Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.99
      1 /*	$NetBSD: pmap.c,v 1.99 2021/09/04 14:31:04 rin Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.99 2021/09/04 14:31:04 rin Exp $");
     71 
     72 #ifdef _KERNEL_OPT
     73 #include "opt_ddb.h"
     74 #include "opt_pmap.h"
     75 #endif
     76 
     77 #include <sys/param.h>
     78 #include <sys/cpu.h>
     79 #include <sys/device.h>
     80 #include <sys/kmem.h>
     81 #include <sys/pool.h>
     82 #include <sys/proc.h>
     83 #include <sys/queue.h>
     84 #include <sys/systm.h>
     85 
     86 #include <uvm/uvm.h>
     87 
     88 #include <machine/powerpc.h>
     89 
     90 #include <powerpc/pcb.h>
     91 
     92 #include <powerpc/spr.h>
     93 #include <powerpc/ibm4xx/spr.h>
     94 
     95 #include <powerpc/ibm4xx/cpu.h>
     96 #include <powerpc/ibm4xx/tlb.h>
     97 
     98 /*
     99  * kernmap is an array of PTEs large enough to map in
    100  * 4GB.  At 16KB/page it is 256K entries or 2MB.
    101  */
    102 #define KERNMAP_SIZE	((0xffffffffU / PAGE_SIZE) + 1)
    103 void *kernmap;
    104 
    105 #define MINCTX		2
    106 #define NUMCTX		256
    107 
    108 volatile struct pmap *ctxbusy[NUMCTX];
    109 
    110 #define TLBF_USED	0x1
    111 #define	TLBF_REF	0x2
    112 #define	TLBF_LOCKED	0x4
    113 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    114 
    115 typedef struct tlb_info_s {
    116 	char	ti_flags;
    117 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    118 	u_int	ti_va;
    119 } tlb_info_t;
    120 
    121 volatile tlb_info_t tlb_info[NTLB];
    122 /* We'll use a modified FIFO replacement policy cause it's cheap */
    123 volatile int tlbnext;
    124 
    125 static int tlb_nreserved = 0;
    126 static int pmap_bootstrap_done = 0;
    127 
    128 /* Event counters */
    129 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    130     NULL, "cpu", "tlbmiss");
    131 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    132     NULL, "cpu", "tlbflush");
    133 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    134     NULL, "cpu", "tlbenter");
    135 EVCNT_ATTACH_STATIC(tlbmiss_ev);
    136 EVCNT_ATTACH_STATIC(tlbflush_ev);
    137 EVCNT_ATTACH_STATIC(tlbenter_ev);
    138 
    139 struct pmap kernel_pmap_;
    140 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    141 
    142 static int npgs;
    143 static u_int nextavail;
    144 #ifndef MSGBUFADDR
    145 extern paddr_t msgbuf_paddr;
    146 #endif
    147 
    148 static struct mem_region *mem, *avail;
    149 
    150 /*
    151  * This is a cache of referenced/modified bits.
    152  * Bits herein are shifted by ATTRSHFT.
    153  */
    154 static char *pmap_attrib;
    155 
    156 #define PV_WIRED	0x1
    157 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    158 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    159 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    160 #define PV_VA(pv)	((pv)->pv_va & ~PV_WIRED)
    161 #define PV_CMPVA(va,pv)	(!(PV_VA(pv) ^ (va)))
    162 
    163 struct pv_entry {
    164 	struct pv_entry *pv_next;	/* Linked list of mappings */
    165 	struct pmap *pv_pm;
    166 	vaddr_t pv_va;			/* virtual address of mapping */
    167 };
    168 
    169 /* Each index corresponds to TLB_SIZE_* value. */
    170 static size_t tlbsize[] = {
    171 	1024, 		/* TLB_SIZE_1K */
    172 	4096, 		/* TLB_SIZE_4K */
    173 	16384, 		/* TLB_SIZE_16K */
    174 	65536, 		/* TLB_SIZE_64K */
    175 	262144, 	/* TLB_SIZE_256K */
    176 	1048576, 	/* TLB_SIZE_1M */
    177 	4194304, 	/* TLB_SIZE_4M */
    178 	16777216, 	/* TLB_SIZE_16M */
    179 };
    180 
    181 struct pv_entry *pv_table;
    182 static struct pool pv_pool;
    183 
    184 static int pmap_initialized;
    185 
    186 static int ctx_flush(int);
    187 
    188 struct pv_entry *pa_to_pv(paddr_t);
    189 static inline char *pa_to_attr(paddr_t);
    190 
    191 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    192 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    193 
    194 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    195 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    196 
    197 static inline void tlb_invalidate_entry(int);
    198 
    199 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    200 
    201 
    202 struct pv_entry *
    203 pa_to_pv(paddr_t pa)
    204 {
    205 	uvm_physseg_t bank;
    206 	psize_t pg;
    207 
    208 	bank = uvm_physseg_find(atop(pa), &pg);
    209 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    210 		return NULL;
    211 	return &uvm_physseg_get_pmseg(bank)->pvent[pg];
    212 }
    213 
    214 static inline char *
    215 pa_to_attr(paddr_t pa)
    216 {
    217 	uvm_physseg_t bank;
    218 	psize_t pg;
    219 
    220 	bank = uvm_physseg_find(atop(pa), &pg);
    221 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    222 		return NULL;
    223 	return &uvm_physseg_get_pmseg(bank)->attrs[pg];
    224 }
    225 
    226 /*
    227  * Insert PTE into page table.
    228  */
    229 static inline int
    230 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    231 {
    232 	int seg = STIDX(va), ptn = PTIDX(va);
    233 	u_int oldpte;
    234 
    235 	if (!pm->pm_ptbl[seg]) {
    236 		/* Don't allocate a page to clear a non-existent mapping. */
    237 		if (!pte)
    238 			return 1;
    239 
    240 		vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    241 		    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
    242 
    243 		if (__predict_false(km == 0))
    244 			return 0;
    245 
    246 		pm->pm_ptbl[seg] = (u_int *)km;
    247 	}
    248 	oldpte = pm->pm_ptbl[seg][ptn];
    249 	pm->pm_ptbl[seg][ptn] = pte;
    250 
    251 	/* Flush entry. */
    252 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    253 	if (oldpte != pte) {
    254 		if (pte == 0)
    255 			pm->pm_stats.resident_count--;
    256 		else
    257 			pm->pm_stats.resident_count++;
    258 	}
    259 	return 1;
    260 }
    261 
    262 /*
    263  * Get a pointer to a PTE in a page table.
    264  */
    265 volatile u_int *
    266 pte_find(struct pmap *pm, vaddr_t va)
    267 {
    268 	int seg = STIDX(va), ptn = PTIDX(va);
    269 
    270 	if (pm->pm_ptbl[seg])
    271 		return &pm->pm_ptbl[seg][ptn];
    272 
    273 	return NULL;
    274 }
    275 
    276 /*
    277  * This is called during initppc, before the system is really initialized.
    278  */
    279 void
    280 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    281 {
    282 	struct mem_region *mp, *mp1;
    283 	int cnt, i;
    284 	u_int s, e, sz;
    285 
    286 	tlbnext = tlb_nreserved;
    287 
    288 	/*
    289 	 * Allocate the kernel page table at the end of
    290 	 * kernel space so it's in the locked TTE.
    291 	 */
    292 	kernmap = (void *)kernelend;
    293 
    294 	/*
    295 	 * Initialize kernel page table.
    296 	 */
    297 	for (i = 0; i < STSZ; i++)
    298 		pmap_kernel()->pm_ptbl[i] = NULL;
    299 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    300 
    301 	/*
    302 	 * Announce page-size to the VM-system
    303 	 */
    304 	uvmexp.pagesize = NBPG;
    305 	uvm_md_init();
    306 
    307 	/*
    308 	 * Get memory.
    309 	 */
    310 	mem_regions(&mem, &avail);
    311 	for (mp = mem; mp->size; mp++) {
    312 		physmem += btoc(mp->size);
    313 		printf("+%lx,", mp->size);
    314 	}
    315 	printf("\n");
    316 	ppc4xx_tlb_init();
    317 	/*
    318 	 * Count the number of available entries.
    319 	 */
    320 	for (cnt = 0, mp = avail; mp->size; mp++)
    321 		cnt++;
    322 
    323 	/*
    324 	 * Page align all regions.
    325 	 * Non-page aligned memory isn't very interesting to us.
    326 	 * Also, sort the entries for ascending addresses.
    327 	 */
    328 	kernelstart &= ~PGOFSET;
    329 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    330 	for (mp = avail; mp->size; mp++) {
    331 		s = mp->start;
    332 		e = mp->start + mp->size;
    333 		printf("%08x-%08x -> ", s, e);
    334 		/*
    335 		 * Check whether this region holds all of the kernel.
    336 		 */
    337 		if (s < kernelstart && e > kernelend) {
    338 			avail[cnt].start = kernelend;
    339 			avail[cnt++].size = e - kernelend;
    340 			e = kernelstart;
    341 		}
    342 		/*
    343 		 * Look whether this regions starts within the kernel.
    344 		 */
    345 		if (s >= kernelstart && s < kernelend) {
    346 			if (e <= kernelend)
    347 				goto empty;
    348 			s = kernelend;
    349 		}
    350 		/*
    351 		 * Now look whether this region ends within the kernel.
    352 		 */
    353 		if (e > kernelstart && e <= kernelend) {
    354 			if (s >= kernelstart)
    355 				goto empty;
    356 			e = kernelstart;
    357 		}
    358 		/*
    359 		 * Now page align the start and size of the region.
    360 		 */
    361 		s = round_page(s);
    362 		e = trunc_page(e);
    363 		if (e < s)
    364 			e = s;
    365 		sz = e - s;
    366 		printf("%08x-%08x = %x\n", s, e, sz);
    367 		/*
    368 		 * Check whether some memory is left here.
    369 		 */
    370 		if (sz == 0) {
    371  empty:
    372 			memmove(mp, mp + 1,
    373 			    (cnt - (mp - avail)) * sizeof(*mp));
    374 			cnt--;
    375 			mp--;
    376 			continue;
    377 		}
    378 		/*
    379 		 * Do an insertion sort.
    380 		 */
    381 		npgs += btoc(sz);
    382 		for (mp1 = avail; mp1 < mp; mp1++)
    383 			if (s < mp1->start)
    384 				break;
    385 		if (mp1 < mp) {
    386 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    387 			mp1->start = s;
    388 			mp1->size = sz;
    389 		} else {
    390 			mp->start = s;
    391 			mp->size = sz;
    392 		}
    393 	}
    394 
    395 	/*
    396 	 * We cannot do pmap_steal_memory here,
    397 	 * since we don't run with translation enabled yet.
    398 	 */
    399 #ifndef MSGBUFADDR
    400 	/*
    401 	 * allow for msgbuf
    402 	 */
    403 	sz = round_page(MSGBUFSIZE);
    404 	mp = NULL;
    405 	for (mp1 = avail; mp1->size; mp1++)
    406 		if (mp1->size >= sz)
    407 			mp = mp1;
    408 	if (mp == NULL)
    409 		panic("not enough memory?");
    410 
    411 	npgs -= btoc(sz);
    412 	msgbuf_paddr = mp->start + mp->size - sz;
    413 	mp->size -= sz;
    414 	if (mp->size <= 0)
    415 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof(*mp));
    416 #endif
    417 
    418 	for (mp = avail; mp->size; mp++)
    419 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    420 		    atop(mp->start), atop(mp->start + mp->size),
    421 		    VM_FREELIST_DEFAULT);
    422 
    423 	/*
    424 	 * Initialize kernel pmap and hardware.
    425 	 */
    426 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    427 	pmap_kernel()->pm_ctx = KERNEL_PID;
    428 	nextavail = avail->start;
    429 
    430 	pmap_bootstrap_done = 1;
    431 }
    432 
    433 /*
    434  * Restrict given range to physical memory
    435  *
    436  * (Used by /dev/mem)
    437  */
    438 void
    439 pmap_real_memory(paddr_t *start, psize_t *size)
    440 {
    441 	struct mem_region *mp;
    442 
    443 	for (mp = mem; mp->size; mp++) {
    444 		if (*start + *size > mp->start &&
    445 		    *start < mp->start + mp->size) {
    446 			if (*start < mp->start) {
    447 				*size -= mp->start - *start;
    448 				*start = mp->start;
    449 			}
    450 			if (*start + *size > mp->start + mp->size)
    451 				*size = mp->start + mp->size - *start;
    452 			return;
    453 		}
    454 	}
    455 	*size = 0;
    456 }
    457 
    458 /*
    459  * Initialize anything else for pmap handling.
    460  * Called during vm_init().
    461  */
    462 void
    463 pmap_init(void)
    464 {
    465 	struct pv_entry *pv;
    466 	vsize_t sz;
    467 	vaddr_t addr;
    468 	int bank, i, s;
    469 	char *attr;
    470 
    471 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    472 	sz = round_page(sz);
    473 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    474 
    475 	s = splvm();
    476 
    477 	pv = pv_table = (struct pv_entry *)addr;
    478 	for (i = npgs; --i >= 0;)
    479 		pv++->pv_pm = NULL;
    480 	pmap_attrib = (char *)pv;
    481 	memset(pv, 0, npgs);
    482 
    483 	pv = pv_table;
    484 	attr = pmap_attrib;
    485 	for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
    486 	     bank = uvm_physseg_get_next(bank)) {
    487 		sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    488 		uvm_physseg_get_pmseg(bank)->pvent = pv;
    489 		uvm_physseg_get_pmseg(bank)->attrs = attr;
    490 		pv += sz;
    491 		attr += sz;
    492 	}
    493 
    494 	pmap_initialized = 1;
    495 
    496 	splx(s);
    497 
    498 	/* Setup a pool for additional pvlist structures */
    499 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry",
    500 	    NULL, IPL_VM);
    501 }
    502 
    503 /*
    504  * How much virtual space is available to the kernel?
    505  */
    506 void
    507 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    508 {
    509 
    510 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    511 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    512 }
    513 
    514 #ifdef PMAP_GROWKERNEL
    515 /*
    516  * Preallocate kernel page tables to a specified VA.
    517  * This simply loops through the first TTE for each
    518  * page table from the beginning of the kernel pmap,
    519  * reads the entry, and if the result is
    520  * zero (either invalid entry or no page table) it stores
    521  * a zero there, populating page tables in the process.
    522  * This is not the most efficient technique but i don't
    523  * expect it to be called that often.
    524  */
    525 extern struct vm_page *vm_page_alloc1(void);
    526 extern void vm_page_free1(struct vm_page *);
    527 
    528 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    529 
    530 vaddr_t
    531 pmap_growkernel(vaddr_t maxkvaddr)
    532 {
    533 	struct pmap *pm = pmap_kernel();
    534 	paddr_t pg;
    535 	int seg, s;
    536 
    537 	s = splvm();
    538 
    539 	/* Align with the start of a page table */
    540 	for (kbreak &= ~(PTMAP - 1); kbreak < maxkvaddr; kbreak += PTMAP) {
    541 		seg = STIDX(kbreak);
    542 
    543 		if (pte_find(pm, kbreak))
    544 			continue;
    545 
    546 		if (uvm.page_init_done)
    547 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    548 		else if (!uvm_page_physget(&pg))
    549 			panic("pmap_growkernel: no memory");
    550 		if (!pg)
    551 			panic("pmap_growkernel: no pages");
    552 		pmap_zero_page((paddr_t)pg);
    553 
    554 		/* XXX This is based on all phymem being addressable */
    555 		pm->pm_ptbl[seg] = (u_int *)pg;
    556 	}
    557 
    558 	splx(s);
    559 
    560 	return kbreak;
    561 }
    562 
    563 /*
    564  *	vm_page_alloc1:
    565  *
    566  *	Allocate and return a memory cell with no associated object.
    567  */
    568 struct vm_page *
    569 vm_page_alloc1(void)
    570 {
    571 	struct vm_page *pg;
    572 
    573 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    574 	if (pg) {
    575 		pg->wire_count = 1;	/* no mappings yet */
    576 		pg->flags &= ~PG_BUSY;	/* never busy */
    577 	}
    578 	return pg;
    579 }
    580 
    581 /*
    582  *	vm_page_free1:
    583  *
    584  *	Returns the given page to the free list,
    585  *	disassociating it with any VM object.
    586  *
    587  *	Object and page must be locked prior to entry.
    588  */
    589 void
    590 vm_page_free1(struct vm_page *pg)
    591 {
    592 
    593 #ifdef DIAGNOSTIC
    594 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    595 		printf("Freeing invalid page %p\n", pg);
    596 		printf("pa = %llx\n",
    597 		    (unsigned long long)VM_PAGE_TO_PHYS(pg));
    598 #ifdef DDB
    599 		Debugger();
    600 #endif
    601 		return;
    602 	}
    603 #endif
    604 	pg->flags |= PG_BUSY;
    605 	pg->wire_count = 0;
    606 	uvm_pagefree(pg);
    607 }
    608 #endif
    609 
    610 /*
    611  * Create and return a physical map.
    612  */
    613 struct pmap *
    614 pmap_create(void)
    615 {
    616 	struct pmap *pm;
    617 
    618 	pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
    619 	memset(pm, 0, sizeof(*pm));
    620 	pm->pm_refs = 1;
    621 	return pm;
    622 }
    623 
    624 /*
    625  * Add a reference to the given pmap.
    626  */
    627 void
    628 pmap_reference(struct pmap *pm)
    629 {
    630 
    631 	pm->pm_refs++;
    632 }
    633 
    634 /*
    635  * Retire the given pmap from service.
    636  * Should only be called if the map contains no valid mappings.
    637  */
    638 void
    639 pmap_destroy(struct pmap *pm)
    640 {
    641 	int i;
    642 
    643 	if (--pm->pm_refs > 0)
    644 		return;
    645 	KASSERT(pm->pm_stats.resident_count == 0);
    646 	KASSERT(pm->pm_stats.wired_count == 0);
    647 	for (i = 0; i < STSZ; i++)
    648 		if (pm->pm_ptbl[i]) {
    649 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    650 			    PAGE_SIZE, UVM_KMF_WIRED);
    651 			pm->pm_ptbl[i] = NULL;
    652 		}
    653 	if (pm->pm_ctx)
    654 		ctx_free(pm);
    655 	kmem_free(pm, sizeof(*pm));
    656 }
    657 
    658 /*
    659  * Copy the range specified by src_addr/len
    660  * from the source map to the range dst_addr/len
    661  * in the destination map.
    662  *
    663  * This routine is only advisory and need not do anything.
    664  */
    665 void
    666 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    667 	  vsize_t len, vaddr_t src_addr)
    668 {
    669 }
    670 
    671 /*
    672  * Require that all active physical maps contain no
    673  * incorrect entries NOW.
    674  */
    675 void
    676 pmap_update(struct pmap *pmap)
    677 {
    678 }
    679 
    680 /*
    681  * Fill the given physical page with zeroes.
    682  */
    683 void
    684 pmap_zero_page(paddr_t pa)
    685 {
    686 	int i;
    687 
    688 #ifdef PPC_4XX_NOCACHE
    689 	memset((void *)pa, 0, PAGE_SIZE);
    690 #else
    691 
    692 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    693 		__asm volatile ("dcbz 0,%0" : : "r"(pa));
    694 		pa += CACHELINESIZE;
    695 	}
    696 #endif
    697 }
    698 
    699 /*
    700  * Copy the given physical source page to its destination.
    701  */
    702 void
    703 pmap_copy_page(paddr_t src, paddr_t dst)
    704 {
    705 
    706 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    707 	dcache_wbinv_page(dst);
    708 }
    709 
    710 /*
    711  * This returns != 0 on success.
    712  */
    713 static inline int
    714 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    715 {
    716 	struct pv_entry *pv, *npv = NULL;
    717 	int s;
    718 
    719 	if (!pmap_initialized)
    720 		return 0;
    721 
    722 	s = splvm();
    723 
    724 	pv = pa_to_pv(pa);
    725 	if (!pv->pv_pm) {
    726 		/*
    727 		 * No entries yet, use header as the first entry.
    728 		 */
    729 		pv->pv_va = va;
    730 		pv->pv_pm = pm;
    731 		pv->pv_next = NULL;
    732 	} else {
    733 		/*
    734 		 * There is at least one other VA mapping this page.
    735 		 * Place this entry after the header.
    736 		 */
    737 		npv = pool_get(&pv_pool, PR_NOWAIT);
    738 		if (npv == NULL) {
    739 			if ((flags & PMAP_CANFAIL) == 0)
    740 				panic("pmap_enter_pv: failed");
    741 			splx(s);
    742 			return 0;
    743 		}
    744 		npv->pv_va = va;
    745 		npv->pv_pm = pm;
    746 		npv->pv_next = pv->pv_next;
    747 		pv->pv_next = npv;
    748 		pv = npv;
    749 	}
    750 	if (flags & PMAP_WIRED) {
    751 		PV_WIRE(pv);
    752 		pm->pm_stats.wired_count++;
    753 	}
    754 
    755 	splx(s);
    756 
    757 	return 1;
    758 }
    759 
    760 static void
    761 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    762 {
    763 	struct pv_entry *pv, *npv;
    764 
    765 	/*
    766 	 * Remove from the PV table.
    767 	 */
    768 	pv = pa_to_pv(pa);
    769 	if (!pv)
    770 		return;
    771 
    772 	/*
    773 	 * If it is the first entry on the list, it is actually
    774 	 * in the header and we must copy the following entry up
    775 	 * to the header.  Otherwise we must search the list for
    776 	 * the entry.  In either case we free the now unused entry.
    777 	 */
    778 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    779 		if (PV_ISWIRED(pv))
    780 			pm->pm_stats.wired_count--;
    781 		if ((npv = pv->pv_next)) {
    782 			*pv = *npv;
    783 			pool_put(&pv_pool, npv);
    784 		} else
    785 			pv->pv_pm = NULL;
    786 	} else {
    787 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    788 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    789 				break;
    790 		if (npv) {
    791 			pv->pv_next = npv->pv_next;
    792 			if (PV_ISWIRED(npv)) {
    793 				pm->pm_stats.wired_count--;
    794 			}
    795 			pool_put(&pv_pool, npv);
    796 		}
    797 	}
    798 }
    799 
    800 /*
    801  * Insert physical page at pa into the given pmap at virtual address va.
    802  */
    803 int
    804 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    805 {
    806 	u_int tte;
    807 	bool managed;
    808 	int s;
    809 
    810 	/*
    811 	 * Have to remove any existing mapping first.
    812 	 */
    813 	pmap_remove(pm, va, va + PAGE_SIZE);
    814 
    815 	if (flags & PMAP_WIRED)
    816 		flags |= prot;
    817 
    818 	managed = uvm_pageismanaged(pa);
    819 
    820 	/*
    821 	 * Generate TTE.
    822 	 */
    823 	tte = TTE_PA(pa);
    824 	/* XXXX -- need to support multiple page sizes. */
    825 	tte |= TTE_SZ_16K;
    826 
    827 #ifdef DIAGNOSTIC
    828 	if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    829 	    (PMAP_NOCACHE | PME_WRITETHROUG))
    830 		panic("pmap_enter: uncached & writethrough");
    831 #endif
    832 
    833 	if (flags & PMAP_NOCACHE) {
    834 		/* Must be I/O mapping */
    835 		tte |= TTE_I | TTE_G;
    836 	}
    837 #ifdef PPC_4XX_NOCACHE
    838 	tte |= TTE_I;
    839 #else
    840 	else if (flags & PME_WRITETHROUG) {
    841 		/* Uncached and writethrough are not compatible */
    842 		tte |= TTE_W;
    843 	}
    844 #endif
    845 
    846 	if (pm == pmap_kernel())
    847 		tte |= TTE_ZONE(ZONE_PRIV);
    848 	else
    849 		tte |= TTE_ZONE(ZONE_USER);
    850 
    851 	if (flags & VM_PROT_WRITE)
    852 		tte |= TTE_WR;
    853 
    854 	if (flags & VM_PROT_EXECUTE)
    855 		tte |= TTE_EX;
    856 
    857 	/*
    858 	 * Now record mapping for later back-translation.
    859 	 */
    860 	if (pmap_initialized && managed) {
    861 		char *attr;
    862 
    863 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    864 			/* Could not enter pv on a managed page */
    865 			return ENOMEM;
    866 		}
    867 
    868 		/* Now set attributes. */
    869 		attr = pa_to_attr(pa);
    870 #ifdef DIAGNOSTIC
    871 		if (!attr)
    872 			panic("managed but no attr");
    873 #endif
    874 		if (flags & VM_PROT_ALL)
    875 			*attr |= PMAP_ATTR_REF;
    876 		if (flags & VM_PROT_WRITE)
    877 			*attr |= PMAP_ATTR_CHG;
    878 	}
    879 
    880 	s = splvm();
    881 
    882 	/* Insert page into page table. */
    883 	if (__predict_false(!pte_enter(pm, va, tte))) {
    884 		if (__predict_false((flags & PMAP_CANFAIL) == 0))
    885 			panic("%s: pte_enter", __func__);
    886 		splx(s);
    887 		return ENOMEM;
    888 	}
    889 
    890 	/* If this is a real fault, enter it in the tlb */
    891 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    892 		int s2 = splhigh();
    893 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    894 		splx(s2);
    895 	}
    896 
    897 	splx(s);
    898 
    899 	/* Flush the real memory from the instruction cache. */
    900 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    901 		__syncicache((void *)pa, PAGE_SIZE);
    902 
    903 	return 0;
    904 }
    905 
    906 void
    907 pmap_unwire(struct pmap *pm, vaddr_t va)
    908 {
    909 	struct pv_entry *pv;
    910 	paddr_t pa;
    911 	int s;
    912 
    913 	if (!pmap_extract(pm, va, &pa))
    914 		return;
    915 
    916 	pv = pa_to_pv(pa);
    917 	if (!pv)
    918 		return;
    919 
    920 	s = splvm();
    921 
    922 	while (pv != NULL) {
    923 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    924 			if (PV_ISWIRED(pv)) {
    925 				PV_UNWIRE(pv);
    926 				pm->pm_stats.wired_count--;
    927 			}
    928 			break;
    929 		}
    930 		pv = pv->pv_next;
    931 	}
    932 
    933 	splx(s);
    934 }
    935 
    936 void
    937 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    938 {
    939 	struct pmap *pm = pmap_kernel();
    940 	u_int tte;
    941 	int s;
    942 
    943 	/*
    944 	 * Generate TTE.
    945 	 *
    946 	 * XXXX
    947 	 *
    948 	 * Since the kernel does not handle execution privileges properly,
    949 	 * we will handle read and execute permissions together.
    950 	 */
    951 	tte = 0;
    952 	if (prot & VM_PROT_ALL) {
    953 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    954 		/* XXXX -- need to support multiple page sizes. */
    955 		tte |= TTE_SZ_16K;
    956 
    957 #ifdef DIAGNOSTIC
    958 		if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    959 		    (PMAP_NOCACHE | PME_WRITETHROUG))
    960 			panic("pmap_kenter_pa: uncached & writethrough");
    961 #endif
    962 
    963 		if (flags & PMAP_NOCACHE)
    964 			/* Must be I/O mapping */
    965 			tte |= TTE_I | TTE_G;
    966 #ifdef PPC_4XX_NOCACHE
    967 		tte |= TTE_I;
    968 #else
    969 		else if (prot & PME_WRITETHROUG) {
    970 			/* Uncached and writethrough are not compatible */
    971 			tte |= TTE_W;
    972 		}
    973 #endif
    974 		if (prot & VM_PROT_WRITE)
    975 			tte |= TTE_WR;
    976 	}
    977 
    978 	s = splvm();
    979 
    980 	/* Insert page into page table. */
    981 	if (__predict_false(!pte_enter(pm, va, tte)))
    982 		panic("%s: pte_enter", __func__);
    983 
    984 	splx(s);
    985 }
    986 
    987 void
    988 pmap_kremove(vaddr_t va, vsize_t len)
    989 {
    990 
    991 	while (len > 0) {
    992 		(void)pte_enter(pmap_kernel(), va, 0);	/* never fail */
    993 		va += PAGE_SIZE;
    994 		len -= PAGE_SIZE;
    995 	}
    996 }
    997 
    998 /*
    999  * Remove the given range of mapping entries.
   1000  */
   1001 void
   1002 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
   1003 {
   1004 	paddr_t pa;
   1005 	volatile u_int *ptp;
   1006 	int s;
   1007 
   1008 	s = splvm();
   1009 
   1010 	while (va < endva) {
   1011 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
   1012 			pa = TTE_PA(pa);
   1013 			pmap_remove_pv(pm, va, pa);
   1014 			*ptp = 0;
   1015 			ppc4xx_tlb_flush(va, pm->pm_ctx);
   1016 			pm->pm_stats.resident_count--;
   1017 		}
   1018 		va += PAGE_SIZE;
   1019 	}
   1020 
   1021 	splx(s);
   1022 }
   1023 
   1024 /*
   1025  * Get the physical page address for the given pmap/virtual address.
   1026  */
   1027 bool
   1028 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1029 {
   1030 	int seg = STIDX(va), ptn = PTIDX(va);
   1031 	u_int pa = 0;
   1032 	int s;
   1033 
   1034 	s = splvm();
   1035 
   1036 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap)
   1037 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1038 
   1039 	splx(s);
   1040 
   1041 	return pa != 0;
   1042 }
   1043 
   1044 /*
   1045  * Lower the protection on the specified range of this pmap.
   1046  *
   1047  * There are only two cases: either the protection is going to 0,
   1048  * or it is going to read-only.
   1049  */
   1050 void
   1051 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1052 {
   1053 	volatile u_int *ptp;
   1054 	int s, bic;
   1055 
   1056 	if ((prot & VM_PROT_READ) == 0) {
   1057 		pmap_remove(pm, sva, eva);
   1058 		return;
   1059 	}
   1060 	bic = 0;
   1061 	if ((prot & VM_PROT_WRITE) == 0)
   1062 		bic |= TTE_WR;
   1063 	if ((prot & VM_PROT_EXECUTE) == 0)
   1064 		bic |= TTE_EX;
   1065 	if (bic == 0)
   1066 		return;
   1067 
   1068 	s = splvm();
   1069 
   1070 	while (sva < eva) {
   1071 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1072 			*ptp &= ~bic;
   1073 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1074 		}
   1075 		sva += PAGE_SIZE;
   1076 	}
   1077 
   1078 	splx(s);
   1079 }
   1080 
   1081 bool
   1082 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1083 {
   1084 	paddr_t pa;
   1085 	char *attr;
   1086 	int s, rv;
   1087 
   1088 	/*
   1089 	 * First modify bits in cache.
   1090 	 */
   1091 	pa = VM_PAGE_TO_PHYS(pg);
   1092 	attr = pa_to_attr(pa);
   1093 	if (attr == NULL)
   1094 		return false;
   1095 
   1096 	s = splvm();
   1097 
   1098 	rv = (*attr & mask) != 0;
   1099 	if (clear) {
   1100 		*attr &= ~mask;
   1101 		pmap_page_protect(pg,
   1102 		    mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1103 	}
   1104 
   1105 	splx(s);
   1106 
   1107 	return rv;
   1108 }
   1109 
   1110 
   1111 /*
   1112  * Lower the protection on the specified physical page.
   1113  *
   1114  * There are only two cases: either the protection is going to 0,
   1115  * or it is going to read-only.
   1116  */
   1117 void
   1118 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1119 {
   1120 	struct pv_entry *pvh, *pv, *npv;
   1121 	struct pmap *pm;
   1122 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1123 	vaddr_t va;
   1124 
   1125 	pvh = pa_to_pv(pa);
   1126 	if (pvh == NULL)
   1127 		return;
   1128 
   1129 	/* Handle extra pvs which may be deleted in the operation */
   1130 	for (pv = pvh->pv_next; pv; pv = npv) {
   1131 		npv = pv->pv_next;
   1132 
   1133 		pm = pv->pv_pm;
   1134 		va = PV_VA(pv);
   1135 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1136 	}
   1137 
   1138 	/* Now check the head pv */
   1139 	if (pvh->pv_pm) {
   1140 		pv = pvh;
   1141 		pm = pv->pv_pm;
   1142 		va = PV_VA(pv);
   1143 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1144 	}
   1145 }
   1146 
   1147 /*
   1148  * Activate the address space for the specified process.  If the process
   1149  * is the current process, load the new MMU context.
   1150  */
   1151 void
   1152 pmap_activate(struct lwp *l)
   1153 {
   1154 #if 0
   1155 	struct pcb *pcb = lwp_getpcb(l);
   1156 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1157 
   1158 	/*
   1159 	 * XXX Normally performed in cpu_lwp_fork().
   1160 	 */
   1161 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1162 	pcb->pcb_pm = pmap;
   1163 #endif
   1164 }
   1165 
   1166 /*
   1167  * Deactivate the specified process's address space.
   1168  */
   1169 void
   1170 pmap_deactivate(struct lwp *l)
   1171 {
   1172 }
   1173 
   1174 /*
   1175  * Synchronize caches corresponding to [addr, addr+len) in p.
   1176  */
   1177 void
   1178 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1179 {
   1180 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1181 
   1182 	if (__predict_true(p == curproc)) {
   1183 		int msr, ctx, opid;
   1184 
   1185 		/*
   1186 		 * Take it easy! TLB miss handler takes care of us.
   1187 		 */
   1188 
   1189 		/*
   1190 	 	 * Need to turn off IMMU and switch to user context.
   1191 		 * (icbi uses DMMU).
   1192 		 */
   1193 
   1194 		if (!(ctx = pm->pm_ctx)) {
   1195 			/* No context -- assign it one */
   1196 			ctx_alloc(pm);
   1197 			ctx = pm->pm_ctx;
   1198 		}
   1199 
   1200 		__asm volatile (
   1201 			"mfmsr	%0;"
   1202 			"li	%1,0x20;"	/* Turn off IMMU */
   1203 			"andc	%1,%0,%1;"
   1204 			"ori	%1,%1,0x10;"	/* Turn on DMMU for sure */
   1205 			"mtmsr	%1;"
   1206 			"isync;"
   1207 			"mfpid	%1;"
   1208 			"mtpid	%2;"
   1209 			"isync;"
   1210 		"1:"
   1211 			"dcbst	0,%3;"
   1212 			"icbi	0,%3;"
   1213 			"add	%3,%3,%5;"
   1214 			"sub.	%4,%4,%5;"
   1215 			"bge	1b;"
   1216 			"sync;"
   1217 			"mtpid	%1;"
   1218 			"mtmsr	%0;"
   1219 			"isync;"
   1220 			: "=&r"(msr), "=&r"(opid)
   1221 			: "r"(ctx), "r"(va), "r"(len), "r"(CACHELINESIZE));
   1222 	} else {
   1223 		paddr_t pa;
   1224 		vaddr_t tva, eva;
   1225 		int tlen;
   1226 
   1227 		/*
   1228 		 * For p != curproc, we cannot rely upon TLB miss handler in
   1229 		 * user context. Therefore, extract pa and operate againt it.
   1230 		 *
   1231 		 * Note that va below VM_MIN_KERNEL_ADDRESS is reserved for
   1232 		 * direct mapping.
   1233 		 */
   1234 
   1235 		for (tva = va; len > 0; tva = eva, len -= tlen) {
   1236 			eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE));
   1237 			tlen = eva - tva;
   1238 			if (!pmap_extract(pm, tva, &pa)) {
   1239 				/* XXX should be already unmapped */
   1240 				continue;
   1241 			}
   1242 			__syncicache((void *)pa, tlen);
   1243 		}
   1244 	}
   1245 }
   1246 
   1247 static inline void
   1248 tlb_invalidate_entry(int i)
   1249 {
   1250 #ifdef PMAP_TLBDEBUG
   1251 	/*
   1252 	 * Clear only TLBHI[V] bit so that we can track invalidated entry.
   1253 	 */
   1254 	register_t msr, pid, hi;
   1255 
   1256 	KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1257 
   1258 	__asm volatile (
   1259 		"mfmsr	%0;"
   1260 		"li	%1,0;"
   1261 		"mtmsr	%1;"
   1262 		"mfpid	%1;"
   1263 		"tlbre	%2,%3,0;"
   1264 		"andc	%2,%2,%4;"
   1265 		"tlbwe	%2,%3,0;"
   1266 		"mtpid	%1;"
   1267 		"mtmsr	%0;"
   1268 		"isync;"
   1269 		: "=&r"(msr), "=&r"(pid), "=&r"(hi)
   1270 		: "r"(i), "r"(TLB_VALID));
   1271 #else
   1272 	/*
   1273 	 * Just clear entire TLBHI register.
   1274 	 */
   1275 	__asm volatile (
   1276 		"tlbwe %0,%1,0;"
   1277 		"isync;"
   1278 		: : "r"(0), "r"(i));
   1279 #endif
   1280 
   1281 	tlb_info[i].ti_ctx = 0;
   1282 	tlb_info[i].ti_flags = 0;
   1283 }
   1284 
   1285 /* This has to be done in real mode !!! */
   1286 void
   1287 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1288 {
   1289 	u_long msr, i, found;
   1290 
   1291 	/* If there's no context then it can't be mapped. */
   1292 	if (!pid)
   1293 		return;
   1294 
   1295 	__asm volatile (
   1296 		"mfpid	%1;"		/* Save PID */
   1297 		"mfmsr	%2;"		/* Save MSR */
   1298 		"li	%0,0;"		/* Now clear MSR */
   1299 		"mtmsr	%0;"
   1300 		"isync;"
   1301 		"mtpid	%4;"		/* Set PID */
   1302 		"isync;"
   1303 		"tlbsx.	%0,0,%3;"	/* Search TLB */
   1304 		"isync;"
   1305 		"mtpid	%1;"		/* Restore PID */
   1306 		"mtmsr	%2;"		/* Restore MSR */
   1307 		"isync;"
   1308 		"li	%1,1;"
   1309 		"beq	1f;"
   1310 		"li	%1,0;"
   1311 	"1:"
   1312 		: "=&r"(i), "=&r"(found), "=&r"(msr)
   1313 		: "r"(va), "r"(pid));
   1314 
   1315 	if (found && !TLB_LOCKED(i)) {
   1316 		/* Now flush translation */
   1317 		tlb_invalidate_entry(i);
   1318 		tlbnext = i;
   1319 		/* Successful flushes */
   1320 		tlbflush_ev.ev_count++;
   1321 	}
   1322 }
   1323 
   1324 void
   1325 ppc4xx_tlb_flush_all(void)
   1326 {
   1327 	u_long i;
   1328 
   1329 	for (i = 0; i < NTLB; i++)
   1330 		if (!TLB_LOCKED(i))
   1331 			tlb_invalidate_entry(i);
   1332 
   1333 	__asm volatile ("isync");
   1334 }
   1335 
   1336 /* Find a TLB entry to evict. */
   1337 static int
   1338 ppc4xx_tlb_find_victim(void)
   1339 {
   1340 	int flags;
   1341 
   1342 	for (;;) {
   1343 		if (++tlbnext >= NTLB)
   1344 			tlbnext = tlb_nreserved;
   1345 		flags = tlb_info[tlbnext].ti_flags;
   1346 		if (!(flags & TLBF_USED) ||
   1347 		    (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1348 			u_long va, stack = (u_long)&va;
   1349 
   1350 			if (!((tlb_info[tlbnext].ti_va ^ stack) &
   1351 				(~PGOFSET)) &&
   1352 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1353 			    (flags & TLBF_USED)) {
   1354 				/* Kernel stack page */
   1355 				flags |= TLBF_REF;
   1356 				tlb_info[tlbnext].ti_flags = flags;
   1357 			} else {
   1358 				/* Found it! */
   1359 				return tlbnext;
   1360 			}
   1361 		} else
   1362 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1363 	}
   1364 }
   1365 
   1366 void
   1367 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1368 {
   1369 	u_long th, tl, idx;
   1370 	paddr_t pa;
   1371 	int msr, pid, sz;
   1372 
   1373 	tlbenter_ev.ev_count++;
   1374 
   1375 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1376 	pa = (pte & TTE_RPN_MASK(sz));
   1377 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1378 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1379 	tl |= ppc4xx_tlbflags(va, pa);
   1380 
   1381 	idx = ppc4xx_tlb_find_victim();
   1382 
   1383 #ifdef DIAGNOSTIC
   1384 	if ((idx < tlb_nreserved) || (idx >= NTLB) || (idx & 63) == 0) {
   1385 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1386 	}
   1387 #endif
   1388 
   1389 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1390 	tlb_info[idx].ti_ctx = ctx;
   1391 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1392 
   1393 	__asm volatile (
   1394 		"mfmsr	%0;"			/* Save MSR */
   1395 		"li	%1,0;"
   1396 		"mtmsr	%1;"			/* Clear MSR */
   1397 		"isync;"
   1398 		"tlbwe	%1,%3,0;"		/* Invalidate old entry. */
   1399 		"mfpid	%1;"			/* Save old PID */
   1400 		"mtpid	%2;"			/* Load translation ctx */
   1401 		"isync;"
   1402 		"tlbwe	%4,%3,1;"		/* Set TLB */
   1403 		"tlbwe	%5,%3,0;"
   1404 		"isync;"
   1405 		"mtpid	%1;"			/* Restore PID */
   1406 		"mtmsr	%0;"			/* and MSR */
   1407 		"isync;"
   1408 		: "=&r"(msr), "=&r"(pid)
   1409 		: "r"(ctx), "r"(idx), "r"(tl), "r"(th));
   1410 }
   1411 
   1412 void
   1413 ppc4xx_tlb_init(void)
   1414 {
   1415 	int i;
   1416 
   1417 	/* Mark reserved TLB entries */
   1418 	for (i = 0; i < tlb_nreserved; i++) {
   1419 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1420 		tlb_info[i].ti_ctx = KERNEL_PID;
   1421 	}
   1422 
   1423 	/* Setup security zones */
   1424 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1425 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1426 	 * Z3 - full access regardless of TLB entry permissions
   1427 	 */
   1428 
   1429 	__asm volatile (
   1430 		"mtspr	%0,%1;"
   1431 		"isync;"
   1432 		: : "K"(SPR_ZPR), "r"(0x1b000000));
   1433 }
   1434 
   1435 /*
   1436  * ppc4xx_tlb_size_mask:
   1437  *
   1438  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1439  */
   1440 static int
   1441 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1442 {
   1443 	int i;
   1444 
   1445 	for (i = 0; i < __arraycount(tlbsize); i++)
   1446 		if (size <= tlbsize[i]) {
   1447 			*mask = (i << TLB_SIZE_SHFT);
   1448 			*rsiz = tlbsize[i];
   1449 			return 0;
   1450 		}
   1451 	return EINVAL;
   1452 }
   1453 
   1454 /*
   1455  * ppc4xx_tlb_mapiodev:
   1456  *
   1457  * 	Lookup virtual address of mapping previously entered via
   1458  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1459  * 	need to waste extra storage for reserved mappings. Note
   1460  * 	that reading TLBHI also sets PID, but all reserved mappings
   1461  * 	use KERNEL_PID, so the side effect is nil.
   1462  */
   1463 void *
   1464 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1465 {
   1466 	paddr_t pa;
   1467 	vaddr_t va;
   1468 	u_int lo, hi, sz;
   1469 	int i;
   1470 
   1471 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1472 	for (i = 0; i < tlb_nreserved; i++) {
   1473 		__asm volatile (
   1474 		    "tlbre	%0,%2,1;" 	/* TLBLO */
   1475 		    "tlbre	%1,%2,0;" 	/* TLBHI */
   1476 		    : "=&r"(lo), "=&r"(hi)
   1477 		    : "r"(i));
   1478 
   1479 		KASSERT(hi & TLB_VALID);
   1480 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1481 
   1482 		pa = (lo & TLB_RPN_MASK);
   1483 		if (base < pa)
   1484 			continue;
   1485 
   1486 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1487 		if (base + len > pa + sz)
   1488 			continue;
   1489 
   1490 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1491 		return (void *)va;
   1492 	}
   1493 
   1494 	return NULL;
   1495 }
   1496 
   1497 /*
   1498  * ppc4xx_tlb_reserve:
   1499  *
   1500  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1501  */
   1502 void
   1503 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1504 {
   1505 	u_int lo, hi;
   1506 	int szmask, rsize;
   1507 
   1508 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1509 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1510 	KASSERT(!pmap_bootstrap_done);
   1511 	KASSERT(tlb_nreserved < NTLB);
   1512 
   1513 	/* Resolve size. */
   1514 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1515 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1516 		    size, tlb_nreserved);
   1517 
   1518 	/* Real size will be power of two >= 1024, so this is OK. */
   1519 	pa &= ~(rsize - 1); 	/* RPN */
   1520 	va &= ~(rsize - 1); 	/* EPN */
   1521 
   1522 	lo = pa | TLB_WR | flags;
   1523 	hi = va | TLB_VALID | szmask;
   1524 
   1525 #ifdef PPC_4XX_NOCACHE
   1526 	lo |= TLB_I;
   1527 #endif
   1528 
   1529 	__asm volatile(
   1530 		"tlbwe	%1,%0,1;"	/* write TLBLO */
   1531 		"tlbwe	%2,%0,0;"	/* write TLBHI */
   1532 		"isync;"
   1533 		: : "r"(tlb_nreserved), "r"(lo), "r"(hi));
   1534 
   1535 	tlb_nreserved++;
   1536 }
   1537 
   1538 /*
   1539  * We should pass the ctx in from trap code.
   1540  */
   1541 int
   1542 pmap_tlbmiss(vaddr_t va, int ctx)
   1543 {
   1544 	volatile u_int *pte;
   1545 	u_long tte;
   1546 
   1547 	tlbmiss_ev.ev_count++;
   1548 
   1549 	/*
   1550 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1551 	 * Physical RAM is expected to live in this range, care must be taken
   1552 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1553 	 * code.
   1554 	 */
   1555 	if (ctx != KERNEL_PID ||
   1556 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1557 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1558 		if (pte == NULL) {
   1559 			/*
   1560 			 * Map unmanaged addresses directly for
   1561 			 * kernel access
   1562 			 */
   1563 			return 1;
   1564 		}
   1565 		tte = *pte;
   1566 		if (tte == 0)
   1567 			return 1;
   1568 	} else {
   1569 		/* Create a 16MB writable mapping. */
   1570 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1571 #ifdef PPC_4XX_NOCACHE
   1572 		tte |= TTE_I;
   1573 #endif
   1574 	}
   1575 	ppc4xx_tlb_enter(ctx, va, tte);
   1576 
   1577 	return 0;
   1578 }
   1579 
   1580 /*
   1581  * Flush all the entries matching a context from the TLB.
   1582  */
   1583 static int
   1584 ctx_flush(int cnum)
   1585 {
   1586 	int i;
   1587 
   1588 	/* We gotta steal this context */
   1589 	for (i = tlb_nreserved; i < NTLB; i++) {
   1590 		if (tlb_info[i].ti_ctx == cnum) {
   1591 			/* Can't steal ctx if it has a locked entry. */
   1592 			if (TLB_LOCKED(i)) {
   1593 #ifdef DIAGNOSTIC
   1594 				printf("ctx_flush: can't invalidate "
   1595 				    "locked mapping %d for context %d\n",
   1596 				    i, cnum);
   1597 #ifdef DDB
   1598 				Debugger();
   1599 #endif
   1600 #endif
   1601 				return 1;
   1602 			}
   1603 #ifdef DIAGNOSTIC
   1604 			if (i < tlb_nreserved)
   1605 				panic("TLB entry %d not locked", i);
   1606 #endif
   1607 			/*
   1608 			 * Invalidate particular TLB entry regardless of
   1609 			 * locked status
   1610 			 */
   1611 			tlb_invalidate_entry(i);
   1612 		}
   1613 	}
   1614 	return 0;
   1615 }
   1616 
   1617 /*
   1618  * Allocate a context.  If necessary, steal one from someone else.
   1619  *
   1620  * The new context is flushed from the TLB before returning.
   1621  */
   1622 int
   1623 ctx_alloc(struct pmap *pm)
   1624 {
   1625 	static int next = MINCTX;
   1626 	int cnum, s;
   1627 
   1628 	if (pm == pmap_kernel()) {
   1629 #ifdef DIAGNOSTIC
   1630 		printf("ctx_alloc: kernel pmap!\n");
   1631 #endif
   1632 		return 0;
   1633 	}
   1634 
   1635 	s = splvm();
   1636 
   1637 	/* Find a likely context. */
   1638 	cnum = next;
   1639 	do {
   1640 		if (++cnum >= NUMCTX)
   1641 			cnum = MINCTX;
   1642 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1643 
   1644 	/* Now clean it out */
   1645 oops:
   1646 	if (cnum < MINCTX)
   1647 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1648 	if (ctx_flush(cnum)) {
   1649 		/* oops -- something's wired. */
   1650 		if (++cnum >= NUMCTX)
   1651 			cnum = MINCTX;
   1652 		goto oops;
   1653 	}
   1654 
   1655 	if (ctxbusy[cnum]) {
   1656 #ifdef DEBUG
   1657 		/* We should identify this pmap and clear it */
   1658 		printf("Warning: stealing context %d\n", cnum);
   1659 #endif
   1660 		ctxbusy[cnum]->pm_ctx = 0;
   1661 	}
   1662 	ctxbusy[cnum] = pm;
   1663 	next = cnum;
   1664 
   1665 	splx(s);
   1666 
   1667 	pm->pm_ctx = cnum;
   1668 
   1669 	return cnum;
   1670 }
   1671 
   1672 /*
   1673  * Give away a context.
   1674  */
   1675 void
   1676 ctx_free(struct pmap *pm)
   1677 {
   1678 	int oldctx;
   1679 
   1680 	oldctx = pm->pm_ctx;
   1681 
   1682 	if (oldctx == 0)
   1683 		panic("ctx_free: freeing kernel context");
   1684 
   1685 #ifdef DIAGNOSTIC
   1686 	if (ctxbusy[oldctx] == 0)
   1687 		printf("ctx_free: freeing free context %d\n", oldctx);
   1688 	if (ctxbusy[oldctx] != pm) {
   1689 		printf("ctx_free: freeing someone esle's context\n "
   1690 		   "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1691 		   oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1692 #ifdef DDB
   1693 		Debugger();
   1694 #endif
   1695 	}
   1696 #endif
   1697 
   1698 	/* We should verify it has not been stolen and reallocated... */
   1699 	ctxbusy[oldctx] = NULL;
   1700 	ctx_flush(oldctx);
   1701 }
   1702 
   1703 #ifdef DEBUG
   1704 /*
   1705  * Test ref/modify handling.
   1706  */
   1707 void pmap_testout(void);
   1708 void
   1709 pmap_testout(void)
   1710 {
   1711 	struct vm_page *pg;
   1712 	vaddr_t va;
   1713 	paddr_t pa;
   1714 	volatile int *loc;
   1715 	int ref, mod, val = 0;
   1716 
   1717 	/* Allocate a page */
   1718 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1719 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1720 	loc = (int *)va;
   1721 
   1722 	pmap_extract(pmap_kernel(), va, &pa);
   1723 	pg = PHYS_TO_VM_PAGE(pa);
   1724 	pmap_unwire(pmap_kernel(), va);
   1725 
   1726 	pmap_kremove(va, PAGE_SIZE);
   1727 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1728 	pmap_update(pmap_kernel());
   1729 
   1730 	/* Now clear reference and modify */
   1731 	ref = pmap_clear_reference(pg);
   1732 	mod = pmap_clear_modify(pg);
   1733 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1734 	    (void *)(u_long)va, (long)pa, ref, mod);
   1735 
   1736 	/* Check it's properly cleared */
   1737 	ref = pmap_is_referenced(pg);
   1738 	mod = pmap_is_modified(pg);
   1739 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1740 
   1741 	/* Reference page */
   1742 	val = *loc;
   1743 
   1744 	ref = pmap_is_referenced(pg);
   1745 	mod = pmap_is_modified(pg);
   1746 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1747 
   1748 	/* Now clear reference and modify */
   1749 	ref = pmap_clear_reference(pg);
   1750 	mod = pmap_clear_modify(pg);
   1751 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1752 	    (void *)(u_long)va, (long)pa, ref, mod);
   1753 
   1754 	/* Modify page */
   1755 	*loc = 1;
   1756 
   1757 	ref = pmap_is_referenced(pg);
   1758 	mod = pmap_is_modified(pg);
   1759 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1760 
   1761 	/* Now clear reference and modify */
   1762 	ref = pmap_clear_reference(pg);
   1763 	mod = pmap_clear_modify(pg);
   1764 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1765 	    (void *)(u_long)va, (long)pa, ref, mod);
   1766 
   1767 	/* Check it's properly cleared */
   1768 	ref = pmap_is_referenced(pg);
   1769 	mod = pmap_is_modified(pg);
   1770 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1771 
   1772 	/* Modify page */
   1773 	*loc = 1;
   1774 
   1775 	ref = pmap_is_referenced(pg);
   1776 	mod = pmap_is_modified(pg);
   1777 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1778 
   1779 	/* Check pmap_protect() */
   1780 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1781 	pmap_update(pmap_kernel());
   1782 	ref = pmap_is_referenced(pg);
   1783 	mod = pmap_is_modified(pg);
   1784 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
   1785 
   1786 	/* Now clear reference and modify */
   1787 	ref = pmap_clear_reference(pg);
   1788 	mod = pmap_clear_modify(pg);
   1789 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1790 	    (void *)(u_long)va, (long)pa, ref, mod);
   1791 
   1792 	/* Reference page */
   1793 	val = *loc;
   1794 
   1795 	ref = pmap_is_referenced(pg);
   1796 	mod = pmap_is_modified(pg);
   1797 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1798 
   1799 	/* Now clear reference and modify */
   1800 	ref = pmap_clear_reference(pg);
   1801 	mod = pmap_clear_modify(pg);
   1802 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1803 	    (void *)(u_long)va, (long)pa, ref, mod);
   1804 
   1805 	/* Modify page */
   1806 #if 0
   1807 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1808 	pmap_update(pmap_kernel());
   1809 #endif
   1810 	*loc = 1;
   1811 
   1812 	ref = pmap_is_referenced(pg);
   1813 	mod = pmap_is_modified(pg);
   1814 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1815 
   1816 	/* Check pmap_protect() */
   1817 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1818 	pmap_update(pmap_kernel());
   1819 	ref = pmap_is_referenced(pg);
   1820 	mod = pmap_is_modified(pg);
   1821 	printf("pmap_protect(): ref %d, mod %d\n", ref, mod);
   1822 
   1823 	/* Now clear reference and modify */
   1824 	ref = pmap_clear_reference(pg);
   1825 	mod = pmap_clear_modify(pg);
   1826 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1827 	    (void *)(u_long)va, (long)pa, ref, mod);
   1828 
   1829 	/* Reference page */
   1830 	val = *loc;
   1831 
   1832 	ref = pmap_is_referenced(pg);
   1833 	mod = pmap_is_modified(pg);
   1834 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1835 
   1836 	/* Now clear reference and modify */
   1837 	ref = pmap_clear_reference(pg);
   1838 	mod = pmap_clear_modify(pg);
   1839 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1840 	    (void *)(u_long)va, (long)pa, ref, mod);
   1841 
   1842 	/* Modify page */
   1843 #if 0
   1844 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1845 	pmap_update(pmap_kernel());
   1846 #endif
   1847 	*loc = 1;
   1848 
   1849 	ref = pmap_is_referenced(pg);
   1850 	mod = pmap_is_modified(pg);
   1851 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1852 
   1853 	/* Check pmap_pag_protect() */
   1854 	pmap_page_protect(pg, VM_PROT_READ);
   1855 	ref = pmap_is_referenced(pg);
   1856 	mod = pmap_is_modified(pg);
   1857 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
   1858 
   1859 	/* Now clear reference and modify */
   1860 	ref = pmap_clear_reference(pg);
   1861 	mod = pmap_clear_modify(pg);
   1862 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1863 	    (void *)(u_long)va, (long)pa, ref, mod);
   1864 
   1865 	/* Reference page */
   1866 	val = *loc;
   1867 
   1868 	ref = pmap_is_referenced(pg);
   1869 	mod = pmap_is_modified(pg);
   1870 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1871 
   1872 	/* Now clear reference and modify */
   1873 	ref = pmap_clear_reference(pg);
   1874 	mod = pmap_clear_modify(pg);
   1875 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1876 	    (void *)(u_long)va, (long)pa, ref, mod);
   1877 
   1878 	/* Modify page */
   1879 #if 0
   1880 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1881 	pmap_update(pmap_kernel());
   1882 #endif
   1883 	*loc = 1;
   1884 
   1885 	ref = pmap_is_referenced(pg);
   1886 	mod = pmap_is_modified(pg);
   1887 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1888 
   1889 	/* Check pmap_pag_protect() */
   1890 	pmap_page_protect(pg, VM_PROT_NONE);
   1891 	ref = pmap_is_referenced(pg);
   1892 	mod = pmap_is_modified(pg);
   1893 	printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod);
   1894 
   1895 	/* Now clear reference and modify */
   1896 	ref = pmap_clear_reference(pg);
   1897 	mod = pmap_clear_modify(pg);
   1898 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1899 	    (void *)(u_long)va, (long)pa, ref, mod);
   1900 
   1901 
   1902 	/* Reference page */
   1903 	val = *loc;
   1904 
   1905 	ref = pmap_is_referenced(pg);
   1906 	mod = pmap_is_modified(pg);
   1907 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1908 
   1909 	/* Now clear reference and modify */
   1910 	ref = pmap_clear_reference(pg);
   1911 	mod = pmap_clear_modify(pg);
   1912 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1913 	    (void *)(u_long)va, (long)pa, ref, mod);
   1914 
   1915 	/* Modify page */
   1916 #if 0
   1917 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1918 	pmap_update(pmap_kernel());
   1919 #endif
   1920 	*loc = 1;
   1921 
   1922 	ref = pmap_is_referenced(pg);
   1923 	mod = pmap_is_modified(pg);
   1924 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1925 
   1926 	/* Unmap page */
   1927 	pmap_remove(pmap_kernel(), va, va+1);
   1928 	pmap_update(pmap_kernel());
   1929 	ref = pmap_is_referenced(pg);
   1930 	mod = pmap_is_modified(pg);
   1931 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1932 
   1933 	/* Now clear reference and modify */
   1934 	ref = pmap_clear_reference(pg);
   1935 	mod = pmap_clear_modify(pg);
   1936 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1937 	    (void *)(u_long)va, (long)pa, ref, mod);
   1938 
   1939 	/* Check it's properly cleared */
   1940 	ref = pmap_is_referenced(pg);
   1941 	mod = pmap_is_modified(pg);
   1942 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1943 
   1944 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1945 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1946 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1947 }
   1948 #endif
   1949