Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.80
      1 /*	$NetBSD: pmap.c,v 1.80 2020/02/21 13:16:16 rin Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.80 2020/02/21 13:16:16 rin Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/cpu.h>
     74 #include <sys/device.h>
     75 #include <sys/kmem.h>
     76 #include <sys/pool.h>
     77 #include <sys/proc.h>
     78 #include <sys/queue.h>
     79 #include <sys/systm.h>
     80 
     81 #include <uvm/uvm.h>
     82 
     83 #include <machine/powerpc.h>
     84 #include <machine/tlb.h>
     85 
     86 #include <powerpc/pcb.h>
     87 
     88 #include <powerpc/spr.h>
     89 #include <powerpc/ibm4xx/spr.h>
     90 
     91 #include <powerpc/ibm4xx/cpu.h>
     92 
     93 /*
     94  * kernmap is an array of PTEs large enough to map in
     95  * 4GB.  At 16KB/page it is 256K entries or 2MB.
     96  */
     97 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
     98 void *kernmap;
     99 
    100 #define MINCTX		2
    101 #define NUMCTX		256
    102 
    103 volatile struct pmap *ctxbusy[NUMCTX];
    104 
    105 #define TLBF_USED	0x1
    106 #define	TLBF_REF	0x2
    107 #define	TLBF_LOCKED	0x4
    108 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    109 
    110 typedef struct tlb_info_s {
    111 	char	ti_flags;
    112 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    113 	u_int	ti_va;
    114 } tlb_info_t;
    115 
    116 volatile tlb_info_t tlb_info[NTLB];
    117 /* We'll use a modified FIFO replacement policy cause it's cheap */
    118 volatile int tlbnext;
    119 
    120 static int tlb_nreserved = 0;
    121 static int pmap_bootstrap_done = 0;
    122 
    123 /* Event counters */
    124 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    125 	NULL, "cpu", "tlbmiss");
    126 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    127 	NULL, "cpu", "tlbhit");
    128 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    129 	NULL, "cpu", "tlbflush");
    130 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    131 	NULL, "cpu", "tlbenter");
    132 EVCNT_ATTACH_STATIC(tlbmiss_ev);
    133 EVCNT_ATTACH_STATIC(tlbhit_ev);
    134 EVCNT_ATTACH_STATIC(tlbflush_ev);
    135 EVCNT_ATTACH_STATIC(tlbenter_ev);
    136 
    137 struct pmap kernel_pmap_;
    138 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    139 
    140 static int npgs;
    141 static u_int nextavail;
    142 #ifndef MSGBUFADDR
    143 extern paddr_t msgbuf_paddr;
    144 #endif
    145 
    146 static struct mem_region *mem, *avail;
    147 
    148 /*
    149  * This is a cache of referenced/modified bits.
    150  * Bits herein are shifted by ATTRSHFT.
    151  */
    152 static char *pmap_attrib;
    153 
    154 #define PV_WIRED	0x1
    155 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    156 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    157 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    158 #define PV_CMPVA(va,pv)	(!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
    159 
    160 struct pv_entry {
    161 	struct pv_entry *pv_next;	/* Linked list of mappings */
    162 	struct pmap *pv_pm;
    163 	vaddr_t pv_va;			/* virtual address of mapping */
    164 };
    165 
    166 /* Each index corresponds to TLB_SIZE_* value. */
    167 static size_t tlbsize[] = {
    168 	1024, 		/* TLB_SIZE_1K */
    169 	4096, 		/* TLB_SIZE_4K */
    170 	16384, 		/* TLB_SIZE_16K */
    171 	65536, 		/* TLB_SIZE_64K */
    172 	262144, 	/* TLB_SIZE_256K */
    173 	1048576, 	/* TLB_SIZE_1M */
    174 	4194304, 	/* TLB_SIZE_4M */
    175 	16777216, 	/* TLB_SIZE_16M */
    176 };
    177 
    178 struct pv_entry *pv_table;
    179 static struct pool pv_pool;
    180 
    181 static int pmap_initialized;
    182 
    183 static int ctx_flush(int);
    184 
    185 struct pv_entry *pa_to_pv(paddr_t);
    186 static inline char *pa_to_attr(paddr_t);
    187 
    188 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    189 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    190 
    191 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    192 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    193 
    194 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    195 
    196 
    197 struct pv_entry *
    198 pa_to_pv(paddr_t pa)
    199 {
    200 	uvm_physseg_t bank;
    201 	psize_t pg;
    202 
    203 	bank = uvm_physseg_find(atop(pa), &pg);
    204 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    205 		return NULL;
    206 	return &uvm_physseg_get_pmseg(bank)->pvent[pg];
    207 }
    208 
    209 static inline char *
    210 pa_to_attr(paddr_t pa)
    211 {
    212 	uvm_physseg_t bank;
    213 	psize_t pg;
    214 
    215 	bank = uvm_physseg_find(atop(pa), &pg);
    216 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    217 		return NULL;
    218 	return &uvm_physseg_get_pmseg(bank)->attrs[pg];
    219 }
    220 
    221 /*
    222  * Insert PTE into page table.
    223  */
    224 int
    225 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    226 {
    227 	int seg = STIDX(va);
    228 	int ptn = PTIDX(va);
    229 	u_int oldpte;
    230 
    231 	if (!pm->pm_ptbl[seg]) {
    232 		/* Don't allocate a page to clear a non-existent mapping. */
    233 		if (!pte)
    234 			return (0);
    235 		/* Allocate a page XXXX this will sleep! */
    236 		pm->pm_ptbl[seg] =
    237 		    (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    238 		    UVM_KMF_WIRED | UVM_KMF_ZERO);
    239 	}
    240 	oldpte = pm->pm_ptbl[seg][ptn];
    241 	pm->pm_ptbl[seg][ptn] = pte;
    242 
    243 	/* Flush entry. */
    244 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    245 	if (oldpte != pte) {
    246 		if (pte == 0)
    247 			pm->pm_stats.resident_count--;
    248 		else
    249 			pm->pm_stats.resident_count++;
    250 	}
    251 	return (1);
    252 }
    253 
    254 /*
    255  * Get a pointer to a PTE in a page table.
    256  */
    257 volatile u_int *
    258 pte_find(struct pmap *pm, vaddr_t va)
    259 {
    260 	int seg = STIDX(va);
    261 	int ptn = PTIDX(va);
    262 
    263 	if (pm->pm_ptbl[seg])
    264 		return (&pm->pm_ptbl[seg][ptn]);
    265 
    266 	return (NULL);
    267 }
    268 
    269 /*
    270  * This is called during initppc, before the system is really initialized.
    271  */
    272 void
    273 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    274 {
    275 	struct mem_region *mp, *mp1;
    276 	int cnt, i;
    277 	u_int s, e, sz;
    278 
    279 	tlbnext = tlb_nreserved;
    280 
    281 	/*
    282 	 * Allocate the kernel page table at the end of
    283 	 * kernel space so it's in the locked TTE.
    284 	 */
    285 	kernmap = (void *)kernelend;
    286 
    287 	/*
    288 	 * Initialize kernel page table.
    289 	 */
    290 	for (i = 0; i < STSZ; i++) {
    291 		pmap_kernel()->pm_ptbl[i] = 0;
    292 	}
    293 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    294 
    295 	/*
    296 	 * Announce page-size to the VM-system
    297 	 */
    298 	uvmexp.pagesize = NBPG;
    299 	uvm_md_init();
    300 
    301 	/*
    302 	 * Get memory.
    303 	 */
    304 	mem_regions(&mem, &avail);
    305 	for (mp = mem; mp->size; mp++) {
    306 		physmem += btoc(mp->size);
    307 		printf("+%lx,",mp->size);
    308 	}
    309 	printf("\n");
    310 	ppc4xx_tlb_init();
    311 	/*
    312 	 * Count the number of available entries.
    313 	 */
    314 	for (cnt = 0, mp = avail; mp->size; mp++)
    315 		cnt++;
    316 
    317 	/*
    318 	 * Page align all regions.
    319 	 * Non-page aligned memory isn't very interesting to us.
    320 	 * Also, sort the entries for ascending addresses.
    321 	 */
    322 	kernelstart &= ~PGOFSET;
    323 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    324 	for (mp = avail; mp->size; mp++) {
    325 		s = mp->start;
    326 		e = mp->start + mp->size;
    327 		printf("%08x-%08x -> ",s,e);
    328 		/*
    329 		 * Check whether this region holds all of the kernel.
    330 		 */
    331 		if (s < kernelstart && e > kernelend) {
    332 			avail[cnt].start = kernelend;
    333 			avail[cnt++].size = e - kernelend;
    334 			e = kernelstart;
    335 		}
    336 		/*
    337 		 * Look whether this regions starts within the kernel.
    338 		 */
    339 		if (s >= kernelstart && s < kernelend) {
    340 			if (e <= kernelend)
    341 				goto empty;
    342 			s = kernelend;
    343 		}
    344 		/*
    345 		 * Now look whether this region ends within the kernel.
    346 		 */
    347 		if (e > kernelstart && e <= kernelend) {
    348 			if (s >= kernelstart)
    349 				goto empty;
    350 			e = kernelstart;
    351 		}
    352 		/*
    353 		 * Now page align the start and size of the region.
    354 		 */
    355 		s = round_page(s);
    356 		e = trunc_page(e);
    357 		if (e < s)
    358 			e = s;
    359 		sz = e - s;
    360 		printf("%08x-%08x = %x\n",s,e,sz);
    361 		/*
    362 		 * Check whether some memory is left here.
    363 		 */
    364 		if (sz == 0) {
    365 		empty:
    366 			memmove(mp, mp + 1,
    367 				(cnt - (mp - avail)) * sizeof *mp);
    368 			cnt--;
    369 			mp--;
    370 			continue;
    371 		}
    372 		/*
    373 		 * Do an insertion sort.
    374 		 */
    375 		npgs += btoc(sz);
    376 		for (mp1 = avail; mp1 < mp; mp1++)
    377 			if (s < mp1->start)
    378 				break;
    379 		if (mp1 < mp) {
    380 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    381 			mp1->start = s;
    382 			mp1->size = sz;
    383 		} else {
    384 			mp->start = s;
    385 			mp->size = sz;
    386 		}
    387 	}
    388 
    389 	/*
    390 	 * We cannot do pmap_steal_memory here,
    391 	 * since we don't run with translation enabled yet.
    392 	 */
    393 #ifndef MSGBUFADDR
    394 	/*
    395 	 * allow for msgbuf
    396 	 */
    397 	sz = round_page(MSGBUFSIZE);
    398 	mp = NULL;
    399 	for (mp1 = avail; mp1->size; mp1++)
    400 		if (mp1->size >= sz)
    401 			mp = mp1;
    402 	if (mp == NULL)
    403 		panic("not enough memory?");
    404 
    405 	npgs -= btoc(sz);
    406 	msgbuf_paddr = mp->start + mp->size - sz;
    407 	mp->size -= sz;
    408 	if (mp->size <= 0)
    409 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
    410 #endif
    411 
    412 	for (mp = avail; mp->size; mp++)
    413 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    414 			atop(mp->start), atop(mp->start + mp->size),
    415 			VM_FREELIST_DEFAULT);
    416 
    417 	/*
    418 	 * Initialize kernel pmap and hardware.
    419 	 */
    420 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    421 	pmap_kernel()->pm_ctx = KERNEL_PID;
    422 	nextavail = avail->start;
    423 
    424 	pmap_bootstrap_done = 1;
    425 }
    426 
    427 /*
    428  * Restrict given range to physical memory
    429  *
    430  * (Used by /dev/mem)
    431  */
    432 void
    433 pmap_real_memory(paddr_t *start, psize_t *size)
    434 {
    435 	struct mem_region *mp;
    436 
    437 	for (mp = mem; mp->size; mp++) {
    438 		if (*start + *size > mp->start &&
    439 		    *start < mp->start + mp->size) {
    440 			if (*start < mp->start) {
    441 				*size -= mp->start - *start;
    442 				*start = mp->start;
    443 			}
    444 			if (*start + *size > mp->start + mp->size)
    445 				*size = mp->start + mp->size - *start;
    446 			return;
    447 		}
    448 	}
    449 	*size = 0;
    450 }
    451 
    452 /*
    453  * Initialize anything else for pmap handling.
    454  * Called during vm_init().
    455  */
    456 void
    457 pmap_init(void)
    458 {
    459 	struct pv_entry *pv;
    460 	vsize_t sz;
    461 	vaddr_t addr;
    462 	int i, s;
    463 	int bank;
    464 	char *attr;
    465 
    466 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    467 	sz = round_page(sz);
    468 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    469 	s = splvm();
    470 	pv = pv_table = (struct pv_entry *)addr;
    471 	for (i = npgs; --i >= 0;)
    472 		pv++->pv_pm = NULL;
    473 	pmap_attrib = (char *)pv;
    474 	memset(pv, 0, npgs);
    475 
    476 	pv = pv_table;
    477 	attr = pmap_attrib;
    478 	for (bank = uvm_physseg_get_first();
    479 	     uvm_physseg_valid_p(bank);
    480 	     bank = uvm_physseg_get_next(bank)) {
    481 		sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    482 		uvm_physseg_get_pmseg(bank)->pvent = pv;
    483 		uvm_physseg_get_pmseg(bank)->attrs = attr;
    484 		pv += sz;
    485 		attr += sz;
    486 	}
    487 
    488 	pmap_initialized = 1;
    489 	splx(s);
    490 
    491 	/* Setup a pool for additional pvlist structures */
    492 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
    493 	    IPL_VM);
    494 }
    495 
    496 /*
    497  * How much virtual space is available to the kernel?
    498  */
    499 void
    500 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    501 {
    502 
    503 #if 0
    504 	/*
    505 	 * Reserve one segment for kernel virtual memory
    506 	 */
    507 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
    508 	*end = *start + SEGMENT_LENGTH;
    509 #else
    510 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    511 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    512 #endif
    513 }
    514 
    515 #ifdef PMAP_GROWKERNEL
    516 /*
    517  * Preallocate kernel page tables to a specified VA.
    518  * This simply loops through the first TTE for each
    519  * page table from the beginning of the kernel pmap,
    520  * reads the entry, and if the result is
    521  * zero (either invalid entry or no page table) it stores
    522  * a zero there, populating page tables in the process.
    523  * This is not the most efficient technique but i don't
    524  * expect it to be called that often.
    525  */
    526 extern struct vm_page *vm_page_alloc1(void);
    527 extern void vm_page_free1(struct vm_page *);
    528 
    529 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    530 
    531 vaddr_t
    532 pmap_growkernel(vaddr_t maxkvaddr)
    533 {
    534 	int s;
    535 	int seg;
    536 	paddr_t pg;
    537 	struct pmap *pm = pmap_kernel();
    538 
    539 	s = splvm();
    540 
    541 	/* Align with the start of a page table */
    542 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
    543 	     kbreak += PTMAP) {
    544 		seg = STIDX(kbreak);
    545 
    546 		if (pte_find(pm, kbreak))
    547 			continue;
    548 
    549 		if (uvm.page_init_done) {
    550 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    551 		} else {
    552 			if (!uvm_page_physget(&pg))
    553 				panic("pmap_growkernel: no memory");
    554 		}
    555 		if (!pg)
    556 			panic("pmap_growkernel: no pages");
    557 		pmap_zero_page((paddr_t)pg);
    558 
    559 		/* XXX This is based on all phymem being addressable */
    560 		pm->pm_ptbl[seg] = (u_int *)pg;
    561 	}
    562 	splx(s);
    563 	return (kbreak);
    564 }
    565 
    566 /*
    567  *	vm_page_alloc1:
    568  *
    569  *	Allocate and return a memory cell with no associated object.
    570  */
    571 struct vm_page *
    572 vm_page_alloc1(void)
    573 {
    574 	struct vm_page *pg;
    575 
    576 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    577 	if (pg) {
    578 		pg->wire_count = 1;	/* no mappings yet */
    579 		pg->flags &= ~PG_BUSY;	/* never busy */
    580 	}
    581 	return pg;
    582 }
    583 
    584 /*
    585  *	vm_page_free1:
    586  *
    587  *	Returns the given page to the free list,
    588  *	disassociating it with any VM object.
    589  *
    590  *	Object and page must be locked prior to entry.
    591  */
    592 void
    593 vm_page_free1(struct vm_page *pg)
    594 {
    595 #ifdef DIAGNOSTIC
    596 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    597 		printf("Freeing invalid page %p\n", pg);
    598 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
    599 #ifdef DDB
    600 		Debugger();
    601 #endif
    602 		return;
    603 	}
    604 #endif
    605 	pg->flags |= PG_BUSY;
    606 	pg->wire_count = 0;
    607 	uvm_pagefree(pg);
    608 }
    609 #endif
    610 
    611 /*
    612  * Create and return a physical map.
    613  */
    614 struct pmap *
    615 pmap_create(void)
    616 {
    617 	struct pmap *pm;
    618 
    619 	pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
    620 	memset(pm, 0, sizeof *pm);
    621 	pm->pm_refs = 1;
    622 	return pm;
    623 }
    624 
    625 /*
    626  * Add a reference to the given pmap.
    627  */
    628 void
    629 pmap_reference(struct pmap *pm)
    630 {
    631 
    632 	pm->pm_refs++;
    633 }
    634 
    635 /*
    636  * Retire the given pmap from service.
    637  * Should only be called if the map contains no valid mappings.
    638  */
    639 void
    640 pmap_destroy(struct pmap *pm)
    641 {
    642 	int i;
    643 
    644 	if (--pm->pm_refs > 0) {
    645 		return;
    646 	}
    647 	KASSERT(pm->pm_stats.resident_count == 0);
    648 	KASSERT(pm->pm_stats.wired_count == 0);
    649 	for (i = 0; i < STSZ; i++)
    650 		if (pm->pm_ptbl[i]) {
    651 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    652 			    PAGE_SIZE, UVM_KMF_WIRED);
    653 			pm->pm_ptbl[i] = NULL;
    654 		}
    655 	if (pm->pm_ctx)
    656 		ctx_free(pm);
    657 	kmem_free(pm, sizeof(*pm));
    658 }
    659 
    660 /*
    661  * Copy the range specified by src_addr/len
    662  * from the source map to the range dst_addr/len
    663  * in the destination map.
    664  *
    665  * This routine is only advisory and need not do anything.
    666  */
    667 void
    668 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    669 	  vsize_t len, vaddr_t src_addr)
    670 {
    671 }
    672 
    673 /*
    674  * Require that all active physical maps contain no
    675  * incorrect entries NOW.
    676  */
    677 void
    678 pmap_update(struct pmap *pmap)
    679 {
    680 }
    681 
    682 /*
    683  * Fill the given physical page with zeroes.
    684  */
    685 void
    686 pmap_zero_page(paddr_t pa)
    687 {
    688 
    689 #ifdef PPC_4XX_NOCACHE
    690 	memset((void *)pa, 0, PAGE_SIZE);
    691 #else
    692 	int i;
    693 
    694 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    695 		__asm volatile ("dcbz 0,%0" :: "r"(pa));
    696 		pa += CACHELINESIZE;
    697 	}
    698 #endif
    699 }
    700 
    701 /*
    702  * Copy the given physical source page to its destination.
    703  */
    704 void
    705 pmap_copy_page(paddr_t src, paddr_t dst)
    706 {
    707 
    708 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    709 	dcache_wbinv_page(dst);
    710 }
    711 
    712 /*
    713  * This returns != 0 on success.
    714  */
    715 static inline int
    716 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    717 {
    718 	struct pv_entry *pv, *npv = NULL;
    719 	int s;
    720 
    721 	if (!pmap_initialized)
    722 		return 0;
    723 
    724 	s = splvm();
    725 	pv = pa_to_pv(pa);
    726 	if (!pv->pv_pm) {
    727 		/*
    728 		 * No entries yet, use header as the first entry.
    729 		 */
    730 		pv->pv_va = va;
    731 		pv->pv_pm = pm;
    732 		pv->pv_next = NULL;
    733 	} else {
    734 		/*
    735 		 * There is at least one other VA mapping this page.
    736 		 * Place this entry after the header.
    737 		 */
    738 		npv = pool_get(&pv_pool, PR_NOWAIT);
    739 		if (npv == NULL) {
    740 			if ((flags & PMAP_CANFAIL) == 0)
    741 				panic("pmap_enter_pv: failed");
    742 			splx(s);
    743 			return 0;
    744 		}
    745 		npv->pv_va = va;
    746 		npv->pv_pm = pm;
    747 		npv->pv_next = pv->pv_next;
    748 		pv->pv_next = npv;
    749 		pv = npv;
    750 	}
    751 	if (flags & PMAP_WIRED) {
    752 		PV_WIRE(pv);
    753 		pm->pm_stats.wired_count++;
    754 	}
    755 	splx(s);
    756 	return (1);
    757 }
    758 
    759 static void
    760 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    761 {
    762 	struct pv_entry *pv, *npv;
    763 
    764 	/*
    765 	 * Remove from the PV table.
    766 	 */
    767 	pv = pa_to_pv(pa);
    768 	if (!pv)
    769 		return;
    770 
    771 	/*
    772 	 * If it is the first entry on the list, it is actually
    773 	 * in the header and we must copy the following entry up
    774 	 * to the header.  Otherwise we must search the list for
    775 	 * the entry.  In either case we free the now unused entry.
    776 	 */
    777 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    778 		if (PV_ISWIRED(pv)) {
    779 			pm->pm_stats.wired_count--;
    780 		}
    781 		if ((npv = pv->pv_next)) {
    782 			*pv = *npv;
    783 			pool_put(&pv_pool, npv);
    784 		} else
    785 			pv->pv_pm = NULL;
    786 	} else {
    787 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    788 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    789 				break;
    790 		if (npv) {
    791 			pv->pv_next = npv->pv_next;
    792 			if (PV_ISWIRED(npv)) {
    793 				pm->pm_stats.wired_count--;
    794 			}
    795 			pool_put(&pv_pool, npv);
    796 		}
    797 	}
    798 }
    799 
    800 /*
    801  * Insert physical page at pa into the given pmap at virtual address va.
    802  */
    803 int
    804 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    805 {
    806 	int s;
    807 	u_int tte;
    808 	bool managed;
    809 
    810 	/*
    811 	 * Have to remove any existing mapping first.
    812 	 */
    813 	pmap_remove(pm, va, va + PAGE_SIZE);
    814 
    815 	if (flags & PMAP_WIRED)
    816 		flags |= prot;
    817 
    818 	managed = uvm_pageismanaged(pa);
    819 
    820 	/*
    821 	 * Generate TTE.
    822 	 */
    823 	tte = TTE_PA(pa);
    824 	/* XXXX -- need to support multiple page sizes. */
    825 	tte |= TTE_SZ_16K;
    826 #ifdef	DIAGNOSTIC
    827 	if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    828 		(PMAP_NOCACHE | PME_WRITETHROUG))
    829 		panic("pmap_enter: uncached & writethrough");
    830 #endif
    831 	if (flags & PMAP_NOCACHE)
    832 		/* Must be I/O mapping */
    833 		tte |= TTE_I | TTE_G;
    834 #ifdef PPC_4XX_NOCACHE
    835 	tte |= TTE_I;
    836 #else
    837 	else if (flags & PME_WRITETHROUG)
    838 		/* Uncached and writethrough are not compatible */
    839 		tte |= TTE_W;
    840 #endif
    841 	if (pm == pmap_kernel())
    842 		tte |= TTE_ZONE(ZONE_PRIV);
    843 	else
    844 		tte |= TTE_ZONE(ZONE_USER);
    845 
    846 	if (flags & VM_PROT_WRITE)
    847 		tte |= TTE_WR;
    848 
    849 	if (flags & VM_PROT_EXECUTE)
    850 		tte |= TTE_EX;
    851 
    852 	/*
    853 	 * Now record mapping for later back-translation.
    854 	 */
    855 	if (pmap_initialized && managed) {
    856 		char *attr;
    857 
    858 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    859 			/* Could not enter pv on a managed page */
    860 			return 1;
    861 		}
    862 
    863 		/* Now set attributes. */
    864 		attr = pa_to_attr(pa);
    865 #ifdef DIAGNOSTIC
    866 		if (!attr)
    867 			panic("managed but no attr");
    868 #endif
    869 		if (flags & VM_PROT_ALL)
    870 			*attr |= PMAP_ATTR_REF;
    871 		if (flags & VM_PROT_WRITE)
    872 			*attr |= PMAP_ATTR_CHG;
    873 	}
    874 
    875 	s = splvm();
    876 
    877 	/* Insert page into page table. */
    878 	pte_enter(pm, va, tte);
    879 
    880 	/* If this is a real fault, enter it in the tlb */
    881 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    882 		int s2 = splhigh();
    883 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    884 		splx(s2);
    885 	}
    886 	splx(s);
    887 
    888 	/* Flush the real memory from the instruction cache. */
    889 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    890 		__syncicache((void *)pa, PAGE_SIZE);
    891 
    892 	return 0;
    893 }
    894 
    895 void
    896 pmap_unwire(struct pmap *pm, vaddr_t va)
    897 {
    898 	struct pv_entry *pv;
    899 	paddr_t pa;
    900 	int s;
    901 
    902 	if (!pmap_extract(pm, va, &pa)) {
    903 		return;
    904 	}
    905 
    906 	pv = pa_to_pv(pa);
    907 	if (!pv)
    908 		return;
    909 
    910 	s = splvm();
    911 	while (pv != NULL) {
    912 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    913 			if (PV_ISWIRED(pv)) {
    914 				PV_UNWIRE(pv);
    915 				pm->pm_stats.wired_count--;
    916 			}
    917 			break;
    918 		}
    919 		pv = pv->pv_next;
    920 	}
    921 	splx(s);
    922 }
    923 
    924 void
    925 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    926 {
    927 	int s;
    928 	u_int tte;
    929 	struct pmap *pm = pmap_kernel();
    930 
    931 	/*
    932 	 * Have to remove any existing mapping first.
    933 	 */
    934 
    935 	/*
    936 	 * Generate TTE.
    937 	 *
    938 	 * XXXX
    939 	 *
    940 	 * Since the kernel does not handle execution privileges properly,
    941 	 * we will handle read and execute permissions together.
    942 	 */
    943 	tte = 0;
    944 	if (prot & VM_PROT_ALL) {
    945 
    946 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    947 		/* XXXX -- need to support multiple page sizes. */
    948 		tte |= TTE_SZ_16K;
    949 #ifdef DIAGNOSTIC
    950 		if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    951 			(PMAP_NOCACHE | PME_WRITETHROUG))
    952 			panic("pmap_kenter_pa: uncached & writethrough");
    953 #endif
    954 		if (flags & PMAP_NOCACHE)
    955 			/* Must be I/O mapping */
    956 			tte |= TTE_I | TTE_G;
    957 #ifdef PPC_4XX_NOCACHE
    958 		tte |= TTE_I;
    959 #else
    960 		else if (prot & PME_WRITETHROUG)
    961 			/* Uncached and writethrough are not compatible */
    962 			tte |= TTE_W;
    963 #endif
    964 		if (prot & VM_PROT_WRITE)
    965 			tte |= TTE_WR;
    966 	}
    967 
    968 	s = splvm();
    969 
    970 	/* Insert page into page table. */
    971 	pte_enter(pm, va, tte);
    972 	splx(s);
    973 }
    974 
    975 void
    976 pmap_kremove(vaddr_t va, vsize_t len)
    977 {
    978 
    979 	while (len > 0) {
    980 		pte_enter(pmap_kernel(), va, 0);
    981 		va += PAGE_SIZE;
    982 		len -= PAGE_SIZE;
    983 	}
    984 }
    985 
    986 /*
    987  * Remove the given range of mapping entries.
    988  */
    989 void
    990 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
    991 {
    992 	int s;
    993 	paddr_t pa;
    994 	volatile u_int *ptp;
    995 
    996 	s = splvm();
    997 	while (va < endva) {
    998 
    999 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
   1000 			pa = TTE_PA(pa);
   1001 			pmap_remove_pv(pm, va, pa);
   1002 			*ptp = 0;
   1003 			ppc4xx_tlb_flush(va, pm->pm_ctx);
   1004 			pm->pm_stats.resident_count--;
   1005 		}
   1006 		va += PAGE_SIZE;
   1007 	}
   1008 
   1009 	splx(s);
   1010 }
   1011 
   1012 /*
   1013  * Get the physical page address for the given pmap/virtual address.
   1014  */
   1015 bool
   1016 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1017 {
   1018 	int seg = STIDX(va);
   1019 	int ptn = PTIDX(va);
   1020 	u_int pa = 0;
   1021 	int s;
   1022 
   1023 	s = splvm();
   1024 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap) {
   1025 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1026 	}
   1027 	splx(s);
   1028 	return (pa != 0);
   1029 }
   1030 
   1031 /*
   1032  * Lower the protection on the specified range of this pmap.
   1033  *
   1034  * There are only two cases: either the protection is going to 0,
   1035  * or it is going to read-only.
   1036  */
   1037 void
   1038 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1039 {
   1040 	volatile u_int *ptp;
   1041 	int s, bic;
   1042 
   1043 	if ((prot & VM_PROT_READ) == 0) {
   1044 		pmap_remove(pm, sva, eva);
   1045 		return;
   1046 	}
   1047 	bic = 0;
   1048 	if ((prot & VM_PROT_WRITE) == 0) {
   1049 		bic |= TTE_WR;
   1050 	}
   1051 	if ((prot & VM_PROT_EXECUTE) == 0) {
   1052 		bic |= TTE_EX;
   1053 	}
   1054 	if (bic == 0) {
   1055 		return;
   1056 	}
   1057 	s = splvm();
   1058 	while (sva < eva) {
   1059 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1060 			*ptp &= ~bic;
   1061 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1062 		}
   1063 		sva += PAGE_SIZE;
   1064 	}
   1065 	splx(s);
   1066 }
   1067 
   1068 bool
   1069 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1070 {
   1071 	paddr_t pa;
   1072 	char *attr;
   1073 	int s, rv;
   1074 
   1075 	/*
   1076 	 * First modify bits in cache.
   1077 	 */
   1078 	pa = VM_PAGE_TO_PHYS(pg);
   1079 	attr = pa_to_attr(pa);
   1080 	if (attr == NULL)
   1081 		return false;
   1082 
   1083 	s = splvm();
   1084 	rv = ((*attr & mask) != 0);
   1085 	if (clear) {
   1086 		*attr &= ~mask;
   1087 		pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1088 	}
   1089 	splx(s);
   1090 	return rv;
   1091 }
   1092 
   1093 
   1094 /*
   1095  * Lower the protection on the specified physical page.
   1096  *
   1097  * There are only two cases: either the protection is going to 0,
   1098  * or it is going to read-only.
   1099  */
   1100 void
   1101 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1102 {
   1103 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1104 	vaddr_t va;
   1105 	struct pv_entry *pvh, *pv, *npv;
   1106 	struct pmap *pm;
   1107 
   1108 	pvh = pa_to_pv(pa);
   1109 	if (pvh == NULL)
   1110 		return;
   1111 
   1112 	/* Handle extra pvs which may be deleted in the operation */
   1113 	for (pv = pvh->pv_next; pv; pv = npv) {
   1114 		npv = pv->pv_next;
   1115 
   1116 		pm = pv->pv_pm;
   1117 		va = pv->pv_va;
   1118 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1119 	}
   1120 	/* Now check the head pv */
   1121 	if (pvh->pv_pm) {
   1122 		pv = pvh;
   1123 		pm = pv->pv_pm;
   1124 		va = pv->pv_va;
   1125 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1126 	}
   1127 }
   1128 
   1129 /*
   1130  * Activate the address space for the specified process.  If the process
   1131  * is the current process, load the new MMU context.
   1132  */
   1133 void
   1134 pmap_activate(struct lwp *l)
   1135 {
   1136 #if 0
   1137 	struct pcb *pcb = lwp_getpcb(l);
   1138 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1139 
   1140 	/*
   1141 	 * XXX Normally performed in cpu_lwp_fork().
   1142 	 */
   1143 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1144 	pcb->pcb_pm = pmap;
   1145 #endif
   1146 }
   1147 
   1148 /*
   1149  * Deactivate the specified process's address space.
   1150  */
   1151 void
   1152 pmap_deactivate(struct lwp *l)
   1153 {
   1154 }
   1155 
   1156 /*
   1157  * Synchronize caches corresponding to [addr, addr+len) in p.
   1158  */
   1159 void
   1160 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1161 {
   1162 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1163 	int msr, ctx, opid, step;
   1164 
   1165 	step = CACHELINESIZE;
   1166 
   1167 	/*
   1168 	 * Need to turn off IMMU and switch to user context.
   1169 	 * (icbi uses DMMU).
   1170 	 */
   1171 	if (!(ctx = pm->pm_ctx)) {
   1172 		/* No context -- assign it one */
   1173 		ctx_alloc(pm);
   1174 		ctx = pm->pm_ctx;
   1175 	}
   1176 	__asm volatile("mfmsr %0;"
   1177 		"li %1, %7;"
   1178 		"andc %1,%0,%1;"
   1179 		"mtmsr %1;"
   1180 		"sync;isync;"
   1181 		"mfpid %1;"
   1182 		"mtpid %2;"
   1183 		"sync; isync;"
   1184 		"1:"
   1185 		"dcbf 0,%3;"
   1186 		"icbi 0,%3;"
   1187 		"add %3,%3,%5;"
   1188 		"addc. %4,%4,%6;"
   1189 		"bge 1b;"
   1190 		"mtpid %1;"
   1191 		"mtmsr %0;"
   1192 		"sync; isync"
   1193 		: "=&r" (msr), "=&r" (opid)
   1194 		: "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
   1195 		  "K" (PSL_IR | PSL_DR));
   1196 }
   1197 
   1198 
   1199 /* This has to be done in real mode !!! */
   1200 void
   1201 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1202 {
   1203 	u_long i, found;
   1204 	u_long msr;
   1205 
   1206 	/* If there's no context then it can't be mapped. */
   1207 	if (!pid)
   1208 		return;
   1209 
   1210 	__asm( 	"mfpid %1;"		/* Save PID */
   1211 		"mfmsr %2;"		/* Save MSR */
   1212 		"li %0,0;"		/* Now clear MSR */
   1213 		"mtmsr %0;"
   1214 		"mtpid %4;"		/* Set PID */
   1215 		"sync;"
   1216 		"tlbsx. %0,0,%3;"	/* Search TLB */
   1217 		"sync;"
   1218 		"mtpid %1;"		/* Restore PID */
   1219 		"mtmsr %2;"		/* Restore MSR */
   1220 		"sync;isync;"
   1221 		"li %1,1;"
   1222 		"beq 1f;"
   1223 		"li %1,0;"
   1224 		"1:"
   1225 		: "=&r" (i), "=&r" (found), "=&r" (msr)
   1226 		: "r" (va), "r" (pid));
   1227 	if (found && !TLB_LOCKED(i)) {
   1228 
   1229 		/* Now flush translation */
   1230 		__asm volatile(
   1231 			"tlbwe %0,%1,0;"
   1232 			"sync;isync;"
   1233 			: : "r" (0), "r" (i));
   1234 
   1235 		tlb_info[i].ti_ctx = 0;
   1236 		tlb_info[i].ti_flags = 0;
   1237 		tlbnext = i;
   1238 		/* Successful flushes */
   1239 		tlbflush_ev.ev_count++;
   1240 	}
   1241 }
   1242 
   1243 void
   1244 ppc4xx_tlb_flush_all(void)
   1245 {
   1246 	u_long i;
   1247 
   1248 	for (i = 0; i < NTLB; i++)
   1249 		if (!TLB_LOCKED(i)) {
   1250 			__asm volatile(
   1251 				"tlbwe %0,%1,0;"
   1252 				"sync;isync;"
   1253 				: : "r" (0), "r" (i));
   1254 			tlb_info[i].ti_ctx = 0;
   1255 			tlb_info[i].ti_flags = 0;
   1256 		}
   1257 
   1258 	__asm volatile("sync;isync");
   1259 }
   1260 
   1261 /* Find a TLB entry to evict. */
   1262 static int
   1263 ppc4xx_tlb_find_victim(void)
   1264 {
   1265 	int flags;
   1266 
   1267 	for (;;) {
   1268 		if (++tlbnext >= NTLB)
   1269 			tlbnext = tlb_nreserved;
   1270 		flags = tlb_info[tlbnext].ti_flags;
   1271 		if (!(flags & TLBF_USED) ||
   1272 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1273 			u_long va, stack = (u_long)&va;
   1274 
   1275 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
   1276 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1277 			     (flags & TLBF_USED)) {
   1278 				/* Kernel stack page */
   1279 				flags |= TLBF_REF;
   1280 				tlb_info[tlbnext].ti_flags = flags;
   1281 			} else {
   1282 				/* Found it! */
   1283 				return (tlbnext);
   1284 			}
   1285 		} else {
   1286 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1287 		}
   1288 	}
   1289 }
   1290 
   1291 void
   1292 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1293 {
   1294 	u_long th, tl, idx;
   1295 	tlbpid_t pid;
   1296 	u_short msr;
   1297 	paddr_t pa;
   1298 	int sz;
   1299 
   1300 	tlbenter_ev.ev_count++;
   1301 
   1302 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1303 	pa = (pte & TTE_RPN_MASK(sz));
   1304 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1305 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1306 	tl |= ppc4xx_tlbflags(va, pa);
   1307 
   1308 	idx = ppc4xx_tlb_find_victim();
   1309 
   1310 #ifdef DIAGNOSTIC
   1311 	if ((idx < tlb_nreserved) || (idx >= NTLB)) {
   1312 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1313 	}
   1314 #endif
   1315 
   1316 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1317 	tlb_info[idx].ti_ctx = ctx;
   1318 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1319 
   1320 	__asm volatile(
   1321 		"mfmsr %0;"			/* Save MSR */
   1322 		"li %1,0;"
   1323 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
   1324 		"mtmsr %1;"			/* Clear MSR */
   1325 		"mfpid %1;"			/* Save old PID */
   1326 		"mtpid %2;"			/* Load translation ctx */
   1327 		"sync; isync;"
   1328 #ifdef DEBUG
   1329 		"andi. %3,%3,63;"
   1330 		"tweqi %3,0;" 			/* XXXXX DEBUG trap on index 0 */
   1331 #endif
   1332 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
   1333 		"sync; isync;"
   1334 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
   1335 		"sync; isync;"
   1336 	: "=&r" (msr), "=&r" (pid)
   1337 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
   1338 }
   1339 
   1340 void
   1341 ppc4xx_tlb_init(void)
   1342 {
   1343 	int i;
   1344 
   1345 	/* Mark reserved TLB entries */
   1346 	for (i = 0; i < tlb_nreserved; i++) {
   1347 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1348 		tlb_info[i].ti_ctx = KERNEL_PID;
   1349 	}
   1350 
   1351 	/* Setup security zones */
   1352 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1353 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1354 	 * Z3 - full access regardless of TLB entry permissions
   1355 	 */
   1356 
   1357 	__asm volatile(
   1358 		"mtspr %0,%1;"
   1359 		"sync;"
   1360 		::  "K"(SPR_ZPR), "r" (0x1b000000));
   1361 }
   1362 
   1363 /*
   1364  * ppc4xx_tlb_size_mask:
   1365  *
   1366  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1367  */
   1368 static int
   1369 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1370 {
   1371 	int 			i;
   1372 
   1373 	for (i = 0; i < __arraycount(tlbsize); i++)
   1374 		if (size <= tlbsize[i]) {
   1375 			*mask = (i << TLB_SIZE_SHFT);
   1376 			*rsiz = tlbsize[i];
   1377 			return (0);
   1378 		}
   1379 	return (EINVAL);
   1380 }
   1381 
   1382 /*
   1383  * ppc4xx_tlb_mapiodev:
   1384  *
   1385  * 	Lookup virtual address of mapping previously entered via
   1386  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1387  * 	need to waste extra storage for reserved mappings. Note
   1388  * 	that reading TLBHI also sets PID, but all reserved mappings
   1389  * 	use KERNEL_PID, so the side effect is nil.
   1390  */
   1391 void *
   1392 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1393 {
   1394 	paddr_t 		pa;
   1395 	vaddr_t 		va;
   1396 	u_int 			lo, hi, sz;
   1397 	int 			i;
   1398 
   1399 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1400 	for (i = 0; i < tlb_nreserved; i++) {
   1401 		__asm volatile (
   1402 		    "	tlbre %0,%2,1 	\n" 	/* TLBLO */
   1403 		    "	tlbre %1,%2,0 	\n" 	/* TLBHI */
   1404 		    : "=&r" (lo), "=&r" (hi)
   1405 		    : "r" (i));
   1406 
   1407 		KASSERT(hi & TLB_VALID);
   1408 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1409 
   1410 		pa = (lo & TLB_RPN_MASK);
   1411 		if (base < pa)
   1412 			continue;
   1413 
   1414 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1415 		if ((base + len) > (pa + sz))
   1416 			continue;
   1417 
   1418 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1419 		return (void *)(va);
   1420 	}
   1421 
   1422 	return (NULL);
   1423 }
   1424 
   1425 /*
   1426  * ppc4xx_tlb_reserve:
   1427  *
   1428  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1429  */
   1430 void
   1431 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1432 {
   1433 	u_int 			lo, hi;
   1434 	int 			szmask, rsize;
   1435 
   1436 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1437 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1438 	KASSERT(! pmap_bootstrap_done);
   1439 	KASSERT(tlb_nreserved < NTLB);
   1440 
   1441 	/* Resolve size. */
   1442 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1443 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1444 		    size, tlb_nreserved);
   1445 
   1446 	/* Real size will be power of two >= 1024, so this is OK. */
   1447 	pa &= ~(rsize - 1); 	/* RPN */
   1448 	va &= ~(rsize - 1); 	/* EPN */
   1449 
   1450 	lo = pa | TLB_WR | flags;
   1451 	hi = va | TLB_VALID | szmask;
   1452 
   1453 #ifdef PPC_4XX_NOCACHE
   1454 	lo |= TLB_I;
   1455 #endif
   1456 
   1457 	__asm volatile(
   1458 	    "	tlbwe %1,%0,1 	\n" 	/* write TLBLO */
   1459 	    "	tlbwe %2,%0,0 	\n" 	/* write TLBHI */
   1460 	    "   sync 		\n"
   1461 	    "	isync 		\n"
   1462 	    : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
   1463 
   1464 	tlb_nreserved++;
   1465 }
   1466 
   1467 /*
   1468  * We should pass the ctx in from trap code.
   1469  */
   1470 int
   1471 pmap_tlbmiss(vaddr_t va, int ctx)
   1472 {
   1473 	volatile u_int *pte;
   1474 	u_long tte;
   1475 
   1476 	tlbmiss_ev.ev_count++;
   1477 
   1478 	/*
   1479 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1480 	 * Physical RAM is expected to live in this range, care must be taken
   1481 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1482 	 * code.
   1483 	 */
   1484 	if (ctx != KERNEL_PID ||
   1485 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1486 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1487 		if (pte == NULL) {
   1488 			/* Map unmanaged addresses directly for kernel access */
   1489 			return 1;
   1490 		}
   1491 		tte = *pte;
   1492 		if (tte == 0) {
   1493 			return 1;
   1494 		}
   1495 	} else {
   1496 		/* Create a 16MB writable mapping. */
   1497 #ifdef PPC_4XX_NOCACHE
   1498 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
   1499 #else
   1500 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1501 #endif
   1502 	}
   1503 	tlbhit_ev.ev_count++;
   1504 	ppc4xx_tlb_enter(ctx, va, tte);
   1505 
   1506 	return 0;
   1507 }
   1508 
   1509 /*
   1510  * Flush all the entries matching a context from the TLB.
   1511  */
   1512 static int
   1513 ctx_flush(int cnum)
   1514 {
   1515 	int i;
   1516 
   1517 	/* We gotta steal this context */
   1518 	for (i = tlb_nreserved; i < NTLB; i++) {
   1519 		if (tlb_info[i].ti_ctx == cnum) {
   1520 			/* Can't steal ctx if it has a locked entry. */
   1521 			if (TLB_LOCKED(i)) {
   1522 #ifdef DIAGNOSTIC
   1523 				printf("ctx_flush: can't invalidate "
   1524 					"locked mapping %d "
   1525 					"for context %d\n", i, cnum);
   1526 #ifdef DDB
   1527 				Debugger();
   1528 #endif
   1529 #endif
   1530 				return (1);
   1531 			}
   1532 #ifdef DIAGNOSTIC
   1533 			if (i < tlb_nreserved)
   1534 				panic("TLB entry %d not locked", i);
   1535 #endif
   1536 			/* Invalidate particular TLB entry regardless of locked status */
   1537 			__asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
   1538 			tlb_info[i].ti_ctx = 0;
   1539 			tlb_info[i].ti_flags = 0;
   1540 		}
   1541 	}
   1542 	return (0);
   1543 }
   1544 
   1545 /*
   1546  * Allocate a context.  If necessary, steal one from someone else.
   1547  *
   1548  * The new context is flushed from the TLB before returning.
   1549  */
   1550 int
   1551 ctx_alloc(struct pmap *pm)
   1552 {
   1553 	int s, cnum;
   1554 	static int next = MINCTX;
   1555 
   1556 	if (pm == pmap_kernel()) {
   1557 #ifdef DIAGNOSTIC
   1558 		printf("ctx_alloc: kernel pmap!\n");
   1559 #endif
   1560 		return (0);
   1561 	}
   1562 	s = splvm();
   1563 
   1564 	/* Find a likely context. */
   1565 	cnum = next;
   1566 	do {
   1567 		if ((++cnum) >= NUMCTX)
   1568 			cnum = MINCTX;
   1569 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1570 
   1571 	/* Now clean it out */
   1572 oops:
   1573 	if (cnum < MINCTX)
   1574 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1575 	if (ctx_flush(cnum)) {
   1576 		/* oops -- something's wired. */
   1577 		if ((++cnum) >= NUMCTX)
   1578 			cnum = MINCTX;
   1579 		goto oops;
   1580 	}
   1581 
   1582 	if (ctxbusy[cnum]) {
   1583 #ifdef DEBUG
   1584 		/* We should identify this pmap and clear it */
   1585 		printf("Warning: stealing context %d\n", cnum);
   1586 #endif
   1587 		ctxbusy[cnum]->pm_ctx = 0;
   1588 	}
   1589 	ctxbusy[cnum] = pm;
   1590 	next = cnum;
   1591 	splx(s);
   1592 	pm->pm_ctx = cnum;
   1593 
   1594 	return cnum;
   1595 }
   1596 
   1597 /*
   1598  * Give away a context.
   1599  */
   1600 void
   1601 ctx_free(struct pmap *pm)
   1602 {
   1603 	int oldctx;
   1604 
   1605 	oldctx = pm->pm_ctx;
   1606 
   1607 	if (oldctx == 0)
   1608 		panic("ctx_free: freeing kernel context");
   1609 #ifdef DIAGNOSTIC
   1610 	if (ctxbusy[oldctx] == 0)
   1611 		printf("ctx_free: freeing free context %d\n", oldctx);
   1612 	if (ctxbusy[oldctx] != pm) {
   1613 		printf("ctx_free: freeing someone esle's context\n "
   1614 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1615 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1616 #ifdef DDB
   1617 		Debugger();
   1618 #endif
   1619 	}
   1620 #endif
   1621 	/* We should verify it has not been stolen and reallocated... */
   1622 	ctxbusy[oldctx] = NULL;
   1623 	ctx_flush(oldctx);
   1624 }
   1625 
   1626 
   1627 #ifdef DEBUG
   1628 /*
   1629  * Test ref/modify handling.
   1630  */
   1631 void pmap_testout(void);
   1632 void
   1633 pmap_testout(void)
   1634 {
   1635 	vaddr_t va;
   1636 	volatile int *loc;
   1637 	int val = 0;
   1638 	paddr_t pa;
   1639 	struct vm_page *pg;
   1640 	int ref, mod;
   1641 
   1642 	/* Allocate a page */
   1643 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1644 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1645 	loc = (int*)va;
   1646 
   1647 	pmap_extract(pmap_kernel(), va, &pa);
   1648 	pg = PHYS_TO_VM_PAGE(pa);
   1649 	pmap_unwire(pmap_kernel(), va);
   1650 
   1651 	pmap_kremove(va, PAGE_SIZE);
   1652 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1653 	pmap_update(pmap_kernel());
   1654 
   1655 	/* Now clear reference and modify */
   1656 	ref = pmap_clear_reference(pg);
   1657 	mod = pmap_clear_modify(pg);
   1658 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1659 	       (void *)(u_long)va, (long)pa,
   1660 	       ref, mod);
   1661 
   1662 	/* Check it's properly cleared */
   1663 	ref = pmap_is_referenced(pg);
   1664 	mod = pmap_is_modified(pg);
   1665 	printf("Checking cleared page: ref %d, mod %d\n",
   1666 	       ref, mod);
   1667 
   1668 	/* Reference page */
   1669 	val = *loc;
   1670 
   1671 	ref = pmap_is_referenced(pg);
   1672 	mod = pmap_is_modified(pg);
   1673 	printf("Referenced page: ref %d, mod %d val %x\n",
   1674 	       ref, mod, val);
   1675 
   1676 	/* Now clear reference and modify */
   1677 	ref = pmap_clear_reference(pg);
   1678 	mod = pmap_clear_modify(pg);
   1679 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1680 	       (void *)(u_long)va, (long)pa,
   1681 	       ref, mod);
   1682 
   1683 	/* Modify page */
   1684 	*loc = 1;
   1685 
   1686 	ref = pmap_is_referenced(pg);
   1687 	mod = pmap_is_modified(pg);
   1688 	printf("Modified page: ref %d, mod %d\n",
   1689 	       ref, mod);
   1690 
   1691 	/* Now clear reference and modify */
   1692 	ref = pmap_clear_reference(pg);
   1693 	mod = pmap_clear_modify(pg);
   1694 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1695 	       (void *)(u_long)va, (long)pa,
   1696 	       ref, mod);
   1697 
   1698 	/* Check it's properly cleared */
   1699 	ref = pmap_is_referenced(pg);
   1700 	mod = pmap_is_modified(pg);
   1701 	printf("Checking cleared page: ref %d, mod %d\n",
   1702 	       ref, mod);
   1703 
   1704 	/* Modify page */
   1705 	*loc = 1;
   1706 
   1707 	ref = pmap_is_referenced(pg);
   1708 	mod = pmap_is_modified(pg);
   1709 	printf("Modified page: ref %d, mod %d\n",
   1710 	       ref, mod);
   1711 
   1712 	/* Check pmap_protect() */
   1713 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1714 	pmap_update(pmap_kernel());
   1715 	ref = pmap_is_referenced(pg);
   1716 	mod = pmap_is_modified(pg);
   1717 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
   1718 	       ref, mod);
   1719 
   1720 	/* Now clear reference and modify */
   1721 	ref = pmap_clear_reference(pg);
   1722 	mod = pmap_clear_modify(pg);
   1723 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1724 	       (void *)(u_long)va, (long)pa,
   1725 	       ref, mod);
   1726 
   1727 	/* Reference page */
   1728 	val = *loc;
   1729 
   1730 	ref = pmap_is_referenced(pg);
   1731 	mod = pmap_is_modified(pg);
   1732 	printf("Referenced page: ref %d, mod %d val %x\n",
   1733 	       ref, mod, val);
   1734 
   1735 	/* Now clear reference and modify */
   1736 	ref = pmap_clear_reference(pg);
   1737 	mod = pmap_clear_modify(pg);
   1738 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1739 	       (void *)(u_long)va, (long)pa,
   1740 	       ref, mod);
   1741 
   1742 	/* Modify page */
   1743 #if 0
   1744 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1745 	pmap_update(pmap_kernel());
   1746 #endif
   1747 	*loc = 1;
   1748 
   1749 	ref = pmap_is_referenced(pg);
   1750 	mod = pmap_is_modified(pg);
   1751 	printf("Modified page: ref %d, mod %d\n",
   1752 	       ref, mod);
   1753 
   1754 	/* Check pmap_protect() */
   1755 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1756 	pmap_update(pmap_kernel());
   1757 	ref = pmap_is_referenced(pg);
   1758 	mod = pmap_is_modified(pg);
   1759 	printf("pmap_protect(): ref %d, mod %d\n",
   1760 	       ref, mod);
   1761 
   1762 	/* Now clear reference and modify */
   1763 	ref = pmap_clear_reference(pg);
   1764 	mod = pmap_clear_modify(pg);
   1765 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1766 	       (void *)(u_long)va, (long)pa,
   1767 	       ref, mod);
   1768 
   1769 	/* Reference page */
   1770 	val = *loc;
   1771 
   1772 	ref = pmap_is_referenced(pg);
   1773 	mod = pmap_is_modified(pg);
   1774 	printf("Referenced page: ref %d, mod %d val %x\n",
   1775 	       ref, mod, val);
   1776 
   1777 	/* Now clear reference and modify */
   1778 	ref = pmap_clear_reference(pg);
   1779 	mod = pmap_clear_modify(pg);
   1780 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1781 	       (void *)(u_long)va, (long)pa,
   1782 	       ref, mod);
   1783 
   1784 	/* Modify page */
   1785 #if 0
   1786 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1787 	pmap_update(pmap_kernel());
   1788 #endif
   1789 	*loc = 1;
   1790 
   1791 	ref = pmap_is_referenced(pg);
   1792 	mod = pmap_is_modified(pg);
   1793 	printf("Modified page: ref %d, mod %d\n",
   1794 	       ref, mod);
   1795 
   1796 	/* Check pmap_pag_protect() */
   1797 	pmap_page_protect(pg, VM_PROT_READ);
   1798 	ref = pmap_is_referenced(pg);
   1799 	mod = pmap_is_modified(pg);
   1800 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
   1801 	       ref, mod);
   1802 
   1803 	/* Now clear reference and modify */
   1804 	ref = pmap_clear_reference(pg);
   1805 	mod = pmap_clear_modify(pg);
   1806 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1807 	       (void *)(u_long)va, (long)pa,
   1808 	       ref, mod);
   1809 
   1810 	/* Reference page */
   1811 	val = *loc;
   1812 
   1813 	ref = pmap_is_referenced(pg);
   1814 	mod = pmap_is_modified(pg);
   1815 	printf("Referenced page: ref %d, mod %d val %x\n",
   1816 	       ref, mod, val);
   1817 
   1818 	/* Now clear reference and modify */
   1819 	ref = pmap_clear_reference(pg);
   1820 	mod = pmap_clear_modify(pg);
   1821 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1822 	       (void *)(u_long)va, (long)pa,
   1823 	       ref, mod);
   1824 
   1825 	/* Modify page */
   1826 #if 0
   1827 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1828 	pmap_update(pmap_kernel());
   1829 #endif
   1830 	*loc = 1;
   1831 
   1832 	ref = pmap_is_referenced(pg);
   1833 	mod = pmap_is_modified(pg);
   1834 	printf("Modified page: ref %d, mod %d\n",
   1835 	       ref, mod);
   1836 
   1837 	/* Check pmap_pag_protect() */
   1838 	pmap_page_protect(pg, VM_PROT_NONE);
   1839 	ref = pmap_is_referenced(pg);
   1840 	mod = pmap_is_modified(pg);
   1841 	printf("pmap_page_protect(): ref %d, mod %d\n",
   1842 	       ref, mod);
   1843 
   1844 	/* Now clear reference and modify */
   1845 	ref = pmap_clear_reference(pg);
   1846 	mod = pmap_clear_modify(pg);
   1847 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1848 	       (void *)(u_long)va, (long)pa,
   1849 	       ref, mod);
   1850 
   1851 
   1852 	/* Reference page */
   1853 	val = *loc;
   1854 
   1855 	ref = pmap_is_referenced(pg);
   1856 	mod = pmap_is_modified(pg);
   1857 	printf("Referenced page: ref %d, mod %d val %x\n",
   1858 	       ref, mod, val);
   1859 
   1860 	/* Now clear reference and modify */
   1861 	ref = pmap_clear_reference(pg);
   1862 	mod = pmap_clear_modify(pg);
   1863 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1864 	       (void *)(u_long)va, (long)pa,
   1865 	       ref, mod);
   1866 
   1867 	/* Modify page */
   1868 #if 0
   1869 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1870 	pmap_update(pmap_kernel());
   1871 #endif
   1872 	*loc = 1;
   1873 
   1874 	ref = pmap_is_referenced(pg);
   1875 	mod = pmap_is_modified(pg);
   1876 	printf("Modified page: ref %d, mod %d\n",
   1877 	       ref, mod);
   1878 
   1879 	/* Unmap page */
   1880 	pmap_remove(pmap_kernel(), va, va+1);
   1881 	pmap_update(pmap_kernel());
   1882 	ref = pmap_is_referenced(pg);
   1883 	mod = pmap_is_modified(pg);
   1884 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1885 
   1886 	/* Now clear reference and modify */
   1887 	ref = pmap_clear_reference(pg);
   1888 	mod = pmap_clear_modify(pg);
   1889 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1890 	       (void *)(u_long)va, (long)pa, ref, mod);
   1891 
   1892 	/* Check it's properly cleared */
   1893 	ref = pmap_is_referenced(pg);
   1894 	mod = pmap_is_modified(pg);
   1895 	printf("Checking cleared page: ref %d, mod %d\n",
   1896 	       ref, mod);
   1897 
   1898 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1899 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1900 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1901 }
   1902 #endif
   1903