Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.10.2.1
      1  1.10.2.1    skrll /*	$NetBSD: pmap.c,v 1.10.2.1 2004/08/03 10:39:37 skrll Exp $	*/
      2       1.1     matt /*-
      3       1.1     matt  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4       1.1     matt  * All rights reserved.
      5       1.1     matt  *
      6       1.1     matt  * This code is derived from software contributed to The NetBSD Foundation
      7       1.1     matt  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8       1.1     matt  *
      9       1.1     matt  * Redistribution and use in source and binary forms, with or without
     10       1.1     matt  * modification, are permitted provided that the following conditions
     11       1.1     matt  * are met:
     12       1.1     matt  * 1. Redistributions of source code must retain the above copyright
     13       1.1     matt  *    notice, this list of conditions and the following disclaimer.
     14       1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     16       1.1     matt  *    documentation and/or other materials provided with the distribution.
     17       1.1     matt  * 3. All advertising materials mentioning features or use of this software
     18       1.1     matt  *    must display the following acknowledgement:
     19       1.1     matt  *        This product includes software developed by the NetBSD
     20       1.1     matt  *        Foundation, Inc. and its contributors.
     21       1.1     matt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22       1.1     matt  *    contributors may be used to endorse or promote products derived
     23       1.1     matt  *    from this software without specific prior written permission.
     24       1.1     matt  *
     25       1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26       1.1     matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27       1.1     matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28       1.1     matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29       1.1     matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30       1.1     matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31       1.1     matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32       1.1     matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33       1.1     matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34       1.1     matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35       1.1     matt  * POSSIBILITY OF SUCH DAMAGE.
     36       1.1     matt  */
     37       1.1     matt 
     38       1.1     matt /*
     39       1.1     matt  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40       1.1     matt  * Copyright (C) 1995, 1996 TooLs GmbH.
     41       1.1     matt  * All rights reserved.
     42       1.1     matt  *
     43       1.1     matt  * Redistribution and use in source and binary forms, with or without
     44       1.1     matt  * modification, are permitted provided that the following conditions
     45       1.1     matt  * are met:
     46       1.1     matt  * 1. Redistributions of source code must retain the above copyright
     47       1.1     matt  *    notice, this list of conditions and the following disclaimer.
     48       1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     50       1.1     matt  *    documentation and/or other materials provided with the distribution.
     51       1.1     matt  * 3. All advertising materials mentioning features or use of this software
     52       1.1     matt  *    must display the following acknowledgement:
     53       1.1     matt  *	This product includes software developed by TooLs GmbH.
     54       1.1     matt  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55       1.1     matt  *    derived from this software without specific prior written permission.
     56       1.1     matt  *
     57       1.1     matt  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58       1.1     matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59       1.1     matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60       1.1     matt  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61       1.1     matt  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62       1.1     matt  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63       1.1     matt  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64       1.1     matt  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65       1.1     matt  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66       1.1     matt  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67       1.1     matt  */
     68       1.1     matt 
     69  1.10.2.1    skrll #include <sys/cdefs.h>
     70  1.10.2.1    skrll __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.10.2.1 2004/08/03 10:39:37 skrll Exp $");
     71  1.10.2.1    skrll 
     72  1.10.2.1    skrll #include "opt_ppcarch.h"
     73       1.1     matt #include "opt_altivec.h"
     74       1.1     matt #include "opt_pmap.h"
     75       1.1     matt #include <sys/param.h>
     76       1.1     matt #include <sys/malloc.h>
     77       1.1     matt #include <sys/proc.h>
     78       1.1     matt #include <sys/user.h>
     79       1.1     matt #include <sys/pool.h>
     80       1.1     matt #include <sys/queue.h>
     81       1.1     matt #include <sys/device.h>		/* for evcnt */
     82       1.1     matt #include <sys/systm.h>
     83       1.1     matt 
     84       1.1     matt #if __NetBSD_Version__ < 105010000
     85       1.1     matt #include <vm/vm.h>
     86       1.1     matt #include <vm/vm_kern.h>
     87       1.1     matt #define	splvm()		splimp()
     88       1.1     matt #endif
     89       1.1     matt 
     90       1.1     matt #include <uvm/uvm.h>
     91       1.1     matt 
     92       1.1     matt #include <machine/pcb.h>
     93       1.1     matt #include <machine/powerpc.h>
     94       1.1     matt #include <powerpc/spr.h>
     95       1.1     matt #include <powerpc/oea/sr_601.h>
     96       1.1     matt #include <powerpc/bat.h>
     97       1.1     matt 
     98       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
     99       1.1     matt #define	STATIC
    100       1.1     matt #else
    101       1.1     matt #define	STATIC	static
    102       1.1     matt #endif
    103       1.1     matt 
    104       1.1     matt #ifdef ALTIVEC
    105       1.1     matt int pmap_use_altivec;
    106       1.1     matt #endif
    107       1.1     matt 
    108       1.2     matt volatile struct pteg *pmap_pteg_table;
    109       1.1     matt unsigned int pmap_pteg_cnt;
    110       1.1     matt unsigned int pmap_pteg_mask;
    111  1.10.2.1    skrll #ifdef PMAP_MEMLIMIT
    112  1.10.2.1    skrll paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    113  1.10.2.1    skrll #else
    114       1.6  thorpej paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115  1.10.2.1    skrll #endif
    116       1.1     matt 
    117       1.1     matt struct pmap kernel_pmap_;
    118       1.1     matt unsigned int pmap_pages_stolen;
    119       1.1     matt u_long pmap_pte_valid;
    120       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    121       1.1     matt u_long pmap_pvo_enter_depth;
    122       1.1     matt u_long pmap_pvo_remove_depth;
    123       1.1     matt #endif
    124       1.1     matt 
    125       1.1     matt int physmem;
    126       1.1     matt #ifndef MSGBUFADDR
    127       1.1     matt extern paddr_t msgbuf_paddr;
    128       1.1     matt #endif
    129       1.1     matt 
    130       1.1     matt static struct mem_region *mem, *avail;
    131       1.1     matt static u_int mem_cnt, avail_cnt;
    132       1.1     matt 
    133       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    134       1.1     matt /*
    135       1.1     matt  * This is a cache of referenced/modified bits.
    136       1.1     matt  * Bits herein are shifted by ATTRSHFT.
    137       1.1     matt  */
    138       1.1     matt #define	ATTR_SHFT	4
    139       1.1     matt struct pmap_physseg pmap_physseg;
    140       1.1     matt #endif
    141       1.1     matt 
    142       1.1     matt /*
    143       1.1     matt  * The following structure is exactly 32 bytes long (one cacheline).
    144       1.1     matt  */
    145       1.1     matt struct pvo_entry {
    146       1.1     matt 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    147       1.1     matt 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    148       1.1     matt 	struct pte pvo_pte;			/* Prebuilt PTE */
    149       1.1     matt 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    150       1.1     matt 	vaddr_t pvo_vaddr;			/* VA of entry */
    151       1.1     matt #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    152       1.1     matt #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    153       1.1     matt #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    154       1.1     matt #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    155       1.1     matt #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    156  1.10.2.1    skrll #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    157  1.10.2.1    skrll #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    158  1.10.2.1    skrll #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    159  1.10.2.1    skrll #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    160  1.10.2.1    skrll #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    161  1.10.2.1    skrll #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    162  1.10.2.1    skrll #define	PVO_REMOVE		6		/* PVO has been removed */
    163  1.10.2.1    skrll #define	PVO_WHERE_MASK		15
    164  1.10.2.1    skrll #define	PVO_WHERE_SHFT		8
    165       1.1     matt };
    166       1.1     matt #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    167       1.1     matt #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    168       1.1     matt #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    169       1.1     matt #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    170       1.1     matt #define	PVO_PTEGIDX_CLR(pvo)	\
    171       1.1     matt 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    172       1.1     matt #define	PVO_PTEGIDX_SET(pvo,i)	\
    173       1.1     matt 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    174  1.10.2.1    skrll #define	PVO_WHERE(pvo,w)	\
    175  1.10.2.1    skrll 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    176  1.10.2.1    skrll 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    177       1.1     matt 
    178       1.1     matt TAILQ_HEAD(pvo_tqhead, pvo_entry);
    179       1.1     matt struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    180       1.1     matt struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    181       1.1     matt struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    182       1.1     matt 
    183       1.1     matt struct pool pmap_pool;		/* pool for pmap structures */
    184       1.1     matt struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    185       1.1     matt struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    186       1.1     matt 
    187       1.1     matt /*
    188       1.1     matt  * We keep a cache of unmanaged pages to be used for pvo entries for
    189       1.1     matt  * unmanaged pages.
    190       1.1     matt  */
    191       1.1     matt struct pvo_page {
    192       1.1     matt 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    193       1.1     matt };
    194       1.1     matt SIMPLEQ_HEAD(pvop_head, pvo_page);
    195       1.1     matt struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    196       1.1     matt struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    197       1.1     matt u_long pmap_upvop_free;
    198       1.1     matt u_long pmap_upvop_maxfree;
    199       1.1     matt u_long pmap_mpvop_free;
    200       1.1     matt u_long pmap_mpvop_maxfree;
    201       1.1     matt 
    202       1.1     matt STATIC void *pmap_pool_ualloc(struct pool *, int);
    203       1.1     matt STATIC void *pmap_pool_malloc(struct pool *, int);
    204       1.1     matt 
    205       1.1     matt STATIC void pmap_pool_ufree(struct pool *, void *);
    206       1.1     matt STATIC void pmap_pool_mfree(struct pool *, void *);
    207       1.1     matt 
    208       1.1     matt static struct pool_allocator pmap_pool_mallocator = {
    209       1.1     matt 	pmap_pool_malloc, pmap_pool_mfree, 0,
    210       1.1     matt };
    211       1.1     matt 
    212       1.1     matt static struct pool_allocator pmap_pool_uallocator = {
    213       1.1     matt 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    214       1.1     matt };
    215       1.1     matt 
    216       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    217       1.2     matt void pmap_pte_print(volatile struct pte *);
    218       1.1     matt #endif
    219       1.1     matt 
    220       1.1     matt #ifdef DDB
    221       1.1     matt void pmap_pteg_check(void);
    222       1.1     matt void pmap_pteg_dist(void);
    223       1.1     matt void pmap_print_pte(pmap_t, vaddr_t);
    224       1.1     matt void pmap_print_mmuregs(void);
    225       1.1     matt #endif
    226       1.1     matt 
    227       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
    228       1.1     matt #ifdef PMAPCHECK
    229       1.1     matt int pmapcheck = 1;
    230       1.1     matt #else
    231       1.1     matt int pmapcheck = 0;
    232       1.1     matt #endif
    233       1.1     matt void pmap_pvo_verify(void);
    234       1.1     matt STATIC void pmap_pvo_check(const struct pvo_entry *);
    235       1.1     matt #define	PMAP_PVO_CHECK(pvo)	 		\
    236       1.1     matt 	do {					\
    237       1.1     matt 		if (pmapcheck)			\
    238       1.1     matt 			pmap_pvo_check(pvo);	\
    239       1.1     matt 	} while (0)
    240       1.1     matt #else
    241       1.1     matt #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    242       1.1     matt #endif
    243       1.2     matt STATIC int pmap_pte_insert(int, struct pte *);
    244       1.1     matt STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    245       1.2     matt 	vaddr_t, paddr_t, register_t, int);
    246       1.1     matt STATIC void pmap_pvo_remove(struct pvo_entry *, int);
    247       1.1     matt STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    248       1.2     matt STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    249  1.10.2.1    skrll #define pmap_pvo_reclaim(pm)	NULL
    250  1.10.2.1    skrll STATIC void pvo_set_exec(struct pvo_entry *);
    251  1.10.2.1    skrll STATIC void pvo_clear_exec(struct pvo_entry *);
    252       1.1     matt 
    253       1.1     matt STATIC void tlbia(void);
    254       1.1     matt 
    255       1.1     matt STATIC void pmap_release(pmap_t);
    256       1.1     matt STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    257       1.1     matt 
    258       1.1     matt #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    259       1.1     matt static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    260       1.1     matt 
    261       1.1     matt static int pmap_initialized;
    262       1.1     matt 
    263       1.1     matt #if defined(DEBUG) || defined(PMAPDEBUG)
    264       1.1     matt #define	PMAPDEBUG_BOOT		0x0001
    265       1.1     matt #define	PMAPDEBUG_PTE		0x0002
    266       1.1     matt #define	PMAPDEBUG_EXEC		0x0008
    267       1.1     matt #define	PMAPDEBUG_PVOENTER	0x0010
    268       1.1     matt #define	PMAPDEBUG_PVOREMOVE	0x0020
    269       1.1     matt #define	PMAPDEBUG_ACTIVATE	0x0100
    270       1.1     matt #define	PMAPDEBUG_CREATE	0x0200
    271       1.1     matt #define	PMAPDEBUG_ENTER		0x1000
    272       1.1     matt #define	PMAPDEBUG_KENTER	0x2000
    273       1.1     matt #define	PMAPDEBUG_KREMOVE	0x4000
    274       1.1     matt #define	PMAPDEBUG_REMOVE	0x8000
    275       1.1     matt unsigned int pmapdebug = 0;
    276       1.1     matt # define DPRINTF(x)		printf x
    277       1.1     matt # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    278       1.1     matt #else
    279       1.1     matt # define DPRINTF(x)
    280       1.1     matt # define DPRINTFN(n, x)
    281       1.1     matt #endif
    282       1.1     matt 
    283       1.1     matt 
    284       1.1     matt #ifdef PMAPCOUNTERS
    285       1.1     matt #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    286       1.1     matt #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    287       1.1     matt 
    288       1.1     matt struct evcnt pmap_evcnt_mappings =
    289       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    290       1.1     matt 	    "pmap", "pages mapped");
    291       1.1     matt struct evcnt pmap_evcnt_unmappings =
    292       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    293       1.1     matt 	    "pmap", "pages unmapped");
    294       1.1     matt 
    295       1.1     matt struct evcnt pmap_evcnt_kernel_mappings =
    296       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    297       1.1     matt 	    "pmap", "kernel pages mapped");
    298       1.1     matt struct evcnt pmap_evcnt_kernel_unmappings =
    299       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    300       1.1     matt 	    "pmap", "kernel pages unmapped");
    301       1.1     matt 
    302       1.1     matt struct evcnt pmap_evcnt_mappings_replaced =
    303       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    304       1.1     matt 	    "pmap", "page mappings replaced");
    305       1.1     matt 
    306       1.1     matt struct evcnt pmap_evcnt_exec_mappings =
    307       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    308       1.1     matt 	    "pmap", "exec pages mapped");
    309       1.1     matt struct evcnt pmap_evcnt_exec_cached =
    310       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    311       1.1     matt 	    "pmap", "exec pages cached");
    312       1.1     matt 
    313       1.1     matt struct evcnt pmap_evcnt_exec_synced =
    314       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    315       1.1     matt 	    "pmap", "exec pages synced");
    316       1.1     matt struct evcnt pmap_evcnt_exec_synced_clear_modify =
    317       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    318       1.1     matt 	    "pmap", "exec pages synced (CM)");
    319       1.1     matt 
    320       1.1     matt struct evcnt pmap_evcnt_exec_uncached_page_protect =
    321       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    322       1.1     matt 	    "pmap", "exec pages uncached (PP)");
    323       1.1     matt struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    324       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    325       1.1     matt 	    "pmap", "exec pages uncached (CM)");
    326       1.1     matt struct evcnt pmap_evcnt_exec_uncached_zero_page =
    327       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    328       1.1     matt 	    "pmap", "exec pages uncached (ZP)");
    329       1.1     matt struct evcnt pmap_evcnt_exec_uncached_copy_page =
    330       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    331       1.1     matt 	    "pmap", "exec pages uncached (CP)");
    332       1.1     matt 
    333       1.1     matt struct evcnt pmap_evcnt_updates =
    334       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    335       1.1     matt 	    "pmap", "updates");
    336       1.1     matt struct evcnt pmap_evcnt_collects =
    337       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    338       1.1     matt 	    "pmap", "collects");
    339       1.1     matt struct evcnt pmap_evcnt_copies =
    340       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    341       1.1     matt 	    "pmap", "copies");
    342       1.1     matt 
    343       1.1     matt struct evcnt pmap_evcnt_ptes_spilled =
    344       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    345       1.1     matt 	    "pmap", "ptes spilled from overflow");
    346       1.1     matt struct evcnt pmap_evcnt_ptes_unspilled =
    347       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    348       1.1     matt 	    "pmap", "ptes not spilled");
    349       1.1     matt struct evcnt pmap_evcnt_ptes_evicted =
    350       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    351       1.1     matt 	    "pmap", "ptes evicted");
    352       1.1     matt 
    353       1.1     matt struct evcnt pmap_evcnt_ptes_primary[8] = {
    354       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    355       1.1     matt 	    "pmap", "ptes added at primary[0]"),
    356       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    357       1.1     matt 	    "pmap", "ptes added at primary[1]"),
    358       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    359       1.1     matt 	    "pmap", "ptes added at primary[2]"),
    360       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    361       1.1     matt 	    "pmap", "ptes added at primary[3]"),
    362       1.1     matt 
    363       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364       1.1     matt 	    "pmap", "ptes added at primary[4]"),
    365       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366       1.1     matt 	    "pmap", "ptes added at primary[5]"),
    367       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    368       1.1     matt 	    "pmap", "ptes added at primary[6]"),
    369       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    370       1.1     matt 	    "pmap", "ptes added at primary[7]"),
    371       1.1     matt };
    372       1.1     matt struct evcnt pmap_evcnt_ptes_secondary[8] = {
    373       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    374       1.1     matt 	    "pmap", "ptes added at secondary[0]"),
    375       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    376       1.1     matt 	    "pmap", "ptes added at secondary[1]"),
    377       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    378       1.1     matt 	    "pmap", "ptes added at secondary[2]"),
    379       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    380       1.1     matt 	    "pmap", "ptes added at secondary[3]"),
    381       1.1     matt 
    382       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    383       1.1     matt 	    "pmap", "ptes added at secondary[4]"),
    384       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    385       1.1     matt 	    "pmap", "ptes added at secondary[5]"),
    386       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    387       1.1     matt 	    "pmap", "ptes added at secondary[6]"),
    388       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    389       1.1     matt 	    "pmap", "ptes added at secondary[7]"),
    390       1.1     matt };
    391       1.1     matt struct evcnt pmap_evcnt_ptes_removed =
    392       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    393       1.1     matt 	    "pmap", "ptes removed");
    394       1.1     matt struct evcnt pmap_evcnt_ptes_changed =
    395       1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    396       1.1     matt 	    "pmap", "ptes changed");
    397       1.1     matt 
    398       1.1     matt /*
    399       1.1     matt  * From pmap_subr.c
    400       1.1     matt  */
    401       1.1     matt extern struct evcnt pmap_evcnt_zeroed_pages;
    402       1.1     matt extern struct evcnt pmap_evcnt_copied_pages;
    403       1.1     matt extern struct evcnt pmap_evcnt_idlezeroed_pages;
    404       1.1     matt #else
    405       1.1     matt #define	PMAPCOUNT(ev)	((void) 0)
    406       1.1     matt #define	PMAPCOUNT2(ev)	((void) 0)
    407       1.1     matt #endif
    408       1.1     matt 
    409       1.1     matt #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    410       1.1     matt #define	TLBSYNC()	__asm __volatile("tlbsync")
    411       1.1     matt #define	SYNC()		__asm __volatile("sync")
    412       1.1     matt #define	EIEIO()		__asm __volatile("eieio")
    413       1.1     matt #define	MFMSR()		mfmsr()
    414       1.1     matt #define	MTMSR(psl)	mtmsr(psl)
    415       1.1     matt #define	MFPVR()		mfpvr()
    416       1.1     matt #define	MFSRIN(va)	mfsrin(va)
    417       1.1     matt #define	MFTB()		mfrtcltbl()
    418       1.1     matt 
    419  1.10.2.1    skrll #ifndef PPC_OEA64
    420       1.2     matt static __inline register_t
    421       1.1     matt mfsrin(vaddr_t va)
    422       1.1     matt {
    423       1.2     matt 	register_t sr;
    424       1.1     matt 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    425       1.1     matt 	return sr;
    426       1.1     matt }
    427  1.10.2.1    skrll #endif	/* PPC_OEA64 */
    428       1.1     matt 
    429       1.2     matt static __inline register_t
    430       1.1     matt pmap_interrupts_off(void)
    431       1.1     matt {
    432       1.2     matt 	register_t msr = MFMSR();
    433       1.1     matt 	if (msr & PSL_EE)
    434       1.1     matt 		MTMSR(msr & ~PSL_EE);
    435       1.1     matt 	return msr;
    436       1.1     matt }
    437       1.1     matt 
    438       1.1     matt static void
    439       1.2     matt pmap_interrupts_restore(register_t msr)
    440       1.1     matt {
    441       1.1     matt 	if (msr & PSL_EE)
    442       1.1     matt 		MTMSR(msr);
    443       1.1     matt }
    444       1.1     matt 
    445       1.1     matt static __inline u_int32_t
    446       1.1     matt mfrtcltbl(void)
    447       1.1     matt {
    448       1.1     matt 
    449       1.1     matt 	if ((MFPVR() >> 16) == MPC601)
    450       1.1     matt 		return (mfrtcl() >> 7);
    451       1.1     matt 	else
    452       1.1     matt 		return (mftbl());
    453       1.1     matt }
    454       1.1     matt 
    455       1.1     matt /*
    456       1.1     matt  * These small routines may have to be replaced,
    457       1.1     matt  * if/when we support processors other that the 604.
    458       1.1     matt  */
    459       1.1     matt 
    460       1.1     matt void
    461       1.1     matt tlbia(void)
    462       1.1     matt {
    463       1.1     matt 	caddr_t i;
    464       1.1     matt 
    465       1.1     matt 	SYNC();
    466       1.1     matt 	/*
    467       1.1     matt 	 * Why not use "tlbia"?  Because not all processors implement it.
    468       1.1     matt 	 *
    469  1.10.2.1    skrll 	 * This needs to be a per-CPU callback to do the appropriate thing
    470       1.1     matt 	 * for the CPU. XXX
    471       1.1     matt 	 */
    472       1.1     matt 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    473       1.1     matt 		TLBIE(i);
    474       1.1     matt 		EIEIO();
    475       1.1     matt 		SYNC();
    476       1.1     matt 	}
    477       1.1     matt 	TLBSYNC();
    478       1.1     matt 	SYNC();
    479       1.1     matt }
    480       1.1     matt 
    481       1.2     matt static __inline register_t
    482       1.2     matt va_to_vsid(const struct pmap *pm, vaddr_t addr)
    483       1.1     matt {
    484  1.10.2.1    skrll #ifdef PPC_OEA64
    485  1.10.2.1    skrll #if 0
    486  1.10.2.1    skrll 	const struct ste *ste;
    487  1.10.2.1    skrll 	register_t hash;
    488  1.10.2.1    skrll 	int i;
    489  1.10.2.1    skrll 
    490  1.10.2.1    skrll 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    491  1.10.2.1    skrll 
    492  1.10.2.1    skrll 	/*
    493  1.10.2.1    skrll 	 * Try the primary group first
    494  1.10.2.1    skrll 	 */
    495  1.10.2.1    skrll 	ste = pm->pm_stes[hash].stes;
    496  1.10.2.1    skrll 	for (i = 0; i < 8; i++, ste++) {
    497  1.10.2.1    skrll 		if (ste->ste_hi & STE_V) &&
    498  1.10.2.1    skrll 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    499  1.10.2.1    skrll 			return ste;
    500  1.10.2.1    skrll 	}
    501  1.10.2.1    skrll 
    502  1.10.2.1    skrll 	/*
    503  1.10.2.1    skrll 	 * Then the secondary group.
    504  1.10.2.1    skrll 	 */
    505  1.10.2.1    skrll 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    506  1.10.2.1    skrll 	for (i = 0; i < 8; i++, ste++) {
    507  1.10.2.1    skrll 		if (ste->ste_hi & STE_V) &&
    508  1.10.2.1    skrll 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    509  1.10.2.1    skrll 			return addr;
    510  1.10.2.1    skrll 	}
    511  1.10.2.1    skrll 
    512  1.10.2.1    skrll 	return NULL;
    513  1.10.2.1    skrll #else
    514  1.10.2.1    skrll 	/*
    515  1.10.2.1    skrll 	 * Rather than searching the STE groups for the VSID, we know
    516  1.10.2.1    skrll 	 * how we generate that from the ESID and so do that.
    517  1.10.2.1    skrll 	 */
    518  1.10.2.1    skrll 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    519  1.10.2.1    skrll #endif
    520  1.10.2.1    skrll #else
    521  1.10.2.1    skrll 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    522  1.10.2.1    skrll #endif
    523       1.1     matt }
    524       1.1     matt 
    525       1.2     matt static __inline register_t
    526       1.2     matt va_to_pteg(const struct pmap *pm, vaddr_t addr)
    527       1.1     matt {
    528       1.2     matt 	register_t hash;
    529       1.2     matt 
    530       1.2     matt 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    531       1.1     matt 	return hash & pmap_pteg_mask;
    532       1.1     matt }
    533       1.1     matt 
    534       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    535       1.1     matt /*
    536       1.1     matt  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    537       1.1     matt  * The only bit of magic is that the top 4 bits of the address doesn't
    538       1.1     matt  * technically exist in the PTE.  But we know we reserved 4 bits of the
    539       1.1     matt  * VSID for it so that's how we get it.
    540       1.1     matt  */
    541       1.1     matt static vaddr_t
    542       1.2     matt pmap_pte_to_va(volatile const struct pte *pt)
    543       1.1     matt {
    544       1.1     matt 	vaddr_t va;
    545       1.1     matt 	uintptr_t ptaddr = (uintptr_t) pt;
    546       1.1     matt 
    547       1.1     matt 	if (pt->pte_hi & PTE_HID)
    548       1.2     matt 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    549       1.1     matt 
    550  1.10.2.1    skrll 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    551       1.4     matt 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    552       1.1     matt 	va <<= ADDR_PIDX_SHFT;
    553       1.1     matt 
    554  1.10.2.1    skrll 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    555       1.1     matt 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    556       1.1     matt 
    557  1.10.2.1    skrll #ifdef PPC_OEA64
    558  1.10.2.1    skrll 	/* PPC63 Bits 0-35 */
    559  1.10.2.1    skrll 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    560  1.10.2.1    skrll #endif
    561  1.10.2.1    skrll #ifdef PPC_OEA
    562       1.1     matt 	/* PPC Bits 0-3 */
    563       1.1     matt 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    564  1.10.2.1    skrll #endif
    565       1.1     matt 
    566       1.1     matt 	return va;
    567       1.1     matt }
    568       1.1     matt #endif
    569       1.1     matt 
    570       1.1     matt static __inline struct pvo_head *
    571       1.1     matt pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    572       1.1     matt {
    573       1.1     matt #ifdef __HAVE_VM_PAGE_MD
    574       1.1     matt 	struct vm_page *pg;
    575       1.1     matt 
    576       1.1     matt 	pg = PHYS_TO_VM_PAGE(pa);
    577       1.1     matt 	if (pg_p != NULL)
    578       1.1     matt 		*pg_p = pg;
    579       1.1     matt 	if (pg == NULL)
    580       1.1     matt 		return &pmap_pvo_unmanaged;
    581       1.1     matt 	return &pg->mdpage.mdpg_pvoh;
    582       1.1     matt #endif
    583       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    584       1.1     matt 	int bank, pg;
    585       1.1     matt 
    586       1.1     matt 	bank = vm_physseg_find(atop(pa), &pg);
    587       1.1     matt 	if (pg_p != NULL)
    588       1.1     matt 		*pg_p = pg;
    589       1.1     matt 	if (bank == -1)
    590       1.1     matt 		return &pmap_pvo_unmanaged;
    591       1.1     matt 	return &vm_physmem[bank].pmseg.pvoh[pg];
    592       1.1     matt #endif
    593       1.1     matt }
    594       1.1     matt 
    595       1.1     matt static __inline struct pvo_head *
    596       1.1     matt vm_page_to_pvoh(struct vm_page *pg)
    597       1.1     matt {
    598       1.1     matt #ifdef __HAVE_VM_PAGE_MD
    599       1.1     matt 	return &pg->mdpage.mdpg_pvoh;
    600       1.1     matt #endif
    601       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    602       1.1     matt 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    603       1.1     matt #endif
    604       1.1     matt }
    605       1.1     matt 
    606       1.1     matt 
    607       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    608       1.1     matt static __inline char *
    609       1.1     matt pa_to_attr(paddr_t pa)
    610       1.1     matt {
    611       1.1     matt 	int bank, pg;
    612       1.1     matt 
    613       1.1     matt 	bank = vm_physseg_find(atop(pa), &pg);
    614       1.1     matt 	if (bank == -1)
    615       1.1     matt 		return NULL;
    616       1.1     matt 	return &vm_physmem[bank].pmseg.attrs[pg];
    617       1.1     matt }
    618       1.1     matt #endif
    619       1.1     matt 
    620       1.1     matt static __inline void
    621       1.1     matt pmap_attr_clear(struct vm_page *pg, int ptebit)
    622       1.1     matt {
    623       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    624       1.1     matt 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    625       1.1     matt #endif
    626       1.1     matt #ifdef __HAVE_VM_PAGE_MD
    627       1.1     matt 	pg->mdpage.mdpg_attrs &= ~ptebit;
    628       1.1     matt #endif
    629       1.1     matt }
    630       1.1     matt 
    631       1.1     matt static __inline int
    632       1.1     matt pmap_attr_fetch(struct vm_page *pg)
    633       1.1     matt {
    634       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    635       1.1     matt 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    636       1.1     matt #endif
    637       1.1     matt #ifdef __HAVE_VM_PAGE_MD
    638       1.1     matt 	return pg->mdpage.mdpg_attrs;
    639       1.1     matt #endif
    640       1.1     matt }
    641       1.1     matt 
    642       1.1     matt static __inline void
    643       1.1     matt pmap_attr_save(struct vm_page *pg, int ptebit)
    644       1.1     matt {
    645       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    646       1.1     matt 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    647       1.1     matt #endif
    648       1.1     matt #ifdef __HAVE_VM_PAGE_MD
    649       1.1     matt 	pg->mdpage.mdpg_attrs |= ptebit;
    650       1.1     matt #endif
    651       1.1     matt }
    652       1.1     matt 
    653       1.1     matt static __inline int
    654       1.2     matt pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    655       1.1     matt {
    656       1.1     matt 	if (pt->pte_hi == pvo_pt->pte_hi
    657       1.1     matt #if 0
    658       1.1     matt 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    659       1.1     matt 	        ~(PTE_REF|PTE_CHG)) == 0
    660       1.1     matt #endif
    661       1.1     matt 	    )
    662       1.1     matt 		return 1;
    663       1.1     matt 	return 0;
    664       1.1     matt }
    665       1.1     matt 
    666       1.1     matt static __inline void
    667       1.2     matt pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    668       1.1     matt {
    669       1.1     matt 	/*
    670       1.1     matt 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    671       1.1     matt 	 * only gets set when the real pte is set in memory.
    672       1.1     matt 	 *
    673       1.1     matt 	 * Note: Don't set the valid bit for correct operation of tlb update.
    674       1.1     matt 	 */
    675       1.2     matt 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    676       1.2     matt 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    677       1.1     matt 	pt->pte_lo = pte_lo;
    678       1.1     matt }
    679       1.1     matt 
    680       1.1     matt static __inline void
    681       1.2     matt pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    682       1.1     matt {
    683       1.1     matt 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    684       1.1     matt }
    685       1.1     matt 
    686       1.1     matt static __inline void
    687       1.2     matt pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    688       1.1     matt {
    689       1.1     matt 	/*
    690       1.1     matt 	 * As shown in Section 7.6.3.2.3
    691       1.1     matt 	 */
    692       1.1     matt 	pt->pte_lo &= ~ptebit;
    693       1.1     matt 	TLBIE(va);
    694       1.1     matt 	SYNC();
    695       1.1     matt 	EIEIO();
    696       1.1     matt 	TLBSYNC();
    697       1.1     matt 	SYNC();
    698       1.1     matt }
    699       1.1     matt 
    700       1.1     matt static __inline void
    701       1.2     matt pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    702       1.1     matt {
    703       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    704       1.1     matt 	if (pvo_pt->pte_hi & PTE_VALID)
    705       1.1     matt 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    706       1.1     matt #endif
    707       1.1     matt 	pvo_pt->pte_hi |= PTE_VALID;
    708       1.1     matt 	/*
    709       1.1     matt 	 * Update the PTE as defined in section 7.6.3.1
    710       1.1     matt 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    711       1.1     matt 	 * have been saved so this routine can restore them (if desired).
    712       1.1     matt 	 */
    713       1.1     matt 	pt->pte_lo = pvo_pt->pte_lo;
    714       1.1     matt 	EIEIO();
    715       1.1     matt 	pt->pte_hi = pvo_pt->pte_hi;
    716       1.1     matt 	SYNC();
    717       1.1     matt 	pmap_pte_valid++;
    718       1.1     matt }
    719       1.1     matt 
    720       1.1     matt static __inline void
    721       1.2     matt pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    722       1.1     matt {
    723       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    724       1.1     matt 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    725       1.1     matt 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    726       1.1     matt 	if ((pt->pte_hi & PTE_VALID) == 0)
    727       1.1     matt 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    728       1.1     matt #endif
    729       1.1     matt 
    730       1.1     matt 	pvo_pt->pte_hi &= ~PTE_VALID;
    731       1.1     matt 	/*
    732       1.1     matt 	 * Force the ref & chg bits back into the PTEs.
    733       1.1     matt 	 */
    734       1.1     matt 	SYNC();
    735       1.1     matt 	/*
    736       1.1     matt 	 * Invalidate the pte ... (Section 7.6.3.3)
    737       1.1     matt 	 */
    738       1.1     matt 	pt->pte_hi &= ~PTE_VALID;
    739       1.1     matt 	SYNC();
    740       1.1     matt 	TLBIE(va);
    741       1.1     matt 	SYNC();
    742       1.1     matt 	EIEIO();
    743       1.1     matt 	TLBSYNC();
    744       1.1     matt 	SYNC();
    745       1.1     matt 	/*
    746       1.1     matt 	 * Save the ref & chg bits ...
    747       1.1     matt 	 */
    748       1.1     matt 	pmap_pte_synch(pt, pvo_pt);
    749       1.1     matt 	pmap_pte_valid--;
    750       1.1     matt }
    751       1.1     matt 
    752       1.1     matt static __inline void
    753       1.2     matt pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    754       1.1     matt {
    755       1.1     matt 	/*
    756       1.1     matt 	 * Invalidate the PTE
    757       1.1     matt 	 */
    758       1.1     matt 	pmap_pte_unset(pt, pvo_pt, va);
    759       1.1     matt 	pmap_pte_set(pt, pvo_pt);
    760       1.1     matt }
    761       1.1     matt 
    762       1.1     matt /*
    763       1.1     matt  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    764       1.1     matt  * (either primary or secondary location).
    765       1.1     matt  *
    766       1.1     matt  * Note: both the destination and source PTEs must not have PTE_VALID set.
    767       1.1     matt  */
    768       1.1     matt 
    769       1.1     matt STATIC int
    770       1.2     matt pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    771       1.1     matt {
    772       1.2     matt 	volatile struct pte *pt;
    773       1.1     matt 	int i;
    774       1.1     matt 
    775       1.1     matt #if defined(DEBUG)
    776  1.10.2.1    skrll 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    777  1.10.2.1    skrll 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    778       1.1     matt #endif
    779       1.1     matt 	/*
    780       1.1     matt 	 * First try primary hash.
    781       1.1     matt 	 */
    782       1.1     matt 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    783       1.1     matt 		if ((pt->pte_hi & PTE_VALID) == 0) {
    784       1.1     matt 			pvo_pt->pte_hi &= ~PTE_HID;
    785       1.1     matt 			pmap_pte_set(pt, pvo_pt);
    786       1.1     matt 			return i;
    787       1.1     matt 		}
    788       1.1     matt 	}
    789       1.1     matt 
    790       1.1     matt 	/*
    791       1.1     matt 	 * Now try secondary hash.
    792       1.1     matt 	 */
    793       1.1     matt 	ptegidx ^= pmap_pteg_mask;
    794       1.1     matt 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    795       1.1     matt 		if ((pt->pte_hi & PTE_VALID) == 0) {
    796       1.1     matt 			pvo_pt->pte_hi |= PTE_HID;
    797       1.1     matt 			pmap_pte_set(pt, pvo_pt);
    798       1.1     matt 			return i;
    799       1.1     matt 		}
    800       1.1     matt 	}
    801       1.1     matt 	return -1;
    802       1.1     matt }
    803       1.1     matt 
    804       1.1     matt /*
    805       1.1     matt  * Spill handler.
    806       1.1     matt  *
    807       1.1     matt  * Tries to spill a page table entry from the overflow area.
    808       1.1     matt  * This runs in either real mode (if dealing with a exception spill)
    809       1.1     matt  * or virtual mode when dealing with manually spilling one of the
    810       1.1     matt  * kernel's pte entries.  In either case, interrupts are already
    811       1.1     matt  * disabled.
    812       1.1     matt  */
    813  1.10.2.1    skrll 
    814       1.1     matt int
    815  1.10.2.1    skrll pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    816       1.1     matt {
    817       1.1     matt 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    818       1.1     matt 	struct pvo_entry *pvo;
    819  1.10.2.1    skrll 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    820  1.10.2.1    skrll 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    821       1.1     matt 	int ptegidx, i, j;
    822       1.2     matt 	volatile struct pteg *pteg;
    823       1.2     matt 	volatile struct pte *pt;
    824       1.1     matt 
    825       1.2     matt 	ptegidx = va_to_pteg(pm, addr);
    826       1.1     matt 
    827       1.1     matt 	/*
    828       1.1     matt 	 * Have to substitute some entry. Use the primary hash for this.
    829  1.10.2.1    skrll 	 * Use low bits of timebase as random generator.  Make sure we are
    830  1.10.2.1    skrll 	 * not picking a kernel pte for replacement.
    831       1.1     matt 	 */
    832       1.1     matt 	pteg = &pmap_pteg_table[ptegidx];
    833       1.1     matt 	i = MFTB() & 7;
    834  1.10.2.1    skrll 	for (j = 0; j < 8; j++) {
    835  1.10.2.1    skrll 		pt = &pteg->pt[i];
    836  1.10.2.1    skrll 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    837  1.10.2.1    skrll 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    838  1.10.2.1    skrll 				!= KERNEL_VSIDBITS)
    839  1.10.2.1    skrll 			break;
    840  1.10.2.1    skrll 		i = (i + 1) & 7;
    841  1.10.2.1    skrll 	}
    842  1.10.2.1    skrll 	KASSERT(j < 8);
    843       1.1     matt 
    844       1.1     matt 	source_pvo = NULL;
    845       1.1     matt 	victim_pvo = NULL;
    846       1.1     matt 	pvoh = &pmap_pvo_table[ptegidx];
    847       1.1     matt 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    848       1.1     matt 
    849       1.1     matt 		/*
    850       1.1     matt 		 * We need to find pvo entry for this address...
    851       1.1     matt 		 */
    852       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    853       1.1     matt 
    854       1.1     matt 		/*
    855       1.1     matt 		 * If we haven't found the source and we come to a PVO with
    856       1.1     matt 		 * a valid PTE, then we know we can't find it because all
    857       1.1     matt 		 * evicted PVOs always are first in the list.
    858       1.1     matt 		 */
    859       1.1     matt 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    860       1.1     matt 			break;
    861       1.2     matt 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    862       1.2     matt 		    addr == PVO_VADDR(pvo)) {
    863       1.1     matt 
    864       1.1     matt 			/*
    865       1.1     matt 			 * Now we have found the entry to be spilled into the
    866       1.1     matt 			 * pteg.  Attempt to insert it into the page table.
    867       1.1     matt 			 */
    868       1.1     matt 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    869       1.1     matt 			if (j >= 0) {
    870       1.1     matt 				PVO_PTEGIDX_SET(pvo, j);
    871       1.1     matt 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    872  1.10.2.1    skrll 				PVO_WHERE(pvo, SPILL_INSERT);
    873       1.1     matt 				pvo->pvo_pmap->pm_evictions--;
    874       1.1     matt 				PMAPCOUNT(ptes_spilled);
    875       1.1     matt 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    876       1.1     matt 				    ? pmap_evcnt_ptes_secondary
    877       1.1     matt 				    : pmap_evcnt_ptes_primary)[j]);
    878       1.1     matt 
    879       1.1     matt 				/*
    880       1.1     matt 				 * Since we keep the evicted entries at the
    881       1.1     matt 				 * from of the PVO list, we need move this
    882       1.1     matt 				 * (now resident) PVO after the evicted
    883       1.1     matt 				 * entries.
    884       1.1     matt 				 */
    885       1.1     matt 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    886       1.1     matt 
    887       1.1     matt 				/*
    888       1.5     matt 				 * If we don't have to move (either we were the
    889       1.5     matt 				 * last entry or the next entry was valid),
    890       1.1     matt 				 * don't change our position.  Otherwise
    891       1.1     matt 				 * move ourselves to the tail of the queue.
    892       1.1     matt 				 */
    893       1.1     matt 				if (next_pvo != NULL &&
    894       1.1     matt 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    895       1.1     matt 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    896       1.1     matt 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    897       1.1     matt 				}
    898       1.1     matt 				return 1;
    899       1.1     matt 			}
    900       1.1     matt 			source_pvo = pvo;
    901  1.10.2.1    skrll 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    902  1.10.2.1    skrll 				return 0;
    903  1.10.2.1    skrll 			}
    904       1.1     matt 			if (victim_pvo != NULL)
    905       1.1     matt 				break;
    906       1.1     matt 		}
    907       1.1     matt 
    908       1.1     matt 		/*
    909       1.1     matt 		 * We also need the pvo entry of the victim we are replacing
    910       1.1     matt 		 * so save the R & C bits of the PTE.
    911       1.1     matt 		 */
    912       1.1     matt 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    913       1.1     matt 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    914  1.10.2.1    skrll 			vpvoh = pvoh;			/* *1* */
    915       1.1     matt 			victim_pvo = pvo;
    916       1.1     matt 			if (source_pvo != NULL)
    917       1.1     matt 				break;
    918       1.1     matt 		}
    919       1.1     matt 	}
    920       1.1     matt 
    921       1.1     matt 	if (source_pvo == NULL) {
    922       1.1     matt 		PMAPCOUNT(ptes_unspilled);
    923       1.1     matt 		return 0;
    924       1.1     matt 	}
    925       1.1     matt 
    926       1.1     matt 	if (victim_pvo == NULL) {
    927       1.1     matt 		if ((pt->pte_hi & PTE_HID) == 0)
    928       1.1     matt 			panic("pmap_pte_spill: victim p-pte (%p) has "
    929       1.1     matt 			    "no pvo entry!", pt);
    930       1.1     matt 
    931       1.1     matt 		/*
    932       1.1     matt 		 * If this is a secondary PTE, we need to search
    933       1.1     matt 		 * its primary pvo bucket for the matching PVO.
    934       1.1     matt 		 */
    935  1.10.2.1    skrll 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
    936       1.1     matt 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    937       1.1     matt 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    938       1.1     matt 
    939       1.1     matt 			/*
    940       1.1     matt 			 * We also need the pvo entry of the victim we are
    941       1.1     matt 			 * replacing so save the R & C bits of the PTE.
    942       1.1     matt 			 */
    943       1.1     matt 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    944       1.1     matt 				victim_pvo = pvo;
    945       1.1     matt 				break;
    946       1.1     matt 			}
    947       1.1     matt 		}
    948       1.1     matt 		if (victim_pvo == NULL)
    949       1.1     matt 			panic("pmap_pte_spill: victim s-pte (%p) has "
    950       1.1     matt 			    "no pvo entry!", pt);
    951       1.1     matt 	}
    952       1.1     matt 
    953       1.1     matt 	/*
    954  1.10.2.1    skrll 	 * The victim should be not be a kernel PVO/PTE entry.
    955  1.10.2.1    skrll 	 */
    956  1.10.2.1    skrll 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
    957  1.10.2.1    skrll 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
    958  1.10.2.1    skrll 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
    959  1.10.2.1    skrll 
    960  1.10.2.1    skrll 	/*
    961       1.1     matt 	 * We are invalidating the TLB entry for the EA for the
    962       1.1     matt 	 * we are replacing even though its valid; If we don't
    963       1.1     matt 	 * we lose any ref/chg bit changes contained in the TLB
    964       1.1     matt 	 * entry.
    965       1.1     matt 	 */
    966       1.1     matt 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    967       1.1     matt 
    968       1.1     matt 	/*
    969       1.1     matt 	 * To enforce the PVO list ordering constraint that all
    970       1.1     matt 	 * evicted entries should come before all valid entries,
    971       1.1     matt 	 * move the source PVO to the tail of its list and the
    972       1.1     matt 	 * victim PVO to the head of its list (which might not be
    973       1.1     matt 	 * the same list, if the victim was using the secondary hash).
    974       1.1     matt 	 */
    975       1.1     matt 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    976       1.1     matt 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    977       1.1     matt 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    978       1.1     matt 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    979       1.1     matt 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    980       1.1     matt 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    981       1.1     matt 	victim_pvo->pvo_pmap->pm_evictions++;
    982       1.1     matt 	source_pvo->pvo_pmap->pm_evictions--;
    983  1.10.2.1    skrll 	PVO_WHERE(victim_pvo, SPILL_UNSET);
    984  1.10.2.1    skrll 	PVO_WHERE(source_pvo, SPILL_SET);
    985       1.1     matt 
    986       1.1     matt 	PVO_PTEGIDX_CLR(victim_pvo);
    987       1.1     matt 	PVO_PTEGIDX_SET(source_pvo, i);
    988       1.1     matt 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    989       1.1     matt 	PMAPCOUNT(ptes_spilled);
    990       1.1     matt 	PMAPCOUNT(ptes_evicted);
    991       1.1     matt 	PMAPCOUNT(ptes_removed);
    992       1.1     matt 
    993       1.1     matt 	PMAP_PVO_CHECK(victim_pvo);
    994       1.1     matt 	PMAP_PVO_CHECK(source_pvo);
    995       1.1     matt 	return 1;
    996       1.1     matt }
    997       1.1     matt 
    998       1.1     matt /*
    999       1.1     matt  * Restrict given range to physical memory
   1000       1.1     matt  */
   1001       1.1     matt void
   1002       1.1     matt pmap_real_memory(paddr_t *start, psize_t *size)
   1003       1.1     matt {
   1004       1.1     matt 	struct mem_region *mp;
   1005       1.1     matt 
   1006       1.1     matt 	for (mp = mem; mp->size; mp++) {
   1007       1.1     matt 		if (*start + *size > mp->start
   1008       1.1     matt 		    && *start < mp->start + mp->size) {
   1009       1.1     matt 			if (*start < mp->start) {
   1010       1.1     matt 				*size -= mp->start - *start;
   1011       1.1     matt 				*start = mp->start;
   1012       1.1     matt 			}
   1013       1.1     matt 			if (*start + *size > mp->start + mp->size)
   1014       1.1     matt 				*size = mp->start + mp->size - *start;
   1015       1.1     matt 			return;
   1016       1.1     matt 		}
   1017       1.1     matt 	}
   1018       1.1     matt 	*size = 0;
   1019       1.1     matt }
   1020       1.1     matt 
   1021       1.1     matt /*
   1022       1.1     matt  * Initialize anything else for pmap handling.
   1023       1.1     matt  * Called during vm_init().
   1024       1.1     matt  */
   1025       1.1     matt void
   1026       1.1     matt pmap_init(void)
   1027       1.1     matt {
   1028       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
   1029       1.1     matt 	struct pvo_tqhead *pvoh;
   1030       1.1     matt 	int bank;
   1031       1.1     matt 	long sz;
   1032       1.1     matt 	char *attr;
   1033       1.1     matt 
   1034       1.1     matt 	pvoh = pmap_physseg.pvoh;
   1035       1.1     matt 	attr = pmap_physseg.attrs;
   1036       1.1     matt 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1037       1.1     matt 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1038       1.1     matt 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1039       1.1     matt 		vm_physmem[bank].pmseg.attrs = attr;
   1040       1.1     matt 		for (; sz > 0; sz--, pvoh++, attr++) {
   1041       1.1     matt 			TAILQ_INIT(pvoh);
   1042       1.1     matt 			*attr = 0;
   1043       1.1     matt 		}
   1044       1.1     matt 	}
   1045       1.1     matt #endif
   1046       1.1     matt 
   1047       1.1     matt 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1048       1.1     matt 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1049       1.1     matt 	    &pmap_pool_mallocator);
   1050       1.1     matt 
   1051       1.1     matt 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1052       1.1     matt 
   1053       1.1     matt 	pmap_initialized = 1;
   1054       1.1     matt 
   1055       1.1     matt #ifdef PMAPCOUNTERS
   1056       1.1     matt 	evcnt_attach_static(&pmap_evcnt_mappings);
   1057       1.1     matt 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
   1058       1.1     matt 	evcnt_attach_static(&pmap_evcnt_unmappings);
   1059       1.1     matt 
   1060       1.1     matt 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
   1061       1.1     matt 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
   1062       1.1     matt 
   1063       1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
   1064       1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_cached);
   1065       1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_synced);
   1066       1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
   1067       1.1     matt 
   1068       1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
   1069       1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
   1070       1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
   1071       1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
   1072       1.1     matt 
   1073       1.1     matt 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
   1074       1.1     matt 	evcnt_attach_static(&pmap_evcnt_copied_pages);
   1075       1.1     matt 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
   1076       1.1     matt 
   1077       1.1     matt 	evcnt_attach_static(&pmap_evcnt_updates);
   1078       1.1     matt 	evcnt_attach_static(&pmap_evcnt_collects);
   1079       1.1     matt 	evcnt_attach_static(&pmap_evcnt_copies);
   1080       1.1     matt 
   1081       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
   1082       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1083       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1084       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1085       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1086       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1087       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1088       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1089       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1090       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1091       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1092       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1093       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1094       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1095       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1096       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1097       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1098       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1099       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1100       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1101       1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1102       1.1     matt #endif
   1103       1.1     matt }
   1104       1.1     matt 
   1105       1.1     matt /*
   1106      1.10  thorpej  * How much virtual space does the kernel get?
   1107      1.10  thorpej  */
   1108      1.10  thorpej void
   1109      1.10  thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1110      1.10  thorpej {
   1111      1.10  thorpej 	/*
   1112      1.10  thorpej 	 * For now, reserve one segment (minus some overhead) for kernel
   1113      1.10  thorpej 	 * virtual memory
   1114      1.10  thorpej 	 */
   1115      1.10  thorpej 	*start = VM_MIN_KERNEL_ADDRESS;
   1116      1.10  thorpej 	*end = VM_MAX_KERNEL_ADDRESS;
   1117      1.10  thorpej }
   1118      1.10  thorpej 
   1119      1.10  thorpej /*
   1120       1.1     matt  * Allocate, initialize, and return a new physical map.
   1121       1.1     matt  */
   1122       1.1     matt pmap_t
   1123       1.1     matt pmap_create(void)
   1124       1.1     matt {
   1125       1.1     matt 	pmap_t pm;
   1126       1.1     matt 
   1127       1.1     matt 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1128       1.1     matt 	memset((caddr_t)pm, 0, sizeof *pm);
   1129       1.1     matt 	pmap_pinit(pm);
   1130       1.1     matt 
   1131       1.1     matt 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1132  1.10.2.1    skrll 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1133  1.10.2.1    skrll 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1134  1.10.2.1    skrll 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1135  1.10.2.1    skrll 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1136  1.10.2.1    skrll 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1137  1.10.2.1    skrll 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1138  1.10.2.1    skrll 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1139  1.10.2.1    skrll 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1140  1.10.2.1    skrll 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1141  1.10.2.1    skrll 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1142       1.1     matt 	return pm;
   1143       1.1     matt }
   1144       1.1     matt 
   1145       1.1     matt /*
   1146       1.1     matt  * Initialize a preallocated and zeroed pmap structure.
   1147       1.1     matt  */
   1148       1.1     matt void
   1149       1.1     matt pmap_pinit(pmap_t pm)
   1150       1.1     matt {
   1151       1.2     matt 	register_t entropy = MFTB();
   1152       1.2     matt 	register_t mask;
   1153       1.2     matt 	int i;
   1154       1.1     matt 
   1155       1.1     matt 	/*
   1156       1.1     matt 	 * Allocate some segment registers for this pmap.
   1157       1.1     matt 	 */
   1158       1.1     matt 	pm->pm_refs = 1;
   1159       1.2     matt 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1160       1.2     matt 		static register_t pmap_vsidcontext;
   1161       1.2     matt 		register_t hash;
   1162       1.2     matt 		unsigned int n;
   1163       1.1     matt 
   1164       1.1     matt 		/* Create a new value by multiplying by a prime adding in
   1165       1.1     matt 		 * entropy from the timebase register.  This is to make the
   1166       1.1     matt 		 * VSID more random so that the PT Hash function collides
   1167       1.1     matt 		 * less often. (note that the prime causes gcc to do shifts
   1168       1.1     matt 		 * instead of a multiply)
   1169       1.1     matt 		 */
   1170       1.1     matt 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1171       1.1     matt 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1172  1.10.2.1    skrll 		if (hash == 0) {		/* 0 is special, avoid it */
   1173  1.10.2.1    skrll 			entropy += 0xbadf00d;
   1174       1.1     matt 			continue;
   1175  1.10.2.1    skrll 		}
   1176       1.1     matt 		n = hash >> 5;
   1177       1.2     matt 		mask = 1L << (hash & (VSID_NBPW-1));
   1178       1.2     matt 		hash = pmap_vsidcontext;
   1179       1.1     matt 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1180       1.1     matt 			/* anything free in this bucket? */
   1181       1.2     matt 			if (~pmap_vsid_bitmap[n] == 0) {
   1182  1.10.2.1    skrll 				entropy = hash ^ (hash >> 16);
   1183       1.1     matt 				continue;
   1184       1.1     matt 			}
   1185       1.1     matt 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1186       1.2     matt 			mask = 1L << i;
   1187       1.2     matt 			hash &= ~(VSID_NBPW-1);
   1188       1.1     matt 			hash |= i;
   1189       1.1     matt 		}
   1190  1.10.2.1    skrll 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1191       1.1     matt 		pmap_vsid_bitmap[n] |= mask;
   1192  1.10.2.1    skrll 		pm->pm_vsid = hash;
   1193  1.10.2.1    skrll #ifndef PPC_OEA64
   1194       1.1     matt 		for (i = 0; i < 16; i++)
   1195  1.10.2.1    skrll 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1196  1.10.2.1    skrll 			    SR_NOEXEC;
   1197  1.10.2.1    skrll #endif
   1198       1.1     matt 		return;
   1199       1.1     matt 	}
   1200       1.1     matt 	panic("pmap_pinit: out of segments");
   1201       1.1     matt }
   1202       1.1     matt 
   1203       1.1     matt /*
   1204       1.1     matt  * Add a reference to the given pmap.
   1205       1.1     matt  */
   1206       1.1     matt void
   1207       1.1     matt pmap_reference(pmap_t pm)
   1208       1.1     matt {
   1209       1.1     matt 	pm->pm_refs++;
   1210       1.1     matt }
   1211       1.1     matt 
   1212       1.1     matt /*
   1213       1.1     matt  * Retire the given pmap from service.
   1214       1.1     matt  * Should only be called if the map contains no valid mappings.
   1215       1.1     matt  */
   1216       1.1     matt void
   1217       1.1     matt pmap_destroy(pmap_t pm)
   1218       1.1     matt {
   1219       1.1     matt 	if (--pm->pm_refs == 0) {
   1220       1.1     matt 		pmap_release(pm);
   1221       1.1     matt 		pool_put(&pmap_pool, pm);
   1222       1.1     matt 	}
   1223       1.1     matt }
   1224       1.1     matt 
   1225       1.1     matt /*
   1226       1.1     matt  * Release any resources held by the given physical map.
   1227       1.1     matt  * Called when a pmap initialized by pmap_pinit is being released.
   1228       1.1     matt  */
   1229       1.1     matt void
   1230       1.1     matt pmap_release(pmap_t pm)
   1231       1.1     matt {
   1232       1.1     matt 	int idx, mask;
   1233       1.1     matt 
   1234       1.1     matt 	if (pm->pm_sr[0] == 0)
   1235       1.1     matt 		panic("pmap_release");
   1236  1.10.2.1    skrll 	idx = pm->pm_vsid & (NPMAPS-1);
   1237       1.1     matt 	mask = 1 << (idx % VSID_NBPW);
   1238       1.1     matt 	idx /= VSID_NBPW;
   1239  1.10.2.1    skrll 
   1240  1.10.2.1    skrll 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1241       1.1     matt 	pmap_vsid_bitmap[idx] &= ~mask;
   1242       1.1     matt }
   1243       1.1     matt 
   1244       1.1     matt /*
   1245       1.1     matt  * Copy the range specified by src_addr/len
   1246       1.1     matt  * from the source map to the range dst_addr/len
   1247       1.1     matt  * in the destination map.
   1248       1.1     matt  *
   1249       1.1     matt  * This routine is only advisory and need not do anything.
   1250       1.1     matt  */
   1251       1.1     matt void
   1252       1.1     matt pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1253       1.1     matt 	vsize_t len, vaddr_t src_addr)
   1254       1.1     matt {
   1255       1.1     matt 	PMAPCOUNT(copies);
   1256       1.1     matt }
   1257       1.1     matt 
   1258       1.1     matt /*
   1259       1.1     matt  * Require that all active physical maps contain no
   1260       1.1     matt  * incorrect entries NOW.
   1261       1.1     matt  */
   1262       1.1     matt void
   1263       1.1     matt pmap_update(struct pmap *pmap)
   1264       1.1     matt {
   1265       1.1     matt 	PMAPCOUNT(updates);
   1266       1.1     matt 	TLBSYNC();
   1267       1.1     matt }
   1268       1.1     matt 
   1269       1.1     matt /*
   1270       1.1     matt  * Garbage collects the physical map system for
   1271       1.1     matt  * pages which are no longer used.
   1272       1.1     matt  * Success need not be guaranteed -- that is, there
   1273       1.1     matt  * may well be pages which are not referenced, but
   1274       1.1     matt  * others may be collected.
   1275       1.1     matt  * Called by the pageout daemon when pages are scarce.
   1276       1.1     matt  */
   1277       1.1     matt void
   1278       1.1     matt pmap_collect(pmap_t pm)
   1279       1.1     matt {
   1280       1.1     matt 	PMAPCOUNT(collects);
   1281       1.1     matt }
   1282       1.1     matt 
   1283       1.1     matt static __inline int
   1284       1.1     matt pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1285       1.1     matt {
   1286       1.1     matt 	int pteidx;
   1287       1.1     matt 	/*
   1288       1.1     matt 	 * We can find the actual pte entry without searching by
   1289       1.1     matt 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1290       1.1     matt 	 * and by noticing the HID bit.
   1291       1.1     matt 	 */
   1292       1.1     matt 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1293       1.1     matt 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1294       1.1     matt 		pteidx ^= pmap_pteg_mask * 8;
   1295       1.1     matt 	return pteidx;
   1296       1.1     matt }
   1297       1.1     matt 
   1298       1.2     matt volatile struct pte *
   1299       1.1     matt pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1300       1.1     matt {
   1301       1.2     matt 	volatile struct pte *pt;
   1302       1.1     matt 
   1303       1.1     matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1304       1.1     matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1305       1.1     matt 		return NULL;
   1306       1.1     matt #endif
   1307       1.1     matt 
   1308       1.1     matt 	/*
   1309       1.1     matt 	 * If we haven't been supplied the ptegidx, calculate it.
   1310       1.1     matt 	 */
   1311       1.1     matt 	if (pteidx == -1) {
   1312       1.1     matt 		int ptegidx;
   1313       1.2     matt 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1314       1.1     matt 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1315       1.1     matt 	}
   1316       1.1     matt 
   1317       1.1     matt 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1318       1.1     matt 
   1319       1.1     matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1320       1.1     matt 	return pt;
   1321       1.1     matt #else
   1322       1.1     matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1323       1.1     matt 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1324       1.1     matt 		    "pvo but no valid pte index", pvo);
   1325       1.1     matt 	}
   1326       1.1     matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1327       1.1     matt 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1328       1.1     matt 		    "pvo but no valid pte", pvo);
   1329       1.1     matt 	}
   1330       1.1     matt 
   1331       1.1     matt 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1332       1.1     matt 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1333       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
   1334       1.1     matt 			pmap_pte_print(pt);
   1335       1.1     matt #endif
   1336       1.1     matt 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1337       1.1     matt 			    "pmap_pteg_table %p but invalid in pvo",
   1338       1.1     matt 			    pvo, pt);
   1339       1.1     matt 		}
   1340       1.1     matt 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1341       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
   1342       1.1     matt 			pmap_pte_print(pt);
   1343       1.1     matt #endif
   1344       1.1     matt 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1345       1.1     matt 			    "not match pte %p in pmap_pteg_table",
   1346       1.1     matt 			    pvo, pt);
   1347       1.1     matt 		}
   1348       1.1     matt 		return pt;
   1349       1.1     matt 	}
   1350       1.1     matt 
   1351       1.1     matt 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1352       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
   1353       1.1     matt 		pmap_pte_print(pt);
   1354       1.1     matt #endif
   1355  1.10.2.1    skrll 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1356       1.1     matt 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1357       1.1     matt 	}
   1358       1.1     matt 	return NULL;
   1359       1.1     matt #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1360       1.1     matt }
   1361       1.1     matt 
   1362       1.1     matt struct pvo_entry *
   1363       1.1     matt pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1364       1.1     matt {
   1365       1.1     matt 	struct pvo_entry *pvo;
   1366       1.1     matt 	int ptegidx;
   1367       1.1     matt 
   1368       1.1     matt 	va &= ~ADDR_POFF;
   1369       1.2     matt 	ptegidx = va_to_pteg(pm, va);
   1370       1.1     matt 
   1371       1.1     matt 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1372       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1373       1.1     matt 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1374       1.1     matt 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1375       1.1     matt 			    "list %#x (%p)", pvo, ptegidx,
   1376       1.1     matt 			     &pmap_pvo_table[ptegidx]);
   1377       1.1     matt #endif
   1378       1.1     matt 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1379       1.1     matt 			if (pteidx_p)
   1380       1.1     matt 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1381       1.1     matt 			return pvo;
   1382       1.1     matt 		}
   1383       1.1     matt 	}
   1384       1.1     matt 	return NULL;
   1385       1.1     matt }
   1386       1.1     matt 
   1387       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
   1388       1.1     matt void
   1389       1.1     matt pmap_pvo_check(const struct pvo_entry *pvo)
   1390       1.1     matt {
   1391       1.1     matt 	struct pvo_head *pvo_head;
   1392       1.1     matt 	struct pvo_entry *pvo0;
   1393       1.2     matt 	volatile struct pte *pt;
   1394       1.1     matt 	int failed = 0;
   1395       1.1     matt 
   1396       1.1     matt 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1397       1.1     matt 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1398       1.1     matt 
   1399       1.1     matt 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1400       1.1     matt 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1401       1.1     matt 		    pvo, pvo->pvo_pmap);
   1402       1.1     matt 		failed = 1;
   1403       1.1     matt 	}
   1404       1.1     matt 
   1405       1.1     matt 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1406       1.1     matt 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1407       1.1     matt 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1408       1.1     matt 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1409       1.1     matt 		failed = 1;
   1410       1.1     matt 	}
   1411       1.1     matt 
   1412       1.1     matt 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1413       1.1     matt 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1414       1.1     matt 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1415       1.1     matt 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1416       1.1     matt 		failed = 1;
   1417       1.1     matt 	}
   1418       1.1     matt 
   1419       1.1     matt 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1420       1.1     matt 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1421       1.1     matt 	} else {
   1422       1.1     matt 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1423       1.1     matt 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1424       1.1     matt 			    "on kernel unmanaged list\n", pvo);
   1425       1.1     matt 			failed = 1;
   1426       1.1     matt 		}
   1427       1.1     matt 		pvo_head = &pmap_pvo_kunmanaged;
   1428       1.1     matt 	}
   1429       1.1     matt 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1430       1.1     matt 		if (pvo0 == pvo)
   1431       1.1     matt 			break;
   1432       1.1     matt 	}
   1433       1.1     matt 	if (pvo0 == NULL) {
   1434       1.1     matt 		printf("pmap_pvo_check: pvo %p: not present "
   1435       1.1     matt 		    "on its vlist head %p\n", pvo, pvo_head);
   1436       1.1     matt 		failed = 1;
   1437       1.1     matt 	}
   1438       1.1     matt 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1439       1.1     matt 		printf("pmap_pvo_check: pvo %p: not present "
   1440       1.1     matt 		    "on its olist head\n", pvo);
   1441       1.1     matt 		failed = 1;
   1442       1.1     matt 	}
   1443       1.1     matt 	pt = pmap_pvo_to_pte(pvo, -1);
   1444       1.1     matt 	if (pt == NULL) {
   1445       1.1     matt 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1446       1.1     matt 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1447       1.1     matt 			    "no PTE\n", pvo);
   1448       1.1     matt 			failed = 1;
   1449       1.1     matt 		}
   1450       1.1     matt 	} else {
   1451       1.1     matt 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1452       1.1     matt 		    (uintptr_t) pt >=
   1453       1.1     matt 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1454       1.1     matt 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1455       1.1     matt 			    "pteg table\n", pvo, pt);
   1456       1.1     matt 			failed = 1;
   1457       1.1     matt 		}
   1458       1.1     matt 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1459       1.1     matt 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1460       1.1     matt 			    "no PTE\n", pvo);
   1461       1.1     matt 			failed = 1;
   1462       1.1     matt 		}
   1463       1.1     matt 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1464       1.1     matt 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1465  1.10.2.1    skrll 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1466       1.1     matt 			failed = 1;
   1467       1.1     matt 		}
   1468       1.1     matt 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1469       1.1     matt 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1470       1.1     matt 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1471  1.10.2.1    skrll 			    "%#x/%#x\n", pvo,
   1472  1.10.2.1    skrll 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1473  1.10.2.1    skrll 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1474       1.1     matt 			failed = 1;
   1475       1.1     matt 		}
   1476       1.1     matt 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1477       1.1     matt 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1478       1.1     matt 			    " doesn't not match PVO's VA %#lx\n",
   1479       1.1     matt 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1480       1.1     matt 			failed = 1;
   1481       1.1     matt 		}
   1482       1.1     matt 		if (failed)
   1483       1.1     matt 			pmap_pte_print(pt);
   1484       1.1     matt 	}
   1485       1.1     matt 	if (failed)
   1486       1.1     matt 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1487       1.1     matt 		    pvo->pvo_pmap);
   1488       1.1     matt }
   1489       1.1     matt #endif /* DEBUG || PMAPCHECK */
   1490       1.1     matt 
   1491       1.1     matt /*
   1492       1.1     matt  * This returns whether this is the first mapping of a page.
   1493       1.1     matt  */
   1494       1.1     matt int
   1495       1.1     matt pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1496       1.2     matt 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1497       1.1     matt {
   1498       1.1     matt 	struct pvo_entry *pvo;
   1499       1.1     matt 	struct pvo_tqhead *pvoh;
   1500       1.2     matt 	register_t msr;
   1501       1.1     matt 	int ptegidx;
   1502       1.1     matt 	int i;
   1503       1.1     matt 	int poolflags = PR_NOWAIT;
   1504       1.1     matt 
   1505       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1506       1.1     matt 	if (pmap_pvo_remove_depth > 0)
   1507       1.1     matt 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1508       1.1     matt 	if (++pmap_pvo_enter_depth > 1)
   1509       1.1     matt 		panic("pmap_pvo_enter: called recursively!");
   1510       1.1     matt #endif
   1511       1.1     matt 
   1512       1.1     matt 	/*
   1513       1.1     matt 	 * Compute the PTE Group index.
   1514       1.1     matt 	 */
   1515       1.1     matt 	va &= ~ADDR_POFF;
   1516       1.2     matt 	ptegidx = va_to_pteg(pm, va);
   1517       1.1     matt 
   1518       1.1     matt 	msr = pmap_interrupts_off();
   1519       1.1     matt 	/*
   1520       1.1     matt 	 * Remove any existing mapping for this page.  Reuse the
   1521       1.1     matt 	 * pvo entry if there a mapping.
   1522       1.1     matt 	 */
   1523       1.1     matt 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1524       1.1     matt 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1525       1.1     matt #ifdef DEBUG
   1526       1.1     matt 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1527       1.1     matt 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1528       1.1     matt 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1529       1.1     matt 			   va < VM_MIN_KERNEL_ADDRESS) {
   1530  1.10.2.1    skrll 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1531  1.10.2.1    skrll 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1532  1.10.2.1    skrll 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1533  1.10.2.1    skrll 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1534  1.10.2.1    skrll 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1535       1.1     matt 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1536       1.1     matt #ifdef DDBX
   1537       1.1     matt 				Debugger();
   1538       1.1     matt #endif
   1539       1.1     matt 			}
   1540       1.1     matt #endif
   1541       1.1     matt 			PMAPCOUNT(mappings_replaced);
   1542       1.1     matt 			pmap_pvo_remove(pvo, -1);
   1543       1.1     matt 			break;
   1544       1.1     matt 		}
   1545       1.1     matt 	}
   1546       1.1     matt 
   1547       1.1     matt 	/*
   1548       1.1     matt 	 * If we aren't overwriting an mapping, try to allocate
   1549       1.1     matt 	 */
   1550       1.1     matt 	pmap_interrupts_restore(msr);
   1551       1.1     matt 	pvo = pool_get(pl, poolflags);
   1552       1.1     matt 	msr = pmap_interrupts_off();
   1553       1.1     matt 	if (pvo == NULL) {
   1554       1.1     matt 		pvo = pmap_pvo_reclaim(pm);
   1555       1.1     matt 		if (pvo == NULL) {
   1556       1.1     matt 			if ((flags & PMAP_CANFAIL) == 0)
   1557       1.1     matt 				panic("pmap_pvo_enter: failed");
   1558       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1559       1.1     matt 			pmap_pvo_enter_depth--;
   1560       1.1     matt #endif
   1561       1.1     matt 			pmap_interrupts_restore(msr);
   1562       1.1     matt 			return ENOMEM;
   1563       1.1     matt 		}
   1564       1.1     matt 	}
   1565       1.1     matt 	pvo->pvo_vaddr = va;
   1566       1.1     matt 	pvo->pvo_pmap = pm;
   1567       1.1     matt 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1568       1.1     matt 	if (flags & VM_PROT_EXECUTE) {
   1569       1.1     matt 		PMAPCOUNT(exec_mappings);
   1570  1.10.2.1    skrll 		pvo_set_exec(pvo);
   1571       1.1     matt 	}
   1572       1.1     matt 	if (flags & PMAP_WIRED)
   1573       1.1     matt 		pvo->pvo_vaddr |= PVO_WIRED;
   1574       1.1     matt 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1575       1.1     matt 		pvo->pvo_vaddr |= PVO_MANAGED;
   1576       1.1     matt 		PMAPCOUNT(mappings);
   1577       1.1     matt 	} else {
   1578       1.1     matt 		PMAPCOUNT(kernel_mappings);
   1579       1.1     matt 	}
   1580       1.2     matt 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1581       1.1     matt 
   1582       1.1     matt 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1583       1.1     matt 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1584       1.1     matt 		pvo->pvo_pmap->pm_stats.wired_count++;
   1585       1.1     matt 	pvo->pvo_pmap->pm_stats.resident_count++;
   1586       1.1     matt #if defined(DEBUG)
   1587       1.1     matt 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1588       1.1     matt 		DPRINTFN(PVOENTER,
   1589       1.1     matt 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1590       1.1     matt 		    pvo, pm, va, pa));
   1591       1.1     matt #endif
   1592       1.1     matt 
   1593       1.1     matt 	/*
   1594       1.1     matt 	 * We hope this succeeds but it isn't required.
   1595       1.1     matt 	 */
   1596       1.1     matt 	pvoh = &pmap_pvo_table[ptegidx];
   1597       1.1     matt 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1598       1.1     matt 	if (i >= 0) {
   1599       1.1     matt 		PVO_PTEGIDX_SET(pvo, i);
   1600  1.10.2.1    skrll 		PVO_WHERE(pvo, ENTER_INSERT);
   1601       1.1     matt 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1602       1.1     matt 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1603       1.1     matt 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1604       1.1     matt 	} else {
   1605       1.1     matt 		/*
   1606       1.1     matt 		 * Since we didn't have room for this entry (which makes it
   1607       1.1     matt 		 * and evicted entry), place it at the head of the list.
   1608       1.1     matt 		 */
   1609       1.1     matt 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1610       1.1     matt 		PMAPCOUNT(ptes_evicted);
   1611       1.1     matt 		pm->pm_evictions++;
   1612  1.10.2.1    skrll 		/*
   1613  1.10.2.1    skrll 		 * If this is a kernel page, make sure it's active.
   1614  1.10.2.1    skrll 		 */
   1615  1.10.2.1    skrll 		if (pm == pmap_kernel()) {
   1616  1.10.2.1    skrll 			i = pmap_pte_spill(pm, va, FALSE);
   1617  1.10.2.1    skrll 			KASSERT(i);
   1618  1.10.2.1    skrll 		}
   1619       1.1     matt 	}
   1620       1.1     matt 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1621       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1622       1.1     matt 	pmap_pvo_enter_depth--;
   1623       1.1     matt #endif
   1624       1.1     matt 	pmap_interrupts_restore(msr);
   1625       1.1     matt 	return 0;
   1626       1.1     matt }
   1627       1.1     matt 
   1628       1.1     matt void
   1629       1.1     matt pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
   1630       1.1     matt {
   1631       1.2     matt 	volatile struct pte *pt;
   1632       1.1     matt 	int ptegidx;
   1633       1.1     matt 
   1634       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1635       1.1     matt 	if (++pmap_pvo_remove_depth > 1)
   1636       1.1     matt 		panic("pmap_pvo_remove: called recursively!");
   1637       1.1     matt #endif
   1638       1.1     matt 
   1639       1.1     matt 	/*
   1640       1.1     matt 	 * If we haven't been supplied the ptegidx, calculate it.
   1641       1.1     matt 	 */
   1642       1.1     matt 	if (pteidx == -1) {
   1643       1.2     matt 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1644       1.1     matt 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1645       1.1     matt 	} else {
   1646       1.1     matt 		ptegidx = pteidx >> 3;
   1647       1.1     matt 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1648       1.1     matt 			ptegidx ^= pmap_pteg_mask;
   1649       1.1     matt 	}
   1650       1.1     matt 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1651       1.1     matt 
   1652       1.1     matt 	/*
   1653       1.1     matt 	 * If there is an active pte entry, we need to deactivate it
   1654       1.1     matt 	 * (and save the ref & chg bits).
   1655       1.1     matt 	 */
   1656       1.1     matt 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1657       1.1     matt 	if (pt != NULL) {
   1658       1.1     matt 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1659  1.10.2.1    skrll 		PVO_WHERE(pvo, REMOVE);
   1660       1.1     matt 		PVO_PTEGIDX_CLR(pvo);
   1661       1.1     matt 		PMAPCOUNT(ptes_removed);
   1662       1.1     matt 	} else {
   1663       1.1     matt 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1664       1.1     matt 		pvo->pvo_pmap->pm_evictions--;
   1665       1.1     matt 	}
   1666       1.1     matt 
   1667       1.1     matt 	/*
   1668  1.10.2.1    skrll 	 * Account for executable mappings.
   1669  1.10.2.1    skrll 	 */
   1670  1.10.2.1    skrll 	if (PVO_ISEXECUTABLE(pvo))
   1671  1.10.2.1    skrll 		pvo_clear_exec(pvo);
   1672  1.10.2.1    skrll 
   1673  1.10.2.1    skrll 	/*
   1674  1.10.2.1    skrll 	 * Update our statistics.
   1675       1.1     matt 	 */
   1676       1.1     matt 	pvo->pvo_pmap->pm_stats.resident_count--;
   1677       1.1     matt 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1678       1.1     matt 		pvo->pvo_pmap->pm_stats.wired_count--;
   1679       1.1     matt 
   1680       1.1     matt 	/*
   1681       1.1     matt 	 * Save the REF/CHG bits into their cache if the page is managed.
   1682       1.1     matt 	 */
   1683       1.1     matt 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1684       1.2     matt 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1685       1.1     matt 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1686       1.1     matt 
   1687       1.1     matt 		if (pg != NULL) {
   1688       1.1     matt 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1689       1.1     matt 		}
   1690       1.1     matt 		PMAPCOUNT(unmappings);
   1691       1.1     matt 	} else {
   1692       1.1     matt 		PMAPCOUNT(kernel_unmappings);
   1693       1.1     matt 	}
   1694       1.1     matt 
   1695       1.1     matt 	/*
   1696       1.1     matt 	 * Remove the PVO from its lists and return it to the pool.
   1697       1.1     matt 	 */
   1698       1.1     matt 	LIST_REMOVE(pvo, pvo_vlink);
   1699       1.1     matt 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1700       1.1     matt 	pool_put(pvo->pvo_vaddr & PVO_MANAGED
   1701       1.1     matt 	    ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1702       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1703       1.1     matt 	pmap_pvo_remove_depth--;
   1704       1.1     matt #endif
   1705       1.1     matt }
   1706       1.1     matt 
   1707       1.1     matt /*
   1708  1.10.2.1    skrll  * Mark a mapping as executable.
   1709  1.10.2.1    skrll  * If this is the first executable mapping in the segment,
   1710  1.10.2.1    skrll  * clear the noexec flag.
   1711  1.10.2.1    skrll  */
   1712  1.10.2.1    skrll STATIC void
   1713  1.10.2.1    skrll pvo_set_exec(struct pvo_entry *pvo)
   1714  1.10.2.1    skrll {
   1715  1.10.2.1    skrll 	struct pmap *pm = pvo->pvo_pmap;
   1716  1.10.2.1    skrll 
   1717  1.10.2.1    skrll 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1718  1.10.2.1    skrll 		return;
   1719  1.10.2.1    skrll 	}
   1720  1.10.2.1    skrll 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1721  1.10.2.1    skrll #ifdef PPC_OEA
   1722  1.10.2.1    skrll 	{
   1723  1.10.2.1    skrll 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1724  1.10.2.1    skrll 		if (pm->pm_exec[sr]++ == 0) {
   1725  1.10.2.1    skrll 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1726  1.10.2.1    skrll 		}
   1727  1.10.2.1    skrll 	}
   1728  1.10.2.1    skrll #endif
   1729  1.10.2.1    skrll }
   1730  1.10.2.1    skrll 
   1731  1.10.2.1    skrll /*
   1732  1.10.2.1    skrll  * Mark a mapping as non-executable.
   1733  1.10.2.1    skrll  * If this was the last executable mapping in the segment,
   1734  1.10.2.1    skrll  * set the noexec flag.
   1735  1.10.2.1    skrll  */
   1736  1.10.2.1    skrll STATIC void
   1737  1.10.2.1    skrll pvo_clear_exec(struct pvo_entry *pvo)
   1738  1.10.2.1    skrll {
   1739  1.10.2.1    skrll 	struct pmap *pm = pvo->pvo_pmap;
   1740  1.10.2.1    skrll 
   1741  1.10.2.1    skrll 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1742  1.10.2.1    skrll 		return;
   1743  1.10.2.1    skrll 	}
   1744  1.10.2.1    skrll 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1745  1.10.2.1    skrll #ifdef PPC_OEA
   1746  1.10.2.1    skrll 	{
   1747  1.10.2.1    skrll 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1748  1.10.2.1    skrll 		if (--pm->pm_exec[sr] == 0) {
   1749  1.10.2.1    skrll 			pm->pm_sr[sr] |= SR_NOEXEC;
   1750  1.10.2.1    skrll 		}
   1751  1.10.2.1    skrll 	}
   1752  1.10.2.1    skrll #endif
   1753  1.10.2.1    skrll }
   1754  1.10.2.1    skrll 
   1755  1.10.2.1    skrll /*
   1756       1.1     matt  * Insert physical page at pa into the given pmap at virtual address va.
   1757       1.1     matt  */
   1758       1.1     matt int
   1759       1.1     matt pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1760       1.1     matt {
   1761       1.1     matt 	struct mem_region *mp;
   1762       1.1     matt 	struct pvo_head *pvo_head;
   1763       1.1     matt 	struct vm_page *pg;
   1764       1.1     matt 	struct pool *pl;
   1765       1.2     matt 	register_t pte_lo;
   1766       1.1     matt 	int error;
   1767       1.1     matt 	u_int pvo_flags;
   1768       1.1     matt 	u_int was_exec = 0;
   1769       1.1     matt 
   1770       1.1     matt 	if (__predict_false(!pmap_initialized)) {
   1771       1.1     matt 		pvo_head = &pmap_pvo_kunmanaged;
   1772       1.1     matt 		pl = &pmap_upvo_pool;
   1773       1.1     matt 		pvo_flags = 0;
   1774       1.1     matt 		pg = NULL;
   1775       1.1     matt 		was_exec = PTE_EXEC;
   1776       1.1     matt 	} else {
   1777       1.1     matt 		pvo_head = pa_to_pvoh(pa, &pg);
   1778       1.1     matt 		pl = &pmap_mpvo_pool;
   1779       1.1     matt 		pvo_flags = PVO_MANAGED;
   1780       1.1     matt 	}
   1781       1.1     matt 
   1782       1.1     matt 	DPRINTFN(ENTER,
   1783       1.1     matt 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1784       1.1     matt 	    pm, va, pa, prot, flags));
   1785       1.1     matt 
   1786       1.1     matt 	/*
   1787       1.1     matt 	 * If this is a managed page, and it's the first reference to the
   1788       1.1     matt 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1789       1.1     matt 	 */
   1790       1.1     matt 	if (pg != NULL)
   1791       1.1     matt 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1792       1.1     matt 
   1793       1.1     matt 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1794       1.1     matt 
   1795       1.1     matt 	/*
   1796       1.1     matt 	 * Assume the page is cache inhibited and access is guarded unless
   1797       1.1     matt 	 * it's in our available memory array.  If it is in the memory array,
   1798       1.1     matt 	 * asssume it's in memory coherent memory.
   1799       1.1     matt 	 */
   1800       1.1     matt 	pte_lo = PTE_IG;
   1801       1.1     matt 	if ((flags & PMAP_NC) == 0) {
   1802       1.1     matt 		for (mp = mem; mp->size; mp++) {
   1803       1.1     matt 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1804       1.1     matt 				pte_lo = PTE_M;
   1805       1.1     matt 				break;
   1806       1.1     matt 			}
   1807       1.1     matt 		}
   1808       1.1     matt 	}
   1809       1.1     matt 
   1810       1.1     matt 	if (prot & VM_PROT_WRITE)
   1811       1.1     matt 		pte_lo |= PTE_BW;
   1812       1.1     matt 	else
   1813       1.1     matt 		pte_lo |= PTE_BR;
   1814       1.1     matt 
   1815       1.1     matt 	/*
   1816       1.1     matt 	 * If this was in response to a fault, "pre-fault" the PTE's
   1817       1.1     matt 	 * changed/referenced bit appropriately.
   1818       1.1     matt 	 */
   1819       1.1     matt 	if (flags & VM_PROT_WRITE)
   1820       1.1     matt 		pte_lo |= PTE_CHG;
   1821       1.1     matt 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1822       1.1     matt 		pte_lo |= PTE_REF;
   1823       1.1     matt 
   1824       1.1     matt 	/*
   1825       1.1     matt 	 * We need to know if this page can be executable
   1826       1.1     matt 	 */
   1827       1.1     matt 	flags |= (prot & VM_PROT_EXECUTE);
   1828       1.1     matt 
   1829       1.1     matt 	/*
   1830       1.1     matt 	 * Record mapping for later back-translation and pte spilling.
   1831       1.1     matt 	 * This will overwrite any existing mapping.
   1832       1.1     matt 	 */
   1833       1.1     matt 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1834       1.1     matt 
   1835       1.1     matt 	/*
   1836       1.1     matt 	 * Flush the real page from the instruction cache if this page is
   1837       1.1     matt 	 * mapped executable and cacheable and has not been flushed since
   1838       1.1     matt 	 * the last time it was modified.
   1839       1.1     matt 	 */
   1840       1.1     matt 	if (error == 0 &&
   1841       1.1     matt             (flags & VM_PROT_EXECUTE) &&
   1842       1.1     matt             (pte_lo & PTE_I) == 0 &&
   1843       1.1     matt 	    was_exec == 0) {
   1844       1.1     matt 		DPRINTFN(ENTER, (" syncicache"));
   1845       1.1     matt 		PMAPCOUNT(exec_synced);
   1846       1.6  thorpej 		pmap_syncicache(pa, PAGE_SIZE);
   1847       1.1     matt 		if (pg != NULL) {
   1848       1.1     matt 			pmap_attr_save(pg, PTE_EXEC);
   1849       1.1     matt 			PMAPCOUNT(exec_cached);
   1850       1.1     matt #if defined(DEBUG) || defined(PMAPDEBUG)
   1851       1.1     matt 			if (pmapdebug & PMAPDEBUG_ENTER)
   1852       1.1     matt 				printf(" marked-as-exec");
   1853       1.1     matt 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1854       1.1     matt 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1855       1.1     matt 				    pg->phys_addr);
   1856       1.1     matt 
   1857       1.1     matt #endif
   1858       1.1     matt 		}
   1859       1.1     matt 	}
   1860       1.1     matt 
   1861       1.1     matt 	DPRINTFN(ENTER, (": error=%d\n", error));
   1862       1.1     matt 
   1863       1.1     matt 	return error;
   1864       1.1     matt }
   1865       1.1     matt 
   1866       1.1     matt void
   1867       1.1     matt pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1868       1.1     matt {
   1869       1.1     matt 	struct mem_region *mp;
   1870       1.2     matt 	register_t pte_lo;
   1871       1.1     matt 	int error;
   1872       1.1     matt 
   1873       1.1     matt 	if (va < VM_MIN_KERNEL_ADDRESS)
   1874       1.1     matt 		panic("pmap_kenter_pa: attempt to enter "
   1875       1.1     matt 		    "non-kernel address %#lx!", va);
   1876       1.1     matt 
   1877       1.1     matt 	DPRINTFN(KENTER,
   1878       1.1     matt 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1879       1.1     matt 
   1880       1.1     matt 	/*
   1881       1.1     matt 	 * Assume the page is cache inhibited and access is guarded unless
   1882       1.1     matt 	 * it's in our available memory array.  If it is in the memory array,
   1883       1.1     matt 	 * asssume it's in memory coherent memory.
   1884       1.1     matt 	 */
   1885       1.1     matt 	pte_lo = PTE_IG;
   1886       1.4     matt 	if ((prot & PMAP_NC) == 0) {
   1887       1.4     matt 		for (mp = mem; mp->size; mp++) {
   1888       1.4     matt 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1889       1.4     matt 				pte_lo = PTE_M;
   1890       1.4     matt 				break;
   1891       1.4     matt 			}
   1892       1.1     matt 		}
   1893       1.1     matt 	}
   1894       1.1     matt 
   1895       1.1     matt 	if (prot & VM_PROT_WRITE)
   1896       1.1     matt 		pte_lo |= PTE_BW;
   1897       1.1     matt 	else
   1898       1.1     matt 		pte_lo |= PTE_BR;
   1899       1.1     matt 
   1900       1.1     matt 	/*
   1901       1.1     matt 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1902       1.1     matt 	 */
   1903       1.1     matt 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1904       1.1     matt 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1905       1.1     matt 
   1906       1.1     matt 	if (error != 0)
   1907       1.1     matt 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1908       1.1     matt 		      va, pa, error);
   1909       1.1     matt }
   1910       1.1     matt 
   1911       1.1     matt void
   1912       1.1     matt pmap_kremove(vaddr_t va, vsize_t len)
   1913       1.1     matt {
   1914       1.1     matt 	if (va < VM_MIN_KERNEL_ADDRESS)
   1915       1.1     matt 		panic("pmap_kremove: attempt to remove "
   1916       1.1     matt 		    "non-kernel address %#lx!", va);
   1917       1.1     matt 
   1918       1.1     matt 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1919       1.1     matt 	pmap_remove(pmap_kernel(), va, va + len);
   1920       1.1     matt }
   1921       1.1     matt 
   1922       1.1     matt /*
   1923       1.1     matt  * Remove the given range of mapping entries.
   1924       1.1     matt  */
   1925       1.1     matt void
   1926       1.1     matt pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1927       1.1     matt {
   1928       1.1     matt 	struct pvo_entry *pvo;
   1929       1.2     matt 	register_t msr;
   1930       1.1     matt 	int pteidx;
   1931       1.1     matt 
   1932  1.10.2.1    skrll 	msr = pmap_interrupts_off();
   1933       1.1     matt 	for (; va < endva; va += PAGE_SIZE) {
   1934       1.1     matt 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1935       1.1     matt 		if (pvo != NULL) {
   1936       1.1     matt 			pmap_pvo_remove(pvo, pteidx);
   1937       1.1     matt 		}
   1938       1.1     matt 	}
   1939  1.10.2.1    skrll 	pmap_interrupts_restore(msr);
   1940       1.1     matt }
   1941       1.1     matt 
   1942       1.1     matt /*
   1943       1.1     matt  * Get the physical page address for the given pmap/virtual address.
   1944       1.1     matt  */
   1945       1.1     matt boolean_t
   1946       1.1     matt pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1947       1.1     matt {
   1948       1.1     matt 	struct pvo_entry *pvo;
   1949       1.2     matt 	register_t msr;
   1950       1.7     matt 
   1951       1.7     matt 	/*
   1952       1.7     matt 	 * If this is a kernel pmap lookup, also check the battable
   1953       1.7     matt 	 * and if we get a hit, translate the VA to a PA using the
   1954       1.7     matt 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   1955       1.7     matt 	 * that will wrap back to 0.
   1956       1.7     matt 	 */
   1957       1.7     matt 	if (pm == pmap_kernel() &&
   1958       1.7     matt 	    (va < VM_MIN_KERNEL_ADDRESS ||
   1959       1.7     matt 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   1960       1.8     matt 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   1961  1.10.2.1    skrll 		if ((MFPVR() >> 16) != MPC601) {
   1962  1.10.2.1    skrll 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   1963  1.10.2.1    skrll 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   1964  1.10.2.1    skrll 				register_t batl =
   1965  1.10.2.1    skrll 				    battable[va >> ADDR_SR_SHFT].batl;
   1966  1.10.2.1    skrll 				register_t mask =
   1967  1.10.2.1    skrll 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   1968  1.10.2.1    skrll 				*pap = (batl & mask) | (va & ~mask);
   1969  1.10.2.1    skrll 				return TRUE;
   1970  1.10.2.1    skrll 			}
   1971  1.10.2.1    skrll 		} else {
   1972  1.10.2.1    skrll 			register_t batu = battable[va >> 23].batu;
   1973  1.10.2.1    skrll 			register_t batl = battable[va >> 23].batl;
   1974  1.10.2.1    skrll 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   1975  1.10.2.1    skrll 			if (BAT601_VALID_P(batl) &&
   1976  1.10.2.1    skrll 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   1977  1.10.2.1    skrll 				register_t mask =
   1978  1.10.2.1    skrll 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   1979  1.10.2.1    skrll 				*pap = (batl & mask) | (va & ~mask);
   1980  1.10.2.1    skrll 				return TRUE;
   1981  1.10.2.1    skrll 			} else if (SR601_VALID_P(sr) &&
   1982  1.10.2.1    skrll 				   SR601_PA_MATCH_P(sr, va)) {
   1983  1.10.2.1    skrll 				*pap = va;
   1984  1.10.2.1    skrll 				return TRUE;
   1985  1.10.2.1    skrll 			}
   1986       1.7     matt 		}
   1987       1.7     matt 		return FALSE;
   1988       1.7     matt 	}
   1989       1.1     matt 
   1990       1.1     matt 	msr = pmap_interrupts_off();
   1991       1.1     matt 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   1992       1.1     matt 	if (pvo != NULL) {
   1993       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1994       1.1     matt 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   1995       1.1     matt 	}
   1996       1.1     matt 	pmap_interrupts_restore(msr);
   1997       1.1     matt 	return pvo != NULL;
   1998       1.1     matt }
   1999       1.1     matt 
   2000       1.1     matt /*
   2001       1.1     matt  * Lower the protection on the specified range of this pmap.
   2002       1.1     matt  */
   2003       1.1     matt void
   2004       1.1     matt pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2005       1.1     matt {
   2006       1.1     matt 	struct pvo_entry *pvo;
   2007       1.2     matt 	volatile struct pte *pt;
   2008       1.2     matt 	register_t msr;
   2009       1.1     matt 	int pteidx;
   2010       1.1     matt 
   2011       1.1     matt 	/*
   2012       1.1     matt 	 * Since this routine only downgrades protection, we should
   2013  1.10.2.1    skrll 	 * always be called with at least one bit not set.
   2014       1.1     matt 	 */
   2015  1.10.2.1    skrll 	KASSERT(prot != VM_PROT_ALL);
   2016       1.1     matt 
   2017       1.1     matt 	/*
   2018       1.1     matt 	 * If there is no protection, this is equivalent to
   2019       1.1     matt 	 * remove the pmap from the pmap.
   2020       1.1     matt 	 */
   2021       1.1     matt 	if ((prot & VM_PROT_READ) == 0) {
   2022       1.1     matt 		pmap_remove(pm, va, endva);
   2023       1.1     matt 		return;
   2024       1.1     matt 	}
   2025       1.1     matt 
   2026       1.1     matt 	msr = pmap_interrupts_off();
   2027       1.6  thorpej 	for (; va < endva; va += PAGE_SIZE) {
   2028       1.1     matt 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2029       1.1     matt 		if (pvo == NULL)
   2030       1.1     matt 			continue;
   2031       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2032       1.1     matt 
   2033       1.1     matt 		/*
   2034       1.1     matt 		 * Revoke executable if asked to do so.
   2035       1.1     matt 		 */
   2036       1.1     matt 		if ((prot & VM_PROT_EXECUTE) == 0)
   2037  1.10.2.1    skrll 			pvo_clear_exec(pvo);
   2038       1.1     matt 
   2039       1.1     matt #if 0
   2040       1.1     matt 		/*
   2041       1.1     matt 		 * If the page is already read-only, no change
   2042       1.1     matt 		 * needs to be made.
   2043       1.1     matt 		 */
   2044       1.1     matt 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2045       1.1     matt 			continue;
   2046       1.1     matt #endif
   2047       1.1     matt 		/*
   2048       1.1     matt 		 * Grab the PTE pointer before we diddle with
   2049       1.1     matt 		 * the cached PTE copy.
   2050       1.1     matt 		 */
   2051       1.1     matt 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2052       1.1     matt 		/*
   2053       1.1     matt 		 * Change the protection of the page.
   2054       1.1     matt 		 */
   2055       1.1     matt 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2056       1.1     matt 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2057       1.1     matt 
   2058       1.1     matt 		/*
   2059       1.1     matt 		 * If the PVO is in the page table, update
   2060       1.1     matt 		 * that pte at well.
   2061       1.1     matt 		 */
   2062       1.1     matt 		if (pt != NULL) {
   2063       1.1     matt 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2064  1.10.2.1    skrll 			PVO_WHERE(pvo, PMAP_PROTECT);
   2065       1.1     matt 			PMAPCOUNT(ptes_changed);
   2066       1.1     matt 		}
   2067       1.1     matt 
   2068       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2069       1.1     matt 	}
   2070       1.1     matt 	pmap_interrupts_restore(msr);
   2071       1.1     matt }
   2072       1.1     matt 
   2073       1.1     matt void
   2074       1.1     matt pmap_unwire(pmap_t pm, vaddr_t va)
   2075       1.1     matt {
   2076       1.1     matt 	struct pvo_entry *pvo;
   2077       1.2     matt 	register_t msr;
   2078       1.1     matt 
   2079       1.1     matt 	msr = pmap_interrupts_off();
   2080       1.1     matt 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2081       1.1     matt 	if (pvo != NULL) {
   2082       1.1     matt 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2083       1.1     matt 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2084       1.1     matt 			pm->pm_stats.wired_count--;
   2085       1.1     matt 		}
   2086       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2087       1.1     matt 	}
   2088       1.1     matt 	pmap_interrupts_restore(msr);
   2089       1.1     matt }
   2090       1.1     matt 
   2091       1.1     matt /*
   2092       1.1     matt  * Lower the protection on the specified physical page.
   2093       1.1     matt  */
   2094       1.1     matt void
   2095       1.1     matt pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2096       1.1     matt {
   2097       1.1     matt 	struct pvo_head *pvo_head;
   2098       1.1     matt 	struct pvo_entry *pvo, *next_pvo;
   2099       1.2     matt 	volatile struct pte *pt;
   2100       1.2     matt 	register_t msr;
   2101       1.1     matt 
   2102  1.10.2.1    skrll 	KASSERT(prot != VM_PROT_ALL);
   2103       1.1     matt 	msr = pmap_interrupts_off();
   2104       1.1     matt 
   2105       1.1     matt 	/*
   2106       1.1     matt 	 * When UVM reuses a page, it does a pmap_page_protect with
   2107       1.1     matt 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2108       1.1     matt 	 * since we know the page will have different contents.
   2109       1.1     matt 	 */
   2110       1.1     matt 	if ((prot & VM_PROT_READ) == 0) {
   2111       1.1     matt 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2112       1.1     matt 		    pg->phys_addr));
   2113       1.1     matt 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2114       1.1     matt 			PMAPCOUNT(exec_uncached_page_protect);
   2115       1.1     matt 			pmap_attr_clear(pg, PTE_EXEC);
   2116       1.1     matt 		}
   2117       1.1     matt 	}
   2118       1.1     matt 
   2119       1.1     matt 	pvo_head = vm_page_to_pvoh(pg);
   2120       1.1     matt 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2121       1.1     matt 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2122       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2123       1.1     matt 
   2124       1.1     matt 		/*
   2125       1.1     matt 		 * Downgrading to no mapping at all, we just remove the entry.
   2126       1.1     matt 		 */
   2127       1.1     matt 		if ((prot & VM_PROT_READ) == 0) {
   2128       1.1     matt 			pmap_pvo_remove(pvo, -1);
   2129       1.1     matt 			continue;
   2130       1.1     matt 		}
   2131       1.1     matt 
   2132       1.1     matt 		/*
   2133       1.1     matt 		 * If EXEC permission is being revoked, just clear the
   2134       1.1     matt 		 * flag in the PVO.
   2135       1.1     matt 		 */
   2136       1.1     matt 		if ((prot & VM_PROT_EXECUTE) == 0)
   2137  1.10.2.1    skrll 			pvo_clear_exec(pvo);
   2138       1.1     matt 
   2139       1.1     matt 		/*
   2140       1.1     matt 		 * If this entry is already RO, don't diddle with the
   2141       1.1     matt 		 * page table.
   2142       1.1     matt 		 */
   2143       1.1     matt 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2144       1.1     matt 			PMAP_PVO_CHECK(pvo);
   2145       1.1     matt 			continue;
   2146       1.1     matt 		}
   2147       1.1     matt 
   2148       1.1     matt 		/*
   2149       1.1     matt 		 * Grab the PTE before the we diddle the bits so
   2150       1.1     matt 		 * pvo_to_pte can verify the pte contents are as
   2151       1.1     matt 		 * expected.
   2152       1.1     matt 		 */
   2153       1.1     matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2154       1.1     matt 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2155       1.1     matt 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2156       1.1     matt 		if (pt != NULL) {
   2157       1.1     matt 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2158  1.10.2.1    skrll 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2159       1.1     matt 			PMAPCOUNT(ptes_changed);
   2160       1.1     matt 		}
   2161       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2162       1.1     matt 	}
   2163       1.1     matt 	pmap_interrupts_restore(msr);
   2164       1.1     matt }
   2165       1.1     matt 
   2166       1.1     matt /*
   2167       1.1     matt  * Activate the address space for the specified process.  If the process
   2168       1.1     matt  * is the current process, load the new MMU context.
   2169       1.1     matt  */
   2170       1.1     matt void
   2171       1.1     matt pmap_activate(struct lwp *l)
   2172       1.1     matt {
   2173       1.1     matt 	struct pcb *pcb = &l->l_addr->u_pcb;
   2174       1.1     matt 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2175       1.1     matt 
   2176       1.1     matt 	DPRINTFN(ACTIVATE,
   2177       1.1     matt 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2178       1.1     matt 
   2179       1.1     matt 	/*
   2180       1.1     matt 	 * XXX Normally performed in cpu_fork().
   2181       1.1     matt 	 */
   2182  1.10.2.1    skrll 	pcb->pcb_pm = pmap;
   2183       1.1     matt 
   2184       1.1     matt 	/*
   2185  1.10.2.1    skrll 	* In theory, the SR registers need only be valid on return
   2186  1.10.2.1    skrll 	* to user space wait to do them there.
   2187  1.10.2.1    skrll 	*/
   2188       1.1     matt 	if (l == curlwp) {
   2189       1.1     matt 		/* Store pointer to new current pmap. */
   2190       1.1     matt 		curpm = pmap;
   2191       1.1     matt 	}
   2192       1.1     matt }
   2193       1.1     matt 
   2194       1.1     matt /*
   2195       1.1     matt  * Deactivate the specified process's address space.
   2196       1.1     matt  */
   2197       1.1     matt void
   2198       1.1     matt pmap_deactivate(struct lwp *l)
   2199       1.1     matt {
   2200       1.1     matt }
   2201       1.1     matt 
   2202       1.1     matt boolean_t
   2203       1.1     matt pmap_query_bit(struct vm_page *pg, int ptebit)
   2204       1.1     matt {
   2205       1.1     matt 	struct pvo_entry *pvo;
   2206       1.2     matt 	volatile struct pte *pt;
   2207       1.2     matt 	register_t msr;
   2208       1.1     matt 
   2209       1.1     matt 	if (pmap_attr_fetch(pg) & ptebit)
   2210       1.1     matt 		return TRUE;
   2211  1.10.2.1    skrll 
   2212       1.1     matt 	msr = pmap_interrupts_off();
   2213       1.1     matt 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2214       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2215       1.1     matt 		/*
   2216       1.1     matt 		 * See if we saved the bit off.  If so cache, it and return
   2217       1.1     matt 		 * success.
   2218       1.1     matt 		 */
   2219       1.1     matt 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2220       1.1     matt 			pmap_attr_save(pg, ptebit);
   2221       1.1     matt 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2222       1.1     matt 			pmap_interrupts_restore(msr);
   2223       1.1     matt 			return TRUE;
   2224       1.1     matt 		}
   2225       1.1     matt 	}
   2226       1.1     matt 	/*
   2227       1.1     matt 	 * No luck, now go thru the hard part of looking at the ptes
   2228       1.1     matt 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2229       1.1     matt 	 * to the PTEs.
   2230       1.1     matt 	 */
   2231       1.1     matt 	SYNC();
   2232       1.1     matt 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2233       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2234       1.1     matt 		/*
   2235       1.1     matt 		 * See if this pvo have a valid PTE.  If so, fetch the
   2236       1.1     matt 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2237       1.1     matt 		 * ptebit is set, cache, it and return success.
   2238       1.1     matt 		 */
   2239       1.1     matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2240       1.1     matt 		if (pt != NULL) {
   2241       1.1     matt 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2242       1.1     matt 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2243       1.1     matt 				pmap_attr_save(pg, ptebit);
   2244       1.1     matt 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2245       1.1     matt 				pmap_interrupts_restore(msr);
   2246       1.1     matt 				return TRUE;
   2247       1.1     matt 			}
   2248       1.1     matt 		}
   2249       1.1     matt 	}
   2250       1.1     matt 	pmap_interrupts_restore(msr);
   2251       1.1     matt 	return FALSE;
   2252       1.1     matt }
   2253       1.1     matt 
   2254       1.1     matt boolean_t
   2255       1.1     matt pmap_clear_bit(struct vm_page *pg, int ptebit)
   2256       1.1     matt {
   2257       1.1     matt 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2258       1.1     matt 	struct pvo_entry *pvo;
   2259       1.2     matt 	volatile struct pte *pt;
   2260       1.2     matt 	register_t msr;
   2261       1.1     matt 	int rv = 0;
   2262       1.1     matt 
   2263       1.1     matt 	msr = pmap_interrupts_off();
   2264       1.1     matt 
   2265       1.1     matt 	/*
   2266       1.1     matt 	 * Fetch the cache value
   2267       1.1     matt 	 */
   2268       1.1     matt 	rv |= pmap_attr_fetch(pg);
   2269       1.1     matt 
   2270       1.1     matt 	/*
   2271       1.1     matt 	 * Clear the cached value.
   2272       1.1     matt 	 */
   2273       1.1     matt 	pmap_attr_clear(pg, ptebit);
   2274       1.1     matt 
   2275       1.1     matt 	/*
   2276       1.1     matt 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2277       1.1     matt 	 * can reset the right ones).  Note that since the pvo entries and
   2278       1.1     matt 	 * list heads are accessed via BAT0 and are never placed in the
   2279       1.1     matt 	 * page table, we don't have to worry about further accesses setting
   2280       1.1     matt 	 * the REF/CHG bits.
   2281       1.1     matt 	 */
   2282       1.1     matt 	SYNC();
   2283       1.1     matt 
   2284       1.1     matt 	/*
   2285       1.1     matt 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2286       1.1     matt 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2287       1.1     matt 	 */
   2288       1.1     matt 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2289       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2290       1.1     matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2291       1.1     matt 		if (pt != NULL) {
   2292       1.1     matt 			/*
   2293       1.1     matt 			 * Only sync the PTE if the bit we are looking
   2294       1.1     matt 			 * for is not already set.
   2295       1.1     matt 			 */
   2296       1.1     matt 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2297       1.1     matt 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2298       1.1     matt 			/*
   2299       1.1     matt 			 * If the bit we are looking for was already set,
   2300       1.1     matt 			 * clear that bit in the pte.
   2301       1.1     matt 			 */
   2302       1.1     matt 			if (pvo->pvo_pte.pte_lo & ptebit)
   2303       1.1     matt 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2304       1.1     matt 		}
   2305       1.1     matt 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2306       1.1     matt 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2307       1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2308       1.1     matt 	}
   2309       1.1     matt 	pmap_interrupts_restore(msr);
   2310  1.10.2.1    skrll 
   2311       1.1     matt 	/*
   2312       1.1     matt 	 * If we are clearing the modify bit and this page was marked EXEC
   2313       1.1     matt 	 * and the user of the page thinks the page was modified, then we
   2314       1.1     matt 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2315       1.1     matt 	 * bit if it's not mapped.  The page itself might not have the CHG
   2316       1.1     matt 	 * bit set if the modification was done via DMA to the page.
   2317       1.1     matt 	 */
   2318       1.1     matt 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2319       1.1     matt 		if (LIST_EMPTY(pvoh)) {
   2320       1.1     matt 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2321       1.1     matt 			    pg->phys_addr));
   2322       1.1     matt 			pmap_attr_clear(pg, PTE_EXEC);
   2323       1.1     matt 			PMAPCOUNT(exec_uncached_clear_modify);
   2324       1.1     matt 		} else {
   2325       1.1     matt 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2326       1.1     matt 			    pg->phys_addr));
   2327       1.6  thorpej 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2328       1.1     matt 			PMAPCOUNT(exec_synced_clear_modify);
   2329       1.1     matt 		}
   2330       1.1     matt 	}
   2331       1.1     matt 	return (rv & ptebit) != 0;
   2332       1.1     matt }
   2333       1.1     matt 
   2334       1.1     matt void
   2335       1.1     matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2336       1.1     matt {
   2337       1.1     matt 	struct pvo_entry *pvo;
   2338       1.1     matt 	size_t offset = va & ADDR_POFF;
   2339       1.1     matt 	int s;
   2340       1.1     matt 
   2341       1.1     matt 	s = splvm();
   2342       1.1     matt 	while (len > 0) {
   2343       1.6  thorpej 		size_t seglen = PAGE_SIZE - offset;
   2344       1.1     matt 		if (seglen > len)
   2345       1.1     matt 			seglen = len;
   2346       1.1     matt 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2347       1.1     matt 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2348       1.1     matt 			pmap_syncicache(
   2349       1.1     matt 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2350       1.1     matt 			PMAP_PVO_CHECK(pvo);
   2351       1.1     matt 		}
   2352       1.1     matt 		va += seglen;
   2353       1.1     matt 		len -= seglen;
   2354       1.1     matt 		offset = 0;
   2355       1.1     matt 	}
   2356       1.1     matt 	splx(s);
   2357       1.1     matt }
   2358       1.1     matt 
   2359       1.1     matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2360       1.1     matt void
   2361       1.2     matt pmap_pte_print(volatile struct pte *pt)
   2362       1.1     matt {
   2363       1.1     matt 	printf("PTE %p: ", pt);
   2364       1.1     matt 	/* High word: */
   2365       1.2     matt 	printf("0x%08lx: [", pt->pte_hi);
   2366       1.1     matt 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2367       1.1     matt 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2368       1.2     matt 	printf("0x%06lx 0x%02lx",
   2369       1.1     matt 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2370       1.1     matt 	    pt->pte_hi & PTE_API);
   2371       1.1     matt 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2372       1.1     matt 	/* Low word: */
   2373       1.2     matt 	printf(" 0x%08lx: [", pt->pte_lo);
   2374       1.2     matt 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2375       1.1     matt 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2376       1.1     matt 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2377       1.1     matt 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2378       1.1     matt 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2379       1.1     matt 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2380       1.1     matt 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2381       1.1     matt 	switch (pt->pte_lo & PTE_PP) {
   2382       1.1     matt 	case PTE_BR: printf("br]\n"); break;
   2383       1.1     matt 	case PTE_BW: printf("bw]\n"); break;
   2384       1.1     matt 	case PTE_SO: printf("so]\n"); break;
   2385       1.1     matt 	case PTE_SW: printf("sw]\n"); break;
   2386       1.1     matt 	}
   2387       1.1     matt }
   2388       1.1     matt #endif
   2389       1.1     matt 
   2390       1.1     matt #if defined(DDB)
   2391       1.1     matt void
   2392       1.1     matt pmap_pteg_check(void)
   2393       1.1     matt {
   2394       1.2     matt 	volatile struct pte *pt;
   2395       1.1     matt 	int i;
   2396       1.1     matt 	int ptegidx;
   2397       1.1     matt 	u_int p_valid = 0;
   2398       1.1     matt 	u_int s_valid = 0;
   2399       1.1     matt 	u_int invalid = 0;
   2400       1.1     matt 
   2401       1.1     matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2402       1.1     matt 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2403       1.1     matt 			if (pt->pte_hi & PTE_VALID) {
   2404       1.1     matt 				if (pt->pte_hi & PTE_HID)
   2405       1.1     matt 					s_valid++;
   2406       1.1     matt 				else
   2407       1.1     matt 					p_valid++;
   2408       1.1     matt 			} else
   2409       1.1     matt 				invalid++;
   2410       1.1     matt 		}
   2411       1.1     matt 	}
   2412       1.1     matt 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2413       1.1     matt 		p_valid, p_valid, s_valid, s_valid,
   2414       1.1     matt 		invalid, invalid);
   2415       1.1     matt }
   2416       1.1     matt 
   2417       1.1     matt void
   2418       1.1     matt pmap_print_mmuregs(void)
   2419       1.1     matt {
   2420       1.1     matt 	int i;
   2421       1.1     matt 	u_int cpuvers;
   2422  1.10.2.1    skrll #ifndef PPC_OEA64
   2423       1.1     matt 	vaddr_t addr;
   2424       1.2     matt 	register_t soft_sr[16];
   2425  1.10.2.1    skrll #endif
   2426       1.1     matt 	struct bat soft_ibat[4];
   2427       1.1     matt 	struct bat soft_dbat[4];
   2428       1.2     matt 	register_t sdr1;
   2429       1.1     matt 
   2430       1.1     matt 	cpuvers = MFPVR() >> 16;
   2431       1.1     matt 
   2432       1.1     matt 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2433  1.10.2.1    skrll #ifndef PPC_OEA64
   2434  1.10.2.1    skrll 	addr = 0;
   2435       1.1     matt 	for (i=0; i<16; i++) {
   2436       1.1     matt 		soft_sr[i] = MFSRIN(addr);
   2437       1.1     matt 		addr += (1 << ADDR_SR_SHFT);
   2438       1.1     matt 	}
   2439  1.10.2.1    skrll #endif
   2440       1.1     matt 
   2441       1.1     matt 	/* read iBAT (601: uBAT) registers */
   2442       1.1     matt 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2443       1.1     matt 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2444       1.1     matt 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2445       1.1     matt 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2446       1.1     matt 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2447       1.1     matt 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2448       1.1     matt 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2449       1.1     matt 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2450       1.1     matt 
   2451       1.1     matt 
   2452       1.1     matt 	if (cpuvers != MPC601) {
   2453       1.1     matt 		/* read dBAT registers */
   2454       1.1     matt 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2455       1.1     matt 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2456       1.1     matt 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2457       1.1     matt 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2458       1.1     matt 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2459       1.1     matt 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2460       1.1     matt 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2461       1.1     matt 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2462       1.1     matt 	}
   2463       1.1     matt 
   2464  1.10.2.1    skrll 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2465  1.10.2.1    skrll #ifndef PPC_OEA64
   2466       1.1     matt 	printf("SR[]:\t");
   2467       1.1     matt 	for (i=0; i<4; i++)
   2468       1.2     matt 		printf("0x%08lx,   ", soft_sr[i]);
   2469       1.1     matt 	printf("\n\t");
   2470       1.1     matt 	for ( ; i<8; i++)
   2471       1.2     matt 		printf("0x%08lx,   ", soft_sr[i]);
   2472       1.1     matt 	printf("\n\t");
   2473       1.1     matt 	for ( ; i<12; i++)
   2474       1.2     matt 		printf("0x%08lx,   ", soft_sr[i]);
   2475       1.1     matt 	printf("\n\t");
   2476       1.1     matt 	for ( ; i<16; i++)
   2477       1.2     matt 		printf("0x%08lx,   ", soft_sr[i]);
   2478       1.1     matt 	printf("\n");
   2479  1.10.2.1    skrll #endif
   2480       1.1     matt 
   2481       1.1     matt 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2482       1.1     matt 	for (i=0; i<4; i++) {
   2483       1.2     matt 		printf("0x%08lx 0x%08lx, ",
   2484       1.1     matt 			soft_ibat[i].batu, soft_ibat[i].batl);
   2485       1.1     matt 		if (i == 1)
   2486       1.1     matt 			printf("\n\t");
   2487       1.1     matt 	}
   2488       1.1     matt 	if (cpuvers != MPC601) {
   2489       1.1     matt 		printf("\ndBAT[]:\t");
   2490       1.1     matt 		for (i=0; i<4; i++) {
   2491       1.2     matt 			printf("0x%08lx 0x%08lx, ",
   2492       1.1     matt 				soft_dbat[i].batu, soft_dbat[i].batl);
   2493       1.1     matt 			if (i == 1)
   2494       1.1     matt 				printf("\n\t");
   2495       1.1     matt 		}
   2496       1.1     matt 	}
   2497       1.1     matt 	printf("\n");
   2498       1.1     matt }
   2499       1.1     matt 
   2500       1.1     matt void
   2501       1.1     matt pmap_print_pte(pmap_t pm, vaddr_t va)
   2502       1.1     matt {
   2503       1.1     matt 	struct pvo_entry *pvo;
   2504       1.2     matt 	volatile struct pte *pt;
   2505       1.1     matt 	int pteidx;
   2506       1.1     matt 
   2507       1.1     matt 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2508       1.1     matt 	if (pvo != NULL) {
   2509       1.1     matt 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2510       1.1     matt 		if (pt != NULL) {
   2511       1.2     matt 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2512       1.1     matt 				va, pt,
   2513       1.1     matt 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2514       1.1     matt 				pt->pte_hi, pt->pte_lo);
   2515       1.1     matt 		} else {
   2516       1.1     matt 			printf("No valid PTE found\n");
   2517       1.1     matt 		}
   2518       1.1     matt 	} else {
   2519       1.1     matt 		printf("Address not in pmap\n");
   2520       1.1     matt 	}
   2521       1.1     matt }
   2522       1.1     matt 
   2523       1.1     matt void
   2524       1.1     matt pmap_pteg_dist(void)
   2525       1.1     matt {
   2526       1.1     matt 	struct pvo_entry *pvo;
   2527       1.1     matt 	int ptegidx;
   2528       1.1     matt 	int depth;
   2529       1.1     matt 	int max_depth = 0;
   2530       1.1     matt 	unsigned int depths[64];
   2531       1.1     matt 
   2532       1.1     matt 	memset(depths, 0, sizeof(depths));
   2533       1.1     matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2534       1.1     matt 		depth = 0;
   2535       1.1     matt 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2536       1.1     matt 			depth++;
   2537       1.1     matt 		}
   2538       1.1     matt 		if (depth > max_depth)
   2539       1.1     matt 			max_depth = depth;
   2540       1.1     matt 		if (depth > 63)
   2541       1.1     matt 			depth = 63;
   2542       1.1     matt 		depths[depth]++;
   2543       1.1     matt 	}
   2544       1.1     matt 
   2545       1.1     matt 	for (depth = 0; depth < 64; depth++) {
   2546       1.1     matt 		printf("  [%2d]: %8u", depth, depths[depth]);
   2547       1.1     matt 		if ((depth & 3) == 3)
   2548       1.1     matt 			printf("\n");
   2549       1.1     matt 		if (depth == max_depth)
   2550       1.1     matt 			break;
   2551       1.1     matt 	}
   2552       1.1     matt 	if ((depth & 3) != 3)
   2553       1.1     matt 		printf("\n");
   2554       1.1     matt 	printf("Max depth found was %d\n", max_depth);
   2555       1.1     matt }
   2556       1.1     matt #endif /* DEBUG */
   2557       1.1     matt 
   2558       1.1     matt #if defined(PMAPCHECK) || defined(DEBUG)
   2559       1.1     matt void
   2560       1.1     matt pmap_pvo_verify(void)
   2561       1.1     matt {
   2562       1.1     matt 	int ptegidx;
   2563       1.1     matt 	int s;
   2564       1.1     matt 
   2565       1.1     matt 	s = splvm();
   2566       1.1     matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2567       1.1     matt 		struct pvo_entry *pvo;
   2568       1.1     matt 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2569       1.1     matt 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2570       1.1     matt 				panic("pmap_pvo_verify: invalid pvo %p "
   2571       1.1     matt 				    "on list %#x", pvo, ptegidx);
   2572       1.1     matt 			pmap_pvo_check(pvo);
   2573       1.1     matt 		}
   2574       1.1     matt 	}
   2575       1.1     matt 	splx(s);
   2576       1.1     matt }
   2577       1.1     matt #endif /* PMAPCHECK */
   2578       1.1     matt 
   2579       1.1     matt 
   2580       1.1     matt void *
   2581       1.1     matt pmap_pool_ualloc(struct pool *pp, int flags)
   2582       1.1     matt {
   2583       1.1     matt 	struct pvo_page *pvop;
   2584       1.1     matt 
   2585       1.1     matt 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2586       1.1     matt 	if (pvop != NULL) {
   2587       1.1     matt 		pmap_upvop_free--;
   2588       1.1     matt 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2589       1.1     matt 		return pvop;
   2590       1.1     matt 	}
   2591       1.1     matt 	if (uvm.page_init_done != TRUE) {
   2592       1.1     matt 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2593       1.1     matt 	}
   2594       1.1     matt 	return pmap_pool_malloc(pp, flags);
   2595       1.1     matt }
   2596       1.1     matt 
   2597       1.1     matt void *
   2598       1.1     matt pmap_pool_malloc(struct pool *pp, int flags)
   2599       1.1     matt {
   2600       1.1     matt 	struct pvo_page *pvop;
   2601       1.1     matt 	struct vm_page *pg;
   2602       1.1     matt 
   2603       1.1     matt 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2604       1.1     matt 	if (pvop != NULL) {
   2605       1.1     matt 		pmap_mpvop_free--;
   2606       1.1     matt 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2607       1.1     matt 		return pvop;
   2608       1.1     matt 	}
   2609       1.1     matt  again:
   2610       1.1     matt 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2611       1.1     matt 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2612       1.1     matt 	if (__predict_false(pg == NULL)) {
   2613       1.1     matt 		if (flags & PR_WAITOK) {
   2614       1.1     matt 			uvm_wait("plpg");
   2615       1.1     matt 			goto again;
   2616       1.1     matt 		} else {
   2617       1.1     matt 			return (0);
   2618       1.1     matt 		}
   2619       1.1     matt 	}
   2620       1.1     matt 	return (void *) VM_PAGE_TO_PHYS(pg);
   2621       1.1     matt }
   2622       1.1     matt 
   2623       1.1     matt void
   2624       1.1     matt pmap_pool_ufree(struct pool *pp, void *va)
   2625       1.1     matt {
   2626       1.1     matt 	struct pvo_page *pvop;
   2627       1.1     matt #if 0
   2628       1.1     matt 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2629       1.1     matt 		pmap_pool_mfree(va, size, tag);
   2630       1.1     matt 		return;
   2631       1.1     matt 	}
   2632       1.1     matt #endif
   2633       1.1     matt 	pvop = va;
   2634       1.1     matt 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2635       1.1     matt 	pmap_upvop_free++;
   2636       1.1     matt 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2637       1.1     matt 		pmap_upvop_maxfree = pmap_upvop_free;
   2638       1.1     matt }
   2639       1.1     matt 
   2640       1.1     matt void
   2641       1.1     matt pmap_pool_mfree(struct pool *pp, void *va)
   2642       1.1     matt {
   2643       1.1     matt 	struct pvo_page *pvop;
   2644       1.1     matt 
   2645       1.1     matt 	pvop = va;
   2646       1.1     matt 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2647       1.1     matt 	pmap_mpvop_free++;
   2648       1.1     matt 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2649       1.1     matt 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2650       1.1     matt #if 0
   2651       1.1     matt 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2652       1.1     matt #endif
   2653       1.1     matt }
   2654       1.1     matt 
   2655       1.1     matt /*
   2656       1.1     matt  * This routine in bootstraping to steal to-be-managed memory (which will
   2657       1.1     matt  * then be unmanaged).  We use it to grab from the first 256MB for our
   2658       1.1     matt  * pmap needs and above 256MB for other stuff.
   2659       1.1     matt  */
   2660       1.1     matt vaddr_t
   2661      1.10  thorpej pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2662       1.1     matt {
   2663       1.1     matt 	vsize_t size;
   2664       1.1     matt 	vaddr_t va;
   2665       1.1     matt 	paddr_t pa = 0;
   2666       1.1     matt 	int npgs, bank;
   2667       1.1     matt 	struct vm_physseg *ps;
   2668       1.1     matt 
   2669       1.1     matt 	if (uvm.page_init_done == TRUE)
   2670       1.1     matt 		panic("pmap_steal_memory: called _after_ bootstrap");
   2671       1.1     matt 
   2672      1.10  thorpej 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2673      1.10  thorpej 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2674      1.10  thorpej 
   2675       1.1     matt 	size = round_page(vsize);
   2676       1.1     matt 	npgs = atop(size);
   2677       1.1     matt 
   2678       1.1     matt 	/*
   2679       1.1     matt 	 * PA 0 will never be among those given to UVM so we can use it
   2680       1.1     matt 	 * to indicate we couldn't steal any memory.
   2681       1.1     matt 	 */
   2682       1.1     matt 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2683       1.1     matt 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2684       1.1     matt 		    ps->avail_end - ps->avail_start >= npgs) {
   2685       1.1     matt 			pa = ptoa(ps->avail_start);
   2686       1.1     matt 			break;
   2687       1.1     matt 		}
   2688       1.1     matt 	}
   2689       1.1     matt 
   2690       1.1     matt 	if (pa == 0)
   2691       1.1     matt 		panic("pmap_steal_memory: no approriate memory to steal!");
   2692       1.1     matt 
   2693       1.1     matt 	ps->avail_start += npgs;
   2694       1.1     matt 	ps->start += npgs;
   2695       1.1     matt 
   2696       1.1     matt 	/*
   2697       1.1     matt 	 * If we've used up all the pages in the segment, remove it and
   2698       1.1     matt 	 * compact the list.
   2699       1.1     matt 	 */
   2700       1.1     matt 	if (ps->avail_start == ps->end) {
   2701       1.1     matt 		/*
   2702       1.1     matt 		 * If this was the last one, then a very bad thing has occurred
   2703       1.1     matt 		 */
   2704       1.1     matt 		if (--vm_nphysseg == 0)
   2705       1.1     matt 			panic("pmap_steal_memory: out of memory!");
   2706       1.1     matt 
   2707       1.1     matt 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2708       1.1     matt 		for (; bank < vm_nphysseg; bank++, ps++) {
   2709       1.1     matt 			ps[0] = ps[1];
   2710       1.1     matt 		}
   2711       1.1     matt 	}
   2712       1.1     matt 
   2713       1.1     matt 	va = (vaddr_t) pa;
   2714       1.1     matt 	memset((caddr_t) va, 0, size);
   2715       1.1     matt 	pmap_pages_stolen += npgs;
   2716       1.1     matt #ifdef DEBUG
   2717       1.1     matt 	if (pmapdebug && npgs > 1) {
   2718       1.1     matt 		u_int cnt = 0;
   2719       1.1     matt 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2720       1.1     matt 			cnt += ps->avail_end - ps->avail_start;
   2721       1.1     matt 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2722       1.1     matt 		    npgs, pmap_pages_stolen, cnt);
   2723       1.1     matt 	}
   2724       1.1     matt #endif
   2725       1.1     matt 
   2726       1.1     matt 	return va;
   2727       1.1     matt }
   2728       1.1     matt 
   2729       1.1     matt /*
   2730       1.1     matt  * Find a chuck of memory with right size and alignment.
   2731       1.1     matt  */
   2732       1.1     matt void *
   2733       1.1     matt pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2734       1.1     matt {
   2735       1.1     matt 	struct mem_region *mp;
   2736       1.1     matt 	paddr_t s, e;
   2737       1.1     matt 	int i, j;
   2738       1.1     matt 
   2739       1.1     matt 	size = round_page(size);
   2740       1.1     matt 
   2741       1.1     matt 	DPRINTFN(BOOT,
   2742       1.1     matt 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2743       1.1     matt 	    size, alignment, at_end));
   2744       1.1     matt 
   2745       1.6  thorpej 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2746       1.1     matt 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2747       1.1     matt 		    alignment);
   2748       1.1     matt 
   2749       1.1     matt 	if (at_end) {
   2750       1.6  thorpej 		if (alignment != PAGE_SIZE)
   2751       1.1     matt 			panic("pmap_boot_find_memory: invalid ending "
   2752       1.1     matt 			    "alignment %lx", alignment);
   2753       1.1     matt 
   2754       1.1     matt 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2755       1.1     matt 			s = mp->start + mp->size - size;
   2756       1.1     matt 			if (s >= mp->start && mp->size >= size) {
   2757       1.1     matt 				DPRINTFN(BOOT,(": %lx\n", s));
   2758       1.1     matt 				DPRINTFN(BOOT,
   2759       1.1     matt 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2760       1.1     matt 				     "0x%lx size 0x%lx\n", mp - avail,
   2761       1.1     matt 				     mp->start, mp->size));
   2762       1.1     matt 				mp->size -= size;
   2763       1.1     matt 				DPRINTFN(BOOT,
   2764       1.1     matt 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2765       1.1     matt 				     "0x%lx size 0x%lx\n", mp - avail,
   2766       1.1     matt 				     mp->start, mp->size));
   2767       1.1     matt 				return (void *) s;
   2768       1.1     matt 			}
   2769       1.1     matt 		}
   2770       1.1     matt 		panic("pmap_boot_find_memory: no available memory");
   2771       1.1     matt 	}
   2772       1.1     matt 
   2773       1.1     matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2774       1.1     matt 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2775       1.1     matt 		e = s + size;
   2776       1.1     matt 
   2777       1.1     matt 		/*
   2778       1.1     matt 		 * Is the calculated region entirely within the region?
   2779       1.1     matt 		 */
   2780       1.1     matt 		if (s < mp->start || e > mp->start + mp->size)
   2781       1.1     matt 			continue;
   2782       1.1     matt 
   2783       1.1     matt 		DPRINTFN(BOOT,(": %lx\n", s));
   2784       1.1     matt 		if (s == mp->start) {
   2785       1.1     matt 			/*
   2786       1.1     matt 			 * If the block starts at the beginning of region,
   2787       1.1     matt 			 * adjust the size & start. (the region may now be
   2788       1.1     matt 			 * zero in length)
   2789       1.1     matt 			 */
   2790       1.1     matt 			DPRINTFN(BOOT,
   2791       1.1     matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2792       1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2793       1.1     matt 			mp->start += size;
   2794       1.1     matt 			mp->size -= size;
   2795       1.1     matt 			DPRINTFN(BOOT,
   2796       1.1     matt 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2797       1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2798       1.1     matt 		} else if (e == mp->start + mp->size) {
   2799       1.1     matt 			/*
   2800       1.1     matt 			 * If the block starts at the beginning of region,
   2801       1.1     matt 			 * adjust only the size.
   2802       1.1     matt 			 */
   2803       1.1     matt 			DPRINTFN(BOOT,
   2804       1.1     matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2805       1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2806       1.1     matt 			mp->size -= size;
   2807       1.1     matt 			DPRINTFN(BOOT,
   2808       1.1     matt 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2809       1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2810       1.1     matt 		} else {
   2811       1.1     matt 			/*
   2812       1.1     matt 			 * Block is in the middle of the region, so we
   2813       1.1     matt 			 * have to split it in two.
   2814       1.1     matt 			 */
   2815       1.1     matt 			for (j = avail_cnt; j > i + 1; j--) {
   2816       1.1     matt 				avail[j] = avail[j-1];
   2817       1.1     matt 			}
   2818       1.1     matt 			DPRINTFN(BOOT,
   2819       1.1     matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2820       1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2821       1.1     matt 			mp[1].start = e;
   2822       1.1     matt 			mp[1].size = mp[0].start + mp[0].size - e;
   2823       1.1     matt 			mp[0].size = s - mp[0].start;
   2824       1.1     matt 			avail_cnt++;
   2825       1.1     matt 			for (; i < avail_cnt; i++) {
   2826       1.1     matt 				DPRINTFN(BOOT,
   2827       1.1     matt 				    ("pmap_boot_find_memory: a-avail[%d] "
   2828       1.1     matt 				     "start 0x%lx size 0x%lx\n", i,
   2829       1.1     matt 				     avail[i].start, avail[i].size));
   2830       1.1     matt 			}
   2831       1.1     matt 		}
   2832       1.1     matt 		return (void *) s;
   2833       1.1     matt 	}
   2834       1.1     matt 	panic("pmap_boot_find_memory: not enough memory for "
   2835       1.1     matt 	    "%lx/%lx allocation?", size, alignment);
   2836       1.1     matt }
   2837       1.1     matt 
   2838       1.1     matt /*
   2839       1.1     matt  * This is not part of the defined PMAP interface and is specific to the
   2840       1.1     matt  * PowerPC architecture.  This is called during initppc, before the system
   2841       1.1     matt  * is really initialized.
   2842       1.1     matt  */
   2843       1.1     matt void
   2844       1.1     matt pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2845       1.1     matt {
   2846       1.1     matt 	struct mem_region *mp, tmp;
   2847       1.1     matt 	paddr_t s, e;
   2848       1.1     matt 	psize_t size;
   2849       1.1     matt 	int i, j;
   2850       1.1     matt 
   2851       1.1     matt 	/*
   2852       1.1     matt 	 * Get memory.
   2853       1.1     matt 	 */
   2854       1.1     matt 	mem_regions(&mem, &avail);
   2855       1.1     matt #if defined(DEBUG)
   2856       1.1     matt 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2857       1.1     matt 		printf("pmap_bootstrap: memory configuration:\n");
   2858       1.1     matt 		for (mp = mem; mp->size; mp++) {
   2859       1.1     matt 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2860       1.1     matt 				mp->start, mp->size);
   2861       1.1     matt 		}
   2862       1.1     matt 		for (mp = avail; mp->size; mp++) {
   2863       1.1     matt 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2864       1.1     matt 				mp->start, mp->size);
   2865       1.1     matt 		}
   2866       1.1     matt 	}
   2867       1.1     matt #endif
   2868       1.1     matt 
   2869       1.1     matt 	/*
   2870       1.1     matt 	 * Find out how much physical memory we have and in how many chunks.
   2871       1.1     matt 	 */
   2872       1.1     matt 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2873       1.1     matt 		if (mp->start >= pmap_memlimit)
   2874       1.1     matt 			continue;
   2875       1.1     matt 		if (mp->start + mp->size > pmap_memlimit) {
   2876       1.1     matt 			size = pmap_memlimit - mp->start;
   2877       1.1     matt 			physmem += btoc(size);
   2878       1.1     matt 		} else {
   2879       1.1     matt 			physmem += btoc(mp->size);
   2880       1.1     matt 		}
   2881       1.1     matt 		mem_cnt++;
   2882       1.1     matt 	}
   2883       1.1     matt 
   2884       1.1     matt 	/*
   2885       1.1     matt 	 * Count the number of available entries.
   2886       1.1     matt 	 */
   2887       1.1     matt 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2888       1.1     matt 		avail_cnt++;
   2889       1.1     matt 
   2890       1.1     matt 	/*
   2891       1.1     matt 	 * Page align all regions.
   2892       1.1     matt 	 */
   2893       1.1     matt 	kernelstart = trunc_page(kernelstart);
   2894       1.1     matt 	kernelend = round_page(kernelend);
   2895       1.1     matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2896       1.1     matt 		s = round_page(mp->start);
   2897       1.1     matt 		mp->size -= (s - mp->start);
   2898       1.1     matt 		mp->size = trunc_page(mp->size);
   2899       1.1     matt 		mp->start = s;
   2900       1.1     matt 		e = mp->start + mp->size;
   2901       1.1     matt 
   2902       1.1     matt 		DPRINTFN(BOOT,
   2903       1.1     matt 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2904       1.1     matt 		    i, mp->start, mp->size));
   2905       1.1     matt 
   2906       1.1     matt 		/*
   2907       1.1     matt 		 * Don't allow the end to run beyond our artificial limit
   2908       1.1     matt 		 */
   2909       1.1     matt 		if (e > pmap_memlimit)
   2910       1.1     matt 			e = pmap_memlimit;
   2911       1.1     matt 
   2912       1.1     matt 		/*
   2913       1.1     matt 		 * Is this region empty or strange?  skip it.
   2914       1.1     matt 		 */
   2915       1.1     matt 		if (e <= s) {
   2916       1.1     matt 			mp->start = 0;
   2917       1.1     matt 			mp->size = 0;
   2918       1.1     matt 			continue;
   2919       1.1     matt 		}
   2920       1.1     matt 
   2921       1.1     matt 		/*
   2922       1.1     matt 		 * Does this overlap the beginning of kernel?
   2923       1.1     matt 		 *   Does extend past the end of the kernel?
   2924       1.1     matt 		 */
   2925       1.1     matt 		else if (s < kernelstart && e > kernelstart) {
   2926       1.1     matt 			if (e > kernelend) {
   2927       1.1     matt 				avail[avail_cnt].start = kernelend;
   2928       1.1     matt 				avail[avail_cnt].size = e - kernelend;
   2929       1.1     matt 				avail_cnt++;
   2930       1.1     matt 			}
   2931       1.1     matt 			mp->size = kernelstart - s;
   2932       1.1     matt 		}
   2933       1.1     matt 		/*
   2934       1.1     matt 		 * Check whether this region overlaps the end of the kernel.
   2935       1.1     matt 		 */
   2936       1.1     matt 		else if (s < kernelend && e > kernelend) {
   2937       1.1     matt 			mp->start = kernelend;
   2938       1.1     matt 			mp->size = e - kernelend;
   2939       1.1     matt 		}
   2940       1.1     matt 		/*
   2941       1.1     matt 		 * Look whether this regions is completely inside the kernel.
   2942       1.1     matt 		 * Nuke it if it does.
   2943       1.1     matt 		 */
   2944       1.1     matt 		else if (s >= kernelstart && e <= kernelend) {
   2945       1.1     matt 			mp->start = 0;
   2946       1.1     matt 			mp->size = 0;
   2947       1.1     matt 		}
   2948       1.1     matt 		/*
   2949       1.1     matt 		 * If the user imposed a memory limit, enforce it.
   2950       1.1     matt 		 */
   2951       1.1     matt 		else if (s >= pmap_memlimit) {
   2952       1.6  thorpej 			mp->start = -PAGE_SIZE;	/* let's know why */
   2953       1.1     matt 			mp->size = 0;
   2954       1.1     matt 		}
   2955       1.1     matt 		else {
   2956       1.1     matt 			mp->start = s;
   2957       1.1     matt 			mp->size = e - s;
   2958       1.1     matt 		}
   2959       1.1     matt 		DPRINTFN(BOOT,
   2960       1.1     matt 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   2961       1.1     matt 		    i, mp->start, mp->size));
   2962       1.1     matt 	}
   2963       1.1     matt 
   2964       1.1     matt 	/*
   2965       1.1     matt 	 * Move (and uncount) all the null return to the end.
   2966       1.1     matt 	 */
   2967       1.1     matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2968       1.1     matt 		if (mp->size == 0) {
   2969       1.1     matt 			tmp = avail[i];
   2970       1.1     matt 			avail[i] = avail[--avail_cnt];
   2971       1.1     matt 			avail[avail_cnt] = avail[i];
   2972       1.1     matt 		}
   2973       1.1     matt 	}
   2974       1.1     matt 
   2975       1.1     matt 	/*
   2976       1.1     matt 	 * (Bubble)sort them into asecnding order.
   2977       1.1     matt 	 */
   2978       1.1     matt 	for (i = 0; i < avail_cnt; i++) {
   2979       1.1     matt 		for (j = i + 1; j < avail_cnt; j++) {
   2980       1.1     matt 			if (avail[i].start > avail[j].start) {
   2981       1.1     matt 				tmp = avail[i];
   2982       1.1     matt 				avail[i] = avail[j];
   2983       1.1     matt 				avail[j] = tmp;
   2984       1.1     matt 			}
   2985       1.1     matt 		}
   2986       1.1     matt 	}
   2987       1.1     matt 
   2988       1.1     matt 	/*
   2989       1.1     matt 	 * Make sure they don't overlap.
   2990       1.1     matt 	 */
   2991       1.1     matt 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   2992       1.1     matt 		if (mp[0].start + mp[0].size > mp[1].start) {
   2993       1.1     matt 			mp[0].size = mp[1].start - mp[0].start;
   2994       1.1     matt 		}
   2995       1.1     matt 		DPRINTFN(BOOT,
   2996       1.1     matt 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2997       1.1     matt 		    i, mp->start, mp->size));
   2998       1.1     matt 	}
   2999       1.1     matt 	DPRINTFN(BOOT,
   3000       1.1     matt 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3001       1.1     matt 	    i, mp->start, mp->size));
   3002       1.1     matt 
   3003       1.1     matt #ifdef	PTEGCOUNT
   3004       1.1     matt 	pmap_pteg_cnt = PTEGCOUNT;
   3005       1.1     matt #else /* PTEGCOUNT */
   3006       1.1     matt 	pmap_pteg_cnt = 0x1000;
   3007       1.1     matt 
   3008       1.1     matt 	while (pmap_pteg_cnt < physmem)
   3009       1.1     matt 		pmap_pteg_cnt <<= 1;
   3010       1.1     matt 
   3011       1.1     matt 	pmap_pteg_cnt >>= 1;
   3012       1.1     matt #endif /* PTEGCOUNT */
   3013       1.1     matt 
   3014       1.1     matt 	/*
   3015       1.1     matt 	 * Find suitably aligned memory for PTEG hash table.
   3016       1.1     matt 	 */
   3017       1.2     matt 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3018       1.1     matt 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3019       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3020       1.1     matt 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3021       1.1     matt 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3022       1.1     matt 		    pmap_pteg_table, size);
   3023       1.1     matt #endif
   3024       1.1     matt 
   3025       1.2     matt 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   3026       1.1     matt 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3027       1.1     matt 
   3028       1.1     matt 	/*
   3029       1.1     matt 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3030       1.1     matt 	 * with pages.  So we just steal them before giving them to UVM.
   3031       1.1     matt 	 */
   3032       1.1     matt 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3033       1.6  thorpej 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3034       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3035       1.1     matt 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3036       1.1     matt 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3037       1.1     matt 		    pmap_pvo_table, size);
   3038       1.1     matt #endif
   3039       1.1     matt 
   3040       1.1     matt 	for (i = 0; i < pmap_pteg_cnt; i++)
   3041       1.1     matt 		TAILQ_INIT(&pmap_pvo_table[i]);
   3042       1.1     matt 
   3043       1.1     matt #ifndef MSGBUFADDR
   3044       1.1     matt 	/*
   3045       1.1     matt 	 * Allocate msgbuf in high memory.
   3046       1.1     matt 	 */
   3047       1.6  thorpej 	msgbuf_paddr =
   3048       1.6  thorpej 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3049       1.1     matt #endif
   3050       1.1     matt 
   3051       1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
   3052       1.1     matt 	{
   3053       1.1     matt 		u_int npgs = 0;
   3054       1.1     matt 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3055       1.1     matt 			npgs += btoc(mp->size);
   3056       1.1     matt 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3057       1.6  thorpej 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3058       1.1     matt 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3059       1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3060       1.1     matt 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3061       1.1     matt 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3062       1.1     matt 			    pmap_physseg.pvoh, size);
   3063       1.1     matt #endif
   3064       1.1     matt 	}
   3065       1.1     matt #endif
   3066       1.1     matt 
   3067       1.1     matt 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3068       1.1     matt 		paddr_t pfstart = atop(mp->start);
   3069       1.1     matt 		paddr_t pfend = atop(mp->start + mp->size);
   3070       1.1     matt 		if (mp->size == 0)
   3071       1.1     matt 			continue;
   3072       1.1     matt 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3073       1.1     matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3074       1.1     matt 				VM_FREELIST_FIRST256);
   3075       1.1     matt 		} else if (mp->start >= SEGMENT_LENGTH) {
   3076       1.1     matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3077       1.1     matt 				VM_FREELIST_DEFAULT);
   3078       1.1     matt 		} else {
   3079       1.1     matt 			pfend = atop(SEGMENT_LENGTH);
   3080       1.1     matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3081       1.1     matt 				VM_FREELIST_FIRST256);
   3082       1.1     matt 			pfstart = atop(SEGMENT_LENGTH);
   3083       1.1     matt 			pfend = atop(mp->start + mp->size);
   3084       1.1     matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3085       1.1     matt 				VM_FREELIST_DEFAULT);
   3086       1.1     matt 		}
   3087       1.1     matt 	}
   3088       1.1     matt 
   3089       1.1     matt 	/*
   3090       1.1     matt 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3091       1.1     matt 	 */
   3092       1.1     matt 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3093       1.1     matt 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3094       1.1     matt 	pmap_vsid_bitmap[0] |= 1;
   3095       1.1     matt 
   3096       1.1     matt 	/*
   3097       1.1     matt 	 * Initialize kernel pmap and hardware.
   3098       1.1     matt 	 */
   3099  1.10.2.1    skrll #ifndef PPC_OEA64
   3100       1.1     matt 	for (i = 0; i < 16; i++) {
   3101       1.1     matt 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3102       1.1     matt 		__asm __volatile ("mtsrin %0,%1"
   3103       1.1     matt 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3104       1.1     matt 	}
   3105       1.1     matt 
   3106       1.1     matt 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3107       1.1     matt 	__asm __volatile ("mtsr %0,%1"
   3108       1.1     matt 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3109       1.1     matt #ifdef KERNEL2_SR
   3110       1.1     matt 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3111       1.1     matt 	__asm __volatile ("mtsr %0,%1"
   3112       1.1     matt 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3113       1.1     matt #endif
   3114       1.1     matt 	for (i = 0; i < 16; i++) {
   3115       1.1     matt 		if (iosrtable[i] & SR601_T) {
   3116       1.1     matt 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3117       1.1     matt 			__asm __volatile ("mtsrin %0,%1"
   3118       1.1     matt 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3119       1.1     matt 		}
   3120       1.1     matt 	}
   3121  1.10.2.1    skrll #endif /* !PPC_OEA64 */
   3122  1.10.2.1    skrll 
   3123       1.1     matt 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3124       1.2     matt 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3125       1.1     matt 	tlbia();
   3126       1.1     matt 
   3127       1.1     matt #ifdef ALTIVEC
   3128       1.1     matt 	pmap_use_altivec = cpu_altivec;
   3129       1.1     matt #endif
   3130       1.1     matt 
   3131       1.1     matt #ifdef DEBUG
   3132       1.1     matt 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3133       1.1     matt 		u_int cnt;
   3134       1.1     matt 		int bank;
   3135       1.1     matt 		char pbuf[9];
   3136       1.1     matt 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3137       1.1     matt 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3138       1.1     matt 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3139       1.1     matt 			    bank,
   3140       1.1     matt 			    ptoa(vm_physmem[bank].avail_start),
   3141       1.1     matt 			    ptoa(vm_physmem[bank].avail_end),
   3142       1.1     matt 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3143       1.1     matt 		}
   3144       1.1     matt 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3145       1.1     matt 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3146       1.1     matt 		    pbuf, cnt);
   3147       1.1     matt 	}
   3148       1.1     matt #endif
   3149       1.1     matt 
   3150       1.1     matt 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3151       1.1     matt 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3152       1.1     matt 	    &pmap_pool_uallocator);
   3153       1.1     matt 
   3154       1.1     matt 	pool_setlowat(&pmap_upvo_pool, 252);
   3155       1.1     matt 
   3156       1.1     matt 	pool_init(&pmap_pool, sizeof(struct pmap),
   3157       1.1     matt 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3158       1.1     matt }
   3159