pmap.c revision 1.73 1 /* $NetBSD: pmap.c,v 1.73 2016/12/22 14:47:58 cherry Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.73 2016/12/22 14:47:58 cherry Exp $");
71
72 #include <sys/param.h>
73 #include <sys/cpu.h>
74 #include <sys/device.h>
75 #include <sys/kmem.h>
76 #include <sys/pool.h>
77 #include <sys/proc.h>
78 #include <sys/queue.h>
79 #include <sys/systm.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/powerpc.h>
84 #include <machine/tlb.h>
85
86 #include <powerpc/pcb.h>
87
88 #include <powerpc/spr.h>
89 #include <powerpc/ibm4xx/spr.h>
90
91 #include <powerpc/ibm4xx/cpu.h>
92
93 /*
94 * kernmap is an array of PTEs large enough to map in
95 * 4GB. At 16KB/page it is 256K entries or 2MB.
96 */
97 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
98 void *kernmap;
99
100 #define MINCTX 2
101 #define NUMCTX 256
102
103 volatile struct pmap *ctxbusy[NUMCTX];
104
105 #define TLBF_USED 0x1
106 #define TLBF_REF 0x2
107 #define TLBF_LOCKED 0x4
108 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
109
110 typedef struct tlb_info_s {
111 char ti_flags;
112 char ti_ctx; /* TLB_PID assiciated with the entry */
113 u_int ti_va;
114 } tlb_info_t;
115
116 volatile tlb_info_t tlb_info[NTLB];
117 /* We'll use a modified FIFO replacement policy cause it's cheap */
118 volatile int tlbnext;
119
120 static int tlb_nreserved = 0;
121 static int pmap_bootstrap_done = 0;
122
123 /* Event counters */
124 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
125 NULL, "cpu", "tlbmiss");
126 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
127 NULL, "cpu", "tlbhit");
128 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
129 NULL, "cpu", "tlbflush");
130 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
131 NULL, "cpu", "tlbenter");
132 EVCNT_ATTACH_STATIC(tlbmiss_ev);
133 EVCNT_ATTACH_STATIC(tlbhit_ev);
134 EVCNT_ATTACH_STATIC(tlbflush_ev);
135 EVCNT_ATTACH_STATIC(tlbenter_ev);
136
137 struct pmap kernel_pmap_;
138 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
139
140 static int npgs;
141 static u_int nextavail;
142 #ifndef MSGBUFADDR
143 extern paddr_t msgbuf_paddr;
144 #endif
145
146 static struct mem_region *mem, *avail;
147
148 /*
149 * This is a cache of referenced/modified bits.
150 * Bits herein are shifted by ATTRSHFT.
151 */
152 static char *pmap_attrib;
153
154 #define PV_WIRED 0x1
155 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
156 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
157 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
158 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
159
160 struct pv_entry {
161 struct pv_entry *pv_next; /* Linked list of mappings */
162 struct pmap *pv_pm;
163 vaddr_t pv_va; /* virtual address of mapping */
164 };
165
166 /* Each index corresponds to TLB_SIZE_* value. */
167 static size_t tlbsize[] = {
168 1024, /* TLB_SIZE_1K */
169 4096, /* TLB_SIZE_4K */
170 16384, /* TLB_SIZE_16K */
171 65536, /* TLB_SIZE_64K */
172 262144, /* TLB_SIZE_256K */
173 1048576, /* TLB_SIZE_1M */
174 4194304, /* TLB_SIZE_4M */
175 16777216, /* TLB_SIZE_16M */
176 };
177
178 struct pv_entry *pv_table;
179 static struct pool pv_pool;
180
181 static int pmap_initialized;
182
183 static int ctx_flush(int);
184
185 struct pv_entry *pa_to_pv(paddr_t);
186 static inline char *pa_to_attr(paddr_t);
187
188 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
189 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
190
191 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
192 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
193
194 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
195
196
197 struct pv_entry *
198 pa_to_pv(paddr_t pa)
199 {
200 int bank, pg;
201
202 bank = vm_physseg_find(atop(pa), &pg);
203 if (bank == -1)
204 return NULL;
205 return &VM_PHYSMEM_PTR(bank)->pmseg.pvent[pg];
206 }
207
208 static inline char *
209 pa_to_attr(paddr_t pa)
210 {
211 int bank, pg;
212
213 bank = vm_physseg_find(atop(pa), &pg);
214 if (bank == -1)
215 return NULL;
216 return &VM_PHYSMEM_PTR(bank)->pmseg.attrs[pg];
217 }
218
219 /*
220 * Insert PTE into page table.
221 */
222 int
223 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
224 {
225 int seg = STIDX(va);
226 int ptn = PTIDX(va);
227 u_int oldpte;
228
229 if (!pm->pm_ptbl[seg]) {
230 /* Don't allocate a page to clear a non-existent mapping. */
231 if (!pte)
232 return (0);
233 /* Allocate a page XXXX this will sleep! */
234 pm->pm_ptbl[seg] =
235 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
236 UVM_KMF_WIRED | UVM_KMF_ZERO);
237 }
238 oldpte = pm->pm_ptbl[seg][ptn];
239 pm->pm_ptbl[seg][ptn] = pte;
240
241 /* Flush entry. */
242 ppc4xx_tlb_flush(va, pm->pm_ctx);
243 if (oldpte != pte) {
244 if (pte == 0)
245 pm->pm_stats.resident_count--;
246 else
247 pm->pm_stats.resident_count++;
248 }
249 return (1);
250 }
251
252 /*
253 * Get a pointer to a PTE in a page table.
254 */
255 volatile u_int *
256 pte_find(struct pmap *pm, vaddr_t va)
257 {
258 int seg = STIDX(va);
259 int ptn = PTIDX(va);
260
261 if (pm->pm_ptbl[seg])
262 return (&pm->pm_ptbl[seg][ptn]);
263
264 return (NULL);
265 }
266
267 /*
268 * This is called during initppc, before the system is really initialized.
269 */
270 void
271 pmap_bootstrap(u_int kernelstart, u_int kernelend)
272 {
273 struct mem_region *mp, *mp1;
274 int cnt, i;
275 u_int s, e, sz;
276
277 tlbnext = tlb_nreserved;
278
279 /*
280 * Allocate the kernel page table at the end of
281 * kernel space so it's in the locked TTE.
282 */
283 kernmap = (void *)kernelend;
284
285 /*
286 * Initialize kernel page table.
287 */
288 for (i = 0; i < STSZ; i++) {
289 pmap_kernel()->pm_ptbl[i] = 0;
290 }
291 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
292
293 /*
294 * Announce page-size to the VM-system
295 */
296 uvmexp.pagesize = NBPG;
297 uvm_md_init();
298
299 /*
300 * Get memory.
301 */
302 mem_regions(&mem, &avail);
303 for (mp = mem; mp->size; mp++) {
304 physmem += btoc(mp->size);
305 printf("+%lx,",mp->size);
306 }
307 printf("\n");
308 ppc4xx_tlb_init();
309 /*
310 * Count the number of available entries.
311 */
312 for (cnt = 0, mp = avail; mp->size; mp++)
313 cnt++;
314
315 /*
316 * Page align all regions.
317 * Non-page aligned memory isn't very interesting to us.
318 * Also, sort the entries for ascending addresses.
319 */
320 kernelstart &= ~PGOFSET;
321 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
322 for (mp = avail; mp->size; mp++) {
323 s = mp->start;
324 e = mp->start + mp->size;
325 printf("%08x-%08x -> ",s,e);
326 /*
327 * Check whether this region holds all of the kernel.
328 */
329 if (s < kernelstart && e > kernelend) {
330 avail[cnt].start = kernelend;
331 avail[cnt++].size = e - kernelend;
332 e = kernelstart;
333 }
334 /*
335 * Look whether this regions starts within the kernel.
336 */
337 if (s >= kernelstart && s < kernelend) {
338 if (e <= kernelend)
339 goto empty;
340 s = kernelend;
341 }
342 /*
343 * Now look whether this region ends within the kernel.
344 */
345 if (e > kernelstart && e <= kernelend) {
346 if (s >= kernelstart)
347 goto empty;
348 e = kernelstart;
349 }
350 /*
351 * Now page align the start and size of the region.
352 */
353 s = round_page(s);
354 e = trunc_page(e);
355 if (e < s)
356 e = s;
357 sz = e - s;
358 printf("%08x-%08x = %x\n",s,e,sz);
359 /*
360 * Check whether some memory is left here.
361 */
362 if (sz == 0) {
363 empty:
364 memmove(mp, mp + 1,
365 (cnt - (mp - avail)) * sizeof *mp);
366 cnt--;
367 mp--;
368 continue;
369 }
370 /*
371 * Do an insertion sort.
372 */
373 npgs += btoc(sz);
374 for (mp1 = avail; mp1 < mp; mp1++)
375 if (s < mp1->start)
376 break;
377 if (mp1 < mp) {
378 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
379 mp1->start = s;
380 mp1->size = sz;
381 } else {
382 mp->start = s;
383 mp->size = sz;
384 }
385 }
386
387 /*
388 * We cannot do pmap_steal_memory here,
389 * since we don't run with translation enabled yet.
390 */
391 #ifndef MSGBUFADDR
392 /*
393 * allow for msgbuf
394 */
395 sz = round_page(MSGBUFSIZE);
396 mp = NULL;
397 for (mp1 = avail; mp1->size; mp1++)
398 if (mp1->size >= sz)
399 mp = mp1;
400 if (mp == NULL)
401 panic("not enough memory?");
402
403 npgs -= btoc(sz);
404 msgbuf_paddr = mp->start + mp->size - sz;
405 mp->size -= sz;
406 if (mp->size <= 0)
407 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
408 #endif
409
410 for (mp = avail; mp->size; mp++)
411 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
412 atop(mp->start), atop(mp->start + mp->size),
413 VM_FREELIST_DEFAULT);
414
415 /*
416 * Initialize kernel pmap and hardware.
417 */
418 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
419 pmap_kernel()->pm_ctx = KERNEL_PID;
420 nextavail = avail->start;
421
422 pmap_bootstrap_done = 1;
423 }
424
425 /*
426 * Restrict given range to physical memory
427 *
428 * (Used by /dev/mem)
429 */
430 void
431 pmap_real_memory(paddr_t *start, psize_t *size)
432 {
433 struct mem_region *mp;
434
435 for (mp = mem; mp->size; mp++) {
436 if (*start + *size > mp->start &&
437 *start < mp->start + mp->size) {
438 if (*start < mp->start) {
439 *size -= mp->start - *start;
440 *start = mp->start;
441 }
442 if (*start + *size > mp->start + mp->size)
443 *size = mp->start + mp->size - *start;
444 return;
445 }
446 }
447 *size = 0;
448 }
449
450 /*
451 * Initialize anything else for pmap handling.
452 * Called during vm_init().
453 */
454 void
455 pmap_init(void)
456 {
457 struct pv_entry *pv;
458 vsize_t sz;
459 vaddr_t addr;
460 int i, s;
461 int bank;
462 char *attr;
463
464 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
465 sz = round_page(sz);
466 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
467 s = splvm();
468 pv = pv_table = (struct pv_entry *)addr;
469 for (i = npgs; --i >= 0;)
470 pv++->pv_pm = NULL;
471 pmap_attrib = (char *)pv;
472 memset(pv, 0, npgs);
473
474 pv = pv_table;
475 attr = pmap_attrib;
476 for (bank = 0; bank < vm_nphysseg; bank++) {
477 sz = VM_PHYSMEM_PTR(bank)->end - VM_PHYSMEM_PTR(bank)->start;
478 VM_PHYSMEM_PTR(bank)->pmseg.pvent = pv;
479 VM_PHYSMEM_PTR(bank)->pmseg.attrs = attr;
480 pv += sz;
481 attr += sz;
482 }
483
484 pmap_initialized = 1;
485 splx(s);
486
487 /* Setup a pool for additional pvlist structures */
488 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
489 IPL_VM);
490 }
491
492 /*
493 * How much virtual space is available to the kernel?
494 */
495 void
496 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
497 {
498
499 #if 0
500 /*
501 * Reserve one segment for kernel virtual memory
502 */
503 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
504 *end = *start + SEGMENT_LENGTH;
505 #else
506 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
507 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
508 #endif
509 }
510
511 #ifdef PMAP_GROWKERNEL
512 /*
513 * Preallocate kernel page tables to a specified VA.
514 * This simply loops through the first TTE for each
515 * page table from the beginning of the kernel pmap,
516 * reads the entry, and if the result is
517 * zero (either invalid entry or no page table) it stores
518 * a zero there, populating page tables in the process.
519 * This is not the most efficient technique but i don't
520 * expect it to be called that often.
521 */
522 extern struct vm_page *vm_page_alloc1(void);
523 extern void vm_page_free1(struct vm_page *);
524
525 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
526
527 vaddr_t
528 pmap_growkernel(vaddr_t maxkvaddr)
529 {
530 int s;
531 int seg;
532 paddr_t pg;
533 struct pmap *pm = pmap_kernel();
534
535 s = splvm();
536
537 /* Align with the start of a page table */
538 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
539 kbreak += PTMAP) {
540 seg = STIDX(kbreak);
541
542 if (pte_find(pm, kbreak))
543 continue;
544
545 if (uvm.page_init_done) {
546 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
547 } else {
548 if (!uvm_page_physget(&pg))
549 panic("pmap_growkernel: no memory");
550 }
551 if (!pg)
552 panic("pmap_growkernel: no pages");
553 pmap_zero_page((paddr_t)pg);
554
555 /* XXX This is based on all phymem being addressable */
556 pm->pm_ptbl[seg] = (u_int *)pg;
557 }
558 splx(s);
559 return (kbreak);
560 }
561
562 /*
563 * vm_page_alloc1:
564 *
565 * Allocate and return a memory cell with no associated object.
566 */
567 struct vm_page *
568 vm_page_alloc1(void)
569 {
570 struct vm_page *pg;
571
572 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
573 if (pg) {
574 pg->wire_count = 1; /* no mappings yet */
575 pg->flags &= ~PG_BUSY; /* never busy */
576 }
577 return pg;
578 }
579
580 /*
581 * vm_page_free1:
582 *
583 * Returns the given page to the free list,
584 * disassociating it with any VM object.
585 *
586 * Object and page must be locked prior to entry.
587 */
588 void
589 vm_page_free1(struct vm_page *pg)
590 {
591 #ifdef DIAGNOSTIC
592 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
593 printf("Freeing invalid page %p\n", pg);
594 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
595 #ifdef DDB
596 Debugger();
597 #endif
598 return;
599 }
600 #endif
601 pg->flags |= PG_BUSY;
602 pg->wire_count = 0;
603 uvm_pagefree(pg);
604 }
605 #endif
606
607 /*
608 * Create and return a physical map.
609 */
610 struct pmap *
611 pmap_create(void)
612 {
613 struct pmap *pm;
614
615 pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
616 memset(pm, 0, sizeof *pm);
617 pm->pm_refs = 1;
618 return pm;
619 }
620
621 /*
622 * Add a reference to the given pmap.
623 */
624 void
625 pmap_reference(struct pmap *pm)
626 {
627
628 pm->pm_refs++;
629 }
630
631 /*
632 * Retire the given pmap from service.
633 * Should only be called if the map contains no valid mappings.
634 */
635 void
636 pmap_destroy(struct pmap *pm)
637 {
638 int i;
639
640 if (--pm->pm_refs > 0) {
641 return;
642 }
643 KASSERT(pm->pm_stats.resident_count == 0);
644 KASSERT(pm->pm_stats.wired_count == 0);
645 for (i = 0; i < STSZ; i++)
646 if (pm->pm_ptbl[i]) {
647 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
648 PAGE_SIZE, UVM_KMF_WIRED);
649 pm->pm_ptbl[i] = NULL;
650 }
651 if (pm->pm_ctx)
652 ctx_free(pm);
653 kmem_free(pm, sizeof(*pm));
654 }
655
656 /*
657 * Copy the range specified by src_addr/len
658 * from the source map to the range dst_addr/len
659 * in the destination map.
660 *
661 * This routine is only advisory and need not do anything.
662 */
663 void
664 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
665 vsize_t len, vaddr_t src_addr)
666 {
667 }
668
669 /*
670 * Require that all active physical maps contain no
671 * incorrect entries NOW.
672 */
673 void
674 pmap_update(struct pmap *pmap)
675 {
676 }
677
678 /*
679 * Fill the given physical page with zeroes.
680 */
681 void
682 pmap_zero_page(paddr_t pa)
683 {
684
685 #ifdef PPC_4XX_NOCACHE
686 memset((void *)pa, 0, PAGE_SIZE);
687 #else
688 int i;
689
690 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
691 __asm volatile ("dcbz 0,%0" :: "r"(pa));
692 pa += CACHELINESIZE;
693 }
694 #endif
695 }
696
697 /*
698 * Copy the given physical source page to its destination.
699 */
700 void
701 pmap_copy_page(paddr_t src, paddr_t dst)
702 {
703
704 memcpy((void *)dst, (void *)src, PAGE_SIZE);
705 dcache_wbinv_page(dst);
706 }
707
708 /*
709 * This returns != 0 on success.
710 */
711 static inline int
712 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
713 {
714 struct pv_entry *pv, *npv = NULL;
715 int s;
716
717 if (!pmap_initialized)
718 return 0;
719
720 s = splvm();
721 pv = pa_to_pv(pa);
722 if (!pv->pv_pm) {
723 /*
724 * No entries yet, use header as the first entry.
725 */
726 pv->pv_va = va;
727 pv->pv_pm = pm;
728 pv->pv_next = NULL;
729 } else {
730 /*
731 * There is at least one other VA mapping this page.
732 * Place this entry after the header.
733 */
734 npv = pool_get(&pv_pool, PR_NOWAIT);
735 if (npv == NULL) {
736 if ((flags & PMAP_CANFAIL) == 0)
737 panic("pmap_enter_pv: failed");
738 splx(s);
739 return 0;
740 }
741 npv->pv_va = va;
742 npv->pv_pm = pm;
743 npv->pv_next = pv->pv_next;
744 pv->pv_next = npv;
745 pv = npv;
746 }
747 if (flags & PMAP_WIRED) {
748 PV_WIRE(pv);
749 pm->pm_stats.wired_count++;
750 }
751 splx(s);
752 return (1);
753 }
754
755 static void
756 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
757 {
758 struct pv_entry *pv, *npv;
759
760 /*
761 * Remove from the PV table.
762 */
763 pv = pa_to_pv(pa);
764 if (!pv)
765 return;
766
767 /*
768 * If it is the first entry on the list, it is actually
769 * in the header and we must copy the following entry up
770 * to the header. Otherwise we must search the list for
771 * the entry. In either case we free the now unused entry.
772 */
773 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
774 if (PV_ISWIRED(pv)) {
775 pm->pm_stats.wired_count--;
776 }
777 if ((npv = pv->pv_next)) {
778 *pv = *npv;
779 pool_put(&pv_pool, npv);
780 } else
781 pv->pv_pm = NULL;
782 } else {
783 for (; (npv = pv->pv_next) != NULL; pv = npv)
784 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
785 break;
786 if (npv) {
787 pv->pv_next = npv->pv_next;
788 if (PV_ISWIRED(npv)) {
789 pm->pm_stats.wired_count--;
790 }
791 pool_put(&pv_pool, npv);
792 }
793 }
794 }
795
796 /*
797 * Insert physical page at pa into the given pmap at virtual address va.
798 */
799 int
800 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
801 {
802 int s;
803 u_int tte;
804 bool managed;
805
806 /*
807 * Have to remove any existing mapping first.
808 */
809 pmap_remove(pm, va, va + PAGE_SIZE);
810
811 if (flags & PMAP_WIRED)
812 flags |= prot;
813
814 managed = uvm_pageismanaged(pa);
815
816 /*
817 * Generate TTE.
818 */
819 tte = TTE_PA(pa);
820 /* XXXX -- need to support multiple page sizes. */
821 tte |= TTE_SZ_16K;
822 #ifdef DIAGNOSTIC
823 if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
824 (PMAP_NOCACHE | PME_WRITETHROUG))
825 panic("pmap_enter: uncached & writethrough");
826 #endif
827 if (flags & PMAP_NOCACHE)
828 /* Must be I/O mapping */
829 tte |= TTE_I | TTE_G;
830 #ifdef PPC_4XX_NOCACHE
831 tte |= TTE_I;
832 #else
833 else if (flags & PME_WRITETHROUG)
834 /* Uncached and writethrough are not compatible */
835 tte |= TTE_W;
836 #endif
837 if (pm == pmap_kernel())
838 tte |= TTE_ZONE(ZONE_PRIV);
839 else
840 tte |= TTE_ZONE(ZONE_USER);
841
842 if (flags & VM_PROT_WRITE)
843 tte |= TTE_WR;
844
845 if (flags & VM_PROT_EXECUTE)
846 tte |= TTE_EX;
847
848 /*
849 * Now record mapping for later back-translation.
850 */
851 if (pmap_initialized && managed) {
852 char *attr;
853
854 if (!pmap_enter_pv(pm, va, pa, flags)) {
855 /* Could not enter pv on a managed page */
856 return 1;
857 }
858
859 /* Now set attributes. */
860 attr = pa_to_attr(pa);
861 #ifdef DIAGNOSTIC
862 if (!attr)
863 panic("managed but no attr");
864 #endif
865 if (flags & VM_PROT_ALL)
866 *attr |= PMAP_ATTR_REF;
867 if (flags & VM_PROT_WRITE)
868 *attr |= PMAP_ATTR_CHG;
869 }
870
871 s = splvm();
872
873 /* Insert page into page table. */
874 pte_enter(pm, va, tte);
875
876 /* If this is a real fault, enter it in the tlb */
877 if (tte && ((flags & PMAP_WIRED) == 0)) {
878 int s2 = splhigh();
879 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
880 splx(s2);
881 }
882 splx(s);
883
884 /* Flush the real memory from the instruction cache. */
885 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
886 __syncicache((void *)pa, PAGE_SIZE);
887
888 return 0;
889 }
890
891 void
892 pmap_unwire(struct pmap *pm, vaddr_t va)
893 {
894 struct pv_entry *pv;
895 paddr_t pa;
896 int s;
897
898 if (!pmap_extract(pm, va, &pa)) {
899 return;
900 }
901
902 pv = pa_to_pv(pa);
903 if (!pv)
904 return;
905
906 s = splvm();
907 while (pv != NULL) {
908 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
909 if (PV_ISWIRED(pv)) {
910 PV_UNWIRE(pv);
911 pm->pm_stats.wired_count--;
912 }
913 break;
914 }
915 pv = pv->pv_next;
916 }
917 splx(s);
918 }
919
920 void
921 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
922 {
923 int s;
924 u_int tte;
925 struct pmap *pm = pmap_kernel();
926
927 /*
928 * Have to remove any existing mapping first.
929 */
930
931 /*
932 * Generate TTE.
933 *
934 * XXXX
935 *
936 * Since the kernel does not handle execution privileges properly,
937 * we will handle read and execute permissions together.
938 */
939 tte = 0;
940 if (prot & VM_PROT_ALL) {
941
942 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
943 /* XXXX -- need to support multiple page sizes. */
944 tte |= TTE_SZ_16K;
945 #ifdef DIAGNOSTIC
946 if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
947 (PMAP_NOCACHE | PME_WRITETHROUG))
948 panic("pmap_kenter_pa: uncached & writethrough");
949 #endif
950 if (flags & PMAP_NOCACHE)
951 /* Must be I/O mapping */
952 tte |= TTE_I | TTE_G;
953 #ifdef PPC_4XX_NOCACHE
954 tte |= TTE_I;
955 #else
956 else if (prot & PME_WRITETHROUG)
957 /* Uncached and writethrough are not compatible */
958 tte |= TTE_W;
959 #endif
960 if (prot & VM_PROT_WRITE)
961 tte |= TTE_WR;
962 }
963
964 s = splvm();
965
966 /* Insert page into page table. */
967 pte_enter(pm, va, tte);
968 splx(s);
969 }
970
971 void
972 pmap_kremove(vaddr_t va, vsize_t len)
973 {
974
975 while (len > 0) {
976 pte_enter(pmap_kernel(), va, 0);
977 va += PAGE_SIZE;
978 len -= PAGE_SIZE;
979 }
980 }
981
982 /*
983 * Remove the given range of mapping entries.
984 */
985 void
986 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
987 {
988 int s;
989 paddr_t pa;
990 volatile u_int *ptp;
991
992 s = splvm();
993 while (va < endva) {
994
995 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
996 pa = TTE_PA(pa);
997 pmap_remove_pv(pm, va, pa);
998 *ptp = 0;
999 ppc4xx_tlb_flush(va, pm->pm_ctx);
1000 pm->pm_stats.resident_count--;
1001 }
1002 va += PAGE_SIZE;
1003 }
1004
1005 splx(s);
1006 }
1007
1008 /*
1009 * Get the physical page address for the given pmap/virtual address.
1010 */
1011 bool
1012 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1013 {
1014 int seg = STIDX(va);
1015 int ptn = PTIDX(va);
1016 u_int pa = 0;
1017 int s;
1018
1019 s = splvm();
1020 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1021 *pap = TTE_PA(pa) | (va & PGOFSET);
1022 }
1023 splx(s);
1024 return (pa != 0);
1025 }
1026
1027 /*
1028 * Lower the protection on the specified range of this pmap.
1029 *
1030 * There are only two cases: either the protection is going to 0,
1031 * or it is going to read-only.
1032 */
1033 void
1034 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1035 {
1036 volatile u_int *ptp;
1037 int s, bic;
1038
1039 if ((prot & VM_PROT_READ) == 0) {
1040 pmap_remove(pm, sva, eva);
1041 return;
1042 }
1043 bic = 0;
1044 if ((prot & VM_PROT_WRITE) == 0) {
1045 bic |= TTE_WR;
1046 }
1047 if ((prot & VM_PROT_EXECUTE) == 0) {
1048 bic |= TTE_EX;
1049 }
1050 if (bic == 0) {
1051 return;
1052 }
1053 s = splvm();
1054 while (sva < eva) {
1055 if ((ptp = pte_find(pm, sva)) != NULL) {
1056 *ptp &= ~bic;
1057 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1058 }
1059 sva += PAGE_SIZE;
1060 }
1061 splx(s);
1062 }
1063
1064 bool
1065 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1066 {
1067 paddr_t pa;
1068 char *attr;
1069 int s, rv;
1070
1071 /*
1072 * First modify bits in cache.
1073 */
1074 pa = VM_PAGE_TO_PHYS(pg);
1075 attr = pa_to_attr(pa);
1076 if (attr == NULL)
1077 return false;
1078
1079 s = splvm();
1080 rv = ((*attr & mask) != 0);
1081 if (clear) {
1082 *attr &= ~mask;
1083 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1084 }
1085 splx(s);
1086 return rv;
1087 }
1088
1089
1090 /*
1091 * Lower the protection on the specified physical page.
1092 *
1093 * There are only two cases: either the protection is going to 0,
1094 * or it is going to read-only.
1095 */
1096 void
1097 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1098 {
1099 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1100 vaddr_t va;
1101 struct pv_entry *pvh, *pv, *npv;
1102 struct pmap *pm;
1103
1104 pvh = pa_to_pv(pa);
1105 if (pvh == NULL)
1106 return;
1107
1108 /* Handle extra pvs which may be deleted in the operation */
1109 for (pv = pvh->pv_next; pv; pv = npv) {
1110 npv = pv->pv_next;
1111
1112 pm = pv->pv_pm;
1113 va = pv->pv_va;
1114 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1115 }
1116 /* Now check the head pv */
1117 if (pvh->pv_pm) {
1118 pv = pvh;
1119 pm = pv->pv_pm;
1120 va = pv->pv_va;
1121 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1122 }
1123 }
1124
1125 /*
1126 * Activate the address space for the specified process. If the process
1127 * is the current process, load the new MMU context.
1128 */
1129 void
1130 pmap_activate(struct lwp *l)
1131 {
1132 #if 0
1133 struct pcb *pcb = lwp_getpcb(l);
1134 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1135
1136 /*
1137 * XXX Normally performed in cpu_lwp_fork().
1138 */
1139 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1140 pcb->pcb_pm = pmap;
1141 #endif
1142 }
1143
1144 /*
1145 * Deactivate the specified process's address space.
1146 */
1147 void
1148 pmap_deactivate(struct lwp *l)
1149 {
1150 }
1151
1152 /*
1153 * Synchronize caches corresponding to [addr, addr+len) in p.
1154 */
1155 void
1156 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1157 {
1158 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1159 int msr, ctx, opid, step;
1160
1161 step = CACHELINESIZE;
1162
1163 /*
1164 * Need to turn off IMMU and switch to user context.
1165 * (icbi uses DMMU).
1166 */
1167 if (!(ctx = pm->pm_ctx)) {
1168 /* No context -- assign it one */
1169 ctx_alloc(pm);
1170 ctx = pm->pm_ctx;
1171 }
1172 __asm volatile("mfmsr %0;"
1173 "li %1, %7;"
1174 "andc %1,%0,%1;"
1175 "mtmsr %1;"
1176 "sync;isync;"
1177 "mfpid %1;"
1178 "mtpid %2;"
1179 "sync; isync;"
1180 "1:"
1181 "dcbf 0,%3;"
1182 "icbi 0,%3;"
1183 "add %3,%3,%5;"
1184 "addc. %4,%4,%6;"
1185 "bge 1b;"
1186 "mtpid %1;"
1187 "mtmsr %0;"
1188 "sync; isync"
1189 : "=&r" (msr), "=&r" (opid)
1190 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1191 "K" (PSL_IR | PSL_DR));
1192 }
1193
1194
1195 /* This has to be done in real mode !!! */
1196 void
1197 ppc4xx_tlb_flush(vaddr_t va, int pid)
1198 {
1199 u_long i, found;
1200 u_long msr;
1201
1202 /* If there's no context then it can't be mapped. */
1203 if (!pid)
1204 return;
1205
1206 __asm( "mfpid %1;" /* Save PID */
1207 "mfmsr %2;" /* Save MSR */
1208 "li %0,0;" /* Now clear MSR */
1209 "mtmsr %0;"
1210 "mtpid %4;" /* Set PID */
1211 "sync;"
1212 "tlbsx. %0,0,%3;" /* Search TLB */
1213 "sync;"
1214 "mtpid %1;" /* Restore PID */
1215 "mtmsr %2;" /* Restore MSR */
1216 "sync;isync;"
1217 "li %1,1;"
1218 "beq 1f;"
1219 "li %1,0;"
1220 "1:"
1221 : "=&r" (i), "=&r" (found), "=&r" (msr)
1222 : "r" (va), "r" (pid));
1223 if (found && !TLB_LOCKED(i)) {
1224
1225 /* Now flush translation */
1226 __asm volatile(
1227 "tlbwe %0,%1,0;"
1228 "sync;isync;"
1229 : : "r" (0), "r" (i));
1230
1231 tlb_info[i].ti_ctx = 0;
1232 tlb_info[i].ti_flags = 0;
1233 tlbnext = i;
1234 /* Successful flushes */
1235 tlbflush_ev.ev_count++;
1236 }
1237 }
1238
1239 void
1240 ppc4xx_tlb_flush_all(void)
1241 {
1242 u_long i;
1243
1244 for (i = 0; i < NTLB; i++)
1245 if (!TLB_LOCKED(i)) {
1246 __asm volatile(
1247 "tlbwe %0,%1,0;"
1248 "sync;isync;"
1249 : : "r" (0), "r" (i));
1250 tlb_info[i].ti_ctx = 0;
1251 tlb_info[i].ti_flags = 0;
1252 }
1253
1254 __asm volatile("sync;isync");
1255 }
1256
1257 /* Find a TLB entry to evict. */
1258 static int
1259 ppc4xx_tlb_find_victim(void)
1260 {
1261 int flags;
1262
1263 for (;;) {
1264 if (++tlbnext >= NTLB)
1265 tlbnext = tlb_nreserved;
1266 flags = tlb_info[tlbnext].ti_flags;
1267 if (!(flags & TLBF_USED) ||
1268 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1269 u_long va, stack = (u_long)&va;
1270
1271 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1272 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1273 (flags & TLBF_USED)) {
1274 /* Kernel stack page */
1275 flags |= TLBF_USED;
1276 tlb_info[tlbnext].ti_flags = flags;
1277 } else {
1278 /* Found it! */
1279 return (tlbnext);
1280 }
1281 } else {
1282 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1283 }
1284 }
1285 }
1286
1287 void
1288 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1289 {
1290 u_long th, tl, idx;
1291 tlbpid_t pid;
1292 u_short msr;
1293 paddr_t pa;
1294 int sz;
1295
1296 tlbenter_ev.ev_count++;
1297
1298 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1299 pa = (pte & TTE_RPN_MASK(sz));
1300 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1301 tl = (pte & ~TLB_RPN_MASK) | pa;
1302 tl |= ppc4xx_tlbflags(va, pa);
1303
1304 idx = ppc4xx_tlb_find_victim();
1305
1306 #ifdef DIAGNOSTIC
1307 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1308 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1309 }
1310 #endif
1311
1312 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1313 tlb_info[idx].ti_ctx = ctx;
1314 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1315
1316 __asm volatile(
1317 "mfmsr %0;" /* Save MSR */
1318 "li %1,0;"
1319 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1320 "mtmsr %1;" /* Clear MSR */
1321 "mfpid %1;" /* Save old PID */
1322 "mtpid %2;" /* Load translation ctx */
1323 "sync; isync;"
1324 #ifdef DEBUG
1325 "andi. %3,%3,63;"
1326 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1327 #endif
1328 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1329 "sync; isync;"
1330 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1331 "sync; isync;"
1332 : "=&r" (msr), "=&r" (pid)
1333 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1334 }
1335
1336 void
1337 ppc4xx_tlb_init(void)
1338 {
1339 int i;
1340
1341 /* Mark reserved TLB entries */
1342 for (i = 0; i < tlb_nreserved; i++) {
1343 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1344 tlb_info[i].ti_ctx = KERNEL_PID;
1345 }
1346
1347 /* Setup security zones */
1348 /* Z0 - accessible by kernel only if TLB entry permissions allow
1349 * Z1,Z2 - access is controlled by TLB entry permissions
1350 * Z3 - full access regardless of TLB entry permissions
1351 */
1352
1353 __asm volatile(
1354 "mtspr %0,%1;"
1355 "sync;"
1356 :: "K"(SPR_ZPR), "r" (0x1b000000));
1357 }
1358
1359 /*
1360 * ppc4xx_tlb_size_mask:
1361 *
1362 * Roundup size to supported page size, return TLBHI mask and real size.
1363 */
1364 static int
1365 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1366 {
1367 int i;
1368
1369 for (i = 0; i < __arraycount(tlbsize); i++)
1370 if (size <= tlbsize[i]) {
1371 *mask = (i << TLB_SIZE_SHFT);
1372 *rsiz = tlbsize[i];
1373 return (0);
1374 }
1375 return (EINVAL);
1376 }
1377
1378 /*
1379 * ppc4xx_tlb_mapiodev:
1380 *
1381 * Lookup virtual address of mapping previously entered via
1382 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1383 * need to waste extra storage for reserved mappings. Note
1384 * that reading TLBHI also sets PID, but all reserved mappings
1385 * use KERNEL_PID, so the side effect is nil.
1386 */
1387 void *
1388 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1389 {
1390 paddr_t pa;
1391 vaddr_t va;
1392 u_int lo, hi, sz;
1393 int i;
1394
1395 /* tlb_nreserved is only allowed to grow, so this is safe. */
1396 for (i = 0; i < tlb_nreserved; i++) {
1397 __asm volatile (
1398 " tlbre %0,%2,1 \n" /* TLBLO */
1399 " tlbre %1,%2,0 \n" /* TLBHI */
1400 : "=&r" (lo), "=&r" (hi)
1401 : "r" (i));
1402
1403 KASSERT(hi & TLB_VALID);
1404 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1405
1406 pa = (lo & TLB_RPN_MASK);
1407 if (base < pa)
1408 continue;
1409
1410 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1411 if ((base + len) > (pa + sz))
1412 continue;
1413
1414 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1415 return (void *)(va);
1416 }
1417
1418 return (NULL);
1419 }
1420
1421 /*
1422 * ppc4xx_tlb_reserve:
1423 *
1424 * Map physical range to kernel virtual chunk via reserved TLB entry.
1425 */
1426 void
1427 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1428 {
1429 u_int lo, hi;
1430 int szmask, rsize;
1431
1432 /* Called before pmap_bootstrap(), va outside kernel space. */
1433 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1434 KASSERT(! pmap_bootstrap_done);
1435 KASSERT(tlb_nreserved < NTLB);
1436
1437 /* Resolve size. */
1438 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1439 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1440 size, tlb_nreserved);
1441
1442 /* Real size will be power of two >= 1024, so this is OK. */
1443 pa &= ~(rsize - 1); /* RPN */
1444 va &= ~(rsize - 1); /* EPN */
1445
1446 lo = pa | TLB_WR | flags;
1447 hi = va | TLB_VALID | szmask;
1448
1449 #ifdef PPC_4XX_NOCACHE
1450 lo |= TLB_I;
1451 #endif
1452
1453 __asm volatile(
1454 " tlbwe %1,%0,1 \n" /* write TLBLO */
1455 " tlbwe %2,%0,0 \n" /* write TLBHI */
1456 " sync \n"
1457 " isync \n"
1458 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1459
1460 tlb_nreserved++;
1461 }
1462
1463 /*
1464 * We should pass the ctx in from trap code.
1465 */
1466 int
1467 pmap_tlbmiss(vaddr_t va, int ctx)
1468 {
1469 volatile u_int *pte;
1470 u_long tte;
1471
1472 tlbmiss_ev.ev_count++;
1473
1474 /*
1475 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1476 * Physical RAM is expected to live in this range, care must be taken
1477 * to not clobber 0 upto ${physmem} with device mappings in machdep
1478 * code.
1479 */
1480 if (ctx != KERNEL_PID ||
1481 (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1482 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1483 if (pte == NULL) {
1484 /* Map unmanaged addresses directly for kernel access */
1485 return 1;
1486 }
1487 tte = *pte;
1488 if (tte == 0) {
1489 return 1;
1490 }
1491 } else {
1492 /* Create a 16MB writable mapping. */
1493 #ifdef PPC_4XX_NOCACHE
1494 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1495 #else
1496 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1497 #endif
1498 }
1499 tlbhit_ev.ev_count++;
1500 ppc4xx_tlb_enter(ctx, va, tte);
1501
1502 return 0;
1503 }
1504
1505 /*
1506 * Flush all the entries matching a context from the TLB.
1507 */
1508 static int
1509 ctx_flush(int cnum)
1510 {
1511 int i;
1512
1513 /* We gotta steal this context */
1514 for (i = tlb_nreserved; i < NTLB; i++) {
1515 if (tlb_info[i].ti_ctx == cnum) {
1516 /* Can't steal ctx if it has a locked entry. */
1517 if (TLB_LOCKED(i)) {
1518 #ifdef DIAGNOSTIC
1519 printf("ctx_flush: can't invalidate "
1520 "locked mapping %d "
1521 "for context %d\n", i, cnum);
1522 #ifdef DDB
1523 Debugger();
1524 #endif
1525 #endif
1526 return (1);
1527 }
1528 #ifdef DIAGNOSTIC
1529 if (i < tlb_nreserved)
1530 panic("TLB entry %d not locked", i);
1531 #endif
1532 /* Invalidate particular TLB entry regardless of locked status */
1533 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1534 tlb_info[i].ti_flags = 0;
1535 }
1536 }
1537 return (0);
1538 }
1539
1540 /*
1541 * Allocate a context. If necessary, steal one from someone else.
1542 *
1543 * The new context is flushed from the TLB before returning.
1544 */
1545 int
1546 ctx_alloc(struct pmap *pm)
1547 {
1548 int s, cnum;
1549 static int next = MINCTX;
1550
1551 if (pm == pmap_kernel()) {
1552 #ifdef DIAGNOSTIC
1553 printf("ctx_alloc: kernel pmap!\n");
1554 #endif
1555 return (0);
1556 }
1557 s = splvm();
1558
1559 /* Find a likely context. */
1560 cnum = next;
1561 do {
1562 if ((++cnum) > NUMCTX)
1563 cnum = MINCTX;
1564 } while (ctxbusy[cnum] != NULL && cnum != next);
1565
1566 /* Now clean it out */
1567 oops:
1568 if (cnum < MINCTX)
1569 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1570 if (ctx_flush(cnum)) {
1571 /* oops -- something's wired. */
1572 if ((++cnum) > NUMCTX)
1573 cnum = MINCTX;
1574 goto oops;
1575 }
1576
1577 if (ctxbusy[cnum]) {
1578 #ifdef DEBUG
1579 /* We should identify this pmap and clear it */
1580 printf("Warning: stealing context %d\n", cnum);
1581 #endif
1582 ctxbusy[cnum]->pm_ctx = 0;
1583 }
1584 ctxbusy[cnum] = pm;
1585 next = cnum;
1586 splx(s);
1587 pm->pm_ctx = cnum;
1588
1589 return cnum;
1590 }
1591
1592 /*
1593 * Give away a context.
1594 */
1595 void
1596 ctx_free(struct pmap *pm)
1597 {
1598 int oldctx;
1599
1600 oldctx = pm->pm_ctx;
1601
1602 if (oldctx == 0)
1603 panic("ctx_free: freeing kernel context");
1604 #ifdef DIAGNOSTIC
1605 if (ctxbusy[oldctx] == 0)
1606 printf("ctx_free: freeing free context %d\n", oldctx);
1607 if (ctxbusy[oldctx] != pm) {
1608 printf("ctx_free: freeing someone esle's context\n "
1609 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1610 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1611 #ifdef DDB
1612 Debugger();
1613 #endif
1614 }
1615 #endif
1616 /* We should verify it has not been stolen and reallocated... */
1617 ctxbusy[oldctx] = NULL;
1618 ctx_flush(oldctx);
1619 }
1620
1621
1622 #ifdef DEBUG
1623 /*
1624 * Test ref/modify handling.
1625 */
1626 void pmap_testout(void);
1627 void
1628 pmap_testout(void)
1629 {
1630 vaddr_t va;
1631 volatile int *loc;
1632 int val = 0;
1633 paddr_t pa;
1634 struct vm_page *pg;
1635 int ref, mod;
1636
1637 /* Allocate a page */
1638 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1639 UVM_KMF_WIRED | UVM_KMF_ZERO);
1640 loc = (int*)va;
1641
1642 pmap_extract(pmap_kernel(), va, &pa);
1643 pg = PHYS_TO_VM_PAGE(pa);
1644 pmap_unwire(pmap_kernel(), va);
1645
1646 pmap_kremove(va, PAGE_SIZE);
1647 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1648 pmap_update(pmap_kernel());
1649
1650 /* Now clear reference and modify */
1651 ref = pmap_clear_reference(pg);
1652 mod = pmap_clear_modify(pg);
1653 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1654 (void *)(u_long)va, (long)pa,
1655 ref, mod);
1656
1657 /* Check it's properly cleared */
1658 ref = pmap_is_referenced(pg);
1659 mod = pmap_is_modified(pg);
1660 printf("Checking cleared page: ref %d, mod %d\n",
1661 ref, mod);
1662
1663 /* Reference page */
1664 val = *loc;
1665
1666 ref = pmap_is_referenced(pg);
1667 mod = pmap_is_modified(pg);
1668 printf("Referenced page: ref %d, mod %d val %x\n",
1669 ref, mod, val);
1670
1671 /* Now clear reference and modify */
1672 ref = pmap_clear_reference(pg);
1673 mod = pmap_clear_modify(pg);
1674 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1675 (void *)(u_long)va, (long)pa,
1676 ref, mod);
1677
1678 /* Modify page */
1679 *loc = 1;
1680
1681 ref = pmap_is_referenced(pg);
1682 mod = pmap_is_modified(pg);
1683 printf("Modified page: ref %d, mod %d\n",
1684 ref, mod);
1685
1686 /* Now clear reference and modify */
1687 ref = pmap_clear_reference(pg);
1688 mod = pmap_clear_modify(pg);
1689 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1690 (void *)(u_long)va, (long)pa,
1691 ref, mod);
1692
1693 /* Check it's properly cleared */
1694 ref = pmap_is_referenced(pg);
1695 mod = pmap_is_modified(pg);
1696 printf("Checking cleared page: ref %d, mod %d\n",
1697 ref, mod);
1698
1699 /* Modify page */
1700 *loc = 1;
1701
1702 ref = pmap_is_referenced(pg);
1703 mod = pmap_is_modified(pg);
1704 printf("Modified page: ref %d, mod %d\n",
1705 ref, mod);
1706
1707 /* Check pmap_protect() */
1708 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1709 pmap_update(pmap_kernel());
1710 ref = pmap_is_referenced(pg);
1711 mod = pmap_is_modified(pg);
1712 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1713 ref, mod);
1714
1715 /* Now clear reference and modify */
1716 ref = pmap_clear_reference(pg);
1717 mod = pmap_clear_modify(pg);
1718 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1719 (void *)(u_long)va, (long)pa,
1720 ref, mod);
1721
1722 /* Reference page */
1723 val = *loc;
1724
1725 ref = pmap_is_referenced(pg);
1726 mod = pmap_is_modified(pg);
1727 printf("Referenced page: ref %d, mod %d val %x\n",
1728 ref, mod, val);
1729
1730 /* Now clear reference and modify */
1731 ref = pmap_clear_reference(pg);
1732 mod = pmap_clear_modify(pg);
1733 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1734 (void *)(u_long)va, (long)pa,
1735 ref, mod);
1736
1737 /* Modify page */
1738 #if 0
1739 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1740 pmap_update(pmap_kernel());
1741 #endif
1742 *loc = 1;
1743
1744 ref = pmap_is_referenced(pg);
1745 mod = pmap_is_modified(pg);
1746 printf("Modified page: ref %d, mod %d\n",
1747 ref, mod);
1748
1749 /* Check pmap_protect() */
1750 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1751 pmap_update(pmap_kernel());
1752 ref = pmap_is_referenced(pg);
1753 mod = pmap_is_modified(pg);
1754 printf("pmap_protect(): ref %d, mod %d\n",
1755 ref, mod);
1756
1757 /* Now clear reference and modify */
1758 ref = pmap_clear_reference(pg);
1759 mod = pmap_clear_modify(pg);
1760 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1761 (void *)(u_long)va, (long)pa,
1762 ref, mod);
1763
1764 /* Reference page */
1765 val = *loc;
1766
1767 ref = pmap_is_referenced(pg);
1768 mod = pmap_is_modified(pg);
1769 printf("Referenced page: ref %d, mod %d val %x\n",
1770 ref, mod, val);
1771
1772 /* Now clear reference and modify */
1773 ref = pmap_clear_reference(pg);
1774 mod = pmap_clear_modify(pg);
1775 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1776 (void *)(u_long)va, (long)pa,
1777 ref, mod);
1778
1779 /* Modify page */
1780 #if 0
1781 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1782 pmap_update(pmap_kernel());
1783 #endif
1784 *loc = 1;
1785
1786 ref = pmap_is_referenced(pg);
1787 mod = pmap_is_modified(pg);
1788 printf("Modified page: ref %d, mod %d\n",
1789 ref, mod);
1790
1791 /* Check pmap_pag_protect() */
1792 pmap_page_protect(pg, VM_PROT_READ);
1793 ref = pmap_is_referenced(pg);
1794 mod = pmap_is_modified(pg);
1795 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1796 ref, mod);
1797
1798 /* Now clear reference and modify */
1799 ref = pmap_clear_reference(pg);
1800 mod = pmap_clear_modify(pg);
1801 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1802 (void *)(u_long)va, (long)pa,
1803 ref, mod);
1804
1805 /* Reference page */
1806 val = *loc;
1807
1808 ref = pmap_is_referenced(pg);
1809 mod = pmap_is_modified(pg);
1810 printf("Referenced page: ref %d, mod %d val %x\n",
1811 ref, mod, val);
1812
1813 /* Now clear reference and modify */
1814 ref = pmap_clear_reference(pg);
1815 mod = pmap_clear_modify(pg);
1816 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1817 (void *)(u_long)va, (long)pa,
1818 ref, mod);
1819
1820 /* Modify page */
1821 #if 0
1822 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1823 pmap_update(pmap_kernel());
1824 #endif
1825 *loc = 1;
1826
1827 ref = pmap_is_referenced(pg);
1828 mod = pmap_is_modified(pg);
1829 printf("Modified page: ref %d, mod %d\n",
1830 ref, mod);
1831
1832 /* Check pmap_pag_protect() */
1833 pmap_page_protect(pg, VM_PROT_NONE);
1834 ref = pmap_is_referenced(pg);
1835 mod = pmap_is_modified(pg);
1836 printf("pmap_page_protect(): ref %d, mod %d\n",
1837 ref, mod);
1838
1839 /* Now clear reference and modify */
1840 ref = pmap_clear_reference(pg);
1841 mod = pmap_clear_modify(pg);
1842 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1843 (void *)(u_long)va, (long)pa,
1844 ref, mod);
1845
1846
1847 /* Reference page */
1848 val = *loc;
1849
1850 ref = pmap_is_referenced(pg);
1851 mod = pmap_is_modified(pg);
1852 printf("Referenced page: ref %d, mod %d val %x\n",
1853 ref, mod, val);
1854
1855 /* Now clear reference and modify */
1856 ref = pmap_clear_reference(pg);
1857 mod = pmap_clear_modify(pg);
1858 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1859 (void *)(u_long)va, (long)pa,
1860 ref, mod);
1861
1862 /* Modify page */
1863 #if 0
1864 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1865 pmap_update(pmap_kernel());
1866 #endif
1867 *loc = 1;
1868
1869 ref = pmap_is_referenced(pg);
1870 mod = pmap_is_modified(pg);
1871 printf("Modified page: ref %d, mod %d\n",
1872 ref, mod);
1873
1874 /* Unmap page */
1875 pmap_remove(pmap_kernel(), va, va+1);
1876 pmap_update(pmap_kernel());
1877 ref = pmap_is_referenced(pg);
1878 mod = pmap_is_modified(pg);
1879 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1880
1881 /* Now clear reference and modify */
1882 ref = pmap_clear_reference(pg);
1883 mod = pmap_clear_modify(pg);
1884 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1885 (void *)(u_long)va, (long)pa, ref, mod);
1886
1887 /* Check it's properly cleared */
1888 ref = pmap_is_referenced(pg);
1889 mod = pmap_is_modified(pg);
1890 printf("Checking cleared page: ref %d, mod %d\n",
1891 ref, mod);
1892
1893 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1894 pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1895 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1896 }
1897 #endif
1898