pmap.c revision 1.62 1 /* $NetBSD: pmap.c,v 1.62 2010/02/25 23:31:47 matt Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.62 2010/02/25 23:31:47 matt Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/queue.h>
76 #include <sys/systm.h>
77 #include <sys/pool.h>
78 #include <sys/device.h>
79
80 #include <uvm/uvm.h>
81
82 #include <machine/cpu.h>
83 #include <machine/pcb.h>
84 #include <machine/powerpc.h>
85
86 #include <powerpc/spr.h>
87 #include <powerpc/ibm4xx/spr.h>
88 #include <machine/tlb.h>
89
90 /*
91 * kernmap is an array of PTEs large enough to map in
92 * 4GB. At 16KB/page it is 256K entries or 2MB.
93 */
94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 void *kernmap;
96
97 #define MINCTX 2
98 #define NUMCTX 256
99
100 volatile struct pmap *ctxbusy[NUMCTX];
101
102 #define TLBF_USED 0x1
103 #define TLBF_REF 0x2
104 #define TLBF_LOCKED 0x4
105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106
107 typedef struct tlb_info_s {
108 char ti_flags;
109 char ti_ctx; /* TLB_PID assiciated with the entry */
110 u_int ti_va;
111 } tlb_info_t;
112
113 volatile tlb_info_t tlb_info[NTLB];
114 /* We'll use a modified FIFO replacement policy cause it's cheap */
115 volatile int tlbnext;
116
117 static int tlb_nreserved = 0;
118 static int pmap_bootstrap_done = 0;
119
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbenter");
129
130 struct pmap kernel_pmap_;
131 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
132
133 static int npgs;
134 static u_int nextavail;
135 #ifndef MSGBUFADDR
136 extern paddr_t msgbuf_paddr;
137 #endif
138
139 static struct mem_region *mem, *avail;
140
141 /*
142 * This is a cache of referenced/modified bits.
143 * Bits herein are shifted by ATTRSHFT.
144 */
145 static char *pmap_attrib;
146
147 #define PV_WIRED 0x1
148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
149 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
150 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
151 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
152
153 struct pv_entry {
154 struct pv_entry *pv_next; /* Linked list of mappings */
155 vaddr_t pv_va; /* virtual address of mapping */
156 struct pmap *pv_pm;
157 };
158
159 /* Each index corresponds to TLB_SIZE_* value. */
160 static size_t tlbsize[] = {
161 1024, /* TLB_SIZE_1K */
162 4096, /* TLB_SIZE_4K */
163 16384, /* TLB_SIZE_16K */
164 65536, /* TLB_SIZE_64K */
165 262144, /* TLB_SIZE_256K */
166 1048576, /* TLB_SIZE_1M */
167 4194304, /* TLB_SIZE_4M */
168 16777216, /* TLB_SIZE_16M */
169 };
170
171 struct pv_entry *pv_table;
172 static struct pool pv_pool;
173
174 static int pmap_initialized;
175
176 static int ctx_flush(int);
177
178 inline struct pv_entry *pa_to_pv(paddr_t);
179 static inline char *pa_to_attr(paddr_t);
180
181 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
182 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
183
184 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
185 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
186
187 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
188
189
190 inline struct pv_entry *
191 pa_to_pv(paddr_t pa)
192 {
193 int bank, pg;
194
195 bank = vm_physseg_find(atop(pa), &pg);
196 if (bank == -1)
197 return NULL;
198 return &vm_physmem[bank].pmseg.pvent[pg];
199 }
200
201 static inline char *
202 pa_to_attr(paddr_t pa)
203 {
204 int bank, pg;
205
206 bank = vm_physseg_find(atop(pa), &pg);
207 if (bank == -1)
208 return NULL;
209 return &vm_physmem[bank].pmseg.attrs[pg];
210 }
211
212 /*
213 * Insert PTE into page table.
214 */
215 int
216 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
217 {
218 int seg = STIDX(va);
219 int ptn = PTIDX(va);
220 u_int oldpte;
221
222 if (!pm->pm_ptbl[seg]) {
223 /* Don't allocate a page to clear a non-existent mapping. */
224 if (!pte)
225 return (0);
226 /* Allocate a page XXXX this will sleep! */
227 pm->pm_ptbl[seg] =
228 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
229 UVM_KMF_WIRED | UVM_KMF_ZERO);
230 }
231 oldpte = pm->pm_ptbl[seg][ptn];
232 pm->pm_ptbl[seg][ptn] = pte;
233
234 /* Flush entry. */
235 ppc4xx_tlb_flush(va, pm->pm_ctx);
236 if (oldpte != pte) {
237 if (pte == 0)
238 pm->pm_stats.resident_count--;
239 else
240 pm->pm_stats.resident_count++;
241 }
242 return (1);
243 }
244
245 /*
246 * Get a pointer to a PTE in a page table.
247 */
248 volatile u_int *
249 pte_find(struct pmap *pm, vaddr_t va)
250 {
251 int seg = STIDX(va);
252 int ptn = PTIDX(va);
253
254 if (pm->pm_ptbl[seg])
255 return (&pm->pm_ptbl[seg][ptn]);
256
257 return (NULL);
258 }
259
260 /*
261 * This is called during initppc, before the system is really initialized.
262 */
263 void
264 pmap_bootstrap(u_int kernelstart, u_int kernelend)
265 {
266 struct mem_region *mp, *mp1;
267 int cnt, i;
268 u_int s, e, sz;
269
270 tlbnext = tlb_nreserved;
271
272 /*
273 * Allocate the kernel page table at the end of
274 * kernel space so it's in the locked TTE.
275 */
276 kernmap = (void *)kernelend;
277
278 /*
279 * Initialize kernel page table.
280 */
281 for (i = 0; i < STSZ; i++) {
282 pmap_kernel()->pm_ptbl[i] = 0;
283 }
284 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
285
286 /*
287 * Announce page-size to the VM-system
288 */
289 uvmexp.pagesize = NBPG;
290 uvm_setpagesize();
291
292 /*
293 * Get memory.
294 */
295 mem_regions(&mem, &avail);
296 for (mp = mem; mp->size; mp++) {
297 physmem += btoc(mp->size);
298 printf("+%lx,",mp->size);
299 }
300 printf("\n");
301 ppc4xx_tlb_init();
302 /*
303 * Count the number of available entries.
304 */
305 for (cnt = 0, mp = avail; mp->size; mp++)
306 cnt++;
307
308 /*
309 * Page align all regions.
310 * Non-page aligned memory isn't very interesting to us.
311 * Also, sort the entries for ascending addresses.
312 */
313 kernelstart &= ~PGOFSET;
314 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
315 for (mp = avail; mp->size; mp++) {
316 s = mp->start;
317 e = mp->start + mp->size;
318 printf("%08x-%08x -> ",s,e);
319 /*
320 * Check whether this region holds all of the kernel.
321 */
322 if (s < kernelstart && e > kernelend) {
323 avail[cnt].start = kernelend;
324 avail[cnt++].size = e - kernelend;
325 e = kernelstart;
326 }
327 /*
328 * Look whether this regions starts within the kernel.
329 */
330 if (s >= kernelstart && s < kernelend) {
331 if (e <= kernelend)
332 goto empty;
333 s = kernelend;
334 }
335 /*
336 * Now look whether this region ends within the kernel.
337 */
338 if (e > kernelstart && e <= kernelend) {
339 if (s >= kernelstart)
340 goto empty;
341 e = kernelstart;
342 }
343 /*
344 * Now page align the start and size of the region.
345 */
346 s = round_page(s);
347 e = trunc_page(e);
348 if (e < s)
349 e = s;
350 sz = e - s;
351 printf("%08x-%08x = %x\n",s,e,sz);
352 /*
353 * Check whether some memory is left here.
354 */
355 if (sz == 0) {
356 empty:
357 memmove(mp, mp + 1,
358 (cnt - (mp - avail)) * sizeof *mp);
359 cnt--;
360 mp--;
361 continue;
362 }
363 /*
364 * Do an insertion sort.
365 */
366 npgs += btoc(sz);
367 for (mp1 = avail; mp1 < mp; mp1++)
368 if (s < mp1->start)
369 break;
370 if (mp1 < mp) {
371 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
372 mp1->start = s;
373 mp1->size = sz;
374 } else {
375 mp->start = s;
376 mp->size = sz;
377 }
378 }
379
380 /*
381 * We cannot do pmap_steal_memory here,
382 * since we don't run with translation enabled yet.
383 */
384 #ifndef MSGBUFADDR
385 /*
386 * allow for msgbuf
387 */
388 sz = round_page(MSGBUFSIZE);
389 mp = NULL;
390 for (mp1 = avail; mp1->size; mp1++)
391 if (mp1->size >= sz)
392 mp = mp1;
393 if (mp == NULL)
394 panic("not enough memory?");
395
396 npgs -= btoc(sz);
397 msgbuf_paddr = mp->start + mp->size - sz;
398 mp->size -= sz;
399 if (mp->size <= 0)
400 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
401 #endif
402
403 for (mp = avail; mp->size; mp++)
404 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
405 atop(mp->start), atop(mp->start + mp->size),
406 VM_FREELIST_DEFAULT);
407
408 /*
409 * Initialize kernel pmap and hardware.
410 */
411 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
412 pmap_kernel()->pm_ctx = KERNEL_PID;
413 nextavail = avail->start;
414
415 evcnt_attach_static(&tlbmiss_ev);
416 evcnt_attach_static(&tlbhit_ev);
417 evcnt_attach_static(&tlbflush_ev);
418 evcnt_attach_static(&tlbenter_ev);
419
420 pmap_bootstrap_done = 1;
421 }
422
423 /*
424 * Restrict given range to physical memory
425 *
426 * (Used by /dev/mem)
427 */
428 void
429 pmap_real_memory(paddr_t *start, psize_t *size)
430 {
431 struct mem_region *mp;
432
433 for (mp = mem; mp->size; mp++) {
434 if (*start + *size > mp->start &&
435 *start < mp->start + mp->size) {
436 if (*start < mp->start) {
437 *size -= mp->start - *start;
438 *start = mp->start;
439 }
440 if (*start + *size > mp->start + mp->size)
441 *size = mp->start + mp->size - *start;
442 return;
443 }
444 }
445 *size = 0;
446 }
447
448 /*
449 * Initialize anything else for pmap handling.
450 * Called during vm_init().
451 */
452 void
453 pmap_init(void)
454 {
455 struct pv_entry *pv;
456 vsize_t sz;
457 vaddr_t addr;
458 int i, s;
459 int bank;
460 char *attr;
461
462 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
463 sz = round_page(sz);
464 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
465 s = splvm();
466 pv = pv_table = (struct pv_entry *)addr;
467 for (i = npgs; --i >= 0;)
468 pv++->pv_pm = NULL;
469 pmap_attrib = (char *)pv;
470 memset(pv, 0, npgs);
471
472 pv = pv_table;
473 attr = pmap_attrib;
474 for (bank = 0; bank < vm_nphysseg; bank++) {
475 sz = vm_physmem[bank].end - vm_physmem[bank].start;
476 vm_physmem[bank].pmseg.pvent = pv;
477 vm_physmem[bank].pmseg.attrs = attr;
478 pv += sz;
479 attr += sz;
480 }
481
482 pmap_initialized = 1;
483 splx(s);
484
485 /* Setup a pool for additional pvlist structures */
486 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
487 IPL_VM);
488 }
489
490 /*
491 * How much virtual space is available to the kernel?
492 */
493 void
494 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
495 {
496
497 #if 0
498 /*
499 * Reserve one segment for kernel virtual memory
500 */
501 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
502 *end = *start + SEGMENT_LENGTH;
503 #else
504 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
505 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
506 #endif
507 }
508
509 #ifdef PMAP_GROWKERNEL
510 /*
511 * Preallocate kernel page tables to a specified VA.
512 * This simply loops through the first TTE for each
513 * page table from the beginning of the kernel pmap,
514 * reads the entry, and if the result is
515 * zero (either invalid entry or no page table) it stores
516 * a zero there, populating page tables in the process.
517 * This is not the most efficient technique but i don't
518 * expect it to be called that often.
519 */
520 extern struct vm_page *vm_page_alloc1(void);
521 extern void vm_page_free1(struct vm_page *);
522
523 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
524
525 vaddr_t
526 pmap_growkernel(vaddr_t maxkvaddr)
527 {
528 int s;
529 int seg;
530 paddr_t pg;
531 struct pmap *pm = pmap_kernel();
532
533 s = splvm();
534
535 /* Align with the start of a page table */
536 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
537 kbreak += PTMAP) {
538 seg = STIDX(kbreak);
539
540 if (pte_find(pm, kbreak))
541 continue;
542
543 if (uvm.page_init_done) {
544 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
545 } else {
546 if (!uvm_page_physget(&pg))
547 panic("pmap_growkernel: no memory");
548 }
549 if (!pg)
550 panic("pmap_growkernel: no pages");
551 pmap_zero_page((paddr_t)pg);
552
553 /* XXX This is based on all phymem being addressable */
554 pm->pm_ptbl[seg] = (u_int *)pg;
555 }
556 splx(s);
557 return (kbreak);
558 }
559
560 /*
561 * vm_page_alloc1:
562 *
563 * Allocate and return a memory cell with no associated object.
564 */
565 struct vm_page *
566 vm_page_alloc1(void)
567 {
568 struct vm_page *pg;
569
570 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
571 if (pg) {
572 pg->wire_count = 1; /* no mappings yet */
573 pg->flags &= ~PG_BUSY; /* never busy */
574 }
575 return pg;
576 }
577
578 /*
579 * vm_page_free1:
580 *
581 * Returns the given page to the free list,
582 * disassociating it with any VM object.
583 *
584 * Object and page must be locked prior to entry.
585 */
586 void
587 vm_page_free1(struct vm_page *pg)
588 {
589 #ifdef DIAGNOSTIC
590 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
591 printf("Freeing invalid page %p\n", pg);
592 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
593 #ifdef DDB
594 Debugger();
595 #endif
596 return;
597 }
598 #endif
599 pg->flags |= PG_BUSY;
600 pg->wire_count = 0;
601 uvm_pagefree(pg);
602 }
603 #endif
604
605 /*
606 * Create and return a physical map.
607 */
608 struct pmap *
609 pmap_create(void)
610 {
611 struct pmap *pm;
612
613 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
614 memset(pm, 0, sizeof *pm);
615 pm->pm_refs = 1;
616 return pm;
617 }
618
619 /*
620 * Add a reference to the given pmap.
621 */
622 void
623 pmap_reference(struct pmap *pm)
624 {
625
626 pm->pm_refs++;
627 }
628
629 /*
630 * Retire the given pmap from service.
631 * Should only be called if the map contains no valid mappings.
632 */
633 void
634 pmap_destroy(struct pmap *pm)
635 {
636 int i;
637
638 if (--pm->pm_refs > 0) {
639 return;
640 }
641 KASSERT(pm->pm_stats.resident_count == 0);
642 KASSERT(pm->pm_stats.wired_count == 0);
643 for (i = 0; i < STSZ; i++)
644 if (pm->pm_ptbl[i]) {
645 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
646 PAGE_SIZE, UVM_KMF_WIRED);
647 pm->pm_ptbl[i] = NULL;
648 }
649 if (pm->pm_ctx)
650 ctx_free(pm);
651 free(pm, M_VMPMAP);
652 }
653
654 /*
655 * Copy the range specified by src_addr/len
656 * from the source map to the range dst_addr/len
657 * in the destination map.
658 *
659 * This routine is only advisory and need not do anything.
660 */
661 void
662 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
663 vsize_t len, vaddr_t src_addr)
664 {
665 }
666
667 /*
668 * Require that all active physical maps contain no
669 * incorrect entries NOW.
670 */
671 void
672 pmap_update(struct pmap *pmap)
673 {
674 }
675
676 /*
677 * Fill the given physical page with zeroes.
678 */
679 void
680 pmap_zero_page(paddr_t pa)
681 {
682
683 #ifdef PPC_4XX_NOCACHE
684 memset((void *)pa, 0, PAGE_SIZE);
685 #else
686 int i;
687
688 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
689 __asm volatile ("dcbz 0,%0" :: "r"(pa));
690 pa += CACHELINESIZE;
691 }
692 #endif
693 }
694
695 /*
696 * Copy the given physical source page to its destination.
697 */
698 void
699 pmap_copy_page(paddr_t src, paddr_t dst)
700 {
701
702 memcpy((void *)dst, (void *)src, PAGE_SIZE);
703 dcache_flush_page(dst);
704 }
705
706 /*
707 * This returns != 0 on success.
708 */
709 static inline int
710 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
711 {
712 struct pv_entry *pv, *npv = NULL;
713 int s;
714
715 if (!pmap_initialized)
716 return 0;
717
718 s = splvm();
719 pv = pa_to_pv(pa);
720 if (!pv->pv_pm) {
721 /*
722 * No entries yet, use header as the first entry.
723 */
724 pv->pv_va = va;
725 pv->pv_pm = pm;
726 pv->pv_next = NULL;
727 } else {
728 /*
729 * There is at least one other VA mapping this page.
730 * Place this entry after the header.
731 */
732 npv = pool_get(&pv_pool, PR_NOWAIT);
733 if (npv == NULL) {
734 if ((flags & PMAP_CANFAIL) == 0)
735 panic("pmap_enter_pv: failed");
736 splx(s);
737 return 0;
738 }
739 npv->pv_va = va;
740 npv->pv_pm = pm;
741 npv->pv_next = pv->pv_next;
742 pv->pv_next = npv;
743 pv = npv;
744 }
745 if (flags & PMAP_WIRED) {
746 PV_WIRE(pv);
747 pm->pm_stats.wired_count++;
748 }
749 splx(s);
750 return (1);
751 }
752
753 static void
754 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
755 {
756 struct pv_entry *pv, *npv;
757
758 /*
759 * Remove from the PV table.
760 */
761 pv = pa_to_pv(pa);
762 if (!pv)
763 return;
764
765 /*
766 * If it is the first entry on the list, it is actually
767 * in the header and we must copy the following entry up
768 * to the header. Otherwise we must search the list for
769 * the entry. In either case we free the now unused entry.
770 */
771 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
772 if (PV_ISWIRED(pv)) {
773 pm->pm_stats.wired_count--;
774 }
775 if ((npv = pv->pv_next)) {
776 *pv = *npv;
777 pool_put(&pv_pool, npv);
778 } else
779 pv->pv_pm = NULL;
780 } else {
781 for (; (npv = pv->pv_next) != NULL; pv = npv)
782 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
783 break;
784 if (npv) {
785 pv->pv_next = npv->pv_next;
786 if (PV_ISWIRED(npv)) {
787 pm->pm_stats.wired_count--;
788 }
789 pool_put(&pv_pool, npv);
790 }
791 }
792 }
793
794 /*
795 * Insert physical page at pa into the given pmap at virtual address va.
796 */
797 int
798 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
799 {
800 int s;
801 u_int tte;
802 bool managed;
803
804 /*
805 * Have to remove any existing mapping first.
806 */
807 pmap_remove(pm, va, va + PAGE_SIZE);
808
809 if (flags & PMAP_WIRED)
810 flags |= prot;
811
812 managed = uvm_pageismanaged(pa);
813
814 /*
815 * Generate TTE.
816 */
817 tte = TTE_PA(pa);
818 /* XXXX -- need to support multiple page sizes. */
819 tte |= TTE_SZ_16K;
820 #ifdef DIAGNOSTIC
821 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
822 (PME_NOCACHE | PME_WRITETHROUG))
823 panic("pmap_enter: uncached & writethrough");
824 #endif
825 if (flags & PME_NOCACHE)
826 /* Must be I/O mapping */
827 tte |= TTE_I | TTE_G;
828 #ifdef PPC_4XX_NOCACHE
829 tte |= TTE_I;
830 #else
831 else if (flags & PME_WRITETHROUG)
832 /* Uncached and writethrough are not compatible */
833 tte |= TTE_W;
834 #endif
835 if (pm == pmap_kernel())
836 tte |= TTE_ZONE(ZONE_PRIV);
837 else
838 tte |= TTE_ZONE(ZONE_USER);
839
840 if (flags & VM_PROT_WRITE)
841 tte |= TTE_WR;
842
843 if (flags & VM_PROT_EXECUTE)
844 tte |= TTE_EX;
845
846 /*
847 * Now record mapping for later back-translation.
848 */
849 if (pmap_initialized && managed) {
850 char *attr;
851
852 if (!pmap_enter_pv(pm, va, pa, flags)) {
853 /* Could not enter pv on a managed page */
854 return 1;
855 }
856
857 /* Now set attributes. */
858 attr = pa_to_attr(pa);
859 #ifdef DIAGNOSTIC
860 if (!attr)
861 panic("managed but no attr");
862 #endif
863 if (flags & VM_PROT_ALL)
864 *attr |= PMAP_ATTR_REF;
865 if (flags & VM_PROT_WRITE)
866 *attr |= PMAP_ATTR_CHG;
867 }
868
869 s = splvm();
870
871 /* Insert page into page table. */
872 pte_enter(pm, va, tte);
873
874 /* If this is a real fault, enter it in the tlb */
875 if (tte && ((flags & PMAP_WIRED) == 0)) {
876 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
877 }
878 splx(s);
879
880 /* Flush the real memory from the instruction cache. */
881 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
882 __syncicache((void *)pa, PAGE_SIZE);
883
884 return 0;
885 }
886
887 void
888 pmap_unwire(struct pmap *pm, vaddr_t va)
889 {
890 struct pv_entry *pv;
891 paddr_t pa;
892 int s;
893
894 if (!pmap_extract(pm, va, &pa)) {
895 return;
896 }
897
898 pv = pa_to_pv(pa);
899 if (!pv)
900 return;
901
902 s = splvm();
903 while (pv != NULL) {
904 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
905 if (PV_ISWIRED(pv)) {
906 PV_UNWIRE(pv);
907 pm->pm_stats.wired_count--;
908 }
909 break;
910 }
911 pv = pv->pv_next;
912 }
913 splx(s);
914 }
915
916 void
917 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
918 {
919 int s;
920 u_int tte;
921 struct pmap *pm = pmap_kernel();
922
923 /*
924 * Have to remove any existing mapping first.
925 */
926
927 /*
928 * Generate TTE.
929 *
930 * XXXX
931 *
932 * Since the kernel does not handle execution privileges properly,
933 * we will handle read and execute permissions together.
934 */
935 tte = 0;
936 if (prot & VM_PROT_ALL) {
937
938 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
939 /* XXXX -- need to support multiple page sizes. */
940 tte |= TTE_SZ_16K;
941 #ifdef DIAGNOSTIC
942 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
943 (PME_NOCACHE | PME_WRITETHROUG))
944 panic("pmap_kenter_pa: uncached & writethrough");
945 #endif
946 if (prot & PME_NOCACHE)
947 /* Must be I/O mapping */
948 tte |= TTE_I | TTE_G;
949 #ifdef PPC_4XX_NOCACHE
950 tte |= TTE_I;
951 #else
952 else if (prot & PME_WRITETHROUG)
953 /* Uncached and writethrough are not compatible */
954 tte |= TTE_W;
955 #endif
956 if (prot & VM_PROT_WRITE)
957 tte |= TTE_WR;
958 }
959
960 s = splvm();
961
962 /* Insert page into page table. */
963 pte_enter(pm, va, tte);
964 splx(s);
965 }
966
967 void
968 pmap_kremove(vaddr_t va, vsize_t len)
969 {
970
971 while (len > 0) {
972 pte_enter(pmap_kernel(), va, 0);
973 va += PAGE_SIZE;
974 len -= PAGE_SIZE;
975 }
976 }
977
978 /*
979 * Remove the given range of mapping entries.
980 */
981 void
982 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
983 {
984 int s;
985 paddr_t pa;
986 volatile u_int *ptp;
987
988 s = splvm();
989 while (va < endva) {
990
991 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
992 pa = TTE_PA(pa);
993 pmap_remove_pv(pm, va, pa);
994 *ptp = 0;
995 ppc4xx_tlb_flush(va, pm->pm_ctx);
996 pm->pm_stats.resident_count--;
997 }
998 va += PAGE_SIZE;
999 }
1000
1001 splx(s);
1002 }
1003
1004 /*
1005 * Get the physical page address for the given pmap/virtual address.
1006 */
1007 bool
1008 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1009 {
1010 int seg = STIDX(va);
1011 int ptn = PTIDX(va);
1012 u_int pa = 0;
1013 int s;
1014
1015 s = splvm();
1016 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1017 *pap = TTE_PA(pa) | (va & PGOFSET);
1018 }
1019 splx(s);
1020 return (pa != 0);
1021 }
1022
1023 /*
1024 * Lower the protection on the specified range of this pmap.
1025 *
1026 * There are only two cases: either the protection is going to 0,
1027 * or it is going to read-only.
1028 */
1029 void
1030 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1031 {
1032 volatile u_int *ptp;
1033 int s, bic;
1034
1035 if ((prot & VM_PROT_READ) == 0) {
1036 pmap_remove(pm, sva, eva);
1037 return;
1038 }
1039 bic = 0;
1040 if ((prot & VM_PROT_WRITE) == 0) {
1041 bic |= TTE_WR;
1042 }
1043 if ((prot & VM_PROT_EXECUTE) == 0) {
1044 bic |= TTE_EX;
1045 }
1046 if (bic == 0) {
1047 return;
1048 }
1049 s = splvm();
1050 while (sva < eva) {
1051 if ((ptp = pte_find(pm, sva)) != NULL) {
1052 *ptp &= ~bic;
1053 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1054 }
1055 sva += PAGE_SIZE;
1056 }
1057 splx(s);
1058 }
1059
1060 bool
1061 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1062 {
1063 paddr_t pa;
1064 char *attr;
1065 int s, rv;
1066
1067 /*
1068 * First modify bits in cache.
1069 */
1070 pa = VM_PAGE_TO_PHYS(pg);
1071 attr = pa_to_attr(pa);
1072 if (attr == NULL)
1073 return false;
1074
1075 s = splvm();
1076 rv = ((*attr & mask) != 0);
1077 if (clear) {
1078 *attr &= ~mask;
1079 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1080 }
1081 splx(s);
1082 return rv;
1083 }
1084
1085
1086 /*
1087 * Lower the protection on the specified physical page.
1088 *
1089 * There are only two cases: either the protection is going to 0,
1090 * or it is going to read-only.
1091 */
1092 void
1093 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1094 {
1095 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1096 vaddr_t va;
1097 struct pv_entry *pvh, *pv, *npv;
1098 struct pmap *pm;
1099
1100 pvh = pa_to_pv(pa);
1101 if (pvh == NULL)
1102 return;
1103
1104 /* Handle extra pvs which may be deleted in the operation */
1105 for (pv = pvh->pv_next; pv; pv = npv) {
1106 npv = pv->pv_next;
1107
1108 pm = pv->pv_pm;
1109 va = pv->pv_va;
1110 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1111 }
1112 /* Now check the head pv */
1113 if (pvh->pv_pm) {
1114 pv = pvh;
1115 pm = pv->pv_pm;
1116 va = pv->pv_va;
1117 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1118 }
1119 }
1120
1121 /*
1122 * Activate the address space for the specified process. If the process
1123 * is the current process, load the new MMU context.
1124 */
1125 void
1126 pmap_activate(struct lwp *l)
1127 {
1128 #if 0
1129 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1130 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1131
1132 /*
1133 * XXX Normally performed in cpu_lwp_fork().
1134 */
1135 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1136 pcb->pcb_pm = pmap;
1137 #endif
1138 }
1139
1140 /*
1141 * Deactivate the specified process's address space.
1142 */
1143 void
1144 pmap_deactivate(struct lwp *l)
1145 {
1146 }
1147
1148 /*
1149 * Synchronize caches corresponding to [addr, addr+len) in p.
1150 */
1151 void
1152 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1153 {
1154 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1155 int msr, ctx, opid, step;
1156
1157 step = CACHELINESIZE;
1158
1159 /*
1160 * Need to turn off IMMU and switch to user context.
1161 * (icbi uses DMMU).
1162 */
1163 if (!(ctx = pm->pm_ctx)) {
1164 /* No context -- assign it one */
1165 ctx_alloc(pm);
1166 ctx = pm->pm_ctx;
1167 }
1168 __asm volatile("mfmsr %0;"
1169 "li %1, %7;"
1170 "andc %1,%0,%1;"
1171 "mtmsr %1;"
1172 "sync;isync;"
1173 "mfpid %1;"
1174 "mtpid %2;"
1175 "sync; isync;"
1176 "1:"
1177 "dcbf 0,%3;"
1178 "icbi 0,%3;"
1179 "add %3,%3,%5;"
1180 "addc. %4,%4,%6;"
1181 "bge 1b;"
1182 "mtpid %1;"
1183 "mtmsr %0;"
1184 "sync; isync"
1185 : "=&r" (msr), "=&r" (opid)
1186 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1187 "K" (PSL_IR | PSL_DR));
1188 }
1189
1190
1191 /* This has to be done in real mode !!! */
1192 void
1193 ppc4xx_tlb_flush(vaddr_t va, int pid)
1194 {
1195 u_long i, found;
1196 u_long msr;
1197
1198 /* If there's no context then it can't be mapped. */
1199 if (!pid)
1200 return;
1201
1202 __asm( "mfpid %1;" /* Save PID */
1203 "mfmsr %2;" /* Save MSR */
1204 "li %0,0;" /* Now clear MSR */
1205 "mtmsr %0;"
1206 "mtpid %4;" /* Set PID */
1207 "sync;"
1208 "tlbsx. %0,0,%3;" /* Search TLB */
1209 "sync;"
1210 "mtpid %1;" /* Restore PID */
1211 "mtmsr %2;" /* Restore MSR */
1212 "sync;isync;"
1213 "li %1,1;"
1214 "beq 1f;"
1215 "li %1,0;"
1216 "1:"
1217 : "=&r" (i), "=&r" (found), "=&r" (msr)
1218 : "r" (va), "r" (pid));
1219 if (found && !TLB_LOCKED(i)) {
1220
1221 /* Now flush translation */
1222 __asm volatile(
1223 "tlbwe %0,%1,0;"
1224 "sync;isync;"
1225 : : "r" (0), "r" (i));
1226
1227 tlb_info[i].ti_ctx = 0;
1228 tlb_info[i].ti_flags = 0;
1229 tlbnext = i;
1230 /* Successful flushes */
1231 tlbflush_ev.ev_count++;
1232 }
1233 }
1234
1235 void
1236 ppc4xx_tlb_flush_all(void)
1237 {
1238 u_long i;
1239
1240 for (i = 0; i < NTLB; i++)
1241 if (!TLB_LOCKED(i)) {
1242 __asm volatile(
1243 "tlbwe %0,%1,0;"
1244 "sync;isync;"
1245 : : "r" (0), "r" (i));
1246 tlb_info[i].ti_ctx = 0;
1247 tlb_info[i].ti_flags = 0;
1248 }
1249
1250 __asm volatile("sync;isync");
1251 }
1252
1253 /* Find a TLB entry to evict. */
1254 static int
1255 ppc4xx_tlb_find_victim(void)
1256 {
1257 int flags;
1258
1259 for (;;) {
1260 if (++tlbnext >= NTLB)
1261 tlbnext = tlb_nreserved;
1262 flags = tlb_info[tlbnext].ti_flags;
1263 if (!(flags & TLBF_USED) ||
1264 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1265 u_long va, stack = (u_long)&va;
1266
1267 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1268 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1269 (flags & TLBF_USED)) {
1270 /* Kernel stack page */
1271 flags |= TLBF_USED;
1272 tlb_info[tlbnext].ti_flags = flags;
1273 } else {
1274 /* Found it! */
1275 return (tlbnext);
1276 }
1277 } else {
1278 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1279 }
1280 }
1281 }
1282
1283 void
1284 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1285 {
1286 u_long th, tl, idx;
1287 tlbpid_t pid;
1288 u_short msr;
1289 paddr_t pa;
1290 int s, sz;
1291
1292 tlbenter_ev.ev_count++;
1293
1294 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1295 pa = (pte & TTE_RPN_MASK(sz));
1296 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1297 tl = (pte & ~TLB_RPN_MASK) | pa;
1298 tl |= ppc4xx_tlbflags(va, pa);
1299
1300 s = splhigh();
1301 idx = ppc4xx_tlb_find_victim();
1302
1303 #ifdef DIAGNOSTIC
1304 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1305 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1306 }
1307 #endif
1308
1309 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1310 tlb_info[idx].ti_ctx = ctx;
1311 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1312
1313 __asm volatile(
1314 "mfmsr %0;" /* Save MSR */
1315 "li %1,0;"
1316 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1317 "mtmsr %1;" /* Clear MSR */
1318 "mfpid %1;" /* Save old PID */
1319 "mtpid %2;" /* Load translation ctx */
1320 "sync; isync;"
1321 #ifdef DEBUG
1322 "andi. %3,%3,63;"
1323 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1324 #endif
1325 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1326 "sync; isync;"
1327 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1328 "sync; isync;"
1329 : "=&r" (msr), "=&r" (pid)
1330 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1331 splx(s);
1332 }
1333
1334 void
1335 ppc4xx_tlb_init(void)
1336 {
1337 int i;
1338
1339 /* Mark reserved TLB entries */
1340 for (i = 0; i < tlb_nreserved; i++) {
1341 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1342 tlb_info[i].ti_ctx = KERNEL_PID;
1343 }
1344
1345 /* Setup security zones */
1346 /* Z0 - accessible by kernel only if TLB entry permissions allow
1347 * Z1,Z2 - access is controlled by TLB entry permissions
1348 * Z3 - full access regardless of TLB entry permissions
1349 */
1350
1351 __asm volatile(
1352 "mtspr %0,%1;"
1353 "sync;"
1354 :: "K"(SPR_ZPR), "r" (0x1b000000));
1355 }
1356
1357 /*
1358 * ppc4xx_tlb_size_mask:
1359 *
1360 * Roundup size to supported page size, return TLBHI mask and real size.
1361 */
1362 static int
1363 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1364 {
1365 int i;
1366
1367 for (i = 0; i < __arraycount(tlbsize); i++)
1368 if (size <= tlbsize[i]) {
1369 *mask = (i << TLB_SIZE_SHFT);
1370 *rsiz = tlbsize[i];
1371 return (0);
1372 }
1373 return (EINVAL);
1374 }
1375
1376 /*
1377 * ppc4xx_tlb_mapiodev:
1378 *
1379 * Lookup virtual address of mapping previously entered via
1380 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1381 * need to waste extra storage for reserved mappings. Note
1382 * that reading TLBHI also sets PID, but all reserved mappings
1383 * use KERNEL_PID, so the side effect is nil.
1384 */
1385 void *
1386 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1387 {
1388 paddr_t pa;
1389 vaddr_t va;
1390 u_int lo, hi, sz;
1391 int i;
1392
1393 /* tlb_nreserved is only allowed to grow, so this is safe. */
1394 for (i = 0; i < tlb_nreserved; i++) {
1395 __asm volatile (
1396 " tlbre %0,%2,1 \n" /* TLBLO */
1397 " tlbre %1,%2,0 \n" /* TLBHI */
1398 : "=&r" (lo), "=&r" (hi)
1399 : "r" (i));
1400
1401 KASSERT(hi & TLB_VALID);
1402 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1403
1404 pa = (lo & TLB_RPN_MASK);
1405 if (base < pa)
1406 continue;
1407
1408 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1409 if ((base + len) > (pa + sz))
1410 continue;
1411
1412 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1413 return (void *)(va);
1414 }
1415
1416 return (NULL);
1417 }
1418
1419 /*
1420 * ppc4xx_tlb_reserve:
1421 *
1422 * Map physical range to kernel virtual chunk via reserved TLB entry.
1423 */
1424 void
1425 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1426 {
1427 u_int lo, hi;
1428 int szmask, rsize;
1429
1430 /* Called before pmap_bootstrap(), va outside kernel space. */
1431 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1432 KASSERT(! pmap_bootstrap_done);
1433 KASSERT(tlb_nreserved < NTLB);
1434
1435 /* Resolve size. */
1436 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1437 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1438 size, tlb_nreserved);
1439
1440 /* Real size will be power of two >= 1024, so this is OK. */
1441 pa &= ~(rsize - 1); /* RPN */
1442 va &= ~(rsize - 1); /* EPN */
1443
1444 lo = pa | TLB_WR | flags;
1445 hi = va | TLB_VALID | szmask;
1446
1447 #ifdef PPC_4XX_NOCACHE
1448 lo |= TLB_I;
1449 #endif
1450
1451 __asm volatile(
1452 " tlbwe %1,%0,1 \n" /* write TLBLO */
1453 " tlbwe %2,%0,0 \n" /* write TLBHI */
1454 " sync \n"
1455 " isync \n"
1456 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1457
1458 tlb_nreserved++;
1459 }
1460
1461 /*
1462 * We should pass the ctx in from trap code.
1463 */
1464 int
1465 pmap_tlbmiss(vaddr_t va, int ctx)
1466 {
1467 volatile u_int *pte;
1468 u_long tte;
1469
1470 tlbmiss_ev.ev_count++;
1471
1472 /*
1473 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1474 * Physical RAM is expected to live in this range, care must be taken
1475 * to not clobber 0 upto ${physmem} with device mappings in machdep
1476 * code.
1477 */
1478 if (ctx != KERNEL_PID || va >= VM_MIN_KERNEL_ADDRESS) {
1479 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1480 if (pte == NULL) {
1481 /* Map unmanaged addresses directly for kernel access */
1482 return 1;
1483 }
1484 tte = *pte;
1485 if (tte == 0) {
1486 return 1;
1487 }
1488 } else {
1489 /* Create a 16MB writable mapping. */
1490 #ifdef PPC_4XX_NOCACHE
1491 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1492 #else
1493 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1494 #endif
1495 }
1496 tlbhit_ev.ev_count++;
1497 ppc4xx_tlb_enter(ctx, va, tte);
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * Flush all the entries matching a context from the TLB.
1504 */
1505 static int
1506 ctx_flush(int cnum)
1507 {
1508 int i;
1509
1510 /* We gotta steal this context */
1511 for (i = tlb_nreserved; i < NTLB; i++) {
1512 if (tlb_info[i].ti_ctx == cnum) {
1513 /* Can't steal ctx if it has a locked entry. */
1514 if (TLB_LOCKED(i)) {
1515 #ifdef DIAGNOSTIC
1516 printf("ctx_flush: can't invalidate "
1517 "locked mapping %d "
1518 "for context %d\n", i, cnum);
1519 #ifdef DDB
1520 Debugger();
1521 #endif
1522 #endif
1523 return (1);
1524 }
1525 #ifdef DIAGNOSTIC
1526 if (i < tlb_nreserved)
1527 panic("TLB entry %d not locked", i);
1528 #endif
1529 /* Invalidate particular TLB entry regardless of locked status */
1530 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1531 tlb_info[i].ti_flags = 0;
1532 }
1533 }
1534 return (0);
1535 }
1536
1537 /*
1538 * Allocate a context. If necessary, steal one from someone else.
1539 *
1540 * The new context is flushed from the TLB before returning.
1541 */
1542 int
1543 ctx_alloc(struct pmap *pm)
1544 {
1545 int s, cnum;
1546 static int next = MINCTX;
1547
1548 if (pm == pmap_kernel()) {
1549 #ifdef DIAGNOSTIC
1550 printf("ctx_alloc: kernel pmap!\n");
1551 #endif
1552 return (0);
1553 }
1554 s = splvm();
1555
1556 /* Find a likely context. */
1557 cnum = next;
1558 do {
1559 if ((++cnum) > NUMCTX)
1560 cnum = MINCTX;
1561 } while (ctxbusy[cnum] != NULL && cnum != next);
1562
1563 /* Now clean it out */
1564 oops:
1565 if (cnum < MINCTX)
1566 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1567 if (ctx_flush(cnum)) {
1568 /* oops -- something's wired. */
1569 if ((++cnum) > NUMCTX)
1570 cnum = MINCTX;
1571 goto oops;
1572 }
1573
1574 if (ctxbusy[cnum]) {
1575 #ifdef DEBUG
1576 /* We should identify this pmap and clear it */
1577 printf("Warning: stealing context %d\n", cnum);
1578 #endif
1579 ctxbusy[cnum]->pm_ctx = 0;
1580 }
1581 ctxbusy[cnum] = pm;
1582 next = cnum;
1583 splx(s);
1584 pm->pm_ctx = cnum;
1585
1586 return cnum;
1587 }
1588
1589 /*
1590 * Give away a context.
1591 */
1592 void
1593 ctx_free(struct pmap *pm)
1594 {
1595 int oldctx;
1596
1597 oldctx = pm->pm_ctx;
1598
1599 if (oldctx == 0)
1600 panic("ctx_free: freeing kernel context");
1601 #ifdef DIAGNOSTIC
1602 if (ctxbusy[oldctx] == 0)
1603 printf("ctx_free: freeing free context %d\n", oldctx);
1604 if (ctxbusy[oldctx] != pm) {
1605 printf("ctx_free: freeing someone esle's context\n "
1606 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1607 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1608 #ifdef DDB
1609 Debugger();
1610 #endif
1611 }
1612 #endif
1613 /* We should verify it has not been stolen and reallocated... */
1614 ctxbusy[oldctx] = NULL;
1615 ctx_flush(oldctx);
1616 }
1617
1618
1619 #ifdef DEBUG
1620 /*
1621 * Test ref/modify handling.
1622 */
1623 void pmap_testout(void);
1624 void
1625 pmap_testout(void)
1626 {
1627 vaddr_t va;
1628 volatile int *loc;
1629 int val = 0;
1630 paddr_t pa;
1631 struct vm_page *pg;
1632 int ref, mod;
1633
1634 /* Allocate a page */
1635 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1636 UVM_KMF_WIRED | UVM_KMF_ZERO);
1637 loc = (int*)va;
1638
1639 pmap_extract(pmap_kernel(), va, &pa);
1640 pg = PHYS_TO_VM_PAGE(pa);
1641 pmap_unwire(pmap_kernel(), va);
1642
1643 pmap_kremove(va, PAGE_SIZE);
1644 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1645 pmap_update(pmap_kernel());
1646
1647 /* Now clear reference and modify */
1648 ref = pmap_clear_reference(pg);
1649 mod = pmap_clear_modify(pg);
1650 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1651 (void *)(u_long)va, (long)pa,
1652 ref, mod);
1653
1654 /* Check it's properly cleared */
1655 ref = pmap_is_referenced(pg);
1656 mod = pmap_is_modified(pg);
1657 printf("Checking cleared page: ref %d, mod %d\n",
1658 ref, mod);
1659
1660 /* Reference page */
1661 val = *loc;
1662
1663 ref = pmap_is_referenced(pg);
1664 mod = pmap_is_modified(pg);
1665 printf("Referenced page: ref %d, mod %d val %x\n",
1666 ref, mod, val);
1667
1668 /* Now clear reference and modify */
1669 ref = pmap_clear_reference(pg);
1670 mod = pmap_clear_modify(pg);
1671 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1672 (void *)(u_long)va, (long)pa,
1673 ref, mod);
1674
1675 /* Modify page */
1676 *loc = 1;
1677
1678 ref = pmap_is_referenced(pg);
1679 mod = pmap_is_modified(pg);
1680 printf("Modified page: ref %d, mod %d\n",
1681 ref, mod);
1682
1683 /* Now clear reference and modify */
1684 ref = pmap_clear_reference(pg);
1685 mod = pmap_clear_modify(pg);
1686 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1687 (void *)(u_long)va, (long)pa,
1688 ref, mod);
1689
1690 /* Check it's properly cleared */
1691 ref = pmap_is_referenced(pg);
1692 mod = pmap_is_modified(pg);
1693 printf("Checking cleared page: ref %d, mod %d\n",
1694 ref, mod);
1695
1696 /* Modify page */
1697 *loc = 1;
1698
1699 ref = pmap_is_referenced(pg);
1700 mod = pmap_is_modified(pg);
1701 printf("Modified page: ref %d, mod %d\n",
1702 ref, mod);
1703
1704 /* Check pmap_protect() */
1705 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1706 pmap_update(pmap_kernel());
1707 ref = pmap_is_referenced(pg);
1708 mod = pmap_is_modified(pg);
1709 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1710 ref, mod);
1711
1712 /* Now clear reference and modify */
1713 ref = pmap_clear_reference(pg);
1714 mod = pmap_clear_modify(pg);
1715 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1716 (void *)(u_long)va, (long)pa,
1717 ref, mod);
1718
1719 /* Reference page */
1720 val = *loc;
1721
1722 ref = pmap_is_referenced(pg);
1723 mod = pmap_is_modified(pg);
1724 printf("Referenced page: ref %d, mod %d val %x\n",
1725 ref, mod, val);
1726
1727 /* Now clear reference and modify */
1728 ref = pmap_clear_reference(pg);
1729 mod = pmap_clear_modify(pg);
1730 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1731 (void *)(u_long)va, (long)pa,
1732 ref, mod);
1733
1734 /* Modify page */
1735 #if 0
1736 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1737 pmap_update(pmap_kernel());
1738 #endif
1739 *loc = 1;
1740
1741 ref = pmap_is_referenced(pg);
1742 mod = pmap_is_modified(pg);
1743 printf("Modified page: ref %d, mod %d\n",
1744 ref, mod);
1745
1746 /* Check pmap_protect() */
1747 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1748 pmap_update(pmap_kernel());
1749 ref = pmap_is_referenced(pg);
1750 mod = pmap_is_modified(pg);
1751 printf("pmap_protect(): ref %d, mod %d\n",
1752 ref, mod);
1753
1754 /* Now clear reference and modify */
1755 ref = pmap_clear_reference(pg);
1756 mod = pmap_clear_modify(pg);
1757 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1758 (void *)(u_long)va, (long)pa,
1759 ref, mod);
1760
1761 /* Reference page */
1762 val = *loc;
1763
1764 ref = pmap_is_referenced(pg);
1765 mod = pmap_is_modified(pg);
1766 printf("Referenced page: ref %d, mod %d val %x\n",
1767 ref, mod, val);
1768
1769 /* Now clear reference and modify */
1770 ref = pmap_clear_reference(pg);
1771 mod = pmap_clear_modify(pg);
1772 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1773 (void *)(u_long)va, (long)pa,
1774 ref, mod);
1775
1776 /* Modify page */
1777 #if 0
1778 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1779 pmap_update(pmap_kernel());
1780 #endif
1781 *loc = 1;
1782
1783 ref = pmap_is_referenced(pg);
1784 mod = pmap_is_modified(pg);
1785 printf("Modified page: ref %d, mod %d\n",
1786 ref, mod);
1787
1788 /* Check pmap_pag_protect() */
1789 pmap_page_protect(pg, VM_PROT_READ);
1790 ref = pmap_is_referenced(pg);
1791 mod = pmap_is_modified(pg);
1792 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1793 ref, mod);
1794
1795 /* Now clear reference and modify */
1796 ref = pmap_clear_reference(pg);
1797 mod = pmap_clear_modify(pg);
1798 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1799 (void *)(u_long)va, (long)pa,
1800 ref, mod);
1801
1802 /* Reference page */
1803 val = *loc;
1804
1805 ref = pmap_is_referenced(pg);
1806 mod = pmap_is_modified(pg);
1807 printf("Referenced page: ref %d, mod %d val %x\n",
1808 ref, mod, val);
1809
1810 /* Now clear reference and modify */
1811 ref = pmap_clear_reference(pg);
1812 mod = pmap_clear_modify(pg);
1813 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1814 (void *)(u_long)va, (long)pa,
1815 ref, mod);
1816
1817 /* Modify page */
1818 #if 0
1819 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1820 pmap_update(pmap_kernel());
1821 #endif
1822 *loc = 1;
1823
1824 ref = pmap_is_referenced(pg);
1825 mod = pmap_is_modified(pg);
1826 printf("Modified page: ref %d, mod %d\n",
1827 ref, mod);
1828
1829 /* Check pmap_pag_protect() */
1830 pmap_page_protect(pg, VM_PROT_NONE);
1831 ref = pmap_is_referenced(pg);
1832 mod = pmap_is_modified(pg);
1833 printf("pmap_page_protect(): ref %d, mod %d\n",
1834 ref, mod);
1835
1836 /* Now clear reference and modify */
1837 ref = pmap_clear_reference(pg);
1838 mod = pmap_clear_modify(pg);
1839 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1840 (void *)(u_long)va, (long)pa,
1841 ref, mod);
1842
1843
1844 /* Reference page */
1845 val = *loc;
1846
1847 ref = pmap_is_referenced(pg);
1848 mod = pmap_is_modified(pg);
1849 printf("Referenced page: ref %d, mod %d val %x\n",
1850 ref, mod, val);
1851
1852 /* Now clear reference and modify */
1853 ref = pmap_clear_reference(pg);
1854 mod = pmap_clear_modify(pg);
1855 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1856 (void *)(u_long)va, (long)pa,
1857 ref, mod);
1858
1859 /* Modify page */
1860 #if 0
1861 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1862 pmap_update(pmap_kernel());
1863 #endif
1864 *loc = 1;
1865
1866 ref = pmap_is_referenced(pg);
1867 mod = pmap_is_modified(pg);
1868 printf("Modified page: ref %d, mod %d\n",
1869 ref, mod);
1870
1871 /* Unmap page */
1872 pmap_remove(pmap_kernel(), va, va+1);
1873 pmap_update(pmap_kernel());
1874 ref = pmap_is_referenced(pg);
1875 mod = pmap_is_modified(pg);
1876 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1877
1878 /* Now clear reference and modify */
1879 ref = pmap_clear_reference(pg);
1880 mod = pmap_clear_modify(pg);
1881 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1882 (void *)(u_long)va, (long)pa, ref, mod);
1883
1884 /* Check it's properly cleared */
1885 ref = pmap_is_referenced(pg);
1886 mod = pmap_is_modified(pg);
1887 printf("Checking cleared page: ref %d, mod %d\n",
1888 ref, mod);
1889
1890 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1891 pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1892 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1893 }
1894 #endif
1895