pmap.c revision 1.65.4.1 1 /* $NetBSD: pmap.c,v 1.65.4.1 2011/02/08 16:19:35 bouyer Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.65.4.1 2011/02/08 16:19:35 bouyer Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/queue.h>
76 #include <sys/systm.h>
77 #include <sys/pool.h>
78 #include <sys/device.h>
79
80 #include <uvm/uvm.h>
81
82 #include <machine/cpu.h>
83 #include <machine/pcb.h>
84 #include <machine/powerpc.h>
85
86 #include <powerpc/spr.h>
87 #include <powerpc/ibm4xx/spr.h>
88 #include <machine/tlb.h>
89
90 /*
91 * kernmap is an array of PTEs large enough to map in
92 * 4GB. At 16KB/page it is 256K entries or 2MB.
93 */
94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 void *kernmap;
96
97 #define MINCTX 2
98 #define NUMCTX 256
99
100 volatile struct pmap *ctxbusy[NUMCTX];
101
102 #define TLBF_USED 0x1
103 #define TLBF_REF 0x2
104 #define TLBF_LOCKED 0x4
105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106
107 typedef struct tlb_info_s {
108 char ti_flags;
109 char ti_ctx; /* TLB_PID assiciated with the entry */
110 u_int ti_va;
111 } tlb_info_t;
112
113 volatile tlb_info_t tlb_info[NTLB];
114 /* We'll use a modified FIFO replacement policy cause it's cheap */
115 volatile int tlbnext;
116
117 static int tlb_nreserved = 0;
118 static int pmap_bootstrap_done = 0;
119
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbenter");
129 EVCNT_ATTACH_STATIC(tlbmiss_ev);
130 EVCNT_ATTACH_STATIC(tlbhit_ev);
131 EVCNT_ATTACH_STATIC(tlbflush_ev);
132 EVCNT_ATTACH_STATIC(tlbenter_ev);
133
134 struct pmap kernel_pmap_;
135 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
136
137 static int npgs;
138 static u_int nextavail;
139 #ifndef MSGBUFADDR
140 extern paddr_t msgbuf_paddr;
141 #endif
142
143 static struct mem_region *mem, *avail;
144
145 /*
146 * This is a cache of referenced/modified bits.
147 * Bits herein are shifted by ATTRSHFT.
148 */
149 static char *pmap_attrib;
150
151 #define PV_WIRED 0x1
152 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
153 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
154 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
155 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
156
157 struct pv_entry {
158 struct pv_entry *pv_next; /* Linked list of mappings */
159 vaddr_t pv_va; /* virtual address of mapping */
160 struct pmap *pv_pm;
161 };
162
163 /* Each index corresponds to TLB_SIZE_* value. */
164 static size_t tlbsize[] = {
165 1024, /* TLB_SIZE_1K */
166 4096, /* TLB_SIZE_4K */
167 16384, /* TLB_SIZE_16K */
168 65536, /* TLB_SIZE_64K */
169 262144, /* TLB_SIZE_256K */
170 1048576, /* TLB_SIZE_1M */
171 4194304, /* TLB_SIZE_4M */
172 16777216, /* TLB_SIZE_16M */
173 };
174
175 struct pv_entry *pv_table;
176 static struct pool pv_pool;
177
178 static int pmap_initialized;
179
180 static int ctx_flush(int);
181
182 inline struct pv_entry *pa_to_pv(paddr_t);
183 static inline char *pa_to_attr(paddr_t);
184
185 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
186 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
187
188 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
189 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
190
191 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
192
193
194 inline struct pv_entry *
195 pa_to_pv(paddr_t pa)
196 {
197 int bank, pg;
198
199 bank = vm_physseg_find(atop(pa), &pg);
200 if (bank == -1)
201 return NULL;
202 return &VM_PHYSMEM_PTR(bank)->pmseg.pvent[pg];
203 }
204
205 static inline char *
206 pa_to_attr(paddr_t pa)
207 {
208 int bank, pg;
209
210 bank = vm_physseg_find(atop(pa), &pg);
211 if (bank == -1)
212 return NULL;
213 return &VM_PHYSMEM_PTR(bank)->pmseg.attrs[pg];
214 }
215
216 /*
217 * Insert PTE into page table.
218 */
219 int
220 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
221 {
222 int seg = STIDX(va);
223 int ptn = PTIDX(va);
224 u_int oldpte;
225
226 if (!pm->pm_ptbl[seg]) {
227 /* Don't allocate a page to clear a non-existent mapping. */
228 if (!pte)
229 return (0);
230 /* Allocate a page XXXX this will sleep! */
231 pm->pm_ptbl[seg] =
232 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
233 UVM_KMF_WIRED | UVM_KMF_ZERO);
234 }
235 oldpte = pm->pm_ptbl[seg][ptn];
236 pm->pm_ptbl[seg][ptn] = pte;
237
238 /* Flush entry. */
239 ppc4xx_tlb_flush(va, pm->pm_ctx);
240 if (oldpte != pte) {
241 if (pte == 0)
242 pm->pm_stats.resident_count--;
243 else
244 pm->pm_stats.resident_count++;
245 }
246 return (1);
247 }
248
249 /*
250 * Get a pointer to a PTE in a page table.
251 */
252 volatile u_int *
253 pte_find(struct pmap *pm, vaddr_t va)
254 {
255 int seg = STIDX(va);
256 int ptn = PTIDX(va);
257
258 if (pm->pm_ptbl[seg])
259 return (&pm->pm_ptbl[seg][ptn]);
260
261 return (NULL);
262 }
263
264 /*
265 * This is called during initppc, before the system is really initialized.
266 */
267 void
268 pmap_bootstrap(u_int kernelstart, u_int kernelend)
269 {
270 struct mem_region *mp, *mp1;
271 int cnt, i;
272 u_int s, e, sz;
273
274 tlbnext = tlb_nreserved;
275
276 /*
277 * Allocate the kernel page table at the end of
278 * kernel space so it's in the locked TTE.
279 */
280 kernmap = (void *)kernelend;
281
282 /*
283 * Initialize kernel page table.
284 */
285 for (i = 0; i < STSZ; i++) {
286 pmap_kernel()->pm_ptbl[i] = 0;
287 }
288 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
289
290 /*
291 * Announce page-size to the VM-system
292 */
293 uvmexp.pagesize = NBPG;
294 uvm_setpagesize();
295
296 /*
297 * Get memory.
298 */
299 mem_regions(&mem, &avail);
300 for (mp = mem; mp->size; mp++) {
301 physmem += btoc(mp->size);
302 printf("+%lx,",mp->size);
303 }
304 printf("\n");
305 ppc4xx_tlb_init();
306 /*
307 * Count the number of available entries.
308 */
309 for (cnt = 0, mp = avail; mp->size; mp++)
310 cnt++;
311
312 /*
313 * Page align all regions.
314 * Non-page aligned memory isn't very interesting to us.
315 * Also, sort the entries for ascending addresses.
316 */
317 kernelstart &= ~PGOFSET;
318 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
319 for (mp = avail; mp->size; mp++) {
320 s = mp->start;
321 e = mp->start + mp->size;
322 printf("%08x-%08x -> ",s,e);
323 /*
324 * Check whether this region holds all of the kernel.
325 */
326 if (s < kernelstart && e > kernelend) {
327 avail[cnt].start = kernelend;
328 avail[cnt++].size = e - kernelend;
329 e = kernelstart;
330 }
331 /*
332 * Look whether this regions starts within the kernel.
333 */
334 if (s >= kernelstart && s < kernelend) {
335 if (e <= kernelend)
336 goto empty;
337 s = kernelend;
338 }
339 /*
340 * Now look whether this region ends within the kernel.
341 */
342 if (e > kernelstart && e <= kernelend) {
343 if (s >= kernelstart)
344 goto empty;
345 e = kernelstart;
346 }
347 /*
348 * Now page align the start and size of the region.
349 */
350 s = round_page(s);
351 e = trunc_page(e);
352 if (e < s)
353 e = s;
354 sz = e - s;
355 printf("%08x-%08x = %x\n",s,e,sz);
356 /*
357 * Check whether some memory is left here.
358 */
359 if (sz == 0) {
360 empty:
361 memmove(mp, mp + 1,
362 (cnt - (mp - avail)) * sizeof *mp);
363 cnt--;
364 mp--;
365 continue;
366 }
367 /*
368 * Do an insertion sort.
369 */
370 npgs += btoc(sz);
371 for (mp1 = avail; mp1 < mp; mp1++)
372 if (s < mp1->start)
373 break;
374 if (mp1 < mp) {
375 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
376 mp1->start = s;
377 mp1->size = sz;
378 } else {
379 mp->start = s;
380 mp->size = sz;
381 }
382 }
383
384 /*
385 * We cannot do pmap_steal_memory here,
386 * since we don't run with translation enabled yet.
387 */
388 #ifndef MSGBUFADDR
389 /*
390 * allow for msgbuf
391 */
392 sz = round_page(MSGBUFSIZE);
393 mp = NULL;
394 for (mp1 = avail; mp1->size; mp1++)
395 if (mp1->size >= sz)
396 mp = mp1;
397 if (mp == NULL)
398 panic("not enough memory?");
399
400 npgs -= btoc(sz);
401 msgbuf_paddr = mp->start + mp->size - sz;
402 mp->size -= sz;
403 if (mp->size <= 0)
404 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
405 #endif
406
407 for (mp = avail; mp->size; mp++)
408 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
409 atop(mp->start), atop(mp->start + mp->size),
410 VM_FREELIST_DEFAULT);
411
412 /*
413 * Initialize kernel pmap and hardware.
414 */
415 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
416 pmap_kernel()->pm_ctx = KERNEL_PID;
417 nextavail = avail->start;
418
419 pmap_bootstrap_done = 1;
420 }
421
422 /*
423 * Restrict given range to physical memory
424 *
425 * (Used by /dev/mem)
426 */
427 void
428 pmap_real_memory(paddr_t *start, psize_t *size)
429 {
430 struct mem_region *mp;
431
432 for (mp = mem; mp->size; mp++) {
433 if (*start + *size > mp->start &&
434 *start < mp->start + mp->size) {
435 if (*start < mp->start) {
436 *size -= mp->start - *start;
437 *start = mp->start;
438 }
439 if (*start + *size > mp->start + mp->size)
440 *size = mp->start + mp->size - *start;
441 return;
442 }
443 }
444 *size = 0;
445 }
446
447 /*
448 * Initialize anything else for pmap handling.
449 * Called during vm_init().
450 */
451 void
452 pmap_init(void)
453 {
454 struct pv_entry *pv;
455 vsize_t sz;
456 vaddr_t addr;
457 int i, s;
458 int bank;
459 char *attr;
460
461 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
462 sz = round_page(sz);
463 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
464 s = splvm();
465 pv = pv_table = (struct pv_entry *)addr;
466 for (i = npgs; --i >= 0;)
467 pv++->pv_pm = NULL;
468 pmap_attrib = (char *)pv;
469 memset(pv, 0, npgs);
470
471 pv = pv_table;
472 attr = pmap_attrib;
473 for (bank = 0; bank < vm_nphysseg; bank++) {
474 sz = VM_PHYSMEM_PTR(bank)->end - VM_PHYSMEM_PTR(bank)->start;
475 VM_PHYSMEM_PTR(bank)->pmseg.pvent = pv;
476 VM_PHYSMEM_PTR(bank)->pmseg.attrs = attr;
477 pv += sz;
478 attr += sz;
479 }
480
481 pmap_initialized = 1;
482 splx(s);
483
484 /* Setup a pool for additional pvlist structures */
485 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
486 IPL_VM);
487 }
488
489 /*
490 * How much virtual space is available to the kernel?
491 */
492 void
493 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
494 {
495
496 #if 0
497 /*
498 * Reserve one segment for kernel virtual memory
499 */
500 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
501 *end = *start + SEGMENT_LENGTH;
502 #else
503 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
504 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
505 #endif
506 }
507
508 #ifdef PMAP_GROWKERNEL
509 /*
510 * Preallocate kernel page tables to a specified VA.
511 * This simply loops through the first TTE for each
512 * page table from the beginning of the kernel pmap,
513 * reads the entry, and if the result is
514 * zero (either invalid entry or no page table) it stores
515 * a zero there, populating page tables in the process.
516 * This is not the most efficient technique but i don't
517 * expect it to be called that often.
518 */
519 extern struct vm_page *vm_page_alloc1(void);
520 extern void vm_page_free1(struct vm_page *);
521
522 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
523
524 vaddr_t
525 pmap_growkernel(vaddr_t maxkvaddr)
526 {
527 int s;
528 int seg;
529 paddr_t pg;
530 struct pmap *pm = pmap_kernel();
531
532 s = splvm();
533
534 /* Align with the start of a page table */
535 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
536 kbreak += PTMAP) {
537 seg = STIDX(kbreak);
538
539 if (pte_find(pm, kbreak))
540 continue;
541
542 if (uvm.page_init_done) {
543 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
544 } else {
545 if (!uvm_page_physget(&pg))
546 panic("pmap_growkernel: no memory");
547 }
548 if (!pg)
549 panic("pmap_growkernel: no pages");
550 pmap_zero_page((paddr_t)pg);
551
552 /* XXX This is based on all phymem being addressable */
553 pm->pm_ptbl[seg] = (u_int *)pg;
554 }
555 splx(s);
556 return (kbreak);
557 }
558
559 /*
560 * vm_page_alloc1:
561 *
562 * Allocate and return a memory cell with no associated object.
563 */
564 struct vm_page *
565 vm_page_alloc1(void)
566 {
567 struct vm_page *pg;
568
569 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
570 if (pg) {
571 pg->wire_count = 1; /* no mappings yet */
572 pg->flags &= ~PG_BUSY; /* never busy */
573 }
574 return pg;
575 }
576
577 /*
578 * vm_page_free1:
579 *
580 * Returns the given page to the free list,
581 * disassociating it with any VM object.
582 *
583 * Object and page must be locked prior to entry.
584 */
585 void
586 vm_page_free1(struct vm_page *pg)
587 {
588 #ifdef DIAGNOSTIC
589 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
590 printf("Freeing invalid page %p\n", pg);
591 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
592 #ifdef DDB
593 Debugger();
594 #endif
595 return;
596 }
597 #endif
598 pg->flags |= PG_BUSY;
599 pg->wire_count = 0;
600 uvm_pagefree(pg);
601 }
602 #endif
603
604 /*
605 * Create and return a physical map.
606 */
607 struct pmap *
608 pmap_create(void)
609 {
610 struct pmap *pm;
611
612 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
613 memset(pm, 0, sizeof *pm);
614 pm->pm_refs = 1;
615 return pm;
616 }
617
618 /*
619 * Add a reference to the given pmap.
620 */
621 void
622 pmap_reference(struct pmap *pm)
623 {
624
625 pm->pm_refs++;
626 }
627
628 /*
629 * Retire the given pmap from service.
630 * Should only be called if the map contains no valid mappings.
631 */
632 void
633 pmap_destroy(struct pmap *pm)
634 {
635 int i;
636
637 if (--pm->pm_refs > 0) {
638 return;
639 }
640 KASSERT(pm->pm_stats.resident_count == 0);
641 KASSERT(pm->pm_stats.wired_count == 0);
642 for (i = 0; i < STSZ; i++)
643 if (pm->pm_ptbl[i]) {
644 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
645 PAGE_SIZE, UVM_KMF_WIRED);
646 pm->pm_ptbl[i] = NULL;
647 }
648 if (pm->pm_ctx)
649 ctx_free(pm);
650 free(pm, M_VMPMAP);
651 }
652
653 /*
654 * Copy the range specified by src_addr/len
655 * from the source map to the range dst_addr/len
656 * in the destination map.
657 *
658 * This routine is only advisory and need not do anything.
659 */
660 void
661 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
662 vsize_t len, vaddr_t src_addr)
663 {
664 }
665
666 /*
667 * Require that all active physical maps contain no
668 * incorrect entries NOW.
669 */
670 void
671 pmap_update(struct pmap *pmap)
672 {
673 }
674
675 /*
676 * Fill the given physical page with zeroes.
677 */
678 void
679 pmap_zero_page(paddr_t pa)
680 {
681
682 #ifdef PPC_4XX_NOCACHE
683 memset((void *)pa, 0, PAGE_SIZE);
684 #else
685 int i;
686
687 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
688 __asm volatile ("dcbz 0,%0" :: "r"(pa));
689 pa += CACHELINESIZE;
690 }
691 #endif
692 }
693
694 /*
695 * Copy the given physical source page to its destination.
696 */
697 void
698 pmap_copy_page(paddr_t src, paddr_t dst)
699 {
700
701 memcpy((void *)dst, (void *)src, PAGE_SIZE);
702 dcache_flush_page(dst);
703 }
704
705 /*
706 * This returns != 0 on success.
707 */
708 static inline int
709 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
710 {
711 struct pv_entry *pv, *npv = NULL;
712 int s;
713
714 if (!pmap_initialized)
715 return 0;
716
717 s = splvm();
718 pv = pa_to_pv(pa);
719 if (!pv->pv_pm) {
720 /*
721 * No entries yet, use header as the first entry.
722 */
723 pv->pv_va = va;
724 pv->pv_pm = pm;
725 pv->pv_next = NULL;
726 } else {
727 /*
728 * There is at least one other VA mapping this page.
729 * Place this entry after the header.
730 */
731 npv = pool_get(&pv_pool, PR_NOWAIT);
732 if (npv == NULL) {
733 if ((flags & PMAP_CANFAIL) == 0)
734 panic("pmap_enter_pv: failed");
735 splx(s);
736 return 0;
737 }
738 npv->pv_va = va;
739 npv->pv_pm = pm;
740 npv->pv_next = pv->pv_next;
741 pv->pv_next = npv;
742 pv = npv;
743 }
744 if (flags & PMAP_WIRED) {
745 PV_WIRE(pv);
746 pm->pm_stats.wired_count++;
747 }
748 splx(s);
749 return (1);
750 }
751
752 static void
753 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
754 {
755 struct pv_entry *pv, *npv;
756
757 /*
758 * Remove from the PV table.
759 */
760 pv = pa_to_pv(pa);
761 if (!pv)
762 return;
763
764 /*
765 * If it is the first entry on the list, it is actually
766 * in the header and we must copy the following entry up
767 * to the header. Otherwise we must search the list for
768 * the entry. In either case we free the now unused entry.
769 */
770 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
771 if (PV_ISWIRED(pv)) {
772 pm->pm_stats.wired_count--;
773 }
774 if ((npv = pv->pv_next)) {
775 *pv = *npv;
776 pool_put(&pv_pool, npv);
777 } else
778 pv->pv_pm = NULL;
779 } else {
780 for (; (npv = pv->pv_next) != NULL; pv = npv)
781 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
782 break;
783 if (npv) {
784 pv->pv_next = npv->pv_next;
785 if (PV_ISWIRED(npv)) {
786 pm->pm_stats.wired_count--;
787 }
788 pool_put(&pv_pool, npv);
789 }
790 }
791 }
792
793 /*
794 * Insert physical page at pa into the given pmap at virtual address va.
795 */
796 int
797 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
798 {
799 int s;
800 u_int tte;
801 bool managed;
802
803 /*
804 * Have to remove any existing mapping first.
805 */
806 pmap_remove(pm, va, va + PAGE_SIZE);
807
808 if (flags & PMAP_WIRED)
809 flags |= prot;
810
811 managed = uvm_pageismanaged(pa);
812
813 /*
814 * Generate TTE.
815 */
816 tte = TTE_PA(pa);
817 /* XXXX -- need to support multiple page sizes. */
818 tte |= TTE_SZ_16K;
819 #ifdef DIAGNOSTIC
820 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
821 (PME_NOCACHE | PME_WRITETHROUG))
822 panic("pmap_enter: uncached & writethrough");
823 #endif
824 if (flags & PME_NOCACHE)
825 /* Must be I/O mapping */
826 tte |= TTE_I | TTE_G;
827 #ifdef PPC_4XX_NOCACHE
828 tte |= TTE_I;
829 #else
830 else if (flags & PME_WRITETHROUG)
831 /* Uncached and writethrough are not compatible */
832 tte |= TTE_W;
833 #endif
834 if (pm == pmap_kernel())
835 tte |= TTE_ZONE(ZONE_PRIV);
836 else
837 tte |= TTE_ZONE(ZONE_USER);
838
839 if (flags & VM_PROT_WRITE)
840 tte |= TTE_WR;
841
842 if (flags & VM_PROT_EXECUTE)
843 tte |= TTE_EX;
844
845 /*
846 * Now record mapping for later back-translation.
847 */
848 if (pmap_initialized && managed) {
849 char *attr;
850
851 if (!pmap_enter_pv(pm, va, pa, flags)) {
852 /* Could not enter pv on a managed page */
853 return 1;
854 }
855
856 /* Now set attributes. */
857 attr = pa_to_attr(pa);
858 #ifdef DIAGNOSTIC
859 if (!attr)
860 panic("managed but no attr");
861 #endif
862 if (flags & VM_PROT_ALL)
863 *attr |= PMAP_ATTR_REF;
864 if (flags & VM_PROT_WRITE)
865 *attr |= PMAP_ATTR_CHG;
866 }
867
868 s = splvm();
869
870 /* Insert page into page table. */
871 pte_enter(pm, va, tte);
872
873 /* If this is a real fault, enter it in the tlb */
874 if (tte && ((flags & PMAP_WIRED) == 0)) {
875 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
876 }
877 splx(s);
878
879 /* Flush the real memory from the instruction cache. */
880 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
881 __syncicache((void *)pa, PAGE_SIZE);
882
883 return 0;
884 }
885
886 void
887 pmap_unwire(struct pmap *pm, vaddr_t va)
888 {
889 struct pv_entry *pv;
890 paddr_t pa;
891 int s;
892
893 if (!pmap_extract(pm, va, &pa)) {
894 return;
895 }
896
897 pv = pa_to_pv(pa);
898 if (!pv)
899 return;
900
901 s = splvm();
902 while (pv != NULL) {
903 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
904 if (PV_ISWIRED(pv)) {
905 PV_UNWIRE(pv);
906 pm->pm_stats.wired_count--;
907 }
908 break;
909 }
910 pv = pv->pv_next;
911 }
912 splx(s);
913 }
914
915 void
916 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
917 {
918 int s;
919 u_int tte;
920 struct pmap *pm = pmap_kernel();
921
922 /*
923 * Have to remove any existing mapping first.
924 */
925
926 /*
927 * Generate TTE.
928 *
929 * XXXX
930 *
931 * Since the kernel does not handle execution privileges properly,
932 * we will handle read and execute permissions together.
933 */
934 tte = 0;
935 if (prot & VM_PROT_ALL) {
936
937 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
938 /* XXXX -- need to support multiple page sizes. */
939 tte |= TTE_SZ_16K;
940 #ifdef DIAGNOSTIC
941 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
942 (PME_NOCACHE | PME_WRITETHROUG))
943 panic("pmap_kenter_pa: uncached & writethrough");
944 #endif
945 if (prot & PME_NOCACHE)
946 /* Must be I/O mapping */
947 tte |= TTE_I | TTE_G;
948 #ifdef PPC_4XX_NOCACHE
949 tte |= TTE_I;
950 #else
951 else if (prot & PME_WRITETHROUG)
952 /* Uncached and writethrough are not compatible */
953 tte |= TTE_W;
954 #endif
955 if (prot & VM_PROT_WRITE)
956 tte |= TTE_WR;
957 }
958
959 s = splvm();
960
961 /* Insert page into page table. */
962 pte_enter(pm, va, tte);
963 splx(s);
964 }
965
966 void
967 pmap_kremove(vaddr_t va, vsize_t len)
968 {
969
970 while (len > 0) {
971 pte_enter(pmap_kernel(), va, 0);
972 va += PAGE_SIZE;
973 len -= PAGE_SIZE;
974 }
975 }
976
977 /*
978 * Remove the given range of mapping entries.
979 */
980 void
981 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
982 {
983 int s;
984 paddr_t pa;
985 volatile u_int *ptp;
986
987 s = splvm();
988 while (va < endva) {
989
990 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
991 pa = TTE_PA(pa);
992 pmap_remove_pv(pm, va, pa);
993 *ptp = 0;
994 ppc4xx_tlb_flush(va, pm->pm_ctx);
995 pm->pm_stats.resident_count--;
996 }
997 va += PAGE_SIZE;
998 }
999
1000 splx(s);
1001 }
1002
1003 /*
1004 * Get the physical page address for the given pmap/virtual address.
1005 */
1006 bool
1007 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1008 {
1009 int seg = STIDX(va);
1010 int ptn = PTIDX(va);
1011 u_int pa = 0;
1012 int s;
1013
1014 s = splvm();
1015 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1016 *pap = TTE_PA(pa) | (va & PGOFSET);
1017 }
1018 splx(s);
1019 return (pa != 0);
1020 }
1021
1022 /*
1023 * Lower the protection on the specified range of this pmap.
1024 *
1025 * There are only two cases: either the protection is going to 0,
1026 * or it is going to read-only.
1027 */
1028 void
1029 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1030 {
1031 volatile u_int *ptp;
1032 int s, bic;
1033
1034 if ((prot & VM_PROT_READ) == 0) {
1035 pmap_remove(pm, sva, eva);
1036 return;
1037 }
1038 bic = 0;
1039 if ((prot & VM_PROT_WRITE) == 0) {
1040 bic |= TTE_WR;
1041 }
1042 if ((prot & VM_PROT_EXECUTE) == 0) {
1043 bic |= TTE_EX;
1044 }
1045 if (bic == 0) {
1046 return;
1047 }
1048 s = splvm();
1049 while (sva < eva) {
1050 if ((ptp = pte_find(pm, sva)) != NULL) {
1051 *ptp &= ~bic;
1052 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1053 }
1054 sva += PAGE_SIZE;
1055 }
1056 splx(s);
1057 }
1058
1059 bool
1060 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1061 {
1062 paddr_t pa;
1063 char *attr;
1064 int s, rv;
1065
1066 /*
1067 * First modify bits in cache.
1068 */
1069 pa = VM_PAGE_TO_PHYS(pg);
1070 attr = pa_to_attr(pa);
1071 if (attr == NULL)
1072 return false;
1073
1074 s = splvm();
1075 rv = ((*attr & mask) != 0);
1076 if (clear) {
1077 *attr &= ~mask;
1078 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1079 }
1080 splx(s);
1081 return rv;
1082 }
1083
1084
1085 /*
1086 * Lower the protection on the specified physical page.
1087 *
1088 * There are only two cases: either the protection is going to 0,
1089 * or it is going to read-only.
1090 */
1091 void
1092 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1093 {
1094 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1095 vaddr_t va;
1096 struct pv_entry *pvh, *pv, *npv;
1097 struct pmap *pm;
1098
1099 pvh = pa_to_pv(pa);
1100 if (pvh == NULL)
1101 return;
1102
1103 /* Handle extra pvs which may be deleted in the operation */
1104 for (pv = pvh->pv_next; pv; pv = npv) {
1105 npv = pv->pv_next;
1106
1107 pm = pv->pv_pm;
1108 va = pv->pv_va;
1109 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1110 }
1111 /* Now check the head pv */
1112 if (pvh->pv_pm) {
1113 pv = pvh;
1114 pm = pv->pv_pm;
1115 va = pv->pv_va;
1116 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1117 }
1118 }
1119
1120 /*
1121 * Activate the address space for the specified process. If the process
1122 * is the current process, load the new MMU context.
1123 */
1124 void
1125 pmap_activate(struct lwp *l)
1126 {
1127 #if 0
1128 struct pcb *pcb = lwp_getpcb(l);
1129 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1130
1131 /*
1132 * XXX Normally performed in cpu_lwp_fork().
1133 */
1134 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1135 pcb->pcb_pm = pmap;
1136 #endif
1137 }
1138
1139 /*
1140 * Deactivate the specified process's address space.
1141 */
1142 void
1143 pmap_deactivate(struct lwp *l)
1144 {
1145 }
1146
1147 /*
1148 * Synchronize caches corresponding to [addr, addr+len) in p.
1149 */
1150 void
1151 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1152 {
1153 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1154 int msr, ctx, opid, step;
1155
1156 step = CACHELINESIZE;
1157
1158 /*
1159 * Need to turn off IMMU and switch to user context.
1160 * (icbi uses DMMU).
1161 */
1162 if (!(ctx = pm->pm_ctx)) {
1163 /* No context -- assign it one */
1164 ctx_alloc(pm);
1165 ctx = pm->pm_ctx;
1166 }
1167 __asm volatile("mfmsr %0;"
1168 "li %1, %7;"
1169 "andc %1,%0,%1;"
1170 "mtmsr %1;"
1171 "sync;isync;"
1172 "mfpid %1;"
1173 "mtpid %2;"
1174 "sync; isync;"
1175 "1:"
1176 "dcbf 0,%3;"
1177 "icbi 0,%3;"
1178 "add %3,%3,%5;"
1179 "addc. %4,%4,%6;"
1180 "bge 1b;"
1181 "mtpid %1;"
1182 "mtmsr %0;"
1183 "sync; isync"
1184 : "=&r" (msr), "=&r" (opid)
1185 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1186 "K" (PSL_IR | PSL_DR));
1187 }
1188
1189
1190 /* This has to be done in real mode !!! */
1191 void
1192 ppc4xx_tlb_flush(vaddr_t va, int pid)
1193 {
1194 u_long i, found;
1195 u_long msr;
1196
1197 /* If there's no context then it can't be mapped. */
1198 if (!pid)
1199 return;
1200
1201 __asm( "mfpid %1;" /* Save PID */
1202 "mfmsr %2;" /* Save MSR */
1203 "li %0,0;" /* Now clear MSR */
1204 "mtmsr %0;"
1205 "mtpid %4;" /* Set PID */
1206 "sync;"
1207 "tlbsx. %0,0,%3;" /* Search TLB */
1208 "sync;"
1209 "mtpid %1;" /* Restore PID */
1210 "mtmsr %2;" /* Restore MSR */
1211 "sync;isync;"
1212 "li %1,1;"
1213 "beq 1f;"
1214 "li %1,0;"
1215 "1:"
1216 : "=&r" (i), "=&r" (found), "=&r" (msr)
1217 : "r" (va), "r" (pid));
1218 if (found && !TLB_LOCKED(i)) {
1219
1220 /* Now flush translation */
1221 __asm volatile(
1222 "tlbwe %0,%1,0;"
1223 "sync;isync;"
1224 : : "r" (0), "r" (i));
1225
1226 tlb_info[i].ti_ctx = 0;
1227 tlb_info[i].ti_flags = 0;
1228 tlbnext = i;
1229 /* Successful flushes */
1230 tlbflush_ev.ev_count++;
1231 }
1232 }
1233
1234 void
1235 ppc4xx_tlb_flush_all(void)
1236 {
1237 u_long i;
1238
1239 for (i = 0; i < NTLB; i++)
1240 if (!TLB_LOCKED(i)) {
1241 __asm volatile(
1242 "tlbwe %0,%1,0;"
1243 "sync;isync;"
1244 : : "r" (0), "r" (i));
1245 tlb_info[i].ti_ctx = 0;
1246 tlb_info[i].ti_flags = 0;
1247 }
1248
1249 __asm volatile("sync;isync");
1250 }
1251
1252 /* Find a TLB entry to evict. */
1253 static int
1254 ppc4xx_tlb_find_victim(void)
1255 {
1256 int flags;
1257
1258 for (;;) {
1259 if (++tlbnext >= NTLB)
1260 tlbnext = tlb_nreserved;
1261 flags = tlb_info[tlbnext].ti_flags;
1262 if (!(flags & TLBF_USED) ||
1263 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1264 u_long va, stack = (u_long)&va;
1265
1266 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1267 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1268 (flags & TLBF_USED)) {
1269 /* Kernel stack page */
1270 flags |= TLBF_USED;
1271 tlb_info[tlbnext].ti_flags = flags;
1272 } else {
1273 /* Found it! */
1274 return (tlbnext);
1275 }
1276 } else {
1277 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1278 }
1279 }
1280 }
1281
1282 void
1283 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1284 {
1285 u_long th, tl, idx;
1286 tlbpid_t pid;
1287 u_short msr;
1288 paddr_t pa;
1289 int s, sz;
1290
1291 tlbenter_ev.ev_count++;
1292
1293 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1294 pa = (pte & TTE_RPN_MASK(sz));
1295 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1296 tl = (pte & ~TLB_RPN_MASK) | pa;
1297 tl |= ppc4xx_tlbflags(va, pa);
1298
1299 s = splhigh();
1300 idx = ppc4xx_tlb_find_victim();
1301
1302 #ifdef DIAGNOSTIC
1303 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1304 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1305 }
1306 #endif
1307
1308 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1309 tlb_info[idx].ti_ctx = ctx;
1310 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1311
1312 __asm volatile(
1313 "mfmsr %0;" /* Save MSR */
1314 "li %1,0;"
1315 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1316 "mtmsr %1;" /* Clear MSR */
1317 "mfpid %1;" /* Save old PID */
1318 "mtpid %2;" /* Load translation ctx */
1319 "sync; isync;"
1320 #ifdef DEBUG
1321 "andi. %3,%3,63;"
1322 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1323 #endif
1324 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1325 "sync; isync;"
1326 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1327 "sync; isync;"
1328 : "=&r" (msr), "=&r" (pid)
1329 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1330 splx(s);
1331 }
1332
1333 void
1334 ppc4xx_tlb_init(void)
1335 {
1336 int i;
1337
1338 /* Mark reserved TLB entries */
1339 for (i = 0; i < tlb_nreserved; i++) {
1340 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1341 tlb_info[i].ti_ctx = KERNEL_PID;
1342 }
1343
1344 /* Setup security zones */
1345 /* Z0 - accessible by kernel only if TLB entry permissions allow
1346 * Z1,Z2 - access is controlled by TLB entry permissions
1347 * Z3 - full access regardless of TLB entry permissions
1348 */
1349
1350 __asm volatile(
1351 "mtspr %0,%1;"
1352 "sync;"
1353 :: "K"(SPR_ZPR), "r" (0x1b000000));
1354 }
1355
1356 /*
1357 * ppc4xx_tlb_size_mask:
1358 *
1359 * Roundup size to supported page size, return TLBHI mask and real size.
1360 */
1361 static int
1362 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1363 {
1364 int i;
1365
1366 for (i = 0; i < __arraycount(tlbsize); i++)
1367 if (size <= tlbsize[i]) {
1368 *mask = (i << TLB_SIZE_SHFT);
1369 *rsiz = tlbsize[i];
1370 return (0);
1371 }
1372 return (EINVAL);
1373 }
1374
1375 /*
1376 * ppc4xx_tlb_mapiodev:
1377 *
1378 * Lookup virtual address of mapping previously entered via
1379 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1380 * need to waste extra storage for reserved mappings. Note
1381 * that reading TLBHI also sets PID, but all reserved mappings
1382 * use KERNEL_PID, so the side effect is nil.
1383 */
1384 void *
1385 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1386 {
1387 paddr_t pa;
1388 vaddr_t va;
1389 u_int lo, hi, sz;
1390 int i;
1391
1392 /* tlb_nreserved is only allowed to grow, so this is safe. */
1393 for (i = 0; i < tlb_nreserved; i++) {
1394 __asm volatile (
1395 " tlbre %0,%2,1 \n" /* TLBLO */
1396 " tlbre %1,%2,0 \n" /* TLBHI */
1397 : "=&r" (lo), "=&r" (hi)
1398 : "r" (i));
1399
1400 KASSERT(hi & TLB_VALID);
1401 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1402
1403 pa = (lo & TLB_RPN_MASK);
1404 if (base < pa)
1405 continue;
1406
1407 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1408 if ((base + len) > (pa + sz))
1409 continue;
1410
1411 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1412 return (void *)(va);
1413 }
1414
1415 return (NULL);
1416 }
1417
1418 /*
1419 * ppc4xx_tlb_reserve:
1420 *
1421 * Map physical range to kernel virtual chunk via reserved TLB entry.
1422 */
1423 void
1424 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1425 {
1426 u_int lo, hi;
1427 int szmask, rsize;
1428
1429 /* Called before pmap_bootstrap(), va outside kernel space. */
1430 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1431 KASSERT(! pmap_bootstrap_done);
1432 KASSERT(tlb_nreserved < NTLB);
1433
1434 /* Resolve size. */
1435 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1436 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1437 size, tlb_nreserved);
1438
1439 /* Real size will be power of two >= 1024, so this is OK. */
1440 pa &= ~(rsize - 1); /* RPN */
1441 va &= ~(rsize - 1); /* EPN */
1442
1443 lo = pa | TLB_WR | flags;
1444 hi = va | TLB_VALID | szmask;
1445
1446 #ifdef PPC_4XX_NOCACHE
1447 lo |= TLB_I;
1448 #endif
1449
1450 __asm volatile(
1451 " tlbwe %1,%0,1 \n" /* write TLBLO */
1452 " tlbwe %2,%0,0 \n" /* write TLBHI */
1453 " sync \n"
1454 " isync \n"
1455 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1456
1457 tlb_nreserved++;
1458 }
1459
1460 /*
1461 * We should pass the ctx in from trap code.
1462 */
1463 int
1464 pmap_tlbmiss(vaddr_t va, int ctx)
1465 {
1466 volatile u_int *pte;
1467 u_long tte;
1468
1469 tlbmiss_ev.ev_count++;
1470
1471 /*
1472 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1473 * Physical RAM is expected to live in this range, care must be taken
1474 * to not clobber 0 upto ${physmem} with device mappings in machdep
1475 * code.
1476 */
1477 if (ctx != KERNEL_PID ||
1478 (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1479 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1480 if (pte == NULL) {
1481 /* Map unmanaged addresses directly for kernel access */
1482 return 1;
1483 }
1484 tte = *pte;
1485 if (tte == 0) {
1486 return 1;
1487 }
1488 } else {
1489 /* Create a 16MB writable mapping. */
1490 #ifdef PPC_4XX_NOCACHE
1491 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1492 #else
1493 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1494 #endif
1495 }
1496 tlbhit_ev.ev_count++;
1497 ppc4xx_tlb_enter(ctx, va, tte);
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * Flush all the entries matching a context from the TLB.
1504 */
1505 static int
1506 ctx_flush(int cnum)
1507 {
1508 int i;
1509
1510 /* We gotta steal this context */
1511 for (i = tlb_nreserved; i < NTLB; i++) {
1512 if (tlb_info[i].ti_ctx == cnum) {
1513 /* Can't steal ctx if it has a locked entry. */
1514 if (TLB_LOCKED(i)) {
1515 #ifdef DIAGNOSTIC
1516 printf("ctx_flush: can't invalidate "
1517 "locked mapping %d "
1518 "for context %d\n", i, cnum);
1519 #ifdef DDB
1520 Debugger();
1521 #endif
1522 #endif
1523 return (1);
1524 }
1525 #ifdef DIAGNOSTIC
1526 if (i < tlb_nreserved)
1527 panic("TLB entry %d not locked", i);
1528 #endif
1529 /* Invalidate particular TLB entry regardless of locked status */
1530 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1531 tlb_info[i].ti_flags = 0;
1532 }
1533 }
1534 return (0);
1535 }
1536
1537 /*
1538 * Allocate a context. If necessary, steal one from someone else.
1539 *
1540 * The new context is flushed from the TLB before returning.
1541 */
1542 int
1543 ctx_alloc(struct pmap *pm)
1544 {
1545 int s, cnum;
1546 static int next = MINCTX;
1547
1548 if (pm == pmap_kernel()) {
1549 #ifdef DIAGNOSTIC
1550 printf("ctx_alloc: kernel pmap!\n");
1551 #endif
1552 return (0);
1553 }
1554 s = splvm();
1555
1556 /* Find a likely context. */
1557 cnum = next;
1558 do {
1559 if ((++cnum) > NUMCTX)
1560 cnum = MINCTX;
1561 } while (ctxbusy[cnum] != NULL && cnum != next);
1562
1563 /* Now clean it out */
1564 oops:
1565 if (cnum < MINCTX)
1566 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1567 if (ctx_flush(cnum)) {
1568 /* oops -- something's wired. */
1569 if ((++cnum) > NUMCTX)
1570 cnum = MINCTX;
1571 goto oops;
1572 }
1573
1574 if (ctxbusy[cnum]) {
1575 #ifdef DEBUG
1576 /* We should identify this pmap and clear it */
1577 printf("Warning: stealing context %d\n", cnum);
1578 #endif
1579 ctxbusy[cnum]->pm_ctx = 0;
1580 }
1581 ctxbusy[cnum] = pm;
1582 next = cnum;
1583 splx(s);
1584 pm->pm_ctx = cnum;
1585
1586 return cnum;
1587 }
1588
1589 /*
1590 * Give away a context.
1591 */
1592 void
1593 ctx_free(struct pmap *pm)
1594 {
1595 int oldctx;
1596
1597 oldctx = pm->pm_ctx;
1598
1599 if (oldctx == 0)
1600 panic("ctx_free: freeing kernel context");
1601 #ifdef DIAGNOSTIC
1602 if (ctxbusy[oldctx] == 0)
1603 printf("ctx_free: freeing free context %d\n", oldctx);
1604 if (ctxbusy[oldctx] != pm) {
1605 printf("ctx_free: freeing someone esle's context\n "
1606 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1607 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1608 #ifdef DDB
1609 Debugger();
1610 #endif
1611 }
1612 #endif
1613 /* We should verify it has not been stolen and reallocated... */
1614 ctxbusy[oldctx] = NULL;
1615 ctx_flush(oldctx);
1616 }
1617
1618
1619 #ifdef DEBUG
1620 /*
1621 * Test ref/modify handling.
1622 */
1623 void pmap_testout(void);
1624 void
1625 pmap_testout(void)
1626 {
1627 vaddr_t va;
1628 volatile int *loc;
1629 int val = 0;
1630 paddr_t pa;
1631 struct vm_page *pg;
1632 int ref, mod;
1633
1634 /* Allocate a page */
1635 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1636 UVM_KMF_WIRED | UVM_KMF_ZERO);
1637 loc = (int*)va;
1638
1639 pmap_extract(pmap_kernel(), va, &pa);
1640 pg = PHYS_TO_VM_PAGE(pa);
1641 pmap_unwire(pmap_kernel(), va);
1642
1643 pmap_kremove(va, PAGE_SIZE);
1644 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1645 pmap_update(pmap_kernel());
1646
1647 /* Now clear reference and modify */
1648 ref = pmap_clear_reference(pg);
1649 mod = pmap_clear_modify(pg);
1650 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1651 (void *)(u_long)va, (long)pa,
1652 ref, mod);
1653
1654 /* Check it's properly cleared */
1655 ref = pmap_is_referenced(pg);
1656 mod = pmap_is_modified(pg);
1657 printf("Checking cleared page: ref %d, mod %d\n",
1658 ref, mod);
1659
1660 /* Reference page */
1661 val = *loc;
1662
1663 ref = pmap_is_referenced(pg);
1664 mod = pmap_is_modified(pg);
1665 printf("Referenced page: ref %d, mod %d val %x\n",
1666 ref, mod, val);
1667
1668 /* Now clear reference and modify */
1669 ref = pmap_clear_reference(pg);
1670 mod = pmap_clear_modify(pg);
1671 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1672 (void *)(u_long)va, (long)pa,
1673 ref, mod);
1674
1675 /* Modify page */
1676 *loc = 1;
1677
1678 ref = pmap_is_referenced(pg);
1679 mod = pmap_is_modified(pg);
1680 printf("Modified page: ref %d, mod %d\n",
1681 ref, mod);
1682
1683 /* Now clear reference and modify */
1684 ref = pmap_clear_reference(pg);
1685 mod = pmap_clear_modify(pg);
1686 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1687 (void *)(u_long)va, (long)pa,
1688 ref, mod);
1689
1690 /* Check it's properly cleared */
1691 ref = pmap_is_referenced(pg);
1692 mod = pmap_is_modified(pg);
1693 printf("Checking cleared page: ref %d, mod %d\n",
1694 ref, mod);
1695
1696 /* Modify page */
1697 *loc = 1;
1698
1699 ref = pmap_is_referenced(pg);
1700 mod = pmap_is_modified(pg);
1701 printf("Modified page: ref %d, mod %d\n",
1702 ref, mod);
1703
1704 /* Check pmap_protect() */
1705 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1706 pmap_update(pmap_kernel());
1707 ref = pmap_is_referenced(pg);
1708 mod = pmap_is_modified(pg);
1709 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1710 ref, mod);
1711
1712 /* Now clear reference and modify */
1713 ref = pmap_clear_reference(pg);
1714 mod = pmap_clear_modify(pg);
1715 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1716 (void *)(u_long)va, (long)pa,
1717 ref, mod);
1718
1719 /* Reference page */
1720 val = *loc;
1721
1722 ref = pmap_is_referenced(pg);
1723 mod = pmap_is_modified(pg);
1724 printf("Referenced page: ref %d, mod %d val %x\n",
1725 ref, mod, val);
1726
1727 /* Now clear reference and modify */
1728 ref = pmap_clear_reference(pg);
1729 mod = pmap_clear_modify(pg);
1730 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1731 (void *)(u_long)va, (long)pa,
1732 ref, mod);
1733
1734 /* Modify page */
1735 #if 0
1736 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1737 pmap_update(pmap_kernel());
1738 #endif
1739 *loc = 1;
1740
1741 ref = pmap_is_referenced(pg);
1742 mod = pmap_is_modified(pg);
1743 printf("Modified page: ref %d, mod %d\n",
1744 ref, mod);
1745
1746 /* Check pmap_protect() */
1747 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1748 pmap_update(pmap_kernel());
1749 ref = pmap_is_referenced(pg);
1750 mod = pmap_is_modified(pg);
1751 printf("pmap_protect(): ref %d, mod %d\n",
1752 ref, mod);
1753
1754 /* Now clear reference and modify */
1755 ref = pmap_clear_reference(pg);
1756 mod = pmap_clear_modify(pg);
1757 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1758 (void *)(u_long)va, (long)pa,
1759 ref, mod);
1760
1761 /* Reference page */
1762 val = *loc;
1763
1764 ref = pmap_is_referenced(pg);
1765 mod = pmap_is_modified(pg);
1766 printf("Referenced page: ref %d, mod %d val %x\n",
1767 ref, mod, val);
1768
1769 /* Now clear reference and modify */
1770 ref = pmap_clear_reference(pg);
1771 mod = pmap_clear_modify(pg);
1772 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1773 (void *)(u_long)va, (long)pa,
1774 ref, mod);
1775
1776 /* Modify page */
1777 #if 0
1778 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1779 pmap_update(pmap_kernel());
1780 #endif
1781 *loc = 1;
1782
1783 ref = pmap_is_referenced(pg);
1784 mod = pmap_is_modified(pg);
1785 printf("Modified page: ref %d, mod %d\n",
1786 ref, mod);
1787
1788 /* Check pmap_pag_protect() */
1789 pmap_page_protect(pg, VM_PROT_READ);
1790 ref = pmap_is_referenced(pg);
1791 mod = pmap_is_modified(pg);
1792 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1793 ref, mod);
1794
1795 /* Now clear reference and modify */
1796 ref = pmap_clear_reference(pg);
1797 mod = pmap_clear_modify(pg);
1798 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1799 (void *)(u_long)va, (long)pa,
1800 ref, mod);
1801
1802 /* Reference page */
1803 val = *loc;
1804
1805 ref = pmap_is_referenced(pg);
1806 mod = pmap_is_modified(pg);
1807 printf("Referenced page: ref %d, mod %d val %x\n",
1808 ref, mod, val);
1809
1810 /* Now clear reference and modify */
1811 ref = pmap_clear_reference(pg);
1812 mod = pmap_clear_modify(pg);
1813 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1814 (void *)(u_long)va, (long)pa,
1815 ref, mod);
1816
1817 /* Modify page */
1818 #if 0
1819 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1820 pmap_update(pmap_kernel());
1821 #endif
1822 *loc = 1;
1823
1824 ref = pmap_is_referenced(pg);
1825 mod = pmap_is_modified(pg);
1826 printf("Modified page: ref %d, mod %d\n",
1827 ref, mod);
1828
1829 /* Check pmap_pag_protect() */
1830 pmap_page_protect(pg, VM_PROT_NONE);
1831 ref = pmap_is_referenced(pg);
1832 mod = pmap_is_modified(pg);
1833 printf("pmap_page_protect(): ref %d, mod %d\n",
1834 ref, mod);
1835
1836 /* Now clear reference and modify */
1837 ref = pmap_clear_reference(pg);
1838 mod = pmap_clear_modify(pg);
1839 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1840 (void *)(u_long)va, (long)pa,
1841 ref, mod);
1842
1843
1844 /* Reference page */
1845 val = *loc;
1846
1847 ref = pmap_is_referenced(pg);
1848 mod = pmap_is_modified(pg);
1849 printf("Referenced page: ref %d, mod %d val %x\n",
1850 ref, mod, val);
1851
1852 /* Now clear reference and modify */
1853 ref = pmap_clear_reference(pg);
1854 mod = pmap_clear_modify(pg);
1855 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1856 (void *)(u_long)va, (long)pa,
1857 ref, mod);
1858
1859 /* Modify page */
1860 #if 0
1861 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1862 pmap_update(pmap_kernel());
1863 #endif
1864 *loc = 1;
1865
1866 ref = pmap_is_referenced(pg);
1867 mod = pmap_is_modified(pg);
1868 printf("Modified page: ref %d, mod %d\n",
1869 ref, mod);
1870
1871 /* Unmap page */
1872 pmap_remove(pmap_kernel(), va, va+1);
1873 pmap_update(pmap_kernel());
1874 ref = pmap_is_referenced(pg);
1875 mod = pmap_is_modified(pg);
1876 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1877
1878 /* Now clear reference and modify */
1879 ref = pmap_clear_reference(pg);
1880 mod = pmap_clear_modify(pg);
1881 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1882 (void *)(u_long)va, (long)pa, ref, mod);
1883
1884 /* Check it's properly cleared */
1885 ref = pmap_is_referenced(pg);
1886 mod = pmap_is_modified(pg);
1887 printf("Checking cleared page: ref %d, mod %d\n",
1888 ref, mod);
1889
1890 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1891 pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1892 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1893 }
1894 #endif
1895