pmap.c revision 1.13 1 1.13 matt /* $NetBSD: pmap.c,v 1.13 2003/08/12 05:06:57 matt Exp $ */
2 1.1 matt /*-
3 1.1 matt * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 1.1 matt * All rights reserved.
5 1.1 matt *
6 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.1 matt * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by the NetBSD
20 1.1 matt * Foundation, Inc. and its contributors.
21 1.1 matt * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 matt * contributors may be used to endorse or promote products derived
23 1.1 matt * from this software without specific prior written permission.
24 1.1 matt *
25 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
36 1.1 matt */
37 1.1 matt
38 1.1 matt /*
39 1.1 matt * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 matt * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 matt * All rights reserved.
42 1.1 matt *
43 1.1 matt * Redistribution and use in source and binary forms, with or without
44 1.1 matt * modification, are permitted provided that the following conditions
45 1.1 matt * are met:
46 1.1 matt * 1. Redistributions of source code must retain the above copyright
47 1.1 matt * notice, this list of conditions and the following disclaimer.
48 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 matt * notice, this list of conditions and the following disclaimer in the
50 1.1 matt * documentation and/or other materials provided with the distribution.
51 1.1 matt * 3. All advertising materials mentioning features or use of this software
52 1.1 matt * must display the following acknowledgement:
53 1.1 matt * This product includes software developed by TooLs GmbH.
54 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 matt * derived from this software without specific prior written permission.
56 1.1 matt *
57 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 matt */
68 1.11 lukem
69 1.11 lukem #include <sys/cdefs.h>
70 1.13 matt __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.13 2003/08/12 05:06:57 matt Exp $");
71 1.1 matt
72 1.1 matt #include "opt_altivec.h"
73 1.1 matt #include "opt_pmap.h"
74 1.1 matt #include <sys/param.h>
75 1.1 matt #include <sys/malloc.h>
76 1.1 matt #include <sys/proc.h>
77 1.1 matt #include <sys/user.h>
78 1.1 matt #include <sys/pool.h>
79 1.1 matt #include <sys/queue.h>
80 1.1 matt #include <sys/device.h> /* for evcnt */
81 1.1 matt #include <sys/systm.h>
82 1.1 matt
83 1.1 matt #if __NetBSD_Version__ < 105010000
84 1.1 matt #include <vm/vm.h>
85 1.1 matt #include <vm/vm_kern.h>
86 1.1 matt #define splvm() splimp()
87 1.1 matt #endif
88 1.1 matt
89 1.1 matt #include <uvm/uvm.h>
90 1.1 matt
91 1.1 matt #include <machine/pcb.h>
92 1.1 matt #include <machine/powerpc.h>
93 1.1 matt #include <powerpc/spr.h>
94 1.1 matt #include <powerpc/oea/sr_601.h>
95 1.1 matt #if __NetBSD_Version__ > 105010000
96 1.1 matt #include <powerpc/oea/bat.h>
97 1.1 matt #else
98 1.1 matt #include <powerpc/bat.h>
99 1.1 matt #endif
100 1.1 matt
101 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
102 1.1 matt #define STATIC
103 1.1 matt #else
104 1.1 matt #define STATIC static
105 1.1 matt #endif
106 1.1 matt
107 1.1 matt #ifdef ALTIVEC
108 1.1 matt int pmap_use_altivec;
109 1.1 matt #endif
110 1.1 matt
111 1.2 matt volatile struct pteg *pmap_pteg_table;
112 1.1 matt unsigned int pmap_pteg_cnt;
113 1.1 matt unsigned int pmap_pteg_mask;
114 1.6 thorpej paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
115 1.1 matt
116 1.1 matt struct pmap kernel_pmap_;
117 1.1 matt unsigned int pmap_pages_stolen;
118 1.1 matt u_long pmap_pte_valid;
119 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
120 1.1 matt u_long pmap_pvo_enter_depth;
121 1.1 matt u_long pmap_pvo_remove_depth;
122 1.1 matt #endif
123 1.1 matt
124 1.1 matt int physmem;
125 1.1 matt #ifndef MSGBUFADDR
126 1.1 matt extern paddr_t msgbuf_paddr;
127 1.1 matt #endif
128 1.1 matt
129 1.1 matt static struct mem_region *mem, *avail;
130 1.1 matt static u_int mem_cnt, avail_cnt;
131 1.1 matt
132 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
133 1.1 matt /*
134 1.1 matt * This is a cache of referenced/modified bits.
135 1.1 matt * Bits herein are shifted by ATTRSHFT.
136 1.1 matt */
137 1.1 matt #define ATTR_SHFT 4
138 1.1 matt struct pmap_physseg pmap_physseg;
139 1.1 matt #endif
140 1.1 matt
141 1.1 matt /*
142 1.1 matt * The following structure is exactly 32 bytes long (one cacheline).
143 1.1 matt */
144 1.1 matt struct pvo_entry {
145 1.1 matt LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
146 1.1 matt TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
147 1.1 matt struct pte pvo_pte; /* Prebuilt PTE */
148 1.1 matt pmap_t pvo_pmap; /* ptr to owning pmap */
149 1.1 matt vaddr_t pvo_vaddr; /* VA of entry */
150 1.1 matt #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
151 1.1 matt #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
152 1.1 matt #define PVO_WIRED 0x0010 /* PVO entry is wired */
153 1.1 matt #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
154 1.1 matt #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
155 1.12 matt #define PVO_ENTER_INSERT 0 /* PVO has been removed */
156 1.12 matt #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
157 1.12 matt #define PVO_SPILL_SET 2 /* PVO has been spilled */
158 1.12 matt #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
159 1.12 matt #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
160 1.12 matt #define PVO_PMAP_PROTECT 5 /* PVO has changed */
161 1.12 matt #define PVO_REMOVE 6 /* PVO has been removed */
162 1.12 matt #define PVO_WHERE_MASK 15
163 1.12 matt #define PVO_WHERE_SHFT 8
164 1.1 matt };
165 1.1 matt #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
166 1.1 matt #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
167 1.1 matt #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
168 1.1 matt #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
169 1.1 matt #define PVO_PTEGIDX_CLR(pvo) \
170 1.1 matt ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
171 1.1 matt #define PVO_PTEGIDX_SET(pvo,i) \
172 1.1 matt ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
173 1.12 matt #define PVO_WHERE(pvo,w) \
174 1.12 matt ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
175 1.12 matt (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
176 1.1 matt
177 1.1 matt TAILQ_HEAD(pvo_tqhead, pvo_entry);
178 1.1 matt struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
179 1.1 matt struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
180 1.1 matt struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
181 1.1 matt
182 1.1 matt struct pool pmap_pool; /* pool for pmap structures */
183 1.1 matt struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
184 1.1 matt struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
185 1.1 matt
186 1.1 matt /*
187 1.1 matt * We keep a cache of unmanaged pages to be used for pvo entries for
188 1.1 matt * unmanaged pages.
189 1.1 matt */
190 1.1 matt struct pvo_page {
191 1.1 matt SIMPLEQ_ENTRY(pvo_page) pvop_link;
192 1.1 matt };
193 1.1 matt SIMPLEQ_HEAD(pvop_head, pvo_page);
194 1.1 matt struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
195 1.1 matt struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
196 1.1 matt u_long pmap_upvop_free;
197 1.1 matt u_long pmap_upvop_maxfree;
198 1.1 matt u_long pmap_mpvop_free;
199 1.1 matt u_long pmap_mpvop_maxfree;
200 1.1 matt
201 1.1 matt STATIC void *pmap_pool_ualloc(struct pool *, int);
202 1.1 matt STATIC void *pmap_pool_malloc(struct pool *, int);
203 1.1 matt
204 1.1 matt STATIC void pmap_pool_ufree(struct pool *, void *);
205 1.1 matt STATIC void pmap_pool_mfree(struct pool *, void *);
206 1.1 matt
207 1.1 matt static struct pool_allocator pmap_pool_mallocator = {
208 1.1 matt pmap_pool_malloc, pmap_pool_mfree, 0,
209 1.1 matt };
210 1.1 matt
211 1.1 matt static struct pool_allocator pmap_pool_uallocator = {
212 1.1 matt pmap_pool_ualloc, pmap_pool_ufree, 0,
213 1.1 matt };
214 1.1 matt
215 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
216 1.2 matt void pmap_pte_print(volatile struct pte *);
217 1.1 matt #endif
218 1.1 matt
219 1.1 matt #ifdef DDB
220 1.1 matt void pmap_pteg_check(void);
221 1.1 matt void pmap_pteg_dist(void);
222 1.1 matt void pmap_print_pte(pmap_t, vaddr_t);
223 1.1 matt void pmap_print_mmuregs(void);
224 1.1 matt #endif
225 1.1 matt
226 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
227 1.1 matt #ifdef PMAPCHECK
228 1.1 matt int pmapcheck = 1;
229 1.1 matt #else
230 1.1 matt int pmapcheck = 0;
231 1.1 matt #endif
232 1.1 matt void pmap_pvo_verify(void);
233 1.1 matt STATIC void pmap_pvo_check(const struct pvo_entry *);
234 1.1 matt #define PMAP_PVO_CHECK(pvo) \
235 1.1 matt do { \
236 1.1 matt if (pmapcheck) \
237 1.1 matt pmap_pvo_check(pvo); \
238 1.1 matt } while (0)
239 1.1 matt #else
240 1.1 matt #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
241 1.1 matt #endif
242 1.2 matt STATIC int pmap_pte_insert(int, struct pte *);
243 1.1 matt STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
244 1.2 matt vaddr_t, paddr_t, register_t, int);
245 1.1 matt STATIC void pmap_pvo_remove(struct pvo_entry *, int);
246 1.1 matt STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
247 1.2 matt STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
248 1.1 matt
249 1.1 matt STATIC void tlbia(void);
250 1.1 matt
251 1.1 matt STATIC void pmap_release(pmap_t);
252 1.1 matt STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
253 1.1 matt
254 1.1 matt #define VSID_NBPW (sizeof(uint32_t) * 8)
255 1.1 matt static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
256 1.1 matt
257 1.1 matt static int pmap_initialized;
258 1.1 matt
259 1.1 matt #if defined(DEBUG) || defined(PMAPDEBUG)
260 1.1 matt #define PMAPDEBUG_BOOT 0x0001
261 1.1 matt #define PMAPDEBUG_PTE 0x0002
262 1.1 matt #define PMAPDEBUG_EXEC 0x0008
263 1.1 matt #define PMAPDEBUG_PVOENTER 0x0010
264 1.1 matt #define PMAPDEBUG_PVOREMOVE 0x0020
265 1.1 matt #define PMAPDEBUG_ACTIVATE 0x0100
266 1.1 matt #define PMAPDEBUG_CREATE 0x0200
267 1.1 matt #define PMAPDEBUG_ENTER 0x1000
268 1.1 matt #define PMAPDEBUG_KENTER 0x2000
269 1.1 matt #define PMAPDEBUG_KREMOVE 0x4000
270 1.1 matt #define PMAPDEBUG_REMOVE 0x8000
271 1.1 matt unsigned int pmapdebug = 0;
272 1.1 matt # define DPRINTF(x) printf x
273 1.1 matt # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
274 1.1 matt #else
275 1.1 matt # define DPRINTF(x)
276 1.1 matt # define DPRINTFN(n, x)
277 1.1 matt #endif
278 1.1 matt
279 1.1 matt
280 1.1 matt #ifdef PMAPCOUNTERS
281 1.1 matt #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
282 1.1 matt #define PMAPCOUNT2(ev) ((ev).ev_count++)
283 1.1 matt
284 1.1 matt struct evcnt pmap_evcnt_mappings =
285 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
286 1.1 matt "pmap", "pages mapped");
287 1.1 matt struct evcnt pmap_evcnt_unmappings =
288 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
289 1.1 matt "pmap", "pages unmapped");
290 1.1 matt
291 1.1 matt struct evcnt pmap_evcnt_kernel_mappings =
292 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
293 1.1 matt "pmap", "kernel pages mapped");
294 1.1 matt struct evcnt pmap_evcnt_kernel_unmappings =
295 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
296 1.1 matt "pmap", "kernel pages unmapped");
297 1.1 matt
298 1.1 matt struct evcnt pmap_evcnt_mappings_replaced =
299 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
300 1.1 matt "pmap", "page mappings replaced");
301 1.1 matt
302 1.1 matt struct evcnt pmap_evcnt_exec_mappings =
303 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
304 1.1 matt "pmap", "exec pages mapped");
305 1.1 matt struct evcnt pmap_evcnt_exec_cached =
306 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
307 1.1 matt "pmap", "exec pages cached");
308 1.1 matt
309 1.1 matt struct evcnt pmap_evcnt_exec_synced =
310 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
311 1.1 matt "pmap", "exec pages synced");
312 1.1 matt struct evcnt pmap_evcnt_exec_synced_clear_modify =
313 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
314 1.1 matt "pmap", "exec pages synced (CM)");
315 1.1 matt
316 1.1 matt struct evcnt pmap_evcnt_exec_uncached_page_protect =
317 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
318 1.1 matt "pmap", "exec pages uncached (PP)");
319 1.1 matt struct evcnt pmap_evcnt_exec_uncached_clear_modify =
320 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
321 1.1 matt "pmap", "exec pages uncached (CM)");
322 1.1 matt struct evcnt pmap_evcnt_exec_uncached_zero_page =
323 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
324 1.1 matt "pmap", "exec pages uncached (ZP)");
325 1.1 matt struct evcnt pmap_evcnt_exec_uncached_copy_page =
326 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
327 1.1 matt "pmap", "exec pages uncached (CP)");
328 1.1 matt
329 1.1 matt struct evcnt pmap_evcnt_updates =
330 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
331 1.1 matt "pmap", "updates");
332 1.1 matt struct evcnt pmap_evcnt_collects =
333 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
334 1.1 matt "pmap", "collects");
335 1.1 matt struct evcnt pmap_evcnt_copies =
336 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
337 1.1 matt "pmap", "copies");
338 1.1 matt
339 1.1 matt struct evcnt pmap_evcnt_ptes_spilled =
340 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
341 1.1 matt "pmap", "ptes spilled from overflow");
342 1.1 matt struct evcnt pmap_evcnt_ptes_unspilled =
343 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
344 1.1 matt "pmap", "ptes not spilled");
345 1.1 matt struct evcnt pmap_evcnt_ptes_evicted =
346 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
347 1.1 matt "pmap", "ptes evicted");
348 1.1 matt
349 1.1 matt struct evcnt pmap_evcnt_ptes_primary[8] = {
350 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
351 1.1 matt "pmap", "ptes added at primary[0]"),
352 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
353 1.1 matt "pmap", "ptes added at primary[1]"),
354 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 1.1 matt "pmap", "ptes added at primary[2]"),
356 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 1.1 matt "pmap", "ptes added at primary[3]"),
358 1.1 matt
359 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
360 1.1 matt "pmap", "ptes added at primary[4]"),
361 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
362 1.1 matt "pmap", "ptes added at primary[5]"),
363 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 1.1 matt "pmap", "ptes added at primary[6]"),
365 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 1.1 matt "pmap", "ptes added at primary[7]"),
367 1.1 matt };
368 1.1 matt struct evcnt pmap_evcnt_ptes_secondary[8] = {
369 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
370 1.1 matt "pmap", "ptes added at secondary[0]"),
371 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
372 1.1 matt "pmap", "ptes added at secondary[1]"),
373 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
374 1.1 matt "pmap", "ptes added at secondary[2]"),
375 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
376 1.1 matt "pmap", "ptes added at secondary[3]"),
377 1.1 matt
378 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
379 1.1 matt "pmap", "ptes added at secondary[4]"),
380 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 1.1 matt "pmap", "ptes added at secondary[5]"),
382 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 1.1 matt "pmap", "ptes added at secondary[6]"),
384 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 1.1 matt "pmap", "ptes added at secondary[7]"),
386 1.1 matt };
387 1.1 matt struct evcnt pmap_evcnt_ptes_removed =
388 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
389 1.1 matt "pmap", "ptes removed");
390 1.1 matt struct evcnt pmap_evcnt_ptes_changed =
391 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 1.1 matt "pmap", "ptes changed");
393 1.1 matt
394 1.1 matt /*
395 1.1 matt * From pmap_subr.c
396 1.1 matt */
397 1.1 matt extern struct evcnt pmap_evcnt_zeroed_pages;
398 1.1 matt extern struct evcnt pmap_evcnt_copied_pages;
399 1.1 matt extern struct evcnt pmap_evcnt_idlezeroed_pages;
400 1.1 matt #else
401 1.1 matt #define PMAPCOUNT(ev) ((void) 0)
402 1.1 matt #define PMAPCOUNT2(ev) ((void) 0)
403 1.1 matt #endif
404 1.1 matt
405 1.1 matt #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
406 1.1 matt #define TLBSYNC() __asm __volatile("tlbsync")
407 1.1 matt #define SYNC() __asm __volatile("sync")
408 1.1 matt #define EIEIO() __asm __volatile("eieio")
409 1.1 matt #define MFMSR() mfmsr()
410 1.1 matt #define MTMSR(psl) mtmsr(psl)
411 1.1 matt #define MFPVR() mfpvr()
412 1.1 matt #define MFSRIN(va) mfsrin(va)
413 1.1 matt #define MFTB() mfrtcltbl()
414 1.1 matt
415 1.2 matt static __inline register_t
416 1.1 matt mfsrin(vaddr_t va)
417 1.1 matt {
418 1.2 matt register_t sr;
419 1.1 matt __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
420 1.1 matt return sr;
421 1.1 matt }
422 1.1 matt
423 1.2 matt static __inline register_t
424 1.1 matt pmap_interrupts_off(void)
425 1.1 matt {
426 1.2 matt register_t msr = MFMSR();
427 1.1 matt if (msr & PSL_EE)
428 1.1 matt MTMSR(msr & ~PSL_EE);
429 1.1 matt return msr;
430 1.1 matt }
431 1.1 matt
432 1.1 matt static void
433 1.2 matt pmap_interrupts_restore(register_t msr)
434 1.1 matt {
435 1.1 matt if (msr & PSL_EE)
436 1.1 matt MTMSR(msr);
437 1.1 matt }
438 1.1 matt
439 1.1 matt static __inline u_int32_t
440 1.1 matt mfrtcltbl(void)
441 1.1 matt {
442 1.1 matt
443 1.1 matt if ((MFPVR() >> 16) == MPC601)
444 1.1 matt return (mfrtcl() >> 7);
445 1.1 matt else
446 1.1 matt return (mftbl());
447 1.1 matt }
448 1.1 matt
449 1.1 matt /*
450 1.1 matt * These small routines may have to be replaced,
451 1.1 matt * if/when we support processors other that the 604.
452 1.1 matt */
453 1.1 matt
454 1.1 matt void
455 1.1 matt tlbia(void)
456 1.1 matt {
457 1.1 matt caddr_t i;
458 1.1 matt
459 1.1 matt SYNC();
460 1.1 matt /*
461 1.1 matt * Why not use "tlbia"? Because not all processors implement it.
462 1.1 matt *
463 1.1 matt * This needs to be a per-cpu callback to do the appropriate thing
464 1.1 matt * for the CPU. XXX
465 1.1 matt */
466 1.1 matt for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
467 1.1 matt TLBIE(i);
468 1.1 matt EIEIO();
469 1.1 matt SYNC();
470 1.1 matt }
471 1.1 matt TLBSYNC();
472 1.1 matt SYNC();
473 1.1 matt }
474 1.1 matt
475 1.2 matt static __inline register_t
476 1.2 matt va_to_vsid(const struct pmap *pm, vaddr_t addr)
477 1.1 matt {
478 1.2 matt return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID);
479 1.1 matt }
480 1.1 matt
481 1.2 matt static __inline register_t
482 1.2 matt va_to_pteg(const struct pmap *pm, vaddr_t addr)
483 1.1 matt {
484 1.2 matt register_t hash;
485 1.2 matt
486 1.2 matt hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
487 1.1 matt return hash & pmap_pteg_mask;
488 1.1 matt }
489 1.1 matt
490 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
491 1.1 matt /*
492 1.1 matt * Given a PTE in the page table, calculate the VADDR that hashes to it.
493 1.1 matt * The only bit of magic is that the top 4 bits of the address doesn't
494 1.1 matt * technically exist in the PTE. But we know we reserved 4 bits of the
495 1.1 matt * VSID for it so that's how we get it.
496 1.1 matt */
497 1.1 matt static vaddr_t
498 1.2 matt pmap_pte_to_va(volatile const struct pte *pt)
499 1.1 matt {
500 1.1 matt vaddr_t va;
501 1.1 matt uintptr_t ptaddr = (uintptr_t) pt;
502 1.1 matt
503 1.1 matt if (pt->pte_hi & PTE_HID)
504 1.2 matt ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
505 1.1 matt
506 1.1 matt /* PPC Bits 10-19 */
507 1.4 matt va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
508 1.1 matt va <<= ADDR_PIDX_SHFT;
509 1.1 matt
510 1.1 matt /* PPC Bits 4-9 */
511 1.1 matt va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
512 1.1 matt
513 1.1 matt /* PPC Bits 0-3 */
514 1.1 matt va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
515 1.1 matt
516 1.1 matt return va;
517 1.1 matt }
518 1.1 matt #endif
519 1.1 matt
520 1.1 matt static __inline struct pvo_head *
521 1.1 matt pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
522 1.1 matt {
523 1.1 matt #ifdef __HAVE_VM_PAGE_MD
524 1.1 matt struct vm_page *pg;
525 1.1 matt
526 1.1 matt pg = PHYS_TO_VM_PAGE(pa);
527 1.1 matt if (pg_p != NULL)
528 1.1 matt *pg_p = pg;
529 1.1 matt if (pg == NULL)
530 1.1 matt return &pmap_pvo_unmanaged;
531 1.1 matt return &pg->mdpage.mdpg_pvoh;
532 1.1 matt #endif
533 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
534 1.1 matt int bank, pg;
535 1.1 matt
536 1.1 matt bank = vm_physseg_find(atop(pa), &pg);
537 1.1 matt if (pg_p != NULL)
538 1.1 matt *pg_p = pg;
539 1.1 matt if (bank == -1)
540 1.1 matt return &pmap_pvo_unmanaged;
541 1.1 matt return &vm_physmem[bank].pmseg.pvoh[pg];
542 1.1 matt #endif
543 1.1 matt }
544 1.1 matt
545 1.1 matt static __inline struct pvo_head *
546 1.1 matt vm_page_to_pvoh(struct vm_page *pg)
547 1.1 matt {
548 1.1 matt #ifdef __HAVE_VM_PAGE_MD
549 1.1 matt return &pg->mdpage.mdpg_pvoh;
550 1.1 matt #endif
551 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
552 1.1 matt return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
553 1.1 matt #endif
554 1.1 matt }
555 1.1 matt
556 1.1 matt
557 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
558 1.1 matt static __inline char *
559 1.1 matt pa_to_attr(paddr_t pa)
560 1.1 matt {
561 1.1 matt int bank, pg;
562 1.1 matt
563 1.1 matt bank = vm_physseg_find(atop(pa), &pg);
564 1.1 matt if (bank == -1)
565 1.1 matt return NULL;
566 1.1 matt return &vm_physmem[bank].pmseg.attrs[pg];
567 1.1 matt }
568 1.1 matt #endif
569 1.1 matt
570 1.1 matt static __inline void
571 1.1 matt pmap_attr_clear(struct vm_page *pg, int ptebit)
572 1.1 matt {
573 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
574 1.1 matt *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
575 1.1 matt #endif
576 1.1 matt #ifdef __HAVE_VM_PAGE_MD
577 1.1 matt pg->mdpage.mdpg_attrs &= ~ptebit;
578 1.1 matt #endif
579 1.1 matt }
580 1.1 matt
581 1.1 matt static __inline int
582 1.1 matt pmap_attr_fetch(struct vm_page *pg)
583 1.1 matt {
584 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
585 1.1 matt return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
586 1.1 matt #endif
587 1.1 matt #ifdef __HAVE_VM_PAGE_MD
588 1.1 matt return pg->mdpage.mdpg_attrs;
589 1.1 matt #endif
590 1.1 matt }
591 1.1 matt
592 1.1 matt static __inline void
593 1.1 matt pmap_attr_save(struct vm_page *pg, int ptebit)
594 1.1 matt {
595 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
596 1.1 matt *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
597 1.1 matt #endif
598 1.1 matt #ifdef __HAVE_VM_PAGE_MD
599 1.1 matt pg->mdpage.mdpg_attrs |= ptebit;
600 1.1 matt #endif
601 1.1 matt }
602 1.1 matt
603 1.1 matt static __inline int
604 1.2 matt pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
605 1.1 matt {
606 1.1 matt if (pt->pte_hi == pvo_pt->pte_hi
607 1.1 matt #if 0
608 1.1 matt && ((pt->pte_lo ^ pvo_pt->pte_lo) &
609 1.1 matt ~(PTE_REF|PTE_CHG)) == 0
610 1.1 matt #endif
611 1.1 matt )
612 1.1 matt return 1;
613 1.1 matt return 0;
614 1.1 matt }
615 1.1 matt
616 1.1 matt static __inline void
617 1.2 matt pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
618 1.1 matt {
619 1.1 matt /*
620 1.1 matt * Construct the PTE. Default to IMB initially. Valid bit
621 1.1 matt * only gets set when the real pte is set in memory.
622 1.1 matt *
623 1.1 matt * Note: Don't set the valid bit for correct operation of tlb update.
624 1.1 matt */
625 1.2 matt pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
626 1.2 matt | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
627 1.1 matt pt->pte_lo = pte_lo;
628 1.1 matt }
629 1.1 matt
630 1.1 matt static __inline void
631 1.2 matt pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
632 1.1 matt {
633 1.1 matt pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
634 1.1 matt }
635 1.1 matt
636 1.1 matt static __inline void
637 1.2 matt pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
638 1.1 matt {
639 1.1 matt /*
640 1.1 matt * As shown in Section 7.6.3.2.3
641 1.1 matt */
642 1.1 matt pt->pte_lo &= ~ptebit;
643 1.1 matt TLBIE(va);
644 1.1 matt SYNC();
645 1.1 matt EIEIO();
646 1.1 matt TLBSYNC();
647 1.1 matt SYNC();
648 1.1 matt }
649 1.1 matt
650 1.1 matt static __inline void
651 1.2 matt pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
652 1.1 matt {
653 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
654 1.1 matt if (pvo_pt->pte_hi & PTE_VALID)
655 1.1 matt panic("pte_set: setting an already valid pte %p", pvo_pt);
656 1.1 matt #endif
657 1.1 matt pvo_pt->pte_hi |= PTE_VALID;
658 1.1 matt /*
659 1.1 matt * Update the PTE as defined in section 7.6.3.1
660 1.1 matt * Note that the REF/CHG bits are from pvo_pt and thus should
661 1.1 matt * have been saved so this routine can restore them (if desired).
662 1.1 matt */
663 1.1 matt pt->pte_lo = pvo_pt->pte_lo;
664 1.1 matt EIEIO();
665 1.1 matt pt->pte_hi = pvo_pt->pte_hi;
666 1.1 matt SYNC();
667 1.1 matt pmap_pte_valid++;
668 1.1 matt }
669 1.1 matt
670 1.1 matt static __inline void
671 1.2 matt pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
672 1.1 matt {
673 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
674 1.1 matt if ((pvo_pt->pte_hi & PTE_VALID) == 0)
675 1.1 matt panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
676 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0)
677 1.1 matt panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
678 1.1 matt #endif
679 1.1 matt
680 1.1 matt pvo_pt->pte_hi &= ~PTE_VALID;
681 1.1 matt /*
682 1.1 matt * Force the ref & chg bits back into the PTEs.
683 1.1 matt */
684 1.1 matt SYNC();
685 1.1 matt /*
686 1.1 matt * Invalidate the pte ... (Section 7.6.3.3)
687 1.1 matt */
688 1.1 matt pt->pte_hi &= ~PTE_VALID;
689 1.1 matt SYNC();
690 1.1 matt TLBIE(va);
691 1.1 matt SYNC();
692 1.1 matt EIEIO();
693 1.1 matt TLBSYNC();
694 1.1 matt SYNC();
695 1.1 matt /*
696 1.1 matt * Save the ref & chg bits ...
697 1.1 matt */
698 1.1 matt pmap_pte_synch(pt, pvo_pt);
699 1.1 matt pmap_pte_valid--;
700 1.1 matt }
701 1.1 matt
702 1.1 matt static __inline void
703 1.2 matt pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
704 1.1 matt {
705 1.1 matt /*
706 1.1 matt * Invalidate the PTE
707 1.1 matt */
708 1.1 matt pmap_pte_unset(pt, pvo_pt, va);
709 1.1 matt pmap_pte_set(pt, pvo_pt);
710 1.1 matt }
711 1.1 matt
712 1.1 matt /*
713 1.1 matt * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
714 1.1 matt * (either primary or secondary location).
715 1.1 matt *
716 1.1 matt * Note: both the destination and source PTEs must not have PTE_VALID set.
717 1.1 matt */
718 1.1 matt
719 1.1 matt STATIC int
720 1.2 matt pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
721 1.1 matt {
722 1.2 matt volatile struct pte *pt;
723 1.1 matt int i;
724 1.1 matt
725 1.1 matt #if defined(DEBUG)
726 1.2 matt DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%lx 0x%lx\n",
727 1.1 matt ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
728 1.1 matt #endif
729 1.1 matt /*
730 1.1 matt * First try primary hash.
731 1.1 matt */
732 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
733 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0) {
734 1.1 matt pvo_pt->pte_hi &= ~PTE_HID;
735 1.1 matt pmap_pte_set(pt, pvo_pt);
736 1.1 matt return i;
737 1.1 matt }
738 1.1 matt }
739 1.1 matt
740 1.1 matt /*
741 1.1 matt * Now try secondary hash.
742 1.1 matt */
743 1.1 matt ptegidx ^= pmap_pteg_mask;
744 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
745 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0) {
746 1.1 matt pvo_pt->pte_hi |= PTE_HID;
747 1.1 matt pmap_pte_set(pt, pvo_pt);
748 1.1 matt return i;
749 1.1 matt }
750 1.1 matt }
751 1.1 matt return -1;
752 1.1 matt }
753 1.1 matt
754 1.1 matt /*
755 1.1 matt * Spill handler.
756 1.1 matt *
757 1.1 matt * Tries to spill a page table entry from the overflow area.
758 1.1 matt * This runs in either real mode (if dealing with a exception spill)
759 1.1 matt * or virtual mode when dealing with manually spilling one of the
760 1.1 matt * kernel's pte entries. In either case, interrupts are already
761 1.1 matt * disabled.
762 1.1 matt */
763 1.1 matt int
764 1.1 matt pmap_pte_spill(struct pmap *pm, vaddr_t addr)
765 1.1 matt {
766 1.1 matt struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
767 1.1 matt struct pvo_entry *pvo;
768 1.1 matt struct pvo_tqhead *pvoh, *vpvoh;
769 1.1 matt int ptegidx, i, j;
770 1.2 matt volatile struct pteg *pteg;
771 1.2 matt volatile struct pte *pt;
772 1.1 matt
773 1.2 matt ptegidx = va_to_pteg(pm, addr);
774 1.1 matt
775 1.1 matt /*
776 1.1 matt * Have to substitute some entry. Use the primary hash for this.
777 1.12 matt * Use low bits of timebase as random generator. Make sure we are
778 1.12 matt * not picking a kernel pte for replacement.
779 1.1 matt */
780 1.1 matt pteg = &pmap_pteg_table[ptegidx];
781 1.1 matt i = MFTB() & 7;
782 1.12 matt for (j = 0; j < 8; j++) {
783 1.12 matt pt = &pteg->pt[i];
784 1.12 matt if ((pt->pte_hi & PTE_VALID) == 0 ||
785 1.12 matt VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
786 1.12 matt != KERNEL_VSIDBITS)
787 1.12 matt break;
788 1.12 matt i = (i + 1) & 7;
789 1.12 matt }
790 1.12 matt KASSERT(j < 8);
791 1.1 matt
792 1.1 matt source_pvo = NULL;
793 1.1 matt victim_pvo = NULL;
794 1.1 matt pvoh = &pmap_pvo_table[ptegidx];
795 1.1 matt TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
796 1.1 matt
797 1.1 matt /*
798 1.1 matt * We need to find pvo entry for this address...
799 1.1 matt */
800 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
801 1.1 matt
802 1.1 matt /*
803 1.1 matt * If we haven't found the source and we come to a PVO with
804 1.1 matt * a valid PTE, then we know we can't find it because all
805 1.1 matt * evicted PVOs always are first in the list.
806 1.1 matt */
807 1.1 matt if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
808 1.1 matt break;
809 1.2 matt if (source_pvo == NULL && pm == pvo->pvo_pmap &&
810 1.2 matt addr == PVO_VADDR(pvo)) {
811 1.1 matt
812 1.1 matt /*
813 1.1 matt * Now we have found the entry to be spilled into the
814 1.1 matt * pteg. Attempt to insert it into the page table.
815 1.1 matt */
816 1.1 matt j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
817 1.1 matt if (j >= 0) {
818 1.1 matt PVO_PTEGIDX_SET(pvo, j);
819 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
820 1.12 matt PVO_WHERE(pvo, SPILL_INSERT);
821 1.1 matt pvo->pvo_pmap->pm_evictions--;
822 1.1 matt PMAPCOUNT(ptes_spilled);
823 1.1 matt PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
824 1.1 matt ? pmap_evcnt_ptes_secondary
825 1.1 matt : pmap_evcnt_ptes_primary)[j]);
826 1.1 matt
827 1.1 matt /*
828 1.1 matt * Since we keep the evicted entries at the
829 1.1 matt * from of the PVO list, we need move this
830 1.1 matt * (now resident) PVO after the evicted
831 1.1 matt * entries.
832 1.1 matt */
833 1.1 matt next_pvo = TAILQ_NEXT(pvo, pvo_olink);
834 1.1 matt
835 1.1 matt /*
836 1.5 matt * If we don't have to move (either we were the
837 1.5 matt * last entry or the next entry was valid),
838 1.1 matt * don't change our position. Otherwise
839 1.1 matt * move ourselves to the tail of the queue.
840 1.1 matt */
841 1.1 matt if (next_pvo != NULL &&
842 1.1 matt !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
843 1.1 matt TAILQ_REMOVE(pvoh, pvo, pvo_olink);
844 1.1 matt TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
845 1.1 matt }
846 1.1 matt return 1;
847 1.1 matt }
848 1.1 matt source_pvo = pvo;
849 1.1 matt if (victim_pvo != NULL)
850 1.1 matt break;
851 1.1 matt }
852 1.1 matt
853 1.1 matt /*
854 1.1 matt * We also need the pvo entry of the victim we are replacing
855 1.1 matt * so save the R & C bits of the PTE.
856 1.1 matt */
857 1.1 matt if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
858 1.1 matt pmap_pte_compare(pt, &pvo->pvo_pte)) {
859 1.1 matt vpvoh = pvoh;
860 1.1 matt victim_pvo = pvo;
861 1.1 matt if (source_pvo != NULL)
862 1.1 matt break;
863 1.1 matt }
864 1.1 matt }
865 1.1 matt
866 1.1 matt if (source_pvo == NULL) {
867 1.1 matt PMAPCOUNT(ptes_unspilled);
868 1.1 matt return 0;
869 1.1 matt }
870 1.1 matt
871 1.1 matt if (victim_pvo == NULL) {
872 1.1 matt if ((pt->pte_hi & PTE_HID) == 0)
873 1.1 matt panic("pmap_pte_spill: victim p-pte (%p) has "
874 1.1 matt "no pvo entry!", pt);
875 1.1 matt
876 1.1 matt /*
877 1.1 matt * If this is a secondary PTE, we need to search
878 1.1 matt * its primary pvo bucket for the matching PVO.
879 1.1 matt */
880 1.1 matt vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
881 1.1 matt TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
882 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
883 1.1 matt
884 1.1 matt /*
885 1.1 matt * We also need the pvo entry of the victim we are
886 1.1 matt * replacing so save the R & C bits of the PTE.
887 1.1 matt */
888 1.1 matt if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
889 1.1 matt victim_pvo = pvo;
890 1.1 matt break;
891 1.1 matt }
892 1.1 matt }
893 1.1 matt if (victim_pvo == NULL)
894 1.1 matt panic("pmap_pte_spill: victim s-pte (%p) has "
895 1.1 matt "no pvo entry!", pt);
896 1.1 matt }
897 1.1 matt
898 1.1 matt /*
899 1.12 matt * The victim should be not be a kernel PVO/PTE entry.
900 1.12 matt */
901 1.12 matt KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
902 1.12 matt KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
903 1.12 matt KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
904 1.12 matt
905 1.12 matt /*
906 1.1 matt * We are invalidating the TLB entry for the EA for the
907 1.1 matt * we are replacing even though its valid; If we don't
908 1.1 matt * we lose any ref/chg bit changes contained in the TLB
909 1.1 matt * entry.
910 1.1 matt */
911 1.1 matt source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
912 1.1 matt
913 1.1 matt /*
914 1.1 matt * To enforce the PVO list ordering constraint that all
915 1.1 matt * evicted entries should come before all valid entries,
916 1.1 matt * move the source PVO to the tail of its list and the
917 1.1 matt * victim PVO to the head of its list (which might not be
918 1.1 matt * the same list, if the victim was using the secondary hash).
919 1.1 matt */
920 1.1 matt TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
921 1.1 matt TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
922 1.1 matt TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
923 1.1 matt TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
924 1.1 matt pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
925 1.1 matt pmap_pte_set(pt, &source_pvo->pvo_pte);
926 1.1 matt victim_pvo->pvo_pmap->pm_evictions++;
927 1.1 matt source_pvo->pvo_pmap->pm_evictions--;
928 1.12 matt PVO_WHERE(victim_pvo, SPILL_UNSET);
929 1.12 matt PVO_WHERE(source_pvo, SPILL_SET);
930 1.1 matt
931 1.1 matt PVO_PTEGIDX_CLR(victim_pvo);
932 1.1 matt PVO_PTEGIDX_SET(source_pvo, i);
933 1.1 matt PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
934 1.1 matt PMAPCOUNT(ptes_spilled);
935 1.1 matt PMAPCOUNT(ptes_evicted);
936 1.1 matt PMAPCOUNT(ptes_removed);
937 1.1 matt
938 1.1 matt PMAP_PVO_CHECK(victim_pvo);
939 1.1 matt PMAP_PVO_CHECK(source_pvo);
940 1.1 matt return 1;
941 1.1 matt }
942 1.1 matt
943 1.1 matt /*
944 1.1 matt * Restrict given range to physical memory
945 1.1 matt */
946 1.1 matt void
947 1.1 matt pmap_real_memory(paddr_t *start, psize_t *size)
948 1.1 matt {
949 1.1 matt struct mem_region *mp;
950 1.1 matt
951 1.1 matt for (mp = mem; mp->size; mp++) {
952 1.1 matt if (*start + *size > mp->start
953 1.1 matt && *start < mp->start + mp->size) {
954 1.1 matt if (*start < mp->start) {
955 1.1 matt *size -= mp->start - *start;
956 1.1 matt *start = mp->start;
957 1.1 matt }
958 1.1 matt if (*start + *size > mp->start + mp->size)
959 1.1 matt *size = mp->start + mp->size - *start;
960 1.1 matt return;
961 1.1 matt }
962 1.1 matt }
963 1.1 matt *size = 0;
964 1.1 matt }
965 1.1 matt
966 1.1 matt /*
967 1.1 matt * Initialize anything else for pmap handling.
968 1.1 matt * Called during vm_init().
969 1.1 matt */
970 1.1 matt void
971 1.1 matt pmap_init(void)
972 1.1 matt {
973 1.1 matt int s;
974 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
975 1.1 matt struct pvo_tqhead *pvoh;
976 1.1 matt int bank;
977 1.1 matt long sz;
978 1.1 matt char *attr;
979 1.1 matt
980 1.1 matt s = splvm();
981 1.1 matt pvoh = pmap_physseg.pvoh;
982 1.1 matt attr = pmap_physseg.attrs;
983 1.1 matt for (bank = 0; bank < vm_nphysseg; bank++) {
984 1.1 matt sz = vm_physmem[bank].end - vm_physmem[bank].start;
985 1.1 matt vm_physmem[bank].pmseg.pvoh = pvoh;
986 1.1 matt vm_physmem[bank].pmseg.attrs = attr;
987 1.1 matt for (; sz > 0; sz--, pvoh++, attr++) {
988 1.1 matt TAILQ_INIT(pvoh);
989 1.1 matt *attr = 0;
990 1.1 matt }
991 1.1 matt }
992 1.1 matt splx(s);
993 1.1 matt #endif
994 1.1 matt
995 1.1 matt s = splvm();
996 1.1 matt pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
997 1.1 matt sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
998 1.1 matt &pmap_pool_mallocator);
999 1.1 matt
1000 1.1 matt pool_setlowat(&pmap_mpvo_pool, 1008);
1001 1.1 matt
1002 1.1 matt pmap_initialized = 1;
1003 1.1 matt splx(s);
1004 1.1 matt
1005 1.1 matt #ifdef PMAPCOUNTERS
1006 1.1 matt evcnt_attach_static(&pmap_evcnt_mappings);
1007 1.1 matt evcnt_attach_static(&pmap_evcnt_mappings_replaced);
1008 1.1 matt evcnt_attach_static(&pmap_evcnt_unmappings);
1009 1.1 matt
1010 1.1 matt evcnt_attach_static(&pmap_evcnt_kernel_mappings);
1011 1.1 matt evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
1012 1.1 matt
1013 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_mappings);
1014 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_cached);
1015 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_synced);
1016 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
1017 1.1 matt
1018 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
1019 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
1020 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
1021 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
1022 1.1 matt
1023 1.1 matt evcnt_attach_static(&pmap_evcnt_zeroed_pages);
1024 1.1 matt evcnt_attach_static(&pmap_evcnt_copied_pages);
1025 1.1 matt evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
1026 1.1 matt
1027 1.1 matt evcnt_attach_static(&pmap_evcnt_updates);
1028 1.1 matt evcnt_attach_static(&pmap_evcnt_collects);
1029 1.1 matt evcnt_attach_static(&pmap_evcnt_copies);
1030 1.1 matt
1031 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_spilled);
1032 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
1033 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_evicted);
1034 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_removed);
1035 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_changed);
1036 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
1037 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
1038 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
1039 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
1040 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
1041 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
1042 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
1043 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
1044 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
1045 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
1046 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
1047 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
1048 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
1049 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
1050 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
1051 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
1052 1.1 matt #endif
1053 1.1 matt }
1054 1.1 matt
1055 1.1 matt /*
1056 1.10 thorpej * How much virtual space does the kernel get?
1057 1.10 thorpej */
1058 1.10 thorpej void
1059 1.10 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1060 1.10 thorpej {
1061 1.10 thorpej /*
1062 1.10 thorpej * For now, reserve one segment (minus some overhead) for kernel
1063 1.10 thorpej * virtual memory
1064 1.10 thorpej */
1065 1.10 thorpej *start = VM_MIN_KERNEL_ADDRESS;
1066 1.10 thorpej *end = VM_MAX_KERNEL_ADDRESS;
1067 1.10 thorpej }
1068 1.10 thorpej
1069 1.10 thorpej /*
1070 1.1 matt * Allocate, initialize, and return a new physical map.
1071 1.1 matt */
1072 1.1 matt pmap_t
1073 1.1 matt pmap_create(void)
1074 1.1 matt {
1075 1.1 matt pmap_t pm;
1076 1.1 matt
1077 1.1 matt pm = pool_get(&pmap_pool, PR_WAITOK);
1078 1.1 matt memset((caddr_t)pm, 0, sizeof *pm);
1079 1.1 matt pmap_pinit(pm);
1080 1.1 matt
1081 1.1 matt DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1082 1.2 matt "\t%06lx %06lx %06lx %06lx %06lx %06lx %06lx %06lx\n"
1083 1.2 matt "\t%06lx %06lx %06lx %06lx %06lx %06lx %06lx %06lx\n", pm,
1084 1.1 matt pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
1085 1.1 matt pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
1086 1.1 matt pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
1087 1.1 matt pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
1088 1.1 matt return pm;
1089 1.1 matt }
1090 1.1 matt
1091 1.1 matt /*
1092 1.1 matt * Initialize a preallocated and zeroed pmap structure.
1093 1.1 matt */
1094 1.1 matt void
1095 1.1 matt pmap_pinit(pmap_t pm)
1096 1.1 matt {
1097 1.2 matt register_t entropy = MFTB();
1098 1.2 matt register_t mask;
1099 1.2 matt int i;
1100 1.1 matt
1101 1.1 matt /*
1102 1.1 matt * Allocate some segment registers for this pmap.
1103 1.1 matt */
1104 1.1 matt pm->pm_refs = 1;
1105 1.2 matt for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1106 1.2 matt static register_t pmap_vsidcontext;
1107 1.2 matt register_t hash;
1108 1.2 matt unsigned int n;
1109 1.1 matt
1110 1.1 matt /* Create a new value by multiplying by a prime adding in
1111 1.1 matt * entropy from the timebase register. This is to make the
1112 1.1 matt * VSID more random so that the PT Hash function collides
1113 1.1 matt * less often. (note that the prime causes gcc to do shifts
1114 1.1 matt * instead of a multiply)
1115 1.1 matt */
1116 1.1 matt pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1117 1.1 matt hash = pmap_vsidcontext & (NPMAPS - 1);
1118 1.1 matt if (hash == 0) /* 0 is special, avoid it */
1119 1.1 matt continue;
1120 1.1 matt n = hash >> 5;
1121 1.2 matt mask = 1L << (hash & (VSID_NBPW-1));
1122 1.2 matt hash = pmap_vsidcontext;
1123 1.1 matt if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1124 1.1 matt /* anything free in this bucket? */
1125 1.2 matt if (~pmap_vsid_bitmap[n] == 0) {
1126 1.2 matt entropy = hash >> PTE_VSID_SHFT;
1127 1.1 matt continue;
1128 1.1 matt }
1129 1.1 matt i = ffs(~pmap_vsid_bitmap[n]) - 1;
1130 1.2 matt mask = 1L << i;
1131 1.2 matt hash &= ~(VSID_NBPW-1);
1132 1.1 matt hash |= i;
1133 1.1 matt }
1134 1.2 matt /*
1135 1.2 matt * Make sure clear out SR_KEY_LEN bits because we put our
1136 1.2 matt * our data in those bits (to identify the segment).
1137 1.2 matt */
1138 1.2 matt hash &= PTE_VSID >> (PTE_VSID_SHFT + SR_KEY_LEN);
1139 1.1 matt pmap_vsid_bitmap[n] |= mask;
1140 1.1 matt for (i = 0; i < 16; i++)
1141 1.1 matt pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY;
1142 1.1 matt return;
1143 1.1 matt }
1144 1.1 matt panic("pmap_pinit: out of segments");
1145 1.1 matt }
1146 1.1 matt
1147 1.1 matt /*
1148 1.1 matt * Add a reference to the given pmap.
1149 1.1 matt */
1150 1.1 matt void
1151 1.1 matt pmap_reference(pmap_t pm)
1152 1.1 matt {
1153 1.1 matt pm->pm_refs++;
1154 1.1 matt }
1155 1.1 matt
1156 1.1 matt /*
1157 1.1 matt * Retire the given pmap from service.
1158 1.1 matt * Should only be called if the map contains no valid mappings.
1159 1.1 matt */
1160 1.1 matt void
1161 1.1 matt pmap_destroy(pmap_t pm)
1162 1.1 matt {
1163 1.1 matt if (--pm->pm_refs == 0) {
1164 1.1 matt pmap_release(pm);
1165 1.1 matt pool_put(&pmap_pool, pm);
1166 1.1 matt }
1167 1.1 matt }
1168 1.1 matt
1169 1.1 matt /*
1170 1.1 matt * Release any resources held by the given physical map.
1171 1.1 matt * Called when a pmap initialized by pmap_pinit is being released.
1172 1.1 matt */
1173 1.1 matt void
1174 1.1 matt pmap_release(pmap_t pm)
1175 1.1 matt {
1176 1.1 matt int idx, mask;
1177 1.1 matt
1178 1.1 matt if (pm->pm_sr[0] == 0)
1179 1.1 matt panic("pmap_release");
1180 1.1 matt idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1);
1181 1.1 matt mask = 1 << (idx % VSID_NBPW);
1182 1.1 matt idx /= VSID_NBPW;
1183 1.1 matt pmap_vsid_bitmap[idx] &= ~mask;
1184 1.1 matt }
1185 1.1 matt
1186 1.1 matt /*
1187 1.1 matt * Copy the range specified by src_addr/len
1188 1.1 matt * from the source map to the range dst_addr/len
1189 1.1 matt * in the destination map.
1190 1.1 matt *
1191 1.1 matt * This routine is only advisory and need not do anything.
1192 1.1 matt */
1193 1.1 matt void
1194 1.1 matt pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1195 1.1 matt vsize_t len, vaddr_t src_addr)
1196 1.1 matt {
1197 1.1 matt PMAPCOUNT(copies);
1198 1.1 matt }
1199 1.1 matt
1200 1.1 matt /*
1201 1.1 matt * Require that all active physical maps contain no
1202 1.1 matt * incorrect entries NOW.
1203 1.1 matt */
1204 1.1 matt void
1205 1.1 matt pmap_update(struct pmap *pmap)
1206 1.1 matt {
1207 1.1 matt PMAPCOUNT(updates);
1208 1.1 matt TLBSYNC();
1209 1.1 matt }
1210 1.1 matt
1211 1.1 matt /*
1212 1.1 matt * Garbage collects the physical map system for
1213 1.1 matt * pages which are no longer used.
1214 1.1 matt * Success need not be guaranteed -- that is, there
1215 1.1 matt * may well be pages which are not referenced, but
1216 1.1 matt * others may be collected.
1217 1.1 matt * Called by the pageout daemon when pages are scarce.
1218 1.1 matt */
1219 1.1 matt void
1220 1.1 matt pmap_collect(pmap_t pm)
1221 1.1 matt {
1222 1.1 matt PMAPCOUNT(collects);
1223 1.1 matt }
1224 1.1 matt
1225 1.1 matt static __inline int
1226 1.1 matt pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1227 1.1 matt {
1228 1.1 matt int pteidx;
1229 1.1 matt /*
1230 1.1 matt * We can find the actual pte entry without searching by
1231 1.1 matt * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1232 1.1 matt * and by noticing the HID bit.
1233 1.1 matt */
1234 1.1 matt pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1235 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_HID)
1236 1.1 matt pteidx ^= pmap_pteg_mask * 8;
1237 1.1 matt return pteidx;
1238 1.1 matt }
1239 1.1 matt
1240 1.2 matt volatile struct pte *
1241 1.1 matt pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1242 1.1 matt {
1243 1.2 matt volatile struct pte *pt;
1244 1.1 matt
1245 1.1 matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1246 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1247 1.1 matt return NULL;
1248 1.1 matt #endif
1249 1.1 matt
1250 1.1 matt /*
1251 1.1 matt * If we haven't been supplied the ptegidx, calculate it.
1252 1.1 matt */
1253 1.1 matt if (pteidx == -1) {
1254 1.1 matt int ptegidx;
1255 1.2 matt ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1256 1.1 matt pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1257 1.1 matt }
1258 1.1 matt
1259 1.1 matt pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1260 1.1 matt
1261 1.1 matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1262 1.1 matt return pt;
1263 1.1 matt #else
1264 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1265 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1266 1.1 matt "pvo but no valid pte index", pvo);
1267 1.1 matt }
1268 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1269 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1270 1.1 matt "pvo but no valid pte", pvo);
1271 1.1 matt }
1272 1.1 matt
1273 1.1 matt if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1274 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1275 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1276 1.1 matt pmap_pte_print(pt);
1277 1.1 matt #endif
1278 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1279 1.1 matt "pmap_pteg_table %p but invalid in pvo",
1280 1.1 matt pvo, pt);
1281 1.1 matt }
1282 1.1 matt if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1283 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1284 1.1 matt pmap_pte_print(pt);
1285 1.1 matt #endif
1286 1.1 matt panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1287 1.1 matt "not match pte %p in pmap_pteg_table",
1288 1.1 matt pvo, pt);
1289 1.1 matt }
1290 1.1 matt return pt;
1291 1.1 matt }
1292 1.1 matt
1293 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1294 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1295 1.1 matt pmap_pte_print(pt);
1296 1.1 matt #endif
1297 1.12 matt panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1298 1.1 matt "pmap_pteg_table but valid in pvo", pvo, pt);
1299 1.1 matt }
1300 1.1 matt return NULL;
1301 1.1 matt #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1302 1.1 matt }
1303 1.1 matt
1304 1.1 matt struct pvo_entry *
1305 1.1 matt pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1306 1.1 matt {
1307 1.1 matt struct pvo_entry *pvo;
1308 1.1 matt int ptegidx;
1309 1.1 matt
1310 1.1 matt va &= ~ADDR_POFF;
1311 1.2 matt ptegidx = va_to_pteg(pm, va);
1312 1.1 matt
1313 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1314 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1315 1.1 matt if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1316 1.1 matt panic("pmap_pvo_find_va: invalid pvo %p on "
1317 1.1 matt "list %#x (%p)", pvo, ptegidx,
1318 1.1 matt &pmap_pvo_table[ptegidx]);
1319 1.1 matt #endif
1320 1.1 matt if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1321 1.1 matt if (pteidx_p)
1322 1.1 matt *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1323 1.1 matt return pvo;
1324 1.1 matt }
1325 1.1 matt }
1326 1.1 matt return NULL;
1327 1.1 matt }
1328 1.1 matt
1329 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1330 1.1 matt void
1331 1.1 matt pmap_pvo_check(const struct pvo_entry *pvo)
1332 1.1 matt {
1333 1.1 matt struct pvo_head *pvo_head;
1334 1.1 matt struct pvo_entry *pvo0;
1335 1.2 matt volatile struct pte *pt;
1336 1.1 matt int failed = 0;
1337 1.1 matt
1338 1.1 matt if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1339 1.1 matt panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1340 1.1 matt
1341 1.1 matt if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1342 1.1 matt printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1343 1.1 matt pvo, pvo->pvo_pmap);
1344 1.1 matt failed = 1;
1345 1.1 matt }
1346 1.1 matt
1347 1.1 matt if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1348 1.1 matt (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1349 1.1 matt printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1350 1.1 matt pvo, TAILQ_NEXT(pvo, pvo_olink));
1351 1.1 matt failed = 1;
1352 1.1 matt }
1353 1.1 matt
1354 1.1 matt if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1355 1.1 matt (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1356 1.1 matt printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1357 1.1 matt pvo, LIST_NEXT(pvo, pvo_vlink));
1358 1.1 matt failed = 1;
1359 1.1 matt }
1360 1.1 matt
1361 1.1 matt if (pvo->pvo_vaddr & PVO_MANAGED) {
1362 1.1 matt pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1363 1.1 matt } else {
1364 1.1 matt if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1365 1.1 matt printf("pmap_pvo_check: pvo %p: non kernel address "
1366 1.1 matt "on kernel unmanaged list\n", pvo);
1367 1.1 matt failed = 1;
1368 1.1 matt }
1369 1.1 matt pvo_head = &pmap_pvo_kunmanaged;
1370 1.1 matt }
1371 1.1 matt LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1372 1.1 matt if (pvo0 == pvo)
1373 1.1 matt break;
1374 1.1 matt }
1375 1.1 matt if (pvo0 == NULL) {
1376 1.1 matt printf("pmap_pvo_check: pvo %p: not present "
1377 1.1 matt "on its vlist head %p\n", pvo, pvo_head);
1378 1.1 matt failed = 1;
1379 1.1 matt }
1380 1.1 matt if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1381 1.1 matt printf("pmap_pvo_check: pvo %p: not present "
1382 1.1 matt "on its olist head\n", pvo);
1383 1.1 matt failed = 1;
1384 1.1 matt }
1385 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
1386 1.1 matt if (pt == NULL) {
1387 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1388 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1389 1.1 matt "no PTE\n", pvo);
1390 1.1 matt failed = 1;
1391 1.1 matt }
1392 1.1 matt } else {
1393 1.1 matt if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1394 1.1 matt (uintptr_t) pt >=
1395 1.1 matt (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1396 1.1 matt printf("pmap_pvo_check: pvo %p: pte %p not in "
1397 1.1 matt "pteg table\n", pvo, pt);
1398 1.1 matt failed = 1;
1399 1.1 matt }
1400 1.1 matt if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1401 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1402 1.1 matt "no PTE\n", pvo);
1403 1.1 matt failed = 1;
1404 1.1 matt }
1405 1.1 matt if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1406 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1407 1.2 matt "%#lx/%#lx\n", pvo, pvo->pvo_pte.pte_hi, pt->pte_hi);
1408 1.1 matt failed = 1;
1409 1.1 matt }
1410 1.1 matt if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1411 1.1 matt (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1412 1.1 matt printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1413 1.2 matt "%#lx/%#lx\n", pvo,
1414 1.1 matt pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN),
1415 1.1 matt pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN));
1416 1.1 matt failed = 1;
1417 1.1 matt }
1418 1.1 matt if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1419 1.1 matt printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1420 1.1 matt " doesn't not match PVO's VA %#lx\n",
1421 1.1 matt pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1422 1.1 matt failed = 1;
1423 1.1 matt }
1424 1.1 matt if (failed)
1425 1.1 matt pmap_pte_print(pt);
1426 1.1 matt }
1427 1.1 matt if (failed)
1428 1.1 matt panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1429 1.1 matt pvo->pvo_pmap);
1430 1.1 matt }
1431 1.1 matt #endif /* DEBUG || PMAPCHECK */
1432 1.1 matt
1433 1.1 matt /*
1434 1.1 matt * This returns whether this is the first mapping of a page.
1435 1.1 matt */
1436 1.1 matt int
1437 1.1 matt pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1438 1.2 matt vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1439 1.1 matt {
1440 1.1 matt struct pvo_entry *pvo;
1441 1.1 matt struct pvo_tqhead *pvoh;
1442 1.2 matt register_t msr;
1443 1.1 matt int ptegidx;
1444 1.1 matt int i;
1445 1.1 matt int poolflags = PR_NOWAIT;
1446 1.1 matt
1447 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1448 1.1 matt if (pmap_pvo_remove_depth > 0)
1449 1.1 matt panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1450 1.1 matt if (++pmap_pvo_enter_depth > 1)
1451 1.1 matt panic("pmap_pvo_enter: called recursively!");
1452 1.1 matt #endif
1453 1.1 matt
1454 1.1 matt /*
1455 1.1 matt * Compute the PTE Group index.
1456 1.1 matt */
1457 1.1 matt va &= ~ADDR_POFF;
1458 1.2 matt ptegidx = va_to_pteg(pm, va);
1459 1.1 matt
1460 1.1 matt msr = pmap_interrupts_off();
1461 1.1 matt /*
1462 1.1 matt * Remove any existing mapping for this page. Reuse the
1463 1.1 matt * pvo entry if there a mapping.
1464 1.1 matt */
1465 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1466 1.1 matt if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1467 1.1 matt #ifdef DEBUG
1468 1.1 matt if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1469 1.1 matt ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1470 1.1 matt ~(PTE_REF|PTE_CHG)) == 0 &&
1471 1.1 matt va < VM_MIN_KERNEL_ADDRESS) {
1472 1.2 matt printf("pmap_pvo_enter: pvo %p: dup %#lx/%#lx\n",
1473 1.1 matt pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1474 1.2 matt printf("pmap_pvo_enter: pte_hi=%#lx sr=%#lx\n",
1475 1.1 matt pvo->pvo_pte.pte_hi,
1476 1.1 matt pm->pm_sr[va >> ADDR_SR_SHFT]);
1477 1.1 matt pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1478 1.1 matt #ifdef DDBX
1479 1.1 matt Debugger();
1480 1.1 matt #endif
1481 1.1 matt }
1482 1.1 matt #endif
1483 1.1 matt PMAPCOUNT(mappings_replaced);
1484 1.1 matt pmap_pvo_remove(pvo, -1);
1485 1.1 matt break;
1486 1.1 matt }
1487 1.1 matt }
1488 1.1 matt
1489 1.1 matt /*
1490 1.1 matt * If we aren't overwriting an mapping, try to allocate
1491 1.1 matt */
1492 1.1 matt pmap_interrupts_restore(msr);
1493 1.1 matt pvo = pool_get(pl, poolflags);
1494 1.1 matt msr = pmap_interrupts_off();
1495 1.1 matt if (pvo == NULL) {
1496 1.1 matt #if 0
1497 1.1 matt pvo = pmap_pvo_reclaim(pm);
1498 1.1 matt if (pvo == NULL) {
1499 1.1 matt #endif
1500 1.1 matt if ((flags & PMAP_CANFAIL) == 0)
1501 1.1 matt panic("pmap_pvo_enter: failed");
1502 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1503 1.1 matt pmap_pvo_enter_depth--;
1504 1.1 matt #endif
1505 1.1 matt pmap_interrupts_restore(msr);
1506 1.1 matt return ENOMEM;
1507 1.1 matt #if 0
1508 1.1 matt }
1509 1.1 matt #endif
1510 1.1 matt }
1511 1.1 matt pvo->pvo_vaddr = va;
1512 1.1 matt pvo->pvo_pmap = pm;
1513 1.1 matt pvo->pvo_vaddr &= ~ADDR_POFF;
1514 1.1 matt if (flags & VM_PROT_EXECUTE) {
1515 1.1 matt PMAPCOUNT(exec_mappings);
1516 1.1 matt pvo->pvo_vaddr |= PVO_EXECUTABLE;
1517 1.1 matt }
1518 1.1 matt if (flags & PMAP_WIRED)
1519 1.1 matt pvo->pvo_vaddr |= PVO_WIRED;
1520 1.1 matt if (pvo_head != &pmap_pvo_kunmanaged) {
1521 1.1 matt pvo->pvo_vaddr |= PVO_MANAGED;
1522 1.1 matt PMAPCOUNT(mappings);
1523 1.1 matt } else {
1524 1.1 matt PMAPCOUNT(kernel_mappings);
1525 1.1 matt }
1526 1.2 matt pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1527 1.1 matt
1528 1.1 matt LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1529 1.1 matt if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1530 1.1 matt pvo->pvo_pmap->pm_stats.wired_count++;
1531 1.1 matt pvo->pvo_pmap->pm_stats.resident_count++;
1532 1.1 matt #if defined(DEBUG)
1533 1.1 matt if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1534 1.1 matt DPRINTFN(PVOENTER,
1535 1.1 matt ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1536 1.1 matt pvo, pm, va, pa));
1537 1.1 matt #endif
1538 1.1 matt
1539 1.1 matt /*
1540 1.1 matt * We hope this succeeds but it isn't required.
1541 1.1 matt */
1542 1.1 matt pvoh = &pmap_pvo_table[ptegidx];
1543 1.1 matt i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1544 1.1 matt if (i >= 0) {
1545 1.1 matt PVO_PTEGIDX_SET(pvo, i);
1546 1.12 matt PVO_WHERE(pvo, ENTER_INSERT);
1547 1.1 matt PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1548 1.1 matt ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1549 1.1 matt TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1550 1.1 matt } else {
1551 1.1 matt /*
1552 1.1 matt * Since we didn't have room for this entry (which makes it
1553 1.1 matt * and evicted entry), place it at the head of the list.
1554 1.1 matt */
1555 1.1 matt TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1556 1.1 matt PMAPCOUNT(ptes_evicted);
1557 1.1 matt pm->pm_evictions++;
1558 1.12 matt /*
1559 1.12 matt * If this is a kernel page, make sure it's active.
1560 1.12 matt */
1561 1.12 matt if (pm == pmap_kernel()) {
1562 1.12 matt i = pmap_pte_spill(pm, va);
1563 1.12 matt KASSERT(i);
1564 1.12 matt }
1565 1.1 matt }
1566 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1567 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1568 1.1 matt pmap_pvo_enter_depth--;
1569 1.1 matt #endif
1570 1.1 matt pmap_interrupts_restore(msr);
1571 1.1 matt return 0;
1572 1.1 matt }
1573 1.1 matt
1574 1.1 matt void
1575 1.1 matt pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1576 1.1 matt {
1577 1.2 matt volatile struct pte *pt;
1578 1.1 matt int ptegidx;
1579 1.1 matt
1580 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1581 1.1 matt if (++pmap_pvo_remove_depth > 1)
1582 1.1 matt panic("pmap_pvo_remove: called recursively!");
1583 1.1 matt #endif
1584 1.1 matt
1585 1.1 matt /*
1586 1.1 matt * If we haven't been supplied the ptegidx, calculate it.
1587 1.1 matt */
1588 1.1 matt if (pteidx == -1) {
1589 1.2 matt ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1590 1.1 matt pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1591 1.1 matt } else {
1592 1.1 matt ptegidx = pteidx >> 3;
1593 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_HID)
1594 1.1 matt ptegidx ^= pmap_pteg_mask;
1595 1.1 matt }
1596 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1597 1.1 matt
1598 1.1 matt /*
1599 1.1 matt * If there is an active pte entry, we need to deactivate it
1600 1.1 matt * (and save the ref & chg bits).
1601 1.1 matt */
1602 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
1603 1.1 matt if (pt != NULL) {
1604 1.1 matt pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1605 1.12 matt PVO_WHERE(pvo, REMOVE);
1606 1.1 matt PVO_PTEGIDX_CLR(pvo);
1607 1.1 matt PMAPCOUNT(ptes_removed);
1608 1.1 matt } else {
1609 1.1 matt KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1610 1.1 matt pvo->pvo_pmap->pm_evictions--;
1611 1.1 matt }
1612 1.1 matt
1613 1.1 matt /*
1614 1.1 matt * Update our statistics
1615 1.1 matt */
1616 1.1 matt pvo->pvo_pmap->pm_stats.resident_count--;
1617 1.1 matt if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1618 1.1 matt pvo->pvo_pmap->pm_stats.wired_count--;
1619 1.1 matt
1620 1.1 matt /*
1621 1.1 matt * Save the REF/CHG bits into their cache if the page is managed.
1622 1.1 matt */
1623 1.1 matt if (pvo->pvo_vaddr & PVO_MANAGED) {
1624 1.2 matt register_t ptelo = pvo->pvo_pte.pte_lo;
1625 1.1 matt struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1626 1.1 matt
1627 1.1 matt if (pg != NULL) {
1628 1.1 matt pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1629 1.1 matt }
1630 1.1 matt PMAPCOUNT(unmappings);
1631 1.1 matt } else {
1632 1.1 matt PMAPCOUNT(kernel_unmappings);
1633 1.1 matt }
1634 1.1 matt
1635 1.1 matt /*
1636 1.1 matt * Remove the PVO from its lists and return it to the pool.
1637 1.1 matt */
1638 1.1 matt LIST_REMOVE(pvo, pvo_vlink);
1639 1.1 matt TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1640 1.1 matt pool_put(pvo->pvo_vaddr & PVO_MANAGED
1641 1.1 matt ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1642 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1643 1.1 matt pmap_pvo_remove_depth--;
1644 1.1 matt #endif
1645 1.1 matt }
1646 1.1 matt
1647 1.1 matt /*
1648 1.1 matt * Insert physical page at pa into the given pmap at virtual address va.
1649 1.1 matt */
1650 1.1 matt int
1651 1.1 matt pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1652 1.1 matt {
1653 1.1 matt struct mem_region *mp;
1654 1.1 matt struct pvo_head *pvo_head;
1655 1.1 matt struct vm_page *pg;
1656 1.1 matt struct pool *pl;
1657 1.2 matt register_t pte_lo;
1658 1.1 matt int s;
1659 1.1 matt int error;
1660 1.1 matt u_int pvo_flags;
1661 1.1 matt u_int was_exec = 0;
1662 1.1 matt
1663 1.1 matt if (__predict_false(!pmap_initialized)) {
1664 1.1 matt pvo_head = &pmap_pvo_kunmanaged;
1665 1.1 matt pl = &pmap_upvo_pool;
1666 1.1 matt pvo_flags = 0;
1667 1.1 matt pg = NULL;
1668 1.1 matt was_exec = PTE_EXEC;
1669 1.1 matt } else {
1670 1.1 matt pvo_head = pa_to_pvoh(pa, &pg);
1671 1.1 matt pl = &pmap_mpvo_pool;
1672 1.1 matt pvo_flags = PVO_MANAGED;
1673 1.1 matt }
1674 1.1 matt
1675 1.1 matt DPRINTFN(ENTER,
1676 1.1 matt ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1677 1.1 matt pm, va, pa, prot, flags));
1678 1.1 matt
1679 1.1 matt /*
1680 1.1 matt * If this is a managed page, and it's the first reference to the
1681 1.1 matt * page clear the execness of the page. Otherwise fetch the execness.
1682 1.1 matt */
1683 1.1 matt if (pg != NULL)
1684 1.1 matt was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1685 1.1 matt
1686 1.1 matt DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1687 1.1 matt
1688 1.1 matt /*
1689 1.1 matt * Assume the page is cache inhibited and access is guarded unless
1690 1.1 matt * it's in our available memory array. If it is in the memory array,
1691 1.1 matt * asssume it's in memory coherent memory.
1692 1.1 matt */
1693 1.1 matt pte_lo = PTE_IG;
1694 1.1 matt if ((flags & PMAP_NC) == 0) {
1695 1.1 matt for (mp = mem; mp->size; mp++) {
1696 1.1 matt if (pa >= mp->start && pa < mp->start + mp->size) {
1697 1.1 matt pte_lo = PTE_M;
1698 1.1 matt break;
1699 1.1 matt }
1700 1.1 matt }
1701 1.1 matt }
1702 1.1 matt
1703 1.1 matt if (prot & VM_PROT_WRITE)
1704 1.1 matt pte_lo |= PTE_BW;
1705 1.1 matt else
1706 1.1 matt pte_lo |= PTE_BR;
1707 1.1 matt
1708 1.1 matt /*
1709 1.1 matt * If this was in response to a fault, "pre-fault" the PTE's
1710 1.1 matt * changed/referenced bit appropriately.
1711 1.1 matt */
1712 1.1 matt if (flags & VM_PROT_WRITE)
1713 1.1 matt pte_lo |= PTE_CHG;
1714 1.1 matt if (flags & (VM_PROT_READ|VM_PROT_WRITE))
1715 1.1 matt pte_lo |= PTE_REF;
1716 1.1 matt
1717 1.1 matt #if 0
1718 1.1 matt if (pm == pmap_kernel()) {
1719 1.1 matt if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_READ)
1720 1.1 matt printf("pmap_pvo_enter: Kernel RO va %#lx pa %#lx\n",
1721 1.1 matt va, pa);
1722 1.1 matt if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_NONE)
1723 1.1 matt printf("pmap_pvo_enter: Kernel N/A va %#lx pa %#lx\n",
1724 1.1 matt va, pa);
1725 1.1 matt }
1726 1.1 matt #endif
1727 1.1 matt
1728 1.1 matt /*
1729 1.1 matt * We need to know if this page can be executable
1730 1.1 matt */
1731 1.1 matt flags |= (prot & VM_PROT_EXECUTE);
1732 1.1 matt
1733 1.1 matt /*
1734 1.1 matt * Record mapping for later back-translation and pte spilling.
1735 1.1 matt * This will overwrite any existing mapping.
1736 1.1 matt */
1737 1.1 matt s = splvm();
1738 1.1 matt error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1739 1.1 matt splx(s);
1740 1.1 matt
1741 1.1 matt /*
1742 1.1 matt * Flush the real page from the instruction cache if this page is
1743 1.1 matt * mapped executable and cacheable and has not been flushed since
1744 1.1 matt * the last time it was modified.
1745 1.1 matt */
1746 1.1 matt if (error == 0 &&
1747 1.1 matt (flags & VM_PROT_EXECUTE) &&
1748 1.1 matt (pte_lo & PTE_I) == 0 &&
1749 1.1 matt was_exec == 0) {
1750 1.1 matt DPRINTFN(ENTER, (" syncicache"));
1751 1.1 matt PMAPCOUNT(exec_synced);
1752 1.6 thorpej pmap_syncicache(pa, PAGE_SIZE);
1753 1.1 matt if (pg != NULL) {
1754 1.1 matt pmap_attr_save(pg, PTE_EXEC);
1755 1.1 matt PMAPCOUNT(exec_cached);
1756 1.1 matt #if defined(DEBUG) || defined(PMAPDEBUG)
1757 1.1 matt if (pmapdebug & PMAPDEBUG_ENTER)
1758 1.1 matt printf(" marked-as-exec");
1759 1.1 matt else if (pmapdebug & PMAPDEBUG_EXEC)
1760 1.1 matt printf("[pmap_enter: %#lx: marked-as-exec]\n",
1761 1.1 matt pg->phys_addr);
1762 1.1 matt
1763 1.1 matt #endif
1764 1.1 matt }
1765 1.1 matt }
1766 1.1 matt
1767 1.1 matt DPRINTFN(ENTER, (": error=%d\n", error));
1768 1.1 matt
1769 1.1 matt return error;
1770 1.1 matt }
1771 1.1 matt
1772 1.1 matt void
1773 1.1 matt pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1774 1.1 matt {
1775 1.1 matt struct mem_region *mp;
1776 1.2 matt register_t pte_lo;
1777 1.2 matt register_t msr;
1778 1.1 matt int error;
1779 1.1 matt int s;
1780 1.1 matt
1781 1.1 matt if (va < VM_MIN_KERNEL_ADDRESS)
1782 1.1 matt panic("pmap_kenter_pa: attempt to enter "
1783 1.1 matt "non-kernel address %#lx!", va);
1784 1.1 matt
1785 1.1 matt DPRINTFN(KENTER,
1786 1.1 matt ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1787 1.1 matt
1788 1.1 matt /*
1789 1.1 matt * Assume the page is cache inhibited and access is guarded unless
1790 1.1 matt * it's in our available memory array. If it is in the memory array,
1791 1.1 matt * asssume it's in memory coherent memory.
1792 1.1 matt */
1793 1.1 matt pte_lo = PTE_IG;
1794 1.4 matt if ((prot & PMAP_NC) == 0) {
1795 1.4 matt for (mp = mem; mp->size; mp++) {
1796 1.4 matt if (pa >= mp->start && pa < mp->start + mp->size) {
1797 1.4 matt pte_lo = PTE_M;
1798 1.4 matt break;
1799 1.4 matt }
1800 1.1 matt }
1801 1.1 matt }
1802 1.1 matt
1803 1.1 matt if (prot & VM_PROT_WRITE)
1804 1.1 matt pte_lo |= PTE_BW;
1805 1.1 matt else
1806 1.1 matt pte_lo |= PTE_BR;
1807 1.1 matt
1808 1.1 matt /*
1809 1.1 matt * We don't care about REF/CHG on PVOs on the unmanaged list.
1810 1.1 matt */
1811 1.1 matt s = splvm();
1812 1.1 matt msr = pmap_interrupts_off();
1813 1.1 matt error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1814 1.1 matt &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1815 1.1 matt pmap_interrupts_restore(msr);
1816 1.1 matt splx(s);
1817 1.1 matt
1818 1.1 matt if (error != 0)
1819 1.1 matt panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1820 1.1 matt va, pa, error);
1821 1.1 matt }
1822 1.1 matt
1823 1.1 matt void
1824 1.1 matt pmap_kremove(vaddr_t va, vsize_t len)
1825 1.1 matt {
1826 1.1 matt if (va < VM_MIN_KERNEL_ADDRESS)
1827 1.1 matt panic("pmap_kremove: attempt to remove "
1828 1.1 matt "non-kernel address %#lx!", va);
1829 1.1 matt
1830 1.1 matt DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1831 1.1 matt pmap_remove(pmap_kernel(), va, va + len);
1832 1.1 matt }
1833 1.1 matt
1834 1.1 matt /*
1835 1.1 matt * Remove the given range of mapping entries.
1836 1.1 matt */
1837 1.1 matt void
1838 1.1 matt pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1839 1.1 matt {
1840 1.1 matt struct pvo_entry *pvo;
1841 1.2 matt register_t msr;
1842 1.1 matt int pteidx;
1843 1.1 matt int s;
1844 1.1 matt
1845 1.1 matt for (; va < endva; va += PAGE_SIZE) {
1846 1.1 matt s = splvm();
1847 1.1 matt msr = pmap_interrupts_off();
1848 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
1849 1.1 matt if (pvo != NULL) {
1850 1.1 matt pmap_pvo_remove(pvo, pteidx);
1851 1.1 matt }
1852 1.1 matt pmap_interrupts_restore(msr);
1853 1.1 matt splx(s);
1854 1.1 matt }
1855 1.1 matt }
1856 1.1 matt
1857 1.1 matt /*
1858 1.1 matt * Get the physical page address for the given pmap/virtual address.
1859 1.1 matt */
1860 1.1 matt boolean_t
1861 1.1 matt pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
1862 1.1 matt {
1863 1.1 matt struct pvo_entry *pvo;
1864 1.2 matt register_t msr;
1865 1.1 matt int s;
1866 1.7 matt
1867 1.7 matt /*
1868 1.7 matt * If this is a kernel pmap lookup, also check the battable
1869 1.7 matt * and if we get a hit, translate the VA to a PA using the
1870 1.7 matt * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
1871 1.7 matt * that will wrap back to 0.
1872 1.7 matt */
1873 1.7 matt if (pm == pmap_kernel() &&
1874 1.7 matt (va < VM_MIN_KERNEL_ADDRESS ||
1875 1.7 matt (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
1876 1.7 matt register_t batu = battable[va >> ADDR_SR_SHFT].batu;
1877 1.8 matt KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
1878 1.7 matt if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
1879 1.7 matt register_t batl = battable[va >> ADDR_SR_SHFT].batl;
1880 1.7 matt register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
1881 1.7 matt *pap = (batl & mask) | (va & ~mask);
1882 1.7 matt return TRUE;
1883 1.7 matt }
1884 1.7 matt return FALSE;
1885 1.7 matt }
1886 1.1 matt
1887 1.1 matt s = splvm();
1888 1.1 matt msr = pmap_interrupts_off();
1889 1.1 matt pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1890 1.1 matt if (pvo != NULL) {
1891 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1892 1.1 matt *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1893 1.1 matt }
1894 1.1 matt pmap_interrupts_restore(msr);
1895 1.1 matt splx(s);
1896 1.1 matt return pvo != NULL;
1897 1.1 matt }
1898 1.1 matt
1899 1.1 matt /*
1900 1.1 matt * Lower the protection on the specified range of this pmap.
1901 1.1 matt *
1902 1.1 matt * There are only two cases: either the protection is going to 0,
1903 1.1 matt * or it is going to read-only.
1904 1.1 matt */
1905 1.1 matt void
1906 1.1 matt pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
1907 1.1 matt {
1908 1.1 matt struct pvo_entry *pvo;
1909 1.2 matt volatile struct pte *pt;
1910 1.2 matt register_t msr;
1911 1.1 matt int s;
1912 1.1 matt int pteidx;
1913 1.1 matt
1914 1.1 matt /*
1915 1.1 matt * Since this routine only downgrades protection, we should
1916 1.1 matt * always be called without WRITE permisison.
1917 1.1 matt */
1918 1.1 matt KASSERT((prot & VM_PROT_WRITE) == 0);
1919 1.1 matt
1920 1.1 matt /*
1921 1.1 matt * If there is no protection, this is equivalent to
1922 1.1 matt * remove the pmap from the pmap.
1923 1.1 matt */
1924 1.1 matt if ((prot & VM_PROT_READ) == 0) {
1925 1.1 matt pmap_remove(pm, va, endva);
1926 1.1 matt return;
1927 1.1 matt }
1928 1.1 matt
1929 1.1 matt s = splvm();
1930 1.1 matt msr = pmap_interrupts_off();
1931 1.1 matt
1932 1.6 thorpej for (; va < endva; va += PAGE_SIZE) {
1933 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
1934 1.1 matt if (pvo == NULL)
1935 1.1 matt continue;
1936 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1937 1.1 matt
1938 1.1 matt /*
1939 1.1 matt * Revoke executable if asked to do so.
1940 1.1 matt */
1941 1.1 matt if ((prot & VM_PROT_EXECUTE) == 0)
1942 1.1 matt pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1943 1.1 matt
1944 1.1 matt #if 0
1945 1.1 matt /*
1946 1.1 matt * If the page is already read-only, no change
1947 1.1 matt * needs to be made.
1948 1.1 matt */
1949 1.1 matt if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
1950 1.1 matt continue;
1951 1.1 matt #endif
1952 1.1 matt /*
1953 1.1 matt * Grab the PTE pointer before we diddle with
1954 1.1 matt * the cached PTE copy.
1955 1.1 matt */
1956 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
1957 1.1 matt /*
1958 1.1 matt * Change the protection of the page.
1959 1.1 matt */
1960 1.1 matt pvo->pvo_pte.pte_lo &= ~PTE_PP;
1961 1.1 matt pvo->pvo_pte.pte_lo |= PTE_BR;
1962 1.1 matt
1963 1.1 matt /*
1964 1.1 matt * If the PVO is in the page table, update
1965 1.1 matt * that pte at well.
1966 1.1 matt */
1967 1.1 matt if (pt != NULL) {
1968 1.1 matt pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1969 1.12 matt PVO_WHERE(pvo, PMAP_PROTECT);
1970 1.1 matt PMAPCOUNT(ptes_changed);
1971 1.1 matt }
1972 1.1 matt
1973 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1974 1.1 matt }
1975 1.1 matt
1976 1.1 matt pmap_interrupts_restore(msr);
1977 1.1 matt splx(s);
1978 1.1 matt }
1979 1.1 matt
1980 1.1 matt void
1981 1.1 matt pmap_unwire(pmap_t pm, vaddr_t va)
1982 1.1 matt {
1983 1.1 matt struct pvo_entry *pvo;
1984 1.2 matt register_t msr;
1985 1.1 matt int s;
1986 1.1 matt
1987 1.1 matt s = splvm();
1988 1.1 matt msr = pmap_interrupts_off();
1989 1.1 matt
1990 1.1 matt pvo = pmap_pvo_find_va(pm, va, NULL);
1991 1.1 matt if (pvo != NULL) {
1992 1.1 matt if (pvo->pvo_vaddr & PVO_WIRED) {
1993 1.1 matt pvo->pvo_vaddr &= ~PVO_WIRED;
1994 1.1 matt pm->pm_stats.wired_count--;
1995 1.1 matt }
1996 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1997 1.1 matt }
1998 1.1 matt
1999 1.1 matt pmap_interrupts_restore(msr);
2000 1.1 matt splx(s);
2001 1.1 matt }
2002 1.1 matt
2003 1.1 matt /*
2004 1.1 matt * Lower the protection on the specified physical page.
2005 1.1 matt *
2006 1.1 matt * There are only two cases: either the protection is going to 0,
2007 1.1 matt * or it is going to read-only.
2008 1.1 matt */
2009 1.1 matt void
2010 1.1 matt pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2011 1.1 matt {
2012 1.1 matt struct pvo_head *pvo_head;
2013 1.1 matt struct pvo_entry *pvo, *next_pvo;
2014 1.2 matt volatile struct pte *pt;
2015 1.2 matt register_t msr;
2016 1.1 matt int s;
2017 1.1 matt
2018 1.1 matt /*
2019 1.1 matt * Since this routine only downgrades protection, if the
2020 1.1 matt * maximal protection is desired, there isn't any change
2021 1.1 matt * to be made.
2022 1.1 matt */
2023 1.1 matt KASSERT((prot & VM_PROT_WRITE) == 0);
2024 1.1 matt if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE))
2025 1.1 matt return;
2026 1.1 matt
2027 1.1 matt s = splvm();
2028 1.1 matt msr = pmap_interrupts_off();
2029 1.1 matt
2030 1.1 matt /*
2031 1.1 matt * When UVM reuses a page, it does a pmap_page_protect with
2032 1.1 matt * VM_PROT_NONE. At that point, we can clear the exec flag
2033 1.1 matt * since we know the page will have different contents.
2034 1.1 matt */
2035 1.1 matt if ((prot & VM_PROT_READ) == 0) {
2036 1.1 matt DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2037 1.1 matt pg->phys_addr));
2038 1.1 matt if (pmap_attr_fetch(pg) & PTE_EXEC) {
2039 1.1 matt PMAPCOUNT(exec_uncached_page_protect);
2040 1.1 matt pmap_attr_clear(pg, PTE_EXEC);
2041 1.1 matt }
2042 1.1 matt }
2043 1.1 matt
2044 1.1 matt pvo_head = vm_page_to_pvoh(pg);
2045 1.1 matt for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2046 1.1 matt next_pvo = LIST_NEXT(pvo, pvo_vlink);
2047 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2048 1.1 matt
2049 1.1 matt /*
2050 1.1 matt * Downgrading to no mapping at all, we just remove the entry.
2051 1.1 matt */
2052 1.1 matt if ((prot & VM_PROT_READ) == 0) {
2053 1.1 matt pmap_pvo_remove(pvo, -1);
2054 1.1 matt continue;
2055 1.1 matt }
2056 1.1 matt
2057 1.1 matt /*
2058 1.1 matt * If EXEC permission is being revoked, just clear the
2059 1.1 matt * flag in the PVO.
2060 1.1 matt */
2061 1.1 matt if ((prot & VM_PROT_EXECUTE) == 0)
2062 1.1 matt pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
2063 1.1 matt
2064 1.1 matt /*
2065 1.1 matt * If this entry is already RO, don't diddle with the
2066 1.1 matt * page table.
2067 1.1 matt */
2068 1.1 matt if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2069 1.1 matt PMAP_PVO_CHECK(pvo);
2070 1.1 matt continue;
2071 1.1 matt }
2072 1.1 matt
2073 1.1 matt /*
2074 1.1 matt * Grab the PTE before the we diddle the bits so
2075 1.1 matt * pvo_to_pte can verify the pte contents are as
2076 1.1 matt * expected.
2077 1.1 matt */
2078 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2079 1.1 matt pvo->pvo_pte.pte_lo &= ~PTE_PP;
2080 1.1 matt pvo->pvo_pte.pte_lo |= PTE_BR;
2081 1.1 matt if (pt != NULL) {
2082 1.1 matt pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2083 1.12 matt PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2084 1.1 matt PMAPCOUNT(ptes_changed);
2085 1.1 matt }
2086 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2087 1.1 matt }
2088 1.1 matt
2089 1.1 matt pmap_interrupts_restore(msr);
2090 1.1 matt splx(s);
2091 1.1 matt }
2092 1.1 matt
2093 1.1 matt /*
2094 1.1 matt * Activate the address space for the specified process. If the process
2095 1.1 matt * is the current process, load the new MMU context.
2096 1.1 matt */
2097 1.1 matt void
2098 1.1 matt pmap_activate(struct lwp *l)
2099 1.1 matt {
2100 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
2101 1.1 matt pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2102 1.1 matt
2103 1.1 matt DPRINTFN(ACTIVATE,
2104 1.1 matt ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2105 1.1 matt
2106 1.1 matt /*
2107 1.1 matt * XXX Normally performed in cpu_fork().
2108 1.1 matt */
2109 1.13 matt pcb->pcb_pm = pmap;
2110 1.1 matt }
2111 1.1 matt
2112 1.1 matt /*
2113 1.1 matt * Deactivate the specified process's address space.
2114 1.1 matt */
2115 1.1 matt void
2116 1.1 matt pmap_deactivate(struct lwp *l)
2117 1.1 matt {
2118 1.1 matt }
2119 1.1 matt
2120 1.1 matt boolean_t
2121 1.1 matt pmap_query_bit(struct vm_page *pg, int ptebit)
2122 1.1 matt {
2123 1.1 matt struct pvo_entry *pvo;
2124 1.2 matt volatile struct pte *pt;
2125 1.2 matt register_t msr;
2126 1.1 matt int s;
2127 1.1 matt
2128 1.1 matt if (pmap_attr_fetch(pg) & ptebit)
2129 1.1 matt return TRUE;
2130 1.1 matt s = splvm();
2131 1.1 matt msr = pmap_interrupts_off();
2132 1.1 matt LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2133 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2134 1.1 matt /*
2135 1.1 matt * See if we saved the bit off. If so cache, it and return
2136 1.1 matt * success.
2137 1.1 matt */
2138 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit) {
2139 1.1 matt pmap_attr_save(pg, ptebit);
2140 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2141 1.1 matt pmap_interrupts_restore(msr);
2142 1.1 matt splx(s);
2143 1.1 matt return TRUE;
2144 1.1 matt }
2145 1.1 matt }
2146 1.1 matt /*
2147 1.1 matt * No luck, now go thru the hard part of looking at the ptes
2148 1.1 matt * themselves. Sync so any pending REF/CHG bits are flushed
2149 1.1 matt * to the PTEs.
2150 1.1 matt */
2151 1.1 matt SYNC();
2152 1.1 matt LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2153 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2154 1.1 matt /*
2155 1.1 matt * See if this pvo have a valid PTE. If so, fetch the
2156 1.1 matt * REF/CHG bits from the valid PTE. If the appropriate
2157 1.1 matt * ptebit is set, cache, it and return success.
2158 1.1 matt */
2159 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2160 1.1 matt if (pt != NULL) {
2161 1.1 matt pmap_pte_synch(pt, &pvo->pvo_pte);
2162 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit) {
2163 1.1 matt pmap_attr_save(pg, ptebit);
2164 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2165 1.1 matt pmap_interrupts_restore(msr);
2166 1.1 matt splx(s);
2167 1.1 matt return TRUE;
2168 1.1 matt }
2169 1.1 matt }
2170 1.1 matt }
2171 1.1 matt pmap_interrupts_restore(msr);
2172 1.1 matt splx(s);
2173 1.1 matt return FALSE;
2174 1.1 matt }
2175 1.1 matt
2176 1.1 matt boolean_t
2177 1.1 matt pmap_clear_bit(struct vm_page *pg, int ptebit)
2178 1.1 matt {
2179 1.1 matt struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2180 1.1 matt struct pvo_entry *pvo;
2181 1.2 matt volatile struct pte *pt;
2182 1.2 matt register_t msr;
2183 1.1 matt int rv = 0;
2184 1.1 matt int s;
2185 1.1 matt
2186 1.1 matt s = splvm();
2187 1.1 matt msr = pmap_interrupts_off();
2188 1.1 matt
2189 1.1 matt /*
2190 1.1 matt * Fetch the cache value
2191 1.1 matt */
2192 1.1 matt rv |= pmap_attr_fetch(pg);
2193 1.1 matt
2194 1.1 matt /*
2195 1.1 matt * Clear the cached value.
2196 1.1 matt */
2197 1.1 matt pmap_attr_clear(pg, ptebit);
2198 1.1 matt
2199 1.1 matt /*
2200 1.1 matt * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2201 1.1 matt * can reset the right ones). Note that since the pvo entries and
2202 1.1 matt * list heads are accessed via BAT0 and are never placed in the
2203 1.1 matt * page table, we don't have to worry about further accesses setting
2204 1.1 matt * the REF/CHG bits.
2205 1.1 matt */
2206 1.1 matt SYNC();
2207 1.1 matt
2208 1.1 matt /*
2209 1.1 matt * For each pvo entry, clear pvo's ptebit. If this pvo have a
2210 1.1 matt * valid PTE. If so, clear the ptebit from the valid PTE.
2211 1.1 matt */
2212 1.1 matt LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2213 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2214 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2215 1.1 matt if (pt != NULL) {
2216 1.1 matt /*
2217 1.1 matt * Only sync the PTE if the bit we are looking
2218 1.1 matt * for is not already set.
2219 1.1 matt */
2220 1.1 matt if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2221 1.1 matt pmap_pte_synch(pt, &pvo->pvo_pte);
2222 1.1 matt /*
2223 1.1 matt * If the bit we are looking for was already set,
2224 1.1 matt * clear that bit in the pte.
2225 1.1 matt */
2226 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit)
2227 1.1 matt pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2228 1.1 matt }
2229 1.1 matt rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2230 1.1 matt pvo->pvo_pte.pte_lo &= ~ptebit;
2231 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2232 1.1 matt }
2233 1.1 matt pmap_interrupts_restore(msr);
2234 1.1 matt splx(s);
2235 1.1 matt /*
2236 1.1 matt * If we are clearing the modify bit and this page was marked EXEC
2237 1.1 matt * and the user of the page thinks the page was modified, then we
2238 1.1 matt * need to clean it from the icache if it's mapped or clear the EXEC
2239 1.1 matt * bit if it's not mapped. The page itself might not have the CHG
2240 1.1 matt * bit set if the modification was done via DMA to the page.
2241 1.1 matt */
2242 1.1 matt if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2243 1.1 matt if (LIST_EMPTY(pvoh)) {
2244 1.1 matt DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2245 1.1 matt pg->phys_addr));
2246 1.1 matt pmap_attr_clear(pg, PTE_EXEC);
2247 1.1 matt PMAPCOUNT(exec_uncached_clear_modify);
2248 1.1 matt } else {
2249 1.1 matt DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2250 1.1 matt pg->phys_addr));
2251 1.6 thorpej pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2252 1.1 matt PMAPCOUNT(exec_synced_clear_modify);
2253 1.1 matt }
2254 1.1 matt }
2255 1.1 matt return (rv & ptebit) != 0;
2256 1.1 matt }
2257 1.1 matt
2258 1.1 matt void
2259 1.1 matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2260 1.1 matt {
2261 1.1 matt struct pvo_entry *pvo;
2262 1.1 matt size_t offset = va & ADDR_POFF;
2263 1.1 matt int s;
2264 1.1 matt
2265 1.1 matt s = splvm();
2266 1.1 matt while (len > 0) {
2267 1.6 thorpej size_t seglen = PAGE_SIZE - offset;
2268 1.1 matt if (seglen > len)
2269 1.1 matt seglen = len;
2270 1.1 matt pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2271 1.1 matt if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2272 1.1 matt pmap_syncicache(
2273 1.1 matt (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2274 1.1 matt PMAP_PVO_CHECK(pvo);
2275 1.1 matt }
2276 1.1 matt va += seglen;
2277 1.1 matt len -= seglen;
2278 1.1 matt offset = 0;
2279 1.1 matt }
2280 1.1 matt splx(s);
2281 1.1 matt }
2282 1.1 matt
2283 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2284 1.1 matt void
2285 1.2 matt pmap_pte_print(volatile struct pte *pt)
2286 1.1 matt {
2287 1.1 matt printf("PTE %p: ", pt);
2288 1.1 matt /* High word: */
2289 1.2 matt printf("0x%08lx: [", pt->pte_hi);
2290 1.1 matt printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2291 1.1 matt printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2292 1.2 matt printf("0x%06lx 0x%02lx",
2293 1.1 matt (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2294 1.1 matt pt->pte_hi & PTE_API);
2295 1.1 matt printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2296 1.1 matt /* Low word: */
2297 1.2 matt printf(" 0x%08lx: [", pt->pte_lo);
2298 1.2 matt printf("0x%05lx... ", pt->pte_lo >> 12);
2299 1.1 matt printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2300 1.1 matt printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2301 1.1 matt printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2302 1.1 matt printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2303 1.1 matt printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2304 1.1 matt printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2305 1.1 matt switch (pt->pte_lo & PTE_PP) {
2306 1.1 matt case PTE_BR: printf("br]\n"); break;
2307 1.1 matt case PTE_BW: printf("bw]\n"); break;
2308 1.1 matt case PTE_SO: printf("so]\n"); break;
2309 1.1 matt case PTE_SW: printf("sw]\n"); break;
2310 1.1 matt }
2311 1.1 matt }
2312 1.1 matt #endif
2313 1.1 matt
2314 1.1 matt #if defined(DDB)
2315 1.1 matt void
2316 1.1 matt pmap_pteg_check(void)
2317 1.1 matt {
2318 1.2 matt volatile struct pte *pt;
2319 1.1 matt int i;
2320 1.1 matt int ptegidx;
2321 1.1 matt u_int p_valid = 0;
2322 1.1 matt u_int s_valid = 0;
2323 1.1 matt u_int invalid = 0;
2324 1.1 matt
2325 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2326 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2327 1.1 matt if (pt->pte_hi & PTE_VALID) {
2328 1.1 matt if (pt->pte_hi & PTE_HID)
2329 1.1 matt s_valid++;
2330 1.1 matt else
2331 1.1 matt p_valid++;
2332 1.1 matt } else
2333 1.1 matt invalid++;
2334 1.1 matt }
2335 1.1 matt }
2336 1.1 matt printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2337 1.1 matt p_valid, p_valid, s_valid, s_valid,
2338 1.1 matt invalid, invalid);
2339 1.1 matt }
2340 1.1 matt
2341 1.1 matt void
2342 1.1 matt pmap_print_mmuregs(void)
2343 1.1 matt {
2344 1.1 matt int i;
2345 1.1 matt u_int cpuvers;
2346 1.1 matt vaddr_t addr;
2347 1.2 matt register_t soft_sr[16];
2348 1.1 matt struct bat soft_ibat[4];
2349 1.1 matt struct bat soft_dbat[4];
2350 1.2 matt register_t sdr1;
2351 1.1 matt
2352 1.1 matt cpuvers = MFPVR() >> 16;
2353 1.1 matt
2354 1.1 matt __asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2355 1.1 matt for (i=0; i<16; i++) {
2356 1.1 matt soft_sr[i] = MFSRIN(addr);
2357 1.1 matt addr += (1 << ADDR_SR_SHFT);
2358 1.1 matt }
2359 1.1 matt
2360 1.1 matt /* read iBAT (601: uBAT) registers */
2361 1.1 matt __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2362 1.1 matt __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2363 1.1 matt __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2364 1.1 matt __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2365 1.1 matt __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2366 1.1 matt __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2367 1.1 matt __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2368 1.1 matt __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2369 1.1 matt
2370 1.1 matt
2371 1.1 matt if (cpuvers != MPC601) {
2372 1.1 matt /* read dBAT registers */
2373 1.1 matt __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2374 1.1 matt __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2375 1.1 matt __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2376 1.1 matt __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2377 1.1 matt __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2378 1.1 matt __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2379 1.1 matt __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2380 1.1 matt __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2381 1.1 matt }
2382 1.1 matt
2383 1.2 matt printf("SDR1:\t%#lx\n", sdr1);
2384 1.1 matt printf("SR[]:\t");
2385 1.1 matt addr = 0;
2386 1.1 matt for (i=0; i<4; i++)
2387 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2388 1.1 matt printf("\n\t");
2389 1.1 matt for ( ; i<8; i++)
2390 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2391 1.1 matt printf("\n\t");
2392 1.1 matt for ( ; i<12; i++)
2393 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2394 1.1 matt printf("\n\t");
2395 1.1 matt for ( ; i<16; i++)
2396 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2397 1.1 matt printf("\n");
2398 1.1 matt
2399 1.1 matt printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2400 1.1 matt for (i=0; i<4; i++) {
2401 1.2 matt printf("0x%08lx 0x%08lx, ",
2402 1.1 matt soft_ibat[i].batu, soft_ibat[i].batl);
2403 1.1 matt if (i == 1)
2404 1.1 matt printf("\n\t");
2405 1.1 matt }
2406 1.1 matt if (cpuvers != MPC601) {
2407 1.1 matt printf("\ndBAT[]:\t");
2408 1.1 matt for (i=0; i<4; i++) {
2409 1.2 matt printf("0x%08lx 0x%08lx, ",
2410 1.1 matt soft_dbat[i].batu, soft_dbat[i].batl);
2411 1.1 matt if (i == 1)
2412 1.1 matt printf("\n\t");
2413 1.1 matt }
2414 1.1 matt }
2415 1.1 matt printf("\n");
2416 1.1 matt }
2417 1.1 matt
2418 1.1 matt void
2419 1.1 matt pmap_print_pte(pmap_t pm, vaddr_t va)
2420 1.1 matt {
2421 1.1 matt struct pvo_entry *pvo;
2422 1.2 matt volatile struct pte *pt;
2423 1.1 matt int pteidx;
2424 1.1 matt
2425 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
2426 1.1 matt if (pvo != NULL) {
2427 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
2428 1.1 matt if (pt != NULL) {
2429 1.2 matt printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2430 1.1 matt va, pt,
2431 1.1 matt pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2432 1.1 matt pt->pte_hi, pt->pte_lo);
2433 1.1 matt } else {
2434 1.1 matt printf("No valid PTE found\n");
2435 1.1 matt }
2436 1.1 matt } else {
2437 1.1 matt printf("Address not in pmap\n");
2438 1.1 matt }
2439 1.1 matt }
2440 1.1 matt
2441 1.1 matt void
2442 1.1 matt pmap_pteg_dist(void)
2443 1.1 matt {
2444 1.1 matt struct pvo_entry *pvo;
2445 1.1 matt int ptegidx;
2446 1.1 matt int depth;
2447 1.1 matt int max_depth = 0;
2448 1.1 matt unsigned int depths[64];
2449 1.1 matt
2450 1.1 matt memset(depths, 0, sizeof(depths));
2451 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2452 1.1 matt depth = 0;
2453 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2454 1.1 matt depth++;
2455 1.1 matt }
2456 1.1 matt if (depth > max_depth)
2457 1.1 matt max_depth = depth;
2458 1.1 matt if (depth > 63)
2459 1.1 matt depth = 63;
2460 1.1 matt depths[depth]++;
2461 1.1 matt }
2462 1.1 matt
2463 1.1 matt for (depth = 0; depth < 64; depth++) {
2464 1.1 matt printf(" [%2d]: %8u", depth, depths[depth]);
2465 1.1 matt if ((depth & 3) == 3)
2466 1.1 matt printf("\n");
2467 1.1 matt if (depth == max_depth)
2468 1.1 matt break;
2469 1.1 matt }
2470 1.1 matt if ((depth & 3) != 3)
2471 1.1 matt printf("\n");
2472 1.1 matt printf("Max depth found was %d\n", max_depth);
2473 1.1 matt }
2474 1.1 matt #endif /* DEBUG */
2475 1.1 matt
2476 1.1 matt #if defined(PMAPCHECK) || defined(DEBUG)
2477 1.1 matt void
2478 1.1 matt pmap_pvo_verify(void)
2479 1.1 matt {
2480 1.1 matt int ptegidx;
2481 1.1 matt int s;
2482 1.1 matt
2483 1.1 matt s = splvm();
2484 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2485 1.1 matt struct pvo_entry *pvo;
2486 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2487 1.1 matt if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2488 1.1 matt panic("pmap_pvo_verify: invalid pvo %p "
2489 1.1 matt "on list %#x", pvo, ptegidx);
2490 1.1 matt pmap_pvo_check(pvo);
2491 1.1 matt }
2492 1.1 matt }
2493 1.1 matt splx(s);
2494 1.1 matt }
2495 1.1 matt #endif /* PMAPCHECK */
2496 1.1 matt
2497 1.1 matt
2498 1.1 matt void *
2499 1.1 matt pmap_pool_ualloc(struct pool *pp, int flags)
2500 1.1 matt {
2501 1.1 matt struct pvo_page *pvop;
2502 1.1 matt
2503 1.1 matt pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2504 1.1 matt if (pvop != NULL) {
2505 1.1 matt pmap_upvop_free--;
2506 1.1 matt SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2507 1.1 matt return pvop;
2508 1.1 matt }
2509 1.1 matt if (uvm.page_init_done != TRUE) {
2510 1.1 matt return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2511 1.1 matt }
2512 1.1 matt return pmap_pool_malloc(pp, flags);
2513 1.1 matt }
2514 1.1 matt
2515 1.1 matt void *
2516 1.1 matt pmap_pool_malloc(struct pool *pp, int flags)
2517 1.1 matt {
2518 1.1 matt struct pvo_page *pvop;
2519 1.1 matt struct vm_page *pg;
2520 1.1 matt
2521 1.1 matt pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2522 1.1 matt if (pvop != NULL) {
2523 1.1 matt pmap_mpvop_free--;
2524 1.1 matt SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2525 1.1 matt return pvop;
2526 1.1 matt }
2527 1.1 matt again:
2528 1.1 matt pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2529 1.1 matt UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2530 1.1 matt if (__predict_false(pg == NULL)) {
2531 1.1 matt if (flags & PR_WAITOK) {
2532 1.1 matt uvm_wait("plpg");
2533 1.1 matt goto again;
2534 1.1 matt } else {
2535 1.1 matt return (0);
2536 1.1 matt }
2537 1.1 matt }
2538 1.1 matt return (void *) VM_PAGE_TO_PHYS(pg);
2539 1.1 matt }
2540 1.1 matt
2541 1.1 matt void
2542 1.1 matt pmap_pool_ufree(struct pool *pp, void *va)
2543 1.1 matt {
2544 1.1 matt struct pvo_page *pvop;
2545 1.1 matt #if 0
2546 1.1 matt if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2547 1.1 matt pmap_pool_mfree(va, size, tag);
2548 1.1 matt return;
2549 1.1 matt }
2550 1.1 matt #endif
2551 1.1 matt pvop = va;
2552 1.1 matt SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2553 1.1 matt pmap_upvop_free++;
2554 1.1 matt if (pmap_upvop_free > pmap_upvop_maxfree)
2555 1.1 matt pmap_upvop_maxfree = pmap_upvop_free;
2556 1.1 matt }
2557 1.1 matt
2558 1.1 matt void
2559 1.1 matt pmap_pool_mfree(struct pool *pp, void *va)
2560 1.1 matt {
2561 1.1 matt struct pvo_page *pvop;
2562 1.1 matt
2563 1.1 matt pvop = va;
2564 1.1 matt SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2565 1.1 matt pmap_mpvop_free++;
2566 1.1 matt if (pmap_mpvop_free > pmap_mpvop_maxfree)
2567 1.1 matt pmap_mpvop_maxfree = pmap_mpvop_free;
2568 1.1 matt #if 0
2569 1.1 matt uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2570 1.1 matt #endif
2571 1.1 matt }
2572 1.1 matt
2573 1.1 matt /*
2574 1.1 matt * This routine in bootstraping to steal to-be-managed memory (which will
2575 1.1 matt * then be unmanaged). We use it to grab from the first 256MB for our
2576 1.1 matt * pmap needs and above 256MB for other stuff.
2577 1.1 matt */
2578 1.1 matt vaddr_t
2579 1.10 thorpej pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2580 1.1 matt {
2581 1.1 matt vsize_t size;
2582 1.1 matt vaddr_t va;
2583 1.1 matt paddr_t pa = 0;
2584 1.1 matt int npgs, bank;
2585 1.1 matt struct vm_physseg *ps;
2586 1.1 matt
2587 1.1 matt if (uvm.page_init_done == TRUE)
2588 1.1 matt panic("pmap_steal_memory: called _after_ bootstrap");
2589 1.1 matt
2590 1.10 thorpej *vstartp = VM_MIN_KERNEL_ADDRESS;
2591 1.10 thorpej *vendp = VM_MAX_KERNEL_ADDRESS;
2592 1.10 thorpej
2593 1.1 matt size = round_page(vsize);
2594 1.1 matt npgs = atop(size);
2595 1.1 matt
2596 1.1 matt /*
2597 1.1 matt * PA 0 will never be among those given to UVM so we can use it
2598 1.1 matt * to indicate we couldn't steal any memory.
2599 1.1 matt */
2600 1.1 matt for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2601 1.1 matt if (ps->free_list == VM_FREELIST_FIRST256 &&
2602 1.1 matt ps->avail_end - ps->avail_start >= npgs) {
2603 1.1 matt pa = ptoa(ps->avail_start);
2604 1.1 matt break;
2605 1.1 matt }
2606 1.1 matt }
2607 1.1 matt
2608 1.1 matt if (pa == 0)
2609 1.1 matt panic("pmap_steal_memory: no approriate memory to steal!");
2610 1.1 matt
2611 1.1 matt ps->avail_start += npgs;
2612 1.1 matt ps->start += npgs;
2613 1.1 matt
2614 1.1 matt /*
2615 1.1 matt * If we've used up all the pages in the segment, remove it and
2616 1.1 matt * compact the list.
2617 1.1 matt */
2618 1.1 matt if (ps->avail_start == ps->end) {
2619 1.1 matt /*
2620 1.1 matt * If this was the last one, then a very bad thing has occurred
2621 1.1 matt */
2622 1.1 matt if (--vm_nphysseg == 0)
2623 1.1 matt panic("pmap_steal_memory: out of memory!");
2624 1.1 matt
2625 1.1 matt printf("pmap_steal_memory: consumed bank %d\n", bank);
2626 1.1 matt for (; bank < vm_nphysseg; bank++, ps++) {
2627 1.1 matt ps[0] = ps[1];
2628 1.1 matt }
2629 1.1 matt }
2630 1.1 matt
2631 1.1 matt va = (vaddr_t) pa;
2632 1.1 matt memset((caddr_t) va, 0, size);
2633 1.1 matt pmap_pages_stolen += npgs;
2634 1.1 matt #ifdef DEBUG
2635 1.1 matt if (pmapdebug && npgs > 1) {
2636 1.1 matt u_int cnt = 0;
2637 1.1 matt for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2638 1.1 matt cnt += ps->avail_end - ps->avail_start;
2639 1.1 matt printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2640 1.1 matt npgs, pmap_pages_stolen, cnt);
2641 1.1 matt }
2642 1.1 matt #endif
2643 1.1 matt
2644 1.1 matt return va;
2645 1.1 matt }
2646 1.1 matt
2647 1.1 matt /*
2648 1.1 matt * Find a chuck of memory with right size and alignment.
2649 1.1 matt */
2650 1.1 matt void *
2651 1.1 matt pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2652 1.1 matt {
2653 1.1 matt struct mem_region *mp;
2654 1.1 matt paddr_t s, e;
2655 1.1 matt int i, j;
2656 1.1 matt
2657 1.1 matt size = round_page(size);
2658 1.1 matt
2659 1.1 matt DPRINTFN(BOOT,
2660 1.1 matt ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2661 1.1 matt size, alignment, at_end));
2662 1.1 matt
2663 1.6 thorpej if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2664 1.1 matt panic("pmap_boot_find_memory: invalid alignment %lx",
2665 1.1 matt alignment);
2666 1.1 matt
2667 1.1 matt if (at_end) {
2668 1.6 thorpej if (alignment != PAGE_SIZE)
2669 1.1 matt panic("pmap_boot_find_memory: invalid ending "
2670 1.1 matt "alignment %lx", alignment);
2671 1.1 matt
2672 1.1 matt for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2673 1.1 matt s = mp->start + mp->size - size;
2674 1.1 matt if (s >= mp->start && mp->size >= size) {
2675 1.1 matt DPRINTFN(BOOT,(": %lx\n", s));
2676 1.1 matt DPRINTFN(BOOT,
2677 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2678 1.1 matt "0x%lx size 0x%lx\n", mp - avail,
2679 1.1 matt mp->start, mp->size));
2680 1.1 matt mp->size -= size;
2681 1.1 matt DPRINTFN(BOOT,
2682 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2683 1.1 matt "0x%lx size 0x%lx\n", mp - avail,
2684 1.1 matt mp->start, mp->size));
2685 1.1 matt return (void *) s;
2686 1.1 matt }
2687 1.1 matt }
2688 1.1 matt panic("pmap_boot_find_memory: no available memory");
2689 1.1 matt }
2690 1.1 matt
2691 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2692 1.1 matt s = (mp->start + alignment - 1) & ~(alignment-1);
2693 1.1 matt e = s + size;
2694 1.1 matt
2695 1.1 matt /*
2696 1.1 matt * Is the calculated region entirely within the region?
2697 1.1 matt */
2698 1.1 matt if (s < mp->start || e > mp->start + mp->size)
2699 1.1 matt continue;
2700 1.1 matt
2701 1.1 matt DPRINTFN(BOOT,(": %lx\n", s));
2702 1.1 matt if (s == mp->start) {
2703 1.1 matt /*
2704 1.1 matt * If the block starts at the beginning of region,
2705 1.1 matt * adjust the size & start. (the region may now be
2706 1.1 matt * zero in length)
2707 1.1 matt */
2708 1.1 matt DPRINTFN(BOOT,
2709 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2710 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2711 1.1 matt mp->start += size;
2712 1.1 matt mp->size -= size;
2713 1.1 matt DPRINTFN(BOOT,
2714 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2715 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2716 1.1 matt } else if (e == mp->start + mp->size) {
2717 1.1 matt /*
2718 1.1 matt * If the block starts at the beginning of region,
2719 1.1 matt * adjust only the size.
2720 1.1 matt */
2721 1.1 matt DPRINTFN(BOOT,
2722 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2723 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2724 1.1 matt mp->size -= size;
2725 1.1 matt DPRINTFN(BOOT,
2726 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2727 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2728 1.1 matt } else {
2729 1.1 matt /*
2730 1.1 matt * Block is in the middle of the region, so we
2731 1.1 matt * have to split it in two.
2732 1.1 matt */
2733 1.1 matt for (j = avail_cnt; j > i + 1; j--) {
2734 1.1 matt avail[j] = avail[j-1];
2735 1.1 matt }
2736 1.1 matt DPRINTFN(BOOT,
2737 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2738 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2739 1.1 matt mp[1].start = e;
2740 1.1 matt mp[1].size = mp[0].start + mp[0].size - e;
2741 1.1 matt mp[0].size = s - mp[0].start;
2742 1.1 matt avail_cnt++;
2743 1.1 matt for (; i < avail_cnt; i++) {
2744 1.1 matt DPRINTFN(BOOT,
2745 1.1 matt ("pmap_boot_find_memory: a-avail[%d] "
2746 1.1 matt "start 0x%lx size 0x%lx\n", i,
2747 1.1 matt avail[i].start, avail[i].size));
2748 1.1 matt }
2749 1.1 matt }
2750 1.1 matt return (void *) s;
2751 1.1 matt }
2752 1.1 matt panic("pmap_boot_find_memory: not enough memory for "
2753 1.1 matt "%lx/%lx allocation?", size, alignment);
2754 1.1 matt }
2755 1.1 matt
2756 1.1 matt /*
2757 1.1 matt * This is not part of the defined PMAP interface and is specific to the
2758 1.1 matt * PowerPC architecture. This is called during initppc, before the system
2759 1.1 matt * is really initialized.
2760 1.1 matt */
2761 1.1 matt void
2762 1.1 matt pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2763 1.1 matt {
2764 1.1 matt struct mem_region *mp, tmp;
2765 1.1 matt paddr_t s, e;
2766 1.1 matt psize_t size;
2767 1.1 matt int i, j;
2768 1.1 matt
2769 1.1 matt /*
2770 1.1 matt * Get memory.
2771 1.1 matt */
2772 1.1 matt mem_regions(&mem, &avail);
2773 1.1 matt #if defined(DEBUG)
2774 1.1 matt if (pmapdebug & PMAPDEBUG_BOOT) {
2775 1.1 matt printf("pmap_bootstrap: memory configuration:\n");
2776 1.1 matt for (mp = mem; mp->size; mp++) {
2777 1.1 matt printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2778 1.1 matt mp->start, mp->size);
2779 1.1 matt }
2780 1.1 matt for (mp = avail; mp->size; mp++) {
2781 1.1 matt printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2782 1.1 matt mp->start, mp->size);
2783 1.1 matt }
2784 1.1 matt }
2785 1.1 matt #endif
2786 1.1 matt
2787 1.1 matt /*
2788 1.1 matt * Find out how much physical memory we have and in how many chunks.
2789 1.1 matt */
2790 1.1 matt for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2791 1.1 matt if (mp->start >= pmap_memlimit)
2792 1.1 matt continue;
2793 1.1 matt if (mp->start + mp->size > pmap_memlimit) {
2794 1.1 matt size = pmap_memlimit - mp->start;
2795 1.1 matt physmem += btoc(size);
2796 1.1 matt } else {
2797 1.1 matt physmem += btoc(mp->size);
2798 1.1 matt }
2799 1.1 matt mem_cnt++;
2800 1.1 matt }
2801 1.1 matt
2802 1.1 matt /*
2803 1.1 matt * Count the number of available entries.
2804 1.1 matt */
2805 1.1 matt for (avail_cnt = 0, mp = avail; mp->size; mp++)
2806 1.1 matt avail_cnt++;
2807 1.1 matt
2808 1.1 matt /*
2809 1.1 matt * Page align all regions.
2810 1.1 matt */
2811 1.1 matt kernelstart = trunc_page(kernelstart);
2812 1.1 matt kernelend = round_page(kernelend);
2813 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2814 1.1 matt s = round_page(mp->start);
2815 1.1 matt mp->size -= (s - mp->start);
2816 1.1 matt mp->size = trunc_page(mp->size);
2817 1.1 matt mp->start = s;
2818 1.1 matt e = mp->start + mp->size;
2819 1.1 matt
2820 1.1 matt DPRINTFN(BOOT,
2821 1.1 matt ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2822 1.1 matt i, mp->start, mp->size));
2823 1.1 matt
2824 1.1 matt /*
2825 1.1 matt * Don't allow the end to run beyond our artificial limit
2826 1.1 matt */
2827 1.1 matt if (e > pmap_memlimit)
2828 1.1 matt e = pmap_memlimit;
2829 1.1 matt
2830 1.1 matt /*
2831 1.1 matt * Is this region empty or strange? skip it.
2832 1.1 matt */
2833 1.1 matt if (e <= s) {
2834 1.1 matt mp->start = 0;
2835 1.1 matt mp->size = 0;
2836 1.1 matt continue;
2837 1.1 matt }
2838 1.1 matt
2839 1.1 matt /*
2840 1.1 matt * Does this overlap the beginning of kernel?
2841 1.1 matt * Does extend past the end of the kernel?
2842 1.1 matt */
2843 1.1 matt else if (s < kernelstart && e > kernelstart) {
2844 1.1 matt if (e > kernelend) {
2845 1.1 matt avail[avail_cnt].start = kernelend;
2846 1.1 matt avail[avail_cnt].size = e - kernelend;
2847 1.1 matt avail_cnt++;
2848 1.1 matt }
2849 1.1 matt mp->size = kernelstart - s;
2850 1.1 matt }
2851 1.1 matt /*
2852 1.1 matt * Check whether this region overlaps the end of the kernel.
2853 1.1 matt */
2854 1.1 matt else if (s < kernelend && e > kernelend) {
2855 1.1 matt mp->start = kernelend;
2856 1.1 matt mp->size = e - kernelend;
2857 1.1 matt }
2858 1.1 matt /*
2859 1.1 matt * Look whether this regions is completely inside the kernel.
2860 1.1 matt * Nuke it if it does.
2861 1.1 matt */
2862 1.1 matt else if (s >= kernelstart && e <= kernelend) {
2863 1.1 matt mp->start = 0;
2864 1.1 matt mp->size = 0;
2865 1.1 matt }
2866 1.1 matt /*
2867 1.1 matt * If the user imposed a memory limit, enforce it.
2868 1.1 matt */
2869 1.1 matt else if (s >= pmap_memlimit) {
2870 1.6 thorpej mp->start = -PAGE_SIZE; /* let's know why */
2871 1.1 matt mp->size = 0;
2872 1.1 matt }
2873 1.1 matt else {
2874 1.1 matt mp->start = s;
2875 1.1 matt mp->size = e - s;
2876 1.1 matt }
2877 1.1 matt DPRINTFN(BOOT,
2878 1.1 matt ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
2879 1.1 matt i, mp->start, mp->size));
2880 1.1 matt }
2881 1.1 matt
2882 1.1 matt /*
2883 1.1 matt * Move (and uncount) all the null return to the end.
2884 1.1 matt */
2885 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2886 1.1 matt if (mp->size == 0) {
2887 1.1 matt tmp = avail[i];
2888 1.1 matt avail[i] = avail[--avail_cnt];
2889 1.1 matt avail[avail_cnt] = avail[i];
2890 1.1 matt }
2891 1.1 matt }
2892 1.1 matt
2893 1.1 matt /*
2894 1.1 matt * (Bubble)sort them into asecnding order.
2895 1.1 matt */
2896 1.1 matt for (i = 0; i < avail_cnt; i++) {
2897 1.1 matt for (j = i + 1; j < avail_cnt; j++) {
2898 1.1 matt if (avail[i].start > avail[j].start) {
2899 1.1 matt tmp = avail[i];
2900 1.1 matt avail[i] = avail[j];
2901 1.1 matt avail[j] = tmp;
2902 1.1 matt }
2903 1.1 matt }
2904 1.1 matt }
2905 1.1 matt
2906 1.1 matt /*
2907 1.1 matt * Make sure they don't overlap.
2908 1.1 matt */
2909 1.1 matt for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
2910 1.1 matt if (mp[0].start + mp[0].size > mp[1].start) {
2911 1.1 matt mp[0].size = mp[1].start - mp[0].start;
2912 1.1 matt }
2913 1.1 matt DPRINTFN(BOOT,
2914 1.1 matt ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2915 1.1 matt i, mp->start, mp->size));
2916 1.1 matt }
2917 1.1 matt DPRINTFN(BOOT,
2918 1.1 matt ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2919 1.1 matt i, mp->start, mp->size));
2920 1.1 matt
2921 1.1 matt #ifdef PTEGCOUNT
2922 1.1 matt pmap_pteg_cnt = PTEGCOUNT;
2923 1.1 matt #else /* PTEGCOUNT */
2924 1.1 matt pmap_pteg_cnt = 0x1000;
2925 1.1 matt
2926 1.1 matt while (pmap_pteg_cnt < physmem)
2927 1.1 matt pmap_pteg_cnt <<= 1;
2928 1.1 matt
2929 1.1 matt pmap_pteg_cnt >>= 1;
2930 1.1 matt #endif /* PTEGCOUNT */
2931 1.1 matt
2932 1.1 matt /*
2933 1.1 matt * Find suitably aligned memory for PTEG hash table.
2934 1.1 matt */
2935 1.2 matt size = pmap_pteg_cnt * sizeof(struct pteg);
2936 1.1 matt pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
2937 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2938 1.1 matt if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
2939 1.1 matt panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
2940 1.1 matt pmap_pteg_table, size);
2941 1.1 matt #endif
2942 1.1 matt
2943 1.2 matt memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
2944 1.1 matt pmap_pteg_mask = pmap_pteg_cnt - 1;
2945 1.1 matt
2946 1.1 matt /*
2947 1.1 matt * We cannot do pmap_steal_memory here since UVM hasn't been loaded
2948 1.1 matt * with pages. So we just steal them before giving them to UVM.
2949 1.1 matt */
2950 1.1 matt size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
2951 1.6 thorpej pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
2952 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2953 1.1 matt if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
2954 1.1 matt panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
2955 1.1 matt pmap_pvo_table, size);
2956 1.1 matt #endif
2957 1.1 matt
2958 1.1 matt for (i = 0; i < pmap_pteg_cnt; i++)
2959 1.1 matt TAILQ_INIT(&pmap_pvo_table[i]);
2960 1.1 matt
2961 1.1 matt #ifndef MSGBUFADDR
2962 1.1 matt /*
2963 1.1 matt * Allocate msgbuf in high memory.
2964 1.1 matt */
2965 1.6 thorpej msgbuf_paddr =
2966 1.6 thorpej (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
2967 1.1 matt #endif
2968 1.1 matt
2969 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
2970 1.1 matt {
2971 1.1 matt u_int npgs = 0;
2972 1.1 matt for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
2973 1.1 matt npgs += btoc(mp->size);
2974 1.1 matt size = (sizeof(struct pvo_head) + 1) * npgs;
2975 1.6 thorpej pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
2976 1.1 matt pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
2977 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2978 1.1 matt if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
2979 1.1 matt panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
2980 1.1 matt pmap_physseg.pvoh, size);
2981 1.1 matt #endif
2982 1.1 matt }
2983 1.1 matt #endif
2984 1.1 matt
2985 1.1 matt for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
2986 1.1 matt paddr_t pfstart = atop(mp->start);
2987 1.1 matt paddr_t pfend = atop(mp->start + mp->size);
2988 1.1 matt if (mp->size == 0)
2989 1.1 matt continue;
2990 1.1 matt if (mp->start + mp->size <= SEGMENT_LENGTH) {
2991 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
2992 1.1 matt VM_FREELIST_FIRST256);
2993 1.1 matt } else if (mp->start >= SEGMENT_LENGTH) {
2994 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
2995 1.1 matt VM_FREELIST_DEFAULT);
2996 1.1 matt } else {
2997 1.1 matt pfend = atop(SEGMENT_LENGTH);
2998 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
2999 1.1 matt VM_FREELIST_FIRST256);
3000 1.1 matt pfstart = atop(SEGMENT_LENGTH);
3001 1.1 matt pfend = atop(mp->start + mp->size);
3002 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3003 1.1 matt VM_FREELIST_DEFAULT);
3004 1.1 matt }
3005 1.1 matt }
3006 1.1 matt
3007 1.1 matt /*
3008 1.1 matt * Make sure kernel vsid is allocated as well as VSID 0.
3009 1.1 matt */
3010 1.1 matt pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3011 1.1 matt |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3012 1.1 matt pmap_vsid_bitmap[0] |= 1;
3013 1.1 matt
3014 1.1 matt /*
3015 1.1 matt * Initialize kernel pmap and hardware.
3016 1.1 matt */
3017 1.1 matt for (i = 0; i < 16; i++) {
3018 1.1 matt pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3019 1.1 matt __asm __volatile ("mtsrin %0,%1"
3020 1.1 matt :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3021 1.1 matt }
3022 1.1 matt
3023 1.1 matt pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3024 1.1 matt __asm __volatile ("mtsr %0,%1"
3025 1.1 matt :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3026 1.1 matt #ifdef KERNEL2_SR
3027 1.1 matt pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3028 1.1 matt __asm __volatile ("mtsr %0,%1"
3029 1.1 matt :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3030 1.1 matt #endif
3031 1.1 matt for (i = 0; i < 16; i++) {
3032 1.1 matt if (iosrtable[i] & SR601_T) {
3033 1.1 matt pmap_kernel()->pm_sr[i] = iosrtable[i];
3034 1.1 matt __asm __volatile ("mtsrin %0,%1"
3035 1.1 matt :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3036 1.1 matt }
3037 1.1 matt }
3038 1.1 matt
3039 1.1 matt __asm __volatile ("sync; mtsdr1 %0; isync"
3040 1.2 matt :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3041 1.1 matt tlbia();
3042 1.1 matt
3043 1.1 matt #ifdef ALTIVEC
3044 1.1 matt pmap_use_altivec = cpu_altivec;
3045 1.1 matt #endif
3046 1.1 matt
3047 1.1 matt #ifdef DEBUG
3048 1.1 matt if (pmapdebug & PMAPDEBUG_BOOT) {
3049 1.1 matt u_int cnt;
3050 1.1 matt int bank;
3051 1.1 matt char pbuf[9];
3052 1.1 matt for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3053 1.1 matt cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3054 1.1 matt printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3055 1.1 matt bank,
3056 1.1 matt ptoa(vm_physmem[bank].avail_start),
3057 1.1 matt ptoa(vm_physmem[bank].avail_end),
3058 1.1 matt ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3059 1.1 matt }
3060 1.1 matt format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3061 1.1 matt printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3062 1.1 matt pbuf, cnt);
3063 1.1 matt }
3064 1.1 matt #endif
3065 1.1 matt
3066 1.1 matt pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3067 1.1 matt sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3068 1.1 matt &pmap_pool_uallocator);
3069 1.1 matt
3070 1.1 matt pool_setlowat(&pmap_upvo_pool, 252);
3071 1.1 matt
3072 1.1 matt pool_init(&pmap_pool, sizeof(struct pmap),
3073 1.1 matt sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3074 1.1 matt }
3075