pmap.c revision 1.80 1 /* $NetBSD: pmap.c,v 1.80 2020/02/21 13:16:16 rin Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.80 2020/02/21 13:16:16 rin Exp $");
71
72 #include <sys/param.h>
73 #include <sys/cpu.h>
74 #include <sys/device.h>
75 #include <sys/kmem.h>
76 #include <sys/pool.h>
77 #include <sys/proc.h>
78 #include <sys/queue.h>
79 #include <sys/systm.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/powerpc.h>
84 #include <machine/tlb.h>
85
86 #include <powerpc/pcb.h>
87
88 #include <powerpc/spr.h>
89 #include <powerpc/ibm4xx/spr.h>
90
91 #include <powerpc/ibm4xx/cpu.h>
92
93 /*
94 * kernmap is an array of PTEs large enough to map in
95 * 4GB. At 16KB/page it is 256K entries or 2MB.
96 */
97 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
98 void *kernmap;
99
100 #define MINCTX 2
101 #define NUMCTX 256
102
103 volatile struct pmap *ctxbusy[NUMCTX];
104
105 #define TLBF_USED 0x1
106 #define TLBF_REF 0x2
107 #define TLBF_LOCKED 0x4
108 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
109
110 typedef struct tlb_info_s {
111 char ti_flags;
112 char ti_ctx; /* TLB_PID assiciated with the entry */
113 u_int ti_va;
114 } tlb_info_t;
115
116 volatile tlb_info_t tlb_info[NTLB];
117 /* We'll use a modified FIFO replacement policy cause it's cheap */
118 volatile int tlbnext;
119
120 static int tlb_nreserved = 0;
121 static int pmap_bootstrap_done = 0;
122
123 /* Event counters */
124 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
125 NULL, "cpu", "tlbmiss");
126 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
127 NULL, "cpu", "tlbhit");
128 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
129 NULL, "cpu", "tlbflush");
130 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
131 NULL, "cpu", "tlbenter");
132 EVCNT_ATTACH_STATIC(tlbmiss_ev);
133 EVCNT_ATTACH_STATIC(tlbhit_ev);
134 EVCNT_ATTACH_STATIC(tlbflush_ev);
135 EVCNT_ATTACH_STATIC(tlbenter_ev);
136
137 struct pmap kernel_pmap_;
138 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
139
140 static int npgs;
141 static u_int nextavail;
142 #ifndef MSGBUFADDR
143 extern paddr_t msgbuf_paddr;
144 #endif
145
146 static struct mem_region *mem, *avail;
147
148 /*
149 * This is a cache of referenced/modified bits.
150 * Bits herein are shifted by ATTRSHFT.
151 */
152 static char *pmap_attrib;
153
154 #define PV_WIRED 0x1
155 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
156 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
157 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
158 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
159
160 struct pv_entry {
161 struct pv_entry *pv_next; /* Linked list of mappings */
162 struct pmap *pv_pm;
163 vaddr_t pv_va; /* virtual address of mapping */
164 };
165
166 /* Each index corresponds to TLB_SIZE_* value. */
167 static size_t tlbsize[] = {
168 1024, /* TLB_SIZE_1K */
169 4096, /* TLB_SIZE_4K */
170 16384, /* TLB_SIZE_16K */
171 65536, /* TLB_SIZE_64K */
172 262144, /* TLB_SIZE_256K */
173 1048576, /* TLB_SIZE_1M */
174 4194304, /* TLB_SIZE_4M */
175 16777216, /* TLB_SIZE_16M */
176 };
177
178 struct pv_entry *pv_table;
179 static struct pool pv_pool;
180
181 static int pmap_initialized;
182
183 static int ctx_flush(int);
184
185 struct pv_entry *pa_to_pv(paddr_t);
186 static inline char *pa_to_attr(paddr_t);
187
188 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
189 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
190
191 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
192 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
193
194 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
195
196
197 struct pv_entry *
198 pa_to_pv(paddr_t pa)
199 {
200 uvm_physseg_t bank;
201 psize_t pg;
202
203 bank = uvm_physseg_find(atop(pa), &pg);
204 if (bank == UVM_PHYSSEG_TYPE_INVALID)
205 return NULL;
206 return &uvm_physseg_get_pmseg(bank)->pvent[pg];
207 }
208
209 static inline char *
210 pa_to_attr(paddr_t pa)
211 {
212 uvm_physseg_t bank;
213 psize_t pg;
214
215 bank = uvm_physseg_find(atop(pa), &pg);
216 if (bank == UVM_PHYSSEG_TYPE_INVALID)
217 return NULL;
218 return &uvm_physseg_get_pmseg(bank)->attrs[pg];
219 }
220
221 /*
222 * Insert PTE into page table.
223 */
224 int
225 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
226 {
227 int seg = STIDX(va);
228 int ptn = PTIDX(va);
229 u_int oldpte;
230
231 if (!pm->pm_ptbl[seg]) {
232 /* Don't allocate a page to clear a non-existent mapping. */
233 if (!pte)
234 return (0);
235 /* Allocate a page XXXX this will sleep! */
236 pm->pm_ptbl[seg] =
237 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
238 UVM_KMF_WIRED | UVM_KMF_ZERO);
239 }
240 oldpte = pm->pm_ptbl[seg][ptn];
241 pm->pm_ptbl[seg][ptn] = pte;
242
243 /* Flush entry. */
244 ppc4xx_tlb_flush(va, pm->pm_ctx);
245 if (oldpte != pte) {
246 if (pte == 0)
247 pm->pm_stats.resident_count--;
248 else
249 pm->pm_stats.resident_count++;
250 }
251 return (1);
252 }
253
254 /*
255 * Get a pointer to a PTE in a page table.
256 */
257 volatile u_int *
258 pte_find(struct pmap *pm, vaddr_t va)
259 {
260 int seg = STIDX(va);
261 int ptn = PTIDX(va);
262
263 if (pm->pm_ptbl[seg])
264 return (&pm->pm_ptbl[seg][ptn]);
265
266 return (NULL);
267 }
268
269 /*
270 * This is called during initppc, before the system is really initialized.
271 */
272 void
273 pmap_bootstrap(u_int kernelstart, u_int kernelend)
274 {
275 struct mem_region *mp, *mp1;
276 int cnt, i;
277 u_int s, e, sz;
278
279 tlbnext = tlb_nreserved;
280
281 /*
282 * Allocate the kernel page table at the end of
283 * kernel space so it's in the locked TTE.
284 */
285 kernmap = (void *)kernelend;
286
287 /*
288 * Initialize kernel page table.
289 */
290 for (i = 0; i < STSZ; i++) {
291 pmap_kernel()->pm_ptbl[i] = 0;
292 }
293 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
294
295 /*
296 * Announce page-size to the VM-system
297 */
298 uvmexp.pagesize = NBPG;
299 uvm_md_init();
300
301 /*
302 * Get memory.
303 */
304 mem_regions(&mem, &avail);
305 for (mp = mem; mp->size; mp++) {
306 physmem += btoc(mp->size);
307 printf("+%lx,",mp->size);
308 }
309 printf("\n");
310 ppc4xx_tlb_init();
311 /*
312 * Count the number of available entries.
313 */
314 for (cnt = 0, mp = avail; mp->size; mp++)
315 cnt++;
316
317 /*
318 * Page align all regions.
319 * Non-page aligned memory isn't very interesting to us.
320 * Also, sort the entries for ascending addresses.
321 */
322 kernelstart &= ~PGOFSET;
323 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
324 for (mp = avail; mp->size; mp++) {
325 s = mp->start;
326 e = mp->start + mp->size;
327 printf("%08x-%08x -> ",s,e);
328 /*
329 * Check whether this region holds all of the kernel.
330 */
331 if (s < kernelstart && e > kernelend) {
332 avail[cnt].start = kernelend;
333 avail[cnt++].size = e - kernelend;
334 e = kernelstart;
335 }
336 /*
337 * Look whether this regions starts within the kernel.
338 */
339 if (s >= kernelstart && s < kernelend) {
340 if (e <= kernelend)
341 goto empty;
342 s = kernelend;
343 }
344 /*
345 * Now look whether this region ends within the kernel.
346 */
347 if (e > kernelstart && e <= kernelend) {
348 if (s >= kernelstart)
349 goto empty;
350 e = kernelstart;
351 }
352 /*
353 * Now page align the start and size of the region.
354 */
355 s = round_page(s);
356 e = trunc_page(e);
357 if (e < s)
358 e = s;
359 sz = e - s;
360 printf("%08x-%08x = %x\n",s,e,sz);
361 /*
362 * Check whether some memory is left here.
363 */
364 if (sz == 0) {
365 empty:
366 memmove(mp, mp + 1,
367 (cnt - (mp - avail)) * sizeof *mp);
368 cnt--;
369 mp--;
370 continue;
371 }
372 /*
373 * Do an insertion sort.
374 */
375 npgs += btoc(sz);
376 for (mp1 = avail; mp1 < mp; mp1++)
377 if (s < mp1->start)
378 break;
379 if (mp1 < mp) {
380 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
381 mp1->start = s;
382 mp1->size = sz;
383 } else {
384 mp->start = s;
385 mp->size = sz;
386 }
387 }
388
389 /*
390 * We cannot do pmap_steal_memory here,
391 * since we don't run with translation enabled yet.
392 */
393 #ifndef MSGBUFADDR
394 /*
395 * allow for msgbuf
396 */
397 sz = round_page(MSGBUFSIZE);
398 mp = NULL;
399 for (mp1 = avail; mp1->size; mp1++)
400 if (mp1->size >= sz)
401 mp = mp1;
402 if (mp == NULL)
403 panic("not enough memory?");
404
405 npgs -= btoc(sz);
406 msgbuf_paddr = mp->start + mp->size - sz;
407 mp->size -= sz;
408 if (mp->size <= 0)
409 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
410 #endif
411
412 for (mp = avail; mp->size; mp++)
413 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
414 atop(mp->start), atop(mp->start + mp->size),
415 VM_FREELIST_DEFAULT);
416
417 /*
418 * Initialize kernel pmap and hardware.
419 */
420 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
421 pmap_kernel()->pm_ctx = KERNEL_PID;
422 nextavail = avail->start;
423
424 pmap_bootstrap_done = 1;
425 }
426
427 /*
428 * Restrict given range to physical memory
429 *
430 * (Used by /dev/mem)
431 */
432 void
433 pmap_real_memory(paddr_t *start, psize_t *size)
434 {
435 struct mem_region *mp;
436
437 for (mp = mem; mp->size; mp++) {
438 if (*start + *size > mp->start &&
439 *start < mp->start + mp->size) {
440 if (*start < mp->start) {
441 *size -= mp->start - *start;
442 *start = mp->start;
443 }
444 if (*start + *size > mp->start + mp->size)
445 *size = mp->start + mp->size - *start;
446 return;
447 }
448 }
449 *size = 0;
450 }
451
452 /*
453 * Initialize anything else for pmap handling.
454 * Called during vm_init().
455 */
456 void
457 pmap_init(void)
458 {
459 struct pv_entry *pv;
460 vsize_t sz;
461 vaddr_t addr;
462 int i, s;
463 int bank;
464 char *attr;
465
466 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
467 sz = round_page(sz);
468 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
469 s = splvm();
470 pv = pv_table = (struct pv_entry *)addr;
471 for (i = npgs; --i >= 0;)
472 pv++->pv_pm = NULL;
473 pmap_attrib = (char *)pv;
474 memset(pv, 0, npgs);
475
476 pv = pv_table;
477 attr = pmap_attrib;
478 for (bank = uvm_physseg_get_first();
479 uvm_physseg_valid_p(bank);
480 bank = uvm_physseg_get_next(bank)) {
481 sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
482 uvm_physseg_get_pmseg(bank)->pvent = pv;
483 uvm_physseg_get_pmseg(bank)->attrs = attr;
484 pv += sz;
485 attr += sz;
486 }
487
488 pmap_initialized = 1;
489 splx(s);
490
491 /* Setup a pool for additional pvlist structures */
492 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
493 IPL_VM);
494 }
495
496 /*
497 * How much virtual space is available to the kernel?
498 */
499 void
500 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
501 {
502
503 #if 0
504 /*
505 * Reserve one segment for kernel virtual memory
506 */
507 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
508 *end = *start + SEGMENT_LENGTH;
509 #else
510 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
511 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
512 #endif
513 }
514
515 #ifdef PMAP_GROWKERNEL
516 /*
517 * Preallocate kernel page tables to a specified VA.
518 * This simply loops through the first TTE for each
519 * page table from the beginning of the kernel pmap,
520 * reads the entry, and if the result is
521 * zero (either invalid entry or no page table) it stores
522 * a zero there, populating page tables in the process.
523 * This is not the most efficient technique but i don't
524 * expect it to be called that often.
525 */
526 extern struct vm_page *vm_page_alloc1(void);
527 extern void vm_page_free1(struct vm_page *);
528
529 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
530
531 vaddr_t
532 pmap_growkernel(vaddr_t maxkvaddr)
533 {
534 int s;
535 int seg;
536 paddr_t pg;
537 struct pmap *pm = pmap_kernel();
538
539 s = splvm();
540
541 /* Align with the start of a page table */
542 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
543 kbreak += PTMAP) {
544 seg = STIDX(kbreak);
545
546 if (pte_find(pm, kbreak))
547 continue;
548
549 if (uvm.page_init_done) {
550 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
551 } else {
552 if (!uvm_page_physget(&pg))
553 panic("pmap_growkernel: no memory");
554 }
555 if (!pg)
556 panic("pmap_growkernel: no pages");
557 pmap_zero_page((paddr_t)pg);
558
559 /* XXX This is based on all phymem being addressable */
560 pm->pm_ptbl[seg] = (u_int *)pg;
561 }
562 splx(s);
563 return (kbreak);
564 }
565
566 /*
567 * vm_page_alloc1:
568 *
569 * Allocate and return a memory cell with no associated object.
570 */
571 struct vm_page *
572 vm_page_alloc1(void)
573 {
574 struct vm_page *pg;
575
576 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
577 if (pg) {
578 pg->wire_count = 1; /* no mappings yet */
579 pg->flags &= ~PG_BUSY; /* never busy */
580 }
581 return pg;
582 }
583
584 /*
585 * vm_page_free1:
586 *
587 * Returns the given page to the free list,
588 * disassociating it with any VM object.
589 *
590 * Object and page must be locked prior to entry.
591 */
592 void
593 vm_page_free1(struct vm_page *pg)
594 {
595 #ifdef DIAGNOSTIC
596 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
597 printf("Freeing invalid page %p\n", pg);
598 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
599 #ifdef DDB
600 Debugger();
601 #endif
602 return;
603 }
604 #endif
605 pg->flags |= PG_BUSY;
606 pg->wire_count = 0;
607 uvm_pagefree(pg);
608 }
609 #endif
610
611 /*
612 * Create and return a physical map.
613 */
614 struct pmap *
615 pmap_create(void)
616 {
617 struct pmap *pm;
618
619 pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
620 memset(pm, 0, sizeof *pm);
621 pm->pm_refs = 1;
622 return pm;
623 }
624
625 /*
626 * Add a reference to the given pmap.
627 */
628 void
629 pmap_reference(struct pmap *pm)
630 {
631
632 pm->pm_refs++;
633 }
634
635 /*
636 * Retire the given pmap from service.
637 * Should only be called if the map contains no valid mappings.
638 */
639 void
640 pmap_destroy(struct pmap *pm)
641 {
642 int i;
643
644 if (--pm->pm_refs > 0) {
645 return;
646 }
647 KASSERT(pm->pm_stats.resident_count == 0);
648 KASSERT(pm->pm_stats.wired_count == 0);
649 for (i = 0; i < STSZ; i++)
650 if (pm->pm_ptbl[i]) {
651 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
652 PAGE_SIZE, UVM_KMF_WIRED);
653 pm->pm_ptbl[i] = NULL;
654 }
655 if (pm->pm_ctx)
656 ctx_free(pm);
657 kmem_free(pm, sizeof(*pm));
658 }
659
660 /*
661 * Copy the range specified by src_addr/len
662 * from the source map to the range dst_addr/len
663 * in the destination map.
664 *
665 * This routine is only advisory and need not do anything.
666 */
667 void
668 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
669 vsize_t len, vaddr_t src_addr)
670 {
671 }
672
673 /*
674 * Require that all active physical maps contain no
675 * incorrect entries NOW.
676 */
677 void
678 pmap_update(struct pmap *pmap)
679 {
680 }
681
682 /*
683 * Fill the given physical page with zeroes.
684 */
685 void
686 pmap_zero_page(paddr_t pa)
687 {
688
689 #ifdef PPC_4XX_NOCACHE
690 memset((void *)pa, 0, PAGE_SIZE);
691 #else
692 int i;
693
694 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
695 __asm volatile ("dcbz 0,%0" :: "r"(pa));
696 pa += CACHELINESIZE;
697 }
698 #endif
699 }
700
701 /*
702 * Copy the given physical source page to its destination.
703 */
704 void
705 pmap_copy_page(paddr_t src, paddr_t dst)
706 {
707
708 memcpy((void *)dst, (void *)src, PAGE_SIZE);
709 dcache_wbinv_page(dst);
710 }
711
712 /*
713 * This returns != 0 on success.
714 */
715 static inline int
716 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
717 {
718 struct pv_entry *pv, *npv = NULL;
719 int s;
720
721 if (!pmap_initialized)
722 return 0;
723
724 s = splvm();
725 pv = pa_to_pv(pa);
726 if (!pv->pv_pm) {
727 /*
728 * No entries yet, use header as the first entry.
729 */
730 pv->pv_va = va;
731 pv->pv_pm = pm;
732 pv->pv_next = NULL;
733 } else {
734 /*
735 * There is at least one other VA mapping this page.
736 * Place this entry after the header.
737 */
738 npv = pool_get(&pv_pool, PR_NOWAIT);
739 if (npv == NULL) {
740 if ((flags & PMAP_CANFAIL) == 0)
741 panic("pmap_enter_pv: failed");
742 splx(s);
743 return 0;
744 }
745 npv->pv_va = va;
746 npv->pv_pm = pm;
747 npv->pv_next = pv->pv_next;
748 pv->pv_next = npv;
749 pv = npv;
750 }
751 if (flags & PMAP_WIRED) {
752 PV_WIRE(pv);
753 pm->pm_stats.wired_count++;
754 }
755 splx(s);
756 return (1);
757 }
758
759 static void
760 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
761 {
762 struct pv_entry *pv, *npv;
763
764 /*
765 * Remove from the PV table.
766 */
767 pv = pa_to_pv(pa);
768 if (!pv)
769 return;
770
771 /*
772 * If it is the first entry on the list, it is actually
773 * in the header and we must copy the following entry up
774 * to the header. Otherwise we must search the list for
775 * the entry. In either case we free the now unused entry.
776 */
777 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
778 if (PV_ISWIRED(pv)) {
779 pm->pm_stats.wired_count--;
780 }
781 if ((npv = pv->pv_next)) {
782 *pv = *npv;
783 pool_put(&pv_pool, npv);
784 } else
785 pv->pv_pm = NULL;
786 } else {
787 for (; (npv = pv->pv_next) != NULL; pv = npv)
788 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
789 break;
790 if (npv) {
791 pv->pv_next = npv->pv_next;
792 if (PV_ISWIRED(npv)) {
793 pm->pm_stats.wired_count--;
794 }
795 pool_put(&pv_pool, npv);
796 }
797 }
798 }
799
800 /*
801 * Insert physical page at pa into the given pmap at virtual address va.
802 */
803 int
804 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
805 {
806 int s;
807 u_int tte;
808 bool managed;
809
810 /*
811 * Have to remove any existing mapping first.
812 */
813 pmap_remove(pm, va, va + PAGE_SIZE);
814
815 if (flags & PMAP_WIRED)
816 flags |= prot;
817
818 managed = uvm_pageismanaged(pa);
819
820 /*
821 * Generate TTE.
822 */
823 tte = TTE_PA(pa);
824 /* XXXX -- need to support multiple page sizes. */
825 tte |= TTE_SZ_16K;
826 #ifdef DIAGNOSTIC
827 if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
828 (PMAP_NOCACHE | PME_WRITETHROUG))
829 panic("pmap_enter: uncached & writethrough");
830 #endif
831 if (flags & PMAP_NOCACHE)
832 /* Must be I/O mapping */
833 tte |= TTE_I | TTE_G;
834 #ifdef PPC_4XX_NOCACHE
835 tte |= TTE_I;
836 #else
837 else if (flags & PME_WRITETHROUG)
838 /* Uncached and writethrough are not compatible */
839 tte |= TTE_W;
840 #endif
841 if (pm == pmap_kernel())
842 tte |= TTE_ZONE(ZONE_PRIV);
843 else
844 tte |= TTE_ZONE(ZONE_USER);
845
846 if (flags & VM_PROT_WRITE)
847 tte |= TTE_WR;
848
849 if (flags & VM_PROT_EXECUTE)
850 tte |= TTE_EX;
851
852 /*
853 * Now record mapping for later back-translation.
854 */
855 if (pmap_initialized && managed) {
856 char *attr;
857
858 if (!pmap_enter_pv(pm, va, pa, flags)) {
859 /* Could not enter pv on a managed page */
860 return 1;
861 }
862
863 /* Now set attributes. */
864 attr = pa_to_attr(pa);
865 #ifdef DIAGNOSTIC
866 if (!attr)
867 panic("managed but no attr");
868 #endif
869 if (flags & VM_PROT_ALL)
870 *attr |= PMAP_ATTR_REF;
871 if (flags & VM_PROT_WRITE)
872 *attr |= PMAP_ATTR_CHG;
873 }
874
875 s = splvm();
876
877 /* Insert page into page table. */
878 pte_enter(pm, va, tte);
879
880 /* If this is a real fault, enter it in the tlb */
881 if (tte && ((flags & PMAP_WIRED) == 0)) {
882 int s2 = splhigh();
883 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
884 splx(s2);
885 }
886 splx(s);
887
888 /* Flush the real memory from the instruction cache. */
889 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
890 __syncicache((void *)pa, PAGE_SIZE);
891
892 return 0;
893 }
894
895 void
896 pmap_unwire(struct pmap *pm, vaddr_t va)
897 {
898 struct pv_entry *pv;
899 paddr_t pa;
900 int s;
901
902 if (!pmap_extract(pm, va, &pa)) {
903 return;
904 }
905
906 pv = pa_to_pv(pa);
907 if (!pv)
908 return;
909
910 s = splvm();
911 while (pv != NULL) {
912 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
913 if (PV_ISWIRED(pv)) {
914 PV_UNWIRE(pv);
915 pm->pm_stats.wired_count--;
916 }
917 break;
918 }
919 pv = pv->pv_next;
920 }
921 splx(s);
922 }
923
924 void
925 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
926 {
927 int s;
928 u_int tte;
929 struct pmap *pm = pmap_kernel();
930
931 /*
932 * Have to remove any existing mapping first.
933 */
934
935 /*
936 * Generate TTE.
937 *
938 * XXXX
939 *
940 * Since the kernel does not handle execution privileges properly,
941 * we will handle read and execute permissions together.
942 */
943 tte = 0;
944 if (prot & VM_PROT_ALL) {
945
946 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
947 /* XXXX -- need to support multiple page sizes. */
948 tte |= TTE_SZ_16K;
949 #ifdef DIAGNOSTIC
950 if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
951 (PMAP_NOCACHE | PME_WRITETHROUG))
952 panic("pmap_kenter_pa: uncached & writethrough");
953 #endif
954 if (flags & PMAP_NOCACHE)
955 /* Must be I/O mapping */
956 tte |= TTE_I | TTE_G;
957 #ifdef PPC_4XX_NOCACHE
958 tte |= TTE_I;
959 #else
960 else if (prot & PME_WRITETHROUG)
961 /* Uncached and writethrough are not compatible */
962 tte |= TTE_W;
963 #endif
964 if (prot & VM_PROT_WRITE)
965 tte |= TTE_WR;
966 }
967
968 s = splvm();
969
970 /* Insert page into page table. */
971 pte_enter(pm, va, tte);
972 splx(s);
973 }
974
975 void
976 pmap_kremove(vaddr_t va, vsize_t len)
977 {
978
979 while (len > 0) {
980 pte_enter(pmap_kernel(), va, 0);
981 va += PAGE_SIZE;
982 len -= PAGE_SIZE;
983 }
984 }
985
986 /*
987 * Remove the given range of mapping entries.
988 */
989 void
990 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
991 {
992 int s;
993 paddr_t pa;
994 volatile u_int *ptp;
995
996 s = splvm();
997 while (va < endva) {
998
999 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1000 pa = TTE_PA(pa);
1001 pmap_remove_pv(pm, va, pa);
1002 *ptp = 0;
1003 ppc4xx_tlb_flush(va, pm->pm_ctx);
1004 pm->pm_stats.resident_count--;
1005 }
1006 va += PAGE_SIZE;
1007 }
1008
1009 splx(s);
1010 }
1011
1012 /*
1013 * Get the physical page address for the given pmap/virtual address.
1014 */
1015 bool
1016 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1017 {
1018 int seg = STIDX(va);
1019 int ptn = PTIDX(va);
1020 u_int pa = 0;
1021 int s;
1022
1023 s = splvm();
1024 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap) {
1025 *pap = TTE_PA(pa) | (va & PGOFSET);
1026 }
1027 splx(s);
1028 return (pa != 0);
1029 }
1030
1031 /*
1032 * Lower the protection on the specified range of this pmap.
1033 *
1034 * There are only two cases: either the protection is going to 0,
1035 * or it is going to read-only.
1036 */
1037 void
1038 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1039 {
1040 volatile u_int *ptp;
1041 int s, bic;
1042
1043 if ((prot & VM_PROT_READ) == 0) {
1044 pmap_remove(pm, sva, eva);
1045 return;
1046 }
1047 bic = 0;
1048 if ((prot & VM_PROT_WRITE) == 0) {
1049 bic |= TTE_WR;
1050 }
1051 if ((prot & VM_PROT_EXECUTE) == 0) {
1052 bic |= TTE_EX;
1053 }
1054 if (bic == 0) {
1055 return;
1056 }
1057 s = splvm();
1058 while (sva < eva) {
1059 if ((ptp = pte_find(pm, sva)) != NULL) {
1060 *ptp &= ~bic;
1061 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1062 }
1063 sva += PAGE_SIZE;
1064 }
1065 splx(s);
1066 }
1067
1068 bool
1069 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1070 {
1071 paddr_t pa;
1072 char *attr;
1073 int s, rv;
1074
1075 /*
1076 * First modify bits in cache.
1077 */
1078 pa = VM_PAGE_TO_PHYS(pg);
1079 attr = pa_to_attr(pa);
1080 if (attr == NULL)
1081 return false;
1082
1083 s = splvm();
1084 rv = ((*attr & mask) != 0);
1085 if (clear) {
1086 *attr &= ~mask;
1087 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1088 }
1089 splx(s);
1090 return rv;
1091 }
1092
1093
1094 /*
1095 * Lower the protection on the specified physical page.
1096 *
1097 * There are only two cases: either the protection is going to 0,
1098 * or it is going to read-only.
1099 */
1100 void
1101 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1102 {
1103 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1104 vaddr_t va;
1105 struct pv_entry *pvh, *pv, *npv;
1106 struct pmap *pm;
1107
1108 pvh = pa_to_pv(pa);
1109 if (pvh == NULL)
1110 return;
1111
1112 /* Handle extra pvs which may be deleted in the operation */
1113 for (pv = pvh->pv_next; pv; pv = npv) {
1114 npv = pv->pv_next;
1115
1116 pm = pv->pv_pm;
1117 va = pv->pv_va;
1118 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1119 }
1120 /* Now check the head pv */
1121 if (pvh->pv_pm) {
1122 pv = pvh;
1123 pm = pv->pv_pm;
1124 va = pv->pv_va;
1125 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1126 }
1127 }
1128
1129 /*
1130 * Activate the address space for the specified process. If the process
1131 * is the current process, load the new MMU context.
1132 */
1133 void
1134 pmap_activate(struct lwp *l)
1135 {
1136 #if 0
1137 struct pcb *pcb = lwp_getpcb(l);
1138 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1139
1140 /*
1141 * XXX Normally performed in cpu_lwp_fork().
1142 */
1143 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1144 pcb->pcb_pm = pmap;
1145 #endif
1146 }
1147
1148 /*
1149 * Deactivate the specified process's address space.
1150 */
1151 void
1152 pmap_deactivate(struct lwp *l)
1153 {
1154 }
1155
1156 /*
1157 * Synchronize caches corresponding to [addr, addr+len) in p.
1158 */
1159 void
1160 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1161 {
1162 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1163 int msr, ctx, opid, step;
1164
1165 step = CACHELINESIZE;
1166
1167 /*
1168 * Need to turn off IMMU and switch to user context.
1169 * (icbi uses DMMU).
1170 */
1171 if (!(ctx = pm->pm_ctx)) {
1172 /* No context -- assign it one */
1173 ctx_alloc(pm);
1174 ctx = pm->pm_ctx;
1175 }
1176 __asm volatile("mfmsr %0;"
1177 "li %1, %7;"
1178 "andc %1,%0,%1;"
1179 "mtmsr %1;"
1180 "sync;isync;"
1181 "mfpid %1;"
1182 "mtpid %2;"
1183 "sync; isync;"
1184 "1:"
1185 "dcbf 0,%3;"
1186 "icbi 0,%3;"
1187 "add %3,%3,%5;"
1188 "addc. %4,%4,%6;"
1189 "bge 1b;"
1190 "mtpid %1;"
1191 "mtmsr %0;"
1192 "sync; isync"
1193 : "=&r" (msr), "=&r" (opid)
1194 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1195 "K" (PSL_IR | PSL_DR));
1196 }
1197
1198
1199 /* This has to be done in real mode !!! */
1200 void
1201 ppc4xx_tlb_flush(vaddr_t va, int pid)
1202 {
1203 u_long i, found;
1204 u_long msr;
1205
1206 /* If there's no context then it can't be mapped. */
1207 if (!pid)
1208 return;
1209
1210 __asm( "mfpid %1;" /* Save PID */
1211 "mfmsr %2;" /* Save MSR */
1212 "li %0,0;" /* Now clear MSR */
1213 "mtmsr %0;"
1214 "mtpid %4;" /* Set PID */
1215 "sync;"
1216 "tlbsx. %0,0,%3;" /* Search TLB */
1217 "sync;"
1218 "mtpid %1;" /* Restore PID */
1219 "mtmsr %2;" /* Restore MSR */
1220 "sync;isync;"
1221 "li %1,1;"
1222 "beq 1f;"
1223 "li %1,0;"
1224 "1:"
1225 : "=&r" (i), "=&r" (found), "=&r" (msr)
1226 : "r" (va), "r" (pid));
1227 if (found && !TLB_LOCKED(i)) {
1228
1229 /* Now flush translation */
1230 __asm volatile(
1231 "tlbwe %0,%1,0;"
1232 "sync;isync;"
1233 : : "r" (0), "r" (i));
1234
1235 tlb_info[i].ti_ctx = 0;
1236 tlb_info[i].ti_flags = 0;
1237 tlbnext = i;
1238 /* Successful flushes */
1239 tlbflush_ev.ev_count++;
1240 }
1241 }
1242
1243 void
1244 ppc4xx_tlb_flush_all(void)
1245 {
1246 u_long i;
1247
1248 for (i = 0; i < NTLB; i++)
1249 if (!TLB_LOCKED(i)) {
1250 __asm volatile(
1251 "tlbwe %0,%1,0;"
1252 "sync;isync;"
1253 : : "r" (0), "r" (i));
1254 tlb_info[i].ti_ctx = 0;
1255 tlb_info[i].ti_flags = 0;
1256 }
1257
1258 __asm volatile("sync;isync");
1259 }
1260
1261 /* Find a TLB entry to evict. */
1262 static int
1263 ppc4xx_tlb_find_victim(void)
1264 {
1265 int flags;
1266
1267 for (;;) {
1268 if (++tlbnext >= NTLB)
1269 tlbnext = tlb_nreserved;
1270 flags = tlb_info[tlbnext].ti_flags;
1271 if (!(flags & TLBF_USED) ||
1272 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1273 u_long va, stack = (u_long)&va;
1274
1275 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1276 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1277 (flags & TLBF_USED)) {
1278 /* Kernel stack page */
1279 flags |= TLBF_REF;
1280 tlb_info[tlbnext].ti_flags = flags;
1281 } else {
1282 /* Found it! */
1283 return (tlbnext);
1284 }
1285 } else {
1286 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1287 }
1288 }
1289 }
1290
1291 void
1292 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1293 {
1294 u_long th, tl, idx;
1295 tlbpid_t pid;
1296 u_short msr;
1297 paddr_t pa;
1298 int sz;
1299
1300 tlbenter_ev.ev_count++;
1301
1302 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1303 pa = (pte & TTE_RPN_MASK(sz));
1304 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1305 tl = (pte & ~TLB_RPN_MASK) | pa;
1306 tl |= ppc4xx_tlbflags(va, pa);
1307
1308 idx = ppc4xx_tlb_find_victim();
1309
1310 #ifdef DIAGNOSTIC
1311 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1312 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1313 }
1314 #endif
1315
1316 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1317 tlb_info[idx].ti_ctx = ctx;
1318 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1319
1320 __asm volatile(
1321 "mfmsr %0;" /* Save MSR */
1322 "li %1,0;"
1323 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1324 "mtmsr %1;" /* Clear MSR */
1325 "mfpid %1;" /* Save old PID */
1326 "mtpid %2;" /* Load translation ctx */
1327 "sync; isync;"
1328 #ifdef DEBUG
1329 "andi. %3,%3,63;"
1330 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1331 #endif
1332 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1333 "sync; isync;"
1334 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1335 "sync; isync;"
1336 : "=&r" (msr), "=&r" (pid)
1337 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1338 }
1339
1340 void
1341 ppc4xx_tlb_init(void)
1342 {
1343 int i;
1344
1345 /* Mark reserved TLB entries */
1346 for (i = 0; i < tlb_nreserved; i++) {
1347 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1348 tlb_info[i].ti_ctx = KERNEL_PID;
1349 }
1350
1351 /* Setup security zones */
1352 /* Z0 - accessible by kernel only if TLB entry permissions allow
1353 * Z1,Z2 - access is controlled by TLB entry permissions
1354 * Z3 - full access regardless of TLB entry permissions
1355 */
1356
1357 __asm volatile(
1358 "mtspr %0,%1;"
1359 "sync;"
1360 :: "K"(SPR_ZPR), "r" (0x1b000000));
1361 }
1362
1363 /*
1364 * ppc4xx_tlb_size_mask:
1365 *
1366 * Roundup size to supported page size, return TLBHI mask and real size.
1367 */
1368 static int
1369 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1370 {
1371 int i;
1372
1373 for (i = 0; i < __arraycount(tlbsize); i++)
1374 if (size <= tlbsize[i]) {
1375 *mask = (i << TLB_SIZE_SHFT);
1376 *rsiz = tlbsize[i];
1377 return (0);
1378 }
1379 return (EINVAL);
1380 }
1381
1382 /*
1383 * ppc4xx_tlb_mapiodev:
1384 *
1385 * Lookup virtual address of mapping previously entered via
1386 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1387 * need to waste extra storage for reserved mappings. Note
1388 * that reading TLBHI also sets PID, but all reserved mappings
1389 * use KERNEL_PID, so the side effect is nil.
1390 */
1391 void *
1392 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1393 {
1394 paddr_t pa;
1395 vaddr_t va;
1396 u_int lo, hi, sz;
1397 int i;
1398
1399 /* tlb_nreserved is only allowed to grow, so this is safe. */
1400 for (i = 0; i < tlb_nreserved; i++) {
1401 __asm volatile (
1402 " tlbre %0,%2,1 \n" /* TLBLO */
1403 " tlbre %1,%2,0 \n" /* TLBHI */
1404 : "=&r" (lo), "=&r" (hi)
1405 : "r" (i));
1406
1407 KASSERT(hi & TLB_VALID);
1408 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1409
1410 pa = (lo & TLB_RPN_MASK);
1411 if (base < pa)
1412 continue;
1413
1414 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1415 if ((base + len) > (pa + sz))
1416 continue;
1417
1418 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1419 return (void *)(va);
1420 }
1421
1422 return (NULL);
1423 }
1424
1425 /*
1426 * ppc4xx_tlb_reserve:
1427 *
1428 * Map physical range to kernel virtual chunk via reserved TLB entry.
1429 */
1430 void
1431 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1432 {
1433 u_int lo, hi;
1434 int szmask, rsize;
1435
1436 /* Called before pmap_bootstrap(), va outside kernel space. */
1437 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1438 KASSERT(! pmap_bootstrap_done);
1439 KASSERT(tlb_nreserved < NTLB);
1440
1441 /* Resolve size. */
1442 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1443 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1444 size, tlb_nreserved);
1445
1446 /* Real size will be power of two >= 1024, so this is OK. */
1447 pa &= ~(rsize - 1); /* RPN */
1448 va &= ~(rsize - 1); /* EPN */
1449
1450 lo = pa | TLB_WR | flags;
1451 hi = va | TLB_VALID | szmask;
1452
1453 #ifdef PPC_4XX_NOCACHE
1454 lo |= TLB_I;
1455 #endif
1456
1457 __asm volatile(
1458 " tlbwe %1,%0,1 \n" /* write TLBLO */
1459 " tlbwe %2,%0,0 \n" /* write TLBHI */
1460 " sync \n"
1461 " isync \n"
1462 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1463
1464 tlb_nreserved++;
1465 }
1466
1467 /*
1468 * We should pass the ctx in from trap code.
1469 */
1470 int
1471 pmap_tlbmiss(vaddr_t va, int ctx)
1472 {
1473 volatile u_int *pte;
1474 u_long tte;
1475
1476 tlbmiss_ev.ev_count++;
1477
1478 /*
1479 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1480 * Physical RAM is expected to live in this range, care must be taken
1481 * to not clobber 0 upto ${physmem} with device mappings in machdep
1482 * code.
1483 */
1484 if (ctx != KERNEL_PID ||
1485 (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1486 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1487 if (pte == NULL) {
1488 /* Map unmanaged addresses directly for kernel access */
1489 return 1;
1490 }
1491 tte = *pte;
1492 if (tte == 0) {
1493 return 1;
1494 }
1495 } else {
1496 /* Create a 16MB writable mapping. */
1497 #ifdef PPC_4XX_NOCACHE
1498 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1499 #else
1500 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1501 #endif
1502 }
1503 tlbhit_ev.ev_count++;
1504 ppc4xx_tlb_enter(ctx, va, tte);
1505
1506 return 0;
1507 }
1508
1509 /*
1510 * Flush all the entries matching a context from the TLB.
1511 */
1512 static int
1513 ctx_flush(int cnum)
1514 {
1515 int i;
1516
1517 /* We gotta steal this context */
1518 for (i = tlb_nreserved; i < NTLB; i++) {
1519 if (tlb_info[i].ti_ctx == cnum) {
1520 /* Can't steal ctx if it has a locked entry. */
1521 if (TLB_LOCKED(i)) {
1522 #ifdef DIAGNOSTIC
1523 printf("ctx_flush: can't invalidate "
1524 "locked mapping %d "
1525 "for context %d\n", i, cnum);
1526 #ifdef DDB
1527 Debugger();
1528 #endif
1529 #endif
1530 return (1);
1531 }
1532 #ifdef DIAGNOSTIC
1533 if (i < tlb_nreserved)
1534 panic("TLB entry %d not locked", i);
1535 #endif
1536 /* Invalidate particular TLB entry regardless of locked status */
1537 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1538 tlb_info[i].ti_ctx = 0;
1539 tlb_info[i].ti_flags = 0;
1540 }
1541 }
1542 return (0);
1543 }
1544
1545 /*
1546 * Allocate a context. If necessary, steal one from someone else.
1547 *
1548 * The new context is flushed from the TLB before returning.
1549 */
1550 int
1551 ctx_alloc(struct pmap *pm)
1552 {
1553 int s, cnum;
1554 static int next = MINCTX;
1555
1556 if (pm == pmap_kernel()) {
1557 #ifdef DIAGNOSTIC
1558 printf("ctx_alloc: kernel pmap!\n");
1559 #endif
1560 return (0);
1561 }
1562 s = splvm();
1563
1564 /* Find a likely context. */
1565 cnum = next;
1566 do {
1567 if ((++cnum) >= NUMCTX)
1568 cnum = MINCTX;
1569 } while (ctxbusy[cnum] != NULL && cnum != next);
1570
1571 /* Now clean it out */
1572 oops:
1573 if (cnum < MINCTX)
1574 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1575 if (ctx_flush(cnum)) {
1576 /* oops -- something's wired. */
1577 if ((++cnum) >= NUMCTX)
1578 cnum = MINCTX;
1579 goto oops;
1580 }
1581
1582 if (ctxbusy[cnum]) {
1583 #ifdef DEBUG
1584 /* We should identify this pmap and clear it */
1585 printf("Warning: stealing context %d\n", cnum);
1586 #endif
1587 ctxbusy[cnum]->pm_ctx = 0;
1588 }
1589 ctxbusy[cnum] = pm;
1590 next = cnum;
1591 splx(s);
1592 pm->pm_ctx = cnum;
1593
1594 return cnum;
1595 }
1596
1597 /*
1598 * Give away a context.
1599 */
1600 void
1601 ctx_free(struct pmap *pm)
1602 {
1603 int oldctx;
1604
1605 oldctx = pm->pm_ctx;
1606
1607 if (oldctx == 0)
1608 panic("ctx_free: freeing kernel context");
1609 #ifdef DIAGNOSTIC
1610 if (ctxbusy[oldctx] == 0)
1611 printf("ctx_free: freeing free context %d\n", oldctx);
1612 if (ctxbusy[oldctx] != pm) {
1613 printf("ctx_free: freeing someone esle's context\n "
1614 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1615 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1616 #ifdef DDB
1617 Debugger();
1618 #endif
1619 }
1620 #endif
1621 /* We should verify it has not been stolen and reallocated... */
1622 ctxbusy[oldctx] = NULL;
1623 ctx_flush(oldctx);
1624 }
1625
1626
1627 #ifdef DEBUG
1628 /*
1629 * Test ref/modify handling.
1630 */
1631 void pmap_testout(void);
1632 void
1633 pmap_testout(void)
1634 {
1635 vaddr_t va;
1636 volatile int *loc;
1637 int val = 0;
1638 paddr_t pa;
1639 struct vm_page *pg;
1640 int ref, mod;
1641
1642 /* Allocate a page */
1643 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1644 UVM_KMF_WIRED | UVM_KMF_ZERO);
1645 loc = (int*)va;
1646
1647 pmap_extract(pmap_kernel(), va, &pa);
1648 pg = PHYS_TO_VM_PAGE(pa);
1649 pmap_unwire(pmap_kernel(), va);
1650
1651 pmap_kremove(va, PAGE_SIZE);
1652 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1653 pmap_update(pmap_kernel());
1654
1655 /* Now clear reference and modify */
1656 ref = pmap_clear_reference(pg);
1657 mod = pmap_clear_modify(pg);
1658 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1659 (void *)(u_long)va, (long)pa,
1660 ref, mod);
1661
1662 /* Check it's properly cleared */
1663 ref = pmap_is_referenced(pg);
1664 mod = pmap_is_modified(pg);
1665 printf("Checking cleared page: ref %d, mod %d\n",
1666 ref, mod);
1667
1668 /* Reference page */
1669 val = *loc;
1670
1671 ref = pmap_is_referenced(pg);
1672 mod = pmap_is_modified(pg);
1673 printf("Referenced page: ref %d, mod %d val %x\n",
1674 ref, mod, val);
1675
1676 /* Now clear reference and modify */
1677 ref = pmap_clear_reference(pg);
1678 mod = pmap_clear_modify(pg);
1679 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1680 (void *)(u_long)va, (long)pa,
1681 ref, mod);
1682
1683 /* Modify page */
1684 *loc = 1;
1685
1686 ref = pmap_is_referenced(pg);
1687 mod = pmap_is_modified(pg);
1688 printf("Modified page: ref %d, mod %d\n",
1689 ref, mod);
1690
1691 /* Now clear reference and modify */
1692 ref = pmap_clear_reference(pg);
1693 mod = pmap_clear_modify(pg);
1694 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1695 (void *)(u_long)va, (long)pa,
1696 ref, mod);
1697
1698 /* Check it's properly cleared */
1699 ref = pmap_is_referenced(pg);
1700 mod = pmap_is_modified(pg);
1701 printf("Checking cleared page: ref %d, mod %d\n",
1702 ref, mod);
1703
1704 /* Modify page */
1705 *loc = 1;
1706
1707 ref = pmap_is_referenced(pg);
1708 mod = pmap_is_modified(pg);
1709 printf("Modified page: ref %d, mod %d\n",
1710 ref, mod);
1711
1712 /* Check pmap_protect() */
1713 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1714 pmap_update(pmap_kernel());
1715 ref = pmap_is_referenced(pg);
1716 mod = pmap_is_modified(pg);
1717 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1718 ref, mod);
1719
1720 /* Now clear reference and modify */
1721 ref = pmap_clear_reference(pg);
1722 mod = pmap_clear_modify(pg);
1723 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1724 (void *)(u_long)va, (long)pa,
1725 ref, mod);
1726
1727 /* Reference page */
1728 val = *loc;
1729
1730 ref = pmap_is_referenced(pg);
1731 mod = pmap_is_modified(pg);
1732 printf("Referenced page: ref %d, mod %d val %x\n",
1733 ref, mod, val);
1734
1735 /* Now clear reference and modify */
1736 ref = pmap_clear_reference(pg);
1737 mod = pmap_clear_modify(pg);
1738 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1739 (void *)(u_long)va, (long)pa,
1740 ref, mod);
1741
1742 /* Modify page */
1743 #if 0
1744 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1745 pmap_update(pmap_kernel());
1746 #endif
1747 *loc = 1;
1748
1749 ref = pmap_is_referenced(pg);
1750 mod = pmap_is_modified(pg);
1751 printf("Modified page: ref %d, mod %d\n",
1752 ref, mod);
1753
1754 /* Check pmap_protect() */
1755 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1756 pmap_update(pmap_kernel());
1757 ref = pmap_is_referenced(pg);
1758 mod = pmap_is_modified(pg);
1759 printf("pmap_protect(): ref %d, mod %d\n",
1760 ref, mod);
1761
1762 /* Now clear reference and modify */
1763 ref = pmap_clear_reference(pg);
1764 mod = pmap_clear_modify(pg);
1765 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1766 (void *)(u_long)va, (long)pa,
1767 ref, mod);
1768
1769 /* Reference page */
1770 val = *loc;
1771
1772 ref = pmap_is_referenced(pg);
1773 mod = pmap_is_modified(pg);
1774 printf("Referenced page: ref %d, mod %d val %x\n",
1775 ref, mod, val);
1776
1777 /* Now clear reference and modify */
1778 ref = pmap_clear_reference(pg);
1779 mod = pmap_clear_modify(pg);
1780 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1781 (void *)(u_long)va, (long)pa,
1782 ref, mod);
1783
1784 /* Modify page */
1785 #if 0
1786 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1787 pmap_update(pmap_kernel());
1788 #endif
1789 *loc = 1;
1790
1791 ref = pmap_is_referenced(pg);
1792 mod = pmap_is_modified(pg);
1793 printf("Modified page: ref %d, mod %d\n",
1794 ref, mod);
1795
1796 /* Check pmap_pag_protect() */
1797 pmap_page_protect(pg, VM_PROT_READ);
1798 ref = pmap_is_referenced(pg);
1799 mod = pmap_is_modified(pg);
1800 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1801 ref, mod);
1802
1803 /* Now clear reference and modify */
1804 ref = pmap_clear_reference(pg);
1805 mod = pmap_clear_modify(pg);
1806 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1807 (void *)(u_long)va, (long)pa,
1808 ref, mod);
1809
1810 /* Reference page */
1811 val = *loc;
1812
1813 ref = pmap_is_referenced(pg);
1814 mod = pmap_is_modified(pg);
1815 printf("Referenced page: ref %d, mod %d val %x\n",
1816 ref, mod, val);
1817
1818 /* Now clear reference and modify */
1819 ref = pmap_clear_reference(pg);
1820 mod = pmap_clear_modify(pg);
1821 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1822 (void *)(u_long)va, (long)pa,
1823 ref, mod);
1824
1825 /* Modify page */
1826 #if 0
1827 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1828 pmap_update(pmap_kernel());
1829 #endif
1830 *loc = 1;
1831
1832 ref = pmap_is_referenced(pg);
1833 mod = pmap_is_modified(pg);
1834 printf("Modified page: ref %d, mod %d\n",
1835 ref, mod);
1836
1837 /* Check pmap_pag_protect() */
1838 pmap_page_protect(pg, VM_PROT_NONE);
1839 ref = pmap_is_referenced(pg);
1840 mod = pmap_is_modified(pg);
1841 printf("pmap_page_protect(): ref %d, mod %d\n",
1842 ref, mod);
1843
1844 /* Now clear reference and modify */
1845 ref = pmap_clear_reference(pg);
1846 mod = pmap_clear_modify(pg);
1847 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1848 (void *)(u_long)va, (long)pa,
1849 ref, mod);
1850
1851
1852 /* Reference page */
1853 val = *loc;
1854
1855 ref = pmap_is_referenced(pg);
1856 mod = pmap_is_modified(pg);
1857 printf("Referenced page: ref %d, mod %d val %x\n",
1858 ref, mod, val);
1859
1860 /* Now clear reference and modify */
1861 ref = pmap_clear_reference(pg);
1862 mod = pmap_clear_modify(pg);
1863 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1864 (void *)(u_long)va, (long)pa,
1865 ref, mod);
1866
1867 /* Modify page */
1868 #if 0
1869 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1870 pmap_update(pmap_kernel());
1871 #endif
1872 *loc = 1;
1873
1874 ref = pmap_is_referenced(pg);
1875 mod = pmap_is_modified(pg);
1876 printf("Modified page: ref %d, mod %d\n",
1877 ref, mod);
1878
1879 /* Unmap page */
1880 pmap_remove(pmap_kernel(), va, va+1);
1881 pmap_update(pmap_kernel());
1882 ref = pmap_is_referenced(pg);
1883 mod = pmap_is_modified(pg);
1884 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1885
1886 /* Now clear reference and modify */
1887 ref = pmap_clear_reference(pg);
1888 mod = pmap_clear_modify(pg);
1889 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1890 (void *)(u_long)va, (long)pa, ref, mod);
1891
1892 /* Check it's properly cleared */
1893 ref = pmap_is_referenced(pg);
1894 mod = pmap_is_modified(pg);
1895 printf("Checking cleared page: ref %d, mod %d\n",
1896 ref, mod);
1897
1898 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1899 pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1900 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1901 }
1902 #endif
1903