oea_machdep.c revision 1.18 1 1.18 kleink /* $NetBSD: oea_machdep.c,v 1.18 2004/06/23 22:04:44 kleink Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (C) 2002 Matt Thomas
5 1.1 matt * Copyright (C) 1995, 1996 Wolfgang Solfrank.
6 1.1 matt * Copyright (C) 1995, 1996 TooLs GmbH.
7 1.1 matt * All rights reserved.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by TooLs GmbH.
20 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
21 1.1 matt * derived from this software without specific prior written permission.
22 1.1 matt *
23 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
24 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
29 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
31 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
32 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 matt */
34 1.9 lukem
35 1.9 lukem #include <sys/cdefs.h>
36 1.18 kleink __KERNEL_RCSID(0, "$NetBSD: oea_machdep.c,v 1.18 2004/06/23 22:04:44 kleink Exp $");
37 1.1 matt
38 1.1 matt #include "opt_compat_netbsd.h"
39 1.1 matt #include "opt_ddb.h"
40 1.1 matt #include "opt_kgdb.h"
41 1.1 matt #include "opt_ipkdb.h"
42 1.1 matt #include "opt_multiprocessor.h"
43 1.1 matt #include "opt_altivec.h"
44 1.1 matt
45 1.1 matt #include <sys/param.h>
46 1.1 matt #include <sys/buf.h>
47 1.1 matt #include <sys/exec.h>
48 1.1 matt #include <sys/malloc.h>
49 1.1 matt #include <sys/mbuf.h>
50 1.1 matt #include <sys/mount.h>
51 1.1 matt #include <sys/msgbuf.h>
52 1.1 matt #include <sys/proc.h>
53 1.1 matt #include <sys/reboot.h>
54 1.1 matt #include <sys/sa.h>
55 1.1 matt #include <sys/syscallargs.h>
56 1.1 matt #include <sys/syslog.h>
57 1.1 matt #include <sys/systm.h>
58 1.1 matt #include <sys/kernel.h>
59 1.1 matt #include <sys/user.h>
60 1.1 matt #include <sys/boot_flag.h>
61 1.1 matt
62 1.1 matt #include <uvm/uvm_extern.h>
63 1.1 matt
64 1.1 matt #include <net/netisr.h>
65 1.1 matt
66 1.1 matt #ifdef DDB
67 1.1 matt #include <machine/db_machdep.h>
68 1.1 matt #include <ddb/db_extern.h>
69 1.1 matt #endif
70 1.1 matt
71 1.1 matt #ifdef KGDB
72 1.1 matt #include <sys/kgdb.h>
73 1.1 matt #endif
74 1.1 matt
75 1.1 matt #ifdef IPKDB
76 1.1 matt #include <ipkdb/ipkdb.h>
77 1.1 matt #endif
78 1.1 matt
79 1.1 matt #include <powerpc/oea/bat.h>
80 1.1 matt #include <powerpc/oea/sr_601.h>
81 1.1 matt #include <powerpc/trap.h>
82 1.1 matt #include <powerpc/stdarg.h>
83 1.1 matt #include <powerpc/spr.h>
84 1.1 matt #include <powerpc/pte.h>
85 1.1 matt #include <powerpc/altivec.h>
86 1.1 matt #include <machine/powerpc.h>
87 1.1 matt
88 1.1 matt char machine[] = MACHINE; /* from <machine/param.h> */
89 1.1 matt char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
90 1.1 matt
91 1.1 matt struct vm_map *exec_map = NULL;
92 1.1 matt struct vm_map *mb_map = NULL;
93 1.1 matt struct vm_map *phys_map = NULL;
94 1.1 matt
95 1.1 matt /*
96 1.1 matt * Global variables used here and there
97 1.1 matt */
98 1.1 matt extern struct user *proc0paddr;
99 1.1 matt
100 1.1 matt struct bat battable[512];
101 1.2 matt register_t iosrtable[16]; /* I/O segments, for kernel_pmap setup */
102 1.1 matt paddr_t msgbuf_paddr;
103 1.1 matt
104 1.1 matt void
105 1.1 matt oea_init(void (*handler)(void))
106 1.1 matt {
107 1.1 matt extern int trapstart[], trapend[];
108 1.6 matt extern int trapcode[], trapsize[];
109 1.6 matt extern int sctrap[], scsize[];
110 1.6 matt extern int alitrap[], alisize[];
111 1.6 matt extern int dsitrap[], dsisize[];
112 1.6 matt extern int dsi601trap[], dsi601size[];
113 1.6 matt extern int decrint[], decrsize[];
114 1.6 matt extern int tlbimiss[], tlbimsize[];
115 1.6 matt extern int tlbdlmiss[], tlbdlmsize[];
116 1.6 matt extern int tlbdsmiss[], tlbdsmsize[];
117 1.1 matt #if defined(DDB) || defined(KGDB)
118 1.6 matt extern int ddblow[], ddbsize[];
119 1.1 matt #endif
120 1.1 matt #ifdef IPKDB
121 1.6 matt extern int ipkdblow[], ipkdbsize[];
122 1.1 matt #endif
123 1.1 matt #ifdef ALTIVEC
124 1.1 matt register_t msr;
125 1.1 matt #endif
126 1.1 matt uintptr_t exc;
127 1.1 matt register_t scratch;
128 1.1 matt unsigned int cpuvers;
129 1.1 matt size_t size;
130 1.1 matt struct cpu_info * const ci = &cpu_info[0];
131 1.1 matt
132 1.1 matt mtspr(SPR_SPRG0, ci);
133 1.1 matt cpuvers = mfpvr() >> 16;
134 1.1 matt
135 1.1 matt
136 1.1 matt /*
137 1.1 matt * Initialize proc0 and current pcb and pmap pointers.
138 1.1 matt */
139 1.1 matt KASSERT(ci != NULL);
140 1.1 matt KASSERT(curcpu() == ci);
141 1.1 matt lwp0.l_cpu = ci;
142 1.1 matt lwp0.l_addr = proc0paddr;
143 1.1 matt memset(lwp0.l_addr, 0, sizeof *lwp0.l_addr);
144 1.4 matt KASSERT(lwp0.l_cpu != NULL);
145 1.1 matt
146 1.1 matt curpcb = &proc0paddr->u_pcb;
147 1.5 matt memset(curpcb, 0, sizeof(*curpcb));
148 1.5 matt #ifdef ALTIVEC
149 1.5 matt /*
150 1.5 matt * Initialize the vectors with NaNs
151 1.5 matt */
152 1.5 matt for (scratch = 0; scratch < 32; scratch++) {
153 1.5 matt curpcb->pcb_vr.vreg[scratch][0] = 0x7FFFDEAD;
154 1.5 matt curpcb->pcb_vr.vreg[scratch][1] = 0x7FFFDEAD;
155 1.5 matt curpcb->pcb_vr.vreg[scratch][2] = 0x7FFFDEAD;
156 1.5 matt curpcb->pcb_vr.vreg[scratch][3] = 0x7FFFDEAD;
157 1.5 matt }
158 1.5 matt curpcb->pcb_vr.vscr = 0;
159 1.5 matt curpcb->pcb_vr.vrsave = 0;
160 1.5 matt #endif
161 1.12 matt curpm = curpcb->pcb_pm = pmap_kernel();
162 1.1 matt
163 1.1 matt /*
164 1.1 matt * Cause a PGM trap if we branch to 0.
165 1.1 matt */
166 1.1 matt memset(0, 0, 0x100);
167 1.1 matt
168 1.1 matt /*
169 1.1 matt * Set up trap vectors. Don't assume vectors are on 0x100.
170 1.1 matt */
171 1.3 matt for (exc = 0; exc <= EXC_LAST; exc += 0x100) {
172 1.1 matt switch (exc) {
173 1.1 matt default:
174 1.6 matt size = (size_t)trapsize;
175 1.6 matt memcpy((void *)exc, trapcode, size);
176 1.1 matt break;
177 1.1 matt #if 0
178 1.1 matt case EXC_EXI:
179 1.1 matt /*
180 1.1 matt * This one is (potentially) installed during autoconf
181 1.1 matt */
182 1.1 matt break;
183 1.1 matt #endif
184 1.1 matt case EXC_SC:
185 1.6 matt size = (size_t)scsize;
186 1.6 matt memcpy((void *)EXC_SC, sctrap, size);
187 1.1 matt break;
188 1.1 matt case EXC_ALI:
189 1.6 matt size = (size_t)alisize;
190 1.6 matt memcpy((void *)EXC_ALI, alitrap, size);
191 1.1 matt break;
192 1.1 matt case EXC_DSI:
193 1.1 matt if (cpuvers == MPC601) {
194 1.6 matt size = (size_t)dsi601size;
195 1.6 matt memcpy((void *)EXC_DSI, dsi601trap, size);
196 1.1 matt } else {
197 1.6 matt size = (size_t)dsisize;
198 1.6 matt memcpy((void *)EXC_DSI, dsitrap, size);
199 1.1 matt }
200 1.1 matt break;
201 1.1 matt case EXC_DECR:
202 1.6 matt size = (size_t)decrsize;
203 1.6 matt memcpy((void *)EXC_DECR, decrint, size);
204 1.1 matt break;
205 1.1 matt case EXC_IMISS:
206 1.6 matt size = (size_t)tlbimsize;
207 1.6 matt memcpy((void *)EXC_IMISS, tlbimiss, size);
208 1.1 matt break;
209 1.1 matt case EXC_DLMISS:
210 1.6 matt size = (size_t)tlbdlmsize;
211 1.6 matt memcpy((void *)EXC_DLMISS, tlbdlmiss, size);
212 1.1 matt break;
213 1.1 matt case EXC_DSMISS:
214 1.6 matt size = (size_t)tlbdsmsize;
215 1.6 matt memcpy((void *)EXC_DSMISS, tlbdsmiss, size);
216 1.1 matt break;
217 1.1 matt case EXC_PERF:
218 1.6 matt size = (size_t)trapsize;
219 1.6 matt memcpy((void *)EXC_PERF, trapcode, size);
220 1.6 matt memcpy((void *)EXC_VEC, trapcode, size);
221 1.1 matt break;
222 1.1 matt #if defined(DDB) || defined(IPKDB) || defined(KGDB)
223 1.1 matt case EXC_RUNMODETRC:
224 1.1 matt if (cpuvers != MPC601) {
225 1.6 matt size = (size_t)trapsize;
226 1.6 matt memcpy((void *)EXC_RUNMODETRC, trapcode, size);
227 1.1 matt break;
228 1.1 matt }
229 1.1 matt /* FALLTHROUGH */
230 1.1 matt case EXC_PGM:
231 1.1 matt case EXC_TRC:
232 1.1 matt case EXC_BPT:
233 1.1 matt #if defined(DDB) || defined(KGDB)
234 1.6 matt size = (size_t)ddbsize;
235 1.6 matt memcpy((void *)exc, ddblow, size);
236 1.1 matt #if defined(IPKDB)
237 1.1 matt #error "cannot enable IPKDB with DDB or KGDB"
238 1.1 matt #endif
239 1.1 matt #else
240 1.6 matt size = (size_t)ipkdbsize;
241 1.6 matt memcpy((void *)exc, ipkdblow, size);
242 1.1 matt #endif
243 1.1 matt break;
244 1.1 matt #endif /* DDB || IPKDB || KGDB */
245 1.1 matt }
246 1.1 matt #if 0
247 1.1 matt exc += roundup(size, 32);
248 1.1 matt #endif
249 1.1 matt }
250 1.1 matt
251 1.1 matt /*
252 1.1 matt * Get the cache sizes because install_extint calls __syncicache.
253 1.1 matt */
254 1.1 matt cpu_probe_cache();
255 1.1 matt
256 1.1 matt #define MxSPR_MASK 0x7c1fffff
257 1.1 matt #define MFSPR_MQ 0x7c0002a6
258 1.1 matt #define MTSPR_MQ 0x7c0003a6
259 1.17 kleink #define MTSPR_IBAT0L 0x7c1183a6
260 1.17 kleink #define MTSPR_IBAT1L 0x7c1383a6
261 1.1 matt #define NOP 0x60000000
262 1.17 kleink #define B 0x48000000
263 1.18 kleink #define TLBSYNC 0x7c00046c
264 1.18 kleink #define SYNC 0x7c0004ac
265 1.1 matt
266 1.1 matt #ifdef ALTIVEC
267 1.1 matt #define MFSPR_VRSAVE 0x7c0042a6
268 1.1 matt #define MTSPR_VRSAVE 0x7c0043a6
269 1.1 matt
270 1.1 matt /*
271 1.1 matt * Try to set the VEC bit in the MSR. If it doesn't get set, we are
272 1.1 matt * not on a AltiVec capable processor.
273 1.1 matt */
274 1.1 matt __asm __volatile (
275 1.1 matt "mfmsr %0; oris %1,%0,%2@h; mtmsr %1; isync; "
276 1.1 matt "mfmsr %1; mtmsr %0; isync"
277 1.1 matt : "=r"(msr), "=r"(scratch)
278 1.1 matt : "J"(PSL_VEC));
279 1.1 matt
280 1.1 matt /*
281 1.17 kleink * If we aren't on an AltiVec capable processor, we need to zap any of
282 1.17 kleink * the sequences we save/restore the VRSAVE SPR into NOPs.
283 1.1 matt */
284 1.1 matt if (scratch & PSL_VEC) {
285 1.1 matt cpu_altivec = 1;
286 1.1 matt } else {
287 1.1 matt int *ip = trapstart;
288 1.1 matt
289 1.1 matt for (; ip < trapend; ip++) {
290 1.1 matt if ((ip[0] & MxSPR_MASK) == MFSPR_VRSAVE) {
291 1.1 matt ip[0] = NOP; /* mfspr */
292 1.1 matt ip[1] = NOP; /* stw */
293 1.1 matt } else if ((ip[0] & MxSPR_MASK) == MTSPR_VRSAVE) {
294 1.1 matt ip[-1] = NOP; /* lwz */
295 1.1 matt ip[0] = NOP; /* mtspr */
296 1.1 matt }
297 1.1 matt }
298 1.1 matt }
299 1.1 matt #endif
300 1.1 matt
301 1.1 matt /*
302 1.17 kleink * If we aren't on a MPC601 processor, we need to zap any of the
303 1.17 kleink * sequences we save/restore the MQ SPR into NOPs, and skip over the
304 1.17 kleink * sequences where we zap/restore BAT registers on kernel exit/entry.
305 1.1 matt */
306 1.1 matt if (cpuvers != MPC601) {
307 1.1 matt int *ip = trapstart;
308 1.1 matt
309 1.1 matt for (; ip < trapend; ip++) {
310 1.1 matt if ((ip[0] & MxSPR_MASK) == MFSPR_MQ) {
311 1.1 matt ip[0] = NOP; /* mfspr */
312 1.1 matt ip[1] = NOP; /* stw */
313 1.1 matt } else if ((ip[0] & MxSPR_MASK) == MTSPR_MQ) {
314 1.1 matt ip[-1] = NOP; /* lwz */
315 1.1 matt ip[0] = NOP; /* mtspr */
316 1.17 kleink } else if ((ip[0] & MxSPR_MASK) == MTSPR_IBAT0L) {
317 1.17 kleink if ((ip[1] & MxSPR_MASK) == MTSPR_IBAT1L)
318 1.17 kleink ip[-1] = B | 0x14; /* li */
319 1.17 kleink else
320 1.17 kleink ip[-4] = B | 0x24; /* lis */
321 1.1 matt }
322 1.1 matt }
323 1.1 matt }
324 1.1 matt
325 1.17 kleink /*
326 1.17 kleink * Sync the changed instructions.
327 1.17 kleink */
328 1.17 kleink __syncicache((void *) trapstart,
329 1.17 kleink (uintptr_t) trapend - (uintptr_t) trapstart);
330 1.1 matt
331 1.1 matt /*
332 1.18 kleink * If we are on a MPC601 processor, we need to zap any tlbsync
333 1.18 kleink * instructions into sync. This differs from the above in
334 1.18 kleink * examing all kernel text, as opposed to just the exception handling.
335 1.18 kleink * We sync the icache on every instruction found since there are
336 1.18 kleink * only very few of them.
337 1.18 kleink */
338 1.18 kleink if (cpuvers == MPC601) {
339 1.18 kleink extern int kernel_text[], etext[];
340 1.18 kleink int *ip;
341 1.18 kleink
342 1.18 kleink for (ip = kernel_text; ip < etext; ip++)
343 1.18 kleink if (*ip == TLBSYNC) {
344 1.18 kleink *ip = SYNC;
345 1.18 kleink __syncicache(ip, sizeof(*ip));
346 1.18 kleink }
347 1.18 kleink }
348 1.18 kleink
349 1.18 kleink /*
350 1.1 matt * external interrupt handler install
351 1.1 matt */
352 1.1 matt if (handler)
353 1.1 matt oea_install_extint(handler);
354 1.1 matt
355 1.1 matt __syncicache(0, EXC_LAST + 0x100);
356 1.1 matt
357 1.1 matt /*
358 1.1 matt * Now enable translation (and machine checks/recoverable interrupts).
359 1.1 matt */
360 1.1 matt __asm __volatile ("sync; mfmsr %0; ori %0,%0,%1; mtmsr %0; isync"
361 1.1 matt : "=r"(scratch)
362 1.1 matt : "K"(PSL_IR|PSL_DR|PSL_ME|PSL_RI));
363 1.1 matt
364 1.1 matt KASSERT(curcpu() == ci);
365 1.1 matt }
366 1.1 matt
367 1.1 matt void
368 1.1 matt mpc601_ioseg_add(paddr_t pa, register_t len)
369 1.1 matt {
370 1.1 matt const u_int i = pa >> ADDR_SR_SHFT;
371 1.1 matt
372 1.1 matt if (len != BAT_BL_256M)
373 1.1 matt panic("mpc601_ioseg_add: len != 256M");
374 1.1 matt
375 1.1 matt /*
376 1.1 matt * Translate into an I/O segment, load it, and stash away for use
377 1.1 matt * in pmap_bootstrap().
378 1.1 matt */
379 1.1 matt iosrtable[i] = SR601(SR601_Ks, SR601_BUID_MEMFORCED, 0, i);
380 1.1 matt __asm __volatile ("mtsrin %0,%1"
381 1.1 matt :: "r"(iosrtable[i]),
382 1.1 matt "r"(pa));
383 1.1 matt }
384 1.1 matt
385 1.1 matt void
386 1.1 matt oea_iobat_add(paddr_t pa, register_t len)
387 1.1 matt {
388 1.1 matt static int n = 1;
389 1.1 matt const u_int i = pa >> 28;
390 1.1 matt battable[i].batl = BATL(pa, BAT_I|BAT_G, BAT_PP_RW);
391 1.1 matt battable[i].batu = BATU(pa, len, BAT_Vs);
392 1.1 matt
393 1.1 matt /*
394 1.1 matt * Let's start loading the BAT registers.
395 1.1 matt */
396 1.1 matt switch (n) {
397 1.1 matt case 1:
398 1.1 matt __asm __volatile ("mtdbatl 1,%0; mtdbatu 1,%1;"
399 1.1 matt :: "r"(battable[i].batl),
400 1.1 matt "r"(battable[i].batu));
401 1.1 matt n = 2;
402 1.1 matt break;
403 1.1 matt case 2:
404 1.1 matt __asm __volatile ("mtdbatl 2,%0; mtdbatu 2,%1;"
405 1.1 matt :: "r"(battable[i].batl),
406 1.1 matt "r"(battable[i].batu));
407 1.1 matt n = 3;
408 1.1 matt break;
409 1.1 matt case 3:
410 1.1 matt __asm __volatile ("mtdbatl 3,%0; mtdbatu 3,%1;"
411 1.1 matt :: "r"(battable[i].batl),
412 1.1 matt "r"(battable[i].batu));
413 1.1 matt n = 4;
414 1.1 matt break;
415 1.1 matt default:
416 1.1 matt break;
417 1.3 matt }
418 1.3 matt }
419 1.3 matt
420 1.3 matt void
421 1.3 matt oea_iobat_remove(paddr_t pa)
422 1.3 matt {
423 1.3 matt register_t batu;
424 1.3 matt int i, n;
425 1.3 matt
426 1.3 matt n = pa >> ADDR_SR_SHFT;
427 1.3 matt if (!BAT_VA_MATCH_P(battable[n].batu, pa) ||
428 1.3 matt !BAT_VALID_P(battable[n].batu, PSL_PR))
429 1.3 matt return;
430 1.3 matt battable[n].batl = 0;
431 1.3 matt battable[n].batu = 0;
432 1.3 matt #define BAT_RESET(n) \
433 1.3 matt __asm __volatile("mtdbatu %0,%1; mtdbatl %0,%1" :: "n"(n), "r"(0))
434 1.3 matt #define BATU_GET(n, r) __asm __volatile("mfdbatu %0,%1" : "=r"(r) : "n"(n))
435 1.3 matt
436 1.3 matt for (i=1 ; i<4 ; i++) {
437 1.3 matt switch (i) {
438 1.3 matt case 1:
439 1.3 matt BATU_GET(1, batu);
440 1.3 matt if (BAT_VA_MATCH_P(batu, pa) &&
441 1.3 matt BAT_VALID_P(batu, PSL_PR))
442 1.3 matt BAT_RESET(1);
443 1.3 matt break;
444 1.3 matt case 2:
445 1.3 matt BATU_GET(2, batu);
446 1.3 matt if (BAT_VA_MATCH_P(batu, pa) &&
447 1.3 matt BAT_VALID_P(batu, PSL_PR))
448 1.3 matt BAT_RESET(2);
449 1.3 matt break;
450 1.3 matt case 3:
451 1.3 matt BATU_GET(3, batu);
452 1.3 matt if (BAT_VA_MATCH_P(batu, pa) &&
453 1.3 matt BAT_VALID_P(batu, PSL_PR))
454 1.3 matt BAT_RESET(3);
455 1.3 matt break;
456 1.3 matt default:
457 1.3 matt break;
458 1.3 matt }
459 1.1 matt }
460 1.1 matt }
461 1.1 matt
462 1.1 matt void
463 1.1 matt oea_batinit(paddr_t pa, ...)
464 1.1 matt {
465 1.1 matt struct mem_region *allmem, *availmem, *mp;
466 1.1 matt int i;
467 1.1 matt unsigned int cpuvers;
468 1.7 matt register_t msr = mfmsr();
469 1.1 matt va_list ap;
470 1.1 matt
471 1.1 matt cpuvers = mfpvr() >> 16;
472 1.1 matt
473 1.1 matt /*
474 1.1 matt * Initialize BAT registers to unmapped to not generate
475 1.1 matt * overlapping mappings below.
476 1.1 matt *
477 1.1 matt * The 601's implementation differs in the Valid bit being situated
478 1.1 matt * in the lower BAT register, and in being a unified BAT only whose
479 1.1 matt * four entries are accessed through the IBAT[0-3] SPRs.
480 1.1 matt *
481 1.1 matt * Also, while the 601 does distinguish between supervisor/user
482 1.14 uebayasi * protection keys, it does _not_ distinguish between validity in
483 1.14 uebayasi * supervisor/user mode.
484 1.1 matt */
485 1.7 matt if ((msr & (PSL_IR|PSL_DR)) == 0) {
486 1.7 matt if (cpuvers == MPC601) {
487 1.7 matt __asm __volatile ("mtibatl 0,%0" :: "r"(0));
488 1.7 matt __asm __volatile ("mtibatl 1,%0" :: "r"(0));
489 1.7 matt __asm __volatile ("mtibatl 2,%0" :: "r"(0));
490 1.7 matt __asm __volatile ("mtibatl 3,%0" :: "r"(0));
491 1.7 matt } else {
492 1.7 matt __asm __volatile ("mtibatu 0,%0" :: "r"(0));
493 1.7 matt __asm __volatile ("mtibatu 1,%0" :: "r"(0));
494 1.7 matt __asm __volatile ("mtibatu 2,%0" :: "r"(0));
495 1.7 matt __asm __volatile ("mtibatu 3,%0" :: "r"(0));
496 1.7 matt __asm __volatile ("mtdbatu 0,%0" :: "r"(0));
497 1.7 matt __asm __volatile ("mtdbatu 1,%0" :: "r"(0));
498 1.7 matt __asm __volatile ("mtdbatu 2,%0" :: "r"(0));
499 1.7 matt __asm __volatile ("mtdbatu 3,%0" :: "r"(0));
500 1.7 matt }
501 1.1 matt }
502 1.1 matt
503 1.1 matt /*
504 1.1 matt * Set up BAT to map physical memory
505 1.1 matt */
506 1.1 matt if (cpuvers == MPC601) {
507 1.1 matt /*
508 1.1 matt * Set up battable to map the lowest 256 MB area.
509 1.1 matt * Map the lowest 32 MB area via BAT[0-3];
510 1.1 matt * BAT[01] are fixed, BAT[23] are floating.
511 1.1 matt */
512 1.1 matt for (i = 0; i < 32; i++) {
513 1.1 matt battable[i].batl = BATL601(i << 23,
514 1.1 matt BAT601_BSM_8M, BAT601_V);
515 1.1 matt battable[i].batu = BATU601(i << 23,
516 1.1 matt BAT601_M, BAT601_Ku, BAT601_PP_NONE);
517 1.1 matt }
518 1.1 matt __asm __volatile ("mtibatu 0,%1; mtibatl 0,%0"
519 1.1 matt :: "r"(battable[0x00000000 >> 23].batl),
520 1.1 matt "r"(battable[0x00000000 >> 23].batu));
521 1.1 matt __asm __volatile ("mtibatu 1,%1; mtibatl 1,%0"
522 1.1 matt :: "r"(battable[0x00800000 >> 23].batl),
523 1.1 matt "r"(battable[0x00800000 >> 23].batu));
524 1.1 matt __asm __volatile ("mtibatu 2,%1; mtibatl 2,%0"
525 1.1 matt :: "r"(battable[0x01000000 >> 23].batl),
526 1.1 matt "r"(battable[0x01000000 >> 23].batu));
527 1.1 matt __asm __volatile ("mtibatu 3,%1; mtibatl 3,%0"
528 1.1 matt :: "r"(battable[0x01800000 >> 23].batl),
529 1.1 matt "r"(battable[0x01800000 >> 23].batu));
530 1.1 matt } else {
531 1.1 matt /*
532 1.1 matt * Set up BAT0 to only map the lowest 256 MB area
533 1.1 matt */
534 1.1 matt battable[0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
535 1.1 matt battable[0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
536 1.1 matt
537 1.1 matt __asm __volatile ("mtibatl 0,%0; mtibatu 0,%1;"
538 1.1 matt "mtdbatl 0,%0; mtdbatu 0,%1;"
539 1.1 matt :: "r"(battable[0].batl), "r"(battable[0].batu));
540 1.1 matt }
541 1.1 matt
542 1.1 matt /*
543 1.1 matt * Now setup other fixed bat registers
544 1.1 matt *
545 1.1 matt * Note that we still run in real mode, and the BAT
546 1.1 matt * registers were cleared above.
547 1.1 matt */
548 1.1 matt
549 1.1 matt va_start(ap, pa);
550 1.1 matt
551 1.1 matt /*
552 1.1 matt * Add any I/O BATs specificed;
553 1.1 matt * use I/O segments on the BAT-starved 601.
554 1.1 matt */
555 1.1 matt if (cpuvers == MPC601) {
556 1.1 matt while (pa != 0) {
557 1.1 matt register_t len = va_arg(ap, register_t);
558 1.1 matt mpc601_ioseg_add(pa, len);
559 1.1 matt pa = va_arg(ap, paddr_t);
560 1.1 matt }
561 1.1 matt } else {
562 1.1 matt while (pa != 0) {
563 1.1 matt register_t len = va_arg(ap, register_t);
564 1.1 matt oea_iobat_add(pa, len);
565 1.1 matt pa = va_arg(ap, paddr_t);
566 1.1 matt }
567 1.1 matt }
568 1.1 matt
569 1.1 matt va_end(ap);
570 1.1 matt
571 1.1 matt /*
572 1.1 matt * Set up battable to map all RAM regions.
573 1.1 matt * This is here because mem_regions() call needs bat0 set up.
574 1.1 matt */
575 1.1 matt mem_regions(&allmem, &availmem);
576 1.1 matt if (cpuvers == MPC601) {
577 1.1 matt for (mp = allmem; mp->size; mp++) {
578 1.1 matt paddr_t pa = mp->start & 0xff800000;
579 1.1 matt paddr_t end = mp->start + mp->size;
580 1.1 matt
581 1.1 matt do {
582 1.1 matt u_int i = pa >> 23;
583 1.1 matt
584 1.1 matt battable[i].batl =
585 1.1 matt BATL601(pa, BAT601_BSM_8M, BAT601_V);
586 1.1 matt battable[i].batu =
587 1.1 matt BATU601(pa, BAT601_M, BAT601_Ku, BAT601_PP_NONE);
588 1.1 matt pa += (1 << 23);
589 1.1 matt } while (pa < end);
590 1.1 matt }
591 1.1 matt } else {
592 1.1 matt for (mp = allmem; mp->size; mp++) {
593 1.1 matt paddr_t pa = mp->start & 0xf0000000;
594 1.1 matt paddr_t end = mp->start + mp->size;
595 1.1 matt
596 1.1 matt do {
597 1.1 matt u_int i = pa >> 28;
598 1.1 matt
599 1.1 matt battable[i].batl =
600 1.1 matt BATL(pa, BAT_M, BAT_PP_RW);
601 1.1 matt battable[i].batu =
602 1.1 matt BATU(pa, BAT_BL_256M, BAT_Vs);
603 1.1 matt pa += SEGMENT_LENGTH;
604 1.1 matt } while (pa < end);
605 1.1 matt }
606 1.1 matt }
607 1.1 matt }
608 1.1 matt
609 1.1 matt void
610 1.1 matt oea_install_extint(void (*handler)(void))
611 1.1 matt {
612 1.6 matt extern int extint[], extsize[];
613 1.6 matt extern int extint_call[];
614 1.6 matt uintptr_t offset = (uintptr_t)handler - (uintptr_t)extint_call;
615 1.1 matt int omsr, msr;
616 1.1 matt
617 1.1 matt #ifdef DIAGNOSTIC
618 1.1 matt if (offset > 0x1ffffff)
619 1.1 matt panic("install_extint: %p too far away (%#lx)", handler,
620 1.1 matt (unsigned long) offset);
621 1.1 matt #endif
622 1.1 matt __asm __volatile ("mfmsr %0; andi. %1,%0,%2; mtmsr %1"
623 1.1 matt : "=r" (omsr), "=r" (msr)
624 1.1 matt : "K" ((u_short)~PSL_EE));
625 1.6 matt extint_call[0] = (extint_call[0] & 0xfc000003) | offset;
626 1.6 matt memcpy((void *)EXC_EXI, extint, (size_t)extsize);
627 1.6 matt __syncicache((void *)extint_call, sizeof extint_call[0]);
628 1.6 matt __syncicache((void *)EXC_EXI, (int)extsize);
629 1.1 matt __asm __volatile ("mtmsr %0" :: "r"(omsr));
630 1.1 matt }
631 1.1 matt
632 1.1 matt /*
633 1.1 matt * Machine dependent startup code.
634 1.1 matt */
635 1.1 matt void
636 1.1 matt oea_startup(const char *model)
637 1.1 matt {
638 1.1 matt uintptr_t sz;
639 1.1 matt caddr_t v;
640 1.1 matt vaddr_t minaddr, maxaddr;
641 1.1 matt char pbuf[9];
642 1.13 pk u_int i;
643 1.1 matt
644 1.1 matt KASSERT(curcpu() != NULL);
645 1.1 matt KASSERT(lwp0.l_cpu != NULL);
646 1.4 matt KASSERT(curcpu()->ci_intstk != 0);
647 1.4 matt KASSERT(curcpu()->ci_intrdepth == -1);
648 1.1 matt
649 1.1 matt /*
650 1.1 matt * If the msgbuf is not in segment 0, allocate KVA for it and access
651 1.1 matt * it via mapped pages. [This prevents unneeded BAT switches.]
652 1.1 matt */
653 1.1 matt sz = round_page(MSGBUFSIZE);
654 1.1 matt v = (caddr_t) msgbuf_paddr;
655 1.1 matt if (msgbuf_paddr + sz > SEGMENT_LENGTH) {
656 1.1 matt minaddr = 0;
657 1.1 matt if (uvm_map(kernel_map, &minaddr, sz,
658 1.1 matt NULL, UVM_UNKNOWN_OFFSET, 0,
659 1.1 matt UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE,
660 1.1 matt UVM_INH_NONE, UVM_ADV_NORMAL, 0)) != 0)
661 1.1 matt panic("startup: cannot allocate VM for msgbuf");
662 1.1 matt v = (caddr_t)minaddr;
663 1.8 thorpej for (i = 0; i < sz; i += PAGE_SIZE) {
664 1.1 matt pmap_kenter_pa(minaddr + i, msgbuf_paddr + i,
665 1.1 matt VM_PROT_READ|VM_PROT_WRITE);
666 1.1 matt }
667 1.1 matt pmap_update(pmap_kernel());
668 1.1 matt }
669 1.1 matt initmsgbuf(v, sz);
670 1.1 matt
671 1.1 matt printf("%s", version);
672 1.1 matt if (model != NULL)
673 1.1 matt printf("Model: %s\n", model);
674 1.1 matt cpu_identify(NULL, 0);
675 1.1 matt
676 1.1 matt format_bytes(pbuf, sizeof(pbuf), ctob((u_int)physmem));
677 1.1 matt printf("total memory = %s\n", pbuf);
678 1.1 matt
679 1.1 matt /*
680 1.1 matt * Allocate away the pages that map to 0xDEA[CDE]xxxx. Do this after
681 1.1 matt * the bufpages are allocated in case they overlap since it's not
682 1.1 matt * fatal if we can't allocate these.
683 1.1 matt */
684 1.4 matt if (KERNEL_SR == 13 || KERNEL2_SR == 14) {
685 1.4 matt int error;
686 1.4 matt minaddr = 0xDEAC0000;
687 1.4 matt error = uvm_map(kernel_map, &minaddr, 0x30000,
688 1.4 matt NULL, UVM_UNKNOWN_OFFSET, 0,
689 1.4 matt UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
690 1.4 matt UVM_ADV_NORMAL, UVM_FLAG_FIXED));
691 1.4 matt if (error != 0 || minaddr != 0xDEAC0000)
692 1.4 matt printf("oea_startup: failed to allocate DEAD "
693 1.4 matt "ZONE: error=%d\n", error);
694 1.1 matt }
695 1.13 pk
696 1.4 matt minaddr = 0;
697 1.1 matt /*
698 1.1 matt * Allocate a submap for exec arguments. This map effectively
699 1.1 matt * limits the number of processes exec'ing at any time. These
700 1.1 matt * submaps will be allocated after the dead zone.
701 1.1 matt */
702 1.1 matt exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
703 1.1 matt 16*NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
704 1.1 matt
705 1.1 matt /*
706 1.1 matt * Allocate a submap for physio
707 1.1 matt */
708 1.1 matt phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
709 1.1 matt VM_PHYS_SIZE, 0, FALSE, NULL);
710 1.1 matt
711 1.1 matt #ifndef PMAP_MAP_POOLPAGE
712 1.1 matt /*
713 1.1 matt * No need to allocate an mbuf cluster submap. Mbuf clusters
714 1.1 matt * are allocated via the pool allocator, and we use direct-mapped
715 1.1 matt * pool pages.
716 1.1 matt */
717 1.1 matt mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
718 1.1 matt mclbytes*nmbclusters, VM_MAP_INTRSAFE, FALSE, NULL);
719 1.1 matt #endif
720 1.1 matt
721 1.1 matt format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
722 1.1 matt printf("avail memory = %s\n", pbuf);
723 1.1 matt }
724 1.1 matt
725 1.1 matt /*
726 1.1 matt * Crash dump handling.
727 1.1 matt */
728 1.1 matt
729 1.1 matt void
730 1.1 matt oea_dumpsys(void)
731 1.1 matt {
732 1.1 matt printf("dumpsys: TBD\n");
733 1.1 matt }
734 1.1 matt
735 1.15 matt #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
736 1.1 matt /*
737 1.1 matt * Soft networking interrupts.
738 1.1 matt */
739 1.1 matt void
740 1.1 matt softnet(int pendisr)
741 1.1 matt {
742 1.1 matt #define DONETISR(bit, fn) do { \
743 1.1 matt if (pendisr & (1 << bit)) \
744 1.1 matt (*fn)(); \
745 1.1 matt } while (0)
746 1.1 matt
747 1.1 matt #include <net/netisr_dispatch.h>
748 1.1 matt
749 1.1 matt #undef DONETISR
750 1.1 matt }
751 1.15 matt #endif
752 1.1 matt
753 1.1 matt /*
754 1.1 matt * Convert kernel VA to physical address
755 1.1 matt */
756 1.1 matt paddr_t
757 1.1 matt kvtop(caddr_t addr)
758 1.1 matt {
759 1.1 matt vaddr_t va;
760 1.1 matt paddr_t pa;
761 1.1 matt uintptr_t off;
762 1.1 matt extern char end[];
763 1.1 matt
764 1.1 matt if (addr < end)
765 1.1 matt return (paddr_t)addr;
766 1.1 matt
767 1.1 matt va = trunc_page((vaddr_t)addr);
768 1.1 matt off = (uintptr_t)addr - va;
769 1.1 matt
770 1.1 matt if (pmap_extract(pmap_kernel(), va, &pa) == FALSE) {
771 1.1 matt /*printf("kvtop: zero page frame (va=0x%x)\n", addr);*/
772 1.1 matt return (paddr_t)addr;
773 1.1 matt }
774 1.1 matt
775 1.1 matt return(pa + off);
776 1.1 matt }
777 1.1 matt
778 1.1 matt /*
779 1.1 matt * Allocate vm space and mapin the I/O address
780 1.1 matt */
781 1.1 matt void *
782 1.1 matt mapiodev(paddr_t pa, psize_t len)
783 1.1 matt {
784 1.1 matt paddr_t faddr;
785 1.1 matt vaddr_t taddr, va;
786 1.1 matt int off;
787 1.1 matt
788 1.1 matt faddr = trunc_page(pa);
789 1.1 matt off = pa - faddr;
790 1.1 matt len = round_page(off + len);
791 1.1 matt va = taddr = uvm_km_valloc(kernel_map, len);
792 1.1 matt
793 1.1 matt if (va == 0)
794 1.1 matt return NULL;
795 1.1 matt
796 1.8 thorpej for (; len > 0; len -= PAGE_SIZE) {
797 1.1 matt pmap_kenter_pa(taddr, faddr, VM_PROT_READ | VM_PROT_WRITE);
798 1.8 thorpej faddr += PAGE_SIZE;
799 1.8 thorpej taddr += PAGE_SIZE;
800 1.1 matt }
801 1.1 matt pmap_update(pmap_kernel());
802 1.1 matt return (void *)(va + off);
803 1.1 matt }
804