes. */
835 tte |= TTE_SZ_16K;
836 #ifdef DIAGNOSTIC
837 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
838 (PME_NOCACHE | PME_WRITETHROUG))
839 panic("pmap_enter: uncached & writethrough");
840 #endif
841 if (flags & PME_NOCACHE)
842 /* Must be I/O mapping */
843 tte |= TTE_I | TTE_G;
844 #ifdef PPC_4XX_NOCACHE
845 tte |= TTE_I;
846 #else
847 else if (flags & PME_WRITETHROUG)
848 /* Uncached and writethrough are not compatible */
849 tte |= TTE_W;
850 #endif
851 if (pm == pmap_kernel())
852 tte |= TTE_ZONE(ZONE_PRIV);
853 else
854 tte |= TTE_ZONE(ZONE_USER);
855
856 if (flags & VM_PROT_WRITE)
857 tte |= TTE_WR;
858
859 if (flags & VM_PROT_EXECUTE)
860 tte |= TTE_EX;
861
862 /*
863 * Now record mapping for later back-translation.
864 */
865 if (pmap_initialized && managed) {
866 char *attr;
867
868 if (!pmap_enter_pv(pm, va, pa, flags)) {
869 /* Could not enter pv on a managed page */
870 return 1;
871 }
872
873 /* Now set attributes. */
874 attr = pa_to_attr(pa);
875 #ifdef DIAGNOSTIC
876 if (!attr)
877 panic("managed but no attr");
878 #endif
879 if (flags & VM_PROT_ALL)
880 *attr |= PMAP_ATTR_REF;
881 if (flags & VM_PROT_WRITE)
882 *attr |= PMAP_ATTR_CHG;
883 }
884
885 s = splvm();
886
887 /* Insert page into page table. */
888 pte_enter(pm, va, tte);
889
890 /* If this is a real fault, enter it in the tlb */
891 if (tte && ((flags & PMAP_WIRED) == 0)) {
892 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
893 }
894 splx(s);
895
896 /* Flush the real memory from the instruction cache. */
897 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
898 __syncicache((void *)pa, PAGE_SIZE);
899
900 return 0;
901 }
902
903 void
904 pmap_unwire(struct pmap *pm, vaddr_t va)
905 {
906 struct pv_entry *pv;
907 paddr_t pa;
908 int s;
909
910 if (!pmap_extract(pm, va, &pa)) {
911 return;
912 }
913
914 pv = pa_to_pv(pa);
915 if (!pv)
916 return;
917
918 s = splvm();
919 while (pv != NULL) {
920 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
921 if (PV_ISWIRED(pv)) {
922 PV_UNWIRE(pv);
923 pm->pm_stats.wired_count--;
924 }
925 break;
926 }
927 pv = pv->pv_next;
928 }
929 splx(s);
930 }
931
932 void
933 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
934 {
935 int s;
936 u_int tte;
937 struct pmap *pm = pmap_kernel();
938
939 /*
940 * Have to remove any existing mapping first.
941 */
942
943 /*
944 * Generate TTE.
945 *
946 * XXXX
947 *
948 * Since the kernel does not handle execution privileges properly,
949 * we will handle read and execute permissions together.
950 */
951 tte = 0;
952 if (prot & VM_PROT_ALL) {
953
954 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
955 /* XXXX -- need to support multiple page sizes. */
956 tte |= TTE_SZ_16K;
957 #ifdef DIAGNOSTIC
958 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
959 (PME_NOCACHE | PME_WRITETHROUG))
960 panic("pmap_kenter_pa: uncached & writethrough");
961 #endif
962 if (prot & PME_NOCACHE)
963 /* Must be I/O mapping */
964 tte |= TTE_I | TTE_G;
965 #ifdef PPC_4XX_NOCACHE
966 tte |= TTE_I;
967 #else
968 else if (prot & PME_WRITETHROUG)
969 /* Uncached and writethrough are not compatible */
970 tte |= TTE_W;
971 #endif
972 if (prot & VM_PROT_WRITE)
973 tte |= TTE_WR;
974 }
975
976 s = splvm();
977
978 /* Insert page into page table. */
979 pte_enter(pm, va, tte);
980 splx(s);
981 }
982
983 void
984 pmap_kremove(vaddr_t va, vsize_t len)
985 {
986
987 while (len > 0) {
988 pte_enter(pmap_kernel(), va, 0);
989 va += PAGE_SIZE;
990 len -= PAGE_SIZE;
991 }
992 }
993
994 /*
995 * Remove the given range of mapping entries.
996 */
997 void
998 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
999 {
1000 int s;
1001 paddr_t pa;
1002 volatile u_int *ptp;
1003
1004 s = splvm();
1005 while (va < endva) {
1006
1007 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1008 pa = TTE_PA(pa);
1009 pmap_remove_pv(pm, va, pa);
1010 *ptp = 0;
1011 ppc4xx_tlb_flush(va, pm->pm_ctx);
1012 pm->pm_stats.resident_count--;
1013 }
1014 va += PAGE_SIZE;
1015 }
1016
1017 splx(s);
1018 }
1019
1020 /*
1021 * Get the physical page address for the given pmap/virtual address.
1022 */
1023 bool
1024 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1025 {
1026 int seg = STIDX(va);
1027 int ptn = PTIDX(va);
1028 u_int pa = 0;
1029 int s;
1030
1031 s = splvm();
1032 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1033 *pap = TTE_PA(pa) | (va & PGOFSET);
1034 }
1035 splx(s);
1036 return (pa != 0);
1037 }
1038
1039 /*
1040 * Lower the protection on the specified range of this pmap.
1041 *
1042 * There are only two cases: either the protection is going to 0,
1043 * or it is going to read-only.
1044 */
1045 void
1046 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1047 {
1048 volatile u_int *ptp;
1049 int s, bic;
1050
1051 if ((prot & VM_PROT_READ) == 0) {
1052 pmap_remove(pm, sva, eva);
1053 return;
1054 }
1055 bic = 0;
1056 if ((prot & VM_PROT_WRITE) == 0) {
1057 bic |= TTE_WR;
1058 }
1059 if ((prot & VM_PROT_EXECUTE) == 0) {
1060 bic |= TTE_EX;
1061 }
1062 if (bic == 0) {
1063 return;
1064 }
1065 s = splvm();
1066 while (sva < eva) {
1067 if ((ptp = pte_find(pm, sva)) != NULL) {
1068 *ptp &= ~bic;
1069 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1070 }
1071 sva += PAGE_SIZE;
1072 }
1073 splx(s);
1074 }
1075
1076 bool
1077 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1078 {
1079 paddr_t pa;
1080 char *attr;
1081 int s, rv;
1082
1083 /*
1084 * First modify bits in cache.
1085 */
1086 pa = VM_PAGE_TO_PHYS(pg);
1087 attr = pa_to_attr(pa);
1088 if (attr == NULL)
1089 return false;
1090
1091 s = splvm();
1092 rv = ((*attr & mask) != 0);
1093 if (clear) {
1094 *attr &= ~mask;
1095 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1096 }
1097 splx(s);
1098 return rv;
1099 }
1100
1101
1102 /*
1103 * Lower the protection on the specified physical page.
1104 *
1105 * There are only two cases: either the protection is going to 0,
1106 * or it is going to read-only.
1107 */
1108 void
1109 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1110 {
1111 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1112 vaddr_t va;
1113 struct pv_entry *pvh, *pv, *npv;
1114 struct pmap *pm;
1115
1116 pvh = pa_to_pv(pa);
1117 if (pvh == NULL)
1118 return;
1119
1120 /* Handle extra pvs which may be deleted in the operation */
1121 for (pv = pvh->pv_next; pv; pv = npv) {
1122 npv = pv->pv_next;
1123
1124 pm = pv->pv_pm;
1125 va = pv->pv_va;
1126 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1127 }
1128 /* Now check the head pv */
1129 if (pvh->pv_pm) {
1130 pv = pvh;
1131 pm = pv->pv_pm;
1132 va = pv->pv_va;
1133 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1134 }
1135 }
1136
1137 /*
1138 * Activate the address space for the specified process. If the process
1139 * is the current process, load the new MMU context.
1140 */
1141 void
1142 pmap_activate(struct lwp *l)
1143 {
1144 #if 0
1145 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1146 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1147
1148 /*
1149 * XXX Normally performed in cpu_fork().
1150 */
1151 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1152 pcb->pcb_pm = pmap;
1153 #endif
1154 }
1155
1156 /*
1157 * Deactivate the specified process's address space.
1158 */
1159 void
1160 pmap_deactivate(struct lwp *l)
1161 {
1162 }
1163
1164 /*
1165 * Synchronize caches corresponding to [addr, addr+len) in p.
1166 */
1167 void
1168 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1169 {
1170 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1171 int msr, ctx, opid, step;
1172
1173 step = CACHELINESIZE;
1174
1175 /*
1176 * Need to turn off IMMU and switch to user context.
1177 * (icbi uses DMMU).
1178 */
1179 if (!(ctx = pm->pm_ctx)) {
1180 /* No context -- assign it one */
1181 ctx_alloc(pm);
1182 ctx = pm->pm_ctx;
1183 }
1184 __asm volatile("mfmsr %0;"
1185 "li %1, %7;"
1186 "andc %1,%0,%1;"
1187 "mtmsr %1;"
1188 "sync;isync;"
1189 "mfpid %1;"
1190 "mtpid %2;"
1191 "sync; isync;"
1192 "1:"
1193 "dcbf 0,%3;"
1194 "icbi 0,%3;"
1195 "add %3,%3,%5;"
1196 "addc. %4,%4,%6;"
1197 "bge 1b;"
1198 "mtpid %1;"
1199 "mtmsr %0;"
1200 "sync; isync"
1201 : "=&r" (msr), "=&r" (opid)
1202 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1203 "K" (PSL_IR | PSL_DR));
1204 }
1205
1206
1207 /* This has to be done in real mode !!! */
1208 void
1209 ppc4xx_tlb_flush(vaddr_t va, int pid)
1210 {
1211 u_long i, found;
1212 u_long msr;
1213
1214 /* If there's no context then it can't be mapped. */
1215 if (!pid)
1216 return;
1217
1218 __asm( "mfpid %1;" /* Save PID */
1219 "mfmsr %2;" /* Save MSR */
1220 "li %0,0;" /* Now clear MSR */
1221 "mtmsr %0;"
1222 "mtpid %4;" /* Set PID */
1223 "sync;"
1224 "tlbsx. %0,0,%3;" /* Search TLB */
1225 "sync;"
1226 "mtpid %1;" /* Restore PID */
1227 "mtmsr %2;" /* Restore MSR */
1228 "sync;isync;"
1229 "li %1,1;"
1230 "beq 1f;"
1231 "li %1,0;"
1232 "1:"
1233 : "=&r" (i), "=&r" (found), "=&r" (msr)
1234 : "r" (va), "r" (pid));
1235 if (found && !TLB_LOCKED(i)) {
1236
1237 /* Now flush translation */
1238 __asm volatile(
1239 "tlbwe %0,%1,0;"
1240 "sync;isync;"
1241 : : "r" (0), "r" (i));
1242
1243 tlb_info[i].ti_ctx = 0;
1244 tlb_info[i].ti_flags = 0;
1245 tlbnext = i;
1246 /* Successful flushes */
1247 tlbflush_ev.ev_count++;
1248 }
1249 }
1250
1251 void
1252 ppc4xx_tlb_flush_all(void)
1253 {
1254 u_long i;
1255
1256 for (i = 0; i < NTLB; i++)
1257 if (!TLB_LOCKED(i)) {
1258 __asm volatile(
1259 "tlbwe %0,%1,0;"
1260 "sync;isync;"
1261 : : "r" (0), "r" (i));
1262 tlb_info[i].ti_ctx = 0;
1263 tlb_info[i].ti_flags = 0;
1264 }
1265
1266 __asm volatile("sync;isync");
1267 }
1268
1269 /* Find a TLB entry to evict. */
1270 static int
1271 ppc4xx_tlb_find_victim(void)
1272 {
1273 int flags;
1274
1275 for (;;) {
1276 if (++tlbnext >= NTLB)
1277 tlbnext = tlb_nreserved;
1278 flags = tlb_info[tlbnext].ti_flags;
1279 if (!(flags & TLBF_USED) ||
1280 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1281 u_long va, stack = (u_long)&va;
1282
1283 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1284 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1285 (flags & TLBF_USED)) {
1286 /* Kernel stack page */
1287 flags |= TLBF_USED;
1288 tlb_info[tlbnext].ti_flags = flags;
1289 } else {
1290 /* Found it! */
1291 return (tlbnext);
1292 }
1293 } else {
1294 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1295 }
1296 }
1297 }
1298
1299 void
1300 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1301 {
1302 u_long th, tl, idx;
1303 tlbpid_t pid;
1304 u_short msr;
1305 paddr_t pa;
1306 int s, sz;
1307
1308 tlbenter_ev.ev_count++;
1309
1310 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1311 pa = (pte & TTE_RPN_MASK(sz));
1312 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1313 tl = (pte & ~TLB_RPN_MASK) | pa;
1314 tl |= ppc4xx_tlbflags(va, pa);
1315
1316 s = splhigh();
1317 idx = ppc4xx_tlb_find_victim();
1318
1319 #ifdef DIAGNOSTIC
1320 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1321 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1322 }
1323 #endif
1324
1325 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1326 tlb_info[idx].ti_ctx = ctx;
1327 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1328
1329 __asm volatile(
1330 "mfmsr %0;" /* Save MSR */
1331 "li %1,0;"
1332 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1333 "mtmsr %1;" /* Clear MSR */
1334 "mfpid %1;" /* Save old PID */
1335 "mtpid %2;" /* Load translation ctx */
1336 "sync; isync;"
1337 #ifdef DEBUG
1338 "andi. %3,%3,63;"
1339 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1340 #endif
1341 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1342 "sync; isync;"
1343 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1344 "sync; isync;"
1345 : "=&r" (msr), "=&r" (pid)
1346 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1347 splx(s);
1348 }
1349
1350 void
1351 ppc4xx_tlb_init(void)
1352 {
1353 int i;
1354
1355 /* Mark reserved TLB entries */
1356 for (i = 0; i < tlb_nreserved; i++) {
1357 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1358 tlb_info[i].ti_ctx = KERNEL_PID;
1359 }
1360
1361 /* Setup security zones */
1362 /* Z0 - accessible by kernel only if TLB entry permissions allow
1363 * Z1,Z2 - access is controlled by TLB entry permissions
1364 * Z3 - full access regardless of TLB entry permissions
1365 */
1366
1367 __asm volatile(
1368 "mtspr %0,%1;"
1369 "sync;"
1370 :: "K"(SPR_ZPR), "r" (0x1b000000));
1371 }
1372
1373 /*
1374 * ppc4xx_tlb_size_mask:
1375 *
1376 * Roundup size to supported page size, return TLBHI mask and real size.
1377 */
1378 static int
1379 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1380 {
1381 int i;
1382
1383 for (i = 0; i < __arraycount(tlbsize); i++)
1384 if (size <= tlbsize[i]) {
1385 *mask = (i << TLB_SIZE_SHFT);
1386 *rsiz = tlbsize[i];
1387 return (0);
1388 }
1389 return (EINVAL);
1390 }
1391
1392 /*
1393 * ppc4xx_tlb_mapiodev:
1394 *
1395 * Lookup virtual address of mapping previously entered via
1396 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1397 * need to waste extra storage for reserved mappings. Note
1398 * that reading TLBHI also sets PID, but all reserved mappings
1399 * use KERNEL_PID, so the side effect is nil.
1400 */
1401 void *
1402 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1403 {
1404 paddr_t pa;
1405 vaddr_t va;
1406 u_int lo, hi, sz;
1407 int i;
1408
1409 /* tlb_nreserved is only allowed to grow, so this is safe. */
1410 for (i = 0; i < tlb_nreserved; i++) {
1411 __asm volatile (
1412 " tlbre %0,%2,1 \n" /* TLBLO */
1413 " tlbre %1,%2,0 \n" /* TLBHI */
1414 : "=&r" (lo), "=&r" (hi)
1415 : "r" (i));
1416
1417 KASSERT(hi & TLB_VALID);
1418 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1419
1420 pa = (lo & TLB_RPN_MASK);
1421 if (base < pa)
1422 continue;
1423
1424 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1425 if ((base + len) > (pa + sz))
1426 continue;
1427
1428 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1429 return (void *)(va);
1430 }
1431
1432 return (NULL);
1433 }
1434
1435 /*
1436 * ppc4xx_tlb_reserve:
1437 *
1438 * Map physical range to kernel virtual chunk via reserved TLB entry.
1439 */
1440 void
1441 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1442 {
1443 u_int lo, hi;
1444 int szmask, rsize;
1445
1446 /* Called before pmap_bootstrap(), va outside kernel space. */
1447 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1448 KASSERT(! pmap_bootstrap_done);
1449 KASSERT(tlb_nreserved < NTLB);
1450
1451 /* Resolve size. */
1452 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1453 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1454 size, tlb_nreserved);
1455
1456 /* Real size will be power of two >= 1024, so this is OK. */
1457 pa &= ~(rsize - 1); /* RPN */
1458 va &= ~(rsize - 1); /* EPN */
1459
1460 lo = pa | TLB_WR | flags;
1461 hi = va | TLB_VALID | szmask;
1462
1463 #ifdef PPC_4XX_NOCACHE
1464 lo |= TLB_I;
1465 #endif
1466
1467 __asm volatile(
1468 " tlbwe %1,%0,1 \n" /* write TLBLO */
1469 " tlbwe %2,%0,0 \n" /* write TLBHI */
1470 " sync \n"
1471 " isync \n"
1472 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1473
1474 tlb_nreserved++;
1475 }
1476
1477 /*
1478 * We should pass the ctx in from trap code.
1479 */
1480 int
1481 pmap_tlbmiss(vaddr_t va, int ctx)
1482 {
1483 volatile u_int *pte;
1484 u_long tte;
1485
1486 tlbmiss_ev.ev_count++;
1487
1488 /*
1489 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1490 * Physical RAM is expected to live in this range, care must be taken
1491 * to not clobber 0 upto ${physmem} with device mappings in machdep
1492 * code.
1493 */
1494 if (ctx != KERNEL_PID || va >= VM_MIN_KERNEL_ADDRESS) {
1495 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1496 if (pte == NULL) {
1497 /* Map unmanaged addresses directly for kernel access */
1498 return 1;
1499 }
1500 tte = *pte;
1501 if (tte == 0) {
1502 return 1;
1503 }
1504 } else {
1505 /* Create a 16MB writable mapping. */
1506 #ifdef PPC_4XX_NOCACHE
1507 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1508 #else
1509 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1510 #endif
1511 }
1512 tlbhit_ev.ev_count++;
1513 ppc4xx_tlb_enter(ctx, va, tte);
1514
1515 return 0;
1516 }
1517
1518 /*
1519 * Flush all the entries matching a context from the TLB.
1520 */
1521 static int
1522 ctx_flush(int cnum)
1523 {
1524 int i;
1525
1526 /* We gotta steal this context */
1527 for (i = tlb_nreserved; i < NTLB; i++) {
1528 if (tlb_info[i].ti_ctx == cnum) {
1529 /* Can't steal ctx if it has a locked entry. */
1530 if (TLB_LOCKED(i)) {
1531 #ifdef DIAGNOSTIC
1532 printf("ctx_flush: can't invalidate "
1533 "locked mapping %d "
1534 "for context %d\n", i, cnum);
1535 #ifdef DDB
1536 Debugger();
1537 #endif
1538 #endif
1539 return (1);
1540 }
1541 #ifdef DIAGNOSTIC
1542 if (i < tlb_nreserved)
1543 panic("TLB entry %d not locked", i);
1544 #endif
1545 /* Invalidate particular TLB entry regardless of locked status */
1546 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1547 tlb_info[i].ti_flags = 0;
1548 }
1549 }
1550 return (0);
1551 }
1552
1553 /*
1554 * Allocate a context. If necessary, steal one from someone else.
1555 *
1556 * The new context is flushed from the TLB before returning.
1557 */
1558 int
1559 ctx_alloc(struct pmap *pm)
1560 {
1561 int s, cnum;
1562 static int next = MINCTX;
1563
1564 if (pm == pmap_kernel()) {
1565 #ifdef DIAGNOSTIC
1566 printf("ctx_alloc: kernel pmap!\n");
1567 #endif
1568 return (0);
1569 }
1570 s = splvm();
1571
1572 /* Find a likely context. */
1573 cnum = next;
1574 do {
1575 if ((++cnum) > NUMCTX)
1576 cnum = MINCTX;
1577 } while (ctxbusy[cnum] != NULL && cnum != next);
1578
1579 /* Now clean it out */
1580 oops:
1581 if (cnum < MINCTX)
1582 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1583 if (ctx_flush(cnum)) {
1584 /* oops -- something's wired. */
1585 if ((++cnum) > NUMCTX)
1586 cnum = MINCTX;
1587 goto oops;
1588 }
1589
1590 if (ctxbusy[cnum]) {
1591 #ifdef DEBUG
1592 /* We should identify this pmap and clear it */
1593 printf("Warning: stealing context %d\n", cnum);
1594 #endif
1595 ctxbusy[cnum]->pm_ctx = 0;
1596 }
1597 ctxbusy[cnum] = pm;
1598 next = cnum;
1599 splx(s);
1600 pm->pm_ctx = cnum;
1601
1602 return cnum;
1603 }
1604
1605 /*
1606 * Give away a context.
1607 */
1608 void
1609 ctx_free(struct pmap *pm)
1610 {
1611 int oldctx;
1612
1613 oldctx = pm->pm_ctx;
1614
1615 if (oldctx == 0)
1616 panic("ctx_free: freeing kernel context");
1617 #ifdef DIAGNOSTIC
1618 if (ctxbusy[oldctx] == 0)
1619 printf("ctx_free: freeing free context %d\n", oldctx);
1620 if (ctxbusy[oldctx] != pm) {
1621 printf("ctx_free: freeing someone esle's context\n "
1622 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1623 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1624 #ifdef DDB
1625 Debugger();
1626 #endif
1627 }
1628 #endif
1629 /* We should verify it has not been stolen and reallocated... */
1630 ctxbusy[oldctx] = NULL;
1631 ctx_flush(oldctx);
1632 }
1633
1634
1635 #ifdef DEBUG
1636 /*
1637 * Test ref/modify handling.
1638 */
1639 void pmap_testout(void);
1640 void
1641 pmap_testout()
1642 {
1643 vaddr_t va;
1644 volatile int *loc;
1645 int val = 0;
1646 paddr_t pa;
1647 struct vm_page *pg;
1648 int ref, mod;
1649
1650 /* Allocate a page */
1651 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1652 UVM_KMF_WIRED | UVM_KMF_ZERO);
1653 loc = (int*)va;
1654
1655 pmap_extract(pmap_kernel(), va, &pa);
1656 pg = PHYS_TO_VM_PAGE(pa);
1657 pmap_unwire(pmap_kernel(), va);
1658
1659 pmap_kremove(va, PAGE_SIZE);
1660 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1661 pmap_update(pmap_kernel());
1662
1663 /* Now clear reference and modify */
1664 ref = pmap_clear_reference(pg);
1665 mod = pmap_clear_modify(pg);
1666 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1667 (void *)(u_long)va, (long)pa,
1668 ref, mod);
1669
1670 /* Check it's properly cleared */
1671 ref = pmap_is_referenced(pg);
1672 mod = pmap_is_modified(pg);
1673 printf("Checking cleared page: ref %d, mod %d\n",
1674 ref, mod);
1675
1676 /* Reference page */
1677 val = *loc;
1678
1679 ref = pmap_is_referenced(pg);
1680 mod = pmap_is_modified(pg);
1681 printf("Referenced page: ref %d, mod %d val %x\n",
1682 ref, mod, val);
1683
1684 /* Now clear reference and modify */
1685 ref = pmap_clear_reference(pg);
1686 mod = pmap_clear_modify(pg);
1687 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1688 (void *)(u_long)va, (long)pa,
1689 ref, mod);
1690
1691 /* Modify page */
1692 *loc = 1;
1693
1694 ref = pmap_is_referenced(pg);
1695 mod = pmap_is_modified(pg);
1696 printf("Modified page: ref %d, mod %d\n",
1697 ref, mod);
1698
1699 /* Now clear reference and modify */
1700 ref = pmap_clear_reference(pg);
1701 mod = pmap_clear_modify(pg);
1702 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1703 (void *)(u_long)va, (long)pa,
1704 ref, mod);
1705
1706 /* Check it's properly cleared */
1707 ref = pmap_is_referenced(pg);
1708 mod = pmap_is_modified(pg);
1709 printf("Checking cleared page: ref %d, mod %d\n",
1710 ref, mod);
1711
1712 /* Modify page */
1713 *loc = 1;
1714
1715 ref = pmap_is_referenced(pg);
1716 mod = pmap_is_modified(pg);
1717 printf("Modified page: ref %d, mod %d\n",
1718 ref, mod);
1719
1720 /* Check pmap_protect() */
1721 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1722 pmap_update(pmap_kernel());
1723 ref = pmap_is_referenced(pg);
1724 mod = pmap_is_modified(pg);
1725 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1726 ref, mod);
1727
1728 /* Now clear reference and modify */
1729 ref = pmap_clear_reference(pg);
1730 mod = pmap_clear_modify(pg);
1731 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1732 (void *)(u_long)va, (long)pa,
1733 ref, mod);
1734
1735 /* Reference page */
1736 val = *loc;
1737
1738 ref = pmap_is_referenced(pg);
1739 mod = pmap_is_modified(pg);
1740 printf("Referenced page: ref %d, mod %d val %x\n",
1741 ref, mod, val);
1742
1743 /* Now clear reference and modify */
1744 ref = pmap_clear_reference(pg);
1745 mod = pmap_clear_modify(pg);
1746 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1747 (void *)(u_long)va, (long)pa,
1748 ref, mod);
1749
1750 /* Modify page */
1751 #if 0
1752 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1753 pmap_update(pmap_kernel());
1754 #endif
1755 *loc = 1;
1756
1757 ref = pmap_is_referenced(pg);
1758 mod = pmap_is_modified(pg);
1759 printf("Modified page: ref %d, mod %d\n",
1760 ref, mod);
1761
1762 /* Check pmap_protect() */
1763 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1764 pmap_update(pmap_kernel());
1765 ref = pmap_is_referenced(pg);
1766 mod = pmap_is_modified(pg);
1767 printf("pmap_protect(): ref %d, mod %d\n",
1768 ref, mod);
1769
1770 /* Now clear reference and modify */
1771 ref = pmap_clear_reference(pg);
1772 mod = pmap_clear_modify(pg);
1773 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1774 (void *)(u_long)va, (long)pa,
1775 ref, mod);
1776
1777 /* Reference page */
1778 val = *loc;
1779
1780 ref = pmap_is_referenced(pg);
1781 mod = pmap_is_modified(pg);
1782 printf("Referenced page: ref %d, mod %d val %x\n",
1783 ref, mod, val);
1784
1785 /* Now clear reference and modify */
1786 ref = pmap_clear_reference(pg);
1787 mod = pmap_clear_modify(pg);
1788 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1789 (void *)(u_long)va, (long)pa,
1790 ref, mod);
1791
1792 /* Modify page */
1793 #if 0
1794 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1795 pmap_update(pmap_kernel());
1796 #endif
1797 *loc = 1;
1798
1799 ref = pmap_is_referenced(pg);
1800 mod = pmap_is_modified(pg);
1801 printf("Modified page: ref %d, mod %d\n",
1802 ref, mod);
1803
1804 /* Check pmap_pag_protect() */
1805 pmap_page_protect(pg, VM_PROT_READ);
1806 ref = pmap_is_referenced(pg);
1807 mod = pmap_is_modified(pg);
1808 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1809 ref, mod);
1810
1811 /* Now clear reference and modify */
1812 ref = pmap_clear_reference(pg);
1813 mod = pmap_clear_modify(pg);
1814 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1815 (void *)(u_long)va, (long)pa,
1816 ref, mod);
1817
1818 /* Reference page */
1819 val = *loc;
1820
1821 ref = pmap_is_referenced(pg);
1822 mod = pmap_is_modified(pg);
1823 printf("Referenced page: ref %d, mod %d val %x\n",
1824 ref, mod, val);
1825
1826 /* Now clear reference and modify */
1827 ref = pmap_clear_reference(pg);
1828 mod = pmap_clear_modify(pg);
1829 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1830 (void *)(u_long)va, (long)pa,
1831 ref, mod);
1832
1833 /* Modify page */
1834 #if 0
1835 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1836 pmap_update(pmap_kernel());
1837 #endif
1838 *loc = 1;
1839
1840 ref = pmap_is_referenced(pg);
1841 mod = pmap_is_modified(pg);
1842 printf("Modified page: ref %d, mod %d\n",
1843 ref, mod);
1844
1845 /* Check pmap_pag_protect() */
1846 pmap_page_protect(pg, VM_PROT_NONE);
1847 ref = pmap_is_referenced(pg);
1848 mod = pmap_is_modified(pg);
1849 printf("pmap_page_protect(): ref %d, mod %d\n",
1850 ref, mod);
1851
1852 /* Now clear reference and modify */
1853 ref = pmap_clear_reference(pg);
1854 mod = pmap_clear_modify(pg);
1855 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1856 (void *)(u_long)va, (long)pa,
1857 ref, mod);
1858
1859
1860 /* Reference page */
1861 val = *loc;
1862
1863 ref = pmap_is_referenced(pg);
1864 mod = pmap_is_modified(pg);
1865 printf("Referenced page: ref %d, mod %d val %x\n",
1866 ref, mod, val);
1867
1868 /* Now clear reference and modify */
1869 ref = pmap_clear_reference(pg);
1870 mod = pmap_clear_modify(pg);
1871 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1872 (void *)(u_long)va, (long)pa,
1873 ref, mod);
1874
1875 /* Modify page */
1876 #if 0
1877 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1878 pmap_update(pmap_kernel());
1879 #endif
1880 *loc = 1;
1881
1882 ref = pmap_is_referenced(pg);
1883 mod = pmap_is_modified(pg);
1884 printf("Modified page: ref %d, mod %d\n",
1885 ref, mod);
1886
1887 /* Unmap page */
1888 pmap_remove(pmap_kernel(), va, va+1);
1889 pmap_update(pmap_kernel());
1890 ref = pmap_is_referenced(pg);
1891 mod = pmap_is_modified(pg);
1892 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1893
1894 /* Now clear reference and modify */
1895 ref = pmap_clear_reference(pg);
1896 mod = pmap_clear_modify(pg);
1897 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1898 (void *)(u_long)va, (long)pa, ref, mod);
1899
1900 /* Check it's properly cleared */
1901 ref = pmap_is_referenced(pg);
1902 mod = pmap_is_modified(pg);
1903 printf("Checking cleared page: ref %d, mod %d\n",
1904 ref, mod);
1905
1906 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1907 pmap_kenter_pa(va, pa, VM_PROT_ALL);
1908 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1909 }
1910 #endif
1911