Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.67
      1 /*	$NetBSD: pmap.c,v 1.67 2011/06/18 06:41:41 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.67 2011/06/18 06:41:41 matt Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/proc.h>
     75 #include <sys/queue.h>
     76 #include <sys/systm.h>
     77 #include <sys/pool.h>
     78 #include <sys/device.h>
     79 #include <sys/cpu.h>
     80 
     81 #include <uvm/uvm.h>
     82 
     83 #include <machine/pcb.h>
     84 #include <machine/powerpc.h>
     85 #include <machine/tlb.h>
     86 
     87 #include <powerpc/spr.h>
     88 #include <powerpc/ibm4xx/spr.h>
     89 
     90 #include <powerpc/ibm4xx/cpu.h>
     91 
     92 /*
     93  * kernmap is an array of PTEs large enough to map in
     94  * 4GB.  At 16KB/page it is 256K entries or 2MB.
     95  */
     96 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
     97 void *kernmap;
     98 
     99 #define MINCTX		2
    100 #define NUMCTX		256
    101 
    102 volatile struct pmap *ctxbusy[NUMCTX];
    103 
    104 #define TLBF_USED	0x1
    105 #define	TLBF_REF	0x2
    106 #define	TLBF_LOCKED	0x4
    107 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    108 
    109 typedef struct tlb_info_s {
    110 	char	ti_flags;
    111 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    112 	u_int	ti_va;
    113 } tlb_info_t;
    114 
    115 volatile tlb_info_t tlb_info[NTLB];
    116 /* We'll use a modified FIFO replacement policy cause it's cheap */
    117 volatile int tlbnext;
    118 
    119 static int tlb_nreserved = 0;
    120 static int pmap_bootstrap_done = 0;
    121 
    122 /* Event counters */
    123 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    124 	NULL, "cpu", "tlbmiss");
    125 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    126 	NULL, "cpu", "tlbhit");
    127 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    128 	NULL, "cpu", "tlbflush");
    129 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    130 	NULL, "cpu", "tlbenter");
    131 EVCNT_ATTACH_STATIC(tlbmiss_ev);
    132 EVCNT_ATTACH_STATIC(tlbhit_ev);
    133 EVCNT_ATTACH_STATIC(tlbflush_ev);
    134 EVCNT_ATTACH_STATIC(tlbenter_ev);
    135 
    136 struct pmap kernel_pmap_;
    137 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    138 
    139 static int npgs;
    140 static u_int nextavail;
    141 #ifndef MSGBUFADDR
    142 extern paddr_t msgbuf_paddr;
    143 #endif
    144 
    145 static struct mem_region *mem, *avail;
    146 
    147 /*
    148  * This is a cache of referenced/modified bits.
    149  * Bits herein are shifted by ATTRSHFT.
    150  */
    151 static char *pmap_attrib;
    152 
    153 #define PV_WIRED	0x1
    154 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    155 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    156 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    157 #define PV_CMPVA(va,pv)	(!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
    158 
    159 struct pv_entry {
    160 	struct pv_entry *pv_next;	/* Linked list of mappings */
    161 	vaddr_t pv_va;			/* virtual address of mapping */
    162 	struct pmap *pv_pm;
    163 };
    164 
    165 /* Each index corresponds to TLB_SIZE_* value. */
    166 static size_t tlbsize[] = {
    167 	1024, 		/* TLB_SIZE_1K */
    168 	4096, 		/* TLB_SIZE_4K */
    169 	16384, 		/* TLB_SIZE_16K */
    170 	65536, 		/* TLB_SIZE_64K */
    171 	262144, 	/* TLB_SIZE_256K */
    172 	1048576, 	/* TLB_SIZE_1M */
    173 	4194304, 	/* TLB_SIZE_4M */
    174 	16777216, 	/* TLB_SIZE_16M */
    175 };
    176 
    177 struct pv_entry *pv_table;
    178 static struct pool pv_pool;
    179 
    180 static int pmap_initialized;
    181 
    182 static int ctx_flush(int);
    183 
    184 inline struct pv_entry *pa_to_pv(paddr_t);
    185 static inline char *pa_to_attr(paddr_t);
    186 
    187 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    188 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    189 
    190 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    191 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    192 
    193 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    194 
    195 
    196 inline struct pv_entry *
    197 pa_to_pv(paddr_t pa)
    198 {
    199 	int bank, pg;
    200 
    201 	bank = vm_physseg_find(atop(pa), &pg);
    202 	if (bank == -1)
    203 		return NULL;
    204 	return &VM_PHYSMEM_PTR(bank)->pmseg.pvent[pg];
    205 }
    206 
    207 static inline char *
    208 pa_to_attr(paddr_t pa)
    209 {
    210 	int bank, pg;
    211 
    212 	bank = vm_physseg_find(atop(pa), &pg);
    213 	if (bank == -1)
    214 		return NULL;
    215 	return &VM_PHYSMEM_PTR(bank)->pmseg.attrs[pg];
    216 }
    217 
    218 /*
    219  * Insert PTE into page table.
    220  */
    221 int
    222 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    223 {
    224 	int seg = STIDX(va);
    225 	int ptn = PTIDX(va);
    226 	u_int oldpte;
    227 
    228 	if (!pm->pm_ptbl[seg]) {
    229 		/* Don't allocate a page to clear a non-existent mapping. */
    230 		if (!pte)
    231 			return (0);
    232 		/* Allocate a page XXXX this will sleep! */
    233 		pm->pm_ptbl[seg] =
    234 		    (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    235 		    UVM_KMF_WIRED | UVM_KMF_ZERO);
    236 	}
    237 	oldpte = pm->pm_ptbl[seg][ptn];
    238 	pm->pm_ptbl[seg][ptn] = pte;
    239 
    240 	/* Flush entry. */
    241 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    242 	if (oldpte != pte) {
    243 		if (pte == 0)
    244 			pm->pm_stats.resident_count--;
    245 		else
    246 			pm->pm_stats.resident_count++;
    247 	}
    248 	return (1);
    249 }
    250 
    251 /*
    252  * Get a pointer to a PTE in a page table.
    253  */
    254 volatile u_int *
    255 pte_find(struct pmap *pm, vaddr_t va)
    256 {
    257 	int seg = STIDX(va);
    258 	int ptn = PTIDX(va);
    259 
    260 	if (pm->pm_ptbl[seg])
    261 		return (&pm->pm_ptbl[seg][ptn]);
    262 
    263 	return (NULL);
    264 }
    265 
    266 /*
    267  * This is called during initppc, before the system is really initialized.
    268  */
    269 void
    270 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    271 {
    272 	struct mem_region *mp, *mp1;
    273 	int cnt, i;
    274 	u_int s, e, sz;
    275 
    276 	tlbnext = tlb_nreserved;
    277 
    278 	/*
    279 	 * Allocate the kernel page table at the end of
    280 	 * kernel space so it's in the locked TTE.
    281 	 */
    282 	kernmap = (void *)kernelend;
    283 
    284 	/*
    285 	 * Initialize kernel page table.
    286 	 */
    287 	for (i = 0; i < STSZ; i++) {
    288 		pmap_kernel()->pm_ptbl[i] = 0;
    289 	}
    290 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    291 
    292 	/*
    293 	 * Announce page-size to the VM-system
    294 	 */
    295 	uvmexp.pagesize = NBPG;
    296 	uvm_setpagesize();
    297 
    298 	/*
    299 	 * Get memory.
    300 	 */
    301 	mem_regions(&mem, &avail);
    302 	for (mp = mem; mp->size; mp++) {
    303 		physmem += btoc(mp->size);
    304 		printf("+%lx,",mp->size);
    305 	}
    306 	printf("\n");
    307 	ppc4xx_tlb_init();
    308 	/*
    309 	 * Count the number of available entries.
    310 	 */
    311 	for (cnt = 0, mp = avail; mp->size; mp++)
    312 		cnt++;
    313 
    314 	/*
    315 	 * Page align all regions.
    316 	 * Non-page aligned memory isn't very interesting to us.
    317 	 * Also, sort the entries for ascending addresses.
    318 	 */
    319 	kernelstart &= ~PGOFSET;
    320 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    321 	for (mp = avail; mp->size; mp++) {
    322 		s = mp->start;
    323 		e = mp->start + mp->size;
    324 		printf("%08x-%08x -> ",s,e);
    325 		/*
    326 		 * Check whether this region holds all of the kernel.
    327 		 */
    328 		if (s < kernelstart && e > kernelend) {
    329 			avail[cnt].start = kernelend;
    330 			avail[cnt++].size = e - kernelend;
    331 			e = kernelstart;
    332 		}
    333 		/*
    334 		 * Look whether this regions starts within the kernel.
    335 		 */
    336 		if (s >= kernelstart && s < kernelend) {
    337 			if (e <= kernelend)
    338 				goto empty;
    339 			s = kernelend;
    340 		}
    341 		/*
    342 		 * Now look whether this region ends within the kernel.
    343 		 */
    344 		if (e > kernelstart && e <= kernelend) {
    345 			if (s >= kernelstart)
    346 				goto empty;
    347 			e = kernelstart;
    348 		}
    349 		/*
    350 		 * Now page align the start and size of the region.
    351 		 */
    352 		s = round_page(s);
    353 		e = trunc_page(e);
    354 		if (e < s)
    355 			e = s;
    356 		sz = e - s;
    357 		printf("%08x-%08x = %x\n",s,e,sz);
    358 		/*
    359 		 * Check whether some memory is left here.
    360 		 */
    361 		if (sz == 0) {
    362 		empty:
    363 			memmove(mp, mp + 1,
    364 				(cnt - (mp - avail)) * sizeof *mp);
    365 			cnt--;
    366 			mp--;
    367 			continue;
    368 		}
    369 		/*
    370 		 * Do an insertion sort.
    371 		 */
    372 		npgs += btoc(sz);
    373 		for (mp1 = avail; mp1 < mp; mp1++)
    374 			if (s < mp1->start)
    375 				break;
    376 		if (mp1 < mp) {
    377 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    378 			mp1->start = s;
    379 			mp1->size = sz;
    380 		} else {
    381 			mp->start = s;
    382 			mp->size = sz;
    383 		}
    384 	}
    385 
    386 	/*
    387 	 * We cannot do pmap_steal_memory here,
    388 	 * since we don't run with translation enabled yet.
    389 	 */
    390 #ifndef MSGBUFADDR
    391 	/*
    392 	 * allow for msgbuf
    393 	 */
    394 	sz = round_page(MSGBUFSIZE);
    395 	mp = NULL;
    396 	for (mp1 = avail; mp1->size; mp1++)
    397 		if (mp1->size >= sz)
    398 			mp = mp1;
    399 	if (mp == NULL)
    400 		panic("not enough memory?");
    401 
    402 	npgs -= btoc(sz);
    403 	msgbuf_paddr = mp->start + mp->size - sz;
    404 	mp->size -= sz;
    405 	if (mp->size <= 0)
    406 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
    407 #endif
    408 
    409 	for (mp = avail; mp->size; mp++)
    410 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    411 			atop(mp->start), atop(mp->start + mp->size),
    412 			VM_FREELIST_DEFAULT);
    413 
    414 	/*
    415 	 * Initialize kernel pmap and hardware.
    416 	 */
    417 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    418 	pmap_kernel()->pm_ctx = KERNEL_PID;
    419 	nextavail = avail->start;
    420 
    421 	pmap_bootstrap_done = 1;
    422 }
    423 
    424 /*
    425  * Restrict given range to physical memory
    426  *
    427  * (Used by /dev/mem)
    428  */
    429 void
    430 pmap_real_memory(paddr_t *start, psize_t *size)
    431 {
    432 	struct mem_region *mp;
    433 
    434 	for (mp = mem; mp->size; mp++) {
    435 		if (*start + *size > mp->start &&
    436 		    *start < mp->start + mp->size) {
    437 			if (*start < mp->start) {
    438 				*size -= mp->start - *start;
    439 				*start = mp->start;
    440 			}
    441 			if (*start + *size > mp->start + mp->size)
    442 				*size = mp->start + mp->size - *start;
    443 			return;
    444 		}
    445 	}
    446 	*size = 0;
    447 }
    448 
    449 /*
    450  * Initialize anything else for pmap handling.
    451  * Called during vm_init().
    452  */
    453 void
    454 pmap_init(void)
    455 {
    456 	struct pv_entry *pv;
    457 	vsize_t sz;
    458 	vaddr_t addr;
    459 	int i, s;
    460 	int bank;
    461 	char *attr;
    462 
    463 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    464 	sz = round_page(sz);
    465 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    466 	s = splvm();
    467 	pv = pv_table = (struct pv_entry *)addr;
    468 	for (i = npgs; --i >= 0;)
    469 		pv++->pv_pm = NULL;
    470 	pmap_attrib = (char *)pv;
    471 	memset(pv, 0, npgs);
    472 
    473 	pv = pv_table;
    474 	attr = pmap_attrib;
    475 	for (bank = 0; bank < vm_nphysseg; bank++) {
    476 		sz = VM_PHYSMEM_PTR(bank)->end - VM_PHYSMEM_PTR(bank)->start;
    477 		VM_PHYSMEM_PTR(bank)->pmseg.pvent = pv;
    478 		VM_PHYSMEM_PTR(bank)->pmseg.attrs = attr;
    479 		pv += sz;
    480 		attr += sz;
    481 	}
    482 
    483 	pmap_initialized = 1;
    484 	splx(s);
    485 
    486 	/* Setup a pool for additional pvlist structures */
    487 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
    488 	    IPL_VM);
    489 }
    490 
    491 /*
    492  * How much virtual space is available to the kernel?
    493  */
    494 void
    495 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    496 {
    497 
    498 #if 0
    499 	/*
    500 	 * Reserve one segment for kernel virtual memory
    501 	 */
    502 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
    503 	*end = *start + SEGMENT_LENGTH;
    504 #else
    505 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    506 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    507 #endif
    508 }
    509 
    510 #ifdef PMAP_GROWKERNEL
    511 /*
    512  * Preallocate kernel page tables to a specified VA.
    513  * This simply loops through the first TTE for each
    514  * page table from the beginning of the kernel pmap,
    515  * reads the entry, and if the result is
    516  * zero (either invalid entry or no page table) it stores
    517  * a zero there, populating page tables in the process.
    518  * This is not the most efficient technique but i don't
    519  * expect it to be called that often.
    520  */
    521 extern struct vm_page *vm_page_alloc1(void);
    522 extern void vm_page_free1(struct vm_page *);
    523 
    524 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    525 
    526 vaddr_t
    527 pmap_growkernel(vaddr_t maxkvaddr)
    528 {
    529 	int s;
    530 	int seg;
    531 	paddr_t pg;
    532 	struct pmap *pm = pmap_kernel();
    533 
    534 	s = splvm();
    535 
    536 	/* Align with the start of a page table */
    537 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
    538 	     kbreak += PTMAP) {
    539 		seg = STIDX(kbreak);
    540 
    541 		if (pte_find(pm, kbreak))
    542 			continue;
    543 
    544 		if (uvm.page_init_done) {
    545 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    546 		} else {
    547 			if (!uvm_page_physget(&pg))
    548 				panic("pmap_growkernel: no memory");
    549 		}
    550 		if (!pg)
    551 			panic("pmap_growkernel: no pages");
    552 		pmap_zero_page((paddr_t)pg);
    553 
    554 		/* XXX This is based on all phymem being addressable */
    555 		pm->pm_ptbl[seg] = (u_int *)pg;
    556 	}
    557 	splx(s);
    558 	return (kbreak);
    559 }
    560 
    561 /*
    562  *	vm_page_alloc1:
    563  *
    564  *	Allocate and return a memory cell with no associated object.
    565  */
    566 struct vm_page *
    567 vm_page_alloc1(void)
    568 {
    569 	struct vm_page *pg;
    570 
    571 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    572 	if (pg) {
    573 		pg->wire_count = 1;	/* no mappings yet */
    574 		pg->flags &= ~PG_BUSY;	/* never busy */
    575 	}
    576 	return pg;
    577 }
    578 
    579 /*
    580  *	vm_page_free1:
    581  *
    582  *	Returns the given page to the free list,
    583  *	disassociating it with any VM object.
    584  *
    585  *	Object and page must be locked prior to entry.
    586  */
    587 void
    588 vm_page_free1(struct vm_page *pg)
    589 {
    590 #ifdef DIAGNOSTIC
    591 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    592 		printf("Freeing invalid page %p\n", pg);
    593 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
    594 #ifdef DDB
    595 		Debugger();
    596 #endif
    597 		return;
    598 	}
    599 #endif
    600 	pg->flags |= PG_BUSY;
    601 	pg->wire_count = 0;
    602 	uvm_pagefree(pg);
    603 }
    604 #endif
    605 
    606 /*
    607  * Create and return a physical map.
    608  */
    609 struct pmap *
    610 pmap_create(void)
    611 {
    612 	struct pmap *pm;
    613 
    614 	pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
    615 	memset(pm, 0, sizeof *pm);
    616 	pm->pm_refs = 1;
    617 	return pm;
    618 }
    619 
    620 /*
    621  * Add a reference to the given pmap.
    622  */
    623 void
    624 pmap_reference(struct pmap *pm)
    625 {
    626 
    627 	pm->pm_refs++;
    628 }
    629 
    630 /*
    631  * Retire the given pmap from service.
    632  * Should only be called if the map contains no valid mappings.
    633  */
    634 void
    635 pmap_destroy(struct pmap *pm)
    636 {
    637 	int i;
    638 
    639 	if (--pm->pm_refs > 0) {
    640 		return;
    641 	}
    642 	KASSERT(pm->pm_stats.resident_count == 0);
    643 	KASSERT(pm->pm_stats.wired_count == 0);
    644 	for (i = 0; i < STSZ; i++)
    645 		if (pm->pm_ptbl[i]) {
    646 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    647 			    PAGE_SIZE, UVM_KMF_WIRED);
    648 			pm->pm_ptbl[i] = NULL;
    649 		}
    650 	if (pm->pm_ctx)
    651 		ctx_free(pm);
    652 	free(pm, M_VMPMAP);
    653 }
    654 
    655 /*
    656  * Copy the range specified by src_addr/len
    657  * from the source map to the range dst_addr/len
    658  * in the destination map.
    659  *
    660  * This routine is only advisory and need not do anything.
    661  */
    662 void
    663 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    664 	  vsize_t len, vaddr_t src_addr)
    665 {
    666 }
    667 
    668 /*
    669  * Require that all active physical maps contain no
    670  * incorrect entries NOW.
    671  */
    672 void
    673 pmap_update(struct pmap *pmap)
    674 {
    675 }
    676 
    677 /*
    678  * Fill the given physical page with zeroes.
    679  */
    680 void
    681 pmap_zero_page(paddr_t pa)
    682 {
    683 
    684 #ifdef PPC_4XX_NOCACHE
    685 	memset((void *)pa, 0, PAGE_SIZE);
    686 #else
    687 	int i;
    688 
    689 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    690 		__asm volatile ("dcbz 0,%0" :: "r"(pa));
    691 		pa += CACHELINESIZE;
    692 	}
    693 #endif
    694 }
    695 
    696 /*
    697  * Copy the given physical source page to its destination.
    698  */
    699 void
    700 pmap_copy_page(paddr_t src, paddr_t dst)
    701 {
    702 
    703 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    704 	dcache_flush_page(dst);
    705 }
    706 
    707 /*
    708  * This returns != 0 on success.
    709  */
    710 static inline int
    711 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    712 {
    713 	struct pv_entry *pv, *npv = NULL;
    714 	int s;
    715 
    716 	if (!pmap_initialized)
    717 		return 0;
    718 
    719 	s = splvm();
    720 	pv = pa_to_pv(pa);
    721 	if (!pv->pv_pm) {
    722 		/*
    723 		 * No entries yet, use header as the first entry.
    724 		 */
    725 		pv->pv_va = va;
    726 		pv->pv_pm = pm;
    727 		pv->pv_next = NULL;
    728 	} else {
    729 		/*
    730 		 * There is at least one other VA mapping this page.
    731 		 * Place this entry after the header.
    732 		 */
    733 		npv = pool_get(&pv_pool, PR_NOWAIT);
    734 		if (npv == NULL) {
    735 			if ((flags & PMAP_CANFAIL) == 0)
    736 				panic("pmap_enter_pv: failed");
    737 			splx(s);
    738 			return 0;
    739 		}
    740 		npv->pv_va = va;
    741 		npv->pv_pm = pm;
    742 		npv->pv_next = pv->pv_next;
    743 		pv->pv_next = npv;
    744 		pv = npv;
    745 	}
    746 	if (flags & PMAP_WIRED) {
    747 		PV_WIRE(pv);
    748 		pm->pm_stats.wired_count++;
    749 	}
    750 	splx(s);
    751 	return (1);
    752 }
    753 
    754 static void
    755 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    756 {
    757 	struct pv_entry *pv, *npv;
    758 
    759 	/*
    760 	 * Remove from the PV table.
    761 	 */
    762 	pv = pa_to_pv(pa);
    763 	if (!pv)
    764 		return;
    765 
    766 	/*
    767 	 * If it is the first entry on the list, it is actually
    768 	 * in the header and we must copy the following entry up
    769 	 * to the header.  Otherwise we must search the list for
    770 	 * the entry.  In either case we free the now unused entry.
    771 	 */
    772 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    773 		if (PV_ISWIRED(pv)) {
    774 			pm->pm_stats.wired_count--;
    775 		}
    776 		if ((npv = pv->pv_next)) {
    777 			*pv = *npv;
    778 			pool_put(&pv_pool, npv);
    779 		} else
    780 			pv->pv_pm = NULL;
    781 	} else {
    782 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    783 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    784 				break;
    785 		if (npv) {
    786 			pv->pv_next = npv->pv_next;
    787 			if (PV_ISWIRED(npv)) {
    788 				pm->pm_stats.wired_count--;
    789 			}
    790 			pool_put(&pv_pool, npv);
    791 		}
    792 	}
    793 }
    794 
    795 /*
    796  * Insert physical page at pa into the given pmap at virtual address va.
    797  */
    798 int
    799 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    800 {
    801 	int s;
    802 	u_int tte;
    803 	bool managed;
    804 
    805 	/*
    806 	 * Have to remove any existing mapping first.
    807 	 */
    808 	pmap_remove(pm, va, va + PAGE_SIZE);
    809 
    810 	if (flags & PMAP_WIRED)
    811 		flags |= prot;
    812 
    813 	managed = uvm_pageismanaged(pa);
    814 
    815 	/*
    816 	 * Generate TTE.
    817 	 */
    818 	tte = TTE_PA(pa);
    819 	/* XXXX -- need to support multiple page sizes. */
    820 	tte |= TTE_SZ_16K;
    821 #ifdef	DIAGNOSTIC
    822 	if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
    823 		(PME_NOCACHE | PME_WRITETHROUG))
    824 		panic("pmap_enter: uncached & writethrough");
    825 #endif
    826 	if (flags & PME_NOCACHE)
    827 		/* Must be I/O mapping */
    828 		tte |= TTE_I | TTE_G;
    829 #ifdef PPC_4XX_NOCACHE
    830 	tte |= TTE_I;
    831 #else
    832 	else if (flags & PME_WRITETHROUG)
    833 		/* Uncached and writethrough are not compatible */
    834 		tte |= TTE_W;
    835 #endif
    836 	if (pm == pmap_kernel())
    837 		tte |= TTE_ZONE(ZONE_PRIV);
    838 	else
    839 		tte |= TTE_ZONE(ZONE_USER);
    840 
    841 	if (flags & VM_PROT_WRITE)
    842 		tte |= TTE_WR;
    843 
    844 	if (flags & VM_PROT_EXECUTE)
    845 		tte |= TTE_EX;
    846 
    847 	/*
    848 	 * Now record mapping for later back-translation.
    849 	 */
    850 	if (pmap_initialized && managed) {
    851 		char *attr;
    852 
    853 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    854 			/* Could not enter pv on a managed page */
    855 			return 1;
    856 		}
    857 
    858 		/* Now set attributes. */
    859 		attr = pa_to_attr(pa);
    860 #ifdef DIAGNOSTIC
    861 		if (!attr)
    862 			panic("managed but no attr");
    863 #endif
    864 		if (flags & VM_PROT_ALL)
    865 			*attr |= PMAP_ATTR_REF;
    866 		if (flags & VM_PROT_WRITE)
    867 			*attr |= PMAP_ATTR_CHG;
    868 	}
    869 
    870 	s = splvm();
    871 
    872 	/* Insert page into page table. */
    873 	pte_enter(pm, va, tte);
    874 
    875 	/* If this is a real fault, enter it in the tlb */
    876 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    877 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    878 	}
    879 	splx(s);
    880 
    881 	/* Flush the real memory from the instruction cache. */
    882 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    883 		__syncicache((void *)pa, PAGE_SIZE);
    884 
    885 	return 0;
    886 }
    887 
    888 void
    889 pmap_unwire(struct pmap *pm, vaddr_t va)
    890 {
    891 	struct pv_entry *pv;
    892 	paddr_t pa;
    893 	int s;
    894 
    895 	if (!pmap_extract(pm, va, &pa)) {
    896 		return;
    897 	}
    898 
    899 	pv = pa_to_pv(pa);
    900 	if (!pv)
    901 		return;
    902 
    903 	s = splvm();
    904 	while (pv != NULL) {
    905 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    906 			if (PV_ISWIRED(pv)) {
    907 				PV_UNWIRE(pv);
    908 				pm->pm_stats.wired_count--;
    909 			}
    910 			break;
    911 		}
    912 		pv = pv->pv_next;
    913 	}
    914 	splx(s);
    915 }
    916 
    917 void
    918 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    919 {
    920 	int s;
    921 	u_int tte;
    922 	struct pmap *pm = pmap_kernel();
    923 
    924 	/*
    925 	 * Have to remove any existing mapping first.
    926 	 */
    927 
    928 	/*
    929 	 * Generate TTE.
    930 	 *
    931 	 * XXXX
    932 	 *
    933 	 * Since the kernel does not handle execution privileges properly,
    934 	 * we will handle read and execute permissions together.
    935 	 */
    936 	tte = 0;
    937 	if (prot & VM_PROT_ALL) {
    938 
    939 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    940 		/* XXXX -- need to support multiple page sizes. */
    941 		tte |= TTE_SZ_16K;
    942 #ifdef DIAGNOSTIC
    943 		if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
    944 			(PME_NOCACHE | PME_WRITETHROUG))
    945 			panic("pmap_kenter_pa: uncached & writethrough");
    946 #endif
    947 		if (prot & PME_NOCACHE)
    948 			/* Must be I/O mapping */
    949 			tte |= TTE_I | TTE_G;
    950 #ifdef PPC_4XX_NOCACHE
    951 		tte |= TTE_I;
    952 #else
    953 		else if (prot & PME_WRITETHROUG)
    954 			/* Uncached and writethrough are not compatible */
    955 			tte |= TTE_W;
    956 #endif
    957 		if (prot & VM_PROT_WRITE)
    958 			tte |= TTE_WR;
    959 	}
    960 
    961 	s = splvm();
    962 
    963 	/* Insert page into page table. */
    964 	pte_enter(pm, va, tte);
    965 	splx(s);
    966 }
    967 
    968 void
    969 pmap_kremove(vaddr_t va, vsize_t len)
    970 {
    971 
    972 	while (len > 0) {
    973 		pte_enter(pmap_kernel(), va, 0);
    974 		va += PAGE_SIZE;
    975 		len -= PAGE_SIZE;
    976 	}
    977 }
    978 
    979 /*
    980  * Remove the given range of mapping entries.
    981  */
    982 void
    983 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
    984 {
    985 	int s;
    986 	paddr_t pa;
    987 	volatile u_int *ptp;
    988 
    989 	s = splvm();
    990 	while (va < endva) {
    991 
    992 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
    993 			pa = TTE_PA(pa);
    994 			pmap_remove_pv(pm, va, pa);
    995 			*ptp = 0;
    996 			ppc4xx_tlb_flush(va, pm->pm_ctx);
    997 			pm->pm_stats.resident_count--;
    998 		}
    999 		va += PAGE_SIZE;
   1000 	}
   1001 
   1002 	splx(s);
   1003 }
   1004 
   1005 /*
   1006  * Get the physical page address for the given pmap/virtual address.
   1007  */
   1008 bool
   1009 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1010 {
   1011 	int seg = STIDX(va);
   1012 	int ptn = PTIDX(va);
   1013 	u_int pa = 0;
   1014 	int s;
   1015 
   1016 	s = splvm();
   1017 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
   1018 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1019 	}
   1020 	splx(s);
   1021 	return (pa != 0);
   1022 }
   1023 
   1024 /*
   1025  * Lower the protection on the specified range of this pmap.
   1026  *
   1027  * There are only two cases: either the protection is going to 0,
   1028  * or it is going to read-only.
   1029  */
   1030 void
   1031 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1032 {
   1033 	volatile u_int *ptp;
   1034 	int s, bic;
   1035 
   1036 	if ((prot & VM_PROT_READ) == 0) {
   1037 		pmap_remove(pm, sva, eva);
   1038 		return;
   1039 	}
   1040 	bic = 0;
   1041 	if ((prot & VM_PROT_WRITE) == 0) {
   1042 		bic |= TTE_WR;
   1043 	}
   1044 	if ((prot & VM_PROT_EXECUTE) == 0) {
   1045 		bic |= TTE_EX;
   1046 	}
   1047 	if (bic == 0) {
   1048 		return;
   1049 	}
   1050 	s = splvm();
   1051 	while (sva < eva) {
   1052 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1053 			*ptp &= ~bic;
   1054 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1055 		}
   1056 		sva += PAGE_SIZE;
   1057 	}
   1058 	splx(s);
   1059 }
   1060 
   1061 bool
   1062 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1063 {
   1064 	paddr_t pa;
   1065 	char *attr;
   1066 	int s, rv;
   1067 
   1068 	/*
   1069 	 * First modify bits in cache.
   1070 	 */
   1071 	pa = VM_PAGE_TO_PHYS(pg);
   1072 	attr = pa_to_attr(pa);
   1073 	if (attr == NULL)
   1074 		return false;
   1075 
   1076 	s = splvm();
   1077 	rv = ((*attr & mask) != 0);
   1078 	if (clear) {
   1079 		*attr &= ~mask;
   1080 		pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1081 	}
   1082 	splx(s);
   1083 	return rv;
   1084 }
   1085 
   1086 
   1087 /*
   1088  * Lower the protection on the specified physical page.
   1089  *
   1090  * There are only two cases: either the protection is going to 0,
   1091  * or it is going to read-only.
   1092  */
   1093 void
   1094 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1095 {
   1096 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1097 	vaddr_t va;
   1098 	struct pv_entry *pvh, *pv, *npv;
   1099 	struct pmap *pm;
   1100 
   1101 	pvh = pa_to_pv(pa);
   1102 	if (pvh == NULL)
   1103 		return;
   1104 
   1105 	/* Handle extra pvs which may be deleted in the operation */
   1106 	for (pv = pvh->pv_next; pv; pv = npv) {
   1107 		npv = pv->pv_next;
   1108 
   1109 		pm = pv->pv_pm;
   1110 		va = pv->pv_va;
   1111 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1112 	}
   1113 	/* Now check the head pv */
   1114 	if (pvh->pv_pm) {
   1115 		pv = pvh;
   1116 		pm = pv->pv_pm;
   1117 		va = pv->pv_va;
   1118 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1119 	}
   1120 }
   1121 
   1122 /*
   1123  * Activate the address space for the specified process.  If the process
   1124  * is the current process, load the new MMU context.
   1125  */
   1126 void
   1127 pmap_activate(struct lwp *l)
   1128 {
   1129 #if 0
   1130 	struct pcb *pcb = lwp_getpcb(l);
   1131 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1132 
   1133 	/*
   1134 	 * XXX Normally performed in cpu_lwp_fork().
   1135 	 */
   1136 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1137 	pcb->pcb_pm = pmap;
   1138 #endif
   1139 }
   1140 
   1141 /*
   1142  * Deactivate the specified process's address space.
   1143  */
   1144 void
   1145 pmap_deactivate(struct lwp *l)
   1146 {
   1147 }
   1148 
   1149 /*
   1150  * Synchronize caches corresponding to [addr, addr+len) in p.
   1151  */
   1152 void
   1153 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1154 {
   1155 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1156 	int msr, ctx, opid, step;
   1157 
   1158 	step = CACHELINESIZE;
   1159 
   1160 	/*
   1161 	 * Need to turn off IMMU and switch to user context.
   1162 	 * (icbi uses DMMU).
   1163 	 */
   1164 	if (!(ctx = pm->pm_ctx)) {
   1165 		/* No context -- assign it one */
   1166 		ctx_alloc(pm);
   1167 		ctx = pm->pm_ctx;
   1168 	}
   1169 	__asm volatile("mfmsr %0;"
   1170 		"li %1, %7;"
   1171 		"andc %1,%0,%1;"
   1172 		"mtmsr %1;"
   1173 		"sync;isync;"
   1174 		"mfpid %1;"
   1175 		"mtpid %2;"
   1176 		"sync; isync;"
   1177 		"1:"
   1178 		"dcbf 0,%3;"
   1179 		"icbi 0,%3;"
   1180 		"add %3,%3,%5;"
   1181 		"addc. %4,%4,%6;"
   1182 		"bge 1b;"
   1183 		"mtpid %1;"
   1184 		"mtmsr %0;"
   1185 		"sync; isync"
   1186 		: "=&r" (msr), "=&r" (opid)
   1187 		: "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
   1188 		  "K" (PSL_IR | PSL_DR));
   1189 }
   1190 
   1191 
   1192 /* This has to be done in real mode !!! */
   1193 void
   1194 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1195 {
   1196 	u_long i, found;
   1197 	u_long msr;
   1198 
   1199 	/* If there's no context then it can't be mapped. */
   1200 	if (!pid)
   1201 		return;
   1202 
   1203 	__asm( 	"mfpid %1;"		/* Save PID */
   1204 		"mfmsr %2;"		/* Save MSR */
   1205 		"li %0,0;"		/* Now clear MSR */
   1206 		"mtmsr %0;"
   1207 		"mtpid %4;"		/* Set PID */
   1208 		"sync;"
   1209 		"tlbsx. %0,0,%3;"	/* Search TLB */
   1210 		"sync;"
   1211 		"mtpid %1;"		/* Restore PID */
   1212 		"mtmsr %2;"		/* Restore MSR */
   1213 		"sync;isync;"
   1214 		"li %1,1;"
   1215 		"beq 1f;"
   1216 		"li %1,0;"
   1217 		"1:"
   1218 		: "=&r" (i), "=&r" (found), "=&r" (msr)
   1219 		: "r" (va), "r" (pid));
   1220 	if (found && !TLB_LOCKED(i)) {
   1221 
   1222 		/* Now flush translation */
   1223 		__asm volatile(
   1224 			"tlbwe %0,%1,0;"
   1225 			"sync;isync;"
   1226 			: : "r" (0), "r" (i));
   1227 
   1228 		tlb_info[i].ti_ctx = 0;
   1229 		tlb_info[i].ti_flags = 0;
   1230 		tlbnext = i;
   1231 		/* Successful flushes */
   1232 		tlbflush_ev.ev_count++;
   1233 	}
   1234 }
   1235 
   1236 void
   1237 ppc4xx_tlb_flush_all(void)
   1238 {
   1239 	u_long i;
   1240 
   1241 	for (i = 0; i < NTLB; i++)
   1242 		if (!TLB_LOCKED(i)) {
   1243 			__asm volatile(
   1244 				"tlbwe %0,%1,0;"
   1245 				"sync;isync;"
   1246 				: : "r" (0), "r" (i));
   1247 			tlb_info[i].ti_ctx = 0;
   1248 			tlb_info[i].ti_flags = 0;
   1249 		}
   1250 
   1251 	__asm volatile("sync;isync");
   1252 }
   1253 
   1254 /* Find a TLB entry to evict. */
   1255 static int
   1256 ppc4xx_tlb_find_victim(void)
   1257 {
   1258 	int flags;
   1259 
   1260 	for (;;) {
   1261 		if (++tlbnext >= NTLB)
   1262 			tlbnext = tlb_nreserved;
   1263 		flags = tlb_info[tlbnext].ti_flags;
   1264 		if (!(flags & TLBF_USED) ||
   1265 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1266 			u_long va, stack = (u_long)&va;
   1267 
   1268 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
   1269 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1270 			     (flags & TLBF_USED)) {
   1271 				/* Kernel stack page */
   1272 				flags |= TLBF_USED;
   1273 				tlb_info[tlbnext].ti_flags = flags;
   1274 			} else {
   1275 				/* Found it! */
   1276 				return (tlbnext);
   1277 			}
   1278 		} else {
   1279 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1280 		}
   1281 	}
   1282 }
   1283 
   1284 void
   1285 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1286 {
   1287 	u_long th, tl, idx;
   1288 	tlbpid_t pid;
   1289 	u_short msr;
   1290 	paddr_t pa;
   1291 	int s, sz;
   1292 
   1293 	tlbenter_ev.ev_count++;
   1294 
   1295 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1296 	pa = (pte & TTE_RPN_MASK(sz));
   1297 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1298 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1299 	tl |= ppc4xx_tlbflags(va, pa);
   1300 
   1301 	s = splhigh();
   1302 	idx = ppc4xx_tlb_find_victim();
   1303 
   1304 #ifdef DIAGNOSTIC
   1305 	if ((idx < tlb_nreserved) || (idx >= NTLB)) {
   1306 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1307 	}
   1308 #endif
   1309 
   1310 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1311 	tlb_info[idx].ti_ctx = ctx;
   1312 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1313 
   1314 	__asm volatile(
   1315 		"mfmsr %0;"			/* Save MSR */
   1316 		"li %1,0;"
   1317 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
   1318 		"mtmsr %1;"			/* Clear MSR */
   1319 		"mfpid %1;"			/* Save old PID */
   1320 		"mtpid %2;"			/* Load translation ctx */
   1321 		"sync; isync;"
   1322 #ifdef DEBUG
   1323 		"andi. %3,%3,63;"
   1324 		"tweqi %3,0;" 			/* XXXXX DEBUG trap on index 0 */
   1325 #endif
   1326 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
   1327 		"sync; isync;"
   1328 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
   1329 		"sync; isync;"
   1330 	: "=&r" (msr), "=&r" (pid)
   1331 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
   1332 	splx(s);
   1333 }
   1334 
   1335 void
   1336 ppc4xx_tlb_init(void)
   1337 {
   1338 	int i;
   1339 
   1340 	/* Mark reserved TLB entries */
   1341 	for (i = 0; i < tlb_nreserved; i++) {
   1342 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1343 		tlb_info[i].ti_ctx = KERNEL_PID;
   1344 	}
   1345 
   1346 	/* Setup security zones */
   1347 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1348 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1349 	 * Z3 - full access regardless of TLB entry permissions
   1350 	 */
   1351 
   1352 	__asm volatile(
   1353 		"mtspr %0,%1;"
   1354 		"sync;"
   1355 		::  "K"(SPR_ZPR), "r" (0x1b000000));
   1356 }
   1357 
   1358 /*
   1359  * ppc4xx_tlb_size_mask:
   1360  *
   1361  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1362  */
   1363 static int
   1364 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1365 {
   1366 	int 			i;
   1367 
   1368 	for (i = 0; i < __arraycount(tlbsize); i++)
   1369 		if (size <= tlbsize[i]) {
   1370 			*mask = (i << TLB_SIZE_SHFT);
   1371 			*rsiz = tlbsize[i];
   1372 			return (0);
   1373 		}
   1374 	return (EINVAL);
   1375 }
   1376 
   1377 /*
   1378  * ppc4xx_tlb_mapiodev:
   1379  *
   1380  * 	Lookup virtual address of mapping previously entered via
   1381  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1382  * 	need to waste extra storage for reserved mappings. Note
   1383  * 	that reading TLBHI also sets PID, but all reserved mappings
   1384  * 	use KERNEL_PID, so the side effect is nil.
   1385  */
   1386 void *
   1387 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1388 {
   1389 	paddr_t 		pa;
   1390 	vaddr_t 		va;
   1391 	u_int 			lo, hi, sz;
   1392 	int 			i;
   1393 
   1394 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1395 	for (i = 0; i < tlb_nreserved; i++) {
   1396 		__asm volatile (
   1397 		    "	tlbre %0,%2,1 	\n" 	/* TLBLO */
   1398 		    "	tlbre %1,%2,0 	\n" 	/* TLBHI */
   1399 		    : "=&r" (lo), "=&r" (hi)
   1400 		    : "r" (i));
   1401 
   1402 		KASSERT(hi & TLB_VALID);
   1403 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1404 
   1405 		pa = (lo & TLB_RPN_MASK);
   1406 		if (base < pa)
   1407 			continue;
   1408 
   1409 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1410 		if ((base + len) > (pa + sz))
   1411 			continue;
   1412 
   1413 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1414 		return (void *)(va);
   1415 	}
   1416 
   1417 	return (NULL);
   1418 }
   1419 
   1420 /*
   1421  * ppc4xx_tlb_reserve:
   1422  *
   1423  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1424  */
   1425 void
   1426 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1427 {
   1428 	u_int 			lo, hi;
   1429 	int 			szmask, rsize;
   1430 
   1431 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1432 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1433 	KASSERT(! pmap_bootstrap_done);
   1434 	KASSERT(tlb_nreserved < NTLB);
   1435 
   1436 	/* Resolve size. */
   1437 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1438 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1439 		    size, tlb_nreserved);
   1440 
   1441 	/* Real size will be power of two >= 1024, so this is OK. */
   1442 	pa &= ~(rsize - 1); 	/* RPN */
   1443 	va &= ~(rsize - 1); 	/* EPN */
   1444 
   1445 	lo = pa | TLB_WR | flags;
   1446 	hi = va | TLB_VALID | szmask;
   1447 
   1448 #ifdef PPC_4XX_NOCACHE
   1449 	lo |= TLB_I;
   1450 #endif
   1451 
   1452 	__asm volatile(
   1453 	    "	tlbwe %1,%0,1 	\n" 	/* write TLBLO */
   1454 	    "	tlbwe %2,%0,0 	\n" 	/* write TLBHI */
   1455 	    "   sync 		\n"
   1456 	    "	isync 		\n"
   1457 	    : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
   1458 
   1459 	tlb_nreserved++;
   1460 }
   1461 
   1462 /*
   1463  * We should pass the ctx in from trap code.
   1464  */
   1465 int
   1466 pmap_tlbmiss(vaddr_t va, int ctx)
   1467 {
   1468 	volatile u_int *pte;
   1469 	u_long tte;
   1470 
   1471 	tlbmiss_ev.ev_count++;
   1472 
   1473 	/*
   1474 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1475 	 * Physical RAM is expected to live in this range, care must be taken
   1476 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1477 	 * code.
   1478 	 */
   1479 	if (ctx != KERNEL_PID ||
   1480 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1481 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1482 		if (pte == NULL) {
   1483 			/* Map unmanaged addresses directly for kernel access */
   1484 			return 1;
   1485 		}
   1486 		tte = *pte;
   1487 		if (tte == 0) {
   1488 			return 1;
   1489 		}
   1490 	} else {
   1491 		/* Create a 16MB writable mapping. */
   1492 #ifdef PPC_4XX_NOCACHE
   1493 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
   1494 #else
   1495 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1496 #endif
   1497 	}
   1498 	tlbhit_ev.ev_count++;
   1499 	ppc4xx_tlb_enter(ctx, va, tte);
   1500 
   1501 	return 0;
   1502 }
   1503 
   1504 /*
   1505  * Flush all the entries matching a context from the TLB.
   1506  */
   1507 static int
   1508 ctx_flush(int cnum)
   1509 {
   1510 	int i;
   1511 
   1512 	/* We gotta steal this context */
   1513 	for (i = tlb_nreserved; i < NTLB; i++) {
   1514 		if (tlb_info[i].ti_ctx == cnum) {
   1515 			/* Can't steal ctx if it has a locked entry. */
   1516 			if (TLB_LOCKED(i)) {
   1517 #ifdef DIAGNOSTIC
   1518 				printf("ctx_flush: can't invalidate "
   1519 					"locked mapping %d "
   1520 					"for context %d\n", i, cnum);
   1521 #ifdef DDB
   1522 				Debugger();
   1523 #endif
   1524 #endif
   1525 				return (1);
   1526 			}
   1527 #ifdef DIAGNOSTIC
   1528 			if (i < tlb_nreserved)
   1529 				panic("TLB entry %d not locked", i);
   1530 #endif
   1531 			/* Invalidate particular TLB entry regardless of locked status */
   1532 			__asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
   1533 			tlb_info[i].ti_flags = 0;
   1534 		}
   1535 	}
   1536 	return (0);
   1537 }
   1538 
   1539 /*
   1540  * Allocate a context.  If necessary, steal one from someone else.
   1541  *
   1542  * The new context is flushed from the TLB before returning.
   1543  */
   1544 int
   1545 ctx_alloc(struct pmap *pm)
   1546 {
   1547 	int s, cnum;
   1548 	static int next = MINCTX;
   1549 
   1550 	if (pm == pmap_kernel()) {
   1551 #ifdef DIAGNOSTIC
   1552 		printf("ctx_alloc: kernel pmap!\n");
   1553 #endif
   1554 		return (0);
   1555 	}
   1556 	s = splvm();
   1557 
   1558 	/* Find a likely context. */
   1559 	cnum = next;
   1560 	do {
   1561 		if ((++cnum) > NUMCTX)
   1562 			cnum = MINCTX;
   1563 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1564 
   1565 	/* Now clean it out */
   1566 oops:
   1567 	if (cnum < MINCTX)
   1568 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1569 	if (ctx_flush(cnum)) {
   1570 		/* oops -- something's wired. */
   1571 		if ((++cnum) > NUMCTX)
   1572 			cnum = MINCTX;
   1573 		goto oops;
   1574 	}
   1575 
   1576 	if (ctxbusy[cnum]) {
   1577 #ifdef DEBUG
   1578 		/* We should identify this pmap and clear it */
   1579 		printf("Warning: stealing context %d\n", cnum);
   1580 #endif
   1581 		ctxbusy[cnum]->pm_ctx = 0;
   1582 	}
   1583 	ctxbusy[cnum] = pm;
   1584 	next = cnum;
   1585 	splx(s);
   1586 	pm->pm_ctx = cnum;
   1587 
   1588 	return cnum;
   1589 }
   1590 
   1591 /*
   1592  * Give away a context.
   1593  */
   1594 void
   1595 ctx_free(struct pmap *pm)
   1596 {
   1597 	int oldctx;
   1598 
   1599 	oldctx = pm->pm_ctx;
   1600 
   1601 	if (oldctx == 0)
   1602 		panic("ctx_free: freeing kernel context");
   1603 #ifdef DIAGNOSTIC
   1604 	if (ctxbusy[oldctx] == 0)
   1605 		printf("ctx_free: freeing free context %d\n", oldctx);
   1606 	if (ctxbusy[oldctx] != pm) {
   1607 		printf("ctx_free: freeing someone esle's context\n "
   1608 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1609 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1610 #ifdef DDB
   1611 		Debugger();
   1612 #endif
   1613 	}
   1614 #endif
   1615 	/* We should verify it has not been stolen and reallocated... */
   1616 	ctxbusy[oldctx] = NULL;
   1617 	ctx_flush(oldctx);
   1618 }
   1619 
   1620 
   1621 #ifdef DEBUG
   1622 /*
   1623  * Test ref/modify handling.
   1624  */
   1625 void pmap_testout(void);
   1626 void
   1627 pmap_testout(void)
   1628 {
   1629 	vaddr_t va;
   1630 	volatile int *loc;
   1631 	int val = 0;
   1632 	paddr_t pa;
   1633 	struct vm_page *pg;
   1634 	int ref, mod;
   1635 
   1636 	/* Allocate a page */
   1637 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1638 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1639 	loc = (int*)va;
   1640 
   1641 	pmap_extract(pmap_kernel(), va, &pa);
   1642 	pg = PHYS_TO_VM_PAGE(pa);
   1643 	pmap_unwire(pmap_kernel(), va);
   1644 
   1645 	pmap_kremove(va, PAGE_SIZE);
   1646 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1647 	pmap_update(pmap_kernel());
   1648 
   1649 	/* Now clear reference and modify */
   1650 	ref = pmap_clear_reference(pg);
   1651 	mod = pmap_clear_modify(pg);
   1652 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1653 	       (void *)(u_long)va, (long)pa,
   1654 	       ref, mod);
   1655 
   1656 	/* Check it's properly cleared */
   1657 	ref = pmap_is_referenced(pg);
   1658 	mod = pmap_is_modified(pg);
   1659 	printf("Checking cleared page: ref %d, mod %d\n",
   1660 	       ref, mod);
   1661 
   1662 	/* Reference page */
   1663 	val = *loc;
   1664 
   1665 	ref = pmap_is_referenced(pg);
   1666 	mod = pmap_is_modified(pg);
   1667 	printf("Referenced page: ref %d, mod %d val %x\n",
   1668 	       ref, mod, val);
   1669 
   1670 	/* Now clear reference and modify */
   1671 	ref = pmap_clear_reference(pg);
   1672 	mod = pmap_clear_modify(pg);
   1673 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1674 	       (void *)(u_long)va, (long)pa,
   1675 	       ref, mod);
   1676 
   1677 	/* Modify page */
   1678 	*loc = 1;
   1679 
   1680 	ref = pmap_is_referenced(pg);
   1681 	mod = pmap_is_modified(pg);
   1682 	printf("Modified page: ref %d, mod %d\n",
   1683 	       ref, mod);
   1684 
   1685 	/* Now clear reference and modify */
   1686 	ref = pmap_clear_reference(pg);
   1687 	mod = pmap_clear_modify(pg);
   1688 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1689 	       (void *)(u_long)va, (long)pa,
   1690 	       ref, mod);
   1691 
   1692 	/* Check it's properly cleared */
   1693 	ref = pmap_is_referenced(pg);
   1694 	mod = pmap_is_modified(pg);
   1695 	printf("Checking cleared page: ref %d, mod %d\n",
   1696 	       ref, mod);
   1697 
   1698 	/* Modify page */
   1699 	*loc = 1;
   1700 
   1701 	ref = pmap_is_referenced(pg);
   1702 	mod = pmap_is_modified(pg);
   1703 	printf("Modified page: ref %d, mod %d\n",
   1704 	       ref, mod);
   1705 
   1706 	/* Check pmap_protect() */
   1707 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1708 	pmap_update(pmap_kernel());
   1709 	ref = pmap_is_referenced(pg);
   1710 	mod = pmap_is_modified(pg);
   1711 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
   1712 	       ref, mod);
   1713 
   1714 	/* Now clear reference and modify */
   1715 	ref = pmap_clear_reference(pg);
   1716 	mod = pmap_clear_modify(pg);
   1717 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1718 	       (void *)(u_long)va, (long)pa,
   1719 	       ref, mod);
   1720 
   1721 	/* Reference page */
   1722 	val = *loc;
   1723 
   1724 	ref = pmap_is_referenced(pg);
   1725 	mod = pmap_is_modified(pg);
   1726 	printf("Referenced page: ref %d, mod %d val %x\n",
   1727 	       ref, mod, val);
   1728 
   1729 	/* Now clear reference and modify */
   1730 	ref = pmap_clear_reference(pg);
   1731 	mod = pmap_clear_modify(pg);
   1732 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1733 	       (void *)(u_long)va, (long)pa,
   1734 	       ref, mod);
   1735 
   1736 	/* Modify page */
   1737 #if 0
   1738 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1739 	pmap_update(pmap_kernel());
   1740 #endif
   1741 	*loc = 1;
   1742 
   1743 	ref = pmap_is_referenced(pg);
   1744 	mod = pmap_is_modified(pg);
   1745 	printf("Modified page: ref %d, mod %d\n",
   1746 	       ref, mod);
   1747 
   1748 	/* Check pmap_protect() */
   1749 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1750 	pmap_update(pmap_kernel());
   1751 	ref = pmap_is_referenced(pg);
   1752 	mod = pmap_is_modified(pg);
   1753 	printf("pmap_protect(): ref %d, mod %d\n",
   1754 	       ref, mod);
   1755 
   1756 	/* Now clear reference and modify */
   1757 	ref = pmap_clear_reference(pg);
   1758 	mod = pmap_clear_modify(pg);
   1759 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1760 	       (void *)(u_long)va, (long)pa,
   1761 	       ref, mod);
   1762 
   1763 	/* Reference page */
   1764 	val = *loc;
   1765 
   1766 	ref = pmap_is_referenced(pg);
   1767 	mod = pmap_is_modified(pg);
   1768 	printf("Referenced page: ref %d, mod %d val %x\n",
   1769 	       ref, mod, val);
   1770 
   1771 	/* Now clear reference and modify */
   1772 	ref = pmap_clear_reference(pg);
   1773 	mod = pmap_clear_modify(pg);
   1774 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1775 	       (void *)(u_long)va, (long)pa,
   1776 	       ref, mod);
   1777 
   1778 	/* Modify page */
   1779 #if 0
   1780 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1781 	pmap_update(pmap_kernel());
   1782 #endif
   1783 	*loc = 1;
   1784 
   1785 	ref = pmap_is_referenced(pg);
   1786 	mod = pmap_is_modified(pg);
   1787 	printf("Modified page: ref %d, mod %d\n",
   1788 	       ref, mod);
   1789 
   1790 	/* Check pmap_pag_protect() */
   1791 	pmap_page_protect(pg, VM_PROT_READ);
   1792 	ref = pmap_is_referenced(pg);
   1793 	mod = pmap_is_modified(pg);
   1794 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
   1795 	       ref, mod);
   1796 
   1797 	/* Now clear reference and modify */
   1798 	ref = pmap_clear_reference(pg);
   1799 	mod = pmap_clear_modify(pg);
   1800 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1801 	       (void *)(u_long)va, (long)pa,
   1802 	       ref, mod);
   1803 
   1804 	/* Reference page */
   1805 	val = *loc;
   1806 
   1807 	ref = pmap_is_referenced(pg);
   1808 	mod = pmap_is_modified(pg);
   1809 	printf("Referenced page: ref %d, mod %d val %x\n",
   1810 	       ref, mod, val);
   1811 
   1812 	/* Now clear reference and modify */
   1813 	ref = pmap_clear_reference(pg);
   1814 	mod = pmap_clear_modify(pg);
   1815 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1816 	       (void *)(u_long)va, (long)pa,
   1817 	       ref, mod);
   1818 
   1819 	/* Modify page */
   1820 #if 0
   1821 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1822 	pmap_update(pmap_kernel());
   1823 #endif
   1824 	*loc = 1;
   1825 
   1826 	ref = pmap_is_referenced(pg);
   1827 	mod = pmap_is_modified(pg);
   1828 	printf("Modified page: ref %d, mod %d\n",
   1829 	       ref, mod);
   1830 
   1831 	/* Check pmap_pag_protect() */
   1832 	pmap_page_protect(pg, VM_PROT_NONE);
   1833 	ref = pmap_is_referenced(pg);
   1834 	mod = pmap_is_modified(pg);
   1835 	printf("pmap_page_protect(): ref %d, mod %d\n",
   1836 	       ref, mod);
   1837 
   1838 	/* Now clear reference and modify */
   1839 	ref = pmap_clear_reference(pg);
   1840 	mod = pmap_clear_modify(pg);
   1841 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1842 	       (void *)(u_long)va, (long)pa,
   1843 	       ref, mod);
   1844 
   1845 
   1846 	/* Reference page */
   1847 	val = *loc;
   1848 
   1849 	ref = pmap_is_referenced(pg);
   1850 	mod = pmap_is_modified(pg);
   1851 	printf("Referenced page: ref %d, mod %d val %x\n",
   1852 	       ref, mod, val);
   1853 
   1854 	/* Now clear reference and modify */
   1855 	ref = pmap_clear_reference(pg);
   1856 	mod = pmap_clear_modify(pg);
   1857 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1858 	       (void *)(u_long)va, (long)pa,
   1859 	       ref, mod);
   1860 
   1861 	/* Modify page */
   1862 #if 0
   1863 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1864 	pmap_update(pmap_kernel());
   1865 #endif
   1866 	*loc = 1;
   1867 
   1868 	ref = pmap_is_referenced(pg);
   1869 	mod = pmap_is_modified(pg);
   1870 	printf("Modified page: ref %d, mod %d\n",
   1871 	       ref, mod);
   1872 
   1873 	/* Unmap page */
   1874 	pmap_remove(pmap_kernel(), va, va+1);
   1875 	pmap_update(pmap_kernel());
   1876 	ref = pmap_is_referenced(pg);
   1877 	mod = pmap_is_modified(pg);
   1878 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1879 
   1880 	/* Now clear reference and modify */
   1881 	ref = pmap_clear_reference(pg);
   1882 	mod = pmap_clear_modify(pg);
   1883 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1884 	       (void *)(u_long)va, (long)pa, ref, mod);
   1885 
   1886 	/* Check it's properly cleared */
   1887 	ref = pmap_is_referenced(pg);
   1888 	mod = pmap_is_modified(pg);
   1889 	printf("Checking cleared page: ref %d, mod %d\n",
   1890 	       ref, mod);
   1891 
   1892 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1893 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1894 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1895 }
   1896 #endif
   1897