pmap.c revision 1.67 1 /* $NetBSD: pmap.c,v 1.67 2011/06/18 06:41:41 matt Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.67 2011/06/18 06:41:41 matt Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/queue.h>
76 #include <sys/systm.h>
77 #include <sys/pool.h>
78 #include <sys/device.h>
79 #include <sys/cpu.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/pcb.h>
84 #include <machine/powerpc.h>
85 #include <machine/tlb.h>
86
87 #include <powerpc/spr.h>
88 #include <powerpc/ibm4xx/spr.h>
89
90 #include <powerpc/ibm4xx/cpu.h>
91
92 /*
93 * kernmap is an array of PTEs large enough to map in
94 * 4GB. At 16KB/page it is 256K entries or 2MB.
95 */
96 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
97 void *kernmap;
98
99 #define MINCTX 2
100 #define NUMCTX 256
101
102 volatile struct pmap *ctxbusy[NUMCTX];
103
104 #define TLBF_USED 0x1
105 #define TLBF_REF 0x2
106 #define TLBF_LOCKED 0x4
107 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
108
109 typedef struct tlb_info_s {
110 char ti_flags;
111 char ti_ctx; /* TLB_PID assiciated with the entry */
112 u_int ti_va;
113 } tlb_info_t;
114
115 volatile tlb_info_t tlb_info[NTLB];
116 /* We'll use a modified FIFO replacement policy cause it's cheap */
117 volatile int tlbnext;
118
119 static int tlb_nreserved = 0;
120 static int pmap_bootstrap_done = 0;
121
122 /* Event counters */
123 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbmiss");
125 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbhit");
127 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbflush");
129 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
130 NULL, "cpu", "tlbenter");
131 EVCNT_ATTACH_STATIC(tlbmiss_ev);
132 EVCNT_ATTACH_STATIC(tlbhit_ev);
133 EVCNT_ATTACH_STATIC(tlbflush_ev);
134 EVCNT_ATTACH_STATIC(tlbenter_ev);
135
136 struct pmap kernel_pmap_;
137 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
138
139 static int npgs;
140 static u_int nextavail;
141 #ifndef MSGBUFADDR
142 extern paddr_t msgbuf_paddr;
143 #endif
144
145 static struct mem_region *mem, *avail;
146
147 /*
148 * This is a cache of referenced/modified bits.
149 * Bits herein are shifted by ATTRSHFT.
150 */
151 static char *pmap_attrib;
152
153 #define PV_WIRED 0x1
154 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
155 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
156 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
157 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
158
159 struct pv_entry {
160 struct pv_entry *pv_next; /* Linked list of mappings */
161 vaddr_t pv_va; /* virtual address of mapping */
162 struct pmap *pv_pm;
163 };
164
165 /* Each index corresponds to TLB_SIZE_* value. */
166 static size_t tlbsize[] = {
167 1024, /* TLB_SIZE_1K */
168 4096, /* TLB_SIZE_4K */
169 16384, /* TLB_SIZE_16K */
170 65536, /* TLB_SIZE_64K */
171 262144, /* TLB_SIZE_256K */
172 1048576, /* TLB_SIZE_1M */
173 4194304, /* TLB_SIZE_4M */
174 16777216, /* TLB_SIZE_16M */
175 };
176
177 struct pv_entry *pv_table;
178 static struct pool pv_pool;
179
180 static int pmap_initialized;
181
182 static int ctx_flush(int);
183
184 inline struct pv_entry *pa_to_pv(paddr_t);
185 static inline char *pa_to_attr(paddr_t);
186
187 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
188 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
189
190 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
191 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
192
193 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
194
195
196 inline struct pv_entry *
197 pa_to_pv(paddr_t pa)
198 {
199 int bank, pg;
200
201 bank = vm_physseg_find(atop(pa), &pg);
202 if (bank == -1)
203 return NULL;
204 return &VM_PHYSMEM_PTR(bank)->pmseg.pvent[pg];
205 }
206
207 static inline char *
208 pa_to_attr(paddr_t pa)
209 {
210 int bank, pg;
211
212 bank = vm_physseg_find(atop(pa), &pg);
213 if (bank == -1)
214 return NULL;
215 return &VM_PHYSMEM_PTR(bank)->pmseg.attrs[pg];
216 }
217
218 /*
219 * Insert PTE into page table.
220 */
221 int
222 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
223 {
224 int seg = STIDX(va);
225 int ptn = PTIDX(va);
226 u_int oldpte;
227
228 if (!pm->pm_ptbl[seg]) {
229 /* Don't allocate a page to clear a non-existent mapping. */
230 if (!pte)
231 return (0);
232 /* Allocate a page XXXX this will sleep! */
233 pm->pm_ptbl[seg] =
234 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
235 UVM_KMF_WIRED | UVM_KMF_ZERO);
236 }
237 oldpte = pm->pm_ptbl[seg][ptn];
238 pm->pm_ptbl[seg][ptn] = pte;
239
240 /* Flush entry. */
241 ppc4xx_tlb_flush(va, pm->pm_ctx);
242 if (oldpte != pte) {
243 if (pte == 0)
244 pm->pm_stats.resident_count--;
245 else
246 pm->pm_stats.resident_count++;
247 }
248 return (1);
249 }
250
251 /*
252 * Get a pointer to a PTE in a page table.
253 */
254 volatile u_int *
255 pte_find(struct pmap *pm, vaddr_t va)
256 {
257 int seg = STIDX(va);
258 int ptn = PTIDX(va);
259
260 if (pm->pm_ptbl[seg])
261 return (&pm->pm_ptbl[seg][ptn]);
262
263 return (NULL);
264 }
265
266 /*
267 * This is called during initppc, before the system is really initialized.
268 */
269 void
270 pmap_bootstrap(u_int kernelstart, u_int kernelend)
271 {
272 struct mem_region *mp, *mp1;
273 int cnt, i;
274 u_int s, e, sz;
275
276 tlbnext = tlb_nreserved;
277
278 /*
279 * Allocate the kernel page table at the end of
280 * kernel space so it's in the locked TTE.
281 */
282 kernmap = (void *)kernelend;
283
284 /*
285 * Initialize kernel page table.
286 */
287 for (i = 0; i < STSZ; i++) {
288 pmap_kernel()->pm_ptbl[i] = 0;
289 }
290 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
291
292 /*
293 * Announce page-size to the VM-system
294 */
295 uvmexp.pagesize = NBPG;
296 uvm_setpagesize();
297
298 /*
299 * Get memory.
300 */
301 mem_regions(&mem, &avail);
302 for (mp = mem; mp->size; mp++) {
303 physmem += btoc(mp->size);
304 printf("+%lx,",mp->size);
305 }
306 printf("\n");
307 ppc4xx_tlb_init();
308 /*
309 * Count the number of available entries.
310 */
311 for (cnt = 0, mp = avail; mp->size; mp++)
312 cnt++;
313
314 /*
315 * Page align all regions.
316 * Non-page aligned memory isn't very interesting to us.
317 * Also, sort the entries for ascending addresses.
318 */
319 kernelstart &= ~PGOFSET;
320 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
321 for (mp = avail; mp->size; mp++) {
322 s = mp->start;
323 e = mp->start + mp->size;
324 printf("%08x-%08x -> ",s,e);
325 /*
326 * Check whether this region holds all of the kernel.
327 */
328 if (s < kernelstart && e > kernelend) {
329 avail[cnt].start = kernelend;
330 avail[cnt++].size = e - kernelend;
331 e = kernelstart;
332 }
333 /*
334 * Look whether this regions starts within the kernel.
335 */
336 if (s >= kernelstart && s < kernelend) {
337 if (e <= kernelend)
338 goto empty;
339 s = kernelend;
340 }
341 /*
342 * Now look whether this region ends within the kernel.
343 */
344 if (e > kernelstart && e <= kernelend) {
345 if (s >= kernelstart)
346 goto empty;
347 e = kernelstart;
348 }
349 /*
350 * Now page align the start and size of the region.
351 */
352 s = round_page(s);
353 e = trunc_page(e);
354 if (e < s)
355 e = s;
356 sz = e - s;
357 printf("%08x-%08x = %x\n",s,e,sz);
358 /*
359 * Check whether some memory is left here.
360 */
361 if (sz == 0) {
362 empty:
363 memmove(mp, mp + 1,
364 (cnt - (mp - avail)) * sizeof *mp);
365 cnt--;
366 mp--;
367 continue;
368 }
369 /*
370 * Do an insertion sort.
371 */
372 npgs += btoc(sz);
373 for (mp1 = avail; mp1 < mp; mp1++)
374 if (s < mp1->start)
375 break;
376 if (mp1 < mp) {
377 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
378 mp1->start = s;
379 mp1->size = sz;
380 } else {
381 mp->start = s;
382 mp->size = sz;
383 }
384 }
385
386 /*
387 * We cannot do pmap_steal_memory here,
388 * since we don't run with translation enabled yet.
389 */
390 #ifndef MSGBUFADDR
391 /*
392 * allow for msgbuf
393 */
394 sz = round_page(MSGBUFSIZE);
395 mp = NULL;
396 for (mp1 = avail; mp1->size; mp1++)
397 if (mp1->size >= sz)
398 mp = mp1;
399 if (mp == NULL)
400 panic("not enough memory?");
401
402 npgs -= btoc(sz);
403 msgbuf_paddr = mp->start + mp->size - sz;
404 mp->size -= sz;
405 if (mp->size <= 0)
406 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
407 #endif
408
409 for (mp = avail; mp->size; mp++)
410 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
411 atop(mp->start), atop(mp->start + mp->size),
412 VM_FREELIST_DEFAULT);
413
414 /*
415 * Initialize kernel pmap and hardware.
416 */
417 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
418 pmap_kernel()->pm_ctx = KERNEL_PID;
419 nextavail = avail->start;
420
421 pmap_bootstrap_done = 1;
422 }
423
424 /*
425 * Restrict given range to physical memory
426 *
427 * (Used by /dev/mem)
428 */
429 void
430 pmap_real_memory(paddr_t *start, psize_t *size)
431 {
432 struct mem_region *mp;
433
434 for (mp = mem; mp->size; mp++) {
435 if (*start + *size > mp->start &&
436 *start < mp->start + mp->size) {
437 if (*start < mp->start) {
438 *size -= mp->start - *start;
439 *start = mp->start;
440 }
441 if (*start + *size > mp->start + mp->size)
442 *size = mp->start + mp->size - *start;
443 return;
444 }
445 }
446 *size = 0;
447 }
448
449 /*
450 * Initialize anything else for pmap handling.
451 * Called during vm_init().
452 */
453 void
454 pmap_init(void)
455 {
456 struct pv_entry *pv;
457 vsize_t sz;
458 vaddr_t addr;
459 int i, s;
460 int bank;
461 char *attr;
462
463 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
464 sz = round_page(sz);
465 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
466 s = splvm();
467 pv = pv_table = (struct pv_entry *)addr;
468 for (i = npgs; --i >= 0;)
469 pv++->pv_pm = NULL;
470 pmap_attrib = (char *)pv;
471 memset(pv, 0, npgs);
472
473 pv = pv_table;
474 attr = pmap_attrib;
475 for (bank = 0; bank < vm_nphysseg; bank++) {
476 sz = VM_PHYSMEM_PTR(bank)->end - VM_PHYSMEM_PTR(bank)->start;
477 VM_PHYSMEM_PTR(bank)->pmseg.pvent = pv;
478 VM_PHYSMEM_PTR(bank)->pmseg.attrs = attr;
479 pv += sz;
480 attr += sz;
481 }
482
483 pmap_initialized = 1;
484 splx(s);
485
486 /* Setup a pool for additional pvlist structures */
487 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
488 IPL_VM);
489 }
490
491 /*
492 * How much virtual space is available to the kernel?
493 */
494 void
495 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
496 {
497
498 #if 0
499 /*
500 * Reserve one segment for kernel virtual memory
501 */
502 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
503 *end = *start + SEGMENT_LENGTH;
504 #else
505 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
506 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
507 #endif
508 }
509
510 #ifdef PMAP_GROWKERNEL
511 /*
512 * Preallocate kernel page tables to a specified VA.
513 * This simply loops through the first TTE for each
514 * page table from the beginning of the kernel pmap,
515 * reads the entry, and if the result is
516 * zero (either invalid entry or no page table) it stores
517 * a zero there, populating page tables in the process.
518 * This is not the most efficient technique but i don't
519 * expect it to be called that often.
520 */
521 extern struct vm_page *vm_page_alloc1(void);
522 extern void vm_page_free1(struct vm_page *);
523
524 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
525
526 vaddr_t
527 pmap_growkernel(vaddr_t maxkvaddr)
528 {
529 int s;
530 int seg;
531 paddr_t pg;
532 struct pmap *pm = pmap_kernel();
533
534 s = splvm();
535
536 /* Align with the start of a page table */
537 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
538 kbreak += PTMAP) {
539 seg = STIDX(kbreak);
540
541 if (pte_find(pm, kbreak))
542 continue;
543
544 if (uvm.page_init_done) {
545 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
546 } else {
547 if (!uvm_page_physget(&pg))
548 panic("pmap_growkernel: no memory");
549 }
550 if (!pg)
551 panic("pmap_growkernel: no pages");
552 pmap_zero_page((paddr_t)pg);
553
554 /* XXX This is based on all phymem being addressable */
555 pm->pm_ptbl[seg] = (u_int *)pg;
556 }
557 splx(s);
558 return (kbreak);
559 }
560
561 /*
562 * vm_page_alloc1:
563 *
564 * Allocate and return a memory cell with no associated object.
565 */
566 struct vm_page *
567 vm_page_alloc1(void)
568 {
569 struct vm_page *pg;
570
571 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
572 if (pg) {
573 pg->wire_count = 1; /* no mappings yet */
574 pg->flags &= ~PG_BUSY; /* never busy */
575 }
576 return pg;
577 }
578
579 /*
580 * vm_page_free1:
581 *
582 * Returns the given page to the free list,
583 * disassociating it with any VM object.
584 *
585 * Object and page must be locked prior to entry.
586 */
587 void
588 vm_page_free1(struct vm_page *pg)
589 {
590 #ifdef DIAGNOSTIC
591 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
592 printf("Freeing invalid page %p\n", pg);
593 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
594 #ifdef DDB
595 Debugger();
596 #endif
597 return;
598 }
599 #endif
600 pg->flags |= PG_BUSY;
601 pg->wire_count = 0;
602 uvm_pagefree(pg);
603 }
604 #endif
605
606 /*
607 * Create and return a physical map.
608 */
609 struct pmap *
610 pmap_create(void)
611 {
612 struct pmap *pm;
613
614 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
615 memset(pm, 0, sizeof *pm);
616 pm->pm_refs = 1;
617 return pm;
618 }
619
620 /*
621 * Add a reference to the given pmap.
622 */
623 void
624 pmap_reference(struct pmap *pm)
625 {
626
627 pm->pm_refs++;
628 }
629
630 /*
631 * Retire the given pmap from service.
632 * Should only be called if the map contains no valid mappings.
633 */
634 void
635 pmap_destroy(struct pmap *pm)
636 {
637 int i;
638
639 if (--pm->pm_refs > 0) {
640 return;
641 }
642 KASSERT(pm->pm_stats.resident_count == 0);
643 KASSERT(pm->pm_stats.wired_count == 0);
644 for (i = 0; i < STSZ; i++)
645 if (pm->pm_ptbl[i]) {
646 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
647 PAGE_SIZE, UVM_KMF_WIRED);
648 pm->pm_ptbl[i] = NULL;
649 }
650 if (pm->pm_ctx)
651 ctx_free(pm);
652 free(pm, M_VMPMAP);
653 }
654
655 /*
656 * Copy the range specified by src_addr/len
657 * from the source map to the range dst_addr/len
658 * in the destination map.
659 *
660 * This routine is only advisory and need not do anything.
661 */
662 void
663 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
664 vsize_t len, vaddr_t src_addr)
665 {
666 }
667
668 /*
669 * Require that all active physical maps contain no
670 * incorrect entries NOW.
671 */
672 void
673 pmap_update(struct pmap *pmap)
674 {
675 }
676
677 /*
678 * Fill the given physical page with zeroes.
679 */
680 void
681 pmap_zero_page(paddr_t pa)
682 {
683
684 #ifdef PPC_4XX_NOCACHE
685 memset((void *)pa, 0, PAGE_SIZE);
686 #else
687 int i;
688
689 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
690 __asm volatile ("dcbz 0,%0" :: "r"(pa));
691 pa += CACHELINESIZE;
692 }
693 #endif
694 }
695
696 /*
697 * Copy the given physical source page to its destination.
698 */
699 void
700 pmap_copy_page(paddr_t src, paddr_t dst)
701 {
702
703 memcpy((void *)dst, (void *)src, PAGE_SIZE);
704 dcache_flush_page(dst);
705 }
706
707 /*
708 * This returns != 0 on success.
709 */
710 static inline int
711 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
712 {
713 struct pv_entry *pv, *npv = NULL;
714 int s;
715
716 if (!pmap_initialized)
717 return 0;
718
719 s = splvm();
720 pv = pa_to_pv(pa);
721 if (!pv->pv_pm) {
722 /*
723 * No entries yet, use header as the first entry.
724 */
725 pv->pv_va = va;
726 pv->pv_pm = pm;
727 pv->pv_next = NULL;
728 } else {
729 /*
730 * There is at least one other VA mapping this page.
731 * Place this entry after the header.
732 */
733 npv = pool_get(&pv_pool, PR_NOWAIT);
734 if (npv == NULL) {
735 if ((flags & PMAP_CANFAIL) == 0)
736 panic("pmap_enter_pv: failed");
737 splx(s);
738 return 0;
739 }
740 npv->pv_va = va;
741 npv->pv_pm = pm;
742 npv->pv_next = pv->pv_next;
743 pv->pv_next = npv;
744 pv = npv;
745 }
746 if (flags & PMAP_WIRED) {
747 PV_WIRE(pv);
748 pm->pm_stats.wired_count++;
749 }
750 splx(s);
751 return (1);
752 }
753
754 static void
755 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
756 {
757 struct pv_entry *pv, *npv;
758
759 /*
760 * Remove from the PV table.
761 */
762 pv = pa_to_pv(pa);
763 if (!pv)
764 return;
765
766 /*
767 * If it is the first entry on the list, it is actually
768 * in the header and we must copy the following entry up
769 * to the header. Otherwise we must search the list for
770 * the entry. In either case we free the now unused entry.
771 */
772 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
773 if (PV_ISWIRED(pv)) {
774 pm->pm_stats.wired_count--;
775 }
776 if ((npv = pv->pv_next)) {
777 *pv = *npv;
778 pool_put(&pv_pool, npv);
779 } else
780 pv->pv_pm = NULL;
781 } else {
782 for (; (npv = pv->pv_next) != NULL; pv = npv)
783 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
784 break;
785 if (npv) {
786 pv->pv_next = npv->pv_next;
787 if (PV_ISWIRED(npv)) {
788 pm->pm_stats.wired_count--;
789 }
790 pool_put(&pv_pool, npv);
791 }
792 }
793 }
794
795 /*
796 * Insert physical page at pa into the given pmap at virtual address va.
797 */
798 int
799 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
800 {
801 int s;
802 u_int tte;
803 bool managed;
804
805 /*
806 * Have to remove any existing mapping first.
807 */
808 pmap_remove(pm, va, va + PAGE_SIZE);
809
810 if (flags & PMAP_WIRED)
811 flags |= prot;
812
813 managed = uvm_pageismanaged(pa);
814
815 /*
816 * Generate TTE.
817 */
818 tte = TTE_PA(pa);
819 /* XXXX -- need to support multiple page sizes. */
820 tte |= TTE_SZ_16K;
821 #ifdef DIAGNOSTIC
822 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
823 (PME_NOCACHE | PME_WRITETHROUG))
824 panic("pmap_enter: uncached & writethrough");
825 #endif
826 if (flags & PME_NOCACHE)
827 /* Must be I/O mapping */
828 tte |= TTE_I | TTE_G;
829 #ifdef PPC_4XX_NOCACHE
830 tte |= TTE_I;
831 #else
832 else if (flags & PME_WRITETHROUG)
833 /* Uncached and writethrough are not compatible */
834 tte |= TTE_W;
835 #endif
836 if (pm == pmap_kernel())
837 tte |= TTE_ZONE(ZONE_PRIV);
838 else
839 tte |= TTE_ZONE(ZONE_USER);
840
841 if (flags & VM_PROT_WRITE)
842 tte |= TTE_WR;
843
844 if (flags & VM_PROT_EXECUTE)
845 tte |= TTE_EX;
846
847 /*
848 * Now record mapping for later back-translation.
849 */
850 if (pmap_initialized && managed) {
851 char *attr;
852
853 if (!pmap_enter_pv(pm, va, pa, flags)) {
854 /* Could not enter pv on a managed page */
855 return 1;
856 }
857
858 /* Now set attributes. */
859 attr = pa_to_attr(pa);
860 #ifdef DIAGNOSTIC
861 if (!attr)
862 panic("managed but no attr");
863 #endif
864 if (flags & VM_PROT_ALL)
865 *attr |= PMAP_ATTR_REF;
866 if (flags & VM_PROT_WRITE)
867 *attr |= PMAP_ATTR_CHG;
868 }
869
870 s = splvm();
871
872 /* Insert page into page table. */
873 pte_enter(pm, va, tte);
874
875 /* If this is a real fault, enter it in the tlb */
876 if (tte && ((flags & PMAP_WIRED) == 0)) {
877 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
878 }
879 splx(s);
880
881 /* Flush the real memory from the instruction cache. */
882 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
883 __syncicache((void *)pa, PAGE_SIZE);
884
885 return 0;
886 }
887
888 void
889 pmap_unwire(struct pmap *pm, vaddr_t va)
890 {
891 struct pv_entry *pv;
892 paddr_t pa;
893 int s;
894
895 if (!pmap_extract(pm, va, &pa)) {
896 return;
897 }
898
899 pv = pa_to_pv(pa);
900 if (!pv)
901 return;
902
903 s = splvm();
904 while (pv != NULL) {
905 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
906 if (PV_ISWIRED(pv)) {
907 PV_UNWIRE(pv);
908 pm->pm_stats.wired_count--;
909 }
910 break;
911 }
912 pv = pv->pv_next;
913 }
914 splx(s);
915 }
916
917 void
918 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
919 {
920 int s;
921 u_int tte;
922 struct pmap *pm = pmap_kernel();
923
924 /*
925 * Have to remove any existing mapping first.
926 */
927
928 /*
929 * Generate TTE.
930 *
931 * XXXX
932 *
933 * Since the kernel does not handle execution privileges properly,
934 * we will handle read and execute permissions together.
935 */
936 tte = 0;
937 if (prot & VM_PROT_ALL) {
938
939 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
940 /* XXXX -- need to support multiple page sizes. */
941 tte |= TTE_SZ_16K;
942 #ifdef DIAGNOSTIC
943 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
944 (PME_NOCACHE | PME_WRITETHROUG))
945 panic("pmap_kenter_pa: uncached & writethrough");
946 #endif
947 if (prot & PME_NOCACHE)
948 /* Must be I/O mapping */
949 tte |= TTE_I | TTE_G;
950 #ifdef PPC_4XX_NOCACHE
951 tte |= TTE_I;
952 #else
953 else if (prot & PME_WRITETHROUG)
954 /* Uncached and writethrough are not compatible */
955 tte |= TTE_W;
956 #endif
957 if (prot & VM_PROT_WRITE)
958 tte |= TTE_WR;
959 }
960
961 s = splvm();
962
963 /* Insert page into page table. */
964 pte_enter(pm, va, tte);
965 splx(s);
966 }
967
968 void
969 pmap_kremove(vaddr_t va, vsize_t len)
970 {
971
972 while (len > 0) {
973 pte_enter(pmap_kernel(), va, 0);
974 va += PAGE_SIZE;
975 len -= PAGE_SIZE;
976 }
977 }
978
979 /*
980 * Remove the given range of mapping entries.
981 */
982 void
983 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
984 {
985 int s;
986 paddr_t pa;
987 volatile u_int *ptp;
988
989 s = splvm();
990 while (va < endva) {
991
992 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
993 pa = TTE_PA(pa);
994 pmap_remove_pv(pm, va, pa);
995 *ptp = 0;
996 ppc4xx_tlb_flush(va, pm->pm_ctx);
997 pm->pm_stats.resident_count--;
998 }
999 va += PAGE_SIZE;
1000 }
1001
1002 splx(s);
1003 }
1004
1005 /*
1006 * Get the physical page address for the given pmap/virtual address.
1007 */
1008 bool
1009 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1010 {
1011 int seg = STIDX(va);
1012 int ptn = PTIDX(va);
1013 u_int pa = 0;
1014 int s;
1015
1016 s = splvm();
1017 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1018 *pap = TTE_PA(pa) | (va & PGOFSET);
1019 }
1020 splx(s);
1021 return (pa != 0);
1022 }
1023
1024 /*
1025 * Lower the protection on the specified range of this pmap.
1026 *
1027 * There are only two cases: either the protection is going to 0,
1028 * or it is going to read-only.
1029 */
1030 void
1031 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1032 {
1033 volatile u_int *ptp;
1034 int s, bic;
1035
1036 if ((prot & VM_PROT_READ) == 0) {
1037 pmap_remove(pm, sva, eva);
1038 return;
1039 }
1040 bic = 0;
1041 if ((prot & VM_PROT_WRITE) == 0) {
1042 bic |= TTE_WR;
1043 }
1044 if ((prot & VM_PROT_EXECUTE) == 0) {
1045 bic |= TTE_EX;
1046 }
1047 if (bic == 0) {
1048 return;
1049 }
1050 s = splvm();
1051 while (sva < eva) {
1052 if ((ptp = pte_find(pm, sva)) != NULL) {
1053 *ptp &= ~bic;
1054 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1055 }
1056 sva += PAGE_SIZE;
1057 }
1058 splx(s);
1059 }
1060
1061 bool
1062 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1063 {
1064 paddr_t pa;
1065 char *attr;
1066 int s, rv;
1067
1068 /*
1069 * First modify bits in cache.
1070 */
1071 pa = VM_PAGE_TO_PHYS(pg);
1072 attr = pa_to_attr(pa);
1073 if (attr == NULL)
1074 return false;
1075
1076 s = splvm();
1077 rv = ((*attr & mask) != 0);
1078 if (clear) {
1079 *attr &= ~mask;
1080 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1081 }
1082 splx(s);
1083 return rv;
1084 }
1085
1086
1087 /*
1088 * Lower the protection on the specified physical page.
1089 *
1090 * There are only two cases: either the protection is going to 0,
1091 * or it is going to read-only.
1092 */
1093 void
1094 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1095 {
1096 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1097 vaddr_t va;
1098 struct pv_entry *pvh, *pv, *npv;
1099 struct pmap *pm;
1100
1101 pvh = pa_to_pv(pa);
1102 if (pvh == NULL)
1103 return;
1104
1105 /* Handle extra pvs which may be deleted in the operation */
1106 for (pv = pvh->pv_next; pv; pv = npv) {
1107 npv = pv->pv_next;
1108
1109 pm = pv->pv_pm;
1110 va = pv->pv_va;
1111 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1112 }
1113 /* Now check the head pv */
1114 if (pvh->pv_pm) {
1115 pv = pvh;
1116 pm = pv->pv_pm;
1117 va = pv->pv_va;
1118 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1119 }
1120 }
1121
1122 /*
1123 * Activate the address space for the specified process. If the process
1124 * is the current process, load the new MMU context.
1125 */
1126 void
1127 pmap_activate(struct lwp *l)
1128 {
1129 #if 0
1130 struct pcb *pcb = lwp_getpcb(l);
1131 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1132
1133 /*
1134 * XXX Normally performed in cpu_lwp_fork().
1135 */
1136 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1137 pcb->pcb_pm = pmap;
1138 #endif
1139 }
1140
1141 /*
1142 * Deactivate the specified process's address space.
1143 */
1144 void
1145 pmap_deactivate(struct lwp *l)
1146 {
1147 }
1148
1149 /*
1150 * Synchronize caches corresponding to [addr, addr+len) in p.
1151 */
1152 void
1153 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1154 {
1155 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1156 int msr, ctx, opid, step;
1157
1158 step = CACHELINESIZE;
1159
1160 /*
1161 * Need to turn off IMMU and switch to user context.
1162 * (icbi uses DMMU).
1163 */
1164 if (!(ctx = pm->pm_ctx)) {
1165 /* No context -- assign it one */
1166 ctx_alloc(pm);
1167 ctx = pm->pm_ctx;
1168 }
1169 __asm volatile("mfmsr %0;"
1170 "li %1, %7;"
1171 "andc %1,%0,%1;"
1172 "mtmsr %1;"
1173 "sync;isync;"
1174 "mfpid %1;"
1175 "mtpid %2;"
1176 "sync; isync;"
1177 "1:"
1178 "dcbf 0,%3;"
1179 "icbi 0,%3;"
1180 "add %3,%3,%5;"
1181 "addc. %4,%4,%6;"
1182 "bge 1b;"
1183 "mtpid %1;"
1184 "mtmsr %0;"
1185 "sync; isync"
1186 : "=&r" (msr), "=&r" (opid)
1187 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1188 "K" (PSL_IR | PSL_DR));
1189 }
1190
1191
1192 /* This has to be done in real mode !!! */
1193 void
1194 ppc4xx_tlb_flush(vaddr_t va, int pid)
1195 {
1196 u_long i, found;
1197 u_long msr;
1198
1199 /* If there's no context then it can't be mapped. */
1200 if (!pid)
1201 return;
1202
1203 __asm( "mfpid %1;" /* Save PID */
1204 "mfmsr %2;" /* Save MSR */
1205 "li %0,0;" /* Now clear MSR */
1206 "mtmsr %0;"
1207 "mtpid %4;" /* Set PID */
1208 "sync;"
1209 "tlbsx. %0,0,%3;" /* Search TLB */
1210 "sync;"
1211 "mtpid %1;" /* Restore PID */
1212 "mtmsr %2;" /* Restore MSR */
1213 "sync;isync;"
1214 "li %1,1;"
1215 "beq 1f;"
1216 "li %1,0;"
1217 "1:"
1218 : "=&r" (i), "=&r" (found), "=&r" (msr)
1219 : "r" (va), "r" (pid));
1220 if (found && !TLB_LOCKED(i)) {
1221
1222 /* Now flush translation */
1223 __asm volatile(
1224 "tlbwe %0,%1,0;"
1225 "sync;isync;"
1226 : : "r" (0), "r" (i));
1227
1228 tlb_info[i].ti_ctx = 0;
1229 tlb_info[i].ti_flags = 0;
1230 tlbnext = i;
1231 /* Successful flushes */
1232 tlbflush_ev.ev_count++;
1233 }
1234 }
1235
1236 void
1237 ppc4xx_tlb_flush_all(void)
1238 {
1239 u_long i;
1240
1241 for (i = 0; i < NTLB; i++)
1242 if (!TLB_LOCKED(i)) {
1243 __asm volatile(
1244 "tlbwe %0,%1,0;"
1245 "sync;isync;"
1246 : : "r" (0), "r" (i));
1247 tlb_info[i].ti_ctx = 0;
1248 tlb_info[i].ti_flags = 0;
1249 }
1250
1251 __asm volatile("sync;isync");
1252 }
1253
1254 /* Find a TLB entry to evict. */
1255 static int
1256 ppc4xx_tlb_find_victim(void)
1257 {
1258 int flags;
1259
1260 for (;;) {
1261 if (++tlbnext >= NTLB)
1262 tlbnext = tlb_nreserved;
1263 flags = tlb_info[tlbnext].ti_flags;
1264 if (!(flags & TLBF_USED) ||
1265 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1266 u_long va, stack = (u_long)&va;
1267
1268 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1269 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1270 (flags & TLBF_USED)) {
1271 /* Kernel stack page */
1272 flags |= TLBF_USED;
1273 tlb_info[tlbnext].ti_flags = flags;
1274 } else {
1275 /* Found it! */
1276 return (tlbnext);
1277 }
1278 } else {
1279 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1280 }
1281 }
1282 }
1283
1284 void
1285 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1286 {
1287 u_long th, tl, idx;
1288 tlbpid_t pid;
1289 u_short msr;
1290 paddr_t pa;
1291 int s, sz;
1292
1293 tlbenter_ev.ev_count++;
1294
1295 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1296 pa = (pte & TTE_RPN_MASK(sz));
1297 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1298 tl = (pte & ~TLB_RPN_MASK) | pa;
1299 tl |= ppc4xx_tlbflags(va, pa);
1300
1301 s = splhigh();
1302 idx = ppc4xx_tlb_find_victim();
1303
1304 #ifdef DIAGNOSTIC
1305 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1306 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1307 }
1308 #endif
1309
1310 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1311 tlb_info[idx].ti_ctx = ctx;
1312 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1313
1314 __asm volatile(
1315 "mfmsr %0;" /* Save MSR */
1316 "li %1,0;"
1317 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1318 "mtmsr %1;" /* Clear MSR */
1319 "mfpid %1;" /* Save old PID */
1320 "mtpid %2;" /* Load translation ctx */
1321 "sync; isync;"
1322 #ifdef DEBUG
1323 "andi. %3,%3,63;"
1324 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1325 #endif
1326 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1327 "sync; isync;"
1328 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1329 "sync; isync;"
1330 : "=&r" (msr), "=&r" (pid)
1331 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1332 splx(s);
1333 }
1334
1335 void
1336 ppc4xx_tlb_init(void)
1337 {
1338 int i;
1339
1340 /* Mark reserved TLB entries */
1341 for (i = 0; i < tlb_nreserved; i++) {
1342 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1343 tlb_info[i].ti_ctx = KERNEL_PID;
1344 }
1345
1346 /* Setup security zones */
1347 /* Z0 - accessible by kernel only if TLB entry permissions allow
1348 * Z1,Z2 - access is controlled by TLB entry permissions
1349 * Z3 - full access regardless of TLB entry permissions
1350 */
1351
1352 __asm volatile(
1353 "mtspr %0,%1;"
1354 "sync;"
1355 :: "K"(SPR_ZPR), "r" (0x1b000000));
1356 }
1357
1358 /*
1359 * ppc4xx_tlb_size_mask:
1360 *
1361 * Roundup size to supported page size, return TLBHI mask and real size.
1362 */
1363 static int
1364 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1365 {
1366 int i;
1367
1368 for (i = 0; i < __arraycount(tlbsize); i++)
1369 if (size <= tlbsize[i]) {
1370 *mask = (i << TLB_SIZE_SHFT);
1371 *rsiz = tlbsize[i];
1372 return (0);
1373 }
1374 return (EINVAL);
1375 }
1376
1377 /*
1378 * ppc4xx_tlb_mapiodev:
1379 *
1380 * Lookup virtual address of mapping previously entered via
1381 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1382 * need to waste extra storage for reserved mappings. Note
1383 * that reading TLBHI also sets PID, but all reserved mappings
1384 * use KERNEL_PID, so the side effect is nil.
1385 */
1386 void *
1387 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1388 {
1389 paddr_t pa;
1390 vaddr_t va;
1391 u_int lo, hi, sz;
1392 int i;
1393
1394 /* tlb_nreserved is only allowed to grow, so this is safe. */
1395 for (i = 0; i < tlb_nreserved; i++) {
1396 __asm volatile (
1397 " tlbre %0,%2,1 \n" /* TLBLO */
1398 " tlbre %1,%2,0 \n" /* TLBHI */
1399 : "=&r" (lo), "=&r" (hi)
1400 : "r" (i));
1401
1402 KASSERT(hi & TLB_VALID);
1403 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1404
1405 pa = (lo & TLB_RPN_MASK);
1406 if (base < pa)
1407 continue;
1408
1409 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1410 if ((base + len) > (pa + sz))
1411 continue;
1412
1413 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1414 return (void *)(va);
1415 }
1416
1417 return (NULL);
1418 }
1419
1420 /*
1421 * ppc4xx_tlb_reserve:
1422 *
1423 * Map physical range to kernel virtual chunk via reserved TLB entry.
1424 */
1425 void
1426 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1427 {
1428 u_int lo, hi;
1429 int szmask, rsize;
1430
1431 /* Called before pmap_bootstrap(), va outside kernel space. */
1432 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1433 KASSERT(! pmap_bootstrap_done);
1434 KASSERT(tlb_nreserved < NTLB);
1435
1436 /* Resolve size. */
1437 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1438 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1439 size, tlb_nreserved);
1440
1441 /* Real size will be power of two >= 1024, so this is OK. */
1442 pa &= ~(rsize - 1); /* RPN */
1443 va &= ~(rsize - 1); /* EPN */
1444
1445 lo = pa | TLB_WR | flags;
1446 hi = va | TLB_VALID | szmask;
1447
1448 #ifdef PPC_4XX_NOCACHE
1449 lo |= TLB_I;
1450 #endif
1451
1452 __asm volatile(
1453 " tlbwe %1,%0,1 \n" /* write TLBLO */
1454 " tlbwe %2,%0,0 \n" /* write TLBHI */
1455 " sync \n"
1456 " isync \n"
1457 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1458
1459 tlb_nreserved++;
1460 }
1461
1462 /*
1463 * We should pass the ctx in from trap code.
1464 */
1465 int
1466 pmap_tlbmiss(vaddr_t va, int ctx)
1467 {
1468 volatile u_int *pte;
1469 u_long tte;
1470
1471 tlbmiss_ev.ev_count++;
1472
1473 /*
1474 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1475 * Physical RAM is expected to live in this range, care must be taken
1476 * to not clobber 0 upto ${physmem} with device mappings in machdep
1477 * code.
1478 */
1479 if (ctx != KERNEL_PID ||
1480 (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1481 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1482 if (pte == NULL) {
1483 /* Map unmanaged addresses directly for kernel access */
1484 return 1;
1485 }
1486 tte = *pte;
1487 if (tte == 0) {
1488 return 1;
1489 }
1490 } else {
1491 /* Create a 16MB writable mapping. */
1492 #ifdef PPC_4XX_NOCACHE
1493 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1494 #else
1495 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1496 #endif
1497 }
1498 tlbhit_ev.ev_count++;
1499 ppc4xx_tlb_enter(ctx, va, tte);
1500
1501 return 0;
1502 }
1503
1504 /*
1505 * Flush all the entries matching a context from the TLB.
1506 */
1507 static int
1508 ctx_flush(int cnum)
1509 {
1510 int i;
1511
1512 /* We gotta steal this context */
1513 for (i = tlb_nreserved; i < NTLB; i++) {
1514 if (tlb_info[i].ti_ctx == cnum) {
1515 /* Can't steal ctx if it has a locked entry. */
1516 if (TLB_LOCKED(i)) {
1517 #ifdef DIAGNOSTIC
1518 printf("ctx_flush: can't invalidate "
1519 "locked mapping %d "
1520 "for context %d\n", i, cnum);
1521 #ifdef DDB
1522 Debugger();
1523 #endif
1524 #endif
1525 return (1);
1526 }
1527 #ifdef DIAGNOSTIC
1528 if (i < tlb_nreserved)
1529 panic("TLB entry %d not locked", i);
1530 #endif
1531 /* Invalidate particular TLB entry regardless of locked status */
1532 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1533 tlb_info[i].ti_flags = 0;
1534 }
1535 }
1536 return (0);
1537 }
1538
1539 /*
1540 * Allocate a context. If necessary, steal one from someone else.
1541 *
1542 * The new context is flushed from the TLB before returning.
1543 */
1544 int
1545 ctx_alloc(struct pmap *pm)
1546 {
1547 int s, cnum;
1548 static int next = MINCTX;
1549
1550 if (pm == pmap_kernel()) {
1551 #ifdef DIAGNOSTIC
1552 printf("ctx_alloc: kernel pmap!\n");
1553 #endif
1554 return (0);
1555 }
1556 s = splvm();
1557
1558 /* Find a likely context. */
1559 cnum = next;
1560 do {
1561 if ((++cnum) > NUMCTX)
1562 cnum = MINCTX;
1563 } while (ctxbusy[cnum] != NULL && cnum != next);
1564
1565 /* Now clean it out */
1566 oops:
1567 if (cnum < MINCTX)
1568 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1569 if (ctx_flush(cnum)) {
1570 /* oops -- something's wired. */
1571 if ((++cnum) > NUMCTX)
1572 cnum = MINCTX;
1573 goto oops;
1574 }
1575
1576 if (ctxbusy[cnum]) {
1577 #ifdef DEBUG
1578 /* We should identify this pmap and clear it */
1579 printf("Warning: stealing context %d\n", cnum);
1580 #endif
1581 ctxbusy[cnum]->pm_ctx = 0;
1582 }
1583 ctxbusy[cnum] = pm;
1584 next = cnum;
1585 splx(s);
1586 pm->pm_ctx = cnum;
1587
1588 return cnum;
1589 }
1590
1591 /*
1592 * Give away a context.
1593 */
1594 void
1595 ctx_free(struct pmap *pm)
1596 {
1597 int oldctx;
1598
1599 oldctx = pm->pm_ctx;
1600
1601 if (oldctx == 0)
1602 panic("ctx_free: freeing kernel context");
1603 #ifdef DIAGNOSTIC
1604 if (ctxbusy[oldctx] == 0)
1605 printf("ctx_free: freeing free context %d\n", oldctx);
1606 if (ctxbusy[oldctx] != pm) {
1607 printf("ctx_free: freeing someone esle's context\n "
1608 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1609 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1610 #ifdef DDB
1611 Debugger();
1612 #endif
1613 }
1614 #endif
1615 /* We should verify it has not been stolen and reallocated... */
1616 ctxbusy[oldctx] = NULL;
1617 ctx_flush(oldctx);
1618 }
1619
1620
1621 #ifdef DEBUG
1622 /*
1623 * Test ref/modify handling.
1624 */
1625 void pmap_testout(void);
1626 void
1627 pmap_testout(void)
1628 {
1629 vaddr_t va;
1630 volatile int *loc;
1631 int val = 0;
1632 paddr_t pa;
1633 struct vm_page *pg;
1634 int ref, mod;
1635
1636 /* Allocate a page */
1637 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1638 UVM_KMF_WIRED | UVM_KMF_ZERO);
1639 loc = (int*)va;
1640
1641 pmap_extract(pmap_kernel(), va, &pa);
1642 pg = PHYS_TO_VM_PAGE(pa);
1643 pmap_unwire(pmap_kernel(), va);
1644
1645 pmap_kremove(va, PAGE_SIZE);
1646 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1647 pmap_update(pmap_kernel());
1648
1649 /* Now clear reference and modify */
1650 ref = pmap_clear_reference(pg);
1651 mod = pmap_clear_modify(pg);
1652 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1653 (void *)(u_long)va, (long)pa,
1654 ref, mod);
1655
1656 /* Check it's properly cleared */
1657 ref = pmap_is_referenced(pg);
1658 mod = pmap_is_modified(pg);
1659 printf("Checking cleared page: ref %d, mod %d\n",
1660 ref, mod);
1661
1662 /* Reference page */
1663 val = *loc;
1664
1665 ref = pmap_is_referenced(pg);
1666 mod = pmap_is_modified(pg);
1667 printf("Referenced page: ref %d, mod %d val %x\n",
1668 ref, mod, val);
1669
1670 /* Now clear reference and modify */
1671 ref = pmap_clear_reference(pg);
1672 mod = pmap_clear_modify(pg);
1673 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1674 (void *)(u_long)va, (long)pa,
1675 ref, mod);
1676
1677 /* Modify page */
1678 *loc = 1;
1679
1680 ref = pmap_is_referenced(pg);
1681 mod = pmap_is_modified(pg);
1682 printf("Modified page: ref %d, mod %d\n",
1683 ref, mod);
1684
1685 /* Now clear reference and modify */
1686 ref = pmap_clear_reference(pg);
1687 mod = pmap_clear_modify(pg);
1688 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1689 (void *)(u_long)va, (long)pa,
1690 ref, mod);
1691
1692 /* Check it's properly cleared */
1693 ref = pmap_is_referenced(pg);
1694 mod = pmap_is_modified(pg);
1695 printf("Checking cleared page: ref %d, mod %d\n",
1696 ref, mod);
1697
1698 /* Modify page */
1699 *loc = 1;
1700
1701 ref = pmap_is_referenced(pg);
1702 mod = pmap_is_modified(pg);
1703 printf("Modified page: ref %d, mod %d\n",
1704 ref, mod);
1705
1706 /* Check pmap_protect() */
1707 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1708 pmap_update(pmap_kernel());
1709 ref = pmap_is_referenced(pg);
1710 mod = pmap_is_modified(pg);
1711 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1712 ref, mod);
1713
1714 /* Now clear reference and modify */
1715 ref = pmap_clear_reference(pg);
1716 mod = pmap_clear_modify(pg);
1717 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1718 (void *)(u_long)va, (long)pa,
1719 ref, mod);
1720
1721 /* Reference page */
1722 val = *loc;
1723
1724 ref = pmap_is_referenced(pg);
1725 mod = pmap_is_modified(pg);
1726 printf("Referenced page: ref %d, mod %d val %x\n",
1727 ref, mod, val);
1728
1729 /* Now clear reference and modify */
1730 ref = pmap_clear_reference(pg);
1731 mod = pmap_clear_modify(pg);
1732 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1733 (void *)(u_long)va, (long)pa,
1734 ref, mod);
1735
1736 /* Modify page */
1737 #if 0
1738 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1739 pmap_update(pmap_kernel());
1740 #endif
1741 *loc = 1;
1742
1743 ref = pmap_is_referenced(pg);
1744 mod = pmap_is_modified(pg);
1745 printf("Modified page: ref %d, mod %d\n",
1746 ref, mod);
1747
1748 /* Check pmap_protect() */
1749 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1750 pmap_update(pmap_kernel());
1751 ref = pmap_is_referenced(pg);
1752 mod = pmap_is_modified(pg);
1753 printf("pmap_protect(): ref %d, mod %d\n",
1754 ref, mod);
1755
1756 /* Now clear reference and modify */
1757 ref = pmap_clear_reference(pg);
1758 mod = pmap_clear_modify(pg);
1759 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1760 (void *)(u_long)va, (long)pa,
1761 ref, mod);
1762
1763 /* Reference page */
1764 val = *loc;
1765
1766 ref = pmap_is_referenced(pg);
1767 mod = pmap_is_modified(pg);
1768 printf("Referenced page: ref %d, mod %d val %x\n",
1769 ref, mod, val);
1770
1771 /* Now clear reference and modify */
1772 ref = pmap_clear_reference(pg);
1773 mod = pmap_clear_modify(pg);
1774 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1775 (void *)(u_long)va, (long)pa,
1776 ref, mod);
1777
1778 /* Modify page */
1779 #if 0
1780 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1781 pmap_update(pmap_kernel());
1782 #endif
1783 *loc = 1;
1784
1785 ref = pmap_is_referenced(pg);
1786 mod = pmap_is_modified(pg);
1787 printf("Modified page: ref %d, mod %d\n",
1788 ref, mod);
1789
1790 /* Check pmap_pag_protect() */
1791 pmap_page_protect(pg, VM_PROT_READ);
1792 ref = pmap_is_referenced(pg);
1793 mod = pmap_is_modified(pg);
1794 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1795 ref, mod);
1796
1797 /* Now clear reference and modify */
1798 ref = pmap_clear_reference(pg);
1799 mod = pmap_clear_modify(pg);
1800 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1801 (void *)(u_long)va, (long)pa,
1802 ref, mod);
1803
1804 /* Reference page */
1805 val = *loc;
1806
1807 ref = pmap_is_referenced(pg);
1808 mod = pmap_is_modified(pg);
1809 printf("Referenced page: ref %d, mod %d val %x\n",
1810 ref, mod, val);
1811
1812 /* Now clear reference and modify */
1813 ref = pmap_clear_reference(pg);
1814 mod = pmap_clear_modify(pg);
1815 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1816 (void *)(u_long)va, (long)pa,
1817 ref, mod);
1818
1819 /* Modify page */
1820 #if 0
1821 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1822 pmap_update(pmap_kernel());
1823 #endif
1824 *loc = 1;
1825
1826 ref = pmap_is_referenced(pg);
1827 mod = pmap_is_modified(pg);
1828 printf("Modified page: ref %d, mod %d\n",
1829 ref, mod);
1830
1831 /* Check pmap_pag_protect() */
1832 pmap_page_protect(pg, VM_PROT_NONE);
1833 ref = pmap_is_referenced(pg);
1834 mod = pmap_is_modified(pg);
1835 printf("pmap_page_protect(): ref %d, mod %d\n",
1836 ref, mod);
1837
1838 /* Now clear reference and modify */
1839 ref = pmap_clear_reference(pg);
1840 mod = pmap_clear_modify(pg);
1841 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1842 (void *)(u_long)va, (long)pa,
1843 ref, mod);
1844
1845
1846 /* Reference page */
1847 val = *loc;
1848
1849 ref = pmap_is_referenced(pg);
1850 mod = pmap_is_modified(pg);
1851 printf("Referenced page: ref %d, mod %d val %x\n",
1852 ref, mod, val);
1853
1854 /* Now clear reference and modify */
1855 ref = pmap_clear_reference(pg);
1856 mod = pmap_clear_modify(pg);
1857 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1858 (void *)(u_long)va, (long)pa,
1859 ref, mod);
1860
1861 /* Modify page */
1862 #if 0
1863 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1864 pmap_update(pmap_kernel());
1865 #endif
1866 *loc = 1;
1867
1868 ref = pmap_is_referenced(pg);
1869 mod = pmap_is_modified(pg);
1870 printf("Modified page: ref %d, mod %d\n",
1871 ref, mod);
1872
1873 /* Unmap page */
1874 pmap_remove(pmap_kernel(), va, va+1);
1875 pmap_update(pmap_kernel());
1876 ref = pmap_is_referenced(pg);
1877 mod = pmap_is_modified(pg);
1878 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1879
1880 /* Now clear reference and modify */
1881 ref = pmap_clear_reference(pg);
1882 mod = pmap_clear_modify(pg);
1883 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1884 (void *)(u_long)va, (long)pa, ref, mod);
1885
1886 /* Check it's properly cleared */
1887 ref = pmap_is_referenced(pg);
1888 mod = pmap_is_modified(pg);
1889 printf("Checking cleared page: ref %d, mod %d\n",
1890 ref, mod);
1891
1892 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1893 pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1894 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1895 }
1896 #endif
1897