Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.73
      1 /*	$NetBSD: pmap.c,v 1.73 2016/12/22 14:47:58 cherry Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.73 2016/12/22 14:47:58 cherry Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/cpu.h>
     74 #include <sys/device.h>
     75 #include <sys/kmem.h>
     76 #include <sys/pool.h>
     77 #include <sys/proc.h>
     78 #include <sys/queue.h>
     79 #include <sys/systm.h>
     80 
     81 #include <uvm/uvm.h>
     82 
     83 #include <machine/powerpc.h>
     84 #include <machine/tlb.h>
     85 
     86 #include <powerpc/pcb.h>
     87 
     88 #include <powerpc/spr.h>
     89 #include <powerpc/ibm4xx/spr.h>
     90 
     91 #include <powerpc/ibm4xx/cpu.h>
     92 
     93 /*
     94  * kernmap is an array of PTEs large enough to map in
     95  * 4GB.  At 16KB/page it is 256K entries or 2MB.
     96  */
     97 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
     98 void *kernmap;
     99 
    100 #define MINCTX		2
    101 #define NUMCTX		256
    102 
    103 volatile struct pmap *ctxbusy[NUMCTX];
    104 
    105 #define TLBF_USED	0x1
    106 #define	TLBF_REF	0x2
    107 #define	TLBF_LOCKED	0x4
    108 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    109 
    110 typedef struct tlb_info_s {
    111 	char	ti_flags;
    112 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    113 	u_int	ti_va;
    114 } tlb_info_t;
    115 
    116 volatile tlb_info_t tlb_info[NTLB];
    117 /* We'll use a modified FIFO replacement policy cause it's cheap */
    118 volatile int tlbnext;
    119 
    120 static int tlb_nreserved = 0;
    121 static int pmap_bootstrap_done = 0;
    122 
    123 /* Event counters */
    124 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    125 	NULL, "cpu", "tlbmiss");
    126 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    127 	NULL, "cpu", "tlbhit");
    128 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    129 	NULL, "cpu", "tlbflush");
    130 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    131 	NULL, "cpu", "tlbenter");
    132 EVCNT_ATTACH_STATIC(tlbmiss_ev);
    133 EVCNT_ATTACH_STATIC(tlbhit_ev);
    134 EVCNT_ATTACH_STATIC(tlbflush_ev);
    135 EVCNT_ATTACH_STATIC(tlbenter_ev);
    136 
    137 struct pmap kernel_pmap_;
    138 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    139 
    140 static int npgs;
    141 static u_int nextavail;
    142 #ifndef MSGBUFADDR
    143 extern paddr_t msgbuf_paddr;
    144 #endif
    145 
    146 static struct mem_region *mem, *avail;
    147 
    148 /*
    149  * This is a cache of referenced/modified bits.
    150  * Bits herein are shifted by ATTRSHFT.
    151  */
    152 static char *pmap_attrib;
    153 
    154 #define PV_WIRED	0x1
    155 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    156 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    157 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    158 #define PV_CMPVA(va,pv)	(!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
    159 
    160 struct pv_entry {
    161 	struct pv_entry *pv_next;	/* Linked list of mappings */
    162 	struct pmap *pv_pm;
    163 	vaddr_t pv_va;			/* virtual address of mapping */
    164 };
    165 
    166 /* Each index corresponds to TLB_SIZE_* value. */
    167 static size_t tlbsize[] = {
    168 	1024, 		/* TLB_SIZE_1K */
    169 	4096, 		/* TLB_SIZE_4K */
    170 	16384, 		/* TLB_SIZE_16K */
    171 	65536, 		/* TLB_SIZE_64K */
    172 	262144, 	/* TLB_SIZE_256K */
    173 	1048576, 	/* TLB_SIZE_1M */
    174 	4194304, 	/* TLB_SIZE_4M */
    175 	16777216, 	/* TLB_SIZE_16M */
    176 };
    177 
    178 struct pv_entry *pv_table;
    179 static struct pool pv_pool;
    180 
    181 static int pmap_initialized;
    182 
    183 static int ctx_flush(int);
    184 
    185 struct pv_entry *pa_to_pv(paddr_t);
    186 static inline char *pa_to_attr(paddr_t);
    187 
    188 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    189 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    190 
    191 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    192 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    193 
    194 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    195 
    196 
    197 struct pv_entry *
    198 pa_to_pv(paddr_t pa)
    199 {
    200 	int bank, pg;
    201 
    202 	bank = vm_physseg_find(atop(pa), &pg);
    203 	if (bank == -1)
    204 		return NULL;
    205 	return &VM_PHYSMEM_PTR(bank)->pmseg.pvent[pg];
    206 }
    207 
    208 static inline char *
    209 pa_to_attr(paddr_t pa)
    210 {
    211 	int bank, pg;
    212 
    213 	bank = vm_physseg_find(atop(pa), &pg);
    214 	if (bank == -1)
    215 		return NULL;
    216 	return &VM_PHYSMEM_PTR(bank)->pmseg.attrs[pg];
    217 }
    218 
    219 /*
    220  * Insert PTE into page table.
    221  */
    222 int
    223 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    224 {
    225 	int seg = STIDX(va);
    226 	int ptn = PTIDX(va);
    227 	u_int oldpte;
    228 
    229 	if (!pm->pm_ptbl[seg]) {
    230 		/* Don't allocate a page to clear a non-existent mapping. */
    231 		if (!pte)
    232 			return (0);
    233 		/* Allocate a page XXXX this will sleep! */
    234 		pm->pm_ptbl[seg] =
    235 		    (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    236 		    UVM_KMF_WIRED | UVM_KMF_ZERO);
    237 	}
    238 	oldpte = pm->pm_ptbl[seg][ptn];
    239 	pm->pm_ptbl[seg][ptn] = pte;
    240 
    241 	/* Flush entry. */
    242 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    243 	if (oldpte != pte) {
    244 		if (pte == 0)
    245 			pm->pm_stats.resident_count--;
    246 		else
    247 			pm->pm_stats.resident_count++;
    248 	}
    249 	return (1);
    250 }
    251 
    252 /*
    253  * Get a pointer to a PTE in a page table.
    254  */
    255 volatile u_int *
    256 pte_find(struct pmap *pm, vaddr_t va)
    257 {
    258 	int seg = STIDX(va);
    259 	int ptn = PTIDX(va);
    260 
    261 	if (pm->pm_ptbl[seg])
    262 		return (&pm->pm_ptbl[seg][ptn]);
    263 
    264 	return (NULL);
    265 }
    266 
    267 /*
    268  * This is called during initppc, before the system is really initialized.
    269  */
    270 void
    271 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    272 {
    273 	struct mem_region *mp, *mp1;
    274 	int cnt, i;
    275 	u_int s, e, sz;
    276 
    277 	tlbnext = tlb_nreserved;
    278 
    279 	/*
    280 	 * Allocate the kernel page table at the end of
    281 	 * kernel space so it's in the locked TTE.
    282 	 */
    283 	kernmap = (void *)kernelend;
    284 
    285 	/*
    286 	 * Initialize kernel page table.
    287 	 */
    288 	for (i = 0; i < STSZ; i++) {
    289 		pmap_kernel()->pm_ptbl[i] = 0;
    290 	}
    291 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    292 
    293 	/*
    294 	 * Announce page-size to the VM-system
    295 	 */
    296 	uvmexp.pagesize = NBPG;
    297 	uvm_md_init();
    298 
    299 	/*
    300 	 * Get memory.
    301 	 */
    302 	mem_regions(&mem, &avail);
    303 	for (mp = mem; mp->size; mp++) {
    304 		physmem += btoc(mp->size);
    305 		printf("+%lx,",mp->size);
    306 	}
    307 	printf("\n");
    308 	ppc4xx_tlb_init();
    309 	/*
    310 	 * Count the number of available entries.
    311 	 */
    312 	for (cnt = 0, mp = avail; mp->size; mp++)
    313 		cnt++;
    314 
    315 	/*
    316 	 * Page align all regions.
    317 	 * Non-page aligned memory isn't very interesting to us.
    318 	 * Also, sort the entries for ascending addresses.
    319 	 */
    320 	kernelstart &= ~PGOFSET;
    321 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    322 	for (mp = avail; mp->size; mp++) {
    323 		s = mp->start;
    324 		e = mp->start + mp->size;
    325 		printf("%08x-%08x -> ",s,e);
    326 		/*
    327 		 * Check whether this region holds all of the kernel.
    328 		 */
    329 		if (s < kernelstart && e > kernelend) {
    330 			avail[cnt].start = kernelend;
    331 			avail[cnt++].size = e - kernelend;
    332 			e = kernelstart;
    333 		}
    334 		/*
    335 		 * Look whether this regions starts within the kernel.
    336 		 */
    337 		if (s >= kernelstart && s < kernelend) {
    338 			if (e <= kernelend)
    339 				goto empty;
    340 			s = kernelend;
    341 		}
    342 		/*
    343 		 * Now look whether this region ends within the kernel.
    344 		 */
    345 		if (e > kernelstart && e <= kernelend) {
    346 			if (s >= kernelstart)
    347 				goto empty;
    348 			e = kernelstart;
    349 		}
    350 		/*
    351 		 * Now page align the start and size of the region.
    352 		 */
    353 		s = round_page(s);
    354 		e = trunc_page(e);
    355 		if (e < s)
    356 			e = s;
    357 		sz = e - s;
    358 		printf("%08x-%08x = %x\n",s,e,sz);
    359 		/*
    360 		 * Check whether some memory is left here.
    361 		 */
    362 		if (sz == 0) {
    363 		empty:
    364 			memmove(mp, mp + 1,
    365 				(cnt - (mp - avail)) * sizeof *mp);
    366 			cnt--;
    367 			mp--;
    368 			continue;
    369 		}
    370 		/*
    371 		 * Do an insertion sort.
    372 		 */
    373 		npgs += btoc(sz);
    374 		for (mp1 = avail; mp1 < mp; mp1++)
    375 			if (s < mp1->start)
    376 				break;
    377 		if (mp1 < mp) {
    378 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    379 			mp1->start = s;
    380 			mp1->size = sz;
    381 		} else {
    382 			mp->start = s;
    383 			mp->size = sz;
    384 		}
    385 	}
    386 
    387 	/*
    388 	 * We cannot do pmap_steal_memory here,
    389 	 * since we don't run with translation enabled yet.
    390 	 */
    391 #ifndef MSGBUFADDR
    392 	/*
    393 	 * allow for msgbuf
    394 	 */
    395 	sz = round_page(MSGBUFSIZE);
    396 	mp = NULL;
    397 	for (mp1 = avail; mp1->size; mp1++)
    398 		if (mp1->size >= sz)
    399 			mp = mp1;
    400 	if (mp == NULL)
    401 		panic("not enough memory?");
    402 
    403 	npgs -= btoc(sz);
    404 	msgbuf_paddr = mp->start + mp->size - sz;
    405 	mp->size -= sz;
    406 	if (mp->size <= 0)
    407 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
    408 #endif
    409 
    410 	for (mp = avail; mp->size; mp++)
    411 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    412 			atop(mp->start), atop(mp->start + mp->size),
    413 			VM_FREELIST_DEFAULT);
    414 
    415 	/*
    416 	 * Initialize kernel pmap and hardware.
    417 	 */
    418 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    419 	pmap_kernel()->pm_ctx = KERNEL_PID;
    420 	nextavail = avail->start;
    421 
    422 	pmap_bootstrap_done = 1;
    423 }
    424 
    425 /*
    426  * Restrict given range to physical memory
    427  *
    428  * (Used by /dev/mem)
    429  */
    430 void
    431 pmap_real_memory(paddr_t *start, psize_t *size)
    432 {
    433 	struct mem_region *mp;
    434 
    435 	for (mp = mem; mp->size; mp++) {
    436 		if (*start + *size > mp->start &&
    437 		    *start < mp->start + mp->size) {
    438 			if (*start < mp->start) {
    439 				*size -= mp->start - *start;
    440 				*start = mp->start;
    441 			}
    442 			if (*start + *size > mp->start + mp->size)
    443 				*size = mp->start + mp->size - *start;
    444 			return;
    445 		}
    446 	}
    447 	*size = 0;
    448 }
    449 
    450 /*
    451  * Initialize anything else for pmap handling.
    452  * Called during vm_init().
    453  */
    454 void
    455 pmap_init(void)
    456 {
    457 	struct pv_entry *pv;
    458 	vsize_t sz;
    459 	vaddr_t addr;
    460 	int i, s;
    461 	int bank;
    462 	char *attr;
    463 
    464 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    465 	sz = round_page(sz);
    466 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    467 	s = splvm();
    468 	pv = pv_table = (struct pv_entry *)addr;
    469 	for (i = npgs; --i >= 0;)
    470 		pv++->pv_pm = NULL;
    471 	pmap_attrib = (char *)pv;
    472 	memset(pv, 0, npgs);
    473 
    474 	pv = pv_table;
    475 	attr = pmap_attrib;
    476 	for (bank = 0; bank < vm_nphysseg; bank++) {
    477 		sz = VM_PHYSMEM_PTR(bank)->end - VM_PHYSMEM_PTR(bank)->start;
    478 		VM_PHYSMEM_PTR(bank)->pmseg.pvent = pv;
    479 		VM_PHYSMEM_PTR(bank)->pmseg.attrs = attr;
    480 		pv += sz;
    481 		attr += sz;
    482 	}
    483 
    484 	pmap_initialized = 1;
    485 	splx(s);
    486 
    487 	/* Setup a pool for additional pvlist structures */
    488 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
    489 	    IPL_VM);
    490 }
    491 
    492 /*
    493  * How much virtual space is available to the kernel?
    494  */
    495 void
    496 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    497 {
    498 
    499 #if 0
    500 	/*
    501 	 * Reserve one segment for kernel virtual memory
    502 	 */
    503 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
    504 	*end = *start + SEGMENT_LENGTH;
    505 #else
    506 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    507 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    508 #endif
    509 }
    510 
    511 #ifdef PMAP_GROWKERNEL
    512 /*
    513  * Preallocate kernel page tables to a specified VA.
    514  * This simply loops through the first TTE for each
    515  * page table from the beginning of the kernel pmap,
    516  * reads the entry, and if the result is
    517  * zero (either invalid entry or no page table) it stores
    518  * a zero there, populating page tables in the process.
    519  * This is not the most efficient technique but i don't
    520  * expect it to be called that often.
    521  */
    522 extern struct vm_page *vm_page_alloc1(void);
    523 extern void vm_page_free1(struct vm_page *);
    524 
    525 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    526 
    527 vaddr_t
    528 pmap_growkernel(vaddr_t maxkvaddr)
    529 {
    530 	int s;
    531 	int seg;
    532 	paddr_t pg;
    533 	struct pmap *pm = pmap_kernel();
    534 
    535 	s = splvm();
    536 
    537 	/* Align with the start of a page table */
    538 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
    539 	     kbreak += PTMAP) {
    540 		seg = STIDX(kbreak);
    541 
    542 		if (pte_find(pm, kbreak))
    543 			continue;
    544 
    545 		if (uvm.page_init_done) {
    546 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    547 		} else {
    548 			if (!uvm_page_physget(&pg))
    549 				panic("pmap_growkernel: no memory");
    550 		}
    551 		if (!pg)
    552 			panic("pmap_growkernel: no pages");
    553 		pmap_zero_page((paddr_t)pg);
    554 
    555 		/* XXX This is based on all phymem being addressable */
    556 		pm->pm_ptbl[seg] = (u_int *)pg;
    557 	}
    558 	splx(s);
    559 	return (kbreak);
    560 }
    561 
    562 /*
    563  *	vm_page_alloc1:
    564  *
    565  *	Allocate and return a memory cell with no associated object.
    566  */
    567 struct vm_page *
    568 vm_page_alloc1(void)
    569 {
    570 	struct vm_page *pg;
    571 
    572 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    573 	if (pg) {
    574 		pg->wire_count = 1;	/* no mappings yet */
    575 		pg->flags &= ~PG_BUSY;	/* never busy */
    576 	}
    577 	return pg;
    578 }
    579 
    580 /*
    581  *	vm_page_free1:
    582  *
    583  *	Returns the given page to the free list,
    584  *	disassociating it with any VM object.
    585  *
    586  *	Object and page must be locked prior to entry.
    587  */
    588 void
    589 vm_page_free1(struct vm_page *pg)
    590 {
    591 #ifdef DIAGNOSTIC
    592 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    593 		printf("Freeing invalid page %p\n", pg);
    594 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
    595 #ifdef DDB
    596 		Debugger();
    597 #endif
    598 		return;
    599 	}
    600 #endif
    601 	pg->flags |= PG_BUSY;
    602 	pg->wire_count = 0;
    603 	uvm_pagefree(pg);
    604 }
    605 #endif
    606 
    607 /*
    608  * Create and return a physical map.
    609  */
    610 struct pmap *
    611 pmap_create(void)
    612 {
    613 	struct pmap *pm;
    614 
    615 	pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
    616 	memset(pm, 0, sizeof *pm);
    617 	pm->pm_refs = 1;
    618 	return pm;
    619 }
    620 
    621 /*
    622  * Add a reference to the given pmap.
    623  */
    624 void
    625 pmap_reference(struct pmap *pm)
    626 {
    627 
    628 	pm->pm_refs++;
    629 }
    630 
    631 /*
    632  * Retire the given pmap from service.
    633  * Should only be called if the map contains no valid mappings.
    634  */
    635 void
    636 pmap_destroy(struct pmap *pm)
    637 {
    638 	int i;
    639 
    640 	if (--pm->pm_refs > 0) {
    641 		return;
    642 	}
    643 	KASSERT(pm->pm_stats.resident_count == 0);
    644 	KASSERT(pm->pm_stats.wired_count == 0);
    645 	for (i = 0; i < STSZ; i++)
    646 		if (pm->pm_ptbl[i]) {
    647 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    648 			    PAGE_SIZE, UVM_KMF_WIRED);
    649 			pm->pm_ptbl[i] = NULL;
    650 		}
    651 	if (pm->pm_ctx)
    652 		ctx_free(pm);
    653 	kmem_free(pm, sizeof(*pm));
    654 }
    655 
    656 /*
    657  * Copy the range specified by src_addr/len
    658  * from the source map to the range dst_addr/len
    659  * in the destination map.
    660  *
    661  * This routine is only advisory and need not do anything.
    662  */
    663 void
    664 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    665 	  vsize_t len, vaddr_t src_addr)
    666 {
    667 }
    668 
    669 /*
    670  * Require that all active physical maps contain no
    671  * incorrect entries NOW.
    672  */
    673 void
    674 pmap_update(struct pmap *pmap)
    675 {
    676 }
    677 
    678 /*
    679  * Fill the given physical page with zeroes.
    680  */
    681 void
    682 pmap_zero_page(paddr_t pa)
    683 {
    684 
    685 #ifdef PPC_4XX_NOCACHE
    686 	memset((void *)pa, 0, PAGE_SIZE);
    687 #else
    688 	int i;
    689 
    690 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    691 		__asm volatile ("dcbz 0,%0" :: "r"(pa));
    692 		pa += CACHELINESIZE;
    693 	}
    694 #endif
    695 }
    696 
    697 /*
    698  * Copy the given physical source page to its destination.
    699  */
    700 void
    701 pmap_copy_page(paddr_t src, paddr_t dst)
    702 {
    703 
    704 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    705 	dcache_wbinv_page(dst);
    706 }
    707 
    708 /*
    709  * This returns != 0 on success.
    710  */
    711 static inline int
    712 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    713 {
    714 	struct pv_entry *pv, *npv = NULL;
    715 	int s;
    716 
    717 	if (!pmap_initialized)
    718 		return 0;
    719 
    720 	s = splvm();
    721 	pv = pa_to_pv(pa);
    722 	if (!pv->pv_pm) {
    723 		/*
    724 		 * No entries yet, use header as the first entry.
    725 		 */
    726 		pv->pv_va = va;
    727 		pv->pv_pm = pm;
    728 		pv->pv_next = NULL;
    729 	} else {
    730 		/*
    731 		 * There is at least one other VA mapping this page.
    732 		 * Place this entry after the header.
    733 		 */
    734 		npv = pool_get(&pv_pool, PR_NOWAIT);
    735 		if (npv == NULL) {
    736 			if ((flags & PMAP_CANFAIL) == 0)
    737 				panic("pmap_enter_pv: failed");
    738 			splx(s);
    739 			return 0;
    740 		}
    741 		npv->pv_va = va;
    742 		npv->pv_pm = pm;
    743 		npv->pv_next = pv->pv_next;
    744 		pv->pv_next = npv;
    745 		pv = npv;
    746 	}
    747 	if (flags & PMAP_WIRED) {
    748 		PV_WIRE(pv);
    749 		pm->pm_stats.wired_count++;
    750 	}
    751 	splx(s);
    752 	return (1);
    753 }
    754 
    755 static void
    756 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    757 {
    758 	struct pv_entry *pv, *npv;
    759 
    760 	/*
    761 	 * Remove from the PV table.
    762 	 */
    763 	pv = pa_to_pv(pa);
    764 	if (!pv)
    765 		return;
    766 
    767 	/*
    768 	 * If it is the first entry on the list, it is actually
    769 	 * in the header and we must copy the following entry up
    770 	 * to the header.  Otherwise we must search the list for
    771 	 * the entry.  In either case we free the now unused entry.
    772 	 */
    773 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    774 		if (PV_ISWIRED(pv)) {
    775 			pm->pm_stats.wired_count--;
    776 		}
    777 		if ((npv = pv->pv_next)) {
    778 			*pv = *npv;
    779 			pool_put(&pv_pool, npv);
    780 		} else
    781 			pv->pv_pm = NULL;
    782 	} else {
    783 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    784 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    785 				break;
    786 		if (npv) {
    787 			pv->pv_next = npv->pv_next;
    788 			if (PV_ISWIRED(npv)) {
    789 				pm->pm_stats.wired_count--;
    790 			}
    791 			pool_put(&pv_pool, npv);
    792 		}
    793 	}
    794 }
    795 
    796 /*
    797  * Insert physical page at pa into the given pmap at virtual address va.
    798  */
    799 int
    800 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    801 {
    802 	int s;
    803 	u_int tte;
    804 	bool managed;
    805 
    806 	/*
    807 	 * Have to remove any existing mapping first.
    808 	 */
    809 	pmap_remove(pm, va, va + PAGE_SIZE);
    810 
    811 	if (flags & PMAP_WIRED)
    812 		flags |= prot;
    813 
    814 	managed = uvm_pageismanaged(pa);
    815 
    816 	/*
    817 	 * Generate TTE.
    818 	 */
    819 	tte = TTE_PA(pa);
    820 	/* XXXX -- need to support multiple page sizes. */
    821 	tte |= TTE_SZ_16K;
    822 #ifdef	DIAGNOSTIC
    823 	if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    824 		(PMAP_NOCACHE | PME_WRITETHROUG))
    825 		panic("pmap_enter: uncached & writethrough");
    826 #endif
    827 	if (flags & PMAP_NOCACHE)
    828 		/* Must be I/O mapping */
    829 		tte |= TTE_I | TTE_G;
    830 #ifdef PPC_4XX_NOCACHE
    831 	tte |= TTE_I;
    832 #else
    833 	else if (flags & PME_WRITETHROUG)
    834 		/* Uncached and writethrough are not compatible */
    835 		tte |= TTE_W;
    836 #endif
    837 	if (pm == pmap_kernel())
    838 		tte |= TTE_ZONE(ZONE_PRIV);
    839 	else
    840 		tte |= TTE_ZONE(ZONE_USER);
    841 
    842 	if (flags & VM_PROT_WRITE)
    843 		tte |= TTE_WR;
    844 
    845 	if (flags & VM_PROT_EXECUTE)
    846 		tte |= TTE_EX;
    847 
    848 	/*
    849 	 * Now record mapping for later back-translation.
    850 	 */
    851 	if (pmap_initialized && managed) {
    852 		char *attr;
    853 
    854 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    855 			/* Could not enter pv on a managed page */
    856 			return 1;
    857 		}
    858 
    859 		/* Now set attributes. */
    860 		attr = pa_to_attr(pa);
    861 #ifdef DIAGNOSTIC
    862 		if (!attr)
    863 			panic("managed but no attr");
    864 #endif
    865 		if (flags & VM_PROT_ALL)
    866 			*attr |= PMAP_ATTR_REF;
    867 		if (flags & VM_PROT_WRITE)
    868 			*attr |= PMAP_ATTR_CHG;
    869 	}
    870 
    871 	s = splvm();
    872 
    873 	/* Insert page into page table. */
    874 	pte_enter(pm, va, tte);
    875 
    876 	/* If this is a real fault, enter it in the tlb */
    877 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    878 		int s2 = splhigh();
    879 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    880 		splx(s2);
    881 	}
    882 	splx(s);
    883 
    884 	/* Flush the real memory from the instruction cache. */
    885 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    886 		__syncicache((void *)pa, PAGE_SIZE);
    887 
    888 	return 0;
    889 }
    890 
    891 void
    892 pmap_unwire(struct pmap *pm, vaddr_t va)
    893 {
    894 	struct pv_entry *pv;
    895 	paddr_t pa;
    896 	int s;
    897 
    898 	if (!pmap_extract(pm, va, &pa)) {
    899 		return;
    900 	}
    901 
    902 	pv = pa_to_pv(pa);
    903 	if (!pv)
    904 		return;
    905 
    906 	s = splvm();
    907 	while (pv != NULL) {
    908 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    909 			if (PV_ISWIRED(pv)) {
    910 				PV_UNWIRE(pv);
    911 				pm->pm_stats.wired_count--;
    912 			}
    913 			break;
    914 		}
    915 		pv = pv->pv_next;
    916 	}
    917 	splx(s);
    918 }
    919 
    920 void
    921 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    922 {
    923 	int s;
    924 	u_int tte;
    925 	struct pmap *pm = pmap_kernel();
    926 
    927 	/*
    928 	 * Have to remove any existing mapping first.
    929 	 */
    930 
    931 	/*
    932 	 * Generate TTE.
    933 	 *
    934 	 * XXXX
    935 	 *
    936 	 * Since the kernel does not handle execution privileges properly,
    937 	 * we will handle read and execute permissions together.
    938 	 */
    939 	tte = 0;
    940 	if (prot & VM_PROT_ALL) {
    941 
    942 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    943 		/* XXXX -- need to support multiple page sizes. */
    944 		tte |= TTE_SZ_16K;
    945 #ifdef DIAGNOSTIC
    946 		if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    947 			(PMAP_NOCACHE | PME_WRITETHROUG))
    948 			panic("pmap_kenter_pa: uncached & writethrough");
    949 #endif
    950 		if (flags & PMAP_NOCACHE)
    951 			/* Must be I/O mapping */
    952 			tte |= TTE_I | TTE_G;
    953 #ifdef PPC_4XX_NOCACHE
    954 		tte |= TTE_I;
    955 #else
    956 		else if (prot & PME_WRITETHROUG)
    957 			/* Uncached and writethrough are not compatible */
    958 			tte |= TTE_W;
    959 #endif
    960 		if (prot & VM_PROT_WRITE)
    961 			tte |= TTE_WR;
    962 	}
    963 
    964 	s = splvm();
    965 
    966 	/* Insert page into page table. */
    967 	pte_enter(pm, va, tte);
    968 	splx(s);
    969 }
    970 
    971 void
    972 pmap_kremove(vaddr_t va, vsize_t len)
    973 {
    974 
    975 	while (len > 0) {
    976 		pte_enter(pmap_kernel(), va, 0);
    977 		va += PAGE_SIZE;
    978 		len -= PAGE_SIZE;
    979 	}
    980 }
    981 
    982 /*
    983  * Remove the given range of mapping entries.
    984  */
    985 void
    986 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
    987 {
    988 	int s;
    989 	paddr_t pa;
    990 	volatile u_int *ptp;
    991 
    992 	s = splvm();
    993 	while (va < endva) {
    994 
    995 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
    996 			pa = TTE_PA(pa);
    997 			pmap_remove_pv(pm, va, pa);
    998 			*ptp = 0;
    999 			ppc4xx_tlb_flush(va, pm->pm_ctx);
   1000 			pm->pm_stats.resident_count--;
   1001 		}
   1002 		va += PAGE_SIZE;
   1003 	}
   1004 
   1005 	splx(s);
   1006 }
   1007 
   1008 /*
   1009  * Get the physical page address for the given pmap/virtual address.
   1010  */
   1011 bool
   1012 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1013 {
   1014 	int seg = STIDX(va);
   1015 	int ptn = PTIDX(va);
   1016 	u_int pa = 0;
   1017 	int s;
   1018 
   1019 	s = splvm();
   1020 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
   1021 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1022 	}
   1023 	splx(s);
   1024 	return (pa != 0);
   1025 }
   1026 
   1027 /*
   1028  * Lower the protection on the specified range of this pmap.
   1029  *
   1030  * There are only two cases: either the protection is going to 0,
   1031  * or it is going to read-only.
   1032  */
   1033 void
   1034 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1035 {
   1036 	volatile u_int *ptp;
   1037 	int s, bic;
   1038 
   1039 	if ((prot & VM_PROT_READ) == 0) {
   1040 		pmap_remove(pm, sva, eva);
   1041 		return;
   1042 	}
   1043 	bic = 0;
   1044 	if ((prot & VM_PROT_WRITE) == 0) {
   1045 		bic |= TTE_WR;
   1046 	}
   1047 	if ((prot & VM_PROT_EXECUTE) == 0) {
   1048 		bic |= TTE_EX;
   1049 	}
   1050 	if (bic == 0) {
   1051 		return;
   1052 	}
   1053 	s = splvm();
   1054 	while (sva < eva) {
   1055 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1056 			*ptp &= ~bic;
   1057 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1058 		}
   1059 		sva += PAGE_SIZE;
   1060 	}
   1061 	splx(s);
   1062 }
   1063 
   1064 bool
   1065 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1066 {
   1067 	paddr_t pa;
   1068 	char *attr;
   1069 	int s, rv;
   1070 
   1071 	/*
   1072 	 * First modify bits in cache.
   1073 	 */
   1074 	pa = VM_PAGE_TO_PHYS(pg);
   1075 	attr = pa_to_attr(pa);
   1076 	if (attr == NULL)
   1077 		return false;
   1078 
   1079 	s = splvm();
   1080 	rv = ((*attr & mask) != 0);
   1081 	if (clear) {
   1082 		*attr &= ~mask;
   1083 		pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1084 	}
   1085 	splx(s);
   1086 	return rv;
   1087 }
   1088 
   1089 
   1090 /*
   1091  * Lower the protection on the specified physical page.
   1092  *
   1093  * There are only two cases: either the protection is going to 0,
   1094  * or it is going to read-only.
   1095  */
   1096 void
   1097 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1098 {
   1099 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1100 	vaddr_t va;
   1101 	struct pv_entry *pvh, *pv, *npv;
   1102 	struct pmap *pm;
   1103 
   1104 	pvh = pa_to_pv(pa);
   1105 	if (pvh == NULL)
   1106 		return;
   1107 
   1108 	/* Handle extra pvs which may be deleted in the operation */
   1109 	for (pv = pvh->pv_next; pv; pv = npv) {
   1110 		npv = pv->pv_next;
   1111 
   1112 		pm = pv->pv_pm;
   1113 		va = pv->pv_va;
   1114 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1115 	}
   1116 	/* Now check the head pv */
   1117 	if (pvh->pv_pm) {
   1118 		pv = pvh;
   1119 		pm = pv->pv_pm;
   1120 		va = pv->pv_va;
   1121 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1122 	}
   1123 }
   1124 
   1125 /*
   1126  * Activate the address space for the specified process.  If the process
   1127  * is the current process, load the new MMU context.
   1128  */
   1129 void
   1130 pmap_activate(struct lwp *l)
   1131 {
   1132 #if 0
   1133 	struct pcb *pcb = lwp_getpcb(l);
   1134 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1135 
   1136 	/*
   1137 	 * XXX Normally performed in cpu_lwp_fork().
   1138 	 */
   1139 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1140 	pcb->pcb_pm = pmap;
   1141 #endif
   1142 }
   1143 
   1144 /*
   1145  * Deactivate the specified process's address space.
   1146  */
   1147 void
   1148 pmap_deactivate(struct lwp *l)
   1149 {
   1150 }
   1151 
   1152 /*
   1153  * Synchronize caches corresponding to [addr, addr+len) in p.
   1154  */
   1155 void
   1156 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1157 {
   1158 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1159 	int msr, ctx, opid, step;
   1160 
   1161 	step = CACHELINESIZE;
   1162 
   1163 	/*
   1164 	 * Need to turn off IMMU and switch to user context.
   1165 	 * (icbi uses DMMU).
   1166 	 */
   1167 	if (!(ctx = pm->pm_ctx)) {
   1168 		/* No context -- assign it one */
   1169 		ctx_alloc(pm);
   1170 		ctx = pm->pm_ctx;
   1171 	}
   1172 	__asm volatile("mfmsr %0;"
   1173 		"li %1, %7;"
   1174 		"andc %1,%0,%1;"
   1175 		"mtmsr %1;"
   1176 		"sync;isync;"
   1177 		"mfpid %1;"
   1178 		"mtpid %2;"
   1179 		"sync; isync;"
   1180 		"1:"
   1181 		"dcbf 0,%3;"
   1182 		"icbi 0,%3;"
   1183 		"add %3,%3,%5;"
   1184 		"addc. %4,%4,%6;"
   1185 		"bge 1b;"
   1186 		"mtpid %1;"
   1187 		"mtmsr %0;"
   1188 		"sync; isync"
   1189 		: "=&r" (msr), "=&r" (opid)
   1190 		: "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
   1191 		  "K" (PSL_IR | PSL_DR));
   1192 }
   1193 
   1194 
   1195 /* This has to be done in real mode !!! */
   1196 void
   1197 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1198 {
   1199 	u_long i, found;
   1200 	u_long msr;
   1201 
   1202 	/* If there's no context then it can't be mapped. */
   1203 	if (!pid)
   1204 		return;
   1205 
   1206 	__asm( 	"mfpid %1;"		/* Save PID */
   1207 		"mfmsr %2;"		/* Save MSR */
   1208 		"li %0,0;"		/* Now clear MSR */
   1209 		"mtmsr %0;"
   1210 		"mtpid %4;"		/* Set PID */
   1211 		"sync;"
   1212 		"tlbsx. %0,0,%3;"	/* Search TLB */
   1213 		"sync;"
   1214 		"mtpid %1;"		/* Restore PID */
   1215 		"mtmsr %2;"		/* Restore MSR */
   1216 		"sync;isync;"
   1217 		"li %1,1;"
   1218 		"beq 1f;"
   1219 		"li %1,0;"
   1220 		"1:"
   1221 		: "=&r" (i), "=&r" (found), "=&r" (msr)
   1222 		: "r" (va), "r" (pid));
   1223 	if (found && !TLB_LOCKED(i)) {
   1224 
   1225 		/* Now flush translation */
   1226 		__asm volatile(
   1227 			"tlbwe %0,%1,0;"
   1228 			"sync;isync;"
   1229 			: : "r" (0), "r" (i));
   1230 
   1231 		tlb_info[i].ti_ctx = 0;
   1232 		tlb_info[i].ti_flags = 0;
   1233 		tlbnext = i;
   1234 		/* Successful flushes */
   1235 		tlbflush_ev.ev_count++;
   1236 	}
   1237 }
   1238 
   1239 void
   1240 ppc4xx_tlb_flush_all(void)
   1241 {
   1242 	u_long i;
   1243 
   1244 	for (i = 0; i < NTLB; i++)
   1245 		if (!TLB_LOCKED(i)) {
   1246 			__asm volatile(
   1247 				"tlbwe %0,%1,0;"
   1248 				"sync;isync;"
   1249 				: : "r" (0), "r" (i));
   1250 			tlb_info[i].ti_ctx = 0;
   1251 			tlb_info[i].ti_flags = 0;
   1252 		}
   1253 
   1254 	__asm volatile("sync;isync");
   1255 }
   1256 
   1257 /* Find a TLB entry to evict. */
   1258 static int
   1259 ppc4xx_tlb_find_victim(void)
   1260 {
   1261 	int flags;
   1262 
   1263 	for (;;) {
   1264 		if (++tlbnext >= NTLB)
   1265 			tlbnext = tlb_nreserved;
   1266 		flags = tlb_info[tlbnext].ti_flags;
   1267 		if (!(flags & TLBF_USED) ||
   1268 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1269 			u_long va, stack = (u_long)&va;
   1270 
   1271 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
   1272 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1273 			     (flags & TLBF_USED)) {
   1274 				/* Kernel stack page */
   1275 				flags |= TLBF_USED;
   1276 				tlb_info[tlbnext].ti_flags = flags;
   1277 			} else {
   1278 				/* Found it! */
   1279 				return (tlbnext);
   1280 			}
   1281 		} else {
   1282 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1283 		}
   1284 	}
   1285 }
   1286 
   1287 void
   1288 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1289 {
   1290 	u_long th, tl, idx;
   1291 	tlbpid_t pid;
   1292 	u_short msr;
   1293 	paddr_t pa;
   1294 	int sz;
   1295 
   1296 	tlbenter_ev.ev_count++;
   1297 
   1298 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1299 	pa = (pte & TTE_RPN_MASK(sz));
   1300 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1301 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1302 	tl |= ppc4xx_tlbflags(va, pa);
   1303 
   1304 	idx = ppc4xx_tlb_find_victim();
   1305 
   1306 #ifdef DIAGNOSTIC
   1307 	if ((idx < tlb_nreserved) || (idx >= NTLB)) {
   1308 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1309 	}
   1310 #endif
   1311 
   1312 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1313 	tlb_info[idx].ti_ctx = ctx;
   1314 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1315 
   1316 	__asm volatile(
   1317 		"mfmsr %0;"			/* Save MSR */
   1318 		"li %1,0;"
   1319 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
   1320 		"mtmsr %1;"			/* Clear MSR */
   1321 		"mfpid %1;"			/* Save old PID */
   1322 		"mtpid %2;"			/* Load translation ctx */
   1323 		"sync; isync;"
   1324 #ifdef DEBUG
   1325 		"andi. %3,%3,63;"
   1326 		"tweqi %3,0;" 			/* XXXXX DEBUG trap on index 0 */
   1327 #endif
   1328 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
   1329 		"sync; isync;"
   1330 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
   1331 		"sync; isync;"
   1332 	: "=&r" (msr), "=&r" (pid)
   1333 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
   1334 }
   1335 
   1336 void
   1337 ppc4xx_tlb_init(void)
   1338 {
   1339 	int i;
   1340 
   1341 	/* Mark reserved TLB entries */
   1342 	for (i = 0; i < tlb_nreserved; i++) {
   1343 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1344 		tlb_info[i].ti_ctx = KERNEL_PID;
   1345 	}
   1346 
   1347 	/* Setup security zones */
   1348 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1349 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1350 	 * Z3 - full access regardless of TLB entry permissions
   1351 	 */
   1352 
   1353 	__asm volatile(
   1354 		"mtspr %0,%1;"
   1355 		"sync;"
   1356 		::  "K"(SPR_ZPR), "r" (0x1b000000));
   1357 }
   1358 
   1359 /*
   1360  * ppc4xx_tlb_size_mask:
   1361  *
   1362  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1363  */
   1364 static int
   1365 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1366 {
   1367 	int 			i;
   1368 
   1369 	for (i = 0; i < __arraycount(tlbsize); i++)
   1370 		if (size <= tlbsize[i]) {
   1371 			*mask = (i << TLB_SIZE_SHFT);
   1372 			*rsiz = tlbsize[i];
   1373 			return (0);
   1374 		}
   1375 	return (EINVAL);
   1376 }
   1377 
   1378 /*
   1379  * ppc4xx_tlb_mapiodev:
   1380  *
   1381  * 	Lookup virtual address of mapping previously entered via
   1382  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1383  * 	need to waste extra storage for reserved mappings. Note
   1384  * 	that reading TLBHI also sets PID, but all reserved mappings
   1385  * 	use KERNEL_PID, so the side effect is nil.
   1386  */
   1387 void *
   1388 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1389 {
   1390 	paddr_t 		pa;
   1391 	vaddr_t 		va;
   1392 	u_int 			lo, hi, sz;
   1393 	int 			i;
   1394 
   1395 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1396 	for (i = 0; i < tlb_nreserved; i++) {
   1397 		__asm volatile (
   1398 		    "	tlbre %0,%2,1 	\n" 	/* TLBLO */
   1399 		    "	tlbre %1,%2,0 	\n" 	/* TLBHI */
   1400 		    : "=&r" (lo), "=&r" (hi)
   1401 		    : "r" (i));
   1402 
   1403 		KASSERT(hi & TLB_VALID);
   1404 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1405 
   1406 		pa = (lo & TLB_RPN_MASK);
   1407 		if (base < pa)
   1408 			continue;
   1409 
   1410 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1411 		if ((base + len) > (pa + sz))
   1412 			continue;
   1413 
   1414 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1415 		return (void *)(va);
   1416 	}
   1417 
   1418 	return (NULL);
   1419 }
   1420 
   1421 /*
   1422  * ppc4xx_tlb_reserve:
   1423  *
   1424  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1425  */
   1426 void
   1427 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1428 {
   1429 	u_int 			lo, hi;
   1430 	int 			szmask, rsize;
   1431 
   1432 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1433 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1434 	KASSERT(! pmap_bootstrap_done);
   1435 	KASSERT(tlb_nreserved < NTLB);
   1436 
   1437 	/* Resolve size. */
   1438 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1439 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1440 		    size, tlb_nreserved);
   1441 
   1442 	/* Real size will be power of two >= 1024, so this is OK. */
   1443 	pa &= ~(rsize - 1); 	/* RPN */
   1444 	va &= ~(rsize - 1); 	/* EPN */
   1445 
   1446 	lo = pa | TLB_WR | flags;
   1447 	hi = va | TLB_VALID | szmask;
   1448 
   1449 #ifdef PPC_4XX_NOCACHE
   1450 	lo |= TLB_I;
   1451 #endif
   1452 
   1453 	__asm volatile(
   1454 	    "	tlbwe %1,%0,1 	\n" 	/* write TLBLO */
   1455 	    "	tlbwe %2,%0,0 	\n" 	/* write TLBHI */
   1456 	    "   sync 		\n"
   1457 	    "	isync 		\n"
   1458 	    : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
   1459 
   1460 	tlb_nreserved++;
   1461 }
   1462 
   1463 /*
   1464  * We should pass the ctx in from trap code.
   1465  */
   1466 int
   1467 pmap_tlbmiss(vaddr_t va, int ctx)
   1468 {
   1469 	volatile u_int *pte;
   1470 	u_long tte;
   1471 
   1472 	tlbmiss_ev.ev_count++;
   1473 
   1474 	/*
   1475 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1476 	 * Physical RAM is expected to live in this range, care must be taken
   1477 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1478 	 * code.
   1479 	 */
   1480 	if (ctx != KERNEL_PID ||
   1481 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1482 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1483 		if (pte == NULL) {
   1484 			/* Map unmanaged addresses directly for kernel access */
   1485 			return 1;
   1486 		}
   1487 		tte = *pte;
   1488 		if (tte == 0) {
   1489 			return 1;
   1490 		}
   1491 	} else {
   1492 		/* Create a 16MB writable mapping. */
   1493 #ifdef PPC_4XX_NOCACHE
   1494 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
   1495 #else
   1496 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1497 #endif
   1498 	}
   1499 	tlbhit_ev.ev_count++;
   1500 	ppc4xx_tlb_enter(ctx, va, tte);
   1501 
   1502 	return 0;
   1503 }
   1504 
   1505 /*
   1506  * Flush all the entries matching a context from the TLB.
   1507  */
   1508 static int
   1509 ctx_flush(int cnum)
   1510 {
   1511 	int i;
   1512 
   1513 	/* We gotta steal this context */
   1514 	for (i = tlb_nreserved; i < NTLB; i++) {
   1515 		if (tlb_info[i].ti_ctx == cnum) {
   1516 			/* Can't steal ctx if it has a locked entry. */
   1517 			if (TLB_LOCKED(i)) {
   1518 #ifdef DIAGNOSTIC
   1519 				printf("ctx_flush: can't invalidate "
   1520 					"locked mapping %d "
   1521 					"for context %d\n", i, cnum);
   1522 #ifdef DDB
   1523 				Debugger();
   1524 #endif
   1525 #endif
   1526 				return (1);
   1527 			}
   1528 #ifdef DIAGNOSTIC
   1529 			if (i < tlb_nreserved)
   1530 				panic("TLB entry %d not locked", i);
   1531 #endif
   1532 			/* Invalidate particular TLB entry regardless of locked status */
   1533 			__asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
   1534 			tlb_info[i].ti_flags = 0;
   1535 		}
   1536 	}
   1537 	return (0);
   1538 }
   1539 
   1540 /*
   1541  * Allocate a context.  If necessary, steal one from someone else.
   1542  *
   1543  * The new context is flushed from the TLB before returning.
   1544  */
   1545 int
   1546 ctx_alloc(struct pmap *pm)
   1547 {
   1548 	int s, cnum;
   1549 	static int next = MINCTX;
   1550 
   1551 	if (pm == pmap_kernel()) {
   1552 #ifdef DIAGNOSTIC
   1553 		printf("ctx_alloc: kernel pmap!\n");
   1554 #endif
   1555 		return (0);
   1556 	}
   1557 	s = splvm();
   1558 
   1559 	/* Find a likely context. */
   1560 	cnum = next;
   1561 	do {
   1562 		if ((++cnum) > NUMCTX)
   1563 			cnum = MINCTX;
   1564 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1565 
   1566 	/* Now clean it out */
   1567 oops:
   1568 	if (cnum < MINCTX)
   1569 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1570 	if (ctx_flush(cnum)) {
   1571 		/* oops -- something's wired. */
   1572 		if ((++cnum) > NUMCTX)
   1573 			cnum = MINCTX;
   1574 		goto oops;
   1575 	}
   1576 
   1577 	if (ctxbusy[cnum]) {
   1578 #ifdef DEBUG
   1579 		/* We should identify this pmap and clear it */
   1580 		printf("Warning: stealing context %d\n", cnum);
   1581 #endif
   1582 		ctxbusy[cnum]->pm_ctx = 0;
   1583 	}
   1584 	ctxbusy[cnum] = pm;
   1585 	next = cnum;
   1586 	splx(s);
   1587 	pm->pm_ctx = cnum;
   1588 
   1589 	return cnum;
   1590 }
   1591 
   1592 /*
   1593  * Give away a context.
   1594  */
   1595 void
   1596 ctx_free(struct pmap *pm)
   1597 {
   1598 	int oldctx;
   1599 
   1600 	oldctx = pm->pm_ctx;
   1601 
   1602 	if (oldctx == 0)
   1603 		panic("ctx_free: freeing kernel context");
   1604 #ifdef DIAGNOSTIC
   1605 	if (ctxbusy[oldctx] == 0)
   1606 		printf("ctx_free: freeing free context %d\n", oldctx);
   1607 	if (ctxbusy[oldctx] != pm) {
   1608 		printf("ctx_free: freeing someone esle's context\n "
   1609 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1610 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1611 #ifdef DDB
   1612 		Debugger();
   1613 #endif
   1614 	}
   1615 #endif
   1616 	/* We should verify it has not been stolen and reallocated... */
   1617 	ctxbusy[oldctx] = NULL;
   1618 	ctx_flush(oldctx);
   1619 }
   1620 
   1621 
   1622 #ifdef DEBUG
   1623 /*
   1624  * Test ref/modify handling.
   1625  */
   1626 void pmap_testout(void);
   1627 void
   1628 pmap_testout(void)
   1629 {
   1630 	vaddr_t va;
   1631 	volatile int *loc;
   1632 	int val = 0;
   1633 	paddr_t pa;
   1634 	struct vm_page *pg;
   1635 	int ref, mod;
   1636 
   1637 	/* Allocate a page */
   1638 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1639 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1640 	loc = (int*)va;
   1641 
   1642 	pmap_extract(pmap_kernel(), va, &pa);
   1643 	pg = PHYS_TO_VM_PAGE(pa);
   1644 	pmap_unwire(pmap_kernel(), va);
   1645 
   1646 	pmap_kremove(va, PAGE_SIZE);
   1647 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1648 	pmap_update(pmap_kernel());
   1649 
   1650 	/* Now clear reference and modify */
   1651 	ref = pmap_clear_reference(pg);
   1652 	mod = pmap_clear_modify(pg);
   1653 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1654 	       (void *)(u_long)va, (long)pa,
   1655 	       ref, mod);
   1656 
   1657 	/* Check it's properly cleared */
   1658 	ref = pmap_is_referenced(pg);
   1659 	mod = pmap_is_modified(pg);
   1660 	printf("Checking cleared page: ref %d, mod %d\n",
   1661 	       ref, mod);
   1662 
   1663 	/* Reference page */
   1664 	val = *loc;
   1665 
   1666 	ref = pmap_is_referenced(pg);
   1667 	mod = pmap_is_modified(pg);
   1668 	printf("Referenced page: ref %d, mod %d val %x\n",
   1669 	       ref, mod, val);
   1670 
   1671 	/* Now clear reference and modify */
   1672 	ref = pmap_clear_reference(pg);
   1673 	mod = pmap_clear_modify(pg);
   1674 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1675 	       (void *)(u_long)va, (long)pa,
   1676 	       ref, mod);
   1677 
   1678 	/* Modify page */
   1679 	*loc = 1;
   1680 
   1681 	ref = pmap_is_referenced(pg);
   1682 	mod = pmap_is_modified(pg);
   1683 	printf("Modified page: ref %d, mod %d\n",
   1684 	       ref, mod);
   1685 
   1686 	/* Now clear reference and modify */
   1687 	ref = pmap_clear_reference(pg);
   1688 	mod = pmap_clear_modify(pg);
   1689 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1690 	       (void *)(u_long)va, (long)pa,
   1691 	       ref, mod);
   1692 
   1693 	/* Check it's properly cleared */
   1694 	ref = pmap_is_referenced(pg);
   1695 	mod = pmap_is_modified(pg);
   1696 	printf("Checking cleared page: ref %d, mod %d\n",
   1697 	       ref, mod);
   1698 
   1699 	/* Modify page */
   1700 	*loc = 1;
   1701 
   1702 	ref = pmap_is_referenced(pg);
   1703 	mod = pmap_is_modified(pg);
   1704 	printf("Modified page: ref %d, mod %d\n",
   1705 	       ref, mod);
   1706 
   1707 	/* Check pmap_protect() */
   1708 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1709 	pmap_update(pmap_kernel());
   1710 	ref = pmap_is_referenced(pg);
   1711 	mod = pmap_is_modified(pg);
   1712 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
   1713 	       ref, mod);
   1714 
   1715 	/* Now clear reference and modify */
   1716 	ref = pmap_clear_reference(pg);
   1717 	mod = pmap_clear_modify(pg);
   1718 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1719 	       (void *)(u_long)va, (long)pa,
   1720 	       ref, mod);
   1721 
   1722 	/* Reference page */
   1723 	val = *loc;
   1724 
   1725 	ref = pmap_is_referenced(pg);
   1726 	mod = pmap_is_modified(pg);
   1727 	printf("Referenced page: ref %d, mod %d val %x\n",
   1728 	       ref, mod, val);
   1729 
   1730 	/* Now clear reference and modify */
   1731 	ref = pmap_clear_reference(pg);
   1732 	mod = pmap_clear_modify(pg);
   1733 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1734 	       (void *)(u_long)va, (long)pa,
   1735 	       ref, mod);
   1736 
   1737 	/* Modify page */
   1738 #if 0
   1739 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1740 	pmap_update(pmap_kernel());
   1741 #endif
   1742 	*loc = 1;
   1743 
   1744 	ref = pmap_is_referenced(pg);
   1745 	mod = pmap_is_modified(pg);
   1746 	printf("Modified page: ref %d, mod %d\n",
   1747 	       ref, mod);
   1748 
   1749 	/* Check pmap_protect() */
   1750 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1751 	pmap_update(pmap_kernel());
   1752 	ref = pmap_is_referenced(pg);
   1753 	mod = pmap_is_modified(pg);
   1754 	printf("pmap_protect(): ref %d, mod %d\n",
   1755 	       ref, mod);
   1756 
   1757 	/* Now clear reference and modify */
   1758 	ref = pmap_clear_reference(pg);
   1759 	mod = pmap_clear_modify(pg);
   1760 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1761 	       (void *)(u_long)va, (long)pa,
   1762 	       ref, mod);
   1763 
   1764 	/* Reference page */
   1765 	val = *loc;
   1766 
   1767 	ref = pmap_is_referenced(pg);
   1768 	mod = pmap_is_modified(pg);
   1769 	printf("Referenced page: ref %d, mod %d val %x\n",
   1770 	       ref, mod, val);
   1771 
   1772 	/* Now clear reference and modify */
   1773 	ref = pmap_clear_reference(pg);
   1774 	mod = pmap_clear_modify(pg);
   1775 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1776 	       (void *)(u_long)va, (long)pa,
   1777 	       ref, mod);
   1778 
   1779 	/* Modify page */
   1780 #if 0
   1781 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1782 	pmap_update(pmap_kernel());
   1783 #endif
   1784 	*loc = 1;
   1785 
   1786 	ref = pmap_is_referenced(pg);
   1787 	mod = pmap_is_modified(pg);
   1788 	printf("Modified page: ref %d, mod %d\n",
   1789 	       ref, mod);
   1790 
   1791 	/* Check pmap_pag_protect() */
   1792 	pmap_page_protect(pg, VM_PROT_READ);
   1793 	ref = pmap_is_referenced(pg);
   1794 	mod = pmap_is_modified(pg);
   1795 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
   1796 	       ref, mod);
   1797 
   1798 	/* Now clear reference and modify */
   1799 	ref = pmap_clear_reference(pg);
   1800 	mod = pmap_clear_modify(pg);
   1801 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1802 	       (void *)(u_long)va, (long)pa,
   1803 	       ref, mod);
   1804 
   1805 	/* Reference page */
   1806 	val = *loc;
   1807 
   1808 	ref = pmap_is_referenced(pg);
   1809 	mod = pmap_is_modified(pg);
   1810 	printf("Referenced page: ref %d, mod %d val %x\n",
   1811 	       ref, mod, val);
   1812 
   1813 	/* Now clear reference and modify */
   1814 	ref = pmap_clear_reference(pg);
   1815 	mod = pmap_clear_modify(pg);
   1816 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1817 	       (void *)(u_long)va, (long)pa,
   1818 	       ref, mod);
   1819 
   1820 	/* Modify page */
   1821 #if 0
   1822 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1823 	pmap_update(pmap_kernel());
   1824 #endif
   1825 	*loc = 1;
   1826 
   1827 	ref = pmap_is_referenced(pg);
   1828 	mod = pmap_is_modified(pg);
   1829 	printf("Modified page: ref %d, mod %d\n",
   1830 	       ref, mod);
   1831 
   1832 	/* Check pmap_pag_protect() */
   1833 	pmap_page_protect(pg, VM_PROT_NONE);
   1834 	ref = pmap_is_referenced(pg);
   1835 	mod = pmap_is_modified(pg);
   1836 	printf("pmap_page_protect(): ref %d, mod %d\n",
   1837 	       ref, mod);
   1838 
   1839 	/* Now clear reference and modify */
   1840 	ref = pmap_clear_reference(pg);
   1841 	mod = pmap_clear_modify(pg);
   1842 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1843 	       (void *)(u_long)va, (long)pa,
   1844 	       ref, mod);
   1845 
   1846 
   1847 	/* Reference page */
   1848 	val = *loc;
   1849 
   1850 	ref = pmap_is_referenced(pg);
   1851 	mod = pmap_is_modified(pg);
   1852 	printf("Referenced page: ref %d, mod %d val %x\n",
   1853 	       ref, mod, val);
   1854 
   1855 	/* Now clear reference and modify */
   1856 	ref = pmap_clear_reference(pg);
   1857 	mod = pmap_clear_modify(pg);
   1858 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1859 	       (void *)(u_long)va, (long)pa,
   1860 	       ref, mod);
   1861 
   1862 	/* Modify page */
   1863 #if 0
   1864 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1865 	pmap_update(pmap_kernel());
   1866 #endif
   1867 	*loc = 1;
   1868 
   1869 	ref = pmap_is_referenced(pg);
   1870 	mod = pmap_is_modified(pg);
   1871 	printf("Modified page: ref %d, mod %d\n",
   1872 	       ref, mod);
   1873 
   1874 	/* Unmap page */
   1875 	pmap_remove(pmap_kernel(), va, va+1);
   1876 	pmap_update(pmap_kernel());
   1877 	ref = pmap_is_referenced(pg);
   1878 	mod = pmap_is_modified(pg);
   1879 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1880 
   1881 	/* Now clear reference and modify */
   1882 	ref = pmap_clear_reference(pg);
   1883 	mod = pmap_clear_modify(pg);
   1884 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1885 	       (void *)(u_long)va, (long)pa, ref, mod);
   1886 
   1887 	/* Check it's properly cleared */
   1888 	ref = pmap_is_referenced(pg);
   1889 	mod = pmap_is_modified(pg);
   1890 	printf("Checking cleared page: ref %d, mod %d\n",
   1891 	       ref, mod);
   1892 
   1893 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1894 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1895 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1896 }
   1897 #endif
   1898