Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.95.4.2
      1 /*	$NetBSD: pmap.c,v 1.95.4.2 2021/04/17 17:26:15 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.95.4.2 2021/04/17 17:26:15 thorpej Exp $");
     71 
     72 #ifdef _KERNEL_OPT
     73 #include "opt_ddb.h"
     74 #include "opt_pmap.h"
     75 #endif
     76 
     77 #include <sys/param.h>
     78 #include <sys/cpu.h>
     79 #include <sys/device.h>
     80 #include <sys/kmem.h>
     81 #include <sys/pool.h>
     82 #include <sys/proc.h>
     83 #include <sys/queue.h>
     84 #include <sys/systm.h>
     85 
     86 #include <uvm/uvm.h>
     87 
     88 #include <machine/powerpc.h>
     89 
     90 #include <powerpc/pcb.h>
     91 
     92 #include <powerpc/spr.h>
     93 #include <powerpc/ibm4xx/spr.h>
     94 
     95 #include <powerpc/ibm4xx/cpu.h>
     96 #include <powerpc/ibm4xx/tlb.h>
     97 
     98 /*
     99  * kernmap is an array of PTEs large enough to map in
    100  * 4GB.  At 16KB/page it is 256K entries or 2MB.
    101  */
    102 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
    103 void *kernmap;
    104 
    105 #define MINCTX		2
    106 #define NUMCTX		256
    107 
    108 volatile struct pmap *ctxbusy[NUMCTX];
    109 
    110 #define TLBF_USED	0x1
    111 #define	TLBF_REF	0x2
    112 #define	TLBF_LOCKED	0x4
    113 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    114 
    115 typedef struct tlb_info_s {
    116 	char	ti_flags;
    117 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    118 	u_int	ti_va;
    119 } tlb_info_t;
    120 
    121 volatile tlb_info_t tlb_info[NTLB];
    122 /* We'll use a modified FIFO replacement policy cause it's cheap */
    123 volatile int tlbnext;
    124 
    125 static int tlb_nreserved = 0;
    126 static int pmap_bootstrap_done = 0;
    127 
    128 /* Event counters */
    129 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    130 	NULL, "cpu", "tlbmiss");
    131 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    132 	NULL, "cpu", "tlbflush");
    133 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    134 	NULL, "cpu", "tlbenter");
    135 EVCNT_ATTACH_STATIC(tlbmiss_ev);
    136 EVCNT_ATTACH_STATIC(tlbflush_ev);
    137 EVCNT_ATTACH_STATIC(tlbenter_ev);
    138 
    139 struct pmap kernel_pmap_;
    140 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    141 
    142 static int npgs;
    143 static u_int nextavail;
    144 #ifndef MSGBUFADDR
    145 extern paddr_t msgbuf_paddr;
    146 #endif
    147 
    148 static struct mem_region *mem, *avail;
    149 
    150 /*
    151  * This is a cache of referenced/modified bits.
    152  * Bits herein are shifted by ATTRSHFT.
    153  */
    154 static char *pmap_attrib;
    155 
    156 #define PV_WIRED	0x1
    157 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    158 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    159 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    160 #define PV_VA(pv)	((pv)->pv_va & ~PV_WIRED)
    161 #define PV_CMPVA(va,pv)	(!(PV_VA(pv) ^ (va)))
    162 
    163 struct pv_entry {
    164 	struct pv_entry *pv_next;	/* Linked list of mappings */
    165 	struct pmap *pv_pm;
    166 	vaddr_t pv_va;			/* virtual address of mapping */
    167 };
    168 
    169 /* Each index corresponds to TLB_SIZE_* value. */
    170 static size_t tlbsize[] = {
    171 	1024, 		/* TLB_SIZE_1K */
    172 	4096, 		/* TLB_SIZE_4K */
    173 	16384, 		/* TLB_SIZE_16K */
    174 	65536, 		/* TLB_SIZE_64K */
    175 	262144, 	/* TLB_SIZE_256K */
    176 	1048576, 	/* TLB_SIZE_1M */
    177 	4194304, 	/* TLB_SIZE_4M */
    178 	16777216, 	/* TLB_SIZE_16M */
    179 };
    180 
    181 struct pv_entry *pv_table;
    182 static struct pool pv_pool;
    183 
    184 static int pmap_initialized;
    185 
    186 static int ctx_flush(int);
    187 
    188 struct pv_entry *pa_to_pv(paddr_t);
    189 static inline char *pa_to_attr(paddr_t);
    190 
    191 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    192 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    193 
    194 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    195 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    196 
    197 static inline void tlb_invalidate_entry(int);
    198 
    199 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    200 
    201 
    202 struct pv_entry *
    203 pa_to_pv(paddr_t pa)
    204 {
    205 	uvm_physseg_t bank;
    206 	psize_t pg;
    207 
    208 	bank = uvm_physseg_find(atop(pa), &pg);
    209 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    210 		return NULL;
    211 	return &uvm_physseg_get_pmseg(bank)->pvent[pg];
    212 }
    213 
    214 static inline char *
    215 pa_to_attr(paddr_t pa)
    216 {
    217 	uvm_physseg_t bank;
    218 	psize_t pg;
    219 
    220 	bank = uvm_physseg_find(atop(pa), &pg);
    221 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    222 		return NULL;
    223 	return &uvm_physseg_get_pmseg(bank)->attrs[pg];
    224 }
    225 
    226 /*
    227  * Insert PTE into page table.
    228  */
    229 static inline int
    230 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    231 {
    232 	int seg = STIDX(va);
    233 	int ptn = PTIDX(va);
    234 	u_int oldpte;
    235 
    236 	if (!pm->pm_ptbl[seg]) {
    237 		/* Don't allocate a page to clear a non-existent mapping. */
    238 		if (!pte)
    239 			return 1;
    240 
    241 		vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    242 		    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
    243 
    244 		if (__predict_false(km == 0))
    245 			return 0;
    246 
    247 		pm->pm_ptbl[seg] = (u_int *)km;
    248 	}
    249 	oldpte = pm->pm_ptbl[seg][ptn];
    250 	pm->pm_ptbl[seg][ptn] = pte;
    251 
    252 	/* Flush entry. */
    253 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    254 	if (oldpte != pte) {
    255 		if (pte == 0)
    256 			pm->pm_stats.resident_count--;
    257 		else
    258 			pm->pm_stats.resident_count++;
    259 	}
    260 	return 1;
    261 }
    262 
    263 /*
    264  * Get a pointer to a PTE in a page table.
    265  */
    266 volatile u_int *
    267 pte_find(struct pmap *pm, vaddr_t va)
    268 {
    269 	int seg = STIDX(va);
    270 	int ptn = PTIDX(va);
    271 
    272 	if (pm->pm_ptbl[seg])
    273 		return &pm->pm_ptbl[seg][ptn];
    274 
    275 	return NULL;
    276 }
    277 
    278 /*
    279  * This is called during initppc, before the system is really initialized.
    280  */
    281 void
    282 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    283 {
    284 	struct mem_region *mp, *mp1;
    285 	int cnt, i;
    286 	u_int s, e, sz;
    287 
    288 	tlbnext = tlb_nreserved;
    289 
    290 	/*
    291 	 * Allocate the kernel page table at the end of
    292 	 * kernel space so it's in the locked TTE.
    293 	 */
    294 	kernmap = (void *)kernelend;
    295 
    296 	/*
    297 	 * Initialize kernel page table.
    298 	 */
    299 	for (i = 0; i < STSZ; i++) {
    300 		pmap_kernel()->pm_ptbl[i] = NULL;
    301 	}
    302 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    303 
    304 	/*
    305 	 * Announce page-size to the VM-system
    306 	 */
    307 	uvmexp.pagesize = NBPG;
    308 	uvm_md_init();
    309 
    310 	/*
    311 	 * Get memory.
    312 	 */
    313 	mem_regions(&mem, &avail);
    314 	for (mp = mem; mp->size; mp++) {
    315 		physmem += btoc(mp->size);
    316 		printf("+%lx,",mp->size);
    317 	}
    318 	printf("\n");
    319 	ppc4xx_tlb_init();
    320 	/*
    321 	 * Count the number of available entries.
    322 	 */
    323 	for (cnt = 0, mp = avail; mp->size; mp++)
    324 		cnt++;
    325 
    326 	/*
    327 	 * Page align all regions.
    328 	 * Non-page aligned memory isn't very interesting to us.
    329 	 * Also, sort the entries for ascending addresses.
    330 	 */
    331 	kernelstart &= ~PGOFSET;
    332 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    333 	for (mp = avail; mp->size; mp++) {
    334 		s = mp->start;
    335 		e = mp->start + mp->size;
    336 		printf("%08x-%08x -> ",s,e);
    337 		/*
    338 		 * Check whether this region holds all of the kernel.
    339 		 */
    340 		if (s < kernelstart && e > kernelend) {
    341 			avail[cnt].start = kernelend;
    342 			avail[cnt++].size = e - kernelend;
    343 			e = kernelstart;
    344 		}
    345 		/*
    346 		 * Look whether this regions starts within the kernel.
    347 		 */
    348 		if (s >= kernelstart && s < kernelend) {
    349 			if (e <= kernelend)
    350 				goto empty;
    351 			s = kernelend;
    352 		}
    353 		/*
    354 		 * Now look whether this region ends within the kernel.
    355 		 */
    356 		if (e > kernelstart && e <= kernelend) {
    357 			if (s >= kernelstart)
    358 				goto empty;
    359 			e = kernelstart;
    360 		}
    361 		/*
    362 		 * Now page align the start and size of the region.
    363 		 */
    364 		s = round_page(s);
    365 		e = trunc_page(e);
    366 		if (e < s)
    367 			e = s;
    368 		sz = e - s;
    369 		printf("%08x-%08x = %x\n",s,e,sz);
    370 		/*
    371 		 * Check whether some memory is left here.
    372 		 */
    373 		if (sz == 0) {
    374 		empty:
    375 			memmove(mp, mp + 1,
    376 				(cnt - (mp - avail)) * sizeof *mp);
    377 			cnt--;
    378 			mp--;
    379 			continue;
    380 		}
    381 		/*
    382 		 * Do an insertion sort.
    383 		 */
    384 		npgs += btoc(sz);
    385 		for (mp1 = avail; mp1 < mp; mp1++)
    386 			if (s < mp1->start)
    387 				break;
    388 		if (mp1 < mp) {
    389 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    390 			mp1->start = s;
    391 			mp1->size = sz;
    392 		} else {
    393 			mp->start = s;
    394 			mp->size = sz;
    395 		}
    396 	}
    397 
    398 	/*
    399 	 * We cannot do pmap_steal_memory here,
    400 	 * since we don't run with translation enabled yet.
    401 	 */
    402 #ifndef MSGBUFADDR
    403 	/*
    404 	 * allow for msgbuf
    405 	 */
    406 	sz = round_page(MSGBUFSIZE);
    407 	mp = NULL;
    408 	for (mp1 = avail; mp1->size; mp1++)
    409 		if (mp1->size >= sz)
    410 			mp = mp1;
    411 	if (mp == NULL)
    412 		panic("not enough memory?");
    413 
    414 	npgs -= btoc(sz);
    415 	msgbuf_paddr = mp->start + mp->size - sz;
    416 	mp->size -= sz;
    417 	if (mp->size <= 0)
    418 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
    419 #endif
    420 
    421 	for (mp = avail; mp->size; mp++)
    422 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    423 			atop(mp->start), atop(mp->start + mp->size),
    424 			VM_FREELIST_DEFAULT);
    425 
    426 	/*
    427 	 * Initialize kernel pmap and hardware.
    428 	 */
    429 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    430 	pmap_kernel()->pm_ctx = KERNEL_PID;
    431 	nextavail = avail->start;
    432 
    433 	pmap_bootstrap_done = 1;
    434 }
    435 
    436 /*
    437  * Restrict given range to physical memory
    438  *
    439  * (Used by /dev/mem)
    440  */
    441 void
    442 pmap_real_memory(paddr_t *start, psize_t *size)
    443 {
    444 	struct mem_region *mp;
    445 
    446 	for (mp = mem; mp->size; mp++) {
    447 		if (*start + *size > mp->start &&
    448 		    *start < mp->start + mp->size) {
    449 			if (*start < mp->start) {
    450 				*size -= mp->start - *start;
    451 				*start = mp->start;
    452 			}
    453 			if (*start + *size > mp->start + mp->size)
    454 				*size = mp->start + mp->size - *start;
    455 			return;
    456 		}
    457 	}
    458 	*size = 0;
    459 }
    460 
    461 /*
    462  * Initialize anything else for pmap handling.
    463  * Called during vm_init().
    464  */
    465 void
    466 pmap_init(void)
    467 {
    468 	struct pv_entry *pv;
    469 	vsize_t sz;
    470 	vaddr_t addr;
    471 	int i, s;
    472 	int bank;
    473 	char *attr;
    474 
    475 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    476 	sz = round_page(sz);
    477 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    478 	s = splvm();
    479 	pv = pv_table = (struct pv_entry *)addr;
    480 	for (i = npgs; --i >= 0;)
    481 		pv++->pv_pm = NULL;
    482 	pmap_attrib = (char *)pv;
    483 	memset(pv, 0, npgs);
    484 
    485 	pv = pv_table;
    486 	attr = pmap_attrib;
    487 	for (bank = uvm_physseg_get_first();
    488 	     uvm_physseg_valid_p(bank);
    489 	     bank = uvm_physseg_get_next(bank)) {
    490 		sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    491 		uvm_physseg_get_pmseg(bank)->pvent = pv;
    492 		uvm_physseg_get_pmseg(bank)->attrs = attr;
    493 		pv += sz;
    494 		attr += sz;
    495 	}
    496 
    497 	pmap_initialized = 1;
    498 	splx(s);
    499 
    500 	/* Setup a pool for additional pvlist structures */
    501 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
    502 	    IPL_VM);
    503 }
    504 
    505 /*
    506  * How much virtual space is available to the kernel?
    507  */
    508 void
    509 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    510 {
    511 
    512 #if 0
    513 	/*
    514 	 * Reserve one segment for kernel virtual memory
    515 	 */
    516 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
    517 	*end = *start + SEGMENT_LENGTH;
    518 #else
    519 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    520 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    521 #endif
    522 }
    523 
    524 #ifdef PMAP_GROWKERNEL
    525 /*
    526  * Preallocate kernel page tables to a specified VA.
    527  * This simply loops through the first TTE for each
    528  * page table from the beginning of the kernel pmap,
    529  * reads the entry, and if the result is
    530  * zero (either invalid entry or no page table) it stores
    531  * a zero there, populating page tables in the process.
    532  * This is not the most efficient technique but i don't
    533  * expect it to be called that often.
    534  */
    535 extern struct vm_page *vm_page_alloc1(void);
    536 extern void vm_page_free1(struct vm_page *);
    537 
    538 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    539 
    540 vaddr_t
    541 pmap_growkernel(vaddr_t maxkvaddr)
    542 {
    543 	int s;
    544 	int seg;
    545 	paddr_t pg;
    546 	struct pmap *pm = pmap_kernel();
    547 
    548 	s = splvm();
    549 
    550 	/* Align with the start of a page table */
    551 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
    552 	     kbreak += PTMAP) {
    553 		seg = STIDX(kbreak);
    554 
    555 		if (pte_find(pm, kbreak))
    556 			continue;
    557 
    558 		if (uvm.page_init_done) {
    559 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    560 		} else {
    561 			if (!uvm_page_physget(&pg))
    562 				panic("pmap_growkernel: no memory");
    563 		}
    564 		if (!pg)
    565 			panic("pmap_growkernel: no pages");
    566 		pmap_zero_page((paddr_t)pg);
    567 
    568 		/* XXX This is based on all phymem being addressable */
    569 		pm->pm_ptbl[seg] = (u_int *)pg;
    570 	}
    571 	splx(s);
    572 	return kbreak;
    573 }
    574 
    575 /*
    576  *	vm_page_alloc1:
    577  *
    578  *	Allocate and return a memory cell with no associated object.
    579  */
    580 struct vm_page *
    581 vm_page_alloc1(void)
    582 {
    583 	struct vm_page *pg;
    584 
    585 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    586 	if (pg) {
    587 		pg->wire_count = 1;	/* no mappings yet */
    588 		pg->flags &= ~PG_BUSY;	/* never busy */
    589 	}
    590 	return pg;
    591 }
    592 
    593 /*
    594  *	vm_page_free1:
    595  *
    596  *	Returns the given page to the free list,
    597  *	disassociating it with any VM object.
    598  *
    599  *	Object and page must be locked prior to entry.
    600  */
    601 void
    602 vm_page_free1(struct vm_page *pg)
    603 {
    604 #ifdef DIAGNOSTIC
    605 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    606 		printf("Freeing invalid page %p\n", pg);
    607 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
    608 #ifdef DDB
    609 		Debugger();
    610 #endif
    611 		return;
    612 	}
    613 #endif
    614 	pg->flags |= PG_BUSY;
    615 	pg->wire_count = 0;
    616 	uvm_pagefree(pg);
    617 }
    618 #endif
    619 
    620 /*
    621  * Create and return a physical map.
    622  */
    623 struct pmap *
    624 pmap_create(void)
    625 {
    626 	struct pmap *pm;
    627 
    628 	pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
    629 	memset(pm, 0, sizeof *pm);
    630 	pm->pm_refs = 1;
    631 	return pm;
    632 }
    633 
    634 /*
    635  * Add a reference to the given pmap.
    636  */
    637 void
    638 pmap_reference(struct pmap *pm)
    639 {
    640 
    641 	pm->pm_refs++;
    642 }
    643 
    644 /*
    645  * Retire the given pmap from service.
    646  * Should only be called if the map contains no valid mappings.
    647  */
    648 void
    649 pmap_destroy(struct pmap *pm)
    650 {
    651 	int i;
    652 
    653 	if (--pm->pm_refs > 0) {
    654 		return;
    655 	}
    656 	KASSERT(pm->pm_stats.resident_count == 0);
    657 	KASSERT(pm->pm_stats.wired_count == 0);
    658 	for (i = 0; i < STSZ; i++)
    659 		if (pm->pm_ptbl[i]) {
    660 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    661 			    PAGE_SIZE, UVM_KMF_WIRED);
    662 			pm->pm_ptbl[i] = NULL;
    663 		}
    664 	if (pm->pm_ctx)
    665 		ctx_free(pm);
    666 	kmem_free(pm, sizeof(*pm));
    667 }
    668 
    669 /*
    670  * Copy the range specified by src_addr/len
    671  * from the source map to the range dst_addr/len
    672  * in the destination map.
    673  *
    674  * This routine is only advisory and need not do anything.
    675  */
    676 void
    677 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    678 	  vsize_t len, vaddr_t src_addr)
    679 {
    680 }
    681 
    682 /*
    683  * Require that all active physical maps contain no
    684  * incorrect entries NOW.
    685  */
    686 void
    687 pmap_update(struct pmap *pmap)
    688 {
    689 }
    690 
    691 /*
    692  * Fill the given physical page with zeroes.
    693  */
    694 void
    695 pmap_zero_page(paddr_t pa)
    696 {
    697 
    698 #ifdef PPC_4XX_NOCACHE
    699 	memset((void *)pa, 0, PAGE_SIZE);
    700 #else
    701 	int i;
    702 
    703 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    704 		__asm volatile ("dcbz 0,%0" :: "r"(pa));
    705 		pa += CACHELINESIZE;
    706 	}
    707 #endif
    708 }
    709 
    710 /*
    711  * Copy the given physical source page to its destination.
    712  */
    713 void
    714 pmap_copy_page(paddr_t src, paddr_t dst)
    715 {
    716 
    717 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    718 	dcache_wbinv_page(dst);
    719 }
    720 
    721 /*
    722  * This returns != 0 on success.
    723  */
    724 static inline int
    725 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    726 {
    727 	struct pv_entry *pv, *npv = NULL;
    728 	int s;
    729 
    730 	if (!pmap_initialized)
    731 		return 0;
    732 
    733 	s = splvm();
    734 	pv = pa_to_pv(pa);
    735 	if (!pv->pv_pm) {
    736 		/*
    737 		 * No entries yet, use header as the first entry.
    738 		 */
    739 		pv->pv_va = va;
    740 		pv->pv_pm = pm;
    741 		pv->pv_next = NULL;
    742 	} else {
    743 		/*
    744 		 * There is at least one other VA mapping this page.
    745 		 * Place this entry after the header.
    746 		 */
    747 		npv = pool_get(&pv_pool, PR_NOWAIT);
    748 		if (npv == NULL) {
    749 			if ((flags & PMAP_CANFAIL) == 0)
    750 				panic("pmap_enter_pv: failed");
    751 			splx(s);
    752 			return 0;
    753 		}
    754 		npv->pv_va = va;
    755 		npv->pv_pm = pm;
    756 		npv->pv_next = pv->pv_next;
    757 		pv->pv_next = npv;
    758 		pv = npv;
    759 	}
    760 	if (flags & PMAP_WIRED) {
    761 		PV_WIRE(pv);
    762 		pm->pm_stats.wired_count++;
    763 	}
    764 	splx(s);
    765 	return 1;
    766 }
    767 
    768 static void
    769 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    770 {
    771 	struct pv_entry *pv, *npv;
    772 
    773 	/*
    774 	 * Remove from the PV table.
    775 	 */
    776 	pv = pa_to_pv(pa);
    777 	if (!pv)
    778 		return;
    779 
    780 	/*
    781 	 * If it is the first entry on the list, it is actually
    782 	 * in the header and we must copy the following entry up
    783 	 * to the header.  Otherwise we must search the list for
    784 	 * the entry.  In either case we free the now unused entry.
    785 	 */
    786 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    787 		if (PV_ISWIRED(pv)) {
    788 			pm->pm_stats.wired_count--;
    789 		}
    790 		if ((npv = pv->pv_next)) {
    791 			*pv = *npv;
    792 			pool_put(&pv_pool, npv);
    793 		} else
    794 			pv->pv_pm = NULL;
    795 	} else {
    796 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    797 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    798 				break;
    799 		if (npv) {
    800 			pv->pv_next = npv->pv_next;
    801 			if (PV_ISWIRED(npv)) {
    802 				pm->pm_stats.wired_count--;
    803 			}
    804 			pool_put(&pv_pool, npv);
    805 		}
    806 	}
    807 }
    808 
    809 /*
    810  * Insert physical page at pa into the given pmap at virtual address va.
    811  */
    812 int
    813 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    814 {
    815 	int s;
    816 	u_int tte;
    817 	bool managed;
    818 
    819 	/*
    820 	 * Have to remove any existing mapping first.
    821 	 */
    822 	pmap_remove(pm, va, va + PAGE_SIZE);
    823 
    824 	if (flags & PMAP_WIRED)
    825 		flags |= prot;
    826 
    827 	managed = uvm_pageismanaged(pa);
    828 
    829 	/*
    830 	 * Generate TTE.
    831 	 */
    832 	tte = TTE_PA(pa);
    833 	/* XXXX -- need to support multiple page sizes. */
    834 	tte |= TTE_SZ_16K;
    835 #ifdef	DIAGNOSTIC
    836 	if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    837 		(PMAP_NOCACHE | PME_WRITETHROUG))
    838 		panic("pmap_enter: uncached & writethrough");
    839 #endif
    840 	if (flags & PMAP_NOCACHE)
    841 		/* Must be I/O mapping */
    842 		tte |= TTE_I | TTE_G;
    843 #ifdef PPC_4XX_NOCACHE
    844 	tte |= TTE_I;
    845 #else
    846 	else if (flags & PME_WRITETHROUG)
    847 		/* Uncached and writethrough are not compatible */
    848 		tte |= TTE_W;
    849 #endif
    850 	if (pm == pmap_kernel())
    851 		tte |= TTE_ZONE(ZONE_PRIV);
    852 	else
    853 		tte |= TTE_ZONE(ZONE_USER);
    854 
    855 	if (flags & VM_PROT_WRITE)
    856 		tte |= TTE_WR;
    857 
    858 	if (flags & VM_PROT_EXECUTE)
    859 		tte |= TTE_EX;
    860 
    861 	/*
    862 	 * Now record mapping for later back-translation.
    863 	 */
    864 	if (pmap_initialized && managed) {
    865 		char *attr;
    866 
    867 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    868 			/* Could not enter pv on a managed page */
    869 			return ENOMEM;
    870 		}
    871 
    872 		/* Now set attributes. */
    873 		attr = pa_to_attr(pa);
    874 #ifdef DIAGNOSTIC
    875 		if (!attr)
    876 			panic("managed but no attr");
    877 #endif
    878 		if (flags & VM_PROT_ALL)
    879 			*attr |= PMAP_ATTR_REF;
    880 		if (flags & VM_PROT_WRITE)
    881 			*attr |= PMAP_ATTR_CHG;
    882 	}
    883 
    884 	s = splvm();
    885 
    886 	/* Insert page into page table. */
    887 	if (__predict_false(!pte_enter(pm, va, tte))) {
    888 		if (__predict_false((flags & PMAP_CANFAIL) == 0))
    889 			panic("%s: pte_enter", __func__);
    890 		splx(s);
    891 		return ENOMEM;
    892 	}
    893 
    894 	/* If this is a real fault, enter it in the tlb */
    895 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    896 		int s2 = splhigh();
    897 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    898 		splx(s2);
    899 	}
    900 	splx(s);
    901 
    902 	/* Flush the real memory from the instruction cache. */
    903 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    904 		__syncicache((void *)pa, PAGE_SIZE);
    905 
    906 	return 0;
    907 }
    908 
    909 void
    910 pmap_unwire(struct pmap *pm, vaddr_t va)
    911 {
    912 	struct pv_entry *pv;
    913 	paddr_t pa;
    914 	int s;
    915 
    916 	if (!pmap_extract(pm, va, &pa)) {
    917 		return;
    918 	}
    919 
    920 	pv = pa_to_pv(pa);
    921 	if (!pv)
    922 		return;
    923 
    924 	s = splvm();
    925 	while (pv != NULL) {
    926 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    927 			if (PV_ISWIRED(pv)) {
    928 				PV_UNWIRE(pv);
    929 				pm->pm_stats.wired_count--;
    930 			}
    931 			break;
    932 		}
    933 		pv = pv->pv_next;
    934 	}
    935 	splx(s);
    936 }
    937 
    938 void
    939 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    940 {
    941 	int s;
    942 	u_int tte;
    943 	struct pmap *pm = pmap_kernel();
    944 
    945 	/*
    946 	 * Generate TTE.
    947 	 *
    948 	 * XXXX
    949 	 *
    950 	 * Since the kernel does not handle execution privileges properly,
    951 	 * we will handle read and execute permissions together.
    952 	 */
    953 	tte = 0;
    954 	if (prot & VM_PROT_ALL) {
    955 
    956 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    957 		/* XXXX -- need to support multiple page sizes. */
    958 		tte |= TTE_SZ_16K;
    959 #ifdef DIAGNOSTIC
    960 		if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    961 			(PMAP_NOCACHE | PME_WRITETHROUG))
    962 			panic("pmap_kenter_pa: uncached & writethrough");
    963 #endif
    964 		if (flags & PMAP_NOCACHE)
    965 			/* Must be I/O mapping */
    966 			tte |= TTE_I | TTE_G;
    967 #ifdef PPC_4XX_NOCACHE
    968 		tte |= TTE_I;
    969 #else
    970 		else if (prot & PME_WRITETHROUG)
    971 			/* Uncached and writethrough are not compatible */
    972 			tte |= TTE_W;
    973 #endif
    974 		if (prot & VM_PROT_WRITE)
    975 			tte |= TTE_WR;
    976 	}
    977 
    978 	s = splvm();
    979 
    980 	/* Insert page into page table. */
    981 	if (__predict_false(!pte_enter(pm, va, tte)))
    982 		panic("%s: pte_enter", __func__);
    983 	splx(s);
    984 }
    985 
    986 void
    987 pmap_kremove(vaddr_t va, vsize_t len)
    988 {
    989 
    990 	while (len > 0) {
    991 		(void)pte_enter(pmap_kernel(), va, 0);	/* never fail */
    992 		va += PAGE_SIZE;
    993 		len -= PAGE_SIZE;
    994 	}
    995 }
    996 
    997 /*
    998  * Remove the given range of mapping entries.
    999  */
   1000 void
   1001 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
   1002 {
   1003 	int s;
   1004 	paddr_t pa;
   1005 	volatile u_int *ptp;
   1006 
   1007 	s = splvm();
   1008 	while (va < endva) {
   1009 
   1010 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
   1011 			pa = TTE_PA(pa);
   1012 			pmap_remove_pv(pm, va, pa);
   1013 			*ptp = 0;
   1014 			ppc4xx_tlb_flush(va, pm->pm_ctx);
   1015 			pm->pm_stats.resident_count--;
   1016 		}
   1017 		va += PAGE_SIZE;
   1018 	}
   1019 
   1020 	splx(s);
   1021 }
   1022 
   1023 /*
   1024  * Get the physical page address for the given pmap/virtual address.
   1025  */
   1026 bool
   1027 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1028 {
   1029 	int seg = STIDX(va);
   1030 	int ptn = PTIDX(va);
   1031 	u_int pa = 0;
   1032 	int s;
   1033 
   1034 	s = splvm();
   1035 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap) {
   1036 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1037 	}
   1038 	splx(s);
   1039 	return pa != 0;
   1040 }
   1041 
   1042 /*
   1043  * Lower the protection on the specified range of this pmap.
   1044  *
   1045  * There are only two cases: either the protection is going to 0,
   1046  * or it is going to read-only.
   1047  */
   1048 void
   1049 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1050 {
   1051 	volatile u_int *ptp;
   1052 	int s, bic;
   1053 
   1054 	if ((prot & VM_PROT_READ) == 0) {
   1055 		pmap_remove(pm, sva, eva);
   1056 		return;
   1057 	}
   1058 	bic = 0;
   1059 	if ((prot & VM_PROT_WRITE) == 0) {
   1060 		bic |= TTE_WR;
   1061 	}
   1062 	if ((prot & VM_PROT_EXECUTE) == 0) {
   1063 		bic |= TTE_EX;
   1064 	}
   1065 	if (bic == 0) {
   1066 		return;
   1067 	}
   1068 	s = splvm();
   1069 	while (sva < eva) {
   1070 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1071 			*ptp &= ~bic;
   1072 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1073 		}
   1074 		sva += PAGE_SIZE;
   1075 	}
   1076 	splx(s);
   1077 }
   1078 
   1079 bool
   1080 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1081 {
   1082 	paddr_t pa;
   1083 	char *attr;
   1084 	int s, rv;
   1085 
   1086 	/*
   1087 	 * First modify bits in cache.
   1088 	 */
   1089 	pa = VM_PAGE_TO_PHYS(pg);
   1090 	attr = pa_to_attr(pa);
   1091 	if (attr == NULL)
   1092 		return false;
   1093 
   1094 	s = splvm();
   1095 	rv = ((*attr & mask) != 0);
   1096 	if (clear) {
   1097 		*attr &= ~mask;
   1098 		pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1099 	}
   1100 	splx(s);
   1101 	return rv;
   1102 }
   1103 
   1104 
   1105 /*
   1106  * Lower the protection on the specified physical page.
   1107  *
   1108  * There are only two cases: either the protection is going to 0,
   1109  * or it is going to read-only.
   1110  */
   1111 void
   1112 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1113 {
   1114 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1115 	vaddr_t va;
   1116 	struct pv_entry *pvh, *pv, *npv;
   1117 	struct pmap *pm;
   1118 
   1119 	pvh = pa_to_pv(pa);
   1120 	if (pvh == NULL)
   1121 		return;
   1122 
   1123 	/* Handle extra pvs which may be deleted in the operation */
   1124 	for (pv = pvh->pv_next; pv; pv = npv) {
   1125 		npv = pv->pv_next;
   1126 
   1127 		pm = pv->pv_pm;
   1128 		va = PV_VA(pv);
   1129 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1130 	}
   1131 	/* Now check the head pv */
   1132 	if (pvh->pv_pm) {
   1133 		pv = pvh;
   1134 		pm = pv->pv_pm;
   1135 		va = PV_VA(pv);
   1136 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1137 	}
   1138 }
   1139 
   1140 /*
   1141  * Activate the address space for the specified process.  If the process
   1142  * is the current process, load the new MMU context.
   1143  */
   1144 void
   1145 pmap_activate(struct lwp *l)
   1146 {
   1147 #if 0
   1148 	struct pcb *pcb = lwp_getpcb(l);
   1149 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1150 
   1151 	/*
   1152 	 * XXX Normally performed in cpu_lwp_fork().
   1153 	 */
   1154 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1155 	pcb->pcb_pm = pmap;
   1156 #endif
   1157 }
   1158 
   1159 /*
   1160  * Deactivate the specified process's address space.
   1161  */
   1162 void
   1163 pmap_deactivate(struct lwp *l)
   1164 {
   1165 }
   1166 
   1167 /*
   1168  * Synchronize caches corresponding to [addr, addr+len) in p.
   1169  */
   1170 void
   1171 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1172 {
   1173 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1174 
   1175 	if (__predict_true(p == curproc)) {
   1176 		int msr, ctx, opid;
   1177 
   1178 		/*
   1179 		 * Take it easy! TLB miss handler takes care of us.
   1180 		 */
   1181 
   1182 		/*
   1183 	 	 * Need to turn off IMMU and switch to user context.
   1184 		 * (icbi uses DMMU).
   1185 		 */
   1186 
   1187 		if (!(ctx = pm->pm_ctx)) {
   1188 			/* No context -- assign it one */
   1189 			ctx_alloc(pm);
   1190 			ctx = pm->pm_ctx;
   1191 		}
   1192 
   1193 		__asm volatile(
   1194 			"mfmsr %0;"
   1195 			"li %1,0x20;"		/* Turn off IMMU */
   1196 			"andc %1,%0,%1;"
   1197 			"ori %1,%1,0x10;"	/* Turn on DMMU for sure */
   1198 			"mtmsr %1;"
   1199 			"isync;"
   1200 			"mfpid %1;"
   1201 			"mtpid %2;"
   1202 			"isync;"
   1203 		"1:"
   1204 			"dcbst 0,%3;"
   1205 			"icbi 0,%3;"
   1206 			"add %3,%3,%5;"
   1207 			"sub. %4,%4,%5;"
   1208 			"bge 1b;"
   1209 			"sync;"
   1210 			"mtpid %1;"
   1211 			"mtmsr %0;"
   1212 			"isync;"
   1213 			: "=&r" (msr), "=&r" (opid)
   1214 			: "r" (ctx), "r" (va), "r" (len), "r" (CACHELINESIZE));
   1215 	} else {
   1216 		paddr_t pa;
   1217 		vaddr_t tva, eva;
   1218 		int tlen;
   1219 
   1220 		/*
   1221 		 * For p != curproc, we cannot rely upon TLB miss handler in
   1222 		 * user context. Therefore, extract pa and operate againt it.
   1223 		 *
   1224 		 * Note that va below VM_MIN_KERNEL_ADDRESS is reserved for
   1225 		 * direct mapping.
   1226 		 */
   1227 
   1228 		for (tva = va; len > 0; tva = eva, len -= tlen) {
   1229 			eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE));
   1230 			tlen = eva - tva;
   1231 			if (!pmap_extract(pm, tva, &pa)) {
   1232 				/* XXX should be already unmapped */
   1233 				continue;
   1234 			}
   1235 			__syncicache((void *)pa, tlen);
   1236 		}
   1237 	}
   1238 }
   1239 
   1240 static inline void
   1241 tlb_invalidate_entry(int i)
   1242 {
   1243 #ifdef PMAP_TLBDEBUG
   1244 	/*
   1245 	 * Clear only TLBHI[V] bit so that we can track invalidated entry.
   1246 	 */
   1247 	register_t msr, pid, hi;
   1248 
   1249 	KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1250 
   1251 	__asm volatile(
   1252 		"mfmsr	%0;"
   1253 		"li	%1,0;"
   1254 		"mtmsr	%1;"
   1255 		"mfpid	%1;"
   1256 		"tlbre	%2,%3,0;"
   1257 		"andc	%2,%2,%4;"
   1258 		"tlbwe	%2,%3,0;"
   1259 		"mtpid	%1;"
   1260 		"mtmsr	%0;"
   1261 		"isync;"
   1262 		: "=&r" (msr), "=&r" (pid), "=&r" (hi)
   1263 		: "r" (i), "r" (TLB_VALID));
   1264 #else
   1265 	/*
   1266 	 * Just clear entire TLBHI register.
   1267 	 */
   1268 	__asm volatile(
   1269 		"tlbwe %0,%1,0;"
   1270 		"isync;"
   1271 		: : "r" (0), "r" (i));
   1272 #endif
   1273 
   1274 	tlb_info[i].ti_ctx = 0;
   1275 	tlb_info[i].ti_flags = 0;
   1276 }
   1277 
   1278 /* This has to be done in real mode !!! */
   1279 void
   1280 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1281 {
   1282 	u_long i, found;
   1283 	u_long msr;
   1284 
   1285 	/* If there's no context then it can't be mapped. */
   1286 	if (!pid)
   1287 		return;
   1288 
   1289 	__asm volatile(
   1290 		"mfpid %1;"		/* Save PID */
   1291 		"mfmsr %2;"		/* Save MSR */
   1292 		"li %0,0;"		/* Now clear MSR */
   1293 		"mtmsr %0;"
   1294 		"isync;"
   1295 		"mtpid %4;"		/* Set PID */
   1296 		"isync;"
   1297 		"tlbsx. %0,0,%3;"	/* Search TLB */
   1298 		"isync;"
   1299 		"mtpid %1;"		/* Restore PID */
   1300 		"mtmsr %2;"		/* Restore MSR */
   1301 		"isync;"
   1302 		"li %1,1;"
   1303 		"beq 1f;"
   1304 		"li %1,0;"
   1305 		"1:"
   1306 		: "=&r" (i), "=&r" (found), "=&r" (msr)
   1307 		: "r" (va), "r" (pid));
   1308 	if (found && !TLB_LOCKED(i)) {
   1309 		/* Now flush translation */
   1310 		tlb_invalidate_entry(i);
   1311 		tlbnext = i;
   1312 		/* Successful flushes */
   1313 		tlbflush_ev.ev_count++;
   1314 	}
   1315 }
   1316 
   1317 void
   1318 ppc4xx_tlb_flush_all(void)
   1319 {
   1320 	u_long i;
   1321 
   1322 	for (i = 0; i < NTLB; i++)
   1323 		if (!TLB_LOCKED(i))
   1324 			tlb_invalidate_entry(i);
   1325 
   1326 	__asm volatile("isync");
   1327 }
   1328 
   1329 /* Find a TLB entry to evict. */
   1330 static int
   1331 ppc4xx_tlb_find_victim(void)
   1332 {
   1333 	int flags;
   1334 
   1335 	for (;;) {
   1336 		if (++tlbnext >= NTLB)
   1337 			tlbnext = tlb_nreserved;
   1338 		flags = tlb_info[tlbnext].ti_flags;
   1339 		if (!(flags & TLBF_USED) ||
   1340 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1341 			u_long va, stack = (u_long)&va;
   1342 
   1343 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
   1344 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1345 			     (flags & TLBF_USED)) {
   1346 				/* Kernel stack page */
   1347 				flags |= TLBF_REF;
   1348 				tlb_info[tlbnext].ti_flags = flags;
   1349 			} else {
   1350 				/* Found it! */
   1351 				return tlbnext;
   1352 			}
   1353 		} else {
   1354 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1355 		}
   1356 	}
   1357 }
   1358 
   1359 void
   1360 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1361 {
   1362 	u_long th, tl, idx;
   1363 	int msr, pid;
   1364 	paddr_t pa;
   1365 	int sz;
   1366 
   1367 	tlbenter_ev.ev_count++;
   1368 
   1369 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1370 	pa = (pte & TTE_RPN_MASK(sz));
   1371 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1372 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1373 	tl |= ppc4xx_tlbflags(va, pa);
   1374 
   1375 	idx = ppc4xx_tlb_find_victim();
   1376 
   1377 #ifdef DIAGNOSTIC
   1378 	if ((idx < tlb_nreserved) || (idx >= NTLB) || (idx & 63) == 0) {
   1379 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1380 	}
   1381 #endif
   1382 
   1383 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1384 	tlb_info[idx].ti_ctx = ctx;
   1385 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1386 
   1387 	__asm volatile(
   1388 		"mfmsr %0;"			/* Save MSR */
   1389 		"li %1,0;"
   1390 		"mtmsr %1;"			/* Clear MSR */
   1391 		"isync;"
   1392 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
   1393 		"mfpid %1;"			/* Save old PID */
   1394 		"mtpid %2;"			/* Load translation ctx */
   1395 		"isync;"
   1396 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
   1397 		"isync;"
   1398 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
   1399 		"isync;"
   1400 	: "=&r" (msr), "=&r" (pid)
   1401 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
   1402 }
   1403 
   1404 void
   1405 ppc4xx_tlb_init(void)
   1406 {
   1407 	int i;
   1408 
   1409 	/* Mark reserved TLB entries */
   1410 	for (i = 0; i < tlb_nreserved; i++) {
   1411 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1412 		tlb_info[i].ti_ctx = KERNEL_PID;
   1413 	}
   1414 
   1415 	/* Setup security zones */
   1416 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1417 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1418 	 * Z3 - full access regardless of TLB entry permissions
   1419 	 */
   1420 
   1421 	__asm volatile(
   1422 		"mtspr %0,%1;"
   1423 		"isync;"
   1424 		::  "K"(SPR_ZPR), "r" (0x1b000000));
   1425 }
   1426 
   1427 /*
   1428  * ppc4xx_tlb_size_mask:
   1429  *
   1430  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1431  */
   1432 static int
   1433 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1434 {
   1435 	int 			i;
   1436 
   1437 	for (i = 0; i < __arraycount(tlbsize); i++)
   1438 		if (size <= tlbsize[i]) {
   1439 			*mask = (i << TLB_SIZE_SHFT);
   1440 			*rsiz = tlbsize[i];
   1441 			return 0;
   1442 		}
   1443 	return EINVAL;
   1444 }
   1445 
   1446 /*
   1447  * ppc4xx_tlb_mapiodev:
   1448  *
   1449  * 	Lookup virtual address of mapping previously entered via
   1450  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1451  * 	need to waste extra storage for reserved mappings. Note
   1452  * 	that reading TLBHI also sets PID, but all reserved mappings
   1453  * 	use KERNEL_PID, so the side effect is nil.
   1454  */
   1455 void *
   1456 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1457 {
   1458 	paddr_t 		pa;
   1459 	vaddr_t 		va;
   1460 	u_int 			lo, hi, sz;
   1461 	int 			i;
   1462 
   1463 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1464 	for (i = 0; i < tlb_nreserved; i++) {
   1465 		__asm volatile (
   1466 		    "	tlbre %0,%2,1 	\n" 	/* TLBLO */
   1467 		    "	tlbre %1,%2,0 	\n" 	/* TLBHI */
   1468 		    : "=&r" (lo), "=&r" (hi)
   1469 		    : "r" (i));
   1470 
   1471 		KASSERT(hi & TLB_VALID);
   1472 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1473 
   1474 		pa = (lo & TLB_RPN_MASK);
   1475 		if (base < pa)
   1476 			continue;
   1477 
   1478 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1479 		if ((base + len) > (pa + sz))
   1480 			continue;
   1481 
   1482 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1483 		return (void *)va;
   1484 	}
   1485 
   1486 	return NULL;
   1487 }
   1488 
   1489 /*
   1490  * ppc4xx_tlb_reserve:
   1491  *
   1492  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1493  */
   1494 void
   1495 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1496 {
   1497 	u_int 			lo, hi;
   1498 	int 			szmask, rsize;
   1499 
   1500 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1501 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1502 	KASSERT(! pmap_bootstrap_done);
   1503 	KASSERT(tlb_nreserved < NTLB);
   1504 
   1505 	/* Resolve size. */
   1506 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1507 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1508 		    size, tlb_nreserved);
   1509 
   1510 	/* Real size will be power of two >= 1024, so this is OK. */
   1511 	pa &= ~(rsize - 1); 	/* RPN */
   1512 	va &= ~(rsize - 1); 	/* EPN */
   1513 
   1514 	lo = pa | TLB_WR | flags;
   1515 	hi = va | TLB_VALID | szmask;
   1516 
   1517 #ifdef PPC_4XX_NOCACHE
   1518 	lo |= TLB_I;
   1519 #endif
   1520 
   1521 	__asm volatile(
   1522 	    "	tlbwe %1,%0,1 	\n" 	/* write TLBLO */
   1523 	    "	tlbwe %2,%0,0 	\n" 	/* write TLBHI */
   1524 	    "	isync 		\n"
   1525 	    : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
   1526 
   1527 	tlb_nreserved++;
   1528 }
   1529 
   1530 /*
   1531  * We should pass the ctx in from trap code.
   1532  */
   1533 int
   1534 pmap_tlbmiss(vaddr_t va, int ctx)
   1535 {
   1536 	volatile u_int *pte;
   1537 	u_long tte;
   1538 
   1539 	tlbmiss_ev.ev_count++;
   1540 
   1541 	/*
   1542 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1543 	 * Physical RAM is expected to live in this range, care must be taken
   1544 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1545 	 * code.
   1546 	 */
   1547 	if (ctx != KERNEL_PID ||
   1548 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1549 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1550 		if (pte == NULL) {
   1551 			/* Map unmanaged addresses directly for kernel access */
   1552 			return 1;
   1553 		}
   1554 		tte = *pte;
   1555 		if (tte == 0) {
   1556 			return 1;
   1557 		}
   1558 	} else {
   1559 		/* Create a 16MB writable mapping. */
   1560 #ifdef PPC_4XX_NOCACHE
   1561 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
   1562 #else
   1563 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1564 #endif
   1565 	}
   1566 	ppc4xx_tlb_enter(ctx, va, tte);
   1567 
   1568 	return 0;
   1569 }
   1570 
   1571 /*
   1572  * Flush all the entries matching a context from the TLB.
   1573  */
   1574 static int
   1575 ctx_flush(int cnum)
   1576 {
   1577 	int i;
   1578 
   1579 	/* We gotta steal this context */
   1580 	for (i = tlb_nreserved; i < NTLB; i++) {
   1581 		if (tlb_info[i].ti_ctx == cnum) {
   1582 			/* Can't steal ctx if it has a locked entry. */
   1583 			if (TLB_LOCKED(i)) {
   1584 #ifdef DIAGNOSTIC
   1585 				printf("ctx_flush: can't invalidate "
   1586 					"locked mapping %d "
   1587 					"for context %d\n", i, cnum);
   1588 #ifdef DDB
   1589 				Debugger();
   1590 #endif
   1591 #endif
   1592 				return 1;
   1593 			}
   1594 #ifdef DIAGNOSTIC
   1595 			if (i < tlb_nreserved)
   1596 				panic("TLB entry %d not locked", i);
   1597 #endif
   1598 			/*
   1599 			 * Invalidate particular TLB entry regardless of
   1600 			 * locked status
   1601 			 */
   1602 			tlb_invalidate_entry(i);
   1603 		}
   1604 	}
   1605 	return 0;
   1606 }
   1607 
   1608 /*
   1609  * Allocate a context.  If necessary, steal one from someone else.
   1610  *
   1611  * The new context is flushed from the TLB before returning.
   1612  */
   1613 int
   1614 ctx_alloc(struct pmap *pm)
   1615 {
   1616 	int s, cnum;
   1617 	static int next = MINCTX;
   1618 
   1619 	if (pm == pmap_kernel()) {
   1620 #ifdef DIAGNOSTIC
   1621 		printf("ctx_alloc: kernel pmap!\n");
   1622 #endif
   1623 		return 0;
   1624 	}
   1625 	s = splvm();
   1626 
   1627 	/* Find a likely context. */
   1628 	cnum = next;
   1629 	do {
   1630 		if ((++cnum) >= NUMCTX)
   1631 			cnum = MINCTX;
   1632 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1633 
   1634 	/* Now clean it out */
   1635 oops:
   1636 	if (cnum < MINCTX)
   1637 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1638 	if (ctx_flush(cnum)) {
   1639 		/* oops -- something's wired. */
   1640 		if ((++cnum) >= NUMCTX)
   1641 			cnum = MINCTX;
   1642 		goto oops;
   1643 	}
   1644 
   1645 	if (ctxbusy[cnum]) {
   1646 #ifdef DEBUG
   1647 		/* We should identify this pmap and clear it */
   1648 		printf("Warning: stealing context %d\n", cnum);
   1649 #endif
   1650 		ctxbusy[cnum]->pm_ctx = 0;
   1651 	}
   1652 	ctxbusy[cnum] = pm;
   1653 	next = cnum;
   1654 	splx(s);
   1655 	pm->pm_ctx = cnum;
   1656 
   1657 	return cnum;
   1658 }
   1659 
   1660 /*
   1661  * Give away a context.
   1662  */
   1663 void
   1664 ctx_free(struct pmap *pm)
   1665 {
   1666 	int oldctx;
   1667 
   1668 	oldctx = pm->pm_ctx;
   1669 
   1670 	if (oldctx == 0)
   1671 		panic("ctx_free: freeing kernel context");
   1672 #ifdef DIAGNOSTIC
   1673 	if (ctxbusy[oldctx] == 0)
   1674 		printf("ctx_free: freeing free context %d\n", oldctx);
   1675 	if (ctxbusy[oldctx] != pm) {
   1676 		printf("ctx_free: freeing someone esle's context\n "
   1677 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1678 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1679 #ifdef DDB
   1680 		Debugger();
   1681 #endif
   1682 	}
   1683 #endif
   1684 	/* We should verify it has not been stolen and reallocated... */
   1685 	ctxbusy[oldctx] = NULL;
   1686 	ctx_flush(oldctx);
   1687 }
   1688 
   1689 
   1690 #ifdef DEBUG
   1691 /*
   1692  * Test ref/modify handling.
   1693  */
   1694 void pmap_testout(void);
   1695 void
   1696 pmap_testout(void)
   1697 {
   1698 	vaddr_t va;
   1699 	volatile int *loc;
   1700 	int val = 0;
   1701 	paddr_t pa;
   1702 	struct vm_page *pg;
   1703 	int ref, mod;
   1704 
   1705 	/* Allocate a page */
   1706 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1707 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1708 	loc = (int*)va;
   1709 
   1710 	pmap_extract(pmap_kernel(), va, &pa);
   1711 	pg = PHYS_TO_VM_PAGE(pa);
   1712 	pmap_unwire(pmap_kernel(), va);
   1713 
   1714 	pmap_kremove(va, PAGE_SIZE);
   1715 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1716 	pmap_update(pmap_kernel());
   1717 
   1718 	/* Now clear reference and modify */
   1719 	ref = pmap_clear_reference(pg);
   1720 	mod = pmap_clear_modify(pg);
   1721 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1722 	       (void *)(u_long)va, (long)pa,
   1723 	       ref, mod);
   1724 
   1725 	/* Check it's properly cleared */
   1726 	ref = pmap_is_referenced(pg);
   1727 	mod = pmap_is_modified(pg);
   1728 	printf("Checking cleared page: ref %d, mod %d\n",
   1729 	       ref, mod);
   1730 
   1731 	/* Reference page */
   1732 	val = *loc;
   1733 
   1734 	ref = pmap_is_referenced(pg);
   1735 	mod = pmap_is_modified(pg);
   1736 	printf("Referenced page: ref %d, mod %d val %x\n",
   1737 	       ref, mod, val);
   1738 
   1739 	/* Now clear reference and modify */
   1740 	ref = pmap_clear_reference(pg);
   1741 	mod = pmap_clear_modify(pg);
   1742 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1743 	       (void *)(u_long)va, (long)pa,
   1744 	       ref, mod);
   1745 
   1746 	/* Modify page */
   1747 	*loc = 1;
   1748 
   1749 	ref = pmap_is_referenced(pg);
   1750 	mod = pmap_is_modified(pg);
   1751 	printf("Modified page: ref %d, mod %d\n",
   1752 	       ref, mod);
   1753 
   1754 	/* Now clear reference and modify */
   1755 	ref = pmap_clear_reference(pg);
   1756 	mod = pmap_clear_modify(pg);
   1757 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1758 	       (void *)(u_long)va, (long)pa,
   1759 	       ref, mod);
   1760 
   1761 	/* Check it's properly cleared */
   1762 	ref = pmap_is_referenced(pg);
   1763 	mod = pmap_is_modified(pg);
   1764 	printf("Checking cleared page: ref %d, mod %d\n",
   1765 	       ref, mod);
   1766 
   1767 	/* Modify page */
   1768 	*loc = 1;
   1769 
   1770 	ref = pmap_is_referenced(pg);
   1771 	mod = pmap_is_modified(pg);
   1772 	printf("Modified page: ref %d, mod %d\n",
   1773 	       ref, mod);
   1774 
   1775 	/* Check pmap_protect() */
   1776 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1777 	pmap_update(pmap_kernel());
   1778 	ref = pmap_is_referenced(pg);
   1779 	mod = pmap_is_modified(pg);
   1780 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
   1781 	       ref, mod);
   1782 
   1783 	/* Now clear reference and modify */
   1784 	ref = pmap_clear_reference(pg);
   1785 	mod = pmap_clear_modify(pg);
   1786 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1787 	       (void *)(u_long)va, (long)pa,
   1788 	       ref, mod);
   1789 
   1790 	/* Reference page */
   1791 	val = *loc;
   1792 
   1793 	ref = pmap_is_referenced(pg);
   1794 	mod = pmap_is_modified(pg);
   1795 	printf("Referenced page: ref %d, mod %d val %x\n",
   1796 	       ref, mod, val);
   1797 
   1798 	/* Now clear reference and modify */
   1799 	ref = pmap_clear_reference(pg);
   1800 	mod = pmap_clear_modify(pg);
   1801 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1802 	       (void *)(u_long)va, (long)pa,
   1803 	       ref, mod);
   1804 
   1805 	/* Modify page */
   1806 #if 0
   1807 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1808 	pmap_update(pmap_kernel());
   1809 #endif
   1810 	*loc = 1;
   1811 
   1812 	ref = pmap_is_referenced(pg);
   1813 	mod = pmap_is_modified(pg);
   1814 	printf("Modified page: ref %d, mod %d\n",
   1815 	       ref, mod);
   1816 
   1817 	/* Check pmap_protect() */
   1818 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1819 	pmap_update(pmap_kernel());
   1820 	ref = pmap_is_referenced(pg);
   1821 	mod = pmap_is_modified(pg);
   1822 	printf("pmap_protect(): ref %d, mod %d\n",
   1823 	       ref, mod);
   1824 
   1825 	/* Now clear reference and modify */
   1826 	ref = pmap_clear_reference(pg);
   1827 	mod = pmap_clear_modify(pg);
   1828 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1829 	       (void *)(u_long)va, (long)pa,
   1830 	       ref, mod);
   1831 
   1832 	/* Reference page */
   1833 	val = *loc;
   1834 
   1835 	ref = pmap_is_referenced(pg);
   1836 	mod = pmap_is_modified(pg);
   1837 	printf("Referenced page: ref %d, mod %d val %x\n",
   1838 	       ref, mod, val);
   1839 
   1840 	/* Now clear reference and modify */
   1841 	ref = pmap_clear_reference(pg);
   1842 	mod = pmap_clear_modify(pg);
   1843 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1844 	       (void *)(u_long)va, (long)pa,
   1845 	       ref, mod);
   1846 
   1847 	/* Modify page */
   1848 #if 0
   1849 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1850 	pmap_update(pmap_kernel());
   1851 #endif
   1852 	*loc = 1;
   1853 
   1854 	ref = pmap_is_referenced(pg);
   1855 	mod = pmap_is_modified(pg);
   1856 	printf("Modified page: ref %d, mod %d\n",
   1857 	       ref, mod);
   1858 
   1859 	/* Check pmap_pag_protect() */
   1860 	pmap_page_protect(pg, VM_PROT_READ);
   1861 	ref = pmap_is_referenced(pg);
   1862 	mod = pmap_is_modified(pg);
   1863 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
   1864 	       ref, mod);
   1865 
   1866 	/* Now clear reference and modify */
   1867 	ref = pmap_clear_reference(pg);
   1868 	mod = pmap_clear_modify(pg);
   1869 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1870 	       (void *)(u_long)va, (long)pa,
   1871 	       ref, mod);
   1872 
   1873 	/* Reference page */
   1874 	val = *loc;
   1875 
   1876 	ref = pmap_is_referenced(pg);
   1877 	mod = pmap_is_modified(pg);
   1878 	printf("Referenced page: ref %d, mod %d val %x\n",
   1879 	       ref, mod, val);
   1880 
   1881 	/* Now clear reference and modify */
   1882 	ref = pmap_clear_reference(pg);
   1883 	mod = pmap_clear_modify(pg);
   1884 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1885 	       (void *)(u_long)va, (long)pa,
   1886 	       ref, mod);
   1887 
   1888 	/* Modify page */
   1889 #if 0
   1890 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1891 	pmap_update(pmap_kernel());
   1892 #endif
   1893 	*loc = 1;
   1894 
   1895 	ref = pmap_is_referenced(pg);
   1896 	mod = pmap_is_modified(pg);
   1897 	printf("Modified page: ref %d, mod %d\n",
   1898 	       ref, mod);
   1899 
   1900 	/* Check pmap_pag_protect() */
   1901 	pmap_page_protect(pg, VM_PROT_NONE);
   1902 	ref = pmap_is_referenced(pg);
   1903 	mod = pmap_is_modified(pg);
   1904 	printf("pmap_page_protect(): ref %d, mod %d\n",
   1905 	       ref, mod);
   1906 
   1907 	/* Now clear reference and modify */
   1908 	ref = pmap_clear_reference(pg);
   1909 	mod = pmap_clear_modify(pg);
   1910 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1911 	       (void *)(u_long)va, (long)pa,
   1912 	       ref, mod);
   1913 
   1914 
   1915 	/* Reference page */
   1916 	val = *loc;
   1917 
   1918 	ref = pmap_is_referenced(pg);
   1919 	mod = pmap_is_modified(pg);
   1920 	printf("Referenced page: ref %d, mod %d val %x\n",
   1921 	       ref, mod, val);
   1922 
   1923 	/* Now clear reference and modify */
   1924 	ref = pmap_clear_reference(pg);
   1925 	mod = pmap_clear_modify(pg);
   1926 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1927 	       (void *)(u_long)va, (long)pa,
   1928 	       ref, mod);
   1929 
   1930 	/* Modify page */
   1931 #if 0
   1932 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1933 	pmap_update(pmap_kernel());
   1934 #endif
   1935 	*loc = 1;
   1936 
   1937 	ref = pmap_is_referenced(pg);
   1938 	mod = pmap_is_modified(pg);
   1939 	printf("Modified page: ref %d, mod %d\n",
   1940 	       ref, mod);
   1941 
   1942 	/* Unmap page */
   1943 	pmap_remove(pmap_kernel(), va, va+1);
   1944 	pmap_update(pmap_kernel());
   1945 	ref = pmap_is_referenced(pg);
   1946 	mod = pmap_is_modified(pg);
   1947 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1948 
   1949 	/* Now clear reference and modify */
   1950 	ref = pmap_clear_reference(pg);
   1951 	mod = pmap_clear_modify(pg);
   1952 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1953 	       (void *)(u_long)va, (long)pa, ref, mod);
   1954 
   1955 	/* Check it's properly cleared */
   1956 	ref = pmap_is_referenced(pg);
   1957 	mod = pmap_is_modified(pg);
   1958 	printf("Checking cleared page: ref %d, mod %d\n",
   1959 	       ref, mod);
   1960 
   1961 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1962 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1963 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1964 }
   1965 #endif
   1966