Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.60.2.6
      1 /*	$NetBSD: pmap.c,v 1.60.2.6 2010/10/30 08:41:10 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.60.2.6 2010/10/30 08:41:10 uebayasi Exp $");
     71 
     72 #include "opt_xip.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/malloc.h>
     76 #include <sys/proc.h>
     77 #include <sys/queue.h>
     78 #include <sys/systm.h>
     79 #include <sys/pool.h>
     80 #include <sys/device.h>
     81 
     82 #include <uvm/uvm.h>
     83 
     84 #include <machine/cpu.h>
     85 #include <machine/pcb.h>
     86 #include <machine/powerpc.h>
     87 
     88 #include <powerpc/spr.h>
     89 #include <powerpc/ibm4xx/spr.h>
     90 #include <machine/tlb.h>
     91 
     92 /*
     93  * kernmap is an array of PTEs large enough to map in
     94  * 4GB.  At 16KB/page it is 256K entries or 2MB.
     95  */
     96 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
     97 void *kernmap;
     98 
     99 #define MINCTX		2
    100 #define NUMCTX		256
    101 
    102 volatile struct pmap *ctxbusy[NUMCTX];
    103 
    104 #define TLBF_USED	0x1
    105 #define	TLBF_REF	0x2
    106 #define	TLBF_LOCKED	0x4
    107 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    108 
    109 typedef struct tlb_info_s {
    110 	char	ti_flags;
    111 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    112 	u_int	ti_va;
    113 } tlb_info_t;
    114 
    115 volatile tlb_info_t tlb_info[NTLB];
    116 /* We'll use a modified FIFO replacement policy cause it's cheap */
    117 volatile int tlbnext;
    118 
    119 static int tlb_nreserved = 0;
    120 static int pmap_bootstrap_done = 0;
    121 
    122 /* Event counters */
    123 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    124 	NULL, "cpu", "tlbmiss");
    125 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    126 	NULL, "cpu", "tlbhit");
    127 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    128 	NULL, "cpu", "tlbflush");
    129 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    130 	NULL, "cpu", "tlbenter");
    131 
    132 struct pmap kernel_pmap_;
    133 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    134 
    135 static int npgs;
    136 static u_int nextavail;
    137 #ifndef MSGBUFADDR
    138 extern paddr_t msgbuf_paddr;
    139 #endif
    140 
    141 static struct mem_region *mem, *avail;
    142 
    143 /*
    144  * This is a cache of referenced/modified bits.
    145  * Bits herein are shifted by ATTRSHFT.
    146  */
    147 static char *pmap_attrib;
    148 
    149 #define PV_WIRED	0x1
    150 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    151 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    152 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    153 #define PV_CMPVA(va,pv)	(!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
    154 
    155 struct pv_entry {
    156 	struct pv_entry *pv_next;	/* Linked list of mappings */
    157 	vaddr_t pv_va;			/* virtual address of mapping */
    158 	struct pmap *pv_pm;
    159 };
    160 
    161 /* Each index corresponds to TLB_SIZE_* value. */
    162 static size_t tlbsize[] = {
    163 	1024, 		/* TLB_SIZE_1K */
    164 	4096, 		/* TLB_SIZE_4K */
    165 	16384, 		/* TLB_SIZE_16K */
    166 	65536, 		/* TLB_SIZE_64K */
    167 	262144, 	/* TLB_SIZE_256K */
    168 	1048576, 	/* TLB_SIZE_1M */
    169 	4194304, 	/* TLB_SIZE_4M */
    170 	16777216, 	/* TLB_SIZE_16M */
    171 };
    172 
    173 struct pv_entry *pv_table;
    174 static struct pool pv_pool;
    175 
    176 static int pmap_initialized;
    177 
    178 static int ctx_flush(int);
    179 
    180 inline struct pv_entry *pa_to_pv(paddr_t);
    181 static inline char *pa_to_attr(paddr_t);
    182 
    183 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    184 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    185 
    186 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    187 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    188 
    189 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    190 
    191 
    192 inline struct pv_entry *
    193 pa_to_pv(paddr_t pa)
    194 {
    195 	int bank, pg;
    196 
    197 #ifdef XIP
    198 	bank = vm_physseg_find_device(atop(pa), &pg);
    199 	if (bank != -1)
    200 		return &VM_PHYSDEV_PTR(bank)->pmseg.pvent[pg];
    201 #endif
    202 	bank = vm_physseg_find(atop(pa), &pg);
    203 	if (bank != -1)
    204 		return &VM_PHYSMEM_PTR(bank)->pmseg.pvent[pg];
    205 	return NULL;
    206 }
    207 
    208 static inline char *
    209 pa_to_attr(paddr_t pa)
    210 {
    211 	int bank, pg;
    212 
    213 #ifdef XIP
    214 	bank = vm_physseg_find_device(atop(pa), &pg);
    215 	if (bank != -1)
    216 		return &VM_PHYSDEV_PTR(bank)->pmseg.attrs[pg];
    217 #endif
    218 	bank = vm_physseg_find(atop(pa), &pg);
    219 	if (bank != -1)
    220 		return &VM_PHYSMEM_PTR(bank)->pmseg.attrs[pg];
    221 	return NULL;
    222 }
    223 
    224 /*
    225  * Insert PTE into page table.
    226  */
    227 int
    228 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    229 {
    230 	int seg = STIDX(va);
    231 	int ptn = PTIDX(va);
    232 	u_int oldpte;
    233 
    234 	if (!pm->pm_ptbl[seg]) {
    235 		/* Don't allocate a page to clear a non-existent mapping. */
    236 		if (!pte)
    237 			return (0);
    238 		/* Allocate a page XXXX this will sleep! */
    239 		pm->pm_ptbl[seg] =
    240 		    (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    241 		    UVM_KMF_WIRED | UVM_KMF_ZERO);
    242 	}
    243 	oldpte = pm->pm_ptbl[seg][ptn];
    244 	pm->pm_ptbl[seg][ptn] = pte;
    245 
    246 	/* Flush entry. */
    247 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    248 	if (oldpte != pte) {
    249 		if (pte == 0)
    250 			pm->pm_stats.resident_count--;
    251 		else
    252 			pm->pm_stats.resident_count++;
    253 	}
    254 	return (1);
    255 }
    256 
    257 /*
    258  * Get a pointer to a PTE in a page table.
    259  */
    260 volatile u_int *
    261 pte_find(struct pmap *pm, vaddr_t va)
    262 {
    263 	int seg = STIDX(va);
    264 	int ptn = PTIDX(va);
    265 
    266 	if (pm->pm_ptbl[seg])
    267 		return (&pm->pm_ptbl[seg][ptn]);
    268 
    269 	return (NULL);
    270 }
    271 
    272 /*
    273  * This is called during initppc, before the system is really initialized.
    274  */
    275 void
    276 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    277 {
    278 	struct mem_region *mp, *mp1;
    279 	int cnt, i;
    280 	u_int s, e, sz;
    281 
    282 	tlbnext = tlb_nreserved;
    283 
    284 	/*
    285 	 * Allocate the kernel page table at the end of
    286 	 * kernel space so it's in the locked TTE.
    287 	 */
    288 	kernmap = (void *)kernelend;
    289 
    290 	/*
    291 	 * Initialize kernel page table.
    292 	 */
    293 	for (i = 0; i < STSZ; i++) {
    294 		pmap_kernel()->pm_ptbl[i] = 0;
    295 	}
    296 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    297 
    298 	/*
    299 	 * Announce page-size to the VM-system
    300 	 */
    301 	uvmexp.pagesize = NBPG;
    302 	uvm_setpagesize();
    303 
    304 	/*
    305 	 * Get memory.
    306 	 */
    307 	mem_regions(&mem, &avail);
    308 	for (mp = mem; mp->size; mp++) {
    309 		physmem += btoc(mp->size);
    310 		printf("+%lx,",mp->size);
    311 	}
    312 	printf("\n");
    313 	ppc4xx_tlb_init();
    314 	/*
    315 	 * Count the number of available entries.
    316 	 */
    317 	for (cnt = 0, mp = avail; mp->size; mp++)
    318 		cnt++;
    319 
    320 	/*
    321 	 * Page align all regions.
    322 	 * Non-page aligned memory isn't very interesting to us.
    323 	 * Also, sort the entries for ascending addresses.
    324 	 */
    325 	kernelstart &= ~PGOFSET;
    326 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    327 	for (mp = avail; mp->size; mp++) {
    328 		s = mp->start;
    329 		e = mp->start + mp->size;
    330 		printf("%08x-%08x -> ",s,e);
    331 		/*
    332 		 * Check whether this region holds all of the kernel.
    333 		 */
    334 		if (s < kernelstart && e > kernelend) {
    335 			avail[cnt].start = kernelend;
    336 			avail[cnt++].size = e - kernelend;
    337 			e = kernelstart;
    338 		}
    339 		/*
    340 		 * Look whether this regions starts within the kernel.
    341 		 */
    342 		if (s >= kernelstart && s < kernelend) {
    343 			if (e <= kernelend)
    344 				goto empty;
    345 			s = kernelend;
    346 		}
    347 		/*
    348 		 * Now look whether this region ends within the kernel.
    349 		 */
    350 		if (e > kernelstart && e <= kernelend) {
    351 			if (s >= kernelstart)
    352 				goto empty;
    353 			e = kernelstart;
    354 		}
    355 		/*
    356 		 * Now page align the start and size of the region.
    357 		 */
    358 		s = round_page(s);
    359 		e = trunc_page(e);
    360 		if (e < s)
    361 			e = s;
    362 		sz = e - s;
    363 		printf("%08x-%08x = %x\n",s,e,sz);
    364 		/*
    365 		 * Check whether some memory is left here.
    366 		 */
    367 		if (sz == 0) {
    368 		empty:
    369 			memmove(mp, mp + 1,
    370 				(cnt - (mp - avail)) * sizeof *mp);
    371 			cnt--;
    372 			mp--;
    373 			continue;
    374 		}
    375 		/*
    376 		 * Do an insertion sort.
    377 		 */
    378 		npgs += btoc(sz);
    379 		for (mp1 = avail; mp1 < mp; mp1++)
    380 			if (s < mp1->start)
    381 				break;
    382 		if (mp1 < mp) {
    383 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    384 			mp1->start = s;
    385 			mp1->size = sz;
    386 		} else {
    387 			mp->start = s;
    388 			mp->size = sz;
    389 		}
    390 	}
    391 
    392 	/*
    393 	 * We cannot do pmap_steal_memory here,
    394 	 * since we don't run with translation enabled yet.
    395 	 */
    396 #ifndef MSGBUFADDR
    397 	/*
    398 	 * allow for msgbuf
    399 	 */
    400 	sz = round_page(MSGBUFSIZE);
    401 	mp = NULL;
    402 	for (mp1 = avail; mp1->size; mp1++)
    403 		if (mp1->size >= sz)
    404 			mp = mp1;
    405 	if (mp == NULL)
    406 		panic("not enough memory?");
    407 
    408 	npgs -= btoc(sz);
    409 	msgbuf_paddr = mp->start + mp->size - sz;
    410 	mp->size -= sz;
    411 	if (mp->size <= 0)
    412 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
    413 #endif
    414 
    415 	for (mp = avail; mp->size; mp++)
    416 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    417 			atop(mp->start), atop(mp->start + mp->size),
    418 			VM_FREELIST_DEFAULT);
    419 
    420 	/*
    421 	 * Initialize kernel pmap and hardware.
    422 	 */
    423 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    424 	pmap_kernel()->pm_ctx = KERNEL_PID;
    425 	nextavail = avail->start;
    426 
    427 	evcnt_attach_static(&tlbmiss_ev);
    428 	evcnt_attach_static(&tlbhit_ev);
    429 	evcnt_attach_static(&tlbflush_ev);
    430 	evcnt_attach_static(&tlbenter_ev);
    431 
    432 	pmap_bootstrap_done = 1;
    433 }
    434 
    435 /*
    436  * Restrict given range to physical memory
    437  *
    438  * (Used by /dev/mem)
    439  */
    440 void
    441 pmap_real_memory(paddr_t *start, psize_t *size)
    442 {
    443 	struct mem_region *mp;
    444 
    445 	for (mp = mem; mp->size; mp++) {
    446 		if (*start + *size > mp->start &&
    447 		    *start < mp->start + mp->size) {
    448 			if (*start < mp->start) {
    449 				*size -= mp->start - *start;
    450 				*start = mp->start;
    451 			}
    452 			if (*start + *size > mp->start + mp->size)
    453 				*size = mp->start + mp->size - *start;
    454 			return;
    455 		}
    456 	}
    457 	*size = 0;
    458 }
    459 
    460 /*
    461  * Initialize anything else for pmap handling.
    462  * Called during vm_init().
    463  */
    464 void
    465 pmap_init(void)
    466 {
    467 	struct pv_entry *pv;
    468 	vsize_t sz;
    469 	vaddr_t addr;
    470 	int i, s;
    471 	int bank;
    472 	char *attr;
    473 
    474 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    475 	sz = round_page(sz);
    476 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    477 	s = splvm();
    478 	pv = pv_table = (struct pv_entry *)addr;
    479 	for (i = npgs; --i >= 0;)
    480 		pv++->pv_pm = NULL;
    481 	pmap_attrib = (char *)pv;
    482 	memset(pv, 0, npgs);
    483 
    484 	pv = pv_table;
    485 	attr = pmap_attrib;
    486 	for (bank = 0; bank < vm_nphysseg; bank++) {
    487 		sz = VM_PHYSMEM_PTR(bank)->end - VM_PHYSMEM_PTR(bank)->start;
    488 		VM_PHYSMEM_PTR(bank)->pmseg.pvent = pv;
    489 		VM_PHYSMEM_PTR(bank)->pmseg.attrs = attr;
    490 		pv += sz;
    491 		attr += sz;
    492 	}
    493 
    494 	pmap_initialized = 1;
    495 	splx(s);
    496 
    497 	/* Setup a pool for additional pvlist structures */
    498 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
    499 	    IPL_VM);
    500 }
    501 
    502 void
    503 pmap_physseg_init(struct vm_physseg *seg)
    504 {
    505 	size_t npages;
    506 	vsize_t sz;
    507 	struct pv_entry *pv;
    508 	char *attr;
    509 
    510 	npages = seg->end - seg->start + 1;
    511 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npages);
    512 	sz = round_page(sz);
    513 	pv = (void *)uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    514 	attr = (void *)(pv + npages);
    515 
    516 	seg->pmseg.pvent = pv;
    517 	seg->pmseg.attrs = attr;
    518 }
    519 
    520 void
    521 pmap_physseg_fini(struct vm_physseg *seg)
    522 {
    523 	size_t npages;
    524 	vsize_t sz;
    525 
    526 	npages = seg->end - seg->start + 1;
    527 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npages);
    528 	sz = round_page(sz);
    529 	uvm_km_free(kernel_map, (vaddr_t)seg->pmseg.pvent, sz, UVM_KMF_WIRED);
    530 }
    531 
    532 /*
    533  * How much virtual space is available to the kernel?
    534  */
    535 void
    536 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    537 {
    538 
    539 #if 0
    540 	/*
    541 	 * Reserve one segment for kernel virtual memory
    542 	 */
    543 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
    544 	*end = *start + SEGMENT_LENGTH;
    545 #else
    546 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    547 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    548 #endif
    549 }
    550 
    551 #ifdef PMAP_GROWKERNEL
    552 /*
    553  * Preallocate kernel page tables to a specified VA.
    554  * This simply loops through the first TTE for each
    555  * page table from the beginning of the kernel pmap,
    556  * reads the entry, and if the result is
    557  * zero (either invalid entry or no page table) it stores
    558  * a zero there, populating page tables in the process.
    559  * This is not the most efficient technique but i don't
    560  * expect it to be called that often.
    561  */
    562 extern struct vm_page *vm_page_alloc1(void);
    563 extern void vm_page_free1(struct vm_page *);
    564 
    565 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    566 
    567 vaddr_t
    568 pmap_growkernel(vaddr_t maxkvaddr)
    569 {
    570 	int s;
    571 	int seg;
    572 	paddr_t pg;
    573 	struct pmap *pm = pmap_kernel();
    574 
    575 	s = splvm();
    576 
    577 	/* Align with the start of a page table */
    578 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
    579 	     kbreak += PTMAP) {
    580 		seg = STIDX(kbreak);
    581 
    582 		if (pte_find(pm, kbreak))
    583 			continue;
    584 
    585 		if (uvm.page_init_done) {
    586 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    587 		} else {
    588 			if (!uvm_page_physget(&pg))
    589 				panic("pmap_growkernel: no memory");
    590 		}
    591 		if (!pg)
    592 			panic("pmap_growkernel: no pages");
    593 		pmap_zero_page((paddr_t)pg);
    594 
    595 		/* XXX This is based on all phymem being addressable */
    596 		pm->pm_ptbl[seg] = (u_int *)pg;
    597 	}
    598 	splx(s);
    599 	return (kbreak);
    600 }
    601 
    602 /*
    603  *	vm_page_alloc1:
    604  *
    605  *	Allocate and return a memory cell with no associated object.
    606  */
    607 struct vm_page *
    608 vm_page_alloc1(void)
    609 {
    610 	struct vm_page *pg;
    611 
    612 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    613 	if (pg) {
    614 		pg->wire_count = 1;	/* no mappings yet */
    615 		pg->flags &= ~PG_BUSY;	/* never busy */
    616 	}
    617 	return pg;
    618 }
    619 
    620 /*
    621  *	vm_page_free1:
    622  *
    623  *	Returns the given page to the free list,
    624  *	disassociating it with any VM object.
    625  *
    626  *	Object and page must be locked prior to entry.
    627  */
    628 void
    629 vm_page_free1(struct vm_page *pg)
    630 {
    631 #ifdef DIAGNOSTIC
    632 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    633 		printf("Freeing invalid page %p\n", pg);
    634 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
    635 #ifdef DDB
    636 		Debugger();
    637 #endif
    638 		return;
    639 	}
    640 #endif
    641 	pg->flags |= PG_BUSY;
    642 	pg->wire_count = 0;
    643 	uvm_pagefree(pg);
    644 }
    645 #endif
    646 
    647 /*
    648  * Create and return a physical map.
    649  */
    650 struct pmap *
    651 pmap_create(void)
    652 {
    653 	struct pmap *pm;
    654 
    655 	pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
    656 	memset(pm, 0, sizeof *pm);
    657 	pm->pm_refs = 1;
    658 	return pm;
    659 }
    660 
    661 /*
    662  * Add a reference to the given pmap.
    663  */
    664 void
    665 pmap_reference(struct pmap *pm)
    666 {
    667 
    668 	pm->pm_refs++;
    669 }
    670 
    671 /*
    672  * Retire the given pmap from service.
    673  * Should only be called if the map contains no valid mappings.
    674  */
    675 void
    676 pmap_destroy(struct pmap *pm)
    677 {
    678 	int i;
    679 
    680 	if (--pm->pm_refs > 0) {
    681 		return;
    682 	}
    683 	KASSERT(pm->pm_stats.resident_count == 0);
    684 	KASSERT(pm->pm_stats.wired_count == 0);
    685 	for (i = 0; i < STSZ; i++)
    686 		if (pm->pm_ptbl[i]) {
    687 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    688 			    PAGE_SIZE, UVM_KMF_WIRED);
    689 			pm->pm_ptbl[i] = NULL;
    690 		}
    691 	if (pm->pm_ctx)
    692 		ctx_free(pm);
    693 	free(pm, M_VMPMAP);
    694 }
    695 
    696 /*
    697  * Copy the range specified by src_addr/len
    698  * from the source map to the range dst_addr/len
    699  * in the destination map.
    700  *
    701  * This routine is only advisory and need not do anything.
    702  */
    703 void
    704 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    705 	  vsize_t len, vaddr_t src_addr)
    706 {
    707 }
    708 
    709 /*
    710  * Require that all active physical maps contain no
    711  * incorrect entries NOW.
    712  */
    713 void
    714 pmap_update(struct pmap *pmap)
    715 {
    716 }
    717 
    718 /*
    719  * Fill the given physical page with zeroes.
    720  */
    721 void
    722 pmap_zero_page(paddr_t pa)
    723 {
    724 
    725 #ifdef PPC_4XX_NOCACHE
    726 	memset((void *)pa, 0, PAGE_SIZE);
    727 #else
    728 	int i;
    729 
    730 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    731 		__asm volatile ("dcbz 0,%0" :: "r"(pa));
    732 		pa += CACHELINESIZE;
    733 	}
    734 #endif
    735 }
    736 
    737 /*
    738  * Copy the given physical source page to its destination.
    739  */
    740 void
    741 pmap_copy_page(paddr_t src, paddr_t dst)
    742 {
    743 
    744 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    745 	dcache_flush_page(dst);
    746 }
    747 
    748 /*
    749  * This returns != 0 on success.
    750  */
    751 static inline int
    752 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    753 {
    754 	struct pv_entry *pv, *npv = NULL;
    755 	int s;
    756 
    757 	if (!pmap_initialized)
    758 		return 0;
    759 
    760 	s = splvm();
    761 	pv = pa_to_pv(pa);
    762 	if (!pv->pv_pm) {
    763 		/*
    764 		 * No entries yet, use header as the first entry.
    765 		 */
    766 		pv->pv_va = va;
    767 		pv->pv_pm = pm;
    768 		pv->pv_next = NULL;
    769 	} else {
    770 		/*
    771 		 * There is at least one other VA mapping this page.
    772 		 * Place this entry after the header.
    773 		 */
    774 		npv = pool_get(&pv_pool, PR_NOWAIT);
    775 		if (npv == NULL) {
    776 			if ((flags & PMAP_CANFAIL) == 0)
    777 				panic("pmap_enter_pv: failed");
    778 			splx(s);
    779 			return 0;
    780 		}
    781 		npv->pv_va = va;
    782 		npv->pv_pm = pm;
    783 		npv->pv_next = pv->pv_next;
    784 		pv->pv_next = npv;
    785 		pv = npv;
    786 	}
    787 	if (flags & PMAP_WIRED) {
    788 		PV_WIRE(pv);
    789 		pm->pm_stats.wired_count++;
    790 	}
    791 	splx(s);
    792 	return (1);
    793 }
    794 
    795 static void
    796 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    797 {
    798 	struct pv_entry *pv, *npv;
    799 
    800 	/*
    801 	 * Remove from the PV table.
    802 	 */
    803 	pv = pa_to_pv(pa);
    804 	if (!pv)
    805 		return;
    806 
    807 	/*
    808 	 * If it is the first entry on the list, it is actually
    809 	 * in the header and we must copy the following entry up
    810 	 * to the header.  Otherwise we must search the list for
    811 	 * the entry.  In either case we free the now unused entry.
    812 	 */
    813 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    814 		if (PV_ISWIRED(pv)) {
    815 			pm->pm_stats.wired_count--;
    816 		}
    817 		if ((npv = pv->pv_next)) {
    818 			*pv = *npv;
    819 			pool_put(&pv_pool, npv);
    820 		} else
    821 			pv->pv_pm = NULL;
    822 	} else {
    823 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    824 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    825 				break;
    826 		if (npv) {
    827 			pv->pv_next = npv->pv_next;
    828 			if (PV_ISWIRED(npv)) {
    829 				pm->pm_stats.wired_count--;
    830 			}
    831 			pool_put(&pv_pool, npv);
    832 		}
    833 	}
    834 }
    835 
    836 /*
    837  * Insert physical page at pa into the given pmap at virtual address va.
    838  */
    839 int
    840 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    841 {
    842 	int s;
    843 	u_int tte;
    844 	bool managed;
    845 
    846 	/*
    847 	 * Have to remove any existing mapping first.
    848 	 */
    849 	pmap_remove(pm, va, va + PAGE_SIZE);
    850 
    851 	if (flags & PMAP_WIRED)
    852 		flags |= prot;
    853 
    854 	managed = ((flags & PMAP_UNMANAGED) == 0) && uvm_pageismanaged(pa);
    855 
    856 	/*
    857 	 * Generate TTE.
    858 	 */
    859 	tte = TTE_PA(pa);
    860 	/* XXXX -- need to support multiple page sizes. */
    861 	tte |= TTE_SZ_16K;
    862 #ifdef	DIAGNOSTIC
    863 	if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
    864 		(PME_NOCACHE | PME_WRITETHROUG))
    865 		panic("pmap_enter: uncached & writethrough");
    866 #endif
    867 	if (flags & PME_NOCACHE)
    868 		/* Must be I/O mapping */
    869 		tte |= TTE_I | TTE_G;
    870 #ifdef PPC_4XX_NOCACHE
    871 	tte |= TTE_I;
    872 #else
    873 	else if (flags & PME_WRITETHROUG)
    874 		/* Uncached and writethrough are not compatible */
    875 		tte |= TTE_W;
    876 #endif
    877 	if (pm == pmap_kernel())
    878 		tte |= TTE_ZONE(ZONE_PRIV);
    879 	else
    880 		tte |= TTE_ZONE(ZONE_USER);
    881 
    882 	if (flags & VM_PROT_WRITE)
    883 		tte |= TTE_WR;
    884 
    885 	if (flags & VM_PROT_EXECUTE)
    886 		tte |= TTE_EX;
    887 
    888 	/*
    889 	 * Now record mapping for later back-translation.
    890 	 */
    891 	if (pmap_initialized && managed) {
    892 		char *attr;
    893 
    894 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    895 			/* Could not enter pv on a managed page */
    896 			return 1;
    897 		}
    898 
    899 		/* Now set attributes. */
    900 		attr = pa_to_attr(pa);
    901 #ifdef DIAGNOSTIC
    902 		if (!attr)
    903 			panic("managed but no attr");
    904 #endif
    905 		if (flags & VM_PROT_ALL)
    906 			*attr |= PMAP_ATTR_REF;
    907 		if (flags & VM_PROT_WRITE)
    908 			*attr |= PMAP_ATTR_CHG;
    909 	}
    910 
    911 	s = splvm();
    912 
    913 	/* Insert page into page table. */
    914 	pte_enter(pm, va, tte);
    915 
    916 	/* If this is a real fault, enter it in the tlb */
    917 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    918 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    919 	}
    920 	splx(s);
    921 
    922 	/* Flush the real memory from the instruction cache. */
    923 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    924 		__syncicache((void *)pa, PAGE_SIZE);
    925 
    926 	return 0;
    927 }
    928 
    929 void
    930 pmap_unwire(struct pmap *pm, vaddr_t va)
    931 {
    932 	struct pv_entry *pv;
    933 	paddr_t pa;
    934 	int s;
    935 
    936 	if (!pmap_extract(pm, va, &pa)) {
    937 		return;
    938 	}
    939 
    940 	pv = pa_to_pv(pa);
    941 	if (!pv)
    942 		return;
    943 
    944 	s = splvm();
    945 	while (pv != NULL) {
    946 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    947 			if (PV_ISWIRED(pv)) {
    948 				PV_UNWIRE(pv);
    949 				pm->pm_stats.wired_count--;
    950 			}
    951 			break;
    952 		}
    953 		pv = pv->pv_next;
    954 	}
    955 	splx(s);
    956 }
    957 
    958 void
    959 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    960 {
    961 	int s;
    962 	u_int tte;
    963 	struct pmap *pm = pmap_kernel();
    964 
    965 	/*
    966 	 * Have to remove any existing mapping first.
    967 	 */
    968 
    969 	/*
    970 	 * Generate TTE.
    971 	 *
    972 	 * XXXX
    973 	 *
    974 	 * Since the kernel does not handle execution privileges properly,
    975 	 * we will handle read and execute permissions together.
    976 	 */
    977 	tte = 0;
    978 	if (prot & VM_PROT_ALL) {
    979 
    980 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    981 		/* XXXX -- need to support multiple page sizes. */
    982 		tte |= TTE_SZ_16K;
    983 #ifdef DIAGNOSTIC
    984 		if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
    985 			(PME_NOCACHE | PME_WRITETHROUG))
    986 			panic("pmap_kenter_pa: uncached & writethrough");
    987 #endif
    988 		if (prot & PME_NOCACHE)
    989 			/* Must be I/O mapping */
    990 			tte |= TTE_I | TTE_G;
    991 #ifdef PPC_4XX_NOCACHE
    992 		tte |= TTE_I;
    993 #else
    994 		else if (prot & PME_WRITETHROUG)
    995 			/* Uncached and writethrough are not compatible */
    996 			tte |= TTE_W;
    997 #endif
    998 		if (prot & VM_PROT_WRITE)
    999 			tte |= TTE_WR;
   1000 	}
   1001 
   1002 	s = splvm();
   1003 
   1004 	/* Insert page into page table. */
   1005 	pte_enter(pm, va, tte);
   1006 	splx(s);
   1007 }
   1008 
   1009 void
   1010 pmap_kremove(vaddr_t va, vsize_t len)
   1011 {
   1012 
   1013 	while (len > 0) {
   1014 		pte_enter(pmap_kernel(), va, 0);
   1015 		va += PAGE_SIZE;
   1016 		len -= PAGE_SIZE;
   1017 	}
   1018 }
   1019 
   1020 /*
   1021  * Remove the given range of mapping entries.
   1022  */
   1023 void
   1024 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
   1025 {
   1026 	int s;
   1027 	paddr_t pa;
   1028 	volatile u_int *ptp;
   1029 
   1030 	s = splvm();
   1031 	while (va < endva) {
   1032 
   1033 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
   1034 			pa = TTE_PA(pa);
   1035 			pmap_remove_pv(pm, va, pa);
   1036 			*ptp = 0;
   1037 			ppc4xx_tlb_flush(va, pm->pm_ctx);
   1038 			pm->pm_stats.resident_count--;
   1039 		}
   1040 		va += PAGE_SIZE;
   1041 	}
   1042 
   1043 	splx(s);
   1044 }
   1045 
   1046 /*
   1047  * Convert the given kernel virtual address to the page frame
   1048  * number (mmap cookie).
   1049  */
   1050 paddr_t
   1051 pmap_mmap(vaddr_t addr, off_t off)
   1052 {
   1053 
   1054 	return trunc_page((paddr_t)addr + off);
   1055 }
   1056 
   1057 /*
   1058  * Get the physical page address for the given pmap/virtual address.
   1059  */
   1060 bool
   1061 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1062 {
   1063 	int seg = STIDX(va);
   1064 	int ptn = PTIDX(va);
   1065 	u_int pa = 0;
   1066 	int s;
   1067 
   1068 	s = splvm();
   1069 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
   1070 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1071 	}
   1072 	splx(s);
   1073 	return (pa != 0);
   1074 }
   1075 
   1076 /*
   1077  * Lower the protection on the specified range of this pmap.
   1078  *
   1079  * There are only two cases: either the protection is going to 0,
   1080  * or it is going to read-only.
   1081  */
   1082 void
   1083 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1084 {
   1085 	volatile u_int *ptp;
   1086 	int s, bic;
   1087 
   1088 	if ((prot & VM_PROT_READ) == 0) {
   1089 		pmap_remove(pm, sva, eva);
   1090 		return;
   1091 	}
   1092 	bic = 0;
   1093 	if ((prot & VM_PROT_WRITE) == 0) {
   1094 		bic |= TTE_WR;
   1095 	}
   1096 	if ((prot & VM_PROT_EXECUTE) == 0) {
   1097 		bic |= TTE_EX;
   1098 	}
   1099 	if (bic == 0) {
   1100 		return;
   1101 	}
   1102 	s = splvm();
   1103 	while (sva < eva) {
   1104 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1105 			*ptp &= ~bic;
   1106 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1107 		}
   1108 		sva += PAGE_SIZE;
   1109 	}
   1110 	splx(s);
   1111 }
   1112 
   1113 bool
   1114 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1115 {
   1116 	paddr_t pa;
   1117 	char *attr;
   1118 	int s, rv;
   1119 
   1120 	/*
   1121 	 * First modify bits in cache.
   1122 	 */
   1123 	pa = VM_PAGE_TO_PHYS(pg);
   1124 	attr = pa_to_attr(pa);
   1125 	if (attr == NULL)
   1126 		return false;
   1127 
   1128 	s = splvm();
   1129 	rv = ((*attr & mask) != 0);
   1130 	if (clear) {
   1131 		*attr &= ~mask;
   1132 		pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1133 	}
   1134 	splx(s);
   1135 	return rv;
   1136 }
   1137 
   1138 
   1139 /*
   1140  * Lower the protection on the specified physical page.
   1141  *
   1142  * There are only two cases: either the protection is going to 0,
   1143  * or it is going to read-only.
   1144  */
   1145 void
   1146 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1147 {
   1148 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1149 	vaddr_t va;
   1150 	struct pv_entry *pvh, *pv, *npv;
   1151 	struct pmap *pm;
   1152 
   1153 	pvh = pa_to_pv(pa);
   1154 	if (pvh == NULL)
   1155 		return;
   1156 
   1157 	/* Handle extra pvs which may be deleted in the operation */
   1158 	for (pv = pvh->pv_next; pv; pv = npv) {
   1159 		npv = pv->pv_next;
   1160 
   1161 		pm = pv->pv_pm;
   1162 		va = pv->pv_va;
   1163 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1164 	}
   1165 	/* Now check the head pv */
   1166 	if (pvh->pv_pm) {
   1167 		pv = pvh;
   1168 		pm = pv->pv_pm;
   1169 		va = pv->pv_va;
   1170 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1171 	}
   1172 }
   1173 
   1174 /*
   1175  * Activate the address space for the specified process.  If the process
   1176  * is the current process, load the new MMU context.
   1177  */
   1178 void
   1179 pmap_activate(struct lwp *l)
   1180 {
   1181 #if 0
   1182 	struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
   1183 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1184 
   1185 	/*
   1186 	 * XXX Normally performed in cpu_lwp_fork().
   1187 	 */
   1188 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1189 	pcb->pcb_pm = pmap;
   1190 #endif
   1191 }
   1192 
   1193 /*
   1194  * Deactivate the specified process's address space.
   1195  */
   1196 void
   1197 pmap_deactivate(struct lwp *l)
   1198 {
   1199 }
   1200 
   1201 /*
   1202  * Synchronize caches corresponding to [addr, addr+len) in p.
   1203  */
   1204 void
   1205 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1206 {
   1207 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1208 	int msr, ctx, opid, step;
   1209 
   1210 	step = CACHELINESIZE;
   1211 
   1212 	/*
   1213 	 * Need to turn off IMMU and switch to user context.
   1214 	 * (icbi uses DMMU).
   1215 	 */
   1216 	if (!(ctx = pm->pm_ctx)) {
   1217 		/* No context -- assign it one */
   1218 		ctx_alloc(pm);
   1219 		ctx = pm->pm_ctx;
   1220 	}
   1221 	__asm volatile("mfmsr %0;"
   1222 		"li %1, %7;"
   1223 		"andc %1,%0,%1;"
   1224 		"mtmsr %1;"
   1225 		"sync;isync;"
   1226 		"mfpid %1;"
   1227 		"mtpid %2;"
   1228 		"sync; isync;"
   1229 		"1:"
   1230 		"dcbf 0,%3;"
   1231 		"icbi 0,%3;"
   1232 		"add %3,%3,%5;"
   1233 		"addc. %4,%4,%6;"
   1234 		"bge 1b;"
   1235 		"mtpid %1;"
   1236 		"mtmsr %0;"
   1237 		"sync; isync"
   1238 		: "=&r" (msr), "=&r" (opid)
   1239 		: "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
   1240 		  "K" (PSL_IR | PSL_DR));
   1241 }
   1242 
   1243 
   1244 /* This has to be done in real mode !!! */
   1245 void
   1246 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1247 {
   1248 	u_long i, found;
   1249 	u_long msr;
   1250 
   1251 	/* If there's no context then it can't be mapped. */
   1252 	if (!pid)
   1253 		return;
   1254 
   1255 	__asm( 	"mfpid %1;"		/* Save PID */
   1256 		"mfmsr %2;"		/* Save MSR */
   1257 		"li %0,0;"		/* Now clear MSR */
   1258 		"mtmsr %0;"
   1259 		"mtpid %4;"		/* Set PID */
   1260 		"sync;"
   1261 		"tlbsx. %0,0,%3;"	/* Search TLB */
   1262 		"sync;"
   1263 		"mtpid %1;"		/* Restore PID */
   1264 		"mtmsr %2;"		/* Restore MSR */
   1265 		"sync;isync;"
   1266 		"li %1,1;"
   1267 		"beq 1f;"
   1268 		"li %1,0;"
   1269 		"1:"
   1270 		: "=&r" (i), "=&r" (found), "=&r" (msr)
   1271 		: "r" (va), "r" (pid));
   1272 	if (found && !TLB_LOCKED(i)) {
   1273 
   1274 		/* Now flush translation */
   1275 		__asm volatile(
   1276 			"tlbwe %0,%1,0;"
   1277 			"sync;isync;"
   1278 			: : "r" (0), "r" (i));
   1279 
   1280 		tlb_info[i].ti_ctx = 0;
   1281 		tlb_info[i].ti_flags = 0;
   1282 		tlbnext = i;
   1283 		/* Successful flushes */
   1284 		tlbflush_ev.ev_count++;
   1285 	}
   1286 }
   1287 
   1288 void
   1289 ppc4xx_tlb_flush_all(void)
   1290 {
   1291 	u_long i;
   1292 
   1293 	for (i = 0; i < NTLB; i++)
   1294 		if (!TLB_LOCKED(i)) {
   1295 			__asm volatile(
   1296 				"tlbwe %0,%1,0;"
   1297 				"sync;isync;"
   1298 				: : "r" (0), "r" (i));
   1299 			tlb_info[i].ti_ctx = 0;
   1300 			tlb_info[i].ti_flags = 0;
   1301 		}
   1302 
   1303 	__asm volatile("sync;isync");
   1304 }
   1305 
   1306 /* Find a TLB entry to evict. */
   1307 static int
   1308 ppc4xx_tlb_find_victim(void)
   1309 {
   1310 	int flags;
   1311 
   1312 	for (;;) {
   1313 		if (++tlbnext >= NTLB)
   1314 			tlbnext = tlb_nreserved;
   1315 		flags = tlb_info[tlbnext].ti_flags;
   1316 		if (!(flags & TLBF_USED) ||
   1317 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1318 			u_long va, stack = (u_long)&va;
   1319 
   1320 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
   1321 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1322 			     (flags & TLBF_USED)) {
   1323 				/* Kernel stack page */
   1324 				flags |= TLBF_USED;
   1325 				tlb_info[tlbnext].ti_flags = flags;
   1326 			} else {
   1327 				/* Found it! */
   1328 				return (tlbnext);
   1329 			}
   1330 		} else {
   1331 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1332 		}
   1333 	}
   1334 }
   1335 
   1336 void
   1337 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1338 {
   1339 	u_long th, tl, idx;
   1340 	tlbpid_t pid;
   1341 	u_short msr;
   1342 	paddr_t pa;
   1343 	int s, sz;
   1344 
   1345 	tlbenter_ev.ev_count++;
   1346 
   1347 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1348 	pa = (pte & TTE_RPN_MASK(sz));
   1349 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1350 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1351 	tl |= ppc4xx_tlbflags(va, pa);
   1352 
   1353 	s = splhigh();
   1354 	idx = ppc4xx_tlb_find_victim();
   1355 
   1356 #ifdef DIAGNOSTIC
   1357 	if ((idx < tlb_nreserved) || (idx >= NTLB)) {
   1358 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1359 	}
   1360 #endif
   1361 
   1362 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1363 	tlb_info[idx].ti_ctx = ctx;
   1364 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1365 
   1366 	__asm volatile(
   1367 		"mfmsr %0;"			/* Save MSR */
   1368 		"li %1,0;"
   1369 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
   1370 		"mtmsr %1;"			/* Clear MSR */
   1371 		"mfpid %1;"			/* Save old PID */
   1372 		"mtpid %2;"			/* Load translation ctx */
   1373 		"sync; isync;"
   1374 #ifdef DEBUG
   1375 		"andi. %3,%3,63;"
   1376 		"tweqi %3,0;" 			/* XXXXX DEBUG trap on index 0 */
   1377 #endif
   1378 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
   1379 		"sync; isync;"
   1380 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
   1381 		"sync; isync;"
   1382 	: "=&r" (msr), "=&r" (pid)
   1383 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
   1384 	splx(s);
   1385 }
   1386 
   1387 void
   1388 ppc4xx_tlb_init(void)
   1389 {
   1390 	int i;
   1391 
   1392 	/* Mark reserved TLB entries */
   1393 	for (i = 0; i < tlb_nreserved; i++) {
   1394 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1395 		tlb_info[i].ti_ctx = KERNEL_PID;
   1396 	}
   1397 
   1398 	/* Setup security zones */
   1399 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1400 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1401 	 * Z3 - full access regardless of TLB entry permissions
   1402 	 */
   1403 
   1404 	__asm volatile(
   1405 		"mtspr %0,%1;"
   1406 		"sync;"
   1407 		::  "K"(SPR_ZPR), "r" (0x1b000000));
   1408 }
   1409 
   1410 /*
   1411  * ppc4xx_tlb_size_mask:
   1412  *
   1413  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1414  */
   1415 static int
   1416 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1417 {
   1418 	int 			i;
   1419 
   1420 	for (i = 0; i < __arraycount(tlbsize); i++)
   1421 		if (size <= tlbsize[i]) {
   1422 			*mask = (i << TLB_SIZE_SHFT);
   1423 			*rsiz = tlbsize[i];
   1424 			return (0);
   1425 		}
   1426 	return (EINVAL);
   1427 }
   1428 
   1429 /*
   1430  * ppc4xx_tlb_mapiodev:
   1431  *
   1432  * 	Lookup virtual address of mapping previously entered via
   1433  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1434  * 	need to waste extra storage for reserved mappings. Note
   1435  * 	that reading TLBHI also sets PID, but all reserved mappings
   1436  * 	use KERNEL_PID, so the side effect is nil.
   1437  */
   1438 void *
   1439 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1440 {
   1441 	paddr_t 		pa;
   1442 	vaddr_t 		va;
   1443 	u_int 			lo, hi, sz;
   1444 	int 			i;
   1445 
   1446 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1447 	for (i = 0; i < tlb_nreserved; i++) {
   1448 		__asm volatile (
   1449 		    "	tlbre %0,%2,1 	\n" 	/* TLBLO */
   1450 		    "	tlbre %1,%2,0 	\n" 	/* TLBHI */
   1451 		    : "=&r" (lo), "=&r" (hi)
   1452 		    : "r" (i));
   1453 
   1454 		KASSERT(hi & TLB_VALID);
   1455 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1456 
   1457 		pa = (lo & TLB_RPN_MASK);
   1458 		if (base < pa)
   1459 			continue;
   1460 
   1461 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1462 		if ((base + len) > (pa + sz))
   1463 			continue;
   1464 
   1465 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1466 		return (void *)(va);
   1467 	}
   1468 
   1469 	return (NULL);
   1470 }
   1471 
   1472 /*
   1473  * ppc4xx_tlb_reserve:
   1474  *
   1475  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1476  */
   1477 void
   1478 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1479 {
   1480 	u_int 			lo, hi;
   1481 	int 			szmask, rsize;
   1482 
   1483 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1484 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1485 	KASSERT(! pmap_bootstrap_done);
   1486 	KASSERT(tlb_nreserved < NTLB);
   1487 
   1488 	/* Resolve size. */
   1489 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1490 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1491 		    size, tlb_nreserved);
   1492 
   1493 	/* Real size will be power of two >= 1024, so this is OK. */
   1494 	pa &= ~(rsize - 1); 	/* RPN */
   1495 	va &= ~(rsize - 1); 	/* EPN */
   1496 
   1497 	lo = pa | TLB_WR | flags;
   1498 	hi = va | TLB_VALID | szmask;
   1499 
   1500 #ifdef PPC_4XX_NOCACHE
   1501 	lo |= TLB_I;
   1502 #endif
   1503 
   1504 	__asm volatile(
   1505 	    "	tlbwe %1,%0,1 	\n" 	/* write TLBLO */
   1506 	    "	tlbwe %2,%0,0 	\n" 	/* write TLBHI */
   1507 	    "   sync 		\n"
   1508 	    "	isync 		\n"
   1509 	    : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
   1510 
   1511 	tlb_nreserved++;
   1512 }
   1513 
   1514 /*
   1515  * We should pass the ctx in from trap code.
   1516  */
   1517 int
   1518 pmap_tlbmiss(vaddr_t va, int ctx)
   1519 {
   1520 	volatile u_int *pte;
   1521 	u_long tte;
   1522 
   1523 	tlbmiss_ev.ev_count++;
   1524 
   1525 	/*
   1526 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1527 	 * Physical RAM is expected to live in this range, care must be taken
   1528 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1529 	 * code.
   1530 	 */
   1531 	if (ctx != KERNEL_PID ||
   1532 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1533 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1534 		if (pte == NULL) {
   1535 			/* Map unmanaged addresses directly for kernel access */
   1536 			return 1;
   1537 		}
   1538 		tte = *pte;
   1539 		if (tte == 0) {
   1540 			return 1;
   1541 		}
   1542 	} else {
   1543 		/* Create a 16MB writable mapping. */
   1544 #ifdef PPC_4XX_NOCACHE
   1545 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
   1546 #else
   1547 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1548 #endif
   1549 	}
   1550 	tlbhit_ev.ev_count++;
   1551 	ppc4xx_tlb_enter(ctx, va, tte);
   1552 
   1553 	return 0;
   1554 }
   1555 
   1556 /*
   1557  * Flush all the entries matching a context from the TLB.
   1558  */
   1559 static int
   1560 ctx_flush(int cnum)
   1561 {
   1562 	int i;
   1563 
   1564 	/* We gotta steal this context */
   1565 	for (i = tlb_nreserved; i < NTLB; i++) {
   1566 		if (tlb_info[i].ti_ctx == cnum) {
   1567 			/* Can't steal ctx if it has a locked entry. */
   1568 			if (TLB_LOCKED(i)) {
   1569 #ifdef DIAGNOSTIC
   1570 				printf("ctx_flush: can't invalidate "
   1571 					"locked mapping %d "
   1572 					"for context %d\n", i, cnum);
   1573 #ifdef DDB
   1574 				Debugger();
   1575 #endif
   1576 #endif
   1577 				return (1);
   1578 			}
   1579 #ifdef DIAGNOSTIC
   1580 			if (i < tlb_nreserved)
   1581 				panic("TLB entry %d not locked", i);
   1582 #endif
   1583 			/* Invalidate particular TLB entry regardless of locked status */
   1584 			__asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
   1585 			tlb_info[i].ti_flags = 0;
   1586 		}
   1587 	}
   1588 	return (0);
   1589 }
   1590 
   1591 /*
   1592  * Allocate a context.  If necessary, steal one from someone else.
   1593  *
   1594  * The new context is flushed from the TLB before returning.
   1595  */
   1596 int
   1597 ctx_alloc(struct pmap *pm)
   1598 {
   1599 	int s, cnum;
   1600 	static int next = MINCTX;
   1601 
   1602 	if (pm == pmap_kernel()) {
   1603 #ifdef DIAGNOSTIC
   1604 		printf("ctx_alloc: kernel pmap!\n");
   1605 #endif
   1606 		return (0);
   1607 	}
   1608 	s = splvm();
   1609 
   1610 	/* Find a likely context. */
   1611 	cnum = next;
   1612 	do {
   1613 		if ((++cnum) > NUMCTX)
   1614 			cnum = MINCTX;
   1615 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1616 
   1617 	/* Now clean it out */
   1618 oops:
   1619 	if (cnum < MINCTX)
   1620 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1621 	if (ctx_flush(cnum)) {
   1622 		/* oops -- something's wired. */
   1623 		if ((++cnum) > NUMCTX)
   1624 			cnum = MINCTX;
   1625 		goto oops;
   1626 	}
   1627 
   1628 	if (ctxbusy[cnum]) {
   1629 #ifdef DEBUG
   1630 		/* We should identify this pmap and clear it */
   1631 		printf("Warning: stealing context %d\n", cnum);
   1632 #endif
   1633 		ctxbusy[cnum]->pm_ctx = 0;
   1634 	}
   1635 	ctxbusy[cnum] = pm;
   1636 	next = cnum;
   1637 	splx(s);
   1638 	pm->pm_ctx = cnum;
   1639 
   1640 	return cnum;
   1641 }
   1642 
   1643 /*
   1644  * Give away a context.
   1645  */
   1646 void
   1647 ctx_free(struct pmap *pm)
   1648 {
   1649 	int oldctx;
   1650 
   1651 	oldctx = pm->pm_ctx;
   1652 
   1653 	if (oldctx == 0)
   1654 		panic("ctx_free: freeing kernel context");
   1655 #ifdef DIAGNOSTIC
   1656 	if (ctxbusy[oldctx] == 0)
   1657 		printf("ctx_free: freeing free context %d\n", oldctx);
   1658 	if (ctxbusy[oldctx] != pm) {
   1659 		printf("ctx_free: freeing someone esle's context\n "
   1660 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1661 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1662 #ifdef DDB
   1663 		Debugger();
   1664 #endif
   1665 	}
   1666 #endif
   1667 	/* We should verify it has not been stolen and reallocated... */
   1668 	ctxbusy[oldctx] = NULL;
   1669 	ctx_flush(oldctx);
   1670 }
   1671 
   1672 
   1673 #ifdef DEBUG
   1674 /*
   1675  * Test ref/modify handling.
   1676  */
   1677 void pmap_testout(void);
   1678 void
   1679 pmap_testout(void)
   1680 {
   1681 	vaddr_t va;
   1682 	volatile int *loc;
   1683 	int val = 0;
   1684 	paddr_t pa;
   1685 	struct vm_page *pg;
   1686 	int ref, mod;
   1687 
   1688 	/* Allocate a page */
   1689 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1690 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1691 	loc = (int*)va;
   1692 
   1693 	pmap_extract(pmap_kernel(), va, &pa);
   1694 	pg = PHYS_TO_VM_PAGE(pa);
   1695 	pmap_unwire(pmap_kernel(), va);
   1696 
   1697 	pmap_kremove(va, PAGE_SIZE);
   1698 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1699 	pmap_update(pmap_kernel());
   1700 
   1701 	/* Now clear reference and modify */
   1702 	ref = pmap_clear_reference(pg);
   1703 	mod = pmap_clear_modify(pg);
   1704 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1705 	       (void *)(u_long)va, (long)pa,
   1706 	       ref, mod);
   1707 
   1708 	/* Check it's properly cleared */
   1709 	ref = pmap_is_referenced(pg);
   1710 	mod = pmap_is_modified(pg);
   1711 	printf("Checking cleared page: ref %d, mod %d\n",
   1712 	       ref, mod);
   1713 
   1714 	/* Reference page */
   1715 	val = *loc;
   1716 
   1717 	ref = pmap_is_referenced(pg);
   1718 	mod = pmap_is_modified(pg);
   1719 	printf("Referenced page: ref %d, mod %d val %x\n",
   1720 	       ref, mod, val);
   1721 
   1722 	/* Now clear reference and modify */
   1723 	ref = pmap_clear_reference(pg);
   1724 	mod = pmap_clear_modify(pg);
   1725 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1726 	       (void *)(u_long)va, (long)pa,
   1727 	       ref, mod);
   1728 
   1729 	/* Modify page */
   1730 	*loc = 1;
   1731 
   1732 	ref = pmap_is_referenced(pg);
   1733 	mod = pmap_is_modified(pg);
   1734 	printf("Modified page: ref %d, mod %d\n",
   1735 	       ref, mod);
   1736 
   1737 	/* Now clear reference and modify */
   1738 	ref = pmap_clear_reference(pg);
   1739 	mod = pmap_clear_modify(pg);
   1740 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1741 	       (void *)(u_long)va, (long)pa,
   1742 	       ref, mod);
   1743 
   1744 	/* Check it's properly cleared */
   1745 	ref = pmap_is_referenced(pg);
   1746 	mod = pmap_is_modified(pg);
   1747 	printf("Checking cleared page: ref %d, mod %d\n",
   1748 	       ref, mod);
   1749 
   1750 	/* Modify page */
   1751 	*loc = 1;
   1752 
   1753 	ref = pmap_is_referenced(pg);
   1754 	mod = pmap_is_modified(pg);
   1755 	printf("Modified page: ref %d, mod %d\n",
   1756 	       ref, mod);
   1757 
   1758 	/* Check pmap_protect() */
   1759 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1760 	pmap_update(pmap_kernel());
   1761 	ref = pmap_is_referenced(pg);
   1762 	mod = pmap_is_modified(pg);
   1763 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
   1764 	       ref, mod);
   1765 
   1766 	/* Now clear reference and modify */
   1767 	ref = pmap_clear_reference(pg);
   1768 	mod = pmap_clear_modify(pg);
   1769 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1770 	       (void *)(u_long)va, (long)pa,
   1771 	       ref, mod);
   1772 
   1773 	/* Reference page */
   1774 	val = *loc;
   1775 
   1776 	ref = pmap_is_referenced(pg);
   1777 	mod = pmap_is_modified(pg);
   1778 	printf("Referenced page: ref %d, mod %d val %x\n",
   1779 	       ref, mod, val);
   1780 
   1781 	/* Now clear reference and modify */
   1782 	ref = pmap_clear_reference(pg);
   1783 	mod = pmap_clear_modify(pg);
   1784 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1785 	       (void *)(u_long)va, (long)pa,
   1786 	       ref, mod);
   1787 
   1788 	/* Modify page */
   1789 #if 0
   1790 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1791 	pmap_update(pmap_kernel());
   1792 #endif
   1793 	*loc = 1;
   1794 
   1795 	ref = pmap_is_referenced(pg);
   1796 	mod = pmap_is_modified(pg);
   1797 	printf("Modified page: ref %d, mod %d\n",
   1798 	       ref, mod);
   1799 
   1800 	/* Check pmap_protect() */
   1801 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1802 	pmap_update(pmap_kernel());
   1803 	ref = pmap_is_referenced(pg);
   1804 	mod = pmap_is_modified(pg);
   1805 	printf("pmap_protect(): ref %d, mod %d\n",
   1806 	       ref, mod);
   1807 
   1808 	/* Now clear reference and modify */
   1809 	ref = pmap_clear_reference(pg);
   1810 	mod = pmap_clear_modify(pg);
   1811 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1812 	       (void *)(u_long)va, (long)pa,
   1813 	       ref, mod);
   1814 
   1815 	/* Reference page */
   1816 	val = *loc;
   1817 
   1818 	ref = pmap_is_referenced(pg);
   1819 	mod = pmap_is_modified(pg);
   1820 	printf("Referenced page: ref %d, mod %d val %x\n",
   1821 	       ref, mod, val);
   1822 
   1823 	/* Now clear reference and modify */
   1824 	ref = pmap_clear_reference(pg);
   1825 	mod = pmap_clear_modify(pg);
   1826 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1827 	       (void *)(u_long)va, (long)pa,
   1828 	       ref, mod);
   1829 
   1830 	/* Modify page */
   1831 #if 0
   1832 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1833 	pmap_update(pmap_kernel());
   1834 #endif
   1835 	*loc = 1;
   1836 
   1837 	ref = pmap_is_referenced(pg);
   1838 	mod = pmap_is_modified(pg);
   1839 	printf("Modified page: ref %d, mod %d\n",
   1840 	       ref, mod);
   1841 
   1842 	/* Check pmap_pag_protect() */
   1843 	pmap_page_protect(pg, VM_PROT_READ);
   1844 	ref = pmap_is_referenced(pg);
   1845 	mod = pmap_is_modified(pg);
   1846 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
   1847 	       ref, mod);
   1848 
   1849 	/* Now clear reference and modify */
   1850 	ref = pmap_clear_reference(pg);
   1851 	mod = pmap_clear_modify(pg);
   1852 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1853 	       (void *)(u_long)va, (long)pa,
   1854 	       ref, mod);
   1855 
   1856 	/* Reference page */
   1857 	val = *loc;
   1858 
   1859 	ref = pmap_is_referenced(pg);
   1860 	mod = pmap_is_modified(pg);
   1861 	printf("Referenced page: ref %d, mod %d val %x\n",
   1862 	       ref, mod, val);
   1863 
   1864 	/* Now clear reference and modify */
   1865 	ref = pmap_clear_reference(pg);
   1866 	mod = pmap_clear_modify(pg);
   1867 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1868 	       (void *)(u_long)va, (long)pa,
   1869 	       ref, mod);
   1870 
   1871 	/* Modify page */
   1872 #if 0
   1873 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1874 	pmap_update(pmap_kernel());
   1875 #endif
   1876 	*loc = 1;
   1877 
   1878 	ref = pmap_is_referenced(pg);
   1879 	mod = pmap_is_modified(pg);
   1880 	printf("Modified page: ref %d, mod %d\n",
   1881 	       ref, mod);
   1882 
   1883 	/* Check pmap_pag_protect() */
   1884 	pmap_page_protect(pg, VM_PROT_NONE);
   1885 	ref = pmap_is_referenced(pg);
   1886 	mod = pmap_is_modified(pg);
   1887 	printf("pmap_page_protect(): ref %d, mod %d\n",
   1888 	       ref, mod);
   1889 
   1890 	/* Now clear reference and modify */
   1891 	ref = pmap_clear_reference(pg);
   1892 	mod = pmap_clear_modify(pg);
   1893 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1894 	       (void *)(u_long)va, (long)pa,
   1895 	       ref, mod);
   1896 
   1897 
   1898 	/* Reference page */
   1899 	val = *loc;
   1900 
   1901 	ref = pmap_is_referenced(pg);
   1902 	mod = pmap_is_modified(pg);
   1903 	printf("Referenced page: ref %d, mod %d val %x\n",
   1904 	       ref, mod, val);
   1905 
   1906 	/* Now clear reference and modify */
   1907 	ref = pmap_clear_reference(pg);
   1908 	mod = pmap_clear_modify(pg);
   1909 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1910 	       (void *)(u_long)va, (long)pa,
   1911 	       ref, mod);
   1912 
   1913 	/* Modify page */
   1914 #if 0
   1915 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1916 	pmap_update(pmap_kernel());
   1917 #endif
   1918 	*loc = 1;
   1919 
   1920 	ref = pmap_is_referenced(pg);
   1921 	mod = pmap_is_modified(pg);
   1922 	printf("Modified page: ref %d, mod %d\n",
   1923 	       ref, mod);
   1924 
   1925 	/* Unmap page */
   1926 	pmap_remove(pmap_kernel(), va, va+1);
   1927 	pmap_update(pmap_kernel());
   1928 	ref = pmap_is_referenced(pg);
   1929 	mod = pmap_is_modified(pg);
   1930 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1931 
   1932 	/* Now clear reference and modify */
   1933 	ref = pmap_clear_reference(pg);
   1934 	mod = pmap_clear_modify(pg);
   1935 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1936 	       (void *)(u_long)va, (long)pa, ref, mod);
   1937 
   1938 	/* Check it's properly cleared */
   1939 	ref = pmap_is_referenced(pg);
   1940 	mod = pmap_is_modified(pg);
   1941 	printf("Checking cleared page: ref %d, mod %d\n",
   1942 	       ref, mod);
   1943 
   1944 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1945 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1946 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1947 }
   1948 #endif
   1949