Home | History | Annotate | Line # | Download | only in oea
oea_machdep.c revision 1.2
      1  1.2  matt /*	$NetBSD: oea_machdep.c,v 1.2 2003/02/05 07:05:20 matt Exp $	*/
      2  1.1  matt 
      3  1.1  matt /*
      4  1.1  matt  * Copyright (C) 2002 Matt Thomas
      5  1.1  matt  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
      6  1.1  matt  * Copyright (C) 1995, 1996 TooLs GmbH.
      7  1.1  matt  * All rights reserved.
      8  1.1  matt  *
      9  1.1  matt  * Redistribution and use in source and binary forms, with or without
     10  1.1  matt  * modification, are permitted provided that the following conditions
     11  1.1  matt  * are met:
     12  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     13  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     14  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  matt  *    documentation and/or other materials provided with the distribution.
     17  1.1  matt  * 3. All advertising materials mentioning features or use of this software
     18  1.1  matt  *    must display the following acknowledgement:
     19  1.1  matt  *	This product includes software developed by TooLs GmbH.
     20  1.1  matt  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     21  1.1  matt  *    derived from this software without specific prior written permission.
     22  1.1  matt  *
     23  1.1  matt  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     24  1.1  matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  1.1  matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  1.1  matt  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     27  1.1  matt  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     28  1.1  matt  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     29  1.1  matt  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     30  1.1  matt  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     31  1.1  matt  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     32  1.1  matt  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  1.1  matt  */
     34  1.1  matt 
     35  1.1  matt #include "opt_compat_netbsd.h"
     36  1.1  matt #include "opt_ddb.h"
     37  1.1  matt #include "opt_kgdb.h"
     38  1.1  matt #include "opt_ipkdb.h"
     39  1.1  matt #include "opt_multiprocessor.h"
     40  1.1  matt #include "opt_altivec.h"
     41  1.1  matt 
     42  1.1  matt #include <sys/param.h>
     43  1.1  matt #include <sys/buf.h>
     44  1.1  matt #include <sys/exec.h>
     45  1.1  matt #include <sys/malloc.h>
     46  1.1  matt #include <sys/mbuf.h>
     47  1.1  matt #include <sys/mount.h>
     48  1.1  matt #include <sys/msgbuf.h>
     49  1.1  matt #include <sys/proc.h>
     50  1.1  matt #include <sys/reboot.h>
     51  1.1  matt #include <sys/sa.h>
     52  1.1  matt #include <sys/syscallargs.h>
     53  1.1  matt #include <sys/syslog.h>
     54  1.1  matt #include <sys/systm.h>
     55  1.1  matt #include <sys/kernel.h>
     56  1.1  matt #include <sys/user.h>
     57  1.1  matt #include <sys/boot_flag.h>
     58  1.1  matt 
     59  1.1  matt #include <uvm/uvm_extern.h>
     60  1.1  matt 
     61  1.1  matt #include <net/netisr.h>
     62  1.1  matt 
     63  1.1  matt #ifdef DDB
     64  1.1  matt #include <machine/db_machdep.h>
     65  1.1  matt #include <ddb/db_extern.h>
     66  1.1  matt #endif
     67  1.1  matt 
     68  1.1  matt #ifdef KGDB
     69  1.1  matt #include <sys/kgdb.h>
     70  1.1  matt #endif
     71  1.1  matt 
     72  1.1  matt #ifdef IPKDB
     73  1.1  matt #include <ipkdb/ipkdb.h>
     74  1.1  matt #endif
     75  1.1  matt 
     76  1.1  matt #include <powerpc/oea/bat.h>
     77  1.1  matt #include <powerpc/oea/sr_601.h>
     78  1.1  matt #include <powerpc/trap.h>
     79  1.1  matt #include <powerpc/stdarg.h>
     80  1.1  matt #include <powerpc/spr.h>
     81  1.1  matt #include <powerpc/pte.h>
     82  1.1  matt #include <powerpc/altivec.h>
     83  1.1  matt #include <machine/powerpc.h>
     84  1.1  matt 
     85  1.1  matt char machine[] = MACHINE;		/* from <machine/param.h> */
     86  1.1  matt char machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
     87  1.1  matt 
     88  1.1  matt struct vm_map *exec_map = NULL;
     89  1.1  matt struct vm_map *mb_map = NULL;
     90  1.1  matt struct vm_map *phys_map = NULL;
     91  1.1  matt 
     92  1.1  matt /*
     93  1.1  matt  * Global variables used here and there
     94  1.1  matt  */
     95  1.1  matt extern struct user *proc0paddr;
     96  1.1  matt 
     97  1.1  matt struct bat battable[512];
     98  1.2  matt register_t iosrtable[16];	/* I/O segments, for kernel_pmap setup */
     99  1.1  matt paddr_t msgbuf_paddr;
    100  1.1  matt 
    101  1.1  matt void
    102  1.1  matt oea_init(void (*handler)(void))
    103  1.1  matt {
    104  1.1  matt 	extern int trapstart[], trapend[];
    105  1.1  matt 	extern int trapcode, trapsize;
    106  1.1  matt 	extern int sctrap, scsize;
    107  1.1  matt 	extern int alitrap, alisize;
    108  1.1  matt 	extern int dsitrap, dsisize;
    109  1.1  matt 	extern int dsi601trap, dsi601size;
    110  1.1  matt 	extern int decrint, decrsize;
    111  1.1  matt 	extern int tlbimiss, tlbimsize;
    112  1.1  matt 	extern int tlbdlmiss, tlbdlmsize;
    113  1.1  matt 	extern int tlbdsmiss, tlbdsmsize;
    114  1.1  matt #if defined(DDB) || defined(KGDB)
    115  1.1  matt 	extern int ddblow, ddbsize;
    116  1.1  matt #endif
    117  1.1  matt #ifdef IPKDB
    118  1.1  matt 	extern int ipkdblow, ipkdbsize;
    119  1.1  matt #endif
    120  1.1  matt #ifdef ALTIVEC
    121  1.1  matt 	register_t msr;
    122  1.1  matt #endif
    123  1.1  matt 	uintptr_t exc;
    124  1.1  matt 	register_t scratch;
    125  1.1  matt 	unsigned int cpuvers;
    126  1.1  matt 	size_t size;
    127  1.1  matt 	struct cpu_info * const ci = &cpu_info[0];
    128  1.1  matt 
    129  1.1  matt 	mtspr(SPR_SPRG0, ci);
    130  1.1  matt 	cpuvers = mfpvr() >> 16;
    131  1.1  matt 
    132  1.1  matt 
    133  1.1  matt 	/*
    134  1.1  matt 	 * Initialize proc0 and current pcb and pmap pointers.
    135  1.1  matt 	 */
    136  1.1  matt 	KASSERT(ci != NULL);
    137  1.1  matt 	KASSERT(curcpu() == ci);
    138  1.1  matt 	lwp0.l_cpu = ci;
    139  1.1  matt 	KASSERT(lwp0.l_cpu != NULL);
    140  1.1  matt 	lwp0.l_addr = proc0paddr;
    141  1.1  matt 	memset(lwp0.l_addr, 0, sizeof *lwp0.l_addr);
    142  1.1  matt 
    143  1.1  matt 	curpcb = &proc0paddr->u_pcb;
    144  1.1  matt 	curpm = curpcb->pcb_pmreal = curpcb->pcb_pm = pmap_kernel();
    145  1.1  matt 
    146  1.1  matt 	/*
    147  1.1  matt 	 * Cause a PGM trap if we branch to 0.
    148  1.1  matt 	 */
    149  1.1  matt 	memset(0, 0, 0x100);
    150  1.1  matt 
    151  1.1  matt 	/*
    152  1.1  matt 	 * Set up trap vectors.  Don't assume vectors are on 0x100.
    153  1.1  matt 	 */
    154  1.1  matt 	for (exc = EXC_RST; exc <= EXC_LAST; exc += 0x100) {
    155  1.1  matt 		switch (exc) {
    156  1.1  matt 		default:
    157  1.1  matt 			size = (size_t)&trapsize;
    158  1.1  matt 			memcpy((void *)exc, &trapcode, size);
    159  1.1  matt 			break;
    160  1.1  matt #if 0
    161  1.1  matt 		case EXC_EXI:
    162  1.1  matt 			/*
    163  1.1  matt 			 * This one is (potentially) installed during autoconf
    164  1.1  matt 			 */
    165  1.1  matt 			break;
    166  1.1  matt #endif
    167  1.1  matt 		case EXC_SC:
    168  1.1  matt 			size = (size_t)&scsize;
    169  1.1  matt 			memcpy((void *)EXC_SC, &sctrap, size);
    170  1.1  matt 			break;
    171  1.1  matt 		case EXC_ALI:
    172  1.1  matt 			size = (size_t)&alisize;
    173  1.1  matt 			memcpy((void *)EXC_ALI, &alitrap, size);
    174  1.1  matt 			break;
    175  1.1  matt 		case EXC_DSI:
    176  1.1  matt 			if (cpuvers == MPC601) {
    177  1.1  matt 				size = (size_t)&dsi601size;
    178  1.1  matt 				memcpy((void *)EXC_DSI, &dsi601trap, size);
    179  1.1  matt 			} else {
    180  1.1  matt 				size = (size_t)&dsisize;
    181  1.1  matt 				memcpy((void *)EXC_DSI, &dsitrap, size);
    182  1.1  matt 			}
    183  1.1  matt 			break;
    184  1.1  matt 		case EXC_DECR:
    185  1.1  matt 			size = (size_t)&decrsize;
    186  1.1  matt 			memcpy((void *)EXC_DECR, &decrint, size);
    187  1.1  matt 			break;
    188  1.1  matt 		case EXC_IMISS:
    189  1.1  matt 			size = (size_t)&tlbimsize;
    190  1.1  matt 			memcpy((void *)EXC_IMISS, &tlbimiss, size);
    191  1.1  matt 			break;
    192  1.1  matt 		case EXC_DLMISS:
    193  1.1  matt 			size = (size_t)&tlbdlmsize;
    194  1.1  matt 			memcpy((void *)EXC_DLMISS, &tlbdlmiss, size);
    195  1.1  matt 			break;
    196  1.1  matt 		case EXC_DSMISS:
    197  1.1  matt 			size = (size_t)&tlbdsmsize;
    198  1.1  matt 			memcpy((void *)EXC_DSMISS, &tlbdsmiss, size);
    199  1.1  matt 			break;
    200  1.1  matt 		case EXC_PERF:
    201  1.1  matt 			size = (size_t)&trapsize;
    202  1.1  matt 			memcpy((void *)EXC_PERF, &trapcode, size);
    203  1.1  matt 			memcpy((void *)EXC_VEC,  &trapcode, size);
    204  1.1  matt 			break;
    205  1.1  matt #if defined(DDB) || defined(IPKDB) || defined(KGDB)
    206  1.1  matt 		case EXC_RUNMODETRC:
    207  1.1  matt 			if (cpuvers != MPC601) {
    208  1.1  matt 				size = (size_t)&trapsize;
    209  1.1  matt 				memcpy((void *)EXC_RUNMODETRC, &trapcode, size);
    210  1.1  matt 				break;
    211  1.1  matt 			}
    212  1.1  matt 			/* FALLTHROUGH */
    213  1.1  matt 		case EXC_PGM:
    214  1.1  matt 		case EXC_TRC:
    215  1.1  matt 		case EXC_BPT:
    216  1.1  matt #if defined(DDB) || defined(KGDB)
    217  1.1  matt 			size = (size_t)&ddbsize;
    218  1.1  matt 			memcpy((void *)exc, &ddblow, size);
    219  1.1  matt #if defined(IPKDB)
    220  1.1  matt #error "cannot enable IPKDB with DDB or KGDB"
    221  1.1  matt #endif
    222  1.1  matt #else
    223  1.1  matt 			size = (size_t)&ipkdbsize;
    224  1.1  matt 			memcpy((void *)exc, &ipkdblow, size);
    225  1.1  matt #endif
    226  1.1  matt 			break;
    227  1.1  matt #endif /* DDB || IPKDB || KGDB */
    228  1.1  matt 		}
    229  1.1  matt #if 0
    230  1.1  matt 		exc += roundup(size, 32);
    231  1.1  matt #endif
    232  1.1  matt 	}
    233  1.1  matt 
    234  1.1  matt 	/*
    235  1.1  matt 	 * Get the cache sizes because install_extint calls __syncicache.
    236  1.1  matt 	 */
    237  1.1  matt 	cpu_probe_cache();
    238  1.1  matt 
    239  1.1  matt #define	MxSPR_MASK	0x7c1fffff
    240  1.1  matt #define	MFSPR_MQ	0x7c0002a6
    241  1.1  matt #define	MTSPR_MQ	0x7c0003a6
    242  1.1  matt #define	NOP		0x60000000
    243  1.1  matt 
    244  1.1  matt #ifdef ALTIVEC
    245  1.1  matt #define	MFSPR_VRSAVE	0x7c0042a6
    246  1.1  matt #define	MTSPR_VRSAVE	0x7c0043a6
    247  1.1  matt 
    248  1.1  matt 	/*
    249  1.1  matt 	 * Try to set the VEC bit in the MSR.  If it doesn't get set, we are
    250  1.1  matt 	 * not on a AltiVec capable processor.
    251  1.1  matt 	 */
    252  1.1  matt 	__asm __volatile (
    253  1.1  matt 	    "mfmsr %0; oris %1,%0,%2@h; mtmsr %1; isync; "
    254  1.1  matt 		"mfmsr %1; mtmsr %0; isync"
    255  1.1  matt 	    :	"=r"(msr), "=r"(scratch)
    256  1.1  matt 	    :	"J"(PSL_VEC));
    257  1.1  matt 
    258  1.1  matt 	/*
    259  1.1  matt 	 * If we aren't on an AltiVec capable processor, we to need zap any of
    260  1.1  matt 	 * sequences we save/restore the VRSAVE SPR into NOPs.
    261  1.1  matt 	 */
    262  1.1  matt 	if (scratch & PSL_VEC) {
    263  1.1  matt 		cpu_altivec = 1;
    264  1.1  matt 	} else {
    265  1.1  matt 		int *ip = trapstart;
    266  1.1  matt 
    267  1.1  matt 		for (; ip < trapend; ip++) {
    268  1.1  matt 			if ((ip[0] & MxSPR_MASK) == MFSPR_VRSAVE) {
    269  1.1  matt 				ip[0] = NOP;	/* mfspr */
    270  1.1  matt 				ip[1] = NOP;	/* stw */
    271  1.1  matt 			} else if ((ip[0] & MxSPR_MASK) == MTSPR_VRSAVE) {
    272  1.1  matt 				ip[-1] = NOP;	/* lwz */
    273  1.1  matt 				ip[0] = NOP;	/* mtspr */
    274  1.1  matt 			}
    275  1.1  matt 		}
    276  1.1  matt 	}
    277  1.1  matt #endif
    278  1.1  matt 
    279  1.1  matt 	/*
    280  1.1  matt 	 * If we aren't on a MPC601 processor, we to need zap any of
    281  1.1  matt 	 * sequences we save/restore the MQ SPR into NOPs.
    282  1.1  matt 	 */
    283  1.1  matt 	if (cpuvers != MPC601) {
    284  1.1  matt 		int *ip = trapstart;
    285  1.1  matt 
    286  1.1  matt 		for (; ip < trapend; ip++) {
    287  1.1  matt 			if ((ip[0] & MxSPR_MASK) == MFSPR_MQ) {
    288  1.1  matt 				ip[0] = NOP;	/* mfspr */
    289  1.1  matt 				ip[1] = NOP;	/* stw */
    290  1.1  matt 			} else if ((ip[0] & MxSPR_MASK) == MTSPR_MQ) {
    291  1.1  matt 				ip[-1] = NOP;	/* lwz */
    292  1.1  matt 				ip[0] = NOP;	/* mtspr */
    293  1.1  matt 			}
    294  1.1  matt 		}
    295  1.1  matt 	}
    296  1.1  matt 
    297  1.1  matt 	if (!cpu_altivec || cpuvers != MPC601) {
    298  1.1  matt 		/*
    299  1.1  matt 		 * Sync the changed instructions.
    300  1.1  matt 		 */
    301  1.1  matt 		__syncicache((void *) trapstart,
    302  1.1  matt 		    (uintptr_t) trapend - (uintptr_t) trapstart);
    303  1.1  matt 	}
    304  1.1  matt 
    305  1.1  matt 	/*
    306  1.1  matt 	 * external interrupt handler install
    307  1.1  matt 	 */
    308  1.1  matt 	if (handler)
    309  1.1  matt 		oea_install_extint(handler);
    310  1.1  matt 
    311  1.1  matt 	__syncicache(0, EXC_LAST + 0x100);
    312  1.1  matt 
    313  1.1  matt 	/*
    314  1.1  matt 	 * Now enable translation (and machine checks/recoverable interrupts).
    315  1.1  matt 	 */
    316  1.1  matt 	__asm __volatile ("sync; mfmsr %0; ori %0,%0,%1; mtmsr %0; isync"
    317  1.1  matt 	    : "=r"(scratch)
    318  1.1  matt 	    : "K"(PSL_IR|PSL_DR|PSL_ME|PSL_RI));
    319  1.1  matt 
    320  1.1  matt 	KASSERT(curcpu() == ci);
    321  1.1  matt }
    322  1.1  matt 
    323  1.1  matt void
    324  1.1  matt mpc601_ioseg_add(paddr_t pa, register_t len)
    325  1.1  matt {
    326  1.1  matt 	const u_int i = pa >> ADDR_SR_SHFT;
    327  1.1  matt 
    328  1.1  matt 	if (len != BAT_BL_256M)
    329  1.1  matt 		panic("mpc601_ioseg_add: len != 256M");
    330  1.1  matt 
    331  1.1  matt 	/*
    332  1.1  matt 	 * Translate into an I/O segment, load it, and stash away for use
    333  1.1  matt 	 * in pmap_bootstrap().
    334  1.1  matt 	 */
    335  1.1  matt 	iosrtable[i] = SR601(SR601_Ks, SR601_BUID_MEMFORCED, 0, i);
    336  1.1  matt 	__asm __volatile ("mtsrin %0,%1"
    337  1.1  matt 	    ::	"r"(iosrtable[i]),
    338  1.1  matt 		"r"(pa));
    339  1.1  matt }
    340  1.1  matt 
    341  1.1  matt void
    342  1.1  matt oea_iobat_add(paddr_t pa, register_t len)
    343  1.1  matt {
    344  1.1  matt 	static int n = 1;
    345  1.1  matt 	const u_int i = pa >> 28;
    346  1.1  matt 	battable[i].batl = BATL(pa, BAT_I|BAT_G, BAT_PP_RW);
    347  1.1  matt 	battable[i].batu = BATU(pa, len, BAT_Vs);
    348  1.1  matt 
    349  1.1  matt 	/*
    350  1.1  matt 	 * Let's start loading the BAT registers.
    351  1.1  matt 	 */
    352  1.1  matt 	switch (n) {
    353  1.1  matt 	case 1:
    354  1.1  matt 		__asm __volatile ("mtdbatl 1,%0; mtdbatu 1,%1;"
    355  1.1  matt 		    ::	"r"(battable[i].batl),
    356  1.1  matt 			"r"(battable[i].batu));
    357  1.1  matt 		n = 2;
    358  1.1  matt 		break;
    359  1.1  matt 	case 2:
    360  1.1  matt 		__asm __volatile ("mtdbatl 2,%0; mtdbatu 2,%1;"
    361  1.1  matt 		    ::	"r"(battable[i].batl),
    362  1.1  matt 			"r"(battable[i].batu));
    363  1.1  matt 		n = 3;
    364  1.1  matt 		break;
    365  1.1  matt 	case 3:
    366  1.1  matt 		__asm __volatile ("mtdbatl 3,%0; mtdbatu 3,%1;"
    367  1.1  matt 		    ::	"r"(battable[i].batl),
    368  1.1  matt 			"r"(battable[i].batu));
    369  1.1  matt 		n = 4;
    370  1.1  matt 		break;
    371  1.1  matt 	default:
    372  1.1  matt 		break;
    373  1.1  matt 	}
    374  1.1  matt }
    375  1.1  matt 
    376  1.1  matt void
    377  1.1  matt oea_batinit(paddr_t pa, ...)
    378  1.1  matt {
    379  1.1  matt 	struct mem_region *allmem, *availmem, *mp;
    380  1.1  matt 	int i;
    381  1.1  matt 	unsigned int cpuvers;
    382  1.1  matt 	va_list ap;
    383  1.1  matt 
    384  1.1  matt 	cpuvers = mfpvr() >> 16;
    385  1.1  matt 
    386  1.1  matt 	/*
    387  1.1  matt 	 * Initialize BAT registers to unmapped to not generate
    388  1.1  matt 	 * overlapping mappings below.
    389  1.1  matt 	 *
    390  1.1  matt 	 * The 601's implementation differs in the Valid bit being situated
    391  1.1  matt 	 * in the lower BAT register, and in being a unified BAT only whose
    392  1.1  matt 	 * four entries are accessed through the IBAT[0-3] SPRs.
    393  1.1  matt 	 *
    394  1.1  matt 	 * Also, while the 601 does distinguish between supervisor/user
    395  1.1  matt 	 * protection keys, it does _not_ distinguish distinguish between
    396  1.1  matt 	 * validity in supervisor/user mode.
    397  1.1  matt 	 */
    398  1.1  matt 	if (cpuvers == MPC601) {
    399  1.1  matt 		__asm __volatile ("mtibatl 0,%0" :: "r"(0));
    400  1.1  matt 		__asm __volatile ("mtibatl 1,%0" :: "r"(0));
    401  1.1  matt 		__asm __volatile ("mtibatl 2,%0" :: "r"(0));
    402  1.1  matt 		__asm __volatile ("mtibatl 3,%0" :: "r"(0));
    403  1.1  matt 	} else {
    404  1.1  matt 		__asm __volatile ("mtibatu 0,%0" :: "r"(0));
    405  1.1  matt 		__asm __volatile ("mtibatu 1,%0" :: "r"(0));
    406  1.1  matt 		__asm __volatile ("mtibatu 2,%0" :: "r"(0));
    407  1.1  matt 		__asm __volatile ("mtibatu 3,%0" :: "r"(0));
    408  1.1  matt 		__asm __volatile ("mtdbatu 0,%0" :: "r"(0));
    409  1.1  matt 		__asm __volatile ("mtdbatu 1,%0" :: "r"(0));
    410  1.1  matt 		__asm __volatile ("mtdbatu 2,%0" :: "r"(0));
    411  1.1  matt 		__asm __volatile ("mtdbatu 3,%0" :: "r"(0));
    412  1.1  matt 	}
    413  1.1  matt 
    414  1.1  matt 	/*
    415  1.1  matt 	 * Set up BAT to map physical memory
    416  1.1  matt 	 */
    417  1.1  matt 	if (cpuvers == MPC601) {
    418  1.1  matt 		/*
    419  1.1  matt 		 * Set up battable to map the lowest 256 MB area.
    420  1.1  matt 		 * Map the lowest 32 MB area via BAT[0-3];
    421  1.1  matt 		 * BAT[01] are fixed, BAT[23] are floating.
    422  1.1  matt 		 */
    423  1.1  matt 		for (i = 0; i < 32; i++) {
    424  1.1  matt 			battable[i].batl = BATL601(i << 23,
    425  1.1  matt 			   BAT601_BSM_8M, BAT601_V);
    426  1.1  matt 			battable[i].batu = BATU601(i << 23,
    427  1.1  matt 			    BAT601_M, BAT601_Ku, BAT601_PP_NONE);
    428  1.1  matt 		}
    429  1.1  matt 		__asm __volatile ("mtibatu 0,%1; mtibatl 0,%0"
    430  1.1  matt 		    :: "r"(battable[0x00000000 >> 23].batl),
    431  1.1  matt 		       "r"(battable[0x00000000 >> 23].batu));
    432  1.1  matt 		__asm __volatile ("mtibatu 1,%1; mtibatl 1,%0"
    433  1.1  matt 		    :: "r"(battable[0x00800000 >> 23].batl),
    434  1.1  matt 		       "r"(battable[0x00800000 >> 23].batu));
    435  1.1  matt 		__asm __volatile ("mtibatu 2,%1; mtibatl 2,%0"
    436  1.1  matt 		    :: "r"(battable[0x01000000 >> 23].batl),
    437  1.1  matt 		       "r"(battable[0x01000000 >> 23].batu));
    438  1.1  matt 		__asm __volatile ("mtibatu 3,%1; mtibatl 3,%0"
    439  1.1  matt 		    :: "r"(battable[0x01800000 >> 23].batl),
    440  1.1  matt 		       "r"(battable[0x01800000 >> 23].batu));
    441  1.1  matt 	} else {
    442  1.1  matt 		/*
    443  1.1  matt 		 * Set up BAT0 to only map the lowest 256 MB area
    444  1.1  matt 		 */
    445  1.1  matt 		battable[0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
    446  1.1  matt 		battable[0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
    447  1.1  matt 
    448  1.1  matt 		__asm __volatile ("mtibatl 0,%0; mtibatu 0,%1;"
    449  1.1  matt 				  "mtdbatl 0,%0; mtdbatu 0,%1;"
    450  1.1  matt 		    ::	"r"(battable[0].batl), "r"(battable[0].batu));
    451  1.1  matt 	}
    452  1.1  matt 
    453  1.1  matt 	/*
    454  1.1  matt 	 * Now setup other fixed bat registers
    455  1.1  matt 	 *
    456  1.1  matt 	 * Note that we still run in real mode, and the BAT
    457  1.1  matt 	 * registers were cleared above.
    458  1.1  matt 	 */
    459  1.1  matt 
    460  1.1  matt 	va_start(ap, pa);
    461  1.1  matt 
    462  1.1  matt 	/*
    463  1.1  matt 	 * Add any I/O BATs specificed;
    464  1.1  matt 	 * use I/O segments on the BAT-starved 601.
    465  1.1  matt 	 */
    466  1.1  matt 	if (cpuvers == MPC601) {
    467  1.1  matt 		while (pa != 0) {
    468  1.1  matt 			register_t len = va_arg(ap, register_t);
    469  1.1  matt 			mpc601_ioseg_add(pa, len);
    470  1.1  matt 			pa = va_arg(ap, paddr_t);
    471  1.1  matt 		}
    472  1.1  matt 	} else {
    473  1.1  matt 		while (pa != 0) {
    474  1.1  matt 			register_t len = va_arg(ap, register_t);
    475  1.1  matt 			oea_iobat_add(pa, len);
    476  1.1  matt 			pa = va_arg(ap, paddr_t);
    477  1.1  matt 		}
    478  1.1  matt 	}
    479  1.1  matt 
    480  1.1  matt 	va_end(ap);
    481  1.1  matt 
    482  1.1  matt 	/*
    483  1.1  matt 	 * Set up battable to map all RAM regions.
    484  1.1  matt 	 * This is here because mem_regions() call needs bat0 set up.
    485  1.1  matt 	 */
    486  1.1  matt 	mem_regions(&allmem, &availmem);
    487  1.1  matt 	if (cpuvers == MPC601) {
    488  1.1  matt 		for (mp = allmem; mp->size; mp++) {
    489  1.1  matt 			paddr_t pa = mp->start & 0xff800000;
    490  1.1  matt 			paddr_t end = mp->start + mp->size;
    491  1.1  matt 
    492  1.1  matt 			do {
    493  1.1  matt 				u_int i = pa >> 23;
    494  1.1  matt 
    495  1.1  matt 				battable[i].batl =
    496  1.1  matt 				    BATL601(pa, BAT601_BSM_8M, BAT601_V);
    497  1.1  matt 				battable[i].batu =
    498  1.1  matt 				    BATU601(pa, BAT601_M, BAT601_Ku, BAT601_PP_NONE);
    499  1.1  matt 				pa += (1 << 23);
    500  1.1  matt 			} while (pa < end);
    501  1.1  matt 		}
    502  1.1  matt 	} else {
    503  1.1  matt 		for (mp = allmem; mp->size; mp++) {
    504  1.1  matt 			paddr_t pa = mp->start & 0xf0000000;
    505  1.1  matt 			paddr_t end = mp->start + mp->size;
    506  1.1  matt 
    507  1.1  matt 			do {
    508  1.1  matt 				u_int i = pa >> 28;
    509  1.1  matt 
    510  1.1  matt 				battable[i].batl =
    511  1.1  matt 				    BATL(pa, BAT_M, BAT_PP_RW);
    512  1.1  matt 				battable[i].batu =
    513  1.1  matt 				    BATU(pa, BAT_BL_256M, BAT_Vs);
    514  1.1  matt 				pa += SEGMENT_LENGTH;
    515  1.1  matt 			} while (pa < end);
    516  1.1  matt 		}
    517  1.1  matt 	}
    518  1.1  matt }
    519  1.1  matt 
    520  1.1  matt void
    521  1.1  matt oea_install_extint(void (*handler)(void))
    522  1.1  matt {
    523  1.1  matt 	extern int extint, extsize;
    524  1.1  matt 	extern int extint_call;
    525  1.1  matt 	uintptr_t offset = (uintptr_t)handler - (uintptr_t)&extint_call;
    526  1.1  matt 	int omsr, msr;
    527  1.1  matt 
    528  1.1  matt #ifdef	DIAGNOSTIC
    529  1.1  matt 	if (offset > 0x1ffffff)
    530  1.1  matt 		panic("install_extint: %p too far away (%#lx)", handler,
    531  1.1  matt 		    (unsigned long) offset);
    532  1.1  matt #endif
    533  1.1  matt 	__asm __volatile ("mfmsr %0; andi. %1,%0,%2; mtmsr %1"
    534  1.1  matt 	    :	"=r" (omsr), "=r" (msr)
    535  1.1  matt 	    :	"K" ((u_short)~PSL_EE));
    536  1.1  matt 	extint_call = (extint_call & 0xfc000003) | offset;
    537  1.1  matt 	memcpy((void *)EXC_EXI, &extint, (size_t)&extsize);
    538  1.1  matt 	__syncicache((void *)&extint_call, sizeof extint_call);
    539  1.1  matt 	__syncicache((void *)EXC_EXI, (int)&extsize);
    540  1.1  matt 	__asm __volatile ("mtmsr %0" :: "r"(omsr));
    541  1.1  matt }
    542  1.1  matt 
    543  1.1  matt /*
    544  1.1  matt  * Machine dependent startup code.
    545  1.1  matt  */
    546  1.1  matt void
    547  1.1  matt oea_startup(const char *model)
    548  1.1  matt {
    549  1.1  matt 	uintptr_t sz;
    550  1.1  matt 	u_int i;
    551  1.1  matt 	u_long base, residual;
    552  1.1  matt 	int error;
    553  1.1  matt 	caddr_t v;
    554  1.1  matt 	vaddr_t minaddr, maxaddr;
    555  1.1  matt 	char pbuf[9];
    556  1.1  matt 
    557  1.1  matt 	KASSERT(curcpu() != NULL);
    558  1.1  matt 	KASSERT(lwp0.l_cpu != NULL);
    559  1.1  matt 
    560  1.1  matt 	/*
    561  1.1  matt 	 * If the msgbuf is not in segment 0, allocate KVA for it and access
    562  1.1  matt 	 * it via mapped pages.  [This prevents unneeded BAT switches.]
    563  1.1  matt 	 */
    564  1.1  matt         sz = round_page(MSGBUFSIZE);
    565  1.1  matt 	v = (caddr_t) msgbuf_paddr;
    566  1.1  matt 	if (msgbuf_paddr + sz > SEGMENT_LENGTH) {
    567  1.1  matt 		minaddr = 0;
    568  1.1  matt 		if (uvm_map(kernel_map, &minaddr, sz,
    569  1.1  matt 				NULL, UVM_UNKNOWN_OFFSET, 0,
    570  1.1  matt 				UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE,
    571  1.1  matt 				    UVM_INH_NONE, UVM_ADV_NORMAL, 0)) != 0)
    572  1.1  matt 			panic("startup: cannot allocate VM for msgbuf");
    573  1.1  matt 		v = (caddr_t)minaddr;
    574  1.1  matt 		for (i = 0; i < sz; i += NBPG) {
    575  1.1  matt 			pmap_kenter_pa(minaddr + i, msgbuf_paddr + i,
    576  1.1  matt 			    VM_PROT_READ|VM_PROT_WRITE);
    577  1.1  matt 		}
    578  1.1  matt 		pmap_update(pmap_kernel());
    579  1.1  matt 	}
    580  1.1  matt 	initmsgbuf(v, sz);
    581  1.1  matt 
    582  1.1  matt 	printf("%s", version);
    583  1.1  matt 	if (model != NULL)
    584  1.1  matt 		printf("Model: %s\n", model);
    585  1.1  matt 	cpu_identify(NULL, 0);
    586  1.1  matt 
    587  1.1  matt 	format_bytes(pbuf, sizeof(pbuf), ctob((u_int)physmem));
    588  1.1  matt 	printf("total memory = %s\n", pbuf);
    589  1.1  matt 
    590  1.1  matt 	/*
    591  1.1  matt 	 * Find out how much space we need, allocate it,
    592  1.1  matt 	 * and then give everything true virtual addresses.
    593  1.1  matt 	 */
    594  1.1  matt 	sz = (uintptr_t)allocsys(NULL, NULL);
    595  1.1  matt 	if ((v = (caddr_t)uvm_km_zalloc(kernel_map, round_page(sz))) == 0)
    596  1.1  matt 		panic("startup: no room for tables");
    597  1.1  matt 	if (allocsys(v, NULL) - v != sz)
    598  1.1  matt 		panic("startup: table size inconsistency");
    599  1.1  matt 
    600  1.1  matt 	/*
    601  1.1  matt 	 * Now allocate buffers proper.  They are different than the above
    602  1.1  matt 	 * in that they usually occupy more virtual memory than physical.
    603  1.1  matt 	 * Allocate the buffer starting at the top of the kernel VM space.
    604  1.1  matt 	 */
    605  1.1  matt 	sz = MAXBSIZE * nbuf;
    606  1.1  matt 	minaddr = VM_MAX_KERNEL_ADDRESS - round_page(sz);
    607  1.1  matt 	if (uvm_map(kernel_map, &minaddr, round_page(sz),
    608  1.1  matt 		NULL, UVM_UNKNOWN_OFFSET, 0,
    609  1.1  matt 		UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    610  1.1  matt 			    UVM_ADV_NORMAL, 0)) != 0)
    611  1.1  matt 		panic("startup: cannot allocate VM for buffers");
    612  1.1  matt 	buffers = (char *)minaddr;
    613  1.1  matt 	base = bufpages / nbuf;
    614  1.1  matt 	residual = bufpages % nbuf;
    615  1.1  matt 	if (base >= MAXBSIZE) {
    616  1.1  matt 		/* Don't want to alloc more physical mem than ever needed */
    617  1.1  matt 		base = MAXBSIZE;
    618  1.1  matt 		residual = 0;
    619  1.1  matt 	}
    620  1.1  matt 	for (i = 0; i < nbuf; i++) {
    621  1.1  matt 		vsize_t curbufsize;
    622  1.1  matt 		vaddr_t curbuf;
    623  1.1  matt 		struct vm_page *pg;
    624  1.1  matt 
    625  1.1  matt 		curbuf = (vaddr_t)buffers + i * MAXBSIZE;
    626  1.1  matt 		curbufsize = NBPG * (i < residual ? base + 1 : base);
    627  1.1  matt 
    628  1.1  matt 		while (curbufsize) {
    629  1.1  matt 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    630  1.1  matt 			if (pg == NULL)
    631  1.1  matt 				panic("cpu_startup: not enough memory for "
    632  1.1  matt 				    "buffer cache");
    633  1.1  matt 			pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
    634  1.1  matt 			    VM_PROT_READ|VM_PROT_WRITE);
    635  1.1  matt 			curbuf += PAGE_SIZE;
    636  1.1  matt 			curbufsize -= PAGE_SIZE;
    637  1.1  matt 		}
    638  1.1  matt 	}
    639  1.1  matt 	pmap_update(pmap_kernel());
    640  1.1  matt 
    641  1.1  matt 	/*
    642  1.1  matt 	 * Allocate away the pages that map to 0xDEA[CDE]xxxx.  Do this after
    643  1.1  matt 	 * the bufpages are allocated in case they overlap since it's not
    644  1.1  matt 	 * fatal if we can't allocate these.
    645  1.1  matt 	 */
    646  1.1  matt 	minaddr = 0xDEAC0000;
    647  1.1  matt 	error = uvm_map(kernel_map, &minaddr, 0x30000,
    648  1.1  matt 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    649  1.1  matt 	    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    650  1.1  matt 			UVM_ADV_NORMAL, UVM_FLAG_FIXED));
    651  1.1  matt 	if (error != 0 || minaddr != 0xDEAC0000) {
    652  1.1  matt 		printf("oea_startup: failed to allocate DEAD "
    653  1.1  matt 		    "ZONE: error=%d\n", error);
    654  1.1  matt 		minaddr = 0;
    655  1.1  matt 	}
    656  1.1  matt 
    657  1.1  matt 	/*
    658  1.1  matt 	 * Allocate a submap for exec arguments.  This map effectively
    659  1.1  matt 	 * limits the number of processes exec'ing at any time. These
    660  1.1  matt 	 * submaps will be allocated after the dead zone.
    661  1.1  matt 	 */
    662  1.1  matt 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    663  1.1  matt 				 16*NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
    664  1.1  matt 
    665  1.1  matt 	/*
    666  1.1  matt 	 * Allocate a submap for physio
    667  1.1  matt 	 */
    668  1.1  matt 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    669  1.1  matt 				 VM_PHYS_SIZE, 0, FALSE, NULL);
    670  1.1  matt 
    671  1.1  matt #ifndef PMAP_MAP_POOLPAGE
    672  1.1  matt 	/*
    673  1.1  matt 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    674  1.1  matt 	 * are allocated via the pool allocator, and we use direct-mapped
    675  1.1  matt 	 * pool pages.
    676  1.1  matt 	 */
    677  1.1  matt 	mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    678  1.1  matt 	    mclbytes*nmbclusters, VM_MAP_INTRSAFE, FALSE, NULL);
    679  1.1  matt #endif
    680  1.1  matt 
    681  1.1  matt 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    682  1.1  matt 	printf("avail memory = %s\n", pbuf);
    683  1.1  matt 	format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
    684  1.1  matt 	printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
    685  1.1  matt 
    686  1.1  matt 	/*
    687  1.1  matt 	 * Set up the buffers.
    688  1.1  matt 	 */
    689  1.1  matt 	bufinit();
    690  1.1  matt 
    691  1.1  matt #ifdef ALTIVEC
    692  1.1  matt 	if (cpu_altivec)
    693  1.1  matt 		init_vec();
    694  1.1  matt #endif
    695  1.1  matt }
    696  1.1  matt 
    697  1.1  matt /*
    698  1.1  matt  * Crash dump handling.
    699  1.1  matt  */
    700  1.1  matt 
    701  1.1  matt void
    702  1.1  matt oea_dumpsys(void)
    703  1.1  matt {
    704  1.1  matt 	printf("dumpsys: TBD\n");
    705  1.1  matt }
    706  1.1  matt 
    707  1.1  matt /*
    708  1.1  matt  * Soft networking interrupts.
    709  1.1  matt  */
    710  1.1  matt void
    711  1.1  matt softnet(int pendisr)
    712  1.1  matt {
    713  1.1  matt #define DONETISR(bit, fn) do {		\
    714  1.1  matt 	if (pendisr & (1 << bit))	\
    715  1.1  matt 		(*fn)();		\
    716  1.1  matt } while (0)
    717  1.1  matt 
    718  1.1  matt #include <net/netisr_dispatch.h>
    719  1.1  matt 
    720  1.1  matt #undef DONETISR
    721  1.1  matt 
    722  1.1  matt }
    723  1.1  matt 
    724  1.1  matt /*
    725  1.1  matt  * Convert kernel VA to physical address
    726  1.1  matt  */
    727  1.1  matt paddr_t
    728  1.1  matt kvtop(caddr_t addr)
    729  1.1  matt {
    730  1.1  matt 	vaddr_t va;
    731  1.1  matt 	paddr_t pa;
    732  1.1  matt 	uintptr_t off;
    733  1.1  matt 	extern char end[];
    734  1.1  matt 
    735  1.1  matt 	if (addr < end)
    736  1.1  matt 		return (paddr_t)addr;
    737  1.1  matt 
    738  1.1  matt 	va = trunc_page((vaddr_t)addr);
    739  1.1  matt 	off = (uintptr_t)addr - va;
    740  1.1  matt 
    741  1.1  matt 	if (pmap_extract(pmap_kernel(), va, &pa) == FALSE) {
    742  1.1  matt 		/*printf("kvtop: zero page frame (va=0x%x)\n", addr);*/
    743  1.1  matt 		return (paddr_t)addr;
    744  1.1  matt 	}
    745  1.1  matt 
    746  1.1  matt 	return(pa + off);
    747  1.1  matt }
    748  1.1  matt 
    749  1.1  matt /*
    750  1.1  matt  * Allocate vm space and mapin the I/O address
    751  1.1  matt  */
    752  1.1  matt void *
    753  1.1  matt mapiodev(paddr_t pa, psize_t len)
    754  1.1  matt {
    755  1.1  matt 	paddr_t faddr;
    756  1.1  matt 	vaddr_t taddr, va;
    757  1.1  matt 	int off;
    758  1.1  matt 
    759  1.1  matt 	faddr = trunc_page(pa);
    760  1.1  matt 	off = pa - faddr;
    761  1.1  matt 	len = round_page(off + len);
    762  1.1  matt 	va = taddr = uvm_km_valloc(kernel_map, len);
    763  1.1  matt 
    764  1.1  matt 	if (va == 0)
    765  1.1  matt 		return NULL;
    766  1.1  matt 
    767  1.1  matt 	for (; len > 0; len -= NBPG) {
    768  1.1  matt 		pmap_kenter_pa(taddr, faddr, VM_PROT_READ | VM_PROT_WRITE);
    769  1.1  matt 		faddr += NBPG;
    770  1.1  matt 		taddr += NBPG;
    771  1.1  matt 	}
    772  1.1  matt 	pmap_update(pmap_kernel());
    773  1.1  matt 	return (void *)(va + off);
    774  1.1  matt }
    775