pmap.c revision 1.60.2.8 1 /* $NetBSD: pmap.c,v 1.60.2.8 2010/11/04 08:47:37 uebayasi Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.60.2.8 2010/11/04 08:47:37 uebayasi Exp $");
71
72 #include "opt_xip.h"
73
74 #include <sys/param.h>
75 #include <sys/malloc.h>
76 #include <sys/proc.h>
77 #include <sys/queue.h>
78 #include <sys/systm.h>
79 #include <sys/pool.h>
80 #include <sys/device.h>
81
82 #include <uvm/uvm.h>
83
84 #include <machine/cpu.h>
85 #include <machine/pcb.h>
86 #include <machine/powerpc.h>
87
88 #include <powerpc/spr.h>
89 #include <powerpc/ibm4xx/spr.h>
90 #include <machine/tlb.h>
91
92 /*
93 * kernmap is an array of PTEs large enough to map in
94 * 4GB. At 16KB/page it is 256K entries or 2MB.
95 */
96 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
97 void *kernmap;
98
99 #define MINCTX 2
100 #define NUMCTX 256
101
102 volatile struct pmap *ctxbusy[NUMCTX];
103
104 #define TLBF_USED 0x1
105 #define TLBF_REF 0x2
106 #define TLBF_LOCKED 0x4
107 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
108
109 typedef struct tlb_info_s {
110 char ti_flags;
111 char ti_ctx; /* TLB_PID assiciated with the entry */
112 u_int ti_va;
113 } tlb_info_t;
114
115 volatile tlb_info_t tlb_info[NTLB];
116 /* We'll use a modified FIFO replacement policy cause it's cheap */
117 volatile int tlbnext;
118
119 static int tlb_nreserved = 0;
120 static int pmap_bootstrap_done = 0;
121
122 /* Event counters */
123 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbmiss");
125 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbhit");
127 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbflush");
129 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
130 NULL, "cpu", "tlbenter");
131
132 struct pmap kernel_pmap_;
133 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
134
135 static int npgs;
136 static u_int nextavail;
137 #ifndef MSGBUFADDR
138 extern paddr_t msgbuf_paddr;
139 #endif
140
141 static struct mem_region *mem, *avail;
142
143 /*
144 * This is a cache of referenced/modified bits.
145 * Bits herein are shifted by ATTRSHFT.
146 */
147 static char *pmap_attrib;
148
149 #define PV_WIRED 0x1
150 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
151 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
152 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
153 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
154
155 struct pv_entry {
156 struct pv_entry *pv_next; /* Linked list of mappings */
157 vaddr_t pv_va; /* virtual address of mapping */
158 struct pmap *pv_pm;
159 };
160
161 /* Each index corresponds to TLB_SIZE_* value. */
162 static size_t tlbsize[] = {
163 1024, /* TLB_SIZE_1K */
164 4096, /* TLB_SIZE_4K */
165 16384, /* TLB_SIZE_16K */
166 65536, /* TLB_SIZE_64K */
167 262144, /* TLB_SIZE_256K */
168 1048576, /* TLB_SIZE_1M */
169 4194304, /* TLB_SIZE_4M */
170 16777216, /* TLB_SIZE_16M */
171 };
172
173 struct pv_entry *pv_table;
174 static struct pool pv_pool;
175
176 static int pmap_initialized;
177
178 static int ctx_flush(int);
179
180 inline struct pv_entry *pa_to_pv(paddr_t);
181 static inline char *pa_to_attr(paddr_t);
182
183 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
184 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
185
186 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
187 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
188
189 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
190
191
192 inline struct pv_entry *
193 pa_to_pv(paddr_t pa)
194 {
195 int bank, pg;
196
197 #ifdef XIP
198 bank = vm_physseg_find_device(atop(pa), &pg);
199 if (bank != -1)
200 return &VM_PHYSDEV_PTR(bank)->pmseg.pvent[pg];
201 #endif
202 bank = vm_physseg_find(atop(pa), &pg);
203 if (bank != -1)
204 return &VM_PHYSMEM_PTR(bank)->pmseg.pvent[pg];
205 return NULL;
206 }
207
208 static inline char *
209 pa_to_attr(paddr_t pa)
210 {
211 int bank, pg;
212
213 #ifdef XIP
214 bank = vm_physseg_find_device(atop(pa), &pg);
215 if (bank != -1)
216 return &VM_PHYSDEV_PTR(bank)->pmseg.attrs[pg];
217 #endif
218 bank = vm_physseg_find(atop(pa), &pg);
219 if (bank != -1)
220 return &VM_PHYSMEM_PTR(bank)->pmseg.attrs[pg];
221 return NULL;
222 }
223
224 /*
225 * Insert PTE into page table.
226 */
227 int
228 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
229 {
230 int seg = STIDX(va);
231 int ptn = PTIDX(va);
232 u_int oldpte;
233
234 if (!pm->pm_ptbl[seg]) {
235 /* Don't allocate a page to clear a non-existent mapping. */
236 if (!pte)
237 return (0);
238 /* Allocate a page XXXX this will sleep! */
239 pm->pm_ptbl[seg] =
240 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
241 UVM_KMF_WIRED | UVM_KMF_ZERO);
242 }
243 oldpte = pm->pm_ptbl[seg][ptn];
244 pm->pm_ptbl[seg][ptn] = pte;
245
246 /* Flush entry. */
247 ppc4xx_tlb_flush(va, pm->pm_ctx);
248 if (oldpte != pte) {
249 if (pte == 0)
250 pm->pm_stats.resident_count--;
251 else
252 pm->pm_stats.resident_count++;
253 }
254 return (1);
255 }
256
257 /*
258 * Get a pointer to a PTE in a page table.
259 */
260 volatile u_int *
261 pte_find(struct pmap *pm, vaddr_t va)
262 {
263 int seg = STIDX(va);
264 int ptn = PTIDX(va);
265
266 if (pm->pm_ptbl[seg])
267 return (&pm->pm_ptbl[seg][ptn]);
268
269 return (NULL);
270 }
271
272 /*
273 * This is called during initppc, before the system is really initialized.
274 */
275 void
276 pmap_bootstrap(u_int kernelstart, u_int kernelend)
277 {
278 struct mem_region *mp, *mp1;
279 int cnt, i;
280 u_int s, e, sz;
281
282 tlbnext = tlb_nreserved;
283
284 /*
285 * Allocate the kernel page table at the end of
286 * kernel space so it's in the locked TTE.
287 */
288 kernmap = (void *)kernelend;
289
290 /*
291 * Initialize kernel page table.
292 */
293 for (i = 0; i < STSZ; i++) {
294 pmap_kernel()->pm_ptbl[i] = 0;
295 }
296 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
297
298 /*
299 * Announce page-size to the VM-system
300 */
301 uvmexp.pagesize = NBPG;
302 uvm_setpagesize();
303
304 /*
305 * Get memory.
306 */
307 mem_regions(&mem, &avail);
308 for (mp = mem; mp->size; mp++) {
309 physmem += btoc(mp->size);
310 printf("+%lx,",mp->size);
311 }
312 printf("\n");
313 ppc4xx_tlb_init();
314 /*
315 * Count the number of available entries.
316 */
317 for (cnt = 0, mp = avail; mp->size; mp++)
318 cnt++;
319
320 /*
321 * Page align all regions.
322 * Non-page aligned memory isn't very interesting to us.
323 * Also, sort the entries for ascending addresses.
324 */
325 kernelstart &= ~PGOFSET;
326 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
327 for (mp = avail; mp->size; mp++) {
328 s = mp->start;
329 e = mp->start + mp->size;
330 printf("%08x-%08x -> ",s,e);
331 /*
332 * Check whether this region holds all of the kernel.
333 */
334 if (s < kernelstart && e > kernelend) {
335 avail[cnt].start = kernelend;
336 avail[cnt++].size = e - kernelend;
337 e = kernelstart;
338 }
339 /*
340 * Look whether this regions starts within the kernel.
341 */
342 if (s >= kernelstart && s < kernelend) {
343 if (e <= kernelend)
344 goto empty;
345 s = kernelend;
346 }
347 /*
348 * Now look whether this region ends within the kernel.
349 */
350 if (e > kernelstart && e <= kernelend) {
351 if (s >= kernelstart)
352 goto empty;
353 e = kernelstart;
354 }
355 /*
356 * Now page align the start and size of the region.
357 */
358 s = round_page(s);
359 e = trunc_page(e);
360 if (e < s)
361 e = s;
362 sz = e - s;
363 printf("%08x-%08x = %x\n",s,e,sz);
364 /*
365 * Check whether some memory is left here.
366 */
367 if (sz == 0) {
368 empty:
369 memmove(mp, mp + 1,
370 (cnt - (mp - avail)) * sizeof *mp);
371 cnt--;
372 mp--;
373 continue;
374 }
375 /*
376 * Do an insertion sort.
377 */
378 npgs += btoc(sz);
379 for (mp1 = avail; mp1 < mp; mp1++)
380 if (s < mp1->start)
381 break;
382 if (mp1 < mp) {
383 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
384 mp1->start = s;
385 mp1->size = sz;
386 } else {
387 mp->start = s;
388 mp->size = sz;
389 }
390 }
391
392 /*
393 * We cannot do pmap_steal_memory here,
394 * since we don't run with translation enabled yet.
395 */
396 #ifndef MSGBUFADDR
397 /*
398 * allow for msgbuf
399 */
400 sz = round_page(MSGBUFSIZE);
401 mp = NULL;
402 for (mp1 = avail; mp1->size; mp1++)
403 if (mp1->size >= sz)
404 mp = mp1;
405 if (mp == NULL)
406 panic("not enough memory?");
407
408 npgs -= btoc(sz);
409 msgbuf_paddr = mp->start + mp->size - sz;
410 mp->size -= sz;
411 if (mp->size <= 0)
412 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
413 #endif
414
415 for (mp = avail; mp->size; mp++)
416 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
417 atop(mp->start), atop(mp->start + mp->size),
418 VM_FREELIST_DEFAULT);
419
420 /*
421 * Initialize kernel pmap and hardware.
422 */
423 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
424 pmap_kernel()->pm_ctx = KERNEL_PID;
425 nextavail = avail->start;
426
427 evcnt_attach_static(&tlbmiss_ev);
428 evcnt_attach_static(&tlbhit_ev);
429 evcnt_attach_static(&tlbflush_ev);
430 evcnt_attach_static(&tlbenter_ev);
431
432 pmap_bootstrap_done = 1;
433 }
434
435 /*
436 * Restrict given range to physical memory
437 *
438 * (Used by /dev/mem)
439 */
440 void
441 pmap_real_memory(paddr_t *start, psize_t *size)
442 {
443 struct mem_region *mp;
444
445 for (mp = mem; mp->size; mp++) {
446 if (*start + *size > mp->start &&
447 *start < mp->start + mp->size) {
448 if (*start < mp->start) {
449 *size -= mp->start - *start;
450 *start = mp->start;
451 }
452 if (*start + *size > mp->start + mp->size)
453 *size = mp->start + mp->size - *start;
454 return;
455 }
456 }
457 *size = 0;
458 }
459
460 /*
461 * Initialize anything else for pmap handling.
462 * Called during vm_init().
463 */
464 void
465 pmap_init(void)
466 {
467 struct pv_entry *pv;
468 vsize_t sz;
469 vaddr_t addr;
470 int i, s;
471 int bank;
472 char *attr;
473
474 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
475 sz = round_page(sz);
476 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
477 s = splvm();
478 pv = pv_table = (struct pv_entry *)addr;
479 for (i = npgs; --i >= 0;)
480 pv++->pv_pm = NULL;
481 pmap_attrib = (char *)pv;
482 memset(pv, 0, npgs);
483
484 pv = pv_table;
485 attr = pmap_attrib;
486 for (bank = 0; bank < vm_nphysseg; bank++) {
487 sz = VM_PHYSMEM_PTR(bank)->end - VM_PHYSMEM_PTR(bank)->start;
488 VM_PHYSMEM_PTR(bank)->pmseg.pvent = pv;
489 VM_PHYSMEM_PTR(bank)->pmseg.attrs = attr;
490 pv += sz;
491 attr += sz;
492 }
493
494 pmap_initialized = 1;
495 splx(s);
496
497 /* Setup a pool for additional pvlist structures */
498 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
499 IPL_VM);
500 }
501
502 void
503 pmap_physseg_init(struct vm_physseg *seg)
504 {
505 size_t npages;
506 vsize_t sz;
507 struct pv_entry *pv;
508 char *attr;
509
510 npages = seg->end - seg->start + 1;
511 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npages);
512 sz = round_page(sz);
513 pv = (void *)uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
514 attr = (void *)(pv + npages);
515
516 seg->pmseg.pvent = pv;
517 seg->pmseg.attrs = attr;
518 }
519
520 void
521 pmap_physseg_fini(struct vm_physseg *seg)
522 {
523 size_t npages;
524 vsize_t sz;
525
526 npages = seg->end - seg->start + 1;
527 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npages);
528 sz = round_page(sz);
529 uvm_km_free(kernel_map, (vaddr_t)seg->pmseg.pvent, sz, UVM_KMF_WIRED);
530 }
531
532 /*
533 * How much virtual space is available to the kernel?
534 */
535 void
536 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
537 {
538
539 #if 0
540 /*
541 * Reserve one segment for kernel virtual memory
542 */
543 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
544 *end = *start + SEGMENT_LENGTH;
545 #else
546 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
547 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
548 #endif
549 }
550
551 #ifdef PMAP_GROWKERNEL
552 /*
553 * Preallocate kernel page tables to a specified VA.
554 * This simply loops through the first TTE for each
555 * page table from the beginning of the kernel pmap,
556 * reads the entry, and if the result is
557 * zero (either invalid entry or no page table) it stores
558 * a zero there, populating page tables in the process.
559 * This is not the most efficient technique but i don't
560 * expect it to be called that often.
561 */
562 extern struct vm_page *vm_page_alloc1(void);
563 extern void vm_page_free1(struct vm_page *);
564
565 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
566
567 vaddr_t
568 pmap_growkernel(vaddr_t maxkvaddr)
569 {
570 int s;
571 int seg;
572 paddr_t pg;
573 struct pmap *pm = pmap_kernel();
574
575 s = splvm();
576
577 /* Align with the start of a page table */
578 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
579 kbreak += PTMAP) {
580 seg = STIDX(kbreak);
581
582 if (pte_find(pm, kbreak))
583 continue;
584
585 if (uvm.page_init_done) {
586 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
587 } else {
588 if (!uvm_page_physget(&pg))
589 panic("pmap_growkernel: no memory");
590 }
591 if (!pg)
592 panic("pmap_growkernel: no pages");
593 pmap_zero_page((paddr_t)pg);
594
595 /* XXX This is based on all phymem being addressable */
596 pm->pm_ptbl[seg] = (u_int *)pg;
597 }
598 splx(s);
599 return (kbreak);
600 }
601
602 /*
603 * vm_page_alloc1:
604 *
605 * Allocate and return a memory cell with no associated object.
606 */
607 struct vm_page *
608 vm_page_alloc1(void)
609 {
610 struct vm_page *pg;
611
612 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
613 if (pg) {
614 pg->wire_count = 1; /* no mappings yet */
615 pg->flags &= ~PG_BUSY; /* never busy */
616 }
617 return pg;
618 }
619
620 /*
621 * vm_page_free1:
622 *
623 * Returns the given page to the free list,
624 * disassociating it with any VM object.
625 *
626 * Object and page must be locked prior to entry.
627 */
628 void
629 vm_page_free1(struct vm_page *pg)
630 {
631 #ifdef DIAGNOSTIC
632 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
633 printf("Freeing invalid page %p\n", pg);
634 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
635 #ifdef DDB
636 Debugger();
637 #endif
638 return;
639 }
640 #endif
641 pg->flags |= PG_BUSY;
642 pg->wire_count = 0;
643 uvm_pagefree(pg);
644 }
645 #endif
646
647 /*
648 * Create and return a physical map.
649 */
650 struct pmap *
651 pmap_create(void)
652 {
653 struct pmap *pm;
654
655 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
656 memset(pm, 0, sizeof *pm);
657 pm->pm_refs = 1;
658 return pm;
659 }
660
661 /*
662 * Add a reference to the given pmap.
663 */
664 void
665 pmap_reference(struct pmap *pm)
666 {
667
668 pm->pm_refs++;
669 }
670
671 /*
672 * Retire the given pmap from service.
673 * Should only be called if the map contains no valid mappings.
674 */
675 void
676 pmap_destroy(struct pmap *pm)
677 {
678 int i;
679
680 if (--pm->pm_refs > 0) {
681 return;
682 }
683 KASSERT(pm->pm_stats.resident_count == 0);
684 KASSERT(pm->pm_stats.wired_count == 0);
685 for (i = 0; i < STSZ; i++)
686 if (pm->pm_ptbl[i]) {
687 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
688 PAGE_SIZE, UVM_KMF_WIRED);
689 pm->pm_ptbl[i] = NULL;
690 }
691 if (pm->pm_ctx)
692 ctx_free(pm);
693 free(pm, M_VMPMAP);
694 }
695
696 /*
697 * Copy the range specified by src_addr/len
698 * from the source map to the range dst_addr/len
699 * in the destination map.
700 *
701 * This routine is only advisory and need not do anything.
702 */
703 void
704 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
705 vsize_t len, vaddr_t src_addr)
706 {
707 }
708
709 /*
710 * Require that all active physical maps contain no
711 * incorrect entries NOW.
712 */
713 void
714 pmap_update(struct pmap *pmap)
715 {
716 }
717
718 /*
719 * Fill the given physical page with zeroes.
720 */
721 void
722 pmap_zero_page(paddr_t pa)
723 {
724
725 #ifdef PPC_4XX_NOCACHE
726 memset((void *)pa, 0, PAGE_SIZE);
727 #else
728 int i;
729
730 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
731 __asm volatile ("dcbz 0,%0" :: "r"(pa));
732 pa += CACHELINESIZE;
733 }
734 #endif
735 }
736
737 /*
738 * Copy the given physical source page to its destination.
739 */
740 void
741 pmap_copy_page(paddr_t src, paddr_t dst)
742 {
743
744 memcpy((void *)dst, (void *)src, PAGE_SIZE);
745 dcache_flush_page(dst);
746 }
747
748 /*
749 * This returns != 0 on success.
750 */
751 static inline int
752 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
753 {
754 struct pv_entry *pv, *npv = NULL;
755 int s;
756
757 if (!pmap_initialized)
758 return 0;
759
760 s = splvm();
761 pv = pa_to_pv(pa);
762 if (!pv->pv_pm) {
763 /*
764 * No entries yet, use header as the first entry.
765 */
766 pv->pv_va = va;
767 pv->pv_pm = pm;
768 pv->pv_next = NULL;
769 } else {
770 /*
771 * There is at least one other VA mapping this page.
772 * Place this entry after the header.
773 */
774 npv = pool_get(&pv_pool, PR_NOWAIT);
775 if (npv == NULL) {
776 if ((flags & PMAP_CANFAIL) == 0)
777 panic("pmap_enter_pv: failed");
778 splx(s);
779 return 0;
780 }
781 npv->pv_va = va;
782 npv->pv_pm = pm;
783 npv->pv_next = pv->pv_next;
784 pv->pv_next = npv;
785 pv = npv;
786 }
787 if (flags & PMAP_WIRED) {
788 PV_WIRE(pv);
789 pm->pm_stats.wired_count++;
790 }
791 splx(s);
792 return (1);
793 }
794
795 static void
796 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
797 {
798 struct pv_entry *pv, *npv;
799
800 /*
801 * Remove from the PV table.
802 */
803 pv = pa_to_pv(pa);
804 if (!pv)
805 return;
806
807 /*
808 * If it is the first entry on the list, it is actually
809 * in the header and we must copy the following entry up
810 * to the header. Otherwise we must search the list for
811 * the entry. In either case we free the now unused entry.
812 */
813 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
814 if (PV_ISWIRED(pv)) {
815 pm->pm_stats.wired_count--;
816 }
817 if ((npv = pv->pv_next)) {
818 *pv = *npv;
819 pool_put(&pv_pool, npv);
820 } else
821 pv->pv_pm = NULL;
822 } else {
823 for (; (npv = pv->pv_next) != NULL; pv = npv)
824 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
825 break;
826 if (npv) {
827 pv->pv_next = npv->pv_next;
828 if (PV_ISWIRED(npv)) {
829 pm->pm_stats.wired_count--;
830 }
831 pool_put(&pv_pool, npv);
832 }
833 }
834 }
835
836 /*
837 * Insert physical page at pa into the given pmap at virtual address va.
838 */
839 int
840 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
841 {
842 int s;
843 u_int tte;
844 bool managed;
845
846 /*
847 * Have to remove any existing mapping first.
848 */
849 pmap_remove(pm, va, va + PAGE_SIZE);
850
851 if (flags & PMAP_WIRED)
852 flags |= prot;
853
854 managed = ((flags & PMAP_NOCACHE) == 0) &&
855 (uvm_pageismanaged(pa) || uvm_pageismanaged_device(pa));
856
857 /*
858 * Generate TTE.
859 */
860 tte = TTE_PA(pa);
861 /* XXXX -- need to support multiple page sizes. */
862 tte |= TTE_SZ_16K;
863 #ifdef DIAGNOSTIC
864 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
865 (PME_NOCACHE | PME_WRITETHROUG))
866 panic("pmap_enter: uncached & writethrough");
867 #endif
868 if (flags & PME_NOCACHE)
869 /* Must be I/O mapping */
870 tte |= TTE_I | TTE_G;
871 #ifdef PPC_4XX_NOCACHE
872 tte |= TTE_I;
873 #else
874 else if (flags & PME_WRITETHROUG)
875 /* Uncached and writethrough are not compatible */
876 tte |= TTE_W;
877 #endif
878 if (pm == pmap_kernel())
879 tte |= TTE_ZONE(ZONE_PRIV);
880 else
881 tte |= TTE_ZONE(ZONE_USER);
882
883 if (flags & VM_PROT_WRITE)
884 tte |= TTE_WR;
885
886 if (flags & VM_PROT_EXECUTE)
887 tte |= TTE_EX;
888
889 /*
890 * Now record mapping for later back-translation.
891 */
892 if (pmap_initialized && managed) {
893 char *attr;
894
895 if (!pmap_enter_pv(pm, va, pa, flags)) {
896 /* Could not enter pv on a managed page */
897 return 1;
898 }
899
900 /* Now set attributes. */
901 attr = pa_to_attr(pa);
902 #ifdef DIAGNOSTIC
903 if (!attr)
904 panic("managed but no attr");
905 #endif
906 if (flags & VM_PROT_ALL)
907 *attr |= PMAP_ATTR_REF;
908 if (flags & VM_PROT_WRITE)
909 *attr |= PMAP_ATTR_CHG;
910 }
911
912 s = splvm();
913
914 /* Insert page into page table. */
915 pte_enter(pm, va, tte);
916
917 /* If this is a real fault, enter it in the tlb */
918 if (tte && ((flags & PMAP_WIRED) == 0)) {
919 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
920 }
921 splx(s);
922
923 /* Flush the real memory from the instruction cache. */
924 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
925 __syncicache((void *)pa, PAGE_SIZE);
926
927 return 0;
928 }
929
930 void
931 pmap_unwire(struct pmap *pm, vaddr_t va)
932 {
933 struct pv_entry *pv;
934 paddr_t pa;
935 int s;
936
937 if (!pmap_extract(pm, va, &pa)) {
938 return;
939 }
940
941 pv = pa_to_pv(pa);
942 if (!pv)
943 return;
944
945 s = splvm();
946 while (pv != NULL) {
947 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
948 if (PV_ISWIRED(pv)) {
949 PV_UNWIRE(pv);
950 pm->pm_stats.wired_count--;
951 }
952 break;
953 }
954 pv = pv->pv_next;
955 }
956 splx(s);
957 }
958
959 void
960 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
961 {
962 int s;
963 u_int tte;
964 struct pmap *pm = pmap_kernel();
965
966 /*
967 * Have to remove any existing mapping first.
968 */
969
970 /*
971 * Generate TTE.
972 *
973 * XXXX
974 *
975 * Since the kernel does not handle execution privileges properly,
976 * we will handle read and execute permissions together.
977 */
978 tte = 0;
979 if (prot & VM_PROT_ALL) {
980
981 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
982 /* XXXX -- need to support multiple page sizes. */
983 tte |= TTE_SZ_16K;
984 #ifdef DIAGNOSTIC
985 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
986 (PME_NOCACHE | PME_WRITETHROUG))
987 panic("pmap_kenter_pa: uncached & writethrough");
988 #endif
989 if (prot & PME_NOCACHE)
990 /* Must be I/O mapping */
991 tte |= TTE_I | TTE_G;
992 #ifdef PPC_4XX_NOCACHE
993 tte |= TTE_I;
994 #else
995 else if (prot & PME_WRITETHROUG)
996 /* Uncached and writethrough are not compatible */
997 tte |= TTE_W;
998 #endif
999 if (prot & VM_PROT_WRITE)
1000 tte |= TTE_WR;
1001 }
1002
1003 s = splvm();
1004
1005 /* Insert page into page table. */
1006 pte_enter(pm, va, tte);
1007 splx(s);
1008 }
1009
1010 void
1011 pmap_kremove(vaddr_t va, vsize_t len)
1012 {
1013
1014 while (len > 0) {
1015 pte_enter(pmap_kernel(), va, 0);
1016 va += PAGE_SIZE;
1017 len -= PAGE_SIZE;
1018 }
1019 }
1020
1021 /*
1022 * Remove the given range of mapping entries.
1023 */
1024 void
1025 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
1026 {
1027 int s;
1028 paddr_t pa;
1029 volatile u_int *ptp;
1030
1031 s = splvm();
1032 while (va < endva) {
1033
1034 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1035 pa = TTE_PA(pa);
1036 pmap_remove_pv(pm, va, pa);
1037 *ptp = 0;
1038 ppc4xx_tlb_flush(va, pm->pm_ctx);
1039 pm->pm_stats.resident_count--;
1040 }
1041 va += PAGE_SIZE;
1042 }
1043
1044 splx(s);
1045 }
1046
1047 /*
1048 * Convert the given kernel virtual address to the page frame
1049 * number (mmap cookie).
1050 */
1051 paddr_t
1052 pmap_mmap(vaddr_t addr, off_t off)
1053 {
1054
1055 return trunc_page((paddr_t)addr + off);
1056 }
1057
1058 /*
1059 * Get the physical page address for the given pmap/virtual address.
1060 */
1061 bool
1062 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1063 {
1064 int seg = STIDX(va);
1065 int ptn = PTIDX(va);
1066 u_int pa = 0;
1067 int s;
1068
1069 s = splvm();
1070 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1071 *pap = TTE_PA(pa) | (va & PGOFSET);
1072 }
1073 splx(s);
1074 return (pa != 0);
1075 }
1076
1077 /*
1078 * Lower the protection on the specified range of this pmap.
1079 *
1080 * There are only two cases: either the protection is going to 0,
1081 * or it is going to read-only.
1082 */
1083 void
1084 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1085 {
1086 volatile u_int *ptp;
1087 int s, bic;
1088
1089 if ((prot & VM_PROT_READ) == 0) {
1090 pmap_remove(pm, sva, eva);
1091 return;
1092 }
1093 bic = 0;
1094 if ((prot & VM_PROT_WRITE) == 0) {
1095 bic |= TTE_WR;
1096 }
1097 if ((prot & VM_PROT_EXECUTE) == 0) {
1098 bic |= TTE_EX;
1099 }
1100 if (bic == 0) {
1101 return;
1102 }
1103 s = splvm();
1104 while (sva < eva) {
1105 if ((ptp = pte_find(pm, sva)) != NULL) {
1106 *ptp &= ~bic;
1107 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1108 }
1109 sva += PAGE_SIZE;
1110 }
1111 splx(s);
1112 }
1113
1114 bool
1115 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1116 {
1117 paddr_t pa;
1118 char *attr;
1119 int s, rv;
1120
1121 /*
1122 * First modify bits in cache.
1123 */
1124 pa = VM_PAGE_TO_PHYS(pg);
1125 attr = pa_to_attr(pa);
1126 if (attr == NULL)
1127 return false;
1128
1129 s = splvm();
1130 rv = ((*attr & mask) != 0);
1131 if (clear) {
1132 *attr &= ~mask;
1133 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1134 }
1135 splx(s);
1136 return rv;
1137 }
1138
1139
1140 /*
1141 * Lower the protection on the specified physical page.
1142 *
1143 * There are only two cases: either the protection is going to 0,
1144 * or it is going to read-only.
1145 */
1146 void
1147 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1148 {
1149 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1150 vaddr_t va;
1151 struct pv_entry *pvh, *pv, *npv;
1152 struct pmap *pm;
1153
1154 pvh = pa_to_pv(pa);
1155 if (pvh == NULL)
1156 return;
1157
1158 /* Handle extra pvs which may be deleted in the operation */
1159 for (pv = pvh->pv_next; pv; pv = npv) {
1160 npv = pv->pv_next;
1161
1162 pm = pv->pv_pm;
1163 va = pv->pv_va;
1164 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1165 }
1166 /* Now check the head pv */
1167 if (pvh->pv_pm) {
1168 pv = pvh;
1169 pm = pv->pv_pm;
1170 va = pv->pv_va;
1171 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1172 }
1173 }
1174
1175 /*
1176 * Activate the address space for the specified process. If the process
1177 * is the current process, load the new MMU context.
1178 */
1179 void
1180 pmap_activate(struct lwp *l)
1181 {
1182 #if 0
1183 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1184 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1185
1186 /*
1187 * XXX Normally performed in cpu_lwp_fork().
1188 */
1189 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1190 pcb->pcb_pm = pmap;
1191 #endif
1192 }
1193
1194 /*
1195 * Deactivate the specified process's address space.
1196 */
1197 void
1198 pmap_deactivate(struct lwp *l)
1199 {
1200 }
1201
1202 /*
1203 * Synchronize caches corresponding to [addr, addr+len) in p.
1204 */
1205 void
1206 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1207 {
1208 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1209 int msr, ctx, opid, step;
1210
1211 step = CACHELINESIZE;
1212
1213 /*
1214 * Need to turn off IMMU and switch to user context.
1215 * (icbi uses DMMU).
1216 */
1217 if (!(ctx = pm->pm_ctx)) {
1218 /* No context -- assign it one */
1219 ctx_alloc(pm);
1220 ctx = pm->pm_ctx;
1221 }
1222 __asm volatile("mfmsr %0;"
1223 "li %1, %7;"
1224 "andc %1,%0,%1;"
1225 "mtmsr %1;"
1226 "sync;isync;"
1227 "mfpid %1;"
1228 "mtpid %2;"
1229 "sync; isync;"
1230 "1:"
1231 "dcbf 0,%3;"
1232 "icbi 0,%3;"
1233 "add %3,%3,%5;"
1234 "addc. %4,%4,%6;"
1235 "bge 1b;"
1236 "mtpid %1;"
1237 "mtmsr %0;"
1238 "sync; isync"
1239 : "=&r" (msr), "=&r" (opid)
1240 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1241 "K" (PSL_IR | PSL_DR));
1242 }
1243
1244
1245 /* This has to be done in real mode !!! */
1246 void
1247 ppc4xx_tlb_flush(vaddr_t va, int pid)
1248 {
1249 u_long i, found;
1250 u_long msr;
1251
1252 /* If there's no context then it can't be mapped. */
1253 if (!pid)
1254 return;
1255
1256 __asm( "mfpid %1;" /* Save PID */
1257 "mfmsr %2;" /* Save MSR */
1258 "li %0,0;" /* Now clear MSR */
1259 "mtmsr %0;"
1260 "mtpid %4;" /* Set PID */
1261 "sync;"
1262 "tlbsx. %0,0,%3;" /* Search TLB */
1263 "sync;"
1264 "mtpid %1;" /* Restore PID */
1265 "mtmsr %2;" /* Restore MSR */
1266 "sync;isync;"
1267 "li %1,1;"
1268 "beq 1f;"
1269 "li %1,0;"
1270 "1:"
1271 : "=&r" (i), "=&r" (found), "=&r" (msr)
1272 : "r" (va), "r" (pid));
1273 if (found && !TLB_LOCKED(i)) {
1274
1275 /* Now flush translation */
1276 __asm volatile(
1277 "tlbwe %0,%1,0;"
1278 "sync;isync;"
1279 : : "r" (0), "r" (i));
1280
1281 tlb_info[i].ti_ctx = 0;
1282 tlb_info[i].ti_flags = 0;
1283 tlbnext = i;
1284 /* Successful flushes */
1285 tlbflush_ev.ev_count++;
1286 }
1287 }
1288
1289 void
1290 ppc4xx_tlb_flush_all(void)
1291 {
1292 u_long i;
1293
1294 for (i = 0; i < NTLB; i++)
1295 if (!TLB_LOCKED(i)) {
1296 __asm volatile(
1297 "tlbwe %0,%1,0;"
1298 "sync;isync;"
1299 : : "r" (0), "r" (i));
1300 tlb_info[i].ti_ctx = 0;
1301 tlb_info[i].ti_flags = 0;
1302 }
1303
1304 __asm volatile("sync;isync");
1305 }
1306
1307 /* Find a TLB entry to evict. */
1308 static int
1309 ppc4xx_tlb_find_victim(void)
1310 {
1311 int flags;
1312
1313 for (;;) {
1314 if (++tlbnext >= NTLB)
1315 tlbnext = tlb_nreserved;
1316 flags = tlb_info[tlbnext].ti_flags;
1317 if (!(flags & TLBF_USED) ||
1318 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1319 u_long va, stack = (u_long)&va;
1320
1321 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1322 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1323 (flags & TLBF_USED)) {
1324 /* Kernel stack page */
1325 flags |= TLBF_USED;
1326 tlb_info[tlbnext].ti_flags = flags;
1327 } else {
1328 /* Found it! */
1329 return (tlbnext);
1330 }
1331 } else {
1332 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1333 }
1334 }
1335 }
1336
1337 void
1338 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1339 {
1340 u_long th, tl, idx;
1341 tlbpid_t pid;
1342 u_short msr;
1343 paddr_t pa;
1344 int s, sz;
1345
1346 tlbenter_ev.ev_count++;
1347
1348 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1349 pa = (pte & TTE_RPN_MASK(sz));
1350 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1351 tl = (pte & ~TLB_RPN_MASK) | pa;
1352 tl |= ppc4xx_tlbflags(va, pa);
1353
1354 s = splhigh();
1355 idx = ppc4xx_tlb_find_victim();
1356
1357 #ifdef DIAGNOSTIC
1358 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1359 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1360 }
1361 #endif
1362
1363 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1364 tlb_info[idx].ti_ctx = ctx;
1365 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1366
1367 __asm volatile(
1368 "mfmsr %0;" /* Save MSR */
1369 "li %1,0;"
1370 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1371 "mtmsr %1;" /* Clear MSR */
1372 "mfpid %1;" /* Save old PID */
1373 "mtpid %2;" /* Load translation ctx */
1374 "sync; isync;"
1375 #ifdef DEBUG
1376 "andi. %3,%3,63;"
1377 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1378 #endif
1379 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1380 "sync; isync;"
1381 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1382 "sync; isync;"
1383 : "=&r" (msr), "=&r" (pid)
1384 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1385 splx(s);
1386 }
1387
1388 void
1389 ppc4xx_tlb_init(void)
1390 {
1391 int i;
1392
1393 /* Mark reserved TLB entries */
1394 for (i = 0; i < tlb_nreserved; i++) {
1395 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1396 tlb_info[i].ti_ctx = KERNEL_PID;
1397 }
1398
1399 /* Setup security zones */
1400 /* Z0 - accessible by kernel only if TLB entry permissions allow
1401 * Z1,Z2 - access is controlled by TLB entry permissions
1402 * Z3 - full access regardless of TLB entry permissions
1403 */
1404
1405 __asm volatile(
1406 "mtspr %0,%1;"
1407 "sync;"
1408 :: "K"(SPR_ZPR), "r" (0x1b000000));
1409 }
1410
1411 /*
1412 * ppc4xx_tlb_size_mask:
1413 *
1414 * Roundup size to supported page size, return TLBHI mask and real size.
1415 */
1416 static int
1417 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1418 {
1419 int i;
1420
1421 for (i = 0; i < __arraycount(tlbsize); i++)
1422 if (size <= tlbsize[i]) {
1423 *mask = (i << TLB_SIZE_SHFT);
1424 *rsiz = tlbsize[i];
1425 return (0);
1426 }
1427 return (EINVAL);
1428 }
1429
1430 /*
1431 * ppc4xx_tlb_mapiodev:
1432 *
1433 * Lookup virtual address of mapping previously entered via
1434 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1435 * need to waste extra storage for reserved mappings. Note
1436 * that reading TLBHI also sets PID, but all reserved mappings
1437 * use KERNEL_PID, so the side effect is nil.
1438 */
1439 void *
1440 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1441 {
1442 paddr_t pa;
1443 vaddr_t va;
1444 u_int lo, hi, sz;
1445 int i;
1446
1447 /* tlb_nreserved is only allowed to grow, so this is safe. */
1448 for (i = 0; i < tlb_nreserved; i++) {
1449 __asm volatile (
1450 " tlbre %0,%2,1 \n" /* TLBLO */
1451 " tlbre %1,%2,0 \n" /* TLBHI */
1452 : "=&r" (lo), "=&r" (hi)
1453 : "r" (i));
1454
1455 KASSERT(hi & TLB_VALID);
1456 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1457
1458 pa = (lo & TLB_RPN_MASK);
1459 if (base < pa)
1460 continue;
1461
1462 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1463 if ((base + len) > (pa + sz))
1464 continue;
1465
1466 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1467 return (void *)(va);
1468 }
1469
1470 return (NULL);
1471 }
1472
1473 /*
1474 * ppc4xx_tlb_reserve:
1475 *
1476 * Map physical range to kernel virtual chunk via reserved TLB entry.
1477 */
1478 void
1479 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1480 {
1481 u_int lo, hi;
1482 int szmask, rsize;
1483
1484 /* Called before pmap_bootstrap(), va outside kernel space. */
1485 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1486 KASSERT(! pmap_bootstrap_done);
1487 KASSERT(tlb_nreserved < NTLB);
1488
1489 /* Resolve size. */
1490 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1491 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1492 size, tlb_nreserved);
1493
1494 /* Real size will be power of two >= 1024, so this is OK. */
1495 pa &= ~(rsize - 1); /* RPN */
1496 va &= ~(rsize - 1); /* EPN */
1497
1498 lo = pa | TLB_WR | flags;
1499 hi = va | TLB_VALID | szmask;
1500
1501 #ifdef PPC_4XX_NOCACHE
1502 lo |= TLB_I;
1503 #endif
1504
1505 __asm volatile(
1506 " tlbwe %1,%0,1 \n" /* write TLBLO */
1507 " tlbwe %2,%0,0 \n" /* write TLBHI */
1508 " sync \n"
1509 " isync \n"
1510 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1511
1512 tlb_nreserved++;
1513 }
1514
1515 /*
1516 * We should pass the ctx in from trap code.
1517 */
1518 int
1519 pmap_tlbmiss(vaddr_t va, int ctx)
1520 {
1521 volatile u_int *pte;
1522 u_long tte;
1523
1524 tlbmiss_ev.ev_count++;
1525
1526 /*
1527 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1528 * Physical RAM is expected to live in this range, care must be taken
1529 * to not clobber 0 upto ${physmem} with device mappings in machdep
1530 * code.
1531 */
1532 if (ctx != KERNEL_PID ||
1533 (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1534 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1535 if (pte == NULL) {
1536 /* Map unmanaged addresses directly for kernel access */
1537 return 1;
1538 }
1539 tte = *pte;
1540 if (tte == 0) {
1541 return 1;
1542 }
1543 } else {
1544 /* Create a 16MB writable mapping. */
1545 #ifdef PPC_4XX_NOCACHE
1546 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1547 #else
1548 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1549 #endif
1550 }
1551 tlbhit_ev.ev_count++;
1552 ppc4xx_tlb_enter(ctx, va, tte);
1553
1554 return 0;
1555 }
1556
1557 /*
1558 * Flush all the entries matching a context from the TLB.
1559 */
1560 static int
1561 ctx_flush(int cnum)
1562 {
1563 int i;
1564
1565 /* We gotta steal this context */
1566 for (i = tlb_nreserved; i < NTLB; i++) {
1567 if (tlb_info[i].ti_ctx == cnum) {
1568 /* Can't steal ctx if it has a locked entry. */
1569 if (TLB_LOCKED(i)) {
1570 #ifdef DIAGNOSTIC
1571 printf("ctx_flush: can't invalidate "
1572 "locked mapping %d "
1573 "for context %d\n", i, cnum);
1574 #ifdef DDB
1575 Debugger();
1576 #endif
1577 #endif
1578 return (1);
1579 }
1580 #ifdef DIAGNOSTIC
1581 if (i < tlb_nreserved)
1582 panic("TLB entry %d not locked", i);
1583 #endif
1584 /* Invalidate particular TLB entry regardless of locked status */
1585 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1586 tlb_info[i].ti_flags = 0;
1587 }
1588 }
1589 return (0);
1590 }
1591
1592 /*
1593 * Allocate a context. If necessary, steal one from someone else.
1594 *
1595 * The new context is flushed from the TLB before returning.
1596 */
1597 int
1598 ctx_alloc(struct pmap *pm)
1599 {
1600 int s, cnum;
1601 static int next = MINCTX;
1602
1603 if (pm == pmap_kernel()) {
1604 #ifdef DIAGNOSTIC
1605 printf("ctx_alloc: kernel pmap!\n");
1606 #endif
1607 return (0);
1608 }
1609 s = splvm();
1610
1611 /* Find a likely context. */
1612 cnum = next;
1613 do {
1614 if ((++cnum) > NUMCTX)
1615 cnum = MINCTX;
1616 } while (ctxbusy[cnum] != NULL && cnum != next);
1617
1618 /* Now clean it out */
1619 oops:
1620 if (cnum < MINCTX)
1621 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1622 if (ctx_flush(cnum)) {
1623 /* oops -- something's wired. */
1624 if ((++cnum) > NUMCTX)
1625 cnum = MINCTX;
1626 goto oops;
1627 }
1628
1629 if (ctxbusy[cnum]) {
1630 #ifdef DEBUG
1631 /* We should identify this pmap and clear it */
1632 printf("Warning: stealing context %d\n", cnum);
1633 #endif
1634 ctxbusy[cnum]->pm_ctx = 0;
1635 }
1636 ctxbusy[cnum] = pm;
1637 next = cnum;
1638 splx(s);
1639 pm->pm_ctx = cnum;
1640
1641 return cnum;
1642 }
1643
1644 /*
1645 * Give away a context.
1646 */
1647 void
1648 ctx_free(struct pmap *pm)
1649 {
1650 int oldctx;
1651
1652 oldctx = pm->pm_ctx;
1653
1654 if (oldctx == 0)
1655 panic("ctx_free: freeing kernel context");
1656 #ifdef DIAGNOSTIC
1657 if (ctxbusy[oldctx] == 0)
1658 printf("ctx_free: freeing free context %d\n", oldctx);
1659 if (ctxbusy[oldctx] != pm) {
1660 printf("ctx_free: freeing someone esle's context\n "
1661 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1662 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1663 #ifdef DDB
1664 Debugger();
1665 #endif
1666 }
1667 #endif
1668 /* We should verify it has not been stolen and reallocated... */
1669 ctxbusy[oldctx] = NULL;
1670 ctx_flush(oldctx);
1671 }
1672
1673
1674 #ifdef DEBUG
1675 /*
1676 * Test ref/modify handling.
1677 */
1678 void pmap_testout(void);
1679 void
1680 pmap_testout(void)
1681 {
1682 vaddr_t va;
1683 volatile int *loc;
1684 int val = 0;
1685 paddr_t pa;
1686 struct vm_page *pg;
1687 int ref, mod;
1688
1689 /* Allocate a page */
1690 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1691 UVM_KMF_WIRED | UVM_KMF_ZERO);
1692 loc = (int*)va;
1693
1694 pmap_extract(pmap_kernel(), va, &pa);
1695 pg = PHYS_TO_VM_PAGE(pa);
1696 pmap_unwire(pmap_kernel(), va);
1697
1698 pmap_kremove(va, PAGE_SIZE);
1699 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1700 pmap_update(pmap_kernel());
1701
1702 /* Now clear reference and modify */
1703 ref = pmap_clear_reference(pg);
1704 mod = pmap_clear_modify(pg);
1705 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1706 (void *)(u_long)va, (long)pa,
1707 ref, mod);
1708
1709 /* Check it's properly cleared */
1710 ref = pmap_is_referenced(pg);
1711 mod = pmap_is_modified(pg);
1712 printf("Checking cleared page: ref %d, mod %d\n",
1713 ref, mod);
1714
1715 /* Reference page */
1716 val = *loc;
1717
1718 ref = pmap_is_referenced(pg);
1719 mod = pmap_is_modified(pg);
1720 printf("Referenced page: ref %d, mod %d val %x\n",
1721 ref, mod, val);
1722
1723 /* Now clear reference and modify */
1724 ref = pmap_clear_reference(pg);
1725 mod = pmap_clear_modify(pg);
1726 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1727 (void *)(u_long)va, (long)pa,
1728 ref, mod);
1729
1730 /* Modify page */
1731 *loc = 1;
1732
1733 ref = pmap_is_referenced(pg);
1734 mod = pmap_is_modified(pg);
1735 printf("Modified page: ref %d, mod %d\n",
1736 ref, mod);
1737
1738 /* Now clear reference and modify */
1739 ref = pmap_clear_reference(pg);
1740 mod = pmap_clear_modify(pg);
1741 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1742 (void *)(u_long)va, (long)pa,
1743 ref, mod);
1744
1745 /* Check it's properly cleared */
1746 ref = pmap_is_referenced(pg);
1747 mod = pmap_is_modified(pg);
1748 printf("Checking cleared page: ref %d, mod %d\n",
1749 ref, mod);
1750
1751 /* Modify page */
1752 *loc = 1;
1753
1754 ref = pmap_is_referenced(pg);
1755 mod = pmap_is_modified(pg);
1756 printf("Modified page: ref %d, mod %d\n",
1757 ref, mod);
1758
1759 /* Check pmap_protect() */
1760 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1761 pmap_update(pmap_kernel());
1762 ref = pmap_is_referenced(pg);
1763 mod = pmap_is_modified(pg);
1764 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1765 ref, mod);
1766
1767 /* Now clear reference and modify */
1768 ref = pmap_clear_reference(pg);
1769 mod = pmap_clear_modify(pg);
1770 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1771 (void *)(u_long)va, (long)pa,
1772 ref, mod);
1773
1774 /* Reference page */
1775 val = *loc;
1776
1777 ref = pmap_is_referenced(pg);
1778 mod = pmap_is_modified(pg);
1779 printf("Referenced page: ref %d, mod %d val %x\n",
1780 ref, mod, val);
1781
1782 /* Now clear reference and modify */
1783 ref = pmap_clear_reference(pg);
1784 mod = pmap_clear_modify(pg);
1785 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1786 (void *)(u_long)va, (long)pa,
1787 ref, mod);
1788
1789 /* Modify page */
1790 #if 0
1791 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1792 pmap_update(pmap_kernel());
1793 #endif
1794 *loc = 1;
1795
1796 ref = pmap_is_referenced(pg);
1797 mod = pmap_is_modified(pg);
1798 printf("Modified page: ref %d, mod %d\n",
1799 ref, mod);
1800
1801 /* Check pmap_protect() */
1802 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1803 pmap_update(pmap_kernel());
1804 ref = pmap_is_referenced(pg);
1805 mod = pmap_is_modified(pg);
1806 printf("pmap_protect(): ref %d, mod %d\n",
1807 ref, mod);
1808
1809 /* Now clear reference and modify */
1810 ref = pmap_clear_reference(pg);
1811 mod = pmap_clear_modify(pg);
1812 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1813 (void *)(u_long)va, (long)pa,
1814 ref, mod);
1815
1816 /* Reference page */
1817 val = *loc;
1818
1819 ref = pmap_is_referenced(pg);
1820 mod = pmap_is_modified(pg);
1821 printf("Referenced page: ref %d, mod %d val %x\n",
1822 ref, mod, val);
1823
1824 /* Now clear reference and modify */
1825 ref = pmap_clear_reference(pg);
1826 mod = pmap_clear_modify(pg);
1827 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1828 (void *)(u_long)va, (long)pa,
1829 ref, mod);
1830
1831 /* Modify page */
1832 #if 0
1833 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1834 pmap_update(pmap_kernel());
1835 #endif
1836 *loc = 1;
1837
1838 ref = pmap_is_referenced(pg);
1839 mod = pmap_is_modified(pg);
1840 printf("Modified page: ref %d, mod %d\n",
1841 ref, mod);
1842
1843 /* Check pmap_pag_protect() */
1844 pmap_page_protect(pg, VM_PROT_READ);
1845 ref = pmap_is_referenced(pg);
1846 mod = pmap_is_modified(pg);
1847 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1848 ref, mod);
1849
1850 /* Now clear reference and modify */
1851 ref = pmap_clear_reference(pg);
1852 mod = pmap_clear_modify(pg);
1853 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1854 (void *)(u_long)va, (long)pa,
1855 ref, mod);
1856
1857 /* Reference page */
1858 val = *loc;
1859
1860 ref = pmap_is_referenced(pg);
1861 mod = pmap_is_modified(pg);
1862 printf("Referenced page: ref %d, mod %d val %x\n",
1863 ref, mod, val);
1864
1865 /* Now clear reference and modify */
1866 ref = pmap_clear_reference(pg);
1867 mod = pmap_clear_modify(pg);
1868 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1869 (void *)(u_long)va, (long)pa,
1870 ref, mod);
1871
1872 /* Modify page */
1873 #if 0
1874 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1875 pmap_update(pmap_kernel());
1876 #endif
1877 *loc = 1;
1878
1879 ref = pmap_is_referenced(pg);
1880 mod = pmap_is_modified(pg);
1881 printf("Modified page: ref %d, mod %d\n",
1882 ref, mod);
1883
1884 /* Check pmap_pag_protect() */
1885 pmap_page_protect(pg, VM_PROT_NONE);
1886 ref = pmap_is_referenced(pg);
1887 mod = pmap_is_modified(pg);
1888 printf("pmap_page_protect(): ref %d, mod %d\n",
1889 ref, mod);
1890
1891 /* Now clear reference and modify */
1892 ref = pmap_clear_reference(pg);
1893 mod = pmap_clear_modify(pg);
1894 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1895 (void *)(u_long)va, (long)pa,
1896 ref, mod);
1897
1898
1899 /* Reference page */
1900 val = *loc;
1901
1902 ref = pmap_is_referenced(pg);
1903 mod = pmap_is_modified(pg);
1904 printf("Referenced page: ref %d, mod %d val %x\n",
1905 ref, mod, val);
1906
1907 /* Now clear reference and modify */
1908 ref = pmap_clear_reference(pg);
1909 mod = pmap_clear_modify(pg);
1910 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1911 (void *)(u_long)va, (long)pa,
1912 ref, mod);
1913
1914 /* Modify page */
1915 #if 0
1916 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1917 pmap_update(pmap_kernel());
1918 #endif
1919 *loc = 1;
1920
1921 ref = pmap_is_referenced(pg);
1922 mod = pmap_is_modified(pg);
1923 printf("Modified page: ref %d, mod %d\n",
1924 ref, mod);
1925
1926 /* Unmap page */
1927 pmap_remove(pmap_kernel(), va, va+1);
1928 pmap_update(pmap_kernel());
1929 ref = pmap_is_referenced(pg);
1930 mod = pmap_is_modified(pg);
1931 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1932
1933 /* Now clear reference and modify */
1934 ref = pmap_clear_reference(pg);
1935 mod = pmap_clear_modify(pg);
1936 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1937 (void *)(u_long)va, (long)pa, ref, mod);
1938
1939 /* Check it's properly cleared */
1940 ref = pmap_is_referenced(pg);
1941 mod = pmap_is_modified(pg);
1942 printf("Checking cleared page: ref %d, mod %d\n",
1943 ref, mod);
1944
1945 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1946 pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1947 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1948 }
1949 #endif
1950