pmap.c revision 1.6 1 /* $NetBSD: pmap.c,v 1.6 2001/11/06 04:49:49 simonb Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #undef NOCACHE
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/proc.h>
74 #include <sys/user.h>
75 #include <sys/queue.h>
76 #include <sys/systm.h>
77 #include <sys/pool.h>
78 #include <sys/device.h>
79
80 #include <uvm/uvm.h>
81
82 #include <machine/pcb.h>
83 #include <machine/powerpc.h>
84
85 #include <powerpc/spr.h>
86 #include <powerpc/ibm4xx/tlb.h>
87
88
89 #define CACHE_LINE 32
90
91 /*
92 * kernmap is an array of PTEs large enough to map in
93 * 4GB. At 16KB/page it is 256K entries or 2MB.
94 */
95 #define KERNMAP_SIZE ((0xffffffffU/NBPG)+1)
96 caddr_t kernmap;
97
98 #define MINCTX 2
99 #define NUMCTX 256
100 volatile struct pmap *ctxbusy[NUMCTX];
101
102 #define TLBF_USED 0x1
103 #define TLBF_REF 0x2
104 #define TLBF_LOCKED 0x4
105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106 typedef struct tlb_info_s {
107 char ti_flags;
108 char ti_ctx; /* TLB_PID assiciated with the entry */
109 u_int ti_va;
110 } tlb_info_t;
111
112 volatile tlb_info_t tlb_info[NTLB];
113 /* We'll use a modified FIFO replacement policy cause it's cheap */
114 volatile int tlbnext = TLB_NRESERVED;
115
116 u_long dtlb_miss_count = 0;
117 u_long itlb_miss_count = 0;
118 u_long ktlb_miss_count = 0;
119 u_long utlb_miss_count = 0;
120
121 /* Event counters -- XXX type `INTR' so we can see them with vmstat -i */
122 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
123 NULL, "cpu", "tlbmiss");
124 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
125 NULL, "cpu", "tlbhit");
126 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
127 NULL, "cpu", "tlbflush");
128 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
129 NULL, "cpu", "tlbenter");
130
131 struct pmap kernel_pmap_;
132
133 int physmem;
134 static int npgs;
135 static u_int nextavail;
136 #ifndef MSGBUFADDR
137 extern paddr_t msgbuf_paddr;
138 #endif
139
140 static struct mem_region *mem, *avail;
141
142 /*
143 * This is a cache of referenced/modified bits.
144 * Bits herein are shifted by ATTRSHFT.
145 */
146 static char *pmap_attrib;
147
148 #define PV_WIRED 0x1
149 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
150 #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED)))
151
152 struct pv_entry {
153 struct pv_entry *pv_next; /* Linked list of mappings */
154 vaddr_t pv_va; /* virtual address of mapping */
155 struct pmap *pv_pm;
156 };
157
158 struct pv_entry *pv_table;
159 static struct pool pv_pool;
160
161 static int pmap_initialized;
162
163 static int ctx_flush(int);
164
165 static inline void dcache_flush_page(vaddr_t);
166 static inline void icache_flush_page(vaddr_t);
167 static inline void dcache_flush(vaddr_t, vsize_t);
168 static inline void icache_flush(vaddr_t, vsize_t);
169
170 inline struct pv_entry *pa_to_pv(paddr_t);
171 static inline char *pa_to_attr(paddr_t);
172
173 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
174 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
175
176 static void pmap_pinit(pmap_t);
177 static void pmap_release(pmap_t);
178 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
179 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
180
181 /*
182 * These small routines may have to be replaced,
183 * if/when we support processors other that the 604.
184 */
185
186 static inline void
187 dcache_flush_page(vaddr_t va)
188 {
189 int i;
190
191 for (i = 0; i < NBPG; i += CACHE_LINE)
192 asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
193 asm volatile("sync;isync" : : );
194 }
195
196 static inline void
197 icache_flush_page(vaddr_t va)
198 {
199 int i;
200
201 for (i = 0; i < NBPG; i += CACHE_LINE)
202 asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
203 asm volatile("sync;isync" : : );
204 }
205
206 static inline void
207 dcache_flush(vaddr_t va, vsize_t len)
208 {
209 int i;
210
211 if (len == 0)
212 return;
213
214 /* Make sure we flush all cache lines */
215 len += va & (CACHE_LINE-1);
216 for (i = 0; i < len; i += CACHE_LINE)
217 asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
218 asm volatile("sync;isync" : : );
219 }
220
221 static inline void
222 icache_flush(vaddr_t va, vsize_t len)
223 {
224 int i;
225
226 if (len == 0)
227 return;
228
229 /* Make sure we flush all cache lines */
230 len += va & (CACHE_LINE-1);
231 for (i = 0; i < len; i += CACHE_LINE)
232 asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
233 asm volatile("sync;isync" : : );
234 }
235
236 inline struct pv_entry *
237 pa_to_pv(paddr_t pa)
238 {
239 int bank, pg;
240
241 bank = vm_physseg_find(atop(pa), &pg);
242 if (bank == -1)
243 return NULL;
244 return &vm_physmem[bank].pmseg.pvent[pg];
245 }
246
247 static inline char *
248 pa_to_attr(paddr_t pa)
249 {
250 int bank, pg;
251
252 bank = vm_physseg_find(atop(pa), &pg);
253 if (bank == -1)
254 return NULL;
255 return &vm_physmem[bank].pmseg.attrs[pg];
256 }
257
258 /*
259 * Insert PTE into page table.
260 */
261 int
262 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
263 {
264 int seg = STIDX(va);
265 int ptn = PTIDX(va);
266 paddr_t pa;
267
268 if (!pm->pm_ptbl[seg]) {
269 /* Don't allocate a page to clear a non-existent mapping. */
270 if (!pte) return (1);
271 /* Allocate a page XXXX this will sleep! */
272 pa = 0;
273 pm->pm_ptbl[seg] = (uint *)uvm_km_alloc1(kernel_map, NBPG, 1);
274 }
275 pm->pm_ptbl[seg][ptn] = pte;
276
277 /* Flush entry. */
278 ppc4xx_tlb_flush(va, pm->pm_ctx);
279 return (1);
280 }
281
282 /*
283 * Get a pointer to a PTE in a page table.
284 */
285 volatile u_int *
286 pte_find(struct pmap *pm, vaddr_t va)
287 {
288 int seg = STIDX(va);
289 int ptn = PTIDX(va);
290
291 if (pm->pm_ptbl[seg])
292 return (&pm->pm_ptbl[seg][ptn]);
293
294 return (NULL);
295 }
296
297 /*
298 * This is called during initppc, before the system is really initialized.
299 */
300 void
301 pmap_bootstrap(u_int kernelstart, u_int kernelend)
302 {
303 struct mem_region *mp, *mp1;
304 int cnt, i;
305 u_int s, e, sz;
306
307 /*
308 * Allocate the kernel page table at the end of
309 * kernel space so it's in the locked TTE.
310 */
311 kernmap = (caddr_t)kernelend;
312 // kernelend += KERNMAP_SIZE*sizeof(struct pte);
313
314 /*
315 * Initialize kernel page table.
316 */
317 // memset(kernmap, 0, KERNMAP_SIZE*sizeof(struct pte));
318 for (i = 0; i < STSZ; i++) {
319 pmap_kernel()->pm_ptbl[i] = 0; // (u_int *)(kernmap + i*NBPG);
320 }
321 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
322
323 /*
324 * Announce page-size to the VM-system
325 */
326 uvmexp.pagesize = NBPG;
327 uvm_setpagesize();
328
329 /*
330 * Get memory.
331 */
332 mem_regions(&mem, &avail);
333 for (mp = mem; mp->size; mp++) {
334 physmem += btoc(mp->size);
335 printf("+%lx,",mp->size);
336 }
337 printf("\n");
338 ppc4xx_tlb_init();
339 /*
340 * Count the number of available entries.
341 */
342 for (cnt = 0, mp = avail; mp->size; mp++)
343 cnt++;
344
345 /*
346 * Page align all regions.
347 * Non-page aligned memory isn't very interesting to us.
348 * Also, sort the entries for ascending addresses.
349 */
350 kernelstart &= ~PGOFSET;
351 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
352 for (mp = avail; mp->size; mp++) {
353 s = mp->start;
354 e = mp->start + mp->size;
355 printf("%08x-%08x -> ",s,e);
356 /*
357 * Check whether this region holds all of the kernel.
358 */
359 if (s < kernelstart && e > kernelend) {
360 avail[cnt].start = kernelend;
361 avail[cnt++].size = e - kernelend;
362 e = kernelstart;
363 }
364 /*
365 * Look whether this regions starts within the kernel.
366 */
367 if (s >= kernelstart && s < kernelend) {
368 if (e <= kernelend)
369 goto empty;
370 s = kernelend;
371 }
372 /*
373 * Now look whether this region ends within the kernel.
374 */
375 if (e > kernelstart && e <= kernelend) {
376 if (s >= kernelstart)
377 goto empty;
378 e = kernelstart;
379 }
380 /*
381 * Now page align the start and size of the region.
382 */
383 s = round_page(s);
384 e = trunc_page(e);
385 if (e < s)
386 e = s;
387 sz = e - s;
388 printf("%08x-%08x = %x\n",s,e,sz);
389 /*
390 * Check whether some memory is left here.
391 */
392 if (sz == 0) {
393 empty:
394 memmove(mp, mp + 1,
395 (cnt - (mp - avail)) * sizeof *mp);
396 cnt--;
397 mp--;
398 continue;
399 }
400 /*
401 * Do an insertion sort.
402 */
403 npgs += btoc(sz);
404 for (mp1 = avail; mp1 < mp; mp1++)
405 if (s < mp1->start)
406 break;
407 if (mp1 < mp) {
408 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
409 mp1->start = s;
410 mp1->size = sz;
411 } else {
412 mp->start = s;
413 mp->size = sz;
414 }
415 }
416
417 /*
418 * We cannot do pmap_steal_memory here,
419 * since we don't run with translation enabled yet.
420 */
421 #ifndef MSGBUFADDR
422 /*
423 * allow for msgbuf
424 */
425 sz = round_page(MSGBUFSIZE);
426 mp = NULL;
427 for (mp1 = avail; mp1->size; mp1++)
428 if (mp1->size >= sz)
429 mp = mp1;
430 if (mp == NULL)
431 panic("not enough memory?");
432
433 npgs -= btoc(sz);
434 msgbuf_paddr = mp->start + mp->size - sz;
435 mp->size -= sz;
436 if (mp->size <= 0)
437 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
438 #endif
439
440 printf("Loading pages\n");
441 for (mp = avail; mp->size; mp++)
442 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
443 atop(mp->start), atop(mp->start + mp->size),
444 VM_FREELIST_DEFAULT);
445
446 /*
447 * Initialize kernel pmap and hardware.
448 */
449 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
450 pmap_kernel()->pm_ctx = KERNEL_PID;
451 nextavail = avail->start;
452
453
454 evcnt_attach_static(&tlbhit_ev);
455 evcnt_attach_static(&tlbmiss_ev);
456 evcnt_attach_static(&tlbflush_ev);
457 evcnt_attach_static(&tlbenter_ev);
458 printf("Done\n");
459 }
460
461 /*
462 * Restrict given range to physical memory
463 *
464 * (Used by /dev/mem)
465 */
466 void
467 pmap_real_memory(paddr_t *start, psize_t *size)
468 {
469 struct mem_region *mp;
470
471 for (mp = mem; mp->size; mp++) {
472 if (*start + *size > mp->start &&
473 *start < mp->start + mp->size) {
474 if (*start < mp->start) {
475 *size -= mp->start - *start;
476 *start = mp->start;
477 }
478 if (*start + *size > mp->start + mp->size)
479 *size = mp->start + mp->size - *start;
480 return;
481 }
482 }
483 *size = 0;
484 }
485
486 /*
487 * Initialize anything else for pmap handling.
488 * Called during vm_init().
489 */
490 void
491 pmap_init(void)
492 {
493 struct pv_entry *pv;
494 vsize_t sz;
495 vaddr_t addr;
496 int i, s;
497 int bank;
498 char *attr;
499
500 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
501 sz = round_page(sz);
502 addr = uvm_km_zalloc(kernel_map, sz);
503 s = splvm();
504 pv = pv_table = (struct pv_entry *)addr;
505 for (i = npgs; --i >= 0;)
506 pv++->pv_pm = NULL;
507 pmap_attrib = (char *)pv;
508 memset(pv, 0, npgs);
509
510 pv = pv_table;
511 attr = pmap_attrib;
512 for (bank = 0; bank < vm_nphysseg; bank++) {
513 sz = vm_physmem[bank].end - vm_physmem[bank].start;
514 vm_physmem[bank].pmseg.pvent = pv;
515 vm_physmem[bank].pmseg.attrs = attr;
516 pv += sz;
517 attr += sz;
518 }
519
520 pmap_initialized = 1;
521 splx(s);
522
523 /* Setup a pool for additional pvlist structures */
524 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", 0,
525 NULL, NULL, 0);
526 }
527
528 /*
529 * How much virtual space is available to the kernel?
530 */
531 void
532 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
533 {
534
535 #if 0
536 /*
537 * Reserve one segment for kernel virtual memory
538 */
539 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
540 *end = *start + SEGMENT_LENGTH;
541 #else
542 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
543 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
544 #endif
545 }
546
547 #ifdef PMAP_GROWKERNEL
548 /*
549 * Preallocate kernel page tables to a specified VA.
550 * This simply loops through the first TTE for each
551 * page table from the beginning of the kernel pmap,
552 * reads the entry, and if the result is
553 * zero (either invalid entry or no page table) it stores
554 * a zero there, populating page tables in the process.
555 * This is not the most efficient technique but i don't
556 * expect it to be called that often.
557 */
558 extern struct vm_page *vm_page_alloc1 __P((void));
559 extern void vm_page_free1 __P((struct vm_page *));
560
561 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
562
563 vaddr_t
564 pmap_growkernel(maxkvaddr)
565 vaddr_t maxkvaddr;
566 {
567 int s;
568 int seg;
569 paddr_t pg;
570 struct pmap *pm = pmap_kernel();
571
572 s = splvm();
573
574 /* Align with the start of a page table */
575 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
576 kbreak += PTMAP) {
577 seg = STIDX(kbreak);
578
579 if (pte_find(pm, kbreak)) continue;
580
581 if (uvm.page_init_done) {
582 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
583 } else {
584 if (!uvm_page_physget(&pg))
585 panic("pmap_growkernel: no memory");
586 }
587 if (!pg) panic("pmap_growkernel: no pages");
588 pmap_zero_page((paddr_t)pg);
589
590 /* XXX This is based on all phymem being addressable */
591 pm->pm_ptbl[seg] = (u_int *)pg;
592 }
593 splx(s);
594 return (kbreak);
595 }
596
597 /*
598 * vm_page_alloc1:
599 *
600 * Allocate and return a memory cell with no associated object.
601 */
602 struct vm_page *
603 vm_page_alloc1()
604 {
605 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
606 if (pg) {
607 pg->wire_count = 1; /* no mappings yet */
608 pg->flags &= ~PG_BUSY; /* never busy */
609 }
610 return pg;
611 }
612
613 /*
614 * vm_page_free1:
615 *
616 * Returns the given page to the free list,
617 * disassociating it with any VM object.
618 *
619 * Object and page must be locked prior to entry.
620 */
621 void
622 vm_page_free1(mem)
623 struct vm_page *mem;
624 {
625 if (mem->flags != (PG_CLEAN|PG_FAKE)) {
626 printf("Freeing invalid page %p\n", mem);
627 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
628 Debugger();
629 return;
630 }
631 mem->flags |= PG_BUSY;
632 mem->wire_count = 0;
633 uvm_pagefree(mem);
634 }
635 #endif
636
637 /*
638 * Create and return a physical map.
639 */
640 struct pmap *
641 pmap_create(void)
642 {
643 struct pmap *pm;
644
645 pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
646 memset((caddr_t)pm, 0, sizeof *pm);
647 pmap_pinit(pm);
648 return pm;
649 }
650
651 /*
652 * Initialize a preallocated and zeroed pmap structure.
653 */
654 void
655 pmap_pinit(struct pmap *pm)
656 {
657 int i;
658
659 /*
660 * Allocate some segment registers for this pmap.
661 */
662 pm->pm_refs = 1;
663 for (i = 0; i < STSZ; i++)
664 pm->pm_ptbl[i] = NULL;
665 }
666
667 /*
668 * Add a reference to the given pmap.
669 */
670 void
671 pmap_reference(struct pmap *pm)
672 {
673
674 pm->pm_refs++;
675 }
676
677 /*
678 * Retire the given pmap from service.
679 * Should only be called if the map contains no valid mappings.
680 */
681 void
682 pmap_destroy(struct pmap *pm)
683 {
684
685 if (--pm->pm_refs == 0) {
686 pmap_release(pm);
687 free((caddr_t)pm, M_VMPMAP);
688 }
689 }
690
691 /*
692 * Release any resources held by the given physical map.
693 * Called when a pmap initialized by pmap_pinit is being released.
694 */
695 static void
696 pmap_release(struct pmap *pm)
697 {
698 int i;
699
700 for (i = 0; i < STSZ; i++)
701 if (pm->pm_ptbl[i]) {
702 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], NBPG);
703 pm->pm_ptbl[i] = NULL;
704 }
705 if (pm->pm_ctx) ctx_free(pm);
706 }
707
708 /*
709 * Copy the range specified by src_addr/len
710 * from the source map to the range dst_addr/len
711 * in the destination map.
712 *
713 * This routine is only advisory and need not do anything.
714 */
715 void
716 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
717 vsize_t len, vaddr_t src_addr)
718 {
719 }
720
721 /*
722 * Require that all active physical maps contain no
723 * incorrect entries NOW.
724 */
725 void
726 pmap_update(struct pmap *pmap)
727 {
728 }
729
730 /*
731 * Garbage collects the physical map system for
732 * pages which are no longer used.
733 * Success need not be guaranteed -- that is, there
734 * may well be pages which are not referenced, but
735 * others may be collected.
736 * Called by the pageout daemon when pages are scarce.
737 */
738 void
739 pmap_collect(struct pmap *pm)
740 {
741 }
742
743 /*
744 * Fill the given physical page with zeroes.
745 */
746 void
747 pmap_zero_page(paddr_t pa)
748 {
749
750 #ifdef NOCACHE
751 memset((caddr_t)pa, 0, NBPG);
752 #else
753 int i;
754
755 for (i = NBPG/CACHELINESIZE; i > 0; i--) {
756 __asm __volatile ("dcbz 0,%0" :: "r"(pa));
757 pa += CACHELINESIZE;
758 }
759 #endif
760 }
761
762 /*
763 * Copy the given physical source page to its destination.
764 */
765 void
766 pmap_copy_page(paddr_t src, paddr_t dst)
767 {
768
769 memcpy((caddr_t)dst, (caddr_t)src, NBPG);
770 dcache_flush_page(dst);
771 }
772
773 /*
774 * This returns whether this is the first mapping of a page.
775 */
776 static inline int
777 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
778 {
779 struct pv_entry *pv, *npv = NULL;
780 int s;
781
782 if (!pmap_initialized)
783 return 0;
784
785 s = splvm();
786
787 pv = pa_to_pv(pa);
788 if (!pv->pv_pm) {
789 /*
790 * No entries yet, use header as the first entry.
791 */
792 pv->pv_va = va;
793 pv->pv_pm = pm;
794 pv->pv_next = NULL;
795 } else {
796 /*
797 * There is at least one other VA mapping this page.
798 * Place this entry after the header.
799 */
800 npv = pool_get(&pv_pool, PR_WAITOK);
801 if (!npv) return (0);
802 npv->pv_va = va;
803 npv->pv_pm = pm;
804 npv->pv_next = pv->pv_next;
805 pv->pv_next = npv;
806 }
807 splx(s);
808 return (1);
809 }
810
811 static void
812 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
813 {
814 struct pv_entry *pv, *npv;
815
816 /*
817 * Remove from the PV table.
818 */
819 pv = pa_to_pv(pa);
820 if (!pv) return;
821
822 /*
823 * If it is the first entry on the list, it is actually
824 * in the header and we must copy the following entry up
825 * to the header. Otherwise we must search the list for
826 * the entry. In either case we free the now unused entry.
827 */
828 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
829 if ((npv = pv->pv_next)) {
830 *pv = *npv;
831 pool_put(&pv_pool, npv);
832 } else
833 pv->pv_pm = NULL;
834 } else {
835 for (; (npv = pv->pv_next) != NULL; pv = npv)
836 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
837 break;
838 if (npv) {
839 pv->pv_next = npv->pv_next;
840 pool_put(&pv_pool, npv);
841 }
842 }
843 }
844
845 /*
846 * Insert physical page at pa into the given pmap at virtual address va.
847 */
848 int
849 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
850 {
851 int s;
852 u_int tte;
853 int managed;
854
855 /*
856 * Have to remove any existing mapping first.
857 */
858 pmap_remove(pm, va, va + NBPG);
859
860 if (flags & PMAP_WIRED) flags |= prot;
861
862 /* If it has no protections don't bother w/the rest */
863 if (!(flags & VM_PROT_ALL))
864 return (0);
865
866 managed = 0;
867 if (vm_physseg_find(atop(pa), NULL) != -1)
868 managed = 1;
869
870 /*
871 * Generate TTE.
872 *
873 * XXXX
874 *
875 * Since the kernel does not handle execution privileges properly,
876 * we will handle read and execute permissions together.
877 */
878 tte = TTE_PA(pa) | TTE_EX;
879 /* XXXX -- need to support multiple page sizes. */
880 tte |= TTE_SZ_16K;
881 #ifdef DIAGNOSTIC
882 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
883 (PME_NOCACHE | PME_WRITETHROUG))
884 panic("pmap_enter: uncached & writethrough\n");
885 #endif
886 if (flags & PME_NOCACHE)
887 /* Must be I/O mapping */
888 tte |= TTE_I | TTE_G;
889 #ifdef NOCACHE
890 tte |= TTE_I;
891 #else
892 else if (flags & PME_WRITETHROUG)
893 /* Uncached and writethrough are not compatible */
894 tte |= TTE_W;
895 #endif
896 if (pm == pmap_kernel())
897 tte |= TTE_ZONE(ZONE_PRIV);
898 else
899 tte |= TTE_ZONE(ZONE_USER);
900
901 if (flags & VM_PROT_WRITE)
902 tte |= TTE_WR;
903
904 /*
905 * Now record mapping for later back-translation.
906 */
907 if (pmap_initialized && managed) {
908 char *attr;
909
910 if (!pmap_enter_pv(pm, va, pa)) {
911 /* Could not enter pv on a managed page */
912 return 1;
913 }
914
915 /* Now set attributes. */
916 attr = pa_to_attr(pa);
917 #ifdef DIAGNOSTIC
918 if (!attr)
919 panic("managed but no attr\n");
920 #endif
921 if (flags & VM_PROT_ALL)
922 *attr |= PTE_HI_REF;
923 if (flags & VM_PROT_WRITE)
924 *attr |= PTE_HI_CHG;
925 }
926
927 s = splvm();
928 pm->pm_stats.resident_count++;
929
930 /* Insert page into page table. */
931 pte_enter(pm, va, tte);
932
933 /* If this is a real fault, enter it in the tlb */
934 if (tte && ((flags & PMAP_WIRED) == 0)) {
935 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
936 }
937 splx(s);
938
939 /* Flush the real memory from the instruction cache. */
940 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
941 __syncicache((void *)pa, PAGE_SIZE);
942
943 return 0;
944 }
945
946 void
947 pmap_unwire(struct pmap *pm, vaddr_t va)
948 {
949 struct pv_entry *pv, *npv;
950 paddr_t pa;
951 int s = splvm();
952
953 if (pm == NULL) {
954 return;
955 }
956
957 if (!pmap_extract(pm, va, &pa)) {
958 return;
959 }
960
961 va |= PV_WIRED;
962
963 pv = pa_to_pv(pa);
964 if (!pv) return;
965
966 /*
967 * If it is the first entry on the list, it is actually
968 * in the header and we must copy the following entry up
969 * to the header. Otherwise we must search the list for
970 * the entry. In either case we free the now unused entry.
971 */
972 for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
973 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
974 npv->pv_va &= ~PV_WIRED;
975 break;
976 }
977 }
978 splx(s);
979 }
980
981 void
982 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
983 {
984 int s;
985 u_int tte;
986 struct pmap *pm = pmap_kernel();
987
988 /*
989 * Have to remove any existing mapping first.
990 */
991
992 /*
993 * Generate TTE.
994 *
995 * XXXX
996 *
997 * Since the kernel does not handle execution privileges properly,
998 * we will handle read and execute permissions together.
999 */
1000 tte = 0;
1001 if (prot & VM_PROT_ALL) {
1002
1003 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
1004 /* XXXX -- need to support multiple page sizes. */
1005 tte |= TTE_SZ_16K;
1006 #ifdef DIAGNOSTIC
1007 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
1008 (PME_NOCACHE | PME_WRITETHROUG))
1009 panic("pmap_kenter_pa: uncached & writethrough\n");
1010 #endif
1011 if (prot & PME_NOCACHE)
1012 /* Must be I/O mapping */
1013 tte |= TTE_I | TTE_G;
1014 #ifdef NOCACHE
1015 tte |= TTE_I;
1016 #else
1017 else if (prot & PME_WRITETHROUG)
1018 /* Uncached and writethrough are not compatible */
1019 tte |= TTE_W;
1020 #endif
1021 if (prot & VM_PROT_WRITE)
1022 tte |= TTE_WR;
1023 }
1024
1025 s = splvm();
1026 pm->pm_stats.resident_count++;
1027
1028 /* Insert page into page table. */
1029 pte_enter(pm, va, tte);
1030 splx(s);
1031 }
1032
1033 void
1034 pmap_kremove(vaddr_t va, vsize_t len)
1035 {
1036
1037 while (len > 0) {
1038 pte_enter(pmap_kernel(), va, 0);
1039 va += PAGE_SIZE;
1040 len -= PAGE_SIZE;
1041 }
1042 }
1043
1044 /*
1045 * Remove the given range of mapping entries.
1046 */
1047 void
1048 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
1049 {
1050 int s;
1051 paddr_t pa;
1052 volatile u_int *ptp;
1053
1054 s = splvm();
1055 while (va < endva) {
1056
1057 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1058 pa = TTE_PA(pa);
1059 pmap_remove_pv(pm, va, pa);
1060 *ptp = 0;
1061 ppc4xx_tlb_flush(va, pm->pm_ctx);
1062 pm->pm_stats.resident_count--;
1063 }
1064 va += NBPG;
1065 }
1066
1067 splx(s);
1068 }
1069
1070 /*
1071 * Get the physical page address for the given pmap/virtual address.
1072 */
1073 boolean_t
1074 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1075 {
1076 int seg = STIDX(va);
1077 int ptn = PTIDX(va);
1078 u_int pa = 0;
1079 int s = splvm();
1080
1081 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1082 *pap = TTE_PA(pa) | (va & PGOFSET);
1083 }
1084 splx(s);
1085 return (pa != 0);
1086 }
1087
1088 /*
1089 * Lower the protection on the specified range of this pmap.
1090 *
1091 * There are only two cases: either the protection is going to 0,
1092 * or it is going to read-only.
1093 */
1094 void
1095 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1096 {
1097 volatile u_int *ptp;
1098 int s;
1099
1100 if (prot & VM_PROT_READ) {
1101 s = splvm();
1102 while (sva < eva) {
1103 if ((ptp = pte_find(pm, sva)) != NULL) {
1104 *ptp &= ~TTE_WR;
1105 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1106 }
1107 sva += NBPG;
1108 }
1109 splx(s);
1110 return;
1111 }
1112 pmap_remove(pm, sva, eva);
1113 }
1114
1115 boolean_t
1116 check_attr(struct vm_page *pg, u_int mask, int clear)
1117 {
1118 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1119 int s;
1120 char *attr;
1121 int rv;
1122
1123 /*
1124 * First modify bits in cache.
1125 */
1126 s = splvm();
1127 attr = pa_to_attr(pa);
1128 if (attr == NULL)
1129 return FALSE;
1130
1131 rv = ((*attr & mask) != 0);
1132 if (clear)
1133 *attr &= ~mask;
1134
1135 splx(s);
1136 return rv;
1137 }
1138
1139
1140 /*
1141 * Lower the protection on the specified physical page.
1142 *
1143 * There are only two cases: either the protection is going to 0,
1144 * or it is going to read-only.
1145 */
1146 void
1147 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1148 {
1149 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1150 vaddr_t va;
1151 struct pv_entry *pvh, *pv, *npv;
1152 struct pmap *pm;
1153
1154 pvh = pa_to_pv(pa);
1155 if (pvh == NULL)
1156 return;
1157
1158 /* Handle extra pvs which may be deleted in the operation */
1159 for (pv = pvh->pv_next; pv; pv = npv) {
1160 npv = pv->pv_next;
1161
1162 pm = pv->pv_pm;
1163 va = pv->pv_va;
1164 pmap_protect(pm, va, va+NBPG, prot);
1165 }
1166 /* Now check the head pv */
1167 if (pvh->pv_pm) {
1168 pv = pvh;
1169 pm = pv->pv_pm;
1170 va = pv->pv_va;
1171 pmap_protect(pm, va, va+NBPG, prot);
1172 }
1173 }
1174
1175 /*
1176 * Activate the address space for the specified process. If the process
1177 * is the current process, load the new MMU context.
1178 */
1179 void
1180 pmap_activate(struct proc *p)
1181 {
1182 #if 0
1183 struct pcb *pcb = &p->p_addr->u_pcb;
1184 pmap_t pmap = p->p_vmspace->vm_map.pmap;
1185
1186 /*
1187 * XXX Normally performed in cpu_fork().
1188 */
1189 printf("pmap_activate(%p), pmap=%p\n",p,pmap);
1190 if (pcb->pcb_pm != pmap) {
1191 pcb->pcb_pm = pmap;
1192 (void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
1193 (paddr_t *)&pcb->pcb_pmreal);
1194 }
1195
1196 if (p == curproc) {
1197 /* Store pointer to new current pmap. */
1198 curpm = pcb->pcb_pmreal;
1199 }
1200 #endif
1201 }
1202
1203 /*
1204 * Deactivate the specified process's address space.
1205 */
1206 void
1207 pmap_deactivate(struct proc *p)
1208 {
1209 }
1210
1211 /*
1212 * Synchronize caches corresponding to [addr, addr+len) in p.
1213 */
1214 void
1215 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1216 {
1217 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1218 int msr, ctx, opid;
1219
1220
1221 /*
1222 * Need to turn off IMMU and switch to user context.
1223 * (icbi uses DMMU).
1224 */
1225 if (!(ctx = pm->pm_ctx)) {
1226 /* No context -- assign it one */
1227 ctx_alloc(pm);
1228 ctx = pm->pm_ctx;
1229 }
1230 __asm __volatile("mfmsr %0;"
1231 "li %1, 0x20;"
1232 "andc %1,%0,%1;"
1233 "mtmsr %1;"
1234 "sync;isync;"
1235 "mfpid %1;"
1236 "mtpid %2;"
1237 "sync; isync;"
1238 "1:"
1239 "dcbf 0,%3;"
1240 "icbi 0,%3;"
1241 "addi %3,%3,32;"
1242 "addic. %4,%4,-32;"
1243 "bge 1b;"
1244 "mtpid %1;"
1245 "mtmsr %0;"
1246 "sync; isync"
1247 : "=&r" (msr), "=&r" (opid)
1248 : "r" (ctx), "r" (va), "r" (len));
1249 }
1250
1251
1252 /* This has to be done in real mode !!! */
1253 void
1254 ppc4xx_tlb_flush(vaddr_t va, int pid)
1255 {
1256 u_long i, found;
1257 u_long msr;
1258
1259 /* If there's no context then it can't be mapped. */
1260 if (!pid) return;
1261
1262 asm("mfpid %1;" /* Save PID */
1263 "mfmsr %2;" /* Save MSR */
1264 "li %0,0;" /* Now clear MSR */
1265 "mtmsr %0;"
1266 "mtpid %4;" /* Set PID */
1267 "sync;"
1268 "tlbsx. %0,0,%3;" /* Search TLB */
1269 "sync;"
1270 "mtpid %1;" /* Restore PID */
1271 "mtmsr %2;" /* Restore MSR */
1272 "sync;isync;"
1273 "li %1,1;"
1274 "beq 1f;"
1275 "li %1,0;"
1276 "1:"
1277 : "=&r" (i), "=&r" (found), "=&r" (msr)
1278 : "r" (va), "r" (pid));
1279 if (found && !TLB_LOCKED(i)) {
1280
1281 /* Now flush translation */
1282 asm volatile(
1283 "tlbwe %0,%1,0;"
1284 "sync;isync;"
1285 : : "r" (0), "r" (i));
1286
1287 tlb_info[i].ti_ctx = 0;
1288 tlb_info[i].ti_flags = 0;
1289 tlbnext = i;
1290 /* Successful flushes */
1291 tlbflush_ev.ev_count++;
1292 }
1293 }
1294
1295 void
1296 ppc4xx_tlb_flush_all(void)
1297 {
1298 u_long i;
1299
1300 for (i = 0; i < NTLB; i++)
1301 if (!TLB_LOCKED(i)) {
1302 asm volatile(
1303 "tlbwe %0,%1,0;"
1304 "sync;isync;"
1305 : : "r" (0), "r" (i));
1306 tlb_info[i].ti_ctx = 0;
1307 tlb_info[i].ti_flags = 0;
1308 }
1309
1310 asm volatile("sync;isync");
1311 }
1312
1313 /* Find a TLB entry to evict. */
1314 static int
1315 ppc4xx_tlb_find_victim(void)
1316 {
1317 int flags;
1318
1319 for (;;) {
1320 if (++tlbnext >= NTLB)
1321 tlbnext = TLB_NRESERVED;
1322 flags = tlb_info[tlbnext].ti_flags;
1323 if (!(flags & TLBF_USED) ||
1324 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1325 u_long va, stack = (u_long)&va;
1326
1327 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1328 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1329 (flags & TLBF_USED)) {
1330 /* Kernel stack page */
1331 flags |= TLBF_USED;
1332 tlb_info[tlbnext].ti_flags = flags;
1333 } else {
1334 /* Found it! */
1335 return (tlbnext);
1336 }
1337 } else {
1338 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1339 }
1340 }
1341 }
1342
1343 void
1344 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1345 {
1346 u_long th, tl, idx;
1347 tlbpid_t pid;
1348 u_short msr;
1349 int s;
1350
1351 tlbenter_ev.ev_count++;
1352
1353 th = (va & TLB_EPN_MASK) |
1354 (((pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT) << TLB_SIZE_SHFT) |
1355 TLB_VALID;
1356 tl = pte;
1357
1358 s = splhigh();
1359 idx = ppc4xx_tlb_find_victim();
1360
1361 #ifdef DIAGNOSTIC
1362 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1363 panic("ppc4xx_tlb_enter: repacing entry %ld\n", idx);
1364 }
1365 #endif
1366
1367 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1368 tlb_info[idx].ti_ctx = ctx;
1369 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1370
1371 asm volatile(
1372 "mfmsr %0;" /* Save MSR */
1373 "li %1,0;"
1374 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1375 "mtmsr %1;" /* Clear MSR */
1376 "mfpid %1;" /* Save old PID */
1377 "mtpid %2;" /* Load translation ctx */
1378 "sync; isync;"
1379 #ifdef DEBUG
1380 "andi. %3,%3,63;"
1381 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1382 #endif
1383 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1384 "sync; isync;"
1385 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1386 "sync; isync;"
1387 : "=&r" (msr), "=&r" (pid)
1388 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1389 splx(s);
1390 }
1391
1392 void
1393 ppc4xx_tlb_unpin(int i)
1394 {
1395
1396 if (i == -1)
1397 for (i = 0; i < TLB_NRESERVED; i++)
1398 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1399 else
1400 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1401 }
1402
1403 void
1404 ppc4xx_tlb_init(void)
1405 {
1406 int i;
1407
1408 /* Mark reserved TLB entries */
1409 for (i = 0; i < TLB_NRESERVED; i++) {
1410 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1411 tlb_info[i].ti_ctx = KERNEL_PID;
1412 }
1413
1414 /* Setup security zones */
1415 /* Z0 - accessible by kernel only if TLB entry permissions allow
1416 * Z1,Z2 - access is controlled by TLB entry permissions
1417 * Z3 - full access regardless of TLB entry permissions
1418 */
1419
1420 asm volatile(
1421 "mtspr %0,%1;"
1422 "sync;"
1423 :: "K"(SPR_ZPR), "r" (0x1b000000));
1424 }
1425
1426
1427 /*
1428 * We should pass the ctx in from trap code.
1429 */
1430 int
1431 pmap_tlbmiss(vaddr_t va, int ctx)
1432 {
1433 volatile u_int *pte;
1434 u_long tte;
1435
1436 tlbmiss_ev.ev_count++;
1437
1438 /*
1439 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1440 */
1441 if (ctx != KERNEL_PID || (va & 0x80000000)) {
1442 pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1443 if (pte == NULL) {
1444 /* Map unmanaged addresses directly for kernel access */
1445 return 1;
1446 }
1447 tte = *pte;
1448 if (tte == 0) {
1449 return 1;
1450 }
1451 } else {
1452 /* Create a 16MB writeable mapping. */
1453 #ifdef NOCACHE
1454 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1455 #else
1456 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1457 #endif
1458 }
1459 tlbhit_ev.ev_count++;
1460 ppc4xx_tlb_enter(ctx, va, tte);
1461
1462 return 0;
1463 }
1464
1465 /*
1466 * Flush all the entries matching a context from the TLB.
1467 */
1468 static int
1469 ctx_flush(int cnum)
1470 {
1471 int i;
1472
1473 /* We gotta steal this context */
1474 for (i = TLB_NRESERVED; i < NTLB; i++) {
1475 if (tlb_info[i].ti_ctx == cnum) {
1476 /* Can't steal ctx if it has a locked entry. */
1477 if (TLB_LOCKED(i)) {
1478 #ifdef DIAGNOSTIC
1479 printf("ctx_flush: can't invalidate "
1480 "locked mapping %d "
1481 "for context %d\n", i, cnum);
1482 Debugger();
1483 #endif
1484 return (1);
1485 }
1486 #ifdef DIAGNOSTIC
1487 if (i < TLB_NRESERVED)
1488 panic("TLB entry %d not locked\n", i);
1489 #endif
1490 /* Invalidate particular TLB entry regardless of locked status */
1491 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1492 tlb_info[i].ti_flags = 0;
1493 }
1494 }
1495 return (0);
1496 }
1497
1498 /*
1499 * Allocate a context. If necessary, steal one from someone else.
1500 *
1501 * The new context is flushed from the TLB before returning.
1502 */
1503 int
1504 ctx_alloc(struct pmap *pm)
1505 {
1506 int s, cnum;
1507 static int next = MINCTX;
1508
1509 if (pm == pmap_kernel()) {
1510 #ifdef DIAGNOSTIC
1511 printf("ctx_alloc: kernel pmap!\n");
1512 #endif
1513 return (0);
1514 }
1515 s = splvm();
1516
1517 /* Find a likely context. */
1518 cnum = next;
1519 do {
1520 if ((++cnum) > NUMCTX)
1521 cnum = MINCTX;
1522 } while (ctxbusy[cnum] != NULL && cnum != next);
1523
1524 /* Now clean it out */
1525 oops:
1526 if (cnum < MINCTX)
1527 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1528 if (ctx_flush(cnum)) {
1529 /* oops -- something's wired. */
1530 if ((++cnum) > NUMCTX)
1531 cnum = MINCTX;
1532 goto oops;
1533 }
1534
1535 if (ctxbusy[cnum]) {
1536 #ifdef DEBUG
1537 /* We should identify this pmap and clear it */
1538 printf("Warning: stealing context %d\n", cnum);
1539 #endif
1540 ctxbusy[cnum]->pm_ctx = 0;
1541 }
1542 ctxbusy[cnum] = pm;
1543 next = cnum;
1544 splx(s);
1545 pm->pm_ctx = cnum;
1546
1547 return cnum;
1548 }
1549
1550 /*
1551 * Give away a context.
1552 */
1553 void
1554 ctx_free(struct pmap *pm)
1555 {
1556 int oldctx;
1557
1558 oldctx = pm->pm_ctx;
1559
1560 if (oldctx == 0)
1561 panic("ctx_free: freeing kernel context");
1562 #ifdef DIAGNOSTIC
1563 if (ctxbusy[oldctx] == 0)
1564 printf("ctx_free: freeing free context %d\n", oldctx);
1565 if (ctxbusy[oldctx] != pm) {
1566 printf("ctx_free: freeing someone esle's context\n "
1567 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1568 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1569 Debugger();
1570 }
1571 #endif
1572 /* We should verify it has not been stolen and reallocated... */
1573 ctxbusy[oldctx] = NULL;
1574 ctx_flush(oldctx);
1575 }
1576
1577
1578 #ifdef DEBUG
1579 /*
1580 * Test ref/modify handling.
1581 */
1582 void pmap_testout __P((void));
1583 void
1584 pmap_testout()
1585 {
1586 vaddr_t va;
1587 volatile int *loc;
1588 int val = 0;
1589 paddr_t pa;
1590 struct vm_page *pg;
1591 int ref, mod;
1592
1593 /* Allocate a page */
1594 va = (vaddr_t)uvm_km_alloc1(kernel_map, NBPG, 1);
1595 loc = (int*)va;
1596
1597 pmap_extract(pmap_kernel(), va, &pa);
1598 pg = PHYS_TO_VM_PAGE(pa);
1599 pmap_unwire(pmap_kernel(), va);
1600
1601 pmap_remove(pmap_kernel(), va, va+1);
1602 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1603 pmap_update(pmap_kernel());
1604
1605 /* Now clear reference and modify */
1606 ref = pmap_clear_reference(pg);
1607 mod = pmap_clear_modify(pg);
1608 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1609 (void *)(u_long)va, (long)pa,
1610 ref, mod);
1611
1612 /* Check it's properly cleared */
1613 ref = pmap_is_referenced(pg);
1614 mod = pmap_is_modified(pg);
1615 printf("Checking cleared page: ref %d, mod %d\n",
1616 ref, mod);
1617
1618 /* Reference page */
1619 val = *loc;
1620
1621 ref = pmap_is_referenced(pg);
1622 mod = pmap_is_modified(pg);
1623 printf("Referenced page: ref %d, mod %d val %x\n",
1624 ref, mod, val);
1625
1626 /* Now clear reference and modify */
1627 ref = pmap_clear_reference(pg);
1628 mod = pmap_clear_modify(pg);
1629 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1630 (void *)(u_long)va, (long)pa,
1631 ref, mod);
1632
1633 /* Modify page */
1634 *loc = 1;
1635
1636 ref = pmap_is_referenced(pg);
1637 mod = pmap_is_modified(pg);
1638 printf("Modified page: ref %d, mod %d\n",
1639 ref, mod);
1640
1641 /* Now clear reference and modify */
1642 ref = pmap_clear_reference(pg);
1643 mod = pmap_clear_modify(pg);
1644 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1645 (void *)(u_long)va, (long)pa,
1646 ref, mod);
1647
1648 /* Check it's properly cleared */
1649 ref = pmap_is_referenced(pg);
1650 mod = pmap_is_modified(pg);
1651 printf("Checking cleared page: ref %d, mod %d\n",
1652 ref, mod);
1653
1654 /* Modify page */
1655 *loc = 1;
1656
1657 ref = pmap_is_referenced(pg);
1658 mod = pmap_is_modified(pg);
1659 printf("Modified page: ref %d, mod %d\n",
1660 ref, mod);
1661
1662 /* Check pmap_protect() */
1663 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1664 pmap_update(pmap_kernel());
1665 ref = pmap_is_referenced(pg);
1666 mod = pmap_is_modified(pg);
1667 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1668 ref, mod);
1669
1670 /* Now clear reference and modify */
1671 ref = pmap_clear_reference(pg);
1672 mod = pmap_clear_modify(pg);
1673 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1674 (void *)(u_long)va, (long)pa,
1675 ref, mod);
1676
1677 /* Reference page */
1678 val = *loc;
1679
1680 ref = pmap_is_referenced(pg);
1681 mod = pmap_is_modified(pg);
1682 printf("Referenced page: ref %d, mod %d val %x\n",
1683 ref, mod, val);
1684
1685 /* Now clear reference and modify */
1686 ref = pmap_clear_reference(pg);
1687 mod = pmap_clear_modify(pg);
1688 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1689 (void *)(u_long)va, (long)pa,
1690 ref, mod);
1691
1692 /* Modify page */
1693 #if 0
1694 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1695 pmap_update(pmap_kernel());
1696 #endif
1697 *loc = 1;
1698
1699 ref = pmap_is_referenced(pg);
1700 mod = pmap_is_modified(pg);
1701 printf("Modified page: ref %d, mod %d\n",
1702 ref, mod);
1703
1704 /* Check pmap_protect() */
1705 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1706 pmap_update(pmap_kernel());
1707 ref = pmap_is_referenced(pg);
1708 mod = pmap_is_modified(pg);
1709 printf("pmap_protect(): ref %d, mod %d\n",
1710 ref, mod);
1711
1712 /* Now clear reference and modify */
1713 ref = pmap_clear_reference(pg);
1714 mod = pmap_clear_modify(pg);
1715 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1716 (void *)(u_long)va, (long)pa,
1717 ref, mod);
1718
1719 /* Reference page */
1720 val = *loc;
1721
1722 ref = pmap_is_referenced(pg);
1723 mod = pmap_is_modified(pg);
1724 printf("Referenced page: ref %d, mod %d val %x\n",
1725 ref, mod, val);
1726
1727 /* Now clear reference and modify */
1728 ref = pmap_clear_reference(pg);
1729 mod = pmap_clear_modify(pg);
1730 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1731 (void *)(u_long)va, (long)pa,
1732 ref, mod);
1733
1734 /* Modify page */
1735 #if 0
1736 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1737 pmap_update(pmap_kernel());
1738 #endif
1739 *loc = 1;
1740
1741 ref = pmap_is_referenced(pg);
1742 mod = pmap_is_modified(pg);
1743 printf("Modified page: ref %d, mod %d\n",
1744 ref, mod);
1745
1746 /* Check pmap_pag_protect() */
1747 pmap_page_protect(pg, VM_PROT_READ);
1748 ref = pmap_is_referenced(pg);
1749 mod = pmap_is_modified(pg);
1750 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1751 ref, mod);
1752
1753 /* Now clear reference and modify */
1754 ref = pmap_clear_reference(pg);
1755 mod = pmap_clear_modify(pg);
1756 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1757 (void *)(u_long)va, (long)pa,
1758 ref, mod);
1759
1760 /* Reference page */
1761 val = *loc;
1762
1763 ref = pmap_is_referenced(pg);
1764 mod = pmap_is_modified(pg);
1765 printf("Referenced page: ref %d, mod %d val %x\n",
1766 ref, mod, val);
1767
1768 /* Now clear reference and modify */
1769 ref = pmap_clear_reference(pg);
1770 mod = pmap_clear_modify(pg);
1771 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1772 (void *)(u_long)va, (long)pa,
1773 ref, mod);
1774
1775 /* Modify page */
1776 #if 0
1777 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1778 pmap_update(pmap_kernel());
1779 #endif
1780 *loc = 1;
1781
1782 ref = pmap_is_referenced(pg);
1783 mod = pmap_is_modified(pg);
1784 printf("Modified page: ref %d, mod %d\n",
1785 ref, mod);
1786
1787 /* Check pmap_pag_protect() */
1788 pmap_page_protect(pg, VM_PROT_NONE);
1789 ref = pmap_is_referenced(pg);
1790 mod = pmap_is_modified(pg);
1791 printf("pmap_page_protect(): ref %d, mod %d\n",
1792 ref, mod);
1793
1794 /* Now clear reference and modify */
1795 ref = pmap_clear_reference(pg);
1796 mod = pmap_clear_modify(pg);
1797 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1798 (void *)(u_long)va, (long)pa,
1799 ref, mod);
1800
1801
1802 /* Reference page */
1803 val = *loc;
1804
1805 ref = pmap_is_referenced(pg);
1806 mod = pmap_is_modified(pg);
1807 printf("Referenced page: ref %d, mod %d val %x\n",
1808 ref, mod, val);
1809
1810 /* Now clear reference and modify */
1811 ref = pmap_clear_reference(pg);
1812 mod = pmap_clear_modify(pg);
1813 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1814 (void *)(u_long)va, (long)pa,
1815 ref, mod);
1816
1817 /* Modify page */
1818 #if 0
1819 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1820 pmap_update(pmap_kernel());
1821 #endif
1822 *loc = 1;
1823
1824 ref = pmap_is_referenced(pg);
1825 mod = pmap_is_modified(pg);
1826 printf("Modified page: ref %d, mod %d\n",
1827 ref, mod);
1828
1829 /* Unmap page */
1830 pmap_remove(pmap_kernel(), va, va+1);
1831 pmap_update(pmap_kernel());
1832 ref = pmap_is_referenced(pg);
1833 mod = pmap_is_modified(pg);
1834 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1835
1836 /* Now clear reference and modify */
1837 ref = pmap_clear_reference(pg);
1838 mod = pmap_clear_modify(pg);
1839 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1840 (void *)(u_long)va, (long)pa, ref, mod);
1841
1842 /* Check it's properly cleared */
1843 ref = pmap_is_referenced(pg);
1844 mod = pmap_is_modified(pg);
1845 printf("Checking cleared page: ref %d, mod %d\n",
1846 ref, mod);
1847
1848 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1849 VM_PROT_ALL|PMAP_WIRED);
1850 uvm_km_free(kernel_map, (vaddr_t)va, NBPG);
1851 }
1852 #endif
1853