Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.91
      1 /*	$NetBSD: pmap.c,v 1.91 2020/09/10 03:02:36 rin Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.91 2020/09/10 03:02:36 rin Exp $");
     71 
     72 #ifdef _KERNEL_OPT
     73 #include "opt_ddb.h"
     74 #endif
     75 
     76 #include <sys/param.h>
     77 #include <sys/cpu.h>
     78 #include <sys/device.h>
     79 #include <sys/kmem.h>
     80 #include <sys/pool.h>
     81 #include <sys/proc.h>
     82 #include <sys/queue.h>
     83 #include <sys/systm.h>
     84 
     85 #include <uvm/uvm.h>
     86 
     87 #include <machine/powerpc.h>
     88 #include <machine/tlb.h>
     89 
     90 #include <powerpc/pcb.h>
     91 
     92 #include <powerpc/spr.h>
     93 #include <powerpc/ibm4xx/spr.h>
     94 
     95 #include <powerpc/ibm4xx/cpu.h>
     96 
     97 /*
     98  * kernmap is an array of PTEs large enough to map in
     99  * 4GB.  At 16KB/page it is 256K entries or 2MB.
    100  */
    101 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
    102 void *kernmap;
    103 
    104 #define MINCTX		2
    105 #define NUMCTX		256
    106 
    107 volatile struct pmap *ctxbusy[NUMCTX];
    108 
    109 #define TLBF_USED	0x1
    110 #define	TLBF_REF	0x2
    111 #define	TLBF_LOCKED	0x4
    112 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    113 
    114 typedef struct tlb_info_s {
    115 	char	ti_flags;
    116 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    117 	u_int	ti_va;
    118 } tlb_info_t;
    119 
    120 volatile tlb_info_t tlb_info[NTLB];
    121 /* We'll use a modified FIFO replacement policy cause it's cheap */
    122 volatile int tlbnext;
    123 
    124 static int tlb_nreserved = 0;
    125 static int pmap_bootstrap_done = 0;
    126 
    127 /* Event counters */
    128 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    129 	NULL, "cpu", "tlbmiss");
    130 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    131 	NULL, "cpu", "tlbflush");
    132 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    133 	NULL, "cpu", "tlbenter");
    134 EVCNT_ATTACH_STATIC(tlbmiss_ev);
    135 EVCNT_ATTACH_STATIC(tlbflush_ev);
    136 EVCNT_ATTACH_STATIC(tlbenter_ev);
    137 
    138 struct pmap kernel_pmap_;
    139 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    140 
    141 static int npgs;
    142 static u_int nextavail;
    143 #ifndef MSGBUFADDR
    144 extern paddr_t msgbuf_paddr;
    145 #endif
    146 
    147 static struct mem_region *mem, *avail;
    148 
    149 /*
    150  * This is a cache of referenced/modified bits.
    151  * Bits herein are shifted by ATTRSHFT.
    152  */
    153 static char *pmap_attrib;
    154 
    155 #define PV_WIRED	0x1
    156 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    157 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    158 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    159 #define PV_VA(pv)	((pv)->pv_va & ~PV_WIRED)
    160 #define PV_CMPVA(va,pv)	(!(PV_VA(pv) ^ (va)))
    161 
    162 struct pv_entry {
    163 	struct pv_entry *pv_next;	/* Linked list of mappings */
    164 	struct pmap *pv_pm;
    165 	vaddr_t pv_va;			/* virtual address of mapping */
    166 };
    167 
    168 /* Each index corresponds to TLB_SIZE_* value. */
    169 static size_t tlbsize[] = {
    170 	1024, 		/* TLB_SIZE_1K */
    171 	4096, 		/* TLB_SIZE_4K */
    172 	16384, 		/* TLB_SIZE_16K */
    173 	65536, 		/* TLB_SIZE_64K */
    174 	262144, 	/* TLB_SIZE_256K */
    175 	1048576, 	/* TLB_SIZE_1M */
    176 	4194304, 	/* TLB_SIZE_4M */
    177 	16777216, 	/* TLB_SIZE_16M */
    178 };
    179 
    180 struct pv_entry *pv_table;
    181 static struct pool pv_pool;
    182 
    183 static int pmap_initialized;
    184 
    185 static int ctx_flush(int);
    186 
    187 struct pv_entry *pa_to_pv(paddr_t);
    188 static inline char *pa_to_attr(paddr_t);
    189 
    190 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    191 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    192 
    193 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    194 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    195 
    196 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    197 
    198 
    199 struct pv_entry *
    200 pa_to_pv(paddr_t pa)
    201 {
    202 	uvm_physseg_t bank;
    203 	psize_t pg;
    204 
    205 	bank = uvm_physseg_find(atop(pa), &pg);
    206 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    207 		return NULL;
    208 	return &uvm_physseg_get_pmseg(bank)->pvent[pg];
    209 }
    210 
    211 static inline char *
    212 pa_to_attr(paddr_t pa)
    213 {
    214 	uvm_physseg_t bank;
    215 	psize_t pg;
    216 
    217 	bank = uvm_physseg_find(atop(pa), &pg);
    218 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    219 		return NULL;
    220 	return &uvm_physseg_get_pmseg(bank)->attrs[pg];
    221 }
    222 
    223 /*
    224  * Insert PTE into page table.
    225  */
    226 int
    227 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    228 {
    229 	int seg = STIDX(va);
    230 	int ptn = PTIDX(va);
    231 	u_int oldpte;
    232 
    233 	if (!pm->pm_ptbl[seg]) {
    234 		/* Don't allocate a page to clear a non-existent mapping. */
    235 		if (!pte)
    236 			return (0);
    237 		/* Allocate a page XXXX this will sleep! */
    238 		pm->pm_ptbl[seg] =
    239 		    (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    240 		    UVM_KMF_WIRED | UVM_KMF_ZERO);
    241 	}
    242 	oldpte = pm->pm_ptbl[seg][ptn];
    243 	pm->pm_ptbl[seg][ptn] = pte;
    244 
    245 	/* Flush entry. */
    246 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    247 	if (oldpte != pte) {
    248 		if (pte == 0)
    249 			pm->pm_stats.resident_count--;
    250 		else
    251 			pm->pm_stats.resident_count++;
    252 	}
    253 	return (1);
    254 }
    255 
    256 /*
    257  * Get a pointer to a PTE in a page table.
    258  */
    259 volatile u_int *
    260 pte_find(struct pmap *pm, vaddr_t va)
    261 {
    262 	int seg = STIDX(va);
    263 	int ptn = PTIDX(va);
    264 
    265 	if (pm->pm_ptbl[seg])
    266 		return (&pm->pm_ptbl[seg][ptn]);
    267 
    268 	return (NULL);
    269 }
    270 
    271 /*
    272  * This is called during initppc, before the system is really initialized.
    273  */
    274 void
    275 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    276 {
    277 	struct mem_region *mp, *mp1;
    278 	int cnt, i;
    279 	u_int s, e, sz;
    280 
    281 	tlbnext = tlb_nreserved;
    282 
    283 	/*
    284 	 * Allocate the kernel page table at the end of
    285 	 * kernel space so it's in the locked TTE.
    286 	 */
    287 	kernmap = (void *)kernelend;
    288 
    289 	/*
    290 	 * Initialize kernel page table.
    291 	 */
    292 	for (i = 0; i < STSZ; i++) {
    293 		pmap_kernel()->pm_ptbl[i] = 0;
    294 	}
    295 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    296 
    297 	/*
    298 	 * Announce page-size to the VM-system
    299 	 */
    300 	uvmexp.pagesize = NBPG;
    301 	uvm_md_init();
    302 
    303 	/*
    304 	 * Get memory.
    305 	 */
    306 	mem_regions(&mem, &avail);
    307 	for (mp = mem; mp->size; mp++) {
    308 		physmem += btoc(mp->size);
    309 		printf("+%lx,",mp->size);
    310 	}
    311 	printf("\n");
    312 	ppc4xx_tlb_init();
    313 	/*
    314 	 * Count the number of available entries.
    315 	 */
    316 	for (cnt = 0, mp = avail; mp->size; mp++)
    317 		cnt++;
    318 
    319 	/*
    320 	 * Page align all regions.
    321 	 * Non-page aligned memory isn't very interesting to us.
    322 	 * Also, sort the entries for ascending addresses.
    323 	 */
    324 	kernelstart &= ~PGOFSET;
    325 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    326 	for (mp = avail; mp->size; mp++) {
    327 		s = mp->start;
    328 		e = mp->start + mp->size;
    329 		printf("%08x-%08x -> ",s,e);
    330 		/*
    331 		 * Check whether this region holds all of the kernel.
    332 		 */
    333 		if (s < kernelstart && e > kernelend) {
    334 			avail[cnt].start = kernelend;
    335 			avail[cnt++].size = e - kernelend;
    336 			e = kernelstart;
    337 		}
    338 		/*
    339 		 * Look whether this regions starts within the kernel.
    340 		 */
    341 		if (s >= kernelstart && s < kernelend) {
    342 			if (e <= kernelend)
    343 				goto empty;
    344 			s = kernelend;
    345 		}
    346 		/*
    347 		 * Now look whether this region ends within the kernel.
    348 		 */
    349 		if (e > kernelstart && e <= kernelend) {
    350 			if (s >= kernelstart)
    351 				goto empty;
    352 			e = kernelstart;
    353 		}
    354 		/*
    355 		 * Now page align the start and size of the region.
    356 		 */
    357 		s = round_page(s);
    358 		e = trunc_page(e);
    359 		if (e < s)
    360 			e = s;
    361 		sz = e - s;
    362 		printf("%08x-%08x = %x\n",s,e,sz);
    363 		/*
    364 		 * Check whether some memory is left here.
    365 		 */
    366 		if (sz == 0) {
    367 		empty:
    368 			memmove(mp, mp + 1,
    369 				(cnt - (mp - avail)) * sizeof *mp);
    370 			cnt--;
    371 			mp--;
    372 			continue;
    373 		}
    374 		/*
    375 		 * Do an insertion sort.
    376 		 */
    377 		npgs += btoc(sz);
    378 		for (mp1 = avail; mp1 < mp; mp1++)
    379 			if (s < mp1->start)
    380 				break;
    381 		if (mp1 < mp) {
    382 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    383 			mp1->start = s;
    384 			mp1->size = sz;
    385 		} else {
    386 			mp->start = s;
    387 			mp->size = sz;
    388 		}
    389 	}
    390 
    391 	/*
    392 	 * We cannot do pmap_steal_memory here,
    393 	 * since we don't run with translation enabled yet.
    394 	 */
    395 #ifndef MSGBUFADDR
    396 	/*
    397 	 * allow for msgbuf
    398 	 */
    399 	sz = round_page(MSGBUFSIZE);
    400 	mp = NULL;
    401 	for (mp1 = avail; mp1->size; mp1++)
    402 		if (mp1->size >= sz)
    403 			mp = mp1;
    404 	if (mp == NULL)
    405 		panic("not enough memory?");
    406 
    407 	npgs -= btoc(sz);
    408 	msgbuf_paddr = mp->start + mp->size - sz;
    409 	mp->size -= sz;
    410 	if (mp->size <= 0)
    411 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
    412 #endif
    413 
    414 	for (mp = avail; mp->size; mp++)
    415 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    416 			atop(mp->start), atop(mp->start + mp->size),
    417 			VM_FREELIST_DEFAULT);
    418 
    419 	/*
    420 	 * Initialize kernel pmap and hardware.
    421 	 */
    422 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    423 	pmap_kernel()->pm_ctx = KERNEL_PID;
    424 	nextavail = avail->start;
    425 
    426 	pmap_bootstrap_done = 1;
    427 }
    428 
    429 /*
    430  * Restrict given range to physical memory
    431  *
    432  * (Used by /dev/mem)
    433  */
    434 void
    435 pmap_real_memory(paddr_t *start, psize_t *size)
    436 {
    437 	struct mem_region *mp;
    438 
    439 	for (mp = mem; mp->size; mp++) {
    440 		if (*start + *size > mp->start &&
    441 		    *start < mp->start + mp->size) {
    442 			if (*start < mp->start) {
    443 				*size -= mp->start - *start;
    444 				*start = mp->start;
    445 			}
    446 			if (*start + *size > mp->start + mp->size)
    447 				*size = mp->start + mp->size - *start;
    448 			return;
    449 		}
    450 	}
    451 	*size = 0;
    452 }
    453 
    454 /*
    455  * Initialize anything else for pmap handling.
    456  * Called during vm_init().
    457  */
    458 void
    459 pmap_init(void)
    460 {
    461 	struct pv_entry *pv;
    462 	vsize_t sz;
    463 	vaddr_t addr;
    464 	int i, s;
    465 	int bank;
    466 	char *attr;
    467 
    468 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    469 	sz = round_page(sz);
    470 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    471 	s = splvm();
    472 	pv = pv_table = (struct pv_entry *)addr;
    473 	for (i = npgs; --i >= 0;)
    474 		pv++->pv_pm = NULL;
    475 	pmap_attrib = (char *)pv;
    476 	memset(pv, 0, npgs);
    477 
    478 	pv = pv_table;
    479 	attr = pmap_attrib;
    480 	for (bank = uvm_physseg_get_first();
    481 	     uvm_physseg_valid_p(bank);
    482 	     bank = uvm_physseg_get_next(bank)) {
    483 		sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    484 		uvm_physseg_get_pmseg(bank)->pvent = pv;
    485 		uvm_physseg_get_pmseg(bank)->attrs = attr;
    486 		pv += sz;
    487 		attr += sz;
    488 	}
    489 
    490 	pmap_initialized = 1;
    491 	splx(s);
    492 
    493 	/* Setup a pool for additional pvlist structures */
    494 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
    495 	    IPL_VM);
    496 }
    497 
    498 /*
    499  * How much virtual space is available to the kernel?
    500  */
    501 void
    502 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    503 {
    504 
    505 #if 0
    506 	/*
    507 	 * Reserve one segment for kernel virtual memory
    508 	 */
    509 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
    510 	*end = *start + SEGMENT_LENGTH;
    511 #else
    512 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    513 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    514 #endif
    515 }
    516 
    517 #ifdef PMAP_GROWKERNEL
    518 /*
    519  * Preallocate kernel page tables to a specified VA.
    520  * This simply loops through the first TTE for each
    521  * page table from the beginning of the kernel pmap,
    522  * reads the entry, and if the result is
    523  * zero (either invalid entry or no page table) it stores
    524  * a zero there, populating page tables in the process.
    525  * This is not the most efficient technique but i don't
    526  * expect it to be called that often.
    527  */
    528 extern struct vm_page *vm_page_alloc1(void);
    529 extern void vm_page_free1(struct vm_page *);
    530 
    531 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    532 
    533 vaddr_t
    534 pmap_growkernel(vaddr_t maxkvaddr)
    535 {
    536 	int s;
    537 	int seg;
    538 	paddr_t pg;
    539 	struct pmap *pm = pmap_kernel();
    540 
    541 	s = splvm();
    542 
    543 	/* Align with the start of a page table */
    544 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
    545 	     kbreak += PTMAP) {
    546 		seg = STIDX(kbreak);
    547 
    548 		if (pte_find(pm, kbreak))
    549 			continue;
    550 
    551 		if (uvm.page_init_done) {
    552 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    553 		} else {
    554 			if (!uvm_page_physget(&pg))
    555 				panic("pmap_growkernel: no memory");
    556 		}
    557 		if (!pg)
    558 			panic("pmap_growkernel: no pages");
    559 		pmap_zero_page((paddr_t)pg);
    560 
    561 		/* XXX This is based on all phymem being addressable */
    562 		pm->pm_ptbl[seg] = (u_int *)pg;
    563 	}
    564 	splx(s);
    565 	return (kbreak);
    566 }
    567 
    568 /*
    569  *	vm_page_alloc1:
    570  *
    571  *	Allocate and return a memory cell with no associated object.
    572  */
    573 struct vm_page *
    574 vm_page_alloc1(void)
    575 {
    576 	struct vm_page *pg;
    577 
    578 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    579 	if (pg) {
    580 		pg->wire_count = 1;	/* no mappings yet */
    581 		pg->flags &= ~PG_BUSY;	/* never busy */
    582 	}
    583 	return pg;
    584 }
    585 
    586 /*
    587  *	vm_page_free1:
    588  *
    589  *	Returns the given page to the free list,
    590  *	disassociating it with any VM object.
    591  *
    592  *	Object and page must be locked prior to entry.
    593  */
    594 void
    595 vm_page_free1(struct vm_page *pg)
    596 {
    597 #ifdef DIAGNOSTIC
    598 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    599 		printf("Freeing invalid page %p\n", pg);
    600 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
    601 #ifdef DDB
    602 		Debugger();
    603 #endif
    604 		return;
    605 	}
    606 #endif
    607 	pg->flags |= PG_BUSY;
    608 	pg->wire_count = 0;
    609 	uvm_pagefree(pg);
    610 }
    611 #endif
    612 
    613 /*
    614  * Create and return a physical map.
    615  */
    616 struct pmap *
    617 pmap_create(void)
    618 {
    619 	struct pmap *pm;
    620 
    621 	pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
    622 	memset(pm, 0, sizeof *pm);
    623 	pm->pm_refs = 1;
    624 	return pm;
    625 }
    626 
    627 /*
    628  * Add a reference to the given pmap.
    629  */
    630 void
    631 pmap_reference(struct pmap *pm)
    632 {
    633 
    634 	pm->pm_refs++;
    635 }
    636 
    637 /*
    638  * Retire the given pmap from service.
    639  * Should only be called if the map contains no valid mappings.
    640  */
    641 void
    642 pmap_destroy(struct pmap *pm)
    643 {
    644 	int i;
    645 
    646 	if (--pm->pm_refs > 0) {
    647 		return;
    648 	}
    649 	KASSERT(pm->pm_stats.resident_count == 0);
    650 	KASSERT(pm->pm_stats.wired_count == 0);
    651 	for (i = 0; i < STSZ; i++)
    652 		if (pm->pm_ptbl[i]) {
    653 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    654 			    PAGE_SIZE, UVM_KMF_WIRED);
    655 			pm->pm_ptbl[i] = NULL;
    656 		}
    657 	if (pm->pm_ctx)
    658 		ctx_free(pm);
    659 	kmem_free(pm, sizeof(*pm));
    660 }
    661 
    662 /*
    663  * Copy the range specified by src_addr/len
    664  * from the source map to the range dst_addr/len
    665  * in the destination map.
    666  *
    667  * This routine is only advisory and need not do anything.
    668  */
    669 void
    670 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    671 	  vsize_t len, vaddr_t src_addr)
    672 {
    673 }
    674 
    675 /*
    676  * Require that all active physical maps contain no
    677  * incorrect entries NOW.
    678  */
    679 void
    680 pmap_update(struct pmap *pmap)
    681 {
    682 }
    683 
    684 /*
    685  * Fill the given physical page with zeroes.
    686  */
    687 void
    688 pmap_zero_page(paddr_t pa)
    689 {
    690 
    691 #ifdef PPC_4XX_NOCACHE
    692 	memset((void *)pa, 0, PAGE_SIZE);
    693 #else
    694 	int i;
    695 
    696 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    697 		__asm volatile ("dcbz 0,%0" :: "r"(pa));
    698 		pa += CACHELINESIZE;
    699 	}
    700 #endif
    701 }
    702 
    703 /*
    704  * Copy the given physical source page to its destination.
    705  */
    706 void
    707 pmap_copy_page(paddr_t src, paddr_t dst)
    708 {
    709 
    710 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    711 	dcache_wbinv_page(dst);
    712 }
    713 
    714 /*
    715  * This returns != 0 on success.
    716  */
    717 static inline int
    718 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    719 {
    720 	struct pv_entry *pv, *npv = NULL;
    721 	int s;
    722 
    723 	if (!pmap_initialized)
    724 		return 0;
    725 
    726 	s = splvm();
    727 	pv = pa_to_pv(pa);
    728 	if (!pv->pv_pm) {
    729 		/*
    730 		 * No entries yet, use header as the first entry.
    731 		 */
    732 		pv->pv_va = va;
    733 		pv->pv_pm = pm;
    734 		pv->pv_next = NULL;
    735 	} else {
    736 		/*
    737 		 * There is at least one other VA mapping this page.
    738 		 * Place this entry after the header.
    739 		 */
    740 		npv = pool_get(&pv_pool, PR_NOWAIT);
    741 		if (npv == NULL) {
    742 			if ((flags & PMAP_CANFAIL) == 0)
    743 				panic("pmap_enter_pv: failed");
    744 			splx(s);
    745 			return 0;
    746 		}
    747 		npv->pv_va = va;
    748 		npv->pv_pm = pm;
    749 		npv->pv_next = pv->pv_next;
    750 		pv->pv_next = npv;
    751 		pv = npv;
    752 	}
    753 	if (flags & PMAP_WIRED) {
    754 		PV_WIRE(pv);
    755 		pm->pm_stats.wired_count++;
    756 	}
    757 	splx(s);
    758 	return (1);
    759 }
    760 
    761 static void
    762 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    763 {
    764 	struct pv_entry *pv, *npv;
    765 
    766 	/*
    767 	 * Remove from the PV table.
    768 	 */
    769 	pv = pa_to_pv(pa);
    770 	if (!pv)
    771 		return;
    772 
    773 	/*
    774 	 * If it is the first entry on the list, it is actually
    775 	 * in the header and we must copy the following entry up
    776 	 * to the header.  Otherwise we must search the list for
    777 	 * the entry.  In either case we free the now unused entry.
    778 	 */
    779 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    780 		if (PV_ISWIRED(pv)) {
    781 			pm->pm_stats.wired_count--;
    782 		}
    783 		if ((npv = pv->pv_next)) {
    784 			*pv = *npv;
    785 			pool_put(&pv_pool, npv);
    786 		} else
    787 			pv->pv_pm = NULL;
    788 	} else {
    789 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    790 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    791 				break;
    792 		if (npv) {
    793 			pv->pv_next = npv->pv_next;
    794 			if (PV_ISWIRED(npv)) {
    795 				pm->pm_stats.wired_count--;
    796 			}
    797 			pool_put(&pv_pool, npv);
    798 		}
    799 	}
    800 }
    801 
    802 /*
    803  * Insert physical page at pa into the given pmap at virtual address va.
    804  */
    805 int
    806 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    807 {
    808 	int s;
    809 	u_int tte;
    810 	bool managed;
    811 
    812 	/*
    813 	 * Have to remove any existing mapping first.
    814 	 */
    815 	pmap_remove(pm, va, va + PAGE_SIZE);
    816 
    817 	if (flags & PMAP_WIRED)
    818 		flags |= prot;
    819 
    820 	managed = uvm_pageismanaged(pa);
    821 
    822 	/*
    823 	 * Generate TTE.
    824 	 */
    825 	tte = TTE_PA(pa);
    826 	/* XXXX -- need to support multiple page sizes. */
    827 	tte |= TTE_SZ_16K;
    828 #ifdef	DIAGNOSTIC
    829 	if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    830 		(PMAP_NOCACHE | PME_WRITETHROUG))
    831 		panic("pmap_enter: uncached & writethrough");
    832 #endif
    833 	if (flags & PMAP_NOCACHE)
    834 		/* Must be I/O mapping */
    835 		tte |= TTE_I | TTE_G;
    836 #ifdef PPC_4XX_NOCACHE
    837 	tte |= TTE_I;
    838 #else
    839 	else if (flags & PME_WRITETHROUG)
    840 		/* Uncached and writethrough are not compatible */
    841 		tte |= TTE_W;
    842 #endif
    843 	if (pm == pmap_kernel())
    844 		tte |= TTE_ZONE(ZONE_PRIV);
    845 	else
    846 		tte |= TTE_ZONE(ZONE_USER);
    847 
    848 	if (flags & VM_PROT_WRITE)
    849 		tte |= TTE_WR;
    850 
    851 	if (flags & VM_PROT_EXECUTE)
    852 		tte |= TTE_EX;
    853 
    854 	/*
    855 	 * Now record mapping for later back-translation.
    856 	 */
    857 	if (pmap_initialized && managed) {
    858 		char *attr;
    859 
    860 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    861 			/* Could not enter pv on a managed page */
    862 			return 1;
    863 		}
    864 
    865 		/* Now set attributes. */
    866 		attr = pa_to_attr(pa);
    867 #ifdef DIAGNOSTIC
    868 		if (!attr)
    869 			panic("managed but no attr");
    870 #endif
    871 		if (flags & VM_PROT_ALL)
    872 			*attr |= PMAP_ATTR_REF;
    873 		if (flags & VM_PROT_WRITE)
    874 			*attr |= PMAP_ATTR_CHG;
    875 	}
    876 
    877 	s = splvm();
    878 
    879 	/* Insert page into page table. */
    880 	pte_enter(pm, va, tte);
    881 
    882 	/* If this is a real fault, enter it in the tlb */
    883 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    884 		int s2 = splhigh();
    885 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    886 		splx(s2);
    887 	}
    888 	splx(s);
    889 
    890 	/* Flush the real memory from the instruction cache. */
    891 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    892 		__syncicache((void *)pa, PAGE_SIZE);
    893 
    894 	return 0;
    895 }
    896 
    897 void
    898 pmap_unwire(struct pmap *pm, vaddr_t va)
    899 {
    900 	struct pv_entry *pv;
    901 	paddr_t pa;
    902 	int s;
    903 
    904 	if (!pmap_extract(pm, va, &pa)) {
    905 		return;
    906 	}
    907 
    908 	pv = pa_to_pv(pa);
    909 	if (!pv)
    910 		return;
    911 
    912 	s = splvm();
    913 	while (pv != NULL) {
    914 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    915 			if (PV_ISWIRED(pv)) {
    916 				PV_UNWIRE(pv);
    917 				pm->pm_stats.wired_count--;
    918 			}
    919 			break;
    920 		}
    921 		pv = pv->pv_next;
    922 	}
    923 	splx(s);
    924 }
    925 
    926 void
    927 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    928 {
    929 	int s;
    930 	u_int tte;
    931 	struct pmap *pm = pmap_kernel();
    932 
    933 	/*
    934 	 * Have to remove any existing mapping first.
    935 	 */
    936 
    937 	/*
    938 	 * Generate TTE.
    939 	 *
    940 	 * XXXX
    941 	 *
    942 	 * Since the kernel does not handle execution privileges properly,
    943 	 * we will handle read and execute permissions together.
    944 	 */
    945 	tte = 0;
    946 	if (prot & VM_PROT_ALL) {
    947 
    948 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    949 		/* XXXX -- need to support multiple page sizes. */
    950 		tte |= TTE_SZ_16K;
    951 #ifdef DIAGNOSTIC
    952 		if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    953 			(PMAP_NOCACHE | PME_WRITETHROUG))
    954 			panic("pmap_kenter_pa: uncached & writethrough");
    955 #endif
    956 		if (flags & PMAP_NOCACHE)
    957 			/* Must be I/O mapping */
    958 			tte |= TTE_I | TTE_G;
    959 #ifdef PPC_4XX_NOCACHE
    960 		tte |= TTE_I;
    961 #else
    962 		else if (prot & PME_WRITETHROUG)
    963 			/* Uncached and writethrough are not compatible */
    964 			tte |= TTE_W;
    965 #endif
    966 		if (prot & VM_PROT_WRITE)
    967 			tte |= TTE_WR;
    968 	}
    969 
    970 	s = splvm();
    971 
    972 	/* Insert page into page table. */
    973 	pte_enter(pm, va, tte);
    974 	splx(s);
    975 }
    976 
    977 void
    978 pmap_kremove(vaddr_t va, vsize_t len)
    979 {
    980 
    981 	while (len > 0) {
    982 		pte_enter(pmap_kernel(), va, 0);
    983 		va += PAGE_SIZE;
    984 		len -= PAGE_SIZE;
    985 	}
    986 }
    987 
    988 /*
    989  * Remove the given range of mapping entries.
    990  */
    991 void
    992 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
    993 {
    994 	int s;
    995 	paddr_t pa;
    996 	volatile u_int *ptp;
    997 
    998 	s = splvm();
    999 	while (va < endva) {
   1000 
   1001 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
   1002 			pa = TTE_PA(pa);
   1003 			pmap_remove_pv(pm, va, pa);
   1004 			*ptp = 0;
   1005 			ppc4xx_tlb_flush(va, pm->pm_ctx);
   1006 			pm->pm_stats.resident_count--;
   1007 		}
   1008 		va += PAGE_SIZE;
   1009 	}
   1010 
   1011 	splx(s);
   1012 }
   1013 
   1014 /*
   1015  * Get the physical page address for the given pmap/virtual address.
   1016  */
   1017 bool
   1018 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1019 {
   1020 	int seg = STIDX(va);
   1021 	int ptn = PTIDX(va);
   1022 	u_int pa = 0;
   1023 	int s;
   1024 
   1025 	s = splvm();
   1026 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap) {
   1027 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1028 	}
   1029 	splx(s);
   1030 	return (pa != 0);
   1031 }
   1032 
   1033 /*
   1034  * Lower the protection on the specified range of this pmap.
   1035  *
   1036  * There are only two cases: either the protection is going to 0,
   1037  * or it is going to read-only.
   1038  */
   1039 void
   1040 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1041 {
   1042 	volatile u_int *ptp;
   1043 	int s, bic;
   1044 
   1045 	if ((prot & VM_PROT_READ) == 0) {
   1046 		pmap_remove(pm, sva, eva);
   1047 		return;
   1048 	}
   1049 	bic = 0;
   1050 	if ((prot & VM_PROT_WRITE) == 0) {
   1051 		bic |= TTE_WR;
   1052 	}
   1053 	if ((prot & VM_PROT_EXECUTE) == 0) {
   1054 		bic |= TTE_EX;
   1055 	}
   1056 	if (bic == 0) {
   1057 		return;
   1058 	}
   1059 	s = splvm();
   1060 	while (sva < eva) {
   1061 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1062 			*ptp &= ~bic;
   1063 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1064 		}
   1065 		sva += PAGE_SIZE;
   1066 	}
   1067 	splx(s);
   1068 }
   1069 
   1070 bool
   1071 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1072 {
   1073 	paddr_t pa;
   1074 	char *attr;
   1075 	int s, rv;
   1076 
   1077 	/*
   1078 	 * First modify bits in cache.
   1079 	 */
   1080 	pa = VM_PAGE_TO_PHYS(pg);
   1081 	attr = pa_to_attr(pa);
   1082 	if (attr == NULL)
   1083 		return false;
   1084 
   1085 	s = splvm();
   1086 	rv = ((*attr & mask) != 0);
   1087 	if (clear) {
   1088 		*attr &= ~mask;
   1089 		pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1090 	}
   1091 	splx(s);
   1092 	return rv;
   1093 }
   1094 
   1095 
   1096 /*
   1097  * Lower the protection on the specified physical page.
   1098  *
   1099  * There are only two cases: either the protection is going to 0,
   1100  * or it is going to read-only.
   1101  */
   1102 void
   1103 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1104 {
   1105 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1106 	vaddr_t va;
   1107 	struct pv_entry *pvh, *pv, *npv;
   1108 	struct pmap *pm;
   1109 
   1110 	pvh = pa_to_pv(pa);
   1111 	if (pvh == NULL)
   1112 		return;
   1113 
   1114 	/* Handle extra pvs which may be deleted in the operation */
   1115 	for (pv = pvh->pv_next; pv; pv = npv) {
   1116 		npv = pv->pv_next;
   1117 
   1118 		pm = pv->pv_pm;
   1119 		va = PV_VA(pv);
   1120 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1121 	}
   1122 	/* Now check the head pv */
   1123 	if (pvh->pv_pm) {
   1124 		pv = pvh;
   1125 		pm = pv->pv_pm;
   1126 		va = PV_VA(pv);
   1127 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1128 	}
   1129 }
   1130 
   1131 /*
   1132  * Activate the address space for the specified process.  If the process
   1133  * is the current process, load the new MMU context.
   1134  */
   1135 void
   1136 pmap_activate(struct lwp *l)
   1137 {
   1138 #if 0
   1139 	struct pcb *pcb = lwp_getpcb(l);
   1140 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1141 
   1142 	/*
   1143 	 * XXX Normally performed in cpu_lwp_fork().
   1144 	 */
   1145 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1146 	pcb->pcb_pm = pmap;
   1147 #endif
   1148 }
   1149 
   1150 /*
   1151  * Deactivate the specified process's address space.
   1152  */
   1153 void
   1154 pmap_deactivate(struct lwp *l)
   1155 {
   1156 }
   1157 
   1158 /*
   1159  * Synchronize caches corresponding to [addr, addr+len) in p.
   1160  */
   1161 void
   1162 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1163 {
   1164 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1165 	int msr, ctx, opid, step;
   1166 
   1167 	step = CACHELINESIZE;
   1168 
   1169 	/*
   1170 	 * Need to turn off IMMU and switch to user context.
   1171 	 * (icbi uses DMMU).
   1172 	 */
   1173 	if (!(ctx = pm->pm_ctx)) {
   1174 		/* No context -- assign it one */
   1175 		ctx_alloc(pm);
   1176 		ctx = pm->pm_ctx;
   1177 	}
   1178 	__asm volatile(
   1179 		"mfmsr %0;"
   1180 		"li %1, %7;"
   1181 		"andc %1,%0,%1;"
   1182 		"mtmsr %1;"
   1183 		"isync;"
   1184 		"mfpid %1;"
   1185 		"mtpid %2;"
   1186 		"isync;"
   1187 		"1:"
   1188 		"dcbst 0,%3;"
   1189 		"icbi 0,%3;"
   1190 		"add %3,%3,%5;"
   1191 		"addc. %4,%4,%6;"
   1192 		"bge 1b;"
   1193 		"sync;"
   1194 		"mtpid %1;"
   1195 		"mtmsr %0;"
   1196 		"isync;"
   1197 		: "=&r" (msr), "=&r" (opid)
   1198 		: "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
   1199 		  "K" (PSL_IR | PSL_DR));
   1200 }
   1201 
   1202 
   1203 /* This has to be done in real mode !!! */
   1204 void
   1205 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1206 {
   1207 	u_long i, found;
   1208 	u_long msr;
   1209 
   1210 	/* If there's no context then it can't be mapped. */
   1211 	if (!pid)
   1212 		return;
   1213 
   1214 	__asm volatile(
   1215 		"mfpid %1;"		/* Save PID */
   1216 		"mfmsr %2;"		/* Save MSR */
   1217 		"li %0,0;"		/* Now clear MSR */
   1218 		"mtmsr %0;"
   1219 		"isync;"
   1220 		"mtpid %4;"		/* Set PID */
   1221 		"isync;"
   1222 		"tlbsx. %0,0,%3;"	/* Search TLB */
   1223 		"isync;"
   1224 		"mtpid %1;"		/* Restore PID */
   1225 		"mtmsr %2;"		/* Restore MSR */
   1226 		"isync;"
   1227 		"li %1,1;"
   1228 		"beq 1f;"
   1229 		"li %1,0;"
   1230 		"1:"
   1231 		: "=&r" (i), "=&r" (found), "=&r" (msr)
   1232 		: "r" (va), "r" (pid));
   1233 	if (found && !TLB_LOCKED(i)) {
   1234 		/* Now flush translation */
   1235 		__asm volatile(
   1236 			"tlbwe %0,%1,0;"
   1237 			"isync;"
   1238 			: : "r" (0), "r" (i));
   1239 
   1240 		tlb_info[i].ti_ctx = 0;
   1241 		tlb_info[i].ti_flags = 0;
   1242 		tlbnext = i;
   1243 		/* Successful flushes */
   1244 		tlbflush_ev.ev_count++;
   1245 	}
   1246 }
   1247 
   1248 void
   1249 ppc4xx_tlb_flush_all(void)
   1250 {
   1251 	u_long i;
   1252 
   1253 	for (i = 0; i < NTLB; i++)
   1254 		if (!TLB_LOCKED(i)) {
   1255 			__asm volatile(
   1256 				"tlbwe %0,%1,0;" : : "r" (0), "r" (i));
   1257 			tlb_info[i].ti_ctx = 0;
   1258 			tlb_info[i].ti_flags = 0;
   1259 		}
   1260 
   1261 	__asm volatile("isync");
   1262 }
   1263 
   1264 /* Find a TLB entry to evict. */
   1265 static int
   1266 ppc4xx_tlb_find_victim(void)
   1267 {
   1268 	int flags;
   1269 
   1270 	for (;;) {
   1271 		if (++tlbnext >= NTLB)
   1272 			tlbnext = tlb_nreserved;
   1273 		flags = tlb_info[tlbnext].ti_flags;
   1274 		if (!(flags & TLBF_USED) ||
   1275 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1276 			u_long va, stack = (u_long)&va;
   1277 
   1278 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
   1279 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1280 			     (flags & TLBF_USED)) {
   1281 				/* Kernel stack page */
   1282 				flags |= TLBF_REF;
   1283 				tlb_info[tlbnext].ti_flags = flags;
   1284 			} else {
   1285 				/* Found it! */
   1286 				return (tlbnext);
   1287 			}
   1288 		} else {
   1289 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1290 		}
   1291 	}
   1292 }
   1293 
   1294 void
   1295 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1296 {
   1297 	u_long th, tl, idx;
   1298 	int msr, pid;
   1299 	paddr_t pa;
   1300 	int sz;
   1301 
   1302 	tlbenter_ev.ev_count++;
   1303 
   1304 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1305 	pa = (pte & TTE_RPN_MASK(sz));
   1306 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1307 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1308 	tl |= ppc4xx_tlbflags(va, pa);
   1309 
   1310 	idx = ppc4xx_tlb_find_victim();
   1311 
   1312 #ifdef DIAGNOSTIC
   1313 	if ((idx < tlb_nreserved) || (idx >= NTLB) || (idx & 63) == 0) {
   1314 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1315 	}
   1316 #endif
   1317 
   1318 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1319 	tlb_info[idx].ti_ctx = ctx;
   1320 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1321 
   1322 	__asm volatile(
   1323 		"mfmsr %0;"			/* Save MSR */
   1324 		"li %1,0;"
   1325 		"mtmsr %1;"			/* Clear MSR */
   1326 		"isync;"
   1327 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
   1328 		"mfpid %1;"			/* Save old PID */
   1329 		"mtpid %2;"			/* Load translation ctx */
   1330 		"isync;"
   1331 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
   1332 		"isync;"
   1333 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
   1334 		"isync;"
   1335 	: "=&r" (msr), "=&r" (pid)
   1336 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
   1337 }
   1338 
   1339 void
   1340 ppc4xx_tlb_init(void)
   1341 {
   1342 	int i;
   1343 
   1344 	/* Mark reserved TLB entries */
   1345 	for (i = 0; i < tlb_nreserved; i++) {
   1346 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1347 		tlb_info[i].ti_ctx = KERNEL_PID;
   1348 	}
   1349 
   1350 	/* Setup security zones */
   1351 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1352 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1353 	 * Z3 - full access regardless of TLB entry permissions
   1354 	 */
   1355 
   1356 	__asm volatile(
   1357 		"mtspr %0,%1;"
   1358 		"isync;"
   1359 		::  "K"(SPR_ZPR), "r" (0x1b000000));
   1360 }
   1361 
   1362 /*
   1363  * ppc4xx_tlb_size_mask:
   1364  *
   1365  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1366  */
   1367 static int
   1368 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1369 {
   1370 	int 			i;
   1371 
   1372 	for (i = 0; i < __arraycount(tlbsize); i++)
   1373 		if (size <= tlbsize[i]) {
   1374 			*mask = (i << TLB_SIZE_SHFT);
   1375 			*rsiz = tlbsize[i];
   1376 			return (0);
   1377 		}
   1378 	return (EINVAL);
   1379 }
   1380 
   1381 /*
   1382  * ppc4xx_tlb_mapiodev:
   1383  *
   1384  * 	Lookup virtual address of mapping previously entered via
   1385  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1386  * 	need to waste extra storage for reserved mappings. Note
   1387  * 	that reading TLBHI also sets PID, but all reserved mappings
   1388  * 	use KERNEL_PID, so the side effect is nil.
   1389  */
   1390 void *
   1391 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1392 {
   1393 	paddr_t 		pa;
   1394 	vaddr_t 		va;
   1395 	u_int 			lo, hi, sz;
   1396 	int 			i;
   1397 
   1398 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1399 	for (i = 0; i < tlb_nreserved; i++) {
   1400 		__asm volatile (
   1401 		    "	tlbre %0,%2,1 	\n" 	/* TLBLO */
   1402 		    "	tlbre %1,%2,0 	\n" 	/* TLBHI */
   1403 		    : "=&r" (lo), "=&r" (hi)
   1404 		    : "r" (i));
   1405 
   1406 		KASSERT(hi & TLB_VALID);
   1407 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1408 
   1409 		pa = (lo & TLB_RPN_MASK);
   1410 		if (base < pa)
   1411 			continue;
   1412 
   1413 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1414 		if ((base + len) > (pa + sz))
   1415 			continue;
   1416 
   1417 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1418 		return (void *)(va);
   1419 	}
   1420 
   1421 	return (NULL);
   1422 }
   1423 
   1424 /*
   1425  * ppc4xx_tlb_reserve:
   1426  *
   1427  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1428  */
   1429 void
   1430 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1431 {
   1432 	u_int 			lo, hi;
   1433 	int 			szmask, rsize;
   1434 
   1435 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1436 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1437 	KASSERT(! pmap_bootstrap_done);
   1438 	KASSERT(tlb_nreserved < NTLB);
   1439 
   1440 	/* Resolve size. */
   1441 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1442 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1443 		    size, tlb_nreserved);
   1444 
   1445 	/* Real size will be power of two >= 1024, so this is OK. */
   1446 	pa &= ~(rsize - 1); 	/* RPN */
   1447 	va &= ~(rsize - 1); 	/* EPN */
   1448 
   1449 	lo = pa | TLB_WR | flags;
   1450 	hi = va | TLB_VALID | szmask;
   1451 
   1452 #ifdef PPC_4XX_NOCACHE
   1453 	lo |= TLB_I;
   1454 #endif
   1455 
   1456 	__asm volatile(
   1457 	    "	tlbwe %1,%0,1 	\n" 	/* write TLBLO */
   1458 	    "	tlbwe %2,%0,0 	\n" 	/* write TLBHI */
   1459 	    "	isync 		\n"
   1460 	    : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
   1461 
   1462 	tlb_nreserved++;
   1463 }
   1464 
   1465 /*
   1466  * We should pass the ctx in from trap code.
   1467  */
   1468 int
   1469 pmap_tlbmiss(vaddr_t va, int ctx)
   1470 {
   1471 	volatile u_int *pte;
   1472 	u_long tte;
   1473 
   1474 	tlbmiss_ev.ev_count++;
   1475 
   1476 	/*
   1477 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1478 	 * Physical RAM is expected to live in this range, care must be taken
   1479 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1480 	 * code.
   1481 	 */
   1482 	if (ctx != KERNEL_PID ||
   1483 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1484 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1485 		if (pte == NULL) {
   1486 			/* Map unmanaged addresses directly for kernel access */
   1487 			return 1;
   1488 		}
   1489 		tte = *pte;
   1490 		if (tte == 0) {
   1491 			return 1;
   1492 		}
   1493 	} else {
   1494 		/* Create a 16MB writable mapping. */
   1495 #ifdef PPC_4XX_NOCACHE
   1496 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
   1497 #else
   1498 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1499 #endif
   1500 	}
   1501 	ppc4xx_tlb_enter(ctx, va, tte);
   1502 
   1503 	return 0;
   1504 }
   1505 
   1506 /*
   1507  * Flush all the entries matching a context from the TLB.
   1508  */
   1509 static int
   1510 ctx_flush(int cnum)
   1511 {
   1512 	int i;
   1513 
   1514 	/* We gotta steal this context */
   1515 	for (i = tlb_nreserved; i < NTLB; i++) {
   1516 		if (tlb_info[i].ti_ctx == cnum) {
   1517 			/* Can't steal ctx if it has a locked entry. */
   1518 			if (TLB_LOCKED(i)) {
   1519 #ifdef DIAGNOSTIC
   1520 				printf("ctx_flush: can't invalidate "
   1521 					"locked mapping %d "
   1522 					"for context %d\n", i, cnum);
   1523 #ifdef DDB
   1524 				Debugger();
   1525 #endif
   1526 #endif
   1527 				return (1);
   1528 			}
   1529 #ifdef DIAGNOSTIC
   1530 			if (i < tlb_nreserved)
   1531 				panic("TLB entry %d not locked", i);
   1532 #endif
   1533 			/* Invalidate particular TLB entry regardless of locked status */
   1534 			__asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
   1535 			tlb_info[i].ti_ctx = 0;
   1536 			tlb_info[i].ti_flags = 0;
   1537 		}
   1538 	}
   1539 	return (0);
   1540 }
   1541 
   1542 /*
   1543  * Allocate a context.  If necessary, steal one from someone else.
   1544  *
   1545  * The new context is flushed from the TLB before returning.
   1546  */
   1547 int
   1548 ctx_alloc(struct pmap *pm)
   1549 {
   1550 	int s, cnum;
   1551 	static int next = MINCTX;
   1552 
   1553 	if (pm == pmap_kernel()) {
   1554 #ifdef DIAGNOSTIC
   1555 		printf("ctx_alloc: kernel pmap!\n");
   1556 #endif
   1557 		return (0);
   1558 	}
   1559 	s = splvm();
   1560 
   1561 	/* Find a likely context. */
   1562 	cnum = next;
   1563 	do {
   1564 		if ((++cnum) >= NUMCTX)
   1565 			cnum = MINCTX;
   1566 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1567 
   1568 	/* Now clean it out */
   1569 oops:
   1570 	if (cnum < MINCTX)
   1571 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1572 	if (ctx_flush(cnum)) {
   1573 		/* oops -- something's wired. */
   1574 		if ((++cnum) >= NUMCTX)
   1575 			cnum = MINCTX;
   1576 		goto oops;
   1577 	}
   1578 
   1579 	if (ctxbusy[cnum]) {
   1580 #ifdef DEBUG
   1581 		/* We should identify this pmap and clear it */
   1582 		printf("Warning: stealing context %d\n", cnum);
   1583 #endif
   1584 		ctxbusy[cnum]->pm_ctx = 0;
   1585 	}
   1586 	ctxbusy[cnum] = pm;
   1587 	next = cnum;
   1588 	splx(s);
   1589 	pm->pm_ctx = cnum;
   1590 
   1591 	return cnum;
   1592 }
   1593 
   1594 /*
   1595  * Give away a context.
   1596  */
   1597 void
   1598 ctx_free(struct pmap *pm)
   1599 {
   1600 	int oldctx;
   1601 
   1602 	oldctx = pm->pm_ctx;
   1603 
   1604 	if (oldctx == 0)
   1605 		panic("ctx_free: freeing kernel context");
   1606 #ifdef DIAGNOSTIC
   1607 	if (ctxbusy[oldctx] == 0)
   1608 		printf("ctx_free: freeing free context %d\n", oldctx);
   1609 	if (ctxbusy[oldctx] != pm) {
   1610 		printf("ctx_free: freeing someone esle's context\n "
   1611 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1612 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1613 #ifdef DDB
   1614 		Debugger();
   1615 #endif
   1616 	}
   1617 #endif
   1618 	/* We should verify it has not been stolen and reallocated... */
   1619 	ctxbusy[oldctx] = NULL;
   1620 	ctx_flush(oldctx);
   1621 }
   1622 
   1623 
   1624 #ifdef DEBUG
   1625 /*
   1626  * Test ref/modify handling.
   1627  */
   1628 void pmap_testout(void);
   1629 void
   1630 pmap_testout(void)
   1631 {
   1632 	vaddr_t va;
   1633 	volatile int *loc;
   1634 	int val = 0;
   1635 	paddr_t pa;
   1636 	struct vm_page *pg;
   1637 	int ref, mod;
   1638 
   1639 	/* Allocate a page */
   1640 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1641 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1642 	loc = (int*)va;
   1643 
   1644 	pmap_extract(pmap_kernel(), va, &pa);
   1645 	pg = PHYS_TO_VM_PAGE(pa);
   1646 	pmap_unwire(pmap_kernel(), va);
   1647 
   1648 	pmap_kremove(va, PAGE_SIZE);
   1649 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1650 	pmap_update(pmap_kernel());
   1651 
   1652 	/* Now clear reference and modify */
   1653 	ref = pmap_clear_reference(pg);
   1654 	mod = pmap_clear_modify(pg);
   1655 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1656 	       (void *)(u_long)va, (long)pa,
   1657 	       ref, mod);
   1658 
   1659 	/* Check it's properly cleared */
   1660 	ref = pmap_is_referenced(pg);
   1661 	mod = pmap_is_modified(pg);
   1662 	printf("Checking cleared page: ref %d, mod %d\n",
   1663 	       ref, mod);
   1664 
   1665 	/* Reference page */
   1666 	val = *loc;
   1667 
   1668 	ref = pmap_is_referenced(pg);
   1669 	mod = pmap_is_modified(pg);
   1670 	printf("Referenced page: ref %d, mod %d val %x\n",
   1671 	       ref, mod, val);
   1672 
   1673 	/* Now clear reference and modify */
   1674 	ref = pmap_clear_reference(pg);
   1675 	mod = pmap_clear_modify(pg);
   1676 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1677 	       (void *)(u_long)va, (long)pa,
   1678 	       ref, mod);
   1679 
   1680 	/* Modify page */
   1681 	*loc = 1;
   1682 
   1683 	ref = pmap_is_referenced(pg);
   1684 	mod = pmap_is_modified(pg);
   1685 	printf("Modified page: ref %d, mod %d\n",
   1686 	       ref, mod);
   1687 
   1688 	/* Now clear reference and modify */
   1689 	ref = pmap_clear_reference(pg);
   1690 	mod = pmap_clear_modify(pg);
   1691 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1692 	       (void *)(u_long)va, (long)pa,
   1693 	       ref, mod);
   1694 
   1695 	/* Check it's properly cleared */
   1696 	ref = pmap_is_referenced(pg);
   1697 	mod = pmap_is_modified(pg);
   1698 	printf("Checking cleared page: ref %d, mod %d\n",
   1699 	       ref, mod);
   1700 
   1701 	/* Modify page */
   1702 	*loc = 1;
   1703 
   1704 	ref = pmap_is_referenced(pg);
   1705 	mod = pmap_is_modified(pg);
   1706 	printf("Modified page: ref %d, mod %d\n",
   1707 	       ref, mod);
   1708 
   1709 	/* Check pmap_protect() */
   1710 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1711 	pmap_update(pmap_kernel());
   1712 	ref = pmap_is_referenced(pg);
   1713 	mod = pmap_is_modified(pg);
   1714 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
   1715 	       ref, mod);
   1716 
   1717 	/* Now clear reference and modify */
   1718 	ref = pmap_clear_reference(pg);
   1719 	mod = pmap_clear_modify(pg);
   1720 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1721 	       (void *)(u_long)va, (long)pa,
   1722 	       ref, mod);
   1723 
   1724 	/* Reference page */
   1725 	val = *loc;
   1726 
   1727 	ref = pmap_is_referenced(pg);
   1728 	mod = pmap_is_modified(pg);
   1729 	printf("Referenced page: ref %d, mod %d val %x\n",
   1730 	       ref, mod, val);
   1731 
   1732 	/* Now clear reference and modify */
   1733 	ref = pmap_clear_reference(pg);
   1734 	mod = pmap_clear_modify(pg);
   1735 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1736 	       (void *)(u_long)va, (long)pa,
   1737 	       ref, mod);
   1738 
   1739 	/* Modify page */
   1740 #if 0
   1741 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1742 	pmap_update(pmap_kernel());
   1743 #endif
   1744 	*loc = 1;
   1745 
   1746 	ref = pmap_is_referenced(pg);
   1747 	mod = pmap_is_modified(pg);
   1748 	printf("Modified page: ref %d, mod %d\n",
   1749 	       ref, mod);
   1750 
   1751 	/* Check pmap_protect() */
   1752 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1753 	pmap_update(pmap_kernel());
   1754 	ref = pmap_is_referenced(pg);
   1755 	mod = pmap_is_modified(pg);
   1756 	printf("pmap_protect(): ref %d, mod %d\n",
   1757 	       ref, mod);
   1758 
   1759 	/* Now clear reference and modify */
   1760 	ref = pmap_clear_reference(pg);
   1761 	mod = pmap_clear_modify(pg);
   1762 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1763 	       (void *)(u_long)va, (long)pa,
   1764 	       ref, mod);
   1765 
   1766 	/* Reference page */
   1767 	val = *loc;
   1768 
   1769 	ref = pmap_is_referenced(pg);
   1770 	mod = pmap_is_modified(pg);
   1771 	printf("Referenced page: ref %d, mod %d val %x\n",
   1772 	       ref, mod, val);
   1773 
   1774 	/* Now clear reference and modify */
   1775 	ref = pmap_clear_reference(pg);
   1776 	mod = pmap_clear_modify(pg);
   1777 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1778 	       (void *)(u_long)va, (long)pa,
   1779 	       ref, mod);
   1780 
   1781 	/* Modify page */
   1782 #if 0
   1783 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1784 	pmap_update(pmap_kernel());
   1785 #endif
   1786 	*loc = 1;
   1787 
   1788 	ref = pmap_is_referenced(pg);
   1789 	mod = pmap_is_modified(pg);
   1790 	printf("Modified page: ref %d, mod %d\n",
   1791 	       ref, mod);
   1792 
   1793 	/* Check pmap_pag_protect() */
   1794 	pmap_page_protect(pg, VM_PROT_READ);
   1795 	ref = pmap_is_referenced(pg);
   1796 	mod = pmap_is_modified(pg);
   1797 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
   1798 	       ref, mod);
   1799 
   1800 	/* Now clear reference and modify */
   1801 	ref = pmap_clear_reference(pg);
   1802 	mod = pmap_clear_modify(pg);
   1803 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1804 	       (void *)(u_long)va, (long)pa,
   1805 	       ref, mod);
   1806 
   1807 	/* Reference page */
   1808 	val = *loc;
   1809 
   1810 	ref = pmap_is_referenced(pg);
   1811 	mod = pmap_is_modified(pg);
   1812 	printf("Referenced page: ref %d, mod %d val %x\n",
   1813 	       ref, mod, val);
   1814 
   1815 	/* Now clear reference and modify */
   1816 	ref = pmap_clear_reference(pg);
   1817 	mod = pmap_clear_modify(pg);
   1818 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1819 	       (void *)(u_long)va, (long)pa,
   1820 	       ref, mod);
   1821 
   1822 	/* Modify page */
   1823 #if 0
   1824 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1825 	pmap_update(pmap_kernel());
   1826 #endif
   1827 	*loc = 1;
   1828 
   1829 	ref = pmap_is_referenced(pg);
   1830 	mod = pmap_is_modified(pg);
   1831 	printf("Modified page: ref %d, mod %d\n",
   1832 	       ref, mod);
   1833 
   1834 	/* Check pmap_pag_protect() */
   1835 	pmap_page_protect(pg, VM_PROT_NONE);
   1836 	ref = pmap_is_referenced(pg);
   1837 	mod = pmap_is_modified(pg);
   1838 	printf("pmap_page_protect(): ref %d, mod %d\n",
   1839 	       ref, mod);
   1840 
   1841 	/* Now clear reference and modify */
   1842 	ref = pmap_clear_reference(pg);
   1843 	mod = pmap_clear_modify(pg);
   1844 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1845 	       (void *)(u_long)va, (long)pa,
   1846 	       ref, mod);
   1847 
   1848 
   1849 	/* Reference page */
   1850 	val = *loc;
   1851 
   1852 	ref = pmap_is_referenced(pg);
   1853 	mod = pmap_is_modified(pg);
   1854 	printf("Referenced page: ref %d, mod %d val %x\n",
   1855 	       ref, mod, val);
   1856 
   1857 	/* Now clear reference and modify */
   1858 	ref = pmap_clear_reference(pg);
   1859 	mod = pmap_clear_modify(pg);
   1860 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1861 	       (void *)(u_long)va, (long)pa,
   1862 	       ref, mod);
   1863 
   1864 	/* Modify page */
   1865 #if 0
   1866 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1867 	pmap_update(pmap_kernel());
   1868 #endif
   1869 	*loc = 1;
   1870 
   1871 	ref = pmap_is_referenced(pg);
   1872 	mod = pmap_is_modified(pg);
   1873 	printf("Modified page: ref %d, mod %d\n",
   1874 	       ref, mod);
   1875 
   1876 	/* Unmap page */
   1877 	pmap_remove(pmap_kernel(), va, va+1);
   1878 	pmap_update(pmap_kernel());
   1879 	ref = pmap_is_referenced(pg);
   1880 	mod = pmap_is_modified(pg);
   1881 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1882 
   1883 	/* Now clear reference and modify */
   1884 	ref = pmap_clear_reference(pg);
   1885 	mod = pmap_clear_modify(pg);
   1886 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1887 	       (void *)(u_long)va, (long)pa, ref, mod);
   1888 
   1889 	/* Check it's properly cleared */
   1890 	ref = pmap_is_referenced(pg);
   1891 	mod = pmap_is_modified(pg);
   1892 	printf("Checking cleared page: ref %d, mod %d\n",
   1893 	       ref, mod);
   1894 
   1895 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1896 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1897 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1898 }
   1899 #endif
   1900