pmap.c revision 1.57 1 /* $NetBSD: pmap.c,v 1.57 2009/08/18 18:06:53 thorpej Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.57 2009/08/18 18:06:53 thorpej Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/user.h>
76 #include <sys/queue.h>
77 #include <sys/systm.h>
78 #include <sys/pool.h>
79 #include <sys/device.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/cpu.h>
84 #include <machine/pcb.h>
85 #include <machine/powerpc.h>
86
87 #include <powerpc/spr.h>
88 #include <machine/tlb.h>
89
90 /*
91 * kernmap is an array of PTEs large enough to map in
92 * 4GB. At 16KB/page it is 256K entries or 2MB.
93 */
94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 void *kernmap;
96
97 #define MINCTX 2
98 #define NUMCTX 256
99
100 volatile struct pmap *ctxbusy[NUMCTX];
101
102 #define TLBF_USED 0x1
103 #define TLBF_REF 0x2
104 #define TLBF_LOCKED 0x4
105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106
107 typedef struct tlb_info_s {
108 char ti_flags;
109 char ti_ctx; /* TLB_PID assiciated with the entry */
110 u_int ti_va;
111 } tlb_info_t;
112
113 volatile tlb_info_t tlb_info[NTLB];
114 /* We'll use a modified FIFO replacement policy cause it's cheap */
115 volatile int tlbnext;
116
117 static int tlb_nreserved = 0;
118 static int pmap_bootstrap_done = 0;
119
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbenter");
129
130 struct pmap kernel_pmap_;
131 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
132
133 static int npgs;
134 static u_int nextavail;
135 #ifndef MSGBUFADDR
136 extern paddr_t msgbuf_paddr;
137 #endif
138
139 static struct mem_region *mem, *avail;
140
141 /*
142 * This is a cache of referenced/modified bits.
143 * Bits herein are shifted by ATTRSHFT.
144 */
145 static char *pmap_attrib;
146
147 #define PV_WIRED 0x1
148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
149 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
150 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
151 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
152
153 struct pv_entry {
154 struct pv_entry *pv_next; /* Linked list of mappings */
155 vaddr_t pv_va; /* virtual address of mapping */
156 struct pmap *pv_pm;
157 };
158
159 /* Each index corresponds to TLB_SIZE_* value. */
160 static size_t tlbsize[] = {
161 1024, /* TLB_SIZE_1K */
162 4096, /* TLB_SIZE_4K */
163 16384, /* TLB_SIZE_16K */
164 65536, /* TLB_SIZE_64K */
165 262144, /* TLB_SIZE_256K */
166 1048576, /* TLB_SIZE_1M */
167 4194304, /* TLB_SIZE_4M */
168 16777216, /* TLB_SIZE_16M */
169 };
170
171 struct pv_entry *pv_table;
172 static struct pool pv_pool;
173
174 static int pmap_initialized;
175
176 static int ctx_flush(int);
177
178 inline struct pv_entry *pa_to_pv(paddr_t);
179 static inline char *pa_to_attr(paddr_t);
180
181 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
182 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
183
184 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
185 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
186
187 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
188
189
190 inline struct pv_entry *
191 pa_to_pv(paddr_t pa)
192 {
193 int bank, pg;
194
195 bank = vm_physseg_find(atop(pa), &pg);
196 if (bank == -1)
197 return NULL;
198 return &vm_physmem[bank].pmseg.pvent[pg];
199 }
200
201 static inline char *
202 pa_to_attr(paddr_t pa)
203 {
204 int bank, pg;
205
206 bank = vm_physseg_find(atop(pa), &pg);
207 if (bank == -1)
208 return NULL;
209 return &vm_physmem[bank].pmseg.attrs[pg];
210 }
211
212 /*
213 * Insert PTE into page table.
214 */
215 int
216 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
217 {
218 int seg = STIDX(va);
219 int ptn = PTIDX(va);
220 u_int oldpte;
221
222 if (!pm->pm_ptbl[seg]) {
223 /* Don't allocate a page to clear a non-existent mapping. */
224 if (!pte)
225 return (0);
226 /* Allocate a page XXXX this will sleep! */
227 pm->pm_ptbl[seg] =
228 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
229 UVM_KMF_WIRED | UVM_KMF_ZERO);
230 }
231 oldpte = pm->pm_ptbl[seg][ptn];
232 pm->pm_ptbl[seg][ptn] = pte;
233
234 /* Flush entry. */
235 ppc4xx_tlb_flush(va, pm->pm_ctx);
236 if (oldpte != pte) {
237 if (pte == 0)
238 pm->pm_stats.resident_count--;
239 else
240 pm->pm_stats.resident_count++;
241 }
242 return (1);
243 }
244
245 /*
246 * Get a pointer to a PTE in a page table.
247 */
248 volatile u_int *
249 pte_find(struct pmap *pm, vaddr_t va)
250 {
251 int seg = STIDX(va);
252 int ptn = PTIDX(va);
253
254 if (pm->pm_ptbl[seg])
255 return (&pm->pm_ptbl[seg][ptn]);
256
257 return (NULL);
258 }
259
260 /*
261 * This is called during initppc, before the system is really initialized.
262 */
263 void
264 pmap_bootstrap(u_int kernelstart, u_int kernelend)
265 {
266 struct mem_region *mp, *mp1;
267 int cnt, i;
268 u_int s, e, sz;
269
270 tlbnext = tlb_nreserved;
271
272 /*
273 * Allocate the kernel page table at the end of
274 * kernel space so it's in the locked TTE.
275 */
276 kernmap = (void *)kernelend;
277
278 /*
279 * Initialize kernel page table.
280 */
281 for (i = 0; i < STSZ; i++) {
282 pmap_kernel()->pm_ptbl[i] = 0;
283 }
284 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
285
286 /*
287 * Announce page-size to the VM-system
288 */
289 uvmexp.pagesize = NBPG;
290 uvm_setpagesize();
291
292 /*
293 * Get memory.
294 */
295 mem_regions(&mem, &avail);
296 for (mp = mem; mp->size; mp++) {
297 physmem += btoc(mp->size);
298 printf("+%lx,",mp->size);
299 }
300 printf("\n");
301 ppc4xx_tlb_init();
302 /*
303 * Count the number of available entries.
304 */
305 for (cnt = 0, mp = avail; mp->size; mp++)
306 cnt++;
307
308 /*
309 * Page align all regions.
310 * Non-page aligned memory isn't very interesting to us.
311 * Also, sort the entries for ascending addresses.
312 */
313 kernelstart &= ~PGOFSET;
314 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
315 for (mp = avail; mp->size; mp++) {
316 s = mp->start;
317 e = mp->start + mp->size;
318 printf("%08x-%08x -> ",s,e);
319 /*
320 * Check whether this region holds all of the kernel.
321 */
322 if (s < kernelstart && e > kernelend) {
323 avail[cnt].start = kernelend;
324 avail[cnt++].size = e - kernelend;
325 e = kernelstart;
326 }
327 /*
328 * Look whether this regions starts within the kernel.
329 */
330 if (s >= kernelstart && s < kernelend) {
331 if (e <= kernelend)
332 goto empty;
333 s = kernelend;
334 }
335 /*
336 * Now look whether this region ends within the kernel.
337 */
338 if (e > kernelstart && e <= kernelend) {
339 if (s >= kernelstart)
340 goto empty;
341 e = kernelstart;
342 }
343 /*
344 * Now page align the start and size of the region.
345 */
346 s = round_page(s);
347 e = trunc_page(e);
348 if (e < s)
349 e = s;
350 sz = e - s;
351 printf("%08x-%08x = %x\n",s,e,sz);
352 /*
353 * Check whether some memory is left here.
354 */
355 if (sz == 0) {
356 empty:
357 memmove(mp, mp + 1,
358 (cnt - (mp - avail)) * sizeof *mp);
359 cnt--;
360 mp--;
361 continue;
362 }
363 /*
364 * Do an insertion sort.
365 */
366 npgs += btoc(sz);
367 for (mp1 = avail; mp1 < mp; mp1++)
368 if (s < mp1->start)
369 break;
370 if (mp1 < mp) {
371 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
372 mp1->start = s;
373 mp1->size = sz;
374 } else {
375 mp->start = s;
376 mp->size = sz;
377 }
378 }
379
380 /*
381 * We cannot do pmap_steal_memory here,
382 * since we don't run with translation enabled yet.
383 */
384 #ifndef MSGBUFADDR
385 /*
386 * allow for msgbuf
387 */
388 sz = round_page(MSGBUFSIZE);
389 mp = NULL;
390 for (mp1 = avail; mp1->size; mp1++)
391 if (mp1->size >= sz)
392 mp = mp1;
393 if (mp == NULL)
394 panic("not enough memory?");
395
396 npgs -= btoc(sz);
397 msgbuf_paddr = mp->start + mp->size - sz;
398 mp->size -= sz;
399 if (mp->size <= 0)
400 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
401 #endif
402
403 for (mp = avail; mp->size; mp++)
404 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
405 atop(mp->start), atop(mp->start + mp->size),
406 VM_FREELIST_DEFAULT);
407
408 /*
409 * Initialize kernel pmap and hardware.
410 */
411 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
412 pmap_kernel()->pm_ctx = KERNEL_PID;
413 nextavail = avail->start;
414
415 evcnt_attach_static(&tlbmiss_ev);
416 evcnt_attach_static(&tlbhit_ev);
417 evcnt_attach_static(&tlbflush_ev);
418 evcnt_attach_static(&tlbenter_ev);
419
420 pmap_bootstrap_done = 1;
421 }
422
423 /*
424 * Restrict given range to physical memory
425 *
426 * (Used by /dev/mem)
427 */
428 void
429 pmap_real_memory(paddr_t *start, psize_t *size)
430 {
431 struct mem_region *mp;
432
433 for (mp = mem; mp->size; mp++) {
434 if (*start + *size > mp->start &&
435 *start < mp->start + mp->size) {
436 if (*start < mp->start) {
437 *size -= mp->start - *start;
438 *start = mp->start;
439 }
440 if (*start + *size > mp->start + mp->size)
441 *size = mp->start + mp->size - *start;
442 return;
443 }
444 }
445 *size = 0;
446 }
447
448 /*
449 * Initialize anything else for pmap handling.
450 * Called during vm_init().
451 */
452 void
453 pmap_init(void)
454 {
455 struct pv_entry *pv;
456 vsize_t sz;
457 vaddr_t addr;
458 int i, s;
459 int bank;
460 char *attr;
461
462 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
463 sz = round_page(sz);
464 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
465 s = splvm();
466 pv = pv_table = (struct pv_entry *)addr;
467 for (i = npgs; --i >= 0;)
468 pv++->pv_pm = NULL;
469 pmap_attrib = (char *)pv;
470 memset(pv, 0, npgs);
471
472 pv = pv_table;
473 attr = pmap_attrib;
474 for (bank = 0; bank < vm_nphysseg; bank++) {
475 sz = vm_physmem[bank].end - vm_physmem[bank].start;
476 vm_physmem[bank].pmseg.pvent = pv;
477 vm_physmem[bank].pmseg.attrs = attr;
478 pv += sz;
479 attr += sz;
480 }
481
482 pmap_initialized = 1;
483 splx(s);
484
485 /* Setup a pool for additional pvlist structures */
486 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
487 IPL_VM);
488 }
489
490 /*
491 * How much virtual space is available to the kernel?
492 */
493 void
494 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
495 {
496
497 #if 0
498 /*
499 * Reserve one segment for kernel virtual memory
500 */
501 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
502 *end = *start + SEGMENT_LENGTH;
503 #else
504 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
505 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
506 #endif
507 }
508
509 #ifdef PMAP_GROWKERNEL
510 /*
511 * Preallocate kernel page tables to a specified VA.
512 * This simply loops through the first TTE for each
513 * page table from the beginning of the kernel pmap,
514 * reads the entry, and if the result is
515 * zero (either invalid entry or no page table) it stores
516 * a zero there, populating page tables in the process.
517 * This is not the most efficient technique but i don't
518 * expect it to be called that often.
519 */
520 extern struct vm_page *vm_page_alloc1(void);
521 extern void vm_page_free1(struct vm_page *);
522
523 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
524
525 vaddr_t
526 pmap_growkernel(vaddr_t maxkvaddr)
527 {
528 int s;
529 int seg;
530 paddr_t pg;
531 struct pmap *pm = pmap_kernel();
532
533 s = splvm();
534
535 /* Align with the start of a page table */
536 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
537 kbreak += PTMAP) {
538 seg = STIDX(kbreak);
539
540 if (pte_find(pm, kbreak))
541 continue;
542
543 if (uvm.page_init_done) {
544 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
545 } else {
546 if (!uvm_page_physget(&pg))
547 panic("pmap_growkernel: no memory");
548 }
549 if (!pg)
550 panic("pmap_growkernel: no pages");
551 pmap_zero_page((paddr_t)pg);
552
553 /* XXX This is based on all phymem being addressable */
554 pm->pm_ptbl[seg] = (u_int *)pg;
555 }
556 splx(s);
557 return (kbreak);
558 }
559
560 /*
561 * vm_page_alloc1:
562 *
563 * Allocate and return a memory cell with no associated object.
564 */
565 struct vm_page *
566 vm_page_alloc1(void)
567 {
568 struct vm_page *pg;
569
570 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
571 if (pg) {
572 pg->wire_count = 1; /* no mappings yet */
573 pg->flags &= ~PG_BUSY; /* never busy */
574 }
575 return pg;
576 }
577
578 /*
579 * vm_page_free1:
580 *
581 * Returns the given page to the free list,
582 * disassociating it with any VM object.
583 *
584 * Object and page must be locked prior to entry.
585 */
586 void
587 vm_page_free1(struct vm_page *pg)
588 {
589 #ifdef DIAGNOSTIC
590 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
591 printf("Freeing invalid page %p\n", pg);
592 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
593 #ifdef DDB
594 Debugger();
595 #endif
596 return;
597 }
598 #endif
599 pg->flags |= PG_BUSY;
600 pg->wire_count = 0;
601 uvm_pagefree(pg);
602 }
603 #endif
604
605 /*
606 * Create and return a physical map.
607 */
608 struct pmap *
609 pmap_create(void)
610 {
611 struct pmap *pm;
612
613 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
614 memset(pm, 0, sizeof *pm);
615 pm->pm_refs = 1;
616 return pm;
617 }
618
619 /*
620 * Add a reference to the given pmap.
621 */
622 void
623 pmap_reference(struct pmap *pm)
624 {
625
626 pm->pm_refs++;
627 }
628
629 /*
630 * Retire the given pmap from service.
631 * Should only be called if the map contains no valid mappings.
632 */
633 void
634 pmap_destroy(struct pmap *pm)
635 {
636 int i;
637
638 if (--pm->pm_refs > 0) {
639 return;
640 }
641 KASSERT(pm->pm_stats.resident_count == 0);
642 KASSERT(pm->pm_stats.wired_count == 0);
643 for (i = 0; i < STSZ; i++)
644 if (pm->pm_ptbl[i]) {
645 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
646 PAGE_SIZE, UVM_KMF_WIRED);
647 pm->pm_ptbl[i] = NULL;
648 }
649 if (pm->pm_ctx)
650 ctx_free(pm);
651 free(pm, M_VMPMAP);
652 }
653
654 /*
655 * Copy the range specified by src_addr/len
656 * from the source map to the range dst_addr/len
657 * in the destination map.
658 *
659 * This routine is only advisory and need not do anything.
660 */
661 void
662 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
663 vsize_t len, vaddr_t src_addr)
664 {
665 }
666
667 /*
668 * Require that all active physical maps contain no
669 * incorrect entries NOW.
670 */
671 void
672 pmap_update(struct pmap *pmap)
673 {
674 }
675
676 /*
677 * Garbage collects the physical map system for
678 * pages which are no longer used.
679 * Success need not be guaranteed -- that is, there
680 * may well be pages which are not referenced, but
681 * others may be collected.
682 * Called by the pageout daemon when pages are scarce.
683 */
684 void
685 pmap_collect(struct pmap *pm)
686 {
687 }
688
689 /*
690 * Fill the given physical page with zeroes.
691 */
692 void
693 pmap_zero_page(paddr_t pa)
694 {
695
696 #ifdef PPC_4XX_NOCACHE
697 memset((void *)pa, 0, PAGE_SIZE);
698 #else
699 int i;
700
701 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
702 __asm volatile ("dcbz 0,%0" :: "r"(pa));
703 pa += CACHELINESIZE;
704 }
705 #endif
706 }
707
708 /*
709 * Copy the given physical source page to its destination.
710 */
711 void
712 pmap_copy_page(paddr_t src, paddr_t dst)
713 {
714
715 memcpy((void *)dst, (void *)src, PAGE_SIZE);
716 dcache_flush_page(dst);
717 }
718
719 /*
720 * This returns != 0 on success.
721 */
722 static inline int
723 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
724 {
725 struct pv_entry *pv, *npv = NULL;
726 int s;
727
728 if (!pmap_initialized)
729 return 0;
730
731 s = splvm();
732 pv = pa_to_pv(pa);
733 if (!pv->pv_pm) {
734 /*
735 * No entries yet, use header as the first entry.
736 */
737 pv->pv_va = va;
738 pv->pv_pm = pm;
739 pv->pv_next = NULL;
740 } else {
741 /*
742 * There is at least one other VA mapping this page.
743 * Place this entry after the header.
744 */
745 npv = pool_get(&pv_pool, PR_NOWAIT);
746 if (npv == NULL) {
747 if ((flags & PMAP_CANFAIL) == 0)
748 panic("pmap_enter_pv: failed");
749 splx(s);
750 return 0;
751 }
752 npv->pv_va = va;
753 npv->pv_pm = pm;
754 npv->pv_next = pv->pv_next;
755 pv->pv_next = npv;
756 pv = npv;
757 }
758 if (flags & PMAP_WIRED) {
759 PV_WIRE(pv);
760 pm->pm_stats.wired_count++;
761 }
762 splx(s);
763 return (1);
764 }
765
766 static void
767 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
768 {
769 struct pv_entry *pv, *npv;
770
771 /*
772 * Remove from the PV table.
773 */
774 pv = pa_to_pv(pa);
775 if (!pv)
776 return;
777
778 /*
779 * If it is the first entry on the list, it is actually
780 * in the header and we must copy the following entry up
781 * to the header. Otherwise we must search the list for
782 * the entry. In either case we free the now unused entry.
783 */
784 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
785 if (PV_ISWIRED(pv)) {
786 pm->pm_stats.wired_count--;
787 }
788 if ((npv = pv->pv_next)) {
789 *pv = *npv;
790 pool_put(&pv_pool, npv);
791 } else
792 pv->pv_pm = NULL;
793 } else {
794 for (; (npv = pv->pv_next) != NULL; pv = npv)
795 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
796 break;
797 if (npv) {
798 pv->pv_next = npv->pv_next;
799 if (PV_ISWIRED(npv)) {
800 pm->pm_stats.wired_count--;
801 }
802 pool_put(&pv_pool, npv);
803 }
804 }
805 }
806
807 /*
808 * Insert physical page at pa into the given pmap at virtual address va.
809 */
810 int
811 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
812 {
813 int s;
814 u_int tte;
815 bool managed;
816
817 /*
818 * Have to remove any existing mapping first.
819 */
820 pmap_remove(pm, va, va + PAGE_SIZE);
821
822 if (flags & PMAP_WIRED)
823 flags |= prot;
824
825 managed = uvm_pageismanaged(pa);
826
827 /*
828 * Generate TTE.
829 */
830 tte = TTE_PA(pa);
831 /* XXXX -- need to support multiple page sizes. */
832 tte |= TTE_SZ_16K;
833 #ifdef DIAGNOSTIC
834 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
835 (PME_NOCACHE | PME_WRITETHROUG))
836 panic("pmap_enter: uncached & writethrough");
837 #endif
838 if (flags & PME_NOCACHE)
839 /* Must be I/O mapping */
840 tte |= TTE_I | TTE_G;
841 #ifdef PPC_4XX_NOCACHE
842 tte |= TTE_I;
843 #else
844 else if (flags & PME_WRITETHROUG)
845 /* Uncached and writethrough are not compatible */
846 tte |= TTE_W;
847 #endif
848 if (pm == pmap_kernel())
849 tte |= TTE_ZONE(ZONE_PRIV);
850 else
851 tte |= TTE_ZONE(ZONE_USER);
852
853 if (flags & VM_PROT_WRITE)
854 tte |= TTE_WR;
855
856 if (flags & VM_PROT_EXECUTE)
857 tte |= TTE_EX;
858
859 /*
860 * Now record mapping for later back-translation.
861 */
862 if (pmap_initialized && managed) {
863 char *attr;
864
865 if (!pmap_enter_pv(pm, va, pa, flags)) {
866 /* Could not enter pv on a managed page */
867 return 1;
868 }
869
870 /* Now set attributes. */
871 attr = pa_to_attr(pa);
872 #ifdef DIAGNOSTIC
873 if (!attr)
874 panic("managed but no attr");
875 #endif
876 if (flags & VM_PROT_ALL)
877 *attr |= PMAP_ATTR_REF;
878 if (flags & VM_PROT_WRITE)
879 *attr |= PMAP_ATTR_CHG;
880 }
881
882 s = splvm();
883
884 /* Insert page into page table. */
885 pte_enter(pm, va, tte);
886
887 /* If this is a real fault, enter it in the tlb */
888 if (tte && ((flags & PMAP_WIRED) == 0)) {
889 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
890 }
891 splx(s);
892
893 /* Flush the real memory from the instruction cache. */
894 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
895 __syncicache((void *)pa, PAGE_SIZE);
896
897 return 0;
898 }
899
900 void
901 pmap_unwire(struct pmap *pm, vaddr_t va)
902 {
903 struct pv_entry *pv;
904 paddr_t pa;
905 int s;
906
907 if (!pmap_extract(pm, va, &pa)) {
908 return;
909 }
910
911 pv = pa_to_pv(pa);
912 if (!pv)
913 return;
914
915 s = splvm();
916 while (pv != NULL) {
917 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
918 if (PV_ISWIRED(pv)) {
919 PV_UNWIRE(pv);
920 pm->pm_stats.wired_count--;
921 }
922 break;
923 }
924 pv = pv->pv_next;
925 }
926 splx(s);
927 }
928
929 void
930 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
931 {
932 int s;
933 u_int tte;
934 struct pmap *pm = pmap_kernel();
935
936 /*
937 * Have to remove any existing mapping first.
938 */
939
940 /*
941 * Generate TTE.
942 *
943 * XXXX
944 *
945 * Since the kernel does not handle execution privileges properly,
946 * we will handle read and execute permissions together.
947 */
948 tte = 0;
949 if (prot & VM_PROT_ALL) {
950
951 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
952 /* XXXX -- need to support multiple page sizes. */
953 tte |= TTE_SZ_16K;
954 #ifdef DIAGNOSTIC
955 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
956 (PME_NOCACHE | PME_WRITETHROUG))
957 panic("pmap_kenter_pa: uncached & writethrough");
958 #endif
959 if (prot & PME_NOCACHE)
960 /* Must be I/O mapping */
961 tte |= TTE_I | TTE_G;
962 #ifdef PPC_4XX_NOCACHE
963 tte |= TTE_I;
964 #else
965 else if (prot & PME_WRITETHROUG)
966 /* Uncached and writethrough are not compatible */
967 tte |= TTE_W;
968 #endif
969 if (prot & VM_PROT_WRITE)
970 tte |= TTE_WR;
971 }
972
973 s = splvm();
974
975 /* Insert page into page table. */
976 pte_enter(pm, va, tte);
977 splx(s);
978 }
979
980 void
981 pmap_kremove(vaddr_t va, vsize_t len)
982 {
983
984 while (len > 0) {
985 pte_enter(pmap_kernel(), va, 0);
986 va += PAGE_SIZE;
987 len -= PAGE_SIZE;
988 }
989 }
990
991 /*
992 * Remove the given range of mapping entries.
993 */
994 void
995 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
996 {
997 int s;
998 paddr_t pa;
999 volatile u_int *ptp;
1000
1001 s = splvm();
1002 while (va < endva) {
1003
1004 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1005 pa = TTE_PA(pa);
1006 pmap_remove_pv(pm, va, pa);
1007 *ptp = 0;
1008 ppc4xx_tlb_flush(va, pm->pm_ctx);
1009 pm->pm_stats.resident_count--;
1010 }
1011 va += PAGE_SIZE;
1012 }
1013
1014 splx(s);
1015 }
1016
1017 /*
1018 * Get the physical page address for the given pmap/virtual address.
1019 */
1020 bool
1021 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1022 {
1023 int seg = STIDX(va);
1024 int ptn = PTIDX(va);
1025 u_int pa = 0;
1026 int s;
1027
1028 s = splvm();
1029 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1030 *pap = TTE_PA(pa) | (va & PGOFSET);
1031 }
1032 splx(s);
1033 return (pa != 0);
1034 }
1035
1036 /*
1037 * Lower the protection on the specified range of this pmap.
1038 *
1039 * There are only two cases: either the protection is going to 0,
1040 * or it is going to read-only.
1041 */
1042 void
1043 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1044 {
1045 volatile u_int *ptp;
1046 int s, bic;
1047
1048 if ((prot & VM_PROT_READ) == 0) {
1049 pmap_remove(pm, sva, eva);
1050 return;
1051 }
1052 bic = 0;
1053 if ((prot & VM_PROT_WRITE) == 0) {
1054 bic |= TTE_WR;
1055 }
1056 if ((prot & VM_PROT_EXECUTE) == 0) {
1057 bic |= TTE_EX;
1058 }
1059 if (bic == 0) {
1060 return;
1061 }
1062 s = splvm();
1063 while (sva < eva) {
1064 if ((ptp = pte_find(pm, sva)) != NULL) {
1065 *ptp &= ~bic;
1066 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1067 }
1068 sva += PAGE_SIZE;
1069 }
1070 splx(s);
1071 }
1072
1073 bool
1074 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1075 {
1076 paddr_t pa;
1077 char *attr;
1078 int s, rv;
1079
1080 /*
1081 * First modify bits in cache.
1082 */
1083 pa = VM_PAGE_TO_PHYS(pg);
1084 attr = pa_to_attr(pa);
1085 if (attr == NULL)
1086 return false;
1087
1088 s = splvm();
1089 rv = ((*attr & mask) != 0);
1090 if (clear) {
1091 *attr &= ~mask;
1092 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1093 }
1094 splx(s);
1095 return rv;
1096 }
1097
1098
1099 /*
1100 * Lower the protection on the specified physical page.
1101 *
1102 * There are only two cases: either the protection is going to 0,
1103 * or it is going to read-only.
1104 */
1105 void
1106 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1107 {
1108 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1109 vaddr_t va;
1110 struct pv_entry *pvh, *pv, *npv;
1111 struct pmap *pm;
1112
1113 pvh = pa_to_pv(pa);
1114 if (pvh == NULL)
1115 return;
1116
1117 /* Handle extra pvs which may be deleted in the operation */
1118 for (pv = pvh->pv_next; pv; pv = npv) {
1119 npv = pv->pv_next;
1120
1121 pm = pv->pv_pm;
1122 va = pv->pv_va;
1123 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1124 }
1125 /* Now check the head pv */
1126 if (pvh->pv_pm) {
1127 pv = pvh;
1128 pm = pv->pv_pm;
1129 va = pv->pv_va;
1130 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1131 }
1132 }
1133
1134 /*
1135 * Activate the address space for the specified process. If the process
1136 * is the current process, load the new MMU context.
1137 */
1138 void
1139 pmap_activate(struct lwp *l)
1140 {
1141 #if 0
1142 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1143 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1144
1145 /*
1146 * XXX Normally performed in cpu_fork().
1147 */
1148 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1149 pcb->pcb_pm = pmap;
1150 #endif
1151 }
1152
1153 /*
1154 * Deactivate the specified process's address space.
1155 */
1156 void
1157 pmap_deactivate(struct lwp *l)
1158 {
1159 }
1160
1161 /*
1162 * Synchronize caches corresponding to [addr, addr+len) in p.
1163 */
1164 void
1165 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1166 {
1167 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1168 int msr, ctx, opid, step;
1169
1170 step = CACHELINESIZE;
1171
1172 /*
1173 * Need to turn off IMMU and switch to user context.
1174 * (icbi uses DMMU).
1175 */
1176 if (!(ctx = pm->pm_ctx)) {
1177 /* No context -- assign it one */
1178 ctx_alloc(pm);
1179 ctx = pm->pm_ctx;
1180 }
1181 __asm volatile("mfmsr %0;"
1182 "li %1, %7;"
1183 "andc %1,%0,%1;"
1184 "mtmsr %1;"
1185 "sync;isync;"
1186 "mfpid %1;"
1187 "mtpid %2;"
1188 "sync; isync;"
1189 "1:"
1190 "dcbf 0,%3;"
1191 "icbi 0,%3;"
1192 "add %3,%3,%5;"
1193 "addc. %4,%4,%6;"
1194 "bge 1b;"
1195 "mtpid %1;"
1196 "mtmsr %0;"
1197 "sync; isync"
1198 : "=&r" (msr), "=&r" (opid)
1199 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1200 "K" (PSL_IR | PSL_DR));
1201 }
1202
1203
1204 /* This has to be done in real mode !!! */
1205 void
1206 ppc4xx_tlb_flush(vaddr_t va, int pid)
1207 {
1208 u_long i, found;
1209 u_long msr;
1210
1211 /* If there's no context then it can't be mapped. */
1212 if (!pid)
1213 return;
1214
1215 __asm( "mfpid %1;" /* Save PID */
1216 "mfmsr %2;" /* Save MSR */
1217 "li %0,0;" /* Now clear MSR */
1218 "mtmsr %0;"
1219 "mtpid %4;" /* Set PID */
1220 "sync;"
1221 "tlbsx. %0,0,%3;" /* Search TLB */
1222 "sync;"
1223 "mtpid %1;" /* Restore PID */
1224 "mtmsr %2;" /* Restore MSR */
1225 "sync;isync;"
1226 "li %1,1;"
1227 "beq 1f;"
1228 "li %1,0;"
1229 "1:"
1230 : "=&r" (i), "=&r" (found), "=&r" (msr)
1231 : "r" (va), "r" (pid));
1232 if (found && !TLB_LOCKED(i)) {
1233
1234 /* Now flush translation */
1235 __asm volatile(
1236 "tlbwe %0,%1,0;"
1237 "sync;isync;"
1238 : : "r" (0), "r" (i));
1239
1240 tlb_info[i].ti_ctx = 0;
1241 tlb_info[i].ti_flags = 0;
1242 tlbnext = i;
1243 /* Successful flushes */
1244 tlbflush_ev.ev_count++;
1245 }
1246 }
1247
1248 void
1249 ppc4xx_tlb_flush_all(void)
1250 {
1251 u_long i;
1252
1253 for (i = 0; i < NTLB; i++)
1254 if (!TLB_LOCKED(i)) {
1255 __asm volatile(
1256 "tlbwe %0,%1,0;"
1257 "sync;isync;"
1258 : : "r" (0), "r" (i));
1259 tlb_info[i].ti_ctx = 0;
1260 tlb_info[i].ti_flags = 0;
1261 }
1262
1263 __asm volatile("sync;isync");
1264 }
1265
1266 /* Find a TLB entry to evict. */
1267 static int
1268 ppc4xx_tlb_find_victim(void)
1269 {
1270 int flags;
1271
1272 for (;;) {
1273 if (++tlbnext >= NTLB)
1274 tlbnext = tlb_nreserved;
1275 flags = tlb_info[tlbnext].ti_flags;
1276 if (!(flags & TLBF_USED) ||
1277 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1278 u_long va, stack = (u_long)&va;
1279
1280 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1281 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1282 (flags & TLBF_USED)) {
1283 /* Kernel stack page */
1284 flags |= TLBF_USED;
1285 tlb_info[tlbnext].ti_flags = flags;
1286 } else {
1287 /* Found it! */
1288 return (tlbnext);
1289 }
1290 } else {
1291 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1292 }
1293 }
1294 }
1295
1296 void
1297 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1298 {
1299 u_long th, tl, idx;
1300 tlbpid_t pid;
1301 u_short msr;
1302 paddr_t pa;
1303 int s, sz;
1304
1305 tlbenter_ev.ev_count++;
1306
1307 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1308 pa = (pte & TTE_RPN_MASK(sz));
1309 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1310 tl = (pte & ~TLB_RPN_MASK) | pa;
1311 tl |= ppc4xx_tlbflags(va, pa);
1312
1313 s = splhigh();
1314 idx = ppc4xx_tlb_find_victim();
1315
1316 #ifdef DIAGNOSTIC
1317 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1318 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1319 }
1320 #endif
1321
1322 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1323 tlb_info[idx].ti_ctx = ctx;
1324 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1325
1326 __asm volatile(
1327 "mfmsr %0;" /* Save MSR */
1328 "li %1,0;"
1329 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1330 "mtmsr %1;" /* Clear MSR */
1331 "mfpid %1;" /* Save old PID */
1332 "mtpid %2;" /* Load translation ctx */
1333 "sync; isync;"
1334 #ifdef DEBUG
1335 "andi. %3,%3,63;"
1336 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1337 #endif
1338 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1339 "sync; isync;"
1340 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1341 "sync; isync;"
1342 : "=&r" (msr), "=&r" (pid)
1343 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1344 splx(s);
1345 }
1346
1347 void
1348 ppc4xx_tlb_init(void)
1349 {
1350 int i;
1351
1352 /* Mark reserved TLB entries */
1353 for (i = 0; i < tlb_nreserved; i++) {
1354 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1355 tlb_info[i].ti_ctx = KERNEL_PID;
1356 }
1357
1358 /* Setup security zones */
1359 /* Z0 - accessible by kernel only if TLB entry permissions allow
1360 * Z1,Z2 - access is controlled by TLB entry permissions
1361 * Z3 - full access regardless of TLB entry permissions
1362 */
1363
1364 __asm volatile(
1365 "mtspr %0,%1;"
1366 "sync;"
1367 :: "K"(SPR_ZPR), "r" (0x1b000000));
1368 }
1369
1370 /*
1371 * ppc4xx_tlb_size_mask:
1372 *
1373 * Roundup size to supported page size, return TLBHI mask and real size.
1374 */
1375 static int
1376 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1377 {
1378 int i;
1379
1380 for (i = 0; i < __arraycount(tlbsize); i++)
1381 if (size <= tlbsize[i]) {
1382 *mask = (i << TLB_SIZE_SHFT);
1383 *rsiz = tlbsize[i];
1384 return (0);
1385 }
1386 return (EINVAL);
1387 }
1388
1389 /*
1390 * ppc4xx_tlb_mapiodev:
1391 *
1392 * Lookup virtual address of mapping previously entered via
1393 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1394 * need to waste extra storage for reserved mappings. Note
1395 * that reading TLBHI also sets PID, but all reserved mappings
1396 * use KERNEL_PID, so the side effect is nil.
1397 */
1398 void *
1399 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1400 {
1401 paddr_t pa;
1402 vaddr_t va;
1403 u_int lo, hi, sz;
1404 int i;
1405
1406 /* tlb_nreserved is only allowed to grow, so this is safe. */
1407 for (i = 0; i < tlb_nreserved; i++) {
1408 __asm volatile (
1409 " tlbre %0,%2,1 \n" /* TLBLO */
1410 " tlbre %1,%2,0 \n" /* TLBHI */
1411 : "=&r" (lo), "=&r" (hi)
1412 : "r" (i));
1413
1414 KASSERT(hi & TLB_VALID);
1415 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1416
1417 pa = (lo & TLB_RPN_MASK);
1418 if (base < pa)
1419 continue;
1420
1421 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1422 if ((base + len) > (pa + sz))
1423 continue;
1424
1425 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1426 return (void *)(va);
1427 }
1428
1429 return (NULL);
1430 }
1431
1432 /*
1433 * ppc4xx_tlb_reserve:
1434 *
1435 * Map physical range to kernel virtual chunk via reserved TLB entry.
1436 */
1437 void
1438 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1439 {
1440 u_int lo, hi;
1441 int szmask, rsize;
1442
1443 /* Called before pmap_bootstrap(), va outside kernel space. */
1444 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1445 KASSERT(! pmap_bootstrap_done);
1446 KASSERT(tlb_nreserved < NTLB);
1447
1448 /* Resolve size. */
1449 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1450 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1451 size, tlb_nreserved);
1452
1453 /* Real size will be power of two >= 1024, so this is OK. */
1454 pa &= ~(rsize - 1); /* RPN */
1455 va &= ~(rsize - 1); /* EPN */
1456
1457 lo = pa | TLB_WR | flags;
1458 hi = va | TLB_VALID | szmask;
1459
1460 #ifdef PPC_4XX_NOCACHE
1461 lo |= TLB_I;
1462 #endif
1463
1464 __asm volatile(
1465 " tlbwe %1,%0,1 \n" /* write TLBLO */
1466 " tlbwe %2,%0,0 \n" /* write TLBHI */
1467 " sync \n"
1468 " isync \n"
1469 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1470
1471 tlb_nreserved++;
1472 }
1473
1474 /*
1475 * We should pass the ctx in from trap code.
1476 */
1477 int
1478 pmap_tlbmiss(vaddr_t va, int ctx)
1479 {
1480 volatile u_int *pte;
1481 u_long tte;
1482
1483 tlbmiss_ev.ev_count++;
1484
1485 /*
1486 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1487 * Physical RAM is expected to live in this range, care must be taken
1488 * to not clobber 0 upto ${physmem} with device mappings in machdep
1489 * code.
1490 */
1491 if (ctx != KERNEL_PID || va >= VM_MIN_KERNEL_ADDRESS) {
1492 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1493 if (pte == NULL) {
1494 /* Map unmanaged addresses directly for kernel access */
1495 return 1;
1496 }
1497 tte = *pte;
1498 if (tte == 0) {
1499 return 1;
1500 }
1501 } else {
1502 /* Create a 16MB writable mapping. */
1503 #ifdef PPC_4XX_NOCACHE
1504 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1505 #else
1506 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1507 #endif
1508 }
1509 tlbhit_ev.ev_count++;
1510 ppc4xx_tlb_enter(ctx, va, tte);
1511
1512 return 0;
1513 }
1514
1515 /*
1516 * Flush all the entries matching a context from the TLB.
1517 */
1518 static int
1519 ctx_flush(int cnum)
1520 {
1521 int i;
1522
1523 /* We gotta steal this context */
1524 for (i = tlb_nreserved; i < NTLB; i++) {
1525 if (tlb_info[i].ti_ctx == cnum) {
1526 /* Can't steal ctx if it has a locked entry. */
1527 if (TLB_LOCKED(i)) {
1528 #ifdef DIAGNOSTIC
1529 printf("ctx_flush: can't invalidate "
1530 "locked mapping %d "
1531 "for context %d\n", i, cnum);
1532 #ifdef DDB
1533 Debugger();
1534 #endif
1535 #endif
1536 return (1);
1537 }
1538 #ifdef DIAGNOSTIC
1539 if (i < tlb_nreserved)
1540 panic("TLB entry %d not locked", i);
1541 #endif
1542 /* Invalidate particular TLB entry regardless of locked status */
1543 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1544 tlb_info[i].ti_flags = 0;
1545 }
1546 }
1547 return (0);
1548 }
1549
1550 /*
1551 * Allocate a context. If necessary, steal one from someone else.
1552 *
1553 * The new context is flushed from the TLB before returning.
1554 */
1555 int
1556 ctx_alloc(struct pmap *pm)
1557 {
1558 int s, cnum;
1559 static int next = MINCTX;
1560
1561 if (pm == pmap_kernel()) {
1562 #ifdef DIAGNOSTIC
1563 printf("ctx_alloc: kernel pmap!\n");
1564 #endif
1565 return (0);
1566 }
1567 s = splvm();
1568
1569 /* Find a likely context. */
1570 cnum = next;
1571 do {
1572 if ((++cnum) > NUMCTX)
1573 cnum = MINCTX;
1574 } while (ctxbusy[cnum] != NULL && cnum != next);
1575
1576 /* Now clean it out */
1577 oops:
1578 if (cnum < MINCTX)
1579 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1580 if (ctx_flush(cnum)) {
1581 /* oops -- something's wired. */
1582 if ((++cnum) > NUMCTX)
1583 cnum = MINCTX;
1584 goto oops;
1585 }
1586
1587 if (ctxbusy[cnum]) {
1588 #ifdef DEBUG
1589 /* We should identify this pmap and clear it */
1590 printf("Warning: stealing context %d\n", cnum);
1591 #endif
1592 ctxbusy[cnum]->pm_ctx = 0;
1593 }
1594 ctxbusy[cnum] = pm;
1595 next = cnum;
1596 splx(s);
1597 pm->pm_ctx = cnum;
1598
1599 return cnum;
1600 }
1601
1602 /*
1603 * Give away a context.
1604 */
1605 void
1606 ctx_free(struct pmap *pm)
1607 {
1608 int oldctx;
1609
1610 oldctx = pm->pm_ctx;
1611
1612 if (oldctx == 0)
1613 panic("ctx_free: freeing kernel context");
1614 #ifdef DIAGNOSTIC
1615 if (ctxbusy[oldctx] == 0)
1616 printf("ctx_free: freeing free context %d\n", oldctx);
1617 if (ctxbusy[oldctx] != pm) {
1618 printf("ctx_free: freeing someone esle's context\n "
1619 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1620 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1621 #ifdef DDB
1622 Debugger();
1623 #endif
1624 }
1625 #endif
1626 /* We should verify it has not been stolen and reallocated... */
1627 ctxbusy[oldctx] = NULL;
1628 ctx_flush(oldctx);
1629 }
1630
1631
1632 #ifdef DEBUG
1633 /*
1634 * Test ref/modify handling.
1635 */
1636 void pmap_testout(void);
1637 void
1638 pmap_testout(void)
1639 {
1640 vaddr_t va;
1641 volatile int *loc;
1642 int val = 0;
1643 paddr_t pa;
1644 struct vm_page *pg;
1645 int ref, mod;
1646
1647 /* Allocate a page */
1648 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1649 UVM_KMF_WIRED | UVM_KMF_ZERO);
1650 loc = (int*)va;
1651
1652 pmap_extract(pmap_kernel(), va, &pa);
1653 pg = PHYS_TO_VM_PAGE(pa);
1654 pmap_unwire(pmap_kernel(), va);
1655
1656 pmap_kremove(va, PAGE_SIZE);
1657 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1658 pmap_update(pmap_kernel());
1659
1660 /* Now clear reference and modify */
1661 ref = pmap_clear_reference(pg);
1662 mod = pmap_clear_modify(pg);
1663 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1664 (void *)(u_long)va, (long)pa,
1665 ref, mod);
1666
1667 /* Check it's properly cleared */
1668 ref = pmap_is_referenced(pg);
1669 mod = pmap_is_modified(pg);
1670 printf("Checking cleared page: ref %d, mod %d\n",
1671 ref, mod);
1672
1673 /* Reference page */
1674 val = *loc;
1675
1676 ref = pmap_is_referenced(pg);
1677 mod = pmap_is_modified(pg);
1678 printf("Referenced page: ref %d, mod %d val %x\n",
1679 ref, mod, val);
1680
1681 /* Now clear reference and modify */
1682 ref = pmap_clear_reference(pg);
1683 mod = pmap_clear_modify(pg);
1684 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1685 (void *)(u_long)va, (long)pa,
1686 ref, mod);
1687
1688 /* Modify page */
1689 *loc = 1;
1690
1691 ref = pmap_is_referenced(pg);
1692 mod = pmap_is_modified(pg);
1693 printf("Modified page: ref %d, mod %d\n",
1694 ref, mod);
1695
1696 /* Now clear reference and modify */
1697 ref = pmap_clear_reference(pg);
1698 mod = pmap_clear_modify(pg);
1699 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1700 (void *)(u_long)va, (long)pa,
1701 ref, mod);
1702
1703 /* Check it's properly cleared */
1704 ref = pmap_is_referenced(pg);
1705 mod = pmap_is_modified(pg);
1706 printf("Checking cleared page: ref %d, mod %d\n",
1707 ref, mod);
1708
1709 /* Modify page */
1710 *loc = 1;
1711
1712 ref = pmap_is_referenced(pg);
1713 mod = pmap_is_modified(pg);
1714 printf("Modified page: ref %d, mod %d\n",
1715 ref, mod);
1716
1717 /* Check pmap_protect() */
1718 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1719 pmap_update(pmap_kernel());
1720 ref = pmap_is_referenced(pg);
1721 mod = pmap_is_modified(pg);
1722 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1723 ref, mod);
1724
1725 /* Now clear reference and modify */
1726 ref = pmap_clear_reference(pg);
1727 mod = pmap_clear_modify(pg);
1728 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1729 (void *)(u_long)va, (long)pa,
1730 ref, mod);
1731
1732 /* Reference page */
1733 val = *loc;
1734
1735 ref = pmap_is_referenced(pg);
1736 mod = pmap_is_modified(pg);
1737 printf("Referenced page: ref %d, mod %d val %x\n",
1738 ref, mod, val);
1739
1740 /* Now clear reference and modify */
1741 ref = pmap_clear_reference(pg);
1742 mod = pmap_clear_modify(pg);
1743 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1744 (void *)(u_long)va, (long)pa,
1745 ref, mod);
1746
1747 /* Modify page */
1748 #if 0
1749 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1750 pmap_update(pmap_kernel());
1751 #endif
1752 *loc = 1;
1753
1754 ref = pmap_is_referenced(pg);
1755 mod = pmap_is_modified(pg);
1756 printf("Modified page: ref %d, mod %d\n",
1757 ref, mod);
1758
1759 /* Check pmap_protect() */
1760 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1761 pmap_update(pmap_kernel());
1762 ref = pmap_is_referenced(pg);
1763 mod = pmap_is_modified(pg);
1764 printf("pmap_protect(): ref %d, mod %d\n",
1765 ref, mod);
1766
1767 /* Now clear reference and modify */
1768 ref = pmap_clear_reference(pg);
1769 mod = pmap_clear_modify(pg);
1770 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1771 (void *)(u_long)va, (long)pa,
1772 ref, mod);
1773
1774 /* Reference page */
1775 val = *loc;
1776
1777 ref = pmap_is_referenced(pg);
1778 mod = pmap_is_modified(pg);
1779 printf("Referenced page: ref %d, mod %d val %x\n",
1780 ref, mod, val);
1781
1782 /* Now clear reference and modify */
1783 ref = pmap_clear_reference(pg);
1784 mod = pmap_clear_modify(pg);
1785 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1786 (void *)(u_long)va, (long)pa,
1787 ref, mod);
1788
1789 /* Modify page */
1790 #if 0
1791 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1792 pmap_update(pmap_kernel());
1793 #endif
1794 *loc = 1;
1795
1796 ref = pmap_is_referenced(pg);
1797 mod = pmap_is_modified(pg);
1798 printf("Modified page: ref %d, mod %d\n",
1799 ref, mod);
1800
1801 /* Check pmap_pag_protect() */
1802 pmap_page_protect(pg, VM_PROT_READ);
1803 ref = pmap_is_referenced(pg);
1804 mod = pmap_is_modified(pg);
1805 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1806 ref, mod);
1807
1808 /* Now clear reference and modify */
1809 ref = pmap_clear_reference(pg);
1810 mod = pmap_clear_modify(pg);
1811 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1812 (void *)(u_long)va, (long)pa,
1813 ref, mod);
1814
1815 /* Reference page */
1816 val = *loc;
1817
1818 ref = pmap_is_referenced(pg);
1819 mod = pmap_is_modified(pg);
1820 printf("Referenced page: ref %d, mod %d val %x\n",
1821 ref, mod, val);
1822
1823 /* Now clear reference and modify */
1824 ref = pmap_clear_reference(pg);
1825 mod = pmap_clear_modify(pg);
1826 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1827 (void *)(u_long)va, (long)pa,
1828 ref, mod);
1829
1830 /* Modify page */
1831 #if 0
1832 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1833 pmap_update(pmap_kernel());
1834 #endif
1835 *loc = 1;
1836
1837 ref = pmap_is_referenced(pg);
1838 mod = pmap_is_modified(pg);
1839 printf("Modified page: ref %d, mod %d\n",
1840 ref, mod);
1841
1842 /* Check pmap_pag_protect() */
1843 pmap_page_protect(pg, VM_PROT_NONE);
1844 ref = pmap_is_referenced(pg);
1845 mod = pmap_is_modified(pg);
1846 printf("pmap_page_protect(): ref %d, mod %d\n",
1847 ref, mod);
1848
1849 /* Now clear reference and modify */
1850 ref = pmap_clear_reference(pg);
1851 mod = pmap_clear_modify(pg);
1852 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1853 (void *)(u_long)va, (long)pa,
1854 ref, mod);
1855
1856
1857 /* Reference page */
1858 val = *loc;
1859
1860 ref = pmap_is_referenced(pg);
1861 mod = pmap_is_modified(pg);
1862 printf("Referenced page: ref %d, mod %d val %x\n",
1863 ref, mod, val);
1864
1865 /* Now clear reference and modify */
1866 ref = pmap_clear_reference(pg);
1867 mod = pmap_clear_modify(pg);
1868 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1869 (void *)(u_long)va, (long)pa,
1870 ref, mod);
1871
1872 /* Modify page */
1873 #if 0
1874 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1875 pmap_update(pmap_kernel());
1876 #endif
1877 *loc = 1;
1878
1879 ref = pmap_is_referenced(pg);
1880 mod = pmap_is_modified(pg);
1881 printf("Modified page: ref %d, mod %d\n",
1882 ref, mod);
1883
1884 /* Unmap page */
1885 pmap_remove(pmap_kernel(), va, va+1);
1886 pmap_update(pmap_kernel());
1887 ref = pmap_is_referenced(pg);
1888 mod = pmap_is_modified(pg);
1889 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1890
1891 /* Now clear reference and modify */
1892 ref = pmap_clear_reference(pg);
1893 mod = pmap_clear_modify(pg);
1894 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1895 (void *)(u_long)va, (long)pa, ref, mod);
1896
1897 /* Check it's properly cleared */
1898 ref = pmap_is_referenced(pg);
1899 mod = pmap_is_modified(pg);
1900 printf("Checking cleared page: ref %d, mod %d\n",
1901 ref, mod);
1902
1903 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1904 pmap_kenter_pa(va, pa, VM_PROT_ALL);
1905 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1906 }
1907 #endif
1908