Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.14
      1  1.14      chs /*	$NetBSD: pmap.c,v 1.14 2003/08/24 17:52:35 chs Exp $	*/
      2   1.1     matt /*-
      3   1.1     matt  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4   1.1     matt  * All rights reserved.
      5   1.1     matt  *
      6   1.1     matt  * This code is derived from software contributed to The NetBSD Foundation
      7   1.1     matt  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8   1.1     matt  *
      9   1.1     matt  * Redistribution and use in source and binary forms, with or without
     10   1.1     matt  * modification, are permitted provided that the following conditions
     11   1.1     matt  * are met:
     12   1.1     matt  * 1. Redistributions of source code must retain the above copyright
     13   1.1     matt  *    notice, this list of conditions and the following disclaimer.
     14   1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     16   1.1     matt  *    documentation and/or other materials provided with the distribution.
     17   1.1     matt  * 3. All advertising materials mentioning features or use of this software
     18   1.1     matt  *    must display the following acknowledgement:
     19   1.1     matt  *        This product includes software developed by the NetBSD
     20   1.1     matt  *        Foundation, Inc. and its contributors.
     21   1.1     matt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22   1.1     matt  *    contributors may be used to endorse or promote products derived
     23   1.1     matt  *    from this software without specific prior written permission.
     24   1.1     matt  *
     25   1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26   1.1     matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27   1.1     matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28   1.1     matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29   1.1     matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30   1.1     matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31   1.1     matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32   1.1     matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33   1.1     matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34   1.1     matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35   1.1     matt  * POSSIBILITY OF SUCH DAMAGE.
     36   1.1     matt  */
     37   1.1     matt 
     38   1.1     matt /*
     39   1.1     matt  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40   1.1     matt  * Copyright (C) 1995, 1996 TooLs GmbH.
     41   1.1     matt  * All rights reserved.
     42   1.1     matt  *
     43   1.1     matt  * Redistribution and use in source and binary forms, with or without
     44   1.1     matt  * modification, are permitted provided that the following conditions
     45   1.1     matt  * are met:
     46   1.1     matt  * 1. Redistributions of source code must retain the above copyright
     47   1.1     matt  *    notice, this list of conditions and the following disclaimer.
     48   1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     50   1.1     matt  *    documentation and/or other materials provided with the distribution.
     51   1.1     matt  * 3. All advertising materials mentioning features or use of this software
     52   1.1     matt  *    must display the following acknowledgement:
     53   1.1     matt  *	This product includes software developed by TooLs GmbH.
     54   1.1     matt  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55   1.1     matt  *    derived from this software without specific prior written permission.
     56   1.1     matt  *
     57   1.1     matt  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58   1.1     matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59   1.1     matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60   1.1     matt  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61   1.1     matt  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62   1.1     matt  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63   1.1     matt  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64   1.1     matt  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65   1.1     matt  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66   1.1     matt  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67   1.1     matt  */
     68  1.11    lukem 
     69  1.11    lukem #include <sys/cdefs.h>
     70  1.14      chs __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.14 2003/08/24 17:52:35 chs Exp $");
     71   1.1     matt 
     72   1.1     matt #include "opt_altivec.h"
     73   1.1     matt #include "opt_pmap.h"
     74   1.1     matt #include <sys/param.h>
     75   1.1     matt #include <sys/malloc.h>
     76   1.1     matt #include <sys/proc.h>
     77   1.1     matt #include <sys/user.h>
     78   1.1     matt #include <sys/pool.h>
     79   1.1     matt #include <sys/queue.h>
     80   1.1     matt #include <sys/device.h>		/* for evcnt */
     81   1.1     matt #include <sys/systm.h>
     82   1.1     matt 
     83   1.1     matt #if __NetBSD_Version__ < 105010000
     84   1.1     matt #include <vm/vm.h>
     85   1.1     matt #include <vm/vm_kern.h>
     86   1.1     matt #define	splvm()		splimp()
     87   1.1     matt #endif
     88   1.1     matt 
     89   1.1     matt #include <uvm/uvm.h>
     90   1.1     matt 
     91   1.1     matt #include <machine/pcb.h>
     92   1.1     matt #include <machine/powerpc.h>
     93   1.1     matt #include <powerpc/spr.h>
     94   1.1     matt #include <powerpc/oea/sr_601.h>
     95   1.1     matt #if __NetBSD_Version__ > 105010000
     96   1.1     matt #include <powerpc/oea/bat.h>
     97   1.1     matt #else
     98   1.1     matt #include <powerpc/bat.h>
     99   1.1     matt #endif
    100   1.1     matt 
    101   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
    102   1.1     matt #define	STATIC
    103   1.1     matt #else
    104   1.1     matt #define	STATIC	static
    105   1.1     matt #endif
    106   1.1     matt 
    107   1.1     matt #ifdef ALTIVEC
    108   1.1     matt int pmap_use_altivec;
    109   1.1     matt #endif
    110   1.1     matt 
    111   1.2     matt volatile struct pteg *pmap_pteg_table;
    112   1.1     matt unsigned int pmap_pteg_cnt;
    113   1.1     matt unsigned int pmap_pteg_mask;
    114   1.6  thorpej paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115   1.1     matt 
    116   1.1     matt struct pmap kernel_pmap_;
    117   1.1     matt unsigned int pmap_pages_stolen;
    118   1.1     matt u_long pmap_pte_valid;
    119   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    120   1.1     matt u_long pmap_pvo_enter_depth;
    121   1.1     matt u_long pmap_pvo_remove_depth;
    122   1.1     matt #endif
    123   1.1     matt 
    124   1.1     matt int physmem;
    125   1.1     matt #ifndef MSGBUFADDR
    126   1.1     matt extern paddr_t msgbuf_paddr;
    127   1.1     matt #endif
    128   1.1     matt 
    129   1.1     matt static struct mem_region *mem, *avail;
    130   1.1     matt static u_int mem_cnt, avail_cnt;
    131   1.1     matt 
    132   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    133   1.1     matt /*
    134   1.1     matt  * This is a cache of referenced/modified bits.
    135   1.1     matt  * Bits herein are shifted by ATTRSHFT.
    136   1.1     matt  */
    137   1.1     matt #define	ATTR_SHFT	4
    138   1.1     matt struct pmap_physseg pmap_physseg;
    139   1.1     matt #endif
    140   1.1     matt 
    141   1.1     matt /*
    142   1.1     matt  * The following structure is exactly 32 bytes long (one cacheline).
    143   1.1     matt  */
    144   1.1     matt struct pvo_entry {
    145   1.1     matt 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    146   1.1     matt 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    147   1.1     matt 	struct pte pvo_pte;			/* Prebuilt PTE */
    148   1.1     matt 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    149   1.1     matt 	vaddr_t pvo_vaddr;			/* VA of entry */
    150   1.1     matt #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    151   1.1     matt #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    152   1.1     matt #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    153   1.1     matt #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    154   1.1     matt #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    155  1.12     matt #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    156  1.12     matt #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    157  1.12     matt #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    158  1.12     matt #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    159  1.12     matt #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    160  1.12     matt #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    161  1.12     matt #define	PVO_REMOVE		6		/* PVO has been removed */
    162  1.12     matt #define	PVO_WHERE_MASK		15
    163  1.12     matt #define	PVO_WHERE_SHFT		8
    164   1.1     matt };
    165   1.1     matt #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    166   1.1     matt #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    167   1.1     matt #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    168   1.1     matt #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    169   1.1     matt #define	PVO_PTEGIDX_CLR(pvo)	\
    170   1.1     matt 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    171   1.1     matt #define	PVO_PTEGIDX_SET(pvo,i)	\
    172   1.1     matt 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    173  1.12     matt #define	PVO_WHERE(pvo,w)	\
    174  1.12     matt 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    175  1.12     matt 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    176   1.1     matt 
    177   1.1     matt TAILQ_HEAD(pvo_tqhead, pvo_entry);
    178   1.1     matt struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    179   1.1     matt struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    180   1.1     matt struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    181   1.1     matt 
    182   1.1     matt struct pool pmap_pool;		/* pool for pmap structures */
    183   1.1     matt struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    184   1.1     matt struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    185   1.1     matt 
    186   1.1     matt /*
    187   1.1     matt  * We keep a cache of unmanaged pages to be used for pvo entries for
    188   1.1     matt  * unmanaged pages.
    189   1.1     matt  */
    190   1.1     matt struct pvo_page {
    191   1.1     matt 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    192   1.1     matt };
    193   1.1     matt SIMPLEQ_HEAD(pvop_head, pvo_page);
    194   1.1     matt struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    195   1.1     matt struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    196   1.1     matt u_long pmap_upvop_free;
    197   1.1     matt u_long pmap_upvop_maxfree;
    198   1.1     matt u_long pmap_mpvop_free;
    199   1.1     matt u_long pmap_mpvop_maxfree;
    200   1.1     matt 
    201   1.1     matt STATIC void *pmap_pool_ualloc(struct pool *, int);
    202   1.1     matt STATIC void *pmap_pool_malloc(struct pool *, int);
    203   1.1     matt 
    204   1.1     matt STATIC void pmap_pool_ufree(struct pool *, void *);
    205   1.1     matt STATIC void pmap_pool_mfree(struct pool *, void *);
    206   1.1     matt 
    207   1.1     matt static struct pool_allocator pmap_pool_mallocator = {
    208   1.1     matt 	pmap_pool_malloc, pmap_pool_mfree, 0,
    209   1.1     matt };
    210   1.1     matt 
    211   1.1     matt static struct pool_allocator pmap_pool_uallocator = {
    212   1.1     matt 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    213   1.1     matt };
    214   1.1     matt 
    215   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    216   1.2     matt void pmap_pte_print(volatile struct pte *);
    217   1.1     matt #endif
    218   1.1     matt 
    219   1.1     matt #ifdef DDB
    220   1.1     matt void pmap_pteg_check(void);
    221   1.1     matt void pmap_pteg_dist(void);
    222   1.1     matt void pmap_print_pte(pmap_t, vaddr_t);
    223   1.1     matt void pmap_print_mmuregs(void);
    224   1.1     matt #endif
    225   1.1     matt 
    226   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
    227   1.1     matt #ifdef PMAPCHECK
    228   1.1     matt int pmapcheck = 1;
    229   1.1     matt #else
    230   1.1     matt int pmapcheck = 0;
    231   1.1     matt #endif
    232   1.1     matt void pmap_pvo_verify(void);
    233   1.1     matt STATIC void pmap_pvo_check(const struct pvo_entry *);
    234   1.1     matt #define	PMAP_PVO_CHECK(pvo)	 		\
    235   1.1     matt 	do {					\
    236   1.1     matt 		if (pmapcheck)			\
    237   1.1     matt 			pmap_pvo_check(pvo);	\
    238   1.1     matt 	} while (0)
    239   1.1     matt #else
    240   1.1     matt #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    241   1.1     matt #endif
    242   1.2     matt STATIC int pmap_pte_insert(int, struct pte *);
    243   1.1     matt STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    244   1.2     matt 	vaddr_t, paddr_t, register_t, int);
    245   1.1     matt STATIC void pmap_pvo_remove(struct pvo_entry *, int);
    246   1.1     matt STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    247   1.2     matt STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    248  1.14      chs #define pmap_pvo_reclaim(pm)	NULL
    249  1.14      chs STATIC void pvo_set_exec(struct pvo_entry *);
    250  1.14      chs STATIC void pvo_clear_exec(struct pvo_entry *);
    251   1.1     matt 
    252   1.1     matt STATIC void tlbia(void);
    253   1.1     matt 
    254   1.1     matt STATIC void pmap_release(pmap_t);
    255   1.1     matt STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    256   1.1     matt 
    257   1.1     matt #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    258   1.1     matt static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    259   1.1     matt 
    260   1.1     matt static int pmap_initialized;
    261   1.1     matt 
    262   1.1     matt #if defined(DEBUG) || defined(PMAPDEBUG)
    263   1.1     matt #define	PMAPDEBUG_BOOT		0x0001
    264   1.1     matt #define	PMAPDEBUG_PTE		0x0002
    265   1.1     matt #define	PMAPDEBUG_EXEC		0x0008
    266   1.1     matt #define	PMAPDEBUG_PVOENTER	0x0010
    267   1.1     matt #define	PMAPDEBUG_PVOREMOVE	0x0020
    268   1.1     matt #define	PMAPDEBUG_ACTIVATE	0x0100
    269   1.1     matt #define	PMAPDEBUG_CREATE	0x0200
    270   1.1     matt #define	PMAPDEBUG_ENTER		0x1000
    271   1.1     matt #define	PMAPDEBUG_KENTER	0x2000
    272   1.1     matt #define	PMAPDEBUG_KREMOVE	0x4000
    273   1.1     matt #define	PMAPDEBUG_REMOVE	0x8000
    274   1.1     matt unsigned int pmapdebug = 0;
    275   1.1     matt # define DPRINTF(x)		printf x
    276   1.1     matt # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    277   1.1     matt #else
    278   1.1     matt # define DPRINTF(x)
    279   1.1     matt # define DPRINTFN(n, x)
    280   1.1     matt #endif
    281   1.1     matt 
    282   1.1     matt 
    283   1.1     matt #ifdef PMAPCOUNTERS
    284   1.1     matt #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    285   1.1     matt #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    286   1.1     matt 
    287   1.1     matt struct evcnt pmap_evcnt_mappings =
    288   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    289   1.1     matt 	    "pmap", "pages mapped");
    290   1.1     matt struct evcnt pmap_evcnt_unmappings =
    291   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    292   1.1     matt 	    "pmap", "pages unmapped");
    293   1.1     matt 
    294   1.1     matt struct evcnt pmap_evcnt_kernel_mappings =
    295   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    296   1.1     matt 	    "pmap", "kernel pages mapped");
    297   1.1     matt struct evcnt pmap_evcnt_kernel_unmappings =
    298   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    299   1.1     matt 	    "pmap", "kernel pages unmapped");
    300   1.1     matt 
    301   1.1     matt struct evcnt pmap_evcnt_mappings_replaced =
    302   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    303   1.1     matt 	    "pmap", "page mappings replaced");
    304   1.1     matt 
    305   1.1     matt struct evcnt pmap_evcnt_exec_mappings =
    306   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    307   1.1     matt 	    "pmap", "exec pages mapped");
    308   1.1     matt struct evcnt pmap_evcnt_exec_cached =
    309   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    310   1.1     matt 	    "pmap", "exec pages cached");
    311   1.1     matt 
    312   1.1     matt struct evcnt pmap_evcnt_exec_synced =
    313   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    314   1.1     matt 	    "pmap", "exec pages synced");
    315   1.1     matt struct evcnt pmap_evcnt_exec_synced_clear_modify =
    316   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    317   1.1     matt 	    "pmap", "exec pages synced (CM)");
    318   1.1     matt 
    319   1.1     matt struct evcnt pmap_evcnt_exec_uncached_page_protect =
    320   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    321   1.1     matt 	    "pmap", "exec pages uncached (PP)");
    322   1.1     matt struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    323   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    324   1.1     matt 	    "pmap", "exec pages uncached (CM)");
    325   1.1     matt struct evcnt pmap_evcnt_exec_uncached_zero_page =
    326   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    327   1.1     matt 	    "pmap", "exec pages uncached (ZP)");
    328   1.1     matt struct evcnt pmap_evcnt_exec_uncached_copy_page =
    329   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    330   1.1     matt 	    "pmap", "exec pages uncached (CP)");
    331   1.1     matt 
    332   1.1     matt struct evcnt pmap_evcnt_updates =
    333   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    334   1.1     matt 	    "pmap", "updates");
    335   1.1     matt struct evcnt pmap_evcnt_collects =
    336   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    337   1.1     matt 	    "pmap", "collects");
    338   1.1     matt struct evcnt pmap_evcnt_copies =
    339   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    340   1.1     matt 	    "pmap", "copies");
    341   1.1     matt 
    342   1.1     matt struct evcnt pmap_evcnt_ptes_spilled =
    343   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    344   1.1     matt 	    "pmap", "ptes spilled from overflow");
    345   1.1     matt struct evcnt pmap_evcnt_ptes_unspilled =
    346   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    347   1.1     matt 	    "pmap", "ptes not spilled");
    348   1.1     matt struct evcnt pmap_evcnt_ptes_evicted =
    349   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    350   1.1     matt 	    "pmap", "ptes evicted");
    351   1.1     matt 
    352   1.1     matt struct evcnt pmap_evcnt_ptes_primary[8] = {
    353   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    354   1.1     matt 	    "pmap", "ptes added at primary[0]"),
    355   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    356   1.1     matt 	    "pmap", "ptes added at primary[1]"),
    357   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    358   1.1     matt 	    "pmap", "ptes added at primary[2]"),
    359   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    360   1.1     matt 	    "pmap", "ptes added at primary[3]"),
    361   1.1     matt 
    362   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    363   1.1     matt 	    "pmap", "ptes added at primary[4]"),
    364   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    365   1.1     matt 	    "pmap", "ptes added at primary[5]"),
    366   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    367   1.1     matt 	    "pmap", "ptes added at primary[6]"),
    368   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    369   1.1     matt 	    "pmap", "ptes added at primary[7]"),
    370   1.1     matt };
    371   1.1     matt struct evcnt pmap_evcnt_ptes_secondary[8] = {
    372   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373   1.1     matt 	    "pmap", "ptes added at secondary[0]"),
    374   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    375   1.1     matt 	    "pmap", "ptes added at secondary[1]"),
    376   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377   1.1     matt 	    "pmap", "ptes added at secondary[2]"),
    378   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379   1.1     matt 	    "pmap", "ptes added at secondary[3]"),
    380   1.1     matt 
    381   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    382   1.1     matt 	    "pmap", "ptes added at secondary[4]"),
    383   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    384   1.1     matt 	    "pmap", "ptes added at secondary[5]"),
    385   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    386   1.1     matt 	    "pmap", "ptes added at secondary[6]"),
    387   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    388   1.1     matt 	    "pmap", "ptes added at secondary[7]"),
    389   1.1     matt };
    390   1.1     matt struct evcnt pmap_evcnt_ptes_removed =
    391   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392   1.1     matt 	    "pmap", "ptes removed");
    393   1.1     matt struct evcnt pmap_evcnt_ptes_changed =
    394   1.1     matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    395   1.1     matt 	    "pmap", "ptes changed");
    396   1.1     matt 
    397   1.1     matt /*
    398   1.1     matt  * From pmap_subr.c
    399   1.1     matt  */
    400   1.1     matt extern struct evcnt pmap_evcnt_zeroed_pages;
    401   1.1     matt extern struct evcnt pmap_evcnt_copied_pages;
    402   1.1     matt extern struct evcnt pmap_evcnt_idlezeroed_pages;
    403   1.1     matt #else
    404   1.1     matt #define	PMAPCOUNT(ev)	((void) 0)
    405   1.1     matt #define	PMAPCOUNT2(ev)	((void) 0)
    406   1.1     matt #endif
    407   1.1     matt 
    408   1.1     matt #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    409   1.1     matt #define	TLBSYNC()	__asm __volatile("tlbsync")
    410   1.1     matt #define	SYNC()		__asm __volatile("sync")
    411   1.1     matt #define	EIEIO()		__asm __volatile("eieio")
    412   1.1     matt #define	MFMSR()		mfmsr()
    413   1.1     matt #define	MTMSR(psl)	mtmsr(psl)
    414   1.1     matt #define	MFPVR()		mfpvr()
    415   1.1     matt #define	MFSRIN(va)	mfsrin(va)
    416   1.1     matt #define	MFTB()		mfrtcltbl()
    417   1.1     matt 
    418   1.2     matt static __inline register_t
    419   1.1     matt mfsrin(vaddr_t va)
    420   1.1     matt {
    421   1.2     matt 	register_t sr;
    422   1.1     matt 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    423   1.1     matt 	return sr;
    424   1.1     matt }
    425   1.1     matt 
    426   1.2     matt static __inline register_t
    427   1.1     matt pmap_interrupts_off(void)
    428   1.1     matt {
    429   1.2     matt 	register_t msr = MFMSR();
    430   1.1     matt 	if (msr & PSL_EE)
    431   1.1     matt 		MTMSR(msr & ~PSL_EE);
    432   1.1     matt 	return msr;
    433   1.1     matt }
    434   1.1     matt 
    435   1.1     matt static void
    436   1.2     matt pmap_interrupts_restore(register_t msr)
    437   1.1     matt {
    438   1.1     matt 	if (msr & PSL_EE)
    439   1.1     matt 		MTMSR(msr);
    440   1.1     matt }
    441   1.1     matt 
    442   1.1     matt static __inline u_int32_t
    443   1.1     matt mfrtcltbl(void)
    444   1.1     matt {
    445   1.1     matt 
    446   1.1     matt 	if ((MFPVR() >> 16) == MPC601)
    447   1.1     matt 		return (mfrtcl() >> 7);
    448   1.1     matt 	else
    449   1.1     matt 		return (mftbl());
    450   1.1     matt }
    451   1.1     matt 
    452   1.1     matt /*
    453   1.1     matt  * These small routines may have to be replaced,
    454   1.1     matt  * if/when we support processors other that the 604.
    455   1.1     matt  */
    456   1.1     matt 
    457   1.1     matt void
    458   1.1     matt tlbia(void)
    459   1.1     matt {
    460   1.1     matt 	caddr_t i;
    461   1.1     matt 
    462   1.1     matt 	SYNC();
    463   1.1     matt 	/*
    464   1.1     matt 	 * Why not use "tlbia"?  Because not all processors implement it.
    465   1.1     matt 	 *
    466   1.1     matt 	 * This needs to be a per-cpu callback to do the appropriate thing
    467   1.1     matt 	 * for the CPU. XXX
    468   1.1     matt 	 */
    469   1.1     matt 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    470   1.1     matt 		TLBIE(i);
    471   1.1     matt 		EIEIO();
    472   1.1     matt 		SYNC();
    473   1.1     matt 	}
    474   1.1     matt 	TLBSYNC();
    475   1.1     matt 	SYNC();
    476   1.1     matt }
    477   1.1     matt 
    478   1.2     matt static __inline register_t
    479   1.2     matt va_to_vsid(const struct pmap *pm, vaddr_t addr)
    480   1.1     matt {
    481   1.2     matt 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID);
    482   1.1     matt }
    483   1.1     matt 
    484   1.2     matt static __inline register_t
    485   1.2     matt va_to_pteg(const struct pmap *pm, vaddr_t addr)
    486   1.1     matt {
    487   1.2     matt 	register_t hash;
    488   1.2     matt 
    489   1.2     matt 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    490   1.1     matt 	return hash & pmap_pteg_mask;
    491   1.1     matt }
    492   1.1     matt 
    493   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    494   1.1     matt /*
    495   1.1     matt  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    496   1.1     matt  * The only bit of magic is that the top 4 bits of the address doesn't
    497   1.1     matt  * technically exist in the PTE.  But we know we reserved 4 bits of the
    498   1.1     matt  * VSID for it so that's how we get it.
    499   1.1     matt  */
    500   1.1     matt static vaddr_t
    501   1.2     matt pmap_pte_to_va(volatile const struct pte *pt)
    502   1.1     matt {
    503   1.1     matt 	vaddr_t va;
    504   1.1     matt 	uintptr_t ptaddr = (uintptr_t) pt;
    505   1.1     matt 
    506   1.1     matt 	if (pt->pte_hi & PTE_HID)
    507   1.2     matt 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    508   1.1     matt 
    509   1.1     matt 	/* PPC Bits 10-19 */
    510   1.4     matt 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    511   1.1     matt 	va <<= ADDR_PIDX_SHFT;
    512   1.1     matt 
    513   1.1     matt 	/* PPC Bits 4-9 */
    514   1.1     matt 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    515   1.1     matt 
    516   1.1     matt 	/* PPC Bits 0-3 */
    517   1.1     matt 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    518   1.1     matt 
    519   1.1     matt 	return va;
    520   1.1     matt }
    521   1.1     matt #endif
    522   1.1     matt 
    523   1.1     matt static __inline struct pvo_head *
    524   1.1     matt pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    525   1.1     matt {
    526   1.1     matt #ifdef __HAVE_VM_PAGE_MD
    527   1.1     matt 	struct vm_page *pg;
    528   1.1     matt 
    529   1.1     matt 	pg = PHYS_TO_VM_PAGE(pa);
    530   1.1     matt 	if (pg_p != NULL)
    531   1.1     matt 		*pg_p = pg;
    532   1.1     matt 	if (pg == NULL)
    533   1.1     matt 		return &pmap_pvo_unmanaged;
    534   1.1     matt 	return &pg->mdpage.mdpg_pvoh;
    535   1.1     matt #endif
    536   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    537   1.1     matt 	int bank, pg;
    538   1.1     matt 
    539   1.1     matt 	bank = vm_physseg_find(atop(pa), &pg);
    540   1.1     matt 	if (pg_p != NULL)
    541   1.1     matt 		*pg_p = pg;
    542   1.1     matt 	if (bank == -1)
    543   1.1     matt 		return &pmap_pvo_unmanaged;
    544   1.1     matt 	return &vm_physmem[bank].pmseg.pvoh[pg];
    545   1.1     matt #endif
    546   1.1     matt }
    547   1.1     matt 
    548   1.1     matt static __inline struct pvo_head *
    549   1.1     matt vm_page_to_pvoh(struct vm_page *pg)
    550   1.1     matt {
    551   1.1     matt #ifdef __HAVE_VM_PAGE_MD
    552   1.1     matt 	return &pg->mdpage.mdpg_pvoh;
    553   1.1     matt #endif
    554   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    555   1.1     matt 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    556   1.1     matt #endif
    557   1.1     matt }
    558   1.1     matt 
    559   1.1     matt 
    560   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    561   1.1     matt static __inline char *
    562   1.1     matt pa_to_attr(paddr_t pa)
    563   1.1     matt {
    564   1.1     matt 	int bank, pg;
    565   1.1     matt 
    566   1.1     matt 	bank = vm_physseg_find(atop(pa), &pg);
    567   1.1     matt 	if (bank == -1)
    568   1.1     matt 		return NULL;
    569   1.1     matt 	return &vm_physmem[bank].pmseg.attrs[pg];
    570   1.1     matt }
    571   1.1     matt #endif
    572   1.1     matt 
    573   1.1     matt static __inline void
    574   1.1     matt pmap_attr_clear(struct vm_page *pg, int ptebit)
    575   1.1     matt {
    576   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    577   1.1     matt 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    578   1.1     matt #endif
    579   1.1     matt #ifdef __HAVE_VM_PAGE_MD
    580   1.1     matt 	pg->mdpage.mdpg_attrs &= ~ptebit;
    581   1.1     matt #endif
    582   1.1     matt }
    583   1.1     matt 
    584   1.1     matt static __inline int
    585   1.1     matt pmap_attr_fetch(struct vm_page *pg)
    586   1.1     matt {
    587   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    588   1.1     matt 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    589   1.1     matt #endif
    590   1.1     matt #ifdef __HAVE_VM_PAGE_MD
    591   1.1     matt 	return pg->mdpage.mdpg_attrs;
    592   1.1     matt #endif
    593   1.1     matt }
    594   1.1     matt 
    595   1.1     matt static __inline void
    596   1.1     matt pmap_attr_save(struct vm_page *pg, int ptebit)
    597   1.1     matt {
    598   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    599   1.1     matt 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    600   1.1     matt #endif
    601   1.1     matt #ifdef __HAVE_VM_PAGE_MD
    602   1.1     matt 	pg->mdpage.mdpg_attrs |= ptebit;
    603   1.1     matt #endif
    604   1.1     matt }
    605   1.1     matt 
    606   1.1     matt static __inline int
    607   1.2     matt pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    608   1.1     matt {
    609   1.1     matt 	if (pt->pte_hi == pvo_pt->pte_hi
    610   1.1     matt #if 0
    611   1.1     matt 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    612   1.1     matt 	        ~(PTE_REF|PTE_CHG)) == 0
    613   1.1     matt #endif
    614   1.1     matt 	    )
    615   1.1     matt 		return 1;
    616   1.1     matt 	return 0;
    617   1.1     matt }
    618   1.1     matt 
    619   1.1     matt static __inline void
    620   1.2     matt pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    621   1.1     matt {
    622   1.1     matt 	/*
    623   1.1     matt 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    624   1.1     matt 	 * only gets set when the real pte is set in memory.
    625   1.1     matt 	 *
    626   1.1     matt 	 * Note: Don't set the valid bit for correct operation of tlb update.
    627   1.1     matt 	 */
    628   1.2     matt 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    629   1.2     matt 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    630   1.1     matt 	pt->pte_lo = pte_lo;
    631   1.1     matt }
    632   1.1     matt 
    633   1.1     matt static __inline void
    634   1.2     matt pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    635   1.1     matt {
    636   1.1     matt 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    637   1.1     matt }
    638   1.1     matt 
    639   1.1     matt static __inline void
    640   1.2     matt pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    641   1.1     matt {
    642   1.1     matt 	/*
    643   1.1     matt 	 * As shown in Section 7.6.3.2.3
    644   1.1     matt 	 */
    645   1.1     matt 	pt->pte_lo &= ~ptebit;
    646   1.1     matt 	TLBIE(va);
    647   1.1     matt 	SYNC();
    648   1.1     matt 	EIEIO();
    649   1.1     matt 	TLBSYNC();
    650   1.1     matt 	SYNC();
    651   1.1     matt }
    652   1.1     matt 
    653   1.1     matt static __inline void
    654   1.2     matt pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    655   1.1     matt {
    656   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    657   1.1     matt 	if (pvo_pt->pte_hi & PTE_VALID)
    658   1.1     matt 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    659   1.1     matt #endif
    660   1.1     matt 	pvo_pt->pte_hi |= PTE_VALID;
    661   1.1     matt 	/*
    662   1.1     matt 	 * Update the PTE as defined in section 7.6.3.1
    663   1.1     matt 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    664   1.1     matt 	 * have been saved so this routine can restore them (if desired).
    665   1.1     matt 	 */
    666   1.1     matt 	pt->pte_lo = pvo_pt->pte_lo;
    667   1.1     matt 	EIEIO();
    668   1.1     matt 	pt->pte_hi = pvo_pt->pte_hi;
    669   1.1     matt 	SYNC();
    670   1.1     matt 	pmap_pte_valid++;
    671   1.1     matt }
    672   1.1     matt 
    673   1.1     matt static __inline void
    674   1.2     matt pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    675   1.1     matt {
    676   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    677   1.1     matt 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    678   1.1     matt 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    679   1.1     matt 	if ((pt->pte_hi & PTE_VALID) == 0)
    680   1.1     matt 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    681   1.1     matt #endif
    682   1.1     matt 
    683   1.1     matt 	pvo_pt->pte_hi &= ~PTE_VALID;
    684   1.1     matt 	/*
    685   1.1     matt 	 * Force the ref & chg bits back into the PTEs.
    686   1.1     matt 	 */
    687   1.1     matt 	SYNC();
    688   1.1     matt 	/*
    689   1.1     matt 	 * Invalidate the pte ... (Section 7.6.3.3)
    690   1.1     matt 	 */
    691   1.1     matt 	pt->pte_hi &= ~PTE_VALID;
    692   1.1     matt 	SYNC();
    693   1.1     matt 	TLBIE(va);
    694   1.1     matt 	SYNC();
    695   1.1     matt 	EIEIO();
    696   1.1     matt 	TLBSYNC();
    697   1.1     matt 	SYNC();
    698   1.1     matt 	/*
    699   1.1     matt 	 * Save the ref & chg bits ...
    700   1.1     matt 	 */
    701   1.1     matt 	pmap_pte_synch(pt, pvo_pt);
    702   1.1     matt 	pmap_pte_valid--;
    703   1.1     matt }
    704   1.1     matt 
    705   1.1     matt static __inline void
    706   1.2     matt pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    707   1.1     matt {
    708   1.1     matt 	/*
    709   1.1     matt 	 * Invalidate the PTE
    710   1.1     matt 	 */
    711   1.1     matt 	pmap_pte_unset(pt, pvo_pt, va);
    712   1.1     matt 	pmap_pte_set(pt, pvo_pt);
    713   1.1     matt }
    714   1.1     matt 
    715   1.1     matt /*
    716   1.1     matt  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    717   1.1     matt  * (either primary or secondary location).
    718   1.1     matt  *
    719   1.1     matt  * Note: both the destination and source PTEs must not have PTE_VALID set.
    720   1.1     matt  */
    721   1.1     matt 
    722   1.1     matt STATIC int
    723   1.2     matt pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    724   1.1     matt {
    725   1.2     matt 	volatile struct pte *pt;
    726   1.1     matt 	int i;
    727   1.1     matt 
    728   1.1     matt #if defined(DEBUG)
    729   1.2     matt 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%lx 0x%lx\n",
    730   1.1     matt 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    731   1.1     matt #endif
    732   1.1     matt 	/*
    733   1.1     matt 	 * First try primary hash.
    734   1.1     matt 	 */
    735   1.1     matt 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    736   1.1     matt 		if ((pt->pte_hi & PTE_VALID) == 0) {
    737   1.1     matt 			pvo_pt->pte_hi &= ~PTE_HID;
    738   1.1     matt 			pmap_pte_set(pt, pvo_pt);
    739   1.1     matt 			return i;
    740   1.1     matt 		}
    741   1.1     matt 	}
    742   1.1     matt 
    743   1.1     matt 	/*
    744   1.1     matt 	 * Now try secondary hash.
    745   1.1     matt 	 */
    746   1.1     matt 	ptegidx ^= pmap_pteg_mask;
    747   1.1     matt 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    748   1.1     matt 		if ((pt->pte_hi & PTE_VALID) == 0) {
    749   1.1     matt 			pvo_pt->pte_hi |= PTE_HID;
    750   1.1     matt 			pmap_pte_set(pt, pvo_pt);
    751   1.1     matt 			return i;
    752   1.1     matt 		}
    753   1.1     matt 	}
    754   1.1     matt 	return -1;
    755   1.1     matt }
    756   1.1     matt 
    757   1.1     matt /*
    758   1.1     matt  * Spill handler.
    759   1.1     matt  *
    760   1.1     matt  * Tries to spill a page table entry from the overflow area.
    761   1.1     matt  * This runs in either real mode (if dealing with a exception spill)
    762   1.1     matt  * or virtual mode when dealing with manually spilling one of the
    763   1.1     matt  * kernel's pte entries.  In either case, interrupts are already
    764   1.1     matt  * disabled.
    765   1.1     matt  */
    766  1.14      chs 
    767   1.1     matt int
    768  1.14      chs pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    769   1.1     matt {
    770   1.1     matt 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    771   1.1     matt 	struct pvo_entry *pvo;
    772   1.1     matt 	struct pvo_tqhead *pvoh, *vpvoh;
    773   1.1     matt 	int ptegidx, i, j;
    774   1.2     matt 	volatile struct pteg *pteg;
    775   1.2     matt 	volatile struct pte *pt;
    776   1.1     matt 
    777   1.2     matt 	ptegidx = va_to_pteg(pm, addr);
    778   1.1     matt 
    779   1.1     matt 	/*
    780   1.1     matt 	 * Have to substitute some entry. Use the primary hash for this.
    781  1.12     matt 	 * Use low bits of timebase as random generator.  Make sure we are
    782  1.12     matt 	 * not picking a kernel pte for replacement.
    783   1.1     matt 	 */
    784   1.1     matt 	pteg = &pmap_pteg_table[ptegidx];
    785   1.1     matt 	i = MFTB() & 7;
    786  1.12     matt 	for (j = 0; j < 8; j++) {
    787  1.12     matt 		pt = &pteg->pt[i];
    788  1.12     matt 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    789  1.12     matt 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    790  1.12     matt 				!= KERNEL_VSIDBITS)
    791  1.12     matt 			break;
    792  1.12     matt 		i = (i + 1) & 7;
    793  1.12     matt 	}
    794  1.12     matt 	KASSERT(j < 8);
    795   1.1     matt 
    796   1.1     matt 	source_pvo = NULL;
    797   1.1     matt 	victim_pvo = NULL;
    798   1.1     matt 	pvoh = &pmap_pvo_table[ptegidx];
    799   1.1     matt 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    800   1.1     matt 
    801   1.1     matt 		/*
    802   1.1     matt 		 * We need to find pvo entry for this address...
    803   1.1     matt 		 */
    804   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    805   1.1     matt 
    806   1.1     matt 		/*
    807   1.1     matt 		 * If we haven't found the source and we come to a PVO with
    808   1.1     matt 		 * a valid PTE, then we know we can't find it because all
    809   1.1     matt 		 * evicted PVOs always are first in the list.
    810   1.1     matt 		 */
    811   1.1     matt 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    812   1.1     matt 			break;
    813   1.2     matt 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    814   1.2     matt 		    addr == PVO_VADDR(pvo)) {
    815   1.1     matt 
    816   1.1     matt 			/*
    817   1.1     matt 			 * Now we have found the entry to be spilled into the
    818   1.1     matt 			 * pteg.  Attempt to insert it into the page table.
    819   1.1     matt 			 */
    820   1.1     matt 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    821   1.1     matt 			if (j >= 0) {
    822   1.1     matt 				PVO_PTEGIDX_SET(pvo, j);
    823   1.1     matt 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    824  1.12     matt 				PVO_WHERE(pvo, SPILL_INSERT);
    825   1.1     matt 				pvo->pvo_pmap->pm_evictions--;
    826   1.1     matt 				PMAPCOUNT(ptes_spilled);
    827   1.1     matt 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    828   1.1     matt 				    ? pmap_evcnt_ptes_secondary
    829   1.1     matt 				    : pmap_evcnt_ptes_primary)[j]);
    830   1.1     matt 
    831   1.1     matt 				/*
    832   1.1     matt 				 * Since we keep the evicted entries at the
    833   1.1     matt 				 * from of the PVO list, we need move this
    834   1.1     matt 				 * (now resident) PVO after the evicted
    835   1.1     matt 				 * entries.
    836   1.1     matt 				 */
    837   1.1     matt 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    838   1.1     matt 
    839   1.1     matt 				/*
    840   1.5     matt 				 * If we don't have to move (either we were the
    841   1.5     matt 				 * last entry or the next entry was valid),
    842   1.1     matt 				 * don't change our position.  Otherwise
    843   1.1     matt 				 * move ourselves to the tail of the queue.
    844   1.1     matt 				 */
    845   1.1     matt 				if (next_pvo != NULL &&
    846   1.1     matt 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    847   1.1     matt 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    848   1.1     matt 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    849   1.1     matt 				}
    850   1.1     matt 				return 1;
    851   1.1     matt 			}
    852   1.1     matt 			source_pvo = pvo;
    853  1.14      chs 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    854  1.14      chs 				return 0;
    855  1.14      chs 			}
    856   1.1     matt 			if (victim_pvo != NULL)
    857   1.1     matt 				break;
    858   1.1     matt 		}
    859   1.1     matt 
    860   1.1     matt 		/*
    861   1.1     matt 		 * We also need the pvo entry of the victim we are replacing
    862   1.1     matt 		 * so save the R & C bits of the PTE.
    863   1.1     matt 		 */
    864   1.1     matt 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    865   1.1     matt 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    866   1.1     matt 			vpvoh = pvoh;
    867   1.1     matt 			victim_pvo = pvo;
    868   1.1     matt 			if (source_pvo != NULL)
    869   1.1     matt 				break;
    870   1.1     matt 		}
    871   1.1     matt 	}
    872   1.1     matt 
    873   1.1     matt 	if (source_pvo == NULL) {
    874   1.1     matt 		PMAPCOUNT(ptes_unspilled);
    875   1.1     matt 		return 0;
    876   1.1     matt 	}
    877   1.1     matt 
    878   1.1     matt 	if (victim_pvo == NULL) {
    879   1.1     matt 		if ((pt->pte_hi & PTE_HID) == 0)
    880   1.1     matt 			panic("pmap_pte_spill: victim p-pte (%p) has "
    881   1.1     matt 			    "no pvo entry!", pt);
    882   1.1     matt 
    883   1.1     matt 		/*
    884   1.1     matt 		 * If this is a secondary PTE, we need to search
    885   1.1     matt 		 * its primary pvo bucket for the matching PVO.
    886   1.1     matt 		 */
    887   1.1     matt 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
    888   1.1     matt 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    889   1.1     matt 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    890   1.1     matt 
    891   1.1     matt 			/*
    892   1.1     matt 			 * We also need the pvo entry of the victim we are
    893   1.1     matt 			 * replacing so save the R & C bits of the PTE.
    894   1.1     matt 			 */
    895   1.1     matt 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    896   1.1     matt 				victim_pvo = pvo;
    897   1.1     matt 				break;
    898   1.1     matt 			}
    899   1.1     matt 		}
    900   1.1     matt 		if (victim_pvo == NULL)
    901   1.1     matt 			panic("pmap_pte_spill: victim s-pte (%p) has "
    902   1.1     matt 			    "no pvo entry!", pt);
    903   1.1     matt 	}
    904   1.1     matt 
    905   1.1     matt 	/*
    906  1.12     matt 	 * The victim should be not be a kernel PVO/PTE entry.
    907  1.12     matt 	 */
    908  1.12     matt 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
    909  1.12     matt 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
    910  1.12     matt 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
    911  1.12     matt 
    912  1.12     matt 	/*
    913   1.1     matt 	 * We are invalidating the TLB entry for the EA for the
    914   1.1     matt 	 * we are replacing even though its valid; If we don't
    915   1.1     matt 	 * we lose any ref/chg bit changes contained in the TLB
    916   1.1     matt 	 * entry.
    917   1.1     matt 	 */
    918   1.1     matt 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    919   1.1     matt 
    920   1.1     matt 	/*
    921   1.1     matt 	 * To enforce the PVO list ordering constraint that all
    922   1.1     matt 	 * evicted entries should come before all valid entries,
    923   1.1     matt 	 * move the source PVO to the tail of its list and the
    924   1.1     matt 	 * victim PVO to the head of its list (which might not be
    925   1.1     matt 	 * the same list, if the victim was using the secondary hash).
    926   1.1     matt 	 */
    927   1.1     matt 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    928   1.1     matt 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    929   1.1     matt 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    930   1.1     matt 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    931   1.1     matt 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    932   1.1     matt 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    933   1.1     matt 	victim_pvo->pvo_pmap->pm_evictions++;
    934   1.1     matt 	source_pvo->pvo_pmap->pm_evictions--;
    935  1.12     matt 	PVO_WHERE(victim_pvo, SPILL_UNSET);
    936  1.12     matt 	PVO_WHERE(source_pvo, SPILL_SET);
    937   1.1     matt 
    938   1.1     matt 	PVO_PTEGIDX_CLR(victim_pvo);
    939   1.1     matt 	PVO_PTEGIDX_SET(source_pvo, i);
    940   1.1     matt 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    941   1.1     matt 	PMAPCOUNT(ptes_spilled);
    942   1.1     matt 	PMAPCOUNT(ptes_evicted);
    943   1.1     matt 	PMAPCOUNT(ptes_removed);
    944   1.1     matt 
    945   1.1     matt 	PMAP_PVO_CHECK(victim_pvo);
    946   1.1     matt 	PMAP_PVO_CHECK(source_pvo);
    947   1.1     matt 	return 1;
    948   1.1     matt }
    949   1.1     matt 
    950   1.1     matt /*
    951   1.1     matt  * Restrict given range to physical memory
    952   1.1     matt  */
    953   1.1     matt void
    954   1.1     matt pmap_real_memory(paddr_t *start, psize_t *size)
    955   1.1     matt {
    956   1.1     matt 	struct mem_region *mp;
    957   1.1     matt 
    958   1.1     matt 	for (mp = mem; mp->size; mp++) {
    959   1.1     matt 		if (*start + *size > mp->start
    960   1.1     matt 		    && *start < mp->start + mp->size) {
    961   1.1     matt 			if (*start < mp->start) {
    962   1.1     matt 				*size -= mp->start - *start;
    963   1.1     matt 				*start = mp->start;
    964   1.1     matt 			}
    965   1.1     matt 			if (*start + *size > mp->start + mp->size)
    966   1.1     matt 				*size = mp->start + mp->size - *start;
    967   1.1     matt 			return;
    968   1.1     matt 		}
    969   1.1     matt 	}
    970   1.1     matt 	*size = 0;
    971   1.1     matt }
    972   1.1     matt 
    973   1.1     matt /*
    974   1.1     matt  * Initialize anything else for pmap handling.
    975   1.1     matt  * Called during vm_init().
    976   1.1     matt  */
    977   1.1     matt void
    978   1.1     matt pmap_init(void)
    979   1.1     matt {
    980   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
    981   1.1     matt 	struct pvo_tqhead *pvoh;
    982   1.1     matt 	int bank;
    983   1.1     matt 	long sz;
    984   1.1     matt 	char *attr;
    985   1.1     matt 
    986   1.1     matt 	pvoh = pmap_physseg.pvoh;
    987   1.1     matt 	attr = pmap_physseg.attrs;
    988   1.1     matt 	for (bank = 0; bank < vm_nphysseg; bank++) {
    989   1.1     matt 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
    990   1.1     matt 		vm_physmem[bank].pmseg.pvoh = pvoh;
    991   1.1     matt 		vm_physmem[bank].pmseg.attrs = attr;
    992   1.1     matt 		for (; sz > 0; sz--, pvoh++, attr++) {
    993   1.1     matt 			TAILQ_INIT(pvoh);
    994   1.1     matt 			*attr = 0;
    995   1.1     matt 		}
    996   1.1     matt 	}
    997   1.1     matt #endif
    998   1.1     matt 
    999   1.1     matt 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1000   1.1     matt 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1001   1.1     matt 	    &pmap_pool_mallocator);
   1002   1.1     matt 
   1003   1.1     matt 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1004   1.1     matt 
   1005   1.1     matt 	pmap_initialized = 1;
   1006   1.1     matt 
   1007   1.1     matt #ifdef PMAPCOUNTERS
   1008   1.1     matt 	evcnt_attach_static(&pmap_evcnt_mappings);
   1009   1.1     matt 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
   1010   1.1     matt 	evcnt_attach_static(&pmap_evcnt_unmappings);
   1011   1.1     matt 
   1012   1.1     matt 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
   1013   1.1     matt 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
   1014   1.1     matt 
   1015   1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
   1016   1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_cached);
   1017   1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_synced);
   1018   1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
   1019   1.1     matt 
   1020   1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
   1021   1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
   1022   1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
   1023   1.1     matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
   1024   1.1     matt 
   1025   1.1     matt 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
   1026   1.1     matt 	evcnt_attach_static(&pmap_evcnt_copied_pages);
   1027   1.1     matt 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
   1028   1.1     matt 
   1029   1.1     matt 	evcnt_attach_static(&pmap_evcnt_updates);
   1030   1.1     matt 	evcnt_attach_static(&pmap_evcnt_collects);
   1031   1.1     matt 	evcnt_attach_static(&pmap_evcnt_copies);
   1032   1.1     matt 
   1033   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
   1034   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1035   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1036   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1037   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1038   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1039   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1040   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1041   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1042   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1043   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1044   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1045   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1046   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1047   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1048   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1049   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1050   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1051   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1052   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1053   1.1     matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1054   1.1     matt #endif
   1055   1.1     matt }
   1056   1.1     matt 
   1057   1.1     matt /*
   1058  1.10  thorpej  * How much virtual space does the kernel get?
   1059  1.10  thorpej  */
   1060  1.10  thorpej void
   1061  1.10  thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1062  1.10  thorpej {
   1063  1.10  thorpej 	/*
   1064  1.10  thorpej 	 * For now, reserve one segment (minus some overhead) for kernel
   1065  1.10  thorpej 	 * virtual memory
   1066  1.10  thorpej 	 */
   1067  1.10  thorpej 	*start = VM_MIN_KERNEL_ADDRESS;
   1068  1.10  thorpej 	*end = VM_MAX_KERNEL_ADDRESS;
   1069  1.10  thorpej }
   1070  1.10  thorpej 
   1071  1.10  thorpej /*
   1072   1.1     matt  * Allocate, initialize, and return a new physical map.
   1073   1.1     matt  */
   1074   1.1     matt pmap_t
   1075   1.1     matt pmap_create(void)
   1076   1.1     matt {
   1077   1.1     matt 	pmap_t pm;
   1078   1.1     matt 
   1079   1.1     matt 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1080   1.1     matt 	memset((caddr_t)pm, 0, sizeof *pm);
   1081   1.1     matt 	pmap_pinit(pm);
   1082   1.1     matt 
   1083   1.1     matt 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1084   1.2     matt 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n"
   1085   1.2     matt 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n", pm,
   1086   1.1     matt 	    pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
   1087   1.1     matt 	    pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
   1088   1.1     matt 	    pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
   1089   1.1     matt 	    pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
   1090   1.1     matt 	return pm;
   1091   1.1     matt }
   1092   1.1     matt 
   1093   1.1     matt /*
   1094   1.1     matt  * Initialize a preallocated and zeroed pmap structure.
   1095   1.1     matt  */
   1096   1.1     matt void
   1097   1.1     matt pmap_pinit(pmap_t pm)
   1098   1.1     matt {
   1099   1.2     matt 	register_t entropy = MFTB();
   1100   1.2     matt 	register_t mask;
   1101   1.2     matt 	int i;
   1102   1.1     matt 
   1103   1.1     matt 	/*
   1104   1.1     matt 	 * Allocate some segment registers for this pmap.
   1105   1.1     matt 	 */
   1106   1.1     matt 	pm->pm_refs = 1;
   1107   1.2     matt 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1108   1.2     matt 		static register_t pmap_vsidcontext;
   1109   1.2     matt 		register_t hash;
   1110   1.2     matt 		unsigned int n;
   1111   1.1     matt 
   1112   1.1     matt 		/* Create a new value by multiplying by a prime adding in
   1113   1.1     matt 		 * entropy from the timebase register.  This is to make the
   1114   1.1     matt 		 * VSID more random so that the PT Hash function collides
   1115   1.1     matt 		 * less often. (note that the prime causes gcc to do shifts
   1116   1.1     matt 		 * instead of a multiply)
   1117   1.1     matt 		 */
   1118   1.1     matt 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1119   1.1     matt 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1120   1.1     matt 		if (hash == 0)			/* 0 is special, avoid it */
   1121   1.1     matt 			continue;
   1122   1.1     matt 		n = hash >> 5;
   1123   1.2     matt 		mask = 1L << (hash & (VSID_NBPW-1));
   1124   1.2     matt 		hash = pmap_vsidcontext;
   1125   1.1     matt 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1126   1.1     matt 			/* anything free in this bucket? */
   1127   1.2     matt 			if (~pmap_vsid_bitmap[n] == 0) {
   1128   1.2     matt 				entropy = hash >> PTE_VSID_SHFT;
   1129   1.1     matt 				continue;
   1130   1.1     matt 			}
   1131   1.1     matt 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1132   1.2     matt 			mask = 1L << i;
   1133   1.2     matt 			hash &= ~(VSID_NBPW-1);
   1134   1.1     matt 			hash |= i;
   1135   1.1     matt 		}
   1136   1.2     matt 		/*
   1137   1.2     matt 		 * Make sure clear out SR_KEY_LEN bits because we put our
   1138   1.2     matt 		 * our data in those bits (to identify the segment).
   1139   1.2     matt 		 */
   1140   1.2     matt 		hash &= PTE_VSID >> (PTE_VSID_SHFT + SR_KEY_LEN);
   1141   1.1     matt 		pmap_vsid_bitmap[n] |= mask;
   1142   1.1     matt 		for (i = 0; i < 16; i++)
   1143  1.14      chs 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1144  1.14      chs 			    SR_NOEXEC;
   1145   1.1     matt 		return;
   1146   1.1     matt 	}
   1147   1.1     matt 	panic("pmap_pinit: out of segments");
   1148   1.1     matt }
   1149   1.1     matt 
   1150   1.1     matt /*
   1151   1.1     matt  * Add a reference to the given pmap.
   1152   1.1     matt  */
   1153   1.1     matt void
   1154   1.1     matt pmap_reference(pmap_t pm)
   1155   1.1     matt {
   1156   1.1     matt 	pm->pm_refs++;
   1157   1.1     matt }
   1158   1.1     matt 
   1159   1.1     matt /*
   1160   1.1     matt  * Retire the given pmap from service.
   1161   1.1     matt  * Should only be called if the map contains no valid mappings.
   1162   1.1     matt  */
   1163   1.1     matt void
   1164   1.1     matt pmap_destroy(pmap_t pm)
   1165   1.1     matt {
   1166   1.1     matt 	if (--pm->pm_refs == 0) {
   1167   1.1     matt 		pmap_release(pm);
   1168   1.1     matt 		pool_put(&pmap_pool, pm);
   1169   1.1     matt 	}
   1170   1.1     matt }
   1171   1.1     matt 
   1172   1.1     matt /*
   1173   1.1     matt  * Release any resources held by the given physical map.
   1174   1.1     matt  * Called when a pmap initialized by pmap_pinit is being released.
   1175   1.1     matt  */
   1176   1.1     matt void
   1177   1.1     matt pmap_release(pmap_t pm)
   1178   1.1     matt {
   1179   1.1     matt 	int idx, mask;
   1180   1.1     matt 
   1181   1.1     matt 	if (pm->pm_sr[0] == 0)
   1182   1.1     matt 		panic("pmap_release");
   1183   1.1     matt 	idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1);
   1184   1.1     matt 	mask = 1 << (idx % VSID_NBPW);
   1185   1.1     matt 	idx /= VSID_NBPW;
   1186   1.1     matt 	pmap_vsid_bitmap[idx] &= ~mask;
   1187   1.1     matt }
   1188   1.1     matt 
   1189   1.1     matt /*
   1190   1.1     matt  * Copy the range specified by src_addr/len
   1191   1.1     matt  * from the source map to the range dst_addr/len
   1192   1.1     matt  * in the destination map.
   1193   1.1     matt  *
   1194   1.1     matt  * This routine is only advisory and need not do anything.
   1195   1.1     matt  */
   1196   1.1     matt void
   1197   1.1     matt pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1198   1.1     matt 	vsize_t len, vaddr_t src_addr)
   1199   1.1     matt {
   1200   1.1     matt 	PMAPCOUNT(copies);
   1201   1.1     matt }
   1202   1.1     matt 
   1203   1.1     matt /*
   1204   1.1     matt  * Require that all active physical maps contain no
   1205   1.1     matt  * incorrect entries NOW.
   1206   1.1     matt  */
   1207   1.1     matt void
   1208   1.1     matt pmap_update(struct pmap *pmap)
   1209   1.1     matt {
   1210   1.1     matt 	PMAPCOUNT(updates);
   1211   1.1     matt 	TLBSYNC();
   1212   1.1     matt }
   1213   1.1     matt 
   1214   1.1     matt /*
   1215   1.1     matt  * Garbage collects the physical map system for
   1216   1.1     matt  * pages which are no longer used.
   1217   1.1     matt  * Success need not be guaranteed -- that is, there
   1218   1.1     matt  * may well be pages which are not referenced, but
   1219   1.1     matt  * others may be collected.
   1220   1.1     matt  * Called by the pageout daemon when pages are scarce.
   1221   1.1     matt  */
   1222   1.1     matt void
   1223   1.1     matt pmap_collect(pmap_t pm)
   1224   1.1     matt {
   1225   1.1     matt 	PMAPCOUNT(collects);
   1226   1.1     matt }
   1227   1.1     matt 
   1228   1.1     matt static __inline int
   1229   1.1     matt pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1230   1.1     matt {
   1231   1.1     matt 	int pteidx;
   1232   1.1     matt 	/*
   1233   1.1     matt 	 * We can find the actual pte entry without searching by
   1234   1.1     matt 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1235   1.1     matt 	 * and by noticing the HID bit.
   1236   1.1     matt 	 */
   1237   1.1     matt 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1238   1.1     matt 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1239   1.1     matt 		pteidx ^= pmap_pteg_mask * 8;
   1240   1.1     matt 	return pteidx;
   1241   1.1     matt }
   1242   1.1     matt 
   1243   1.2     matt volatile struct pte *
   1244   1.1     matt pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1245   1.1     matt {
   1246   1.2     matt 	volatile struct pte *pt;
   1247   1.1     matt 
   1248   1.1     matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1249   1.1     matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1250   1.1     matt 		return NULL;
   1251   1.1     matt #endif
   1252   1.1     matt 
   1253   1.1     matt 	/*
   1254   1.1     matt 	 * If we haven't been supplied the ptegidx, calculate it.
   1255   1.1     matt 	 */
   1256   1.1     matt 	if (pteidx == -1) {
   1257   1.1     matt 		int ptegidx;
   1258   1.2     matt 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1259   1.1     matt 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1260   1.1     matt 	}
   1261   1.1     matt 
   1262   1.1     matt 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1263   1.1     matt 
   1264   1.1     matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1265   1.1     matt 	return pt;
   1266   1.1     matt #else
   1267   1.1     matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1268   1.1     matt 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1269   1.1     matt 		    "pvo but no valid pte index", pvo);
   1270   1.1     matt 	}
   1271   1.1     matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1272   1.1     matt 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1273   1.1     matt 		    "pvo but no valid pte", pvo);
   1274   1.1     matt 	}
   1275   1.1     matt 
   1276   1.1     matt 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1277   1.1     matt 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1278   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
   1279   1.1     matt 			pmap_pte_print(pt);
   1280   1.1     matt #endif
   1281   1.1     matt 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1282   1.1     matt 			    "pmap_pteg_table %p but invalid in pvo",
   1283   1.1     matt 			    pvo, pt);
   1284   1.1     matt 		}
   1285   1.1     matt 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1286   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
   1287   1.1     matt 			pmap_pte_print(pt);
   1288   1.1     matt #endif
   1289   1.1     matt 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1290   1.1     matt 			    "not match pte %p in pmap_pteg_table",
   1291   1.1     matt 			    pvo, pt);
   1292   1.1     matt 		}
   1293   1.1     matt 		return pt;
   1294   1.1     matt 	}
   1295   1.1     matt 
   1296   1.1     matt 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1297   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
   1298   1.1     matt 		pmap_pte_print(pt);
   1299   1.1     matt #endif
   1300  1.12     matt 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1301   1.1     matt 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1302   1.1     matt 	}
   1303   1.1     matt 	return NULL;
   1304   1.1     matt #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1305   1.1     matt }
   1306   1.1     matt 
   1307   1.1     matt struct pvo_entry *
   1308   1.1     matt pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1309   1.1     matt {
   1310   1.1     matt 	struct pvo_entry *pvo;
   1311   1.1     matt 	int ptegidx;
   1312   1.1     matt 
   1313   1.1     matt 	va &= ~ADDR_POFF;
   1314   1.2     matt 	ptegidx = va_to_pteg(pm, va);
   1315   1.1     matt 
   1316   1.1     matt 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1317   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1318   1.1     matt 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1319   1.1     matt 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1320   1.1     matt 			    "list %#x (%p)", pvo, ptegidx,
   1321   1.1     matt 			     &pmap_pvo_table[ptegidx]);
   1322   1.1     matt #endif
   1323   1.1     matt 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1324   1.1     matt 			if (pteidx_p)
   1325   1.1     matt 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1326   1.1     matt 			return pvo;
   1327   1.1     matt 		}
   1328   1.1     matt 	}
   1329   1.1     matt 	return NULL;
   1330   1.1     matt }
   1331   1.1     matt 
   1332   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK)
   1333   1.1     matt void
   1334   1.1     matt pmap_pvo_check(const struct pvo_entry *pvo)
   1335   1.1     matt {
   1336   1.1     matt 	struct pvo_head *pvo_head;
   1337   1.1     matt 	struct pvo_entry *pvo0;
   1338   1.2     matt 	volatile struct pte *pt;
   1339   1.1     matt 	int failed = 0;
   1340   1.1     matt 
   1341   1.1     matt 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1342   1.1     matt 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1343   1.1     matt 
   1344   1.1     matt 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1345   1.1     matt 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1346   1.1     matt 		    pvo, pvo->pvo_pmap);
   1347   1.1     matt 		failed = 1;
   1348   1.1     matt 	}
   1349   1.1     matt 
   1350   1.1     matt 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1351   1.1     matt 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1352   1.1     matt 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1353   1.1     matt 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1354   1.1     matt 		failed = 1;
   1355   1.1     matt 	}
   1356   1.1     matt 
   1357   1.1     matt 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1358   1.1     matt 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1359   1.1     matt 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1360   1.1     matt 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1361   1.1     matt 		failed = 1;
   1362   1.1     matt 	}
   1363   1.1     matt 
   1364   1.1     matt 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1365   1.1     matt 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1366   1.1     matt 	} else {
   1367   1.1     matt 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1368   1.1     matt 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1369   1.1     matt 			    "on kernel unmanaged list\n", pvo);
   1370   1.1     matt 			failed = 1;
   1371   1.1     matt 		}
   1372   1.1     matt 		pvo_head = &pmap_pvo_kunmanaged;
   1373   1.1     matt 	}
   1374   1.1     matt 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1375   1.1     matt 		if (pvo0 == pvo)
   1376   1.1     matt 			break;
   1377   1.1     matt 	}
   1378   1.1     matt 	if (pvo0 == NULL) {
   1379   1.1     matt 		printf("pmap_pvo_check: pvo %p: not present "
   1380   1.1     matt 		    "on its vlist head %p\n", pvo, pvo_head);
   1381   1.1     matt 		failed = 1;
   1382   1.1     matt 	}
   1383   1.1     matt 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1384   1.1     matt 		printf("pmap_pvo_check: pvo %p: not present "
   1385   1.1     matt 		    "on its olist head\n", pvo);
   1386   1.1     matt 		failed = 1;
   1387   1.1     matt 	}
   1388   1.1     matt 	pt = pmap_pvo_to_pte(pvo, -1);
   1389   1.1     matt 	if (pt == NULL) {
   1390   1.1     matt 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1391   1.1     matt 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1392   1.1     matt 			    "no PTE\n", pvo);
   1393   1.1     matt 			failed = 1;
   1394   1.1     matt 		}
   1395   1.1     matt 	} else {
   1396   1.1     matt 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1397   1.1     matt 		    (uintptr_t) pt >=
   1398   1.1     matt 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1399   1.1     matt 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1400   1.1     matt 			    "pteg table\n", pvo, pt);
   1401   1.1     matt 			failed = 1;
   1402   1.1     matt 		}
   1403   1.1     matt 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1404   1.1     matt 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1405   1.1     matt 			    "no PTE\n", pvo);
   1406   1.1     matt 			failed = 1;
   1407   1.1     matt 		}
   1408   1.1     matt 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1409   1.1     matt 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1410   1.2     matt 			    "%#lx/%#lx\n", pvo, pvo->pvo_pte.pte_hi, pt->pte_hi);
   1411   1.1     matt 			failed = 1;
   1412   1.1     matt 		}
   1413   1.1     matt 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1414   1.1     matt 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1415   1.1     matt 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1416   1.2     matt 			    "%#lx/%#lx\n", pvo,
   1417   1.1     matt 			    pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN),
   1418   1.1     matt 			    pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN));
   1419   1.1     matt 			failed = 1;
   1420   1.1     matt 		}
   1421   1.1     matt 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1422   1.1     matt 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1423   1.1     matt 			    " doesn't not match PVO's VA %#lx\n",
   1424   1.1     matt 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1425   1.1     matt 			failed = 1;
   1426   1.1     matt 		}
   1427   1.1     matt 		if (failed)
   1428   1.1     matt 			pmap_pte_print(pt);
   1429   1.1     matt 	}
   1430   1.1     matt 	if (failed)
   1431   1.1     matt 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1432   1.1     matt 		    pvo->pvo_pmap);
   1433   1.1     matt }
   1434   1.1     matt #endif /* DEBUG || PMAPCHECK */
   1435   1.1     matt 
   1436   1.1     matt /*
   1437   1.1     matt  * This returns whether this is the first mapping of a page.
   1438   1.1     matt  */
   1439   1.1     matt int
   1440   1.1     matt pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1441   1.2     matt 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1442   1.1     matt {
   1443   1.1     matt 	struct pvo_entry *pvo;
   1444   1.1     matt 	struct pvo_tqhead *pvoh;
   1445   1.2     matt 	register_t msr;
   1446   1.1     matt 	int ptegidx;
   1447   1.1     matt 	int i;
   1448   1.1     matt 	int poolflags = PR_NOWAIT;
   1449   1.1     matt 
   1450   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1451   1.1     matt 	if (pmap_pvo_remove_depth > 0)
   1452   1.1     matt 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1453   1.1     matt 	if (++pmap_pvo_enter_depth > 1)
   1454   1.1     matt 		panic("pmap_pvo_enter: called recursively!");
   1455   1.1     matt #endif
   1456   1.1     matt 
   1457   1.1     matt 	/*
   1458   1.1     matt 	 * Compute the PTE Group index.
   1459   1.1     matt 	 */
   1460   1.1     matt 	va &= ~ADDR_POFF;
   1461   1.2     matt 	ptegidx = va_to_pteg(pm, va);
   1462   1.1     matt 
   1463   1.1     matt 	msr = pmap_interrupts_off();
   1464   1.1     matt 	/*
   1465   1.1     matt 	 * Remove any existing mapping for this page.  Reuse the
   1466   1.1     matt 	 * pvo entry if there a mapping.
   1467   1.1     matt 	 */
   1468   1.1     matt 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1469   1.1     matt 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1470   1.1     matt #ifdef DEBUG
   1471   1.1     matt 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1472   1.1     matt 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1473   1.1     matt 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1474   1.1     matt 			   va < VM_MIN_KERNEL_ADDRESS) {
   1475   1.2     matt 				printf("pmap_pvo_enter: pvo %p: dup %#lx/%#lx\n",
   1476   1.1     matt 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1477   1.2     matt 				printf("pmap_pvo_enter: pte_hi=%#lx sr=%#lx\n",
   1478   1.1     matt 				    pvo->pvo_pte.pte_hi,
   1479   1.1     matt 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1480   1.1     matt 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1481   1.1     matt #ifdef DDBX
   1482   1.1     matt 				Debugger();
   1483   1.1     matt #endif
   1484   1.1     matt 			}
   1485   1.1     matt #endif
   1486   1.1     matt 			PMAPCOUNT(mappings_replaced);
   1487   1.1     matt 			pmap_pvo_remove(pvo, -1);
   1488   1.1     matt 			break;
   1489   1.1     matt 		}
   1490   1.1     matt 	}
   1491   1.1     matt 
   1492   1.1     matt 	/*
   1493   1.1     matt 	 * If we aren't overwriting an mapping, try to allocate
   1494   1.1     matt 	 */
   1495   1.1     matt 	pmap_interrupts_restore(msr);
   1496   1.1     matt 	pvo = pool_get(pl, poolflags);
   1497   1.1     matt 	msr = pmap_interrupts_off();
   1498   1.1     matt 	if (pvo == NULL) {
   1499   1.1     matt 		pvo = pmap_pvo_reclaim(pm);
   1500   1.1     matt 		if (pvo == NULL) {
   1501   1.1     matt 			if ((flags & PMAP_CANFAIL) == 0)
   1502   1.1     matt 				panic("pmap_pvo_enter: failed");
   1503   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1504   1.1     matt 			pmap_pvo_enter_depth--;
   1505   1.1     matt #endif
   1506   1.1     matt 			pmap_interrupts_restore(msr);
   1507   1.1     matt 			return ENOMEM;
   1508   1.1     matt 		}
   1509   1.1     matt 	}
   1510   1.1     matt 	pvo->pvo_vaddr = va;
   1511   1.1     matt 	pvo->pvo_pmap = pm;
   1512   1.1     matt 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1513   1.1     matt 	if (flags & VM_PROT_EXECUTE) {
   1514   1.1     matt 		PMAPCOUNT(exec_mappings);
   1515  1.14      chs 		pvo_set_exec(pvo);
   1516   1.1     matt 	}
   1517   1.1     matt 	if (flags & PMAP_WIRED)
   1518   1.1     matt 		pvo->pvo_vaddr |= PVO_WIRED;
   1519   1.1     matt 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1520   1.1     matt 		pvo->pvo_vaddr |= PVO_MANAGED;
   1521   1.1     matt 		PMAPCOUNT(mappings);
   1522   1.1     matt 	} else {
   1523   1.1     matt 		PMAPCOUNT(kernel_mappings);
   1524   1.1     matt 	}
   1525   1.2     matt 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1526   1.1     matt 
   1527   1.1     matt 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1528   1.1     matt 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1529   1.1     matt 		pvo->pvo_pmap->pm_stats.wired_count++;
   1530   1.1     matt 	pvo->pvo_pmap->pm_stats.resident_count++;
   1531   1.1     matt #if defined(DEBUG)
   1532   1.1     matt 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1533   1.1     matt 		DPRINTFN(PVOENTER,
   1534   1.1     matt 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1535   1.1     matt 		    pvo, pm, va, pa));
   1536   1.1     matt #endif
   1537   1.1     matt 
   1538   1.1     matt 	/*
   1539   1.1     matt 	 * We hope this succeeds but it isn't required.
   1540   1.1     matt 	 */
   1541   1.1     matt 	pvoh = &pmap_pvo_table[ptegidx];
   1542   1.1     matt 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1543   1.1     matt 	if (i >= 0) {
   1544   1.1     matt 		PVO_PTEGIDX_SET(pvo, i);
   1545  1.12     matt 		PVO_WHERE(pvo, ENTER_INSERT);
   1546   1.1     matt 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1547   1.1     matt 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1548   1.1     matt 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1549   1.1     matt 	} else {
   1550   1.1     matt 		/*
   1551   1.1     matt 		 * Since we didn't have room for this entry (which makes it
   1552   1.1     matt 		 * and evicted entry), place it at the head of the list.
   1553   1.1     matt 		 */
   1554   1.1     matt 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1555   1.1     matt 		PMAPCOUNT(ptes_evicted);
   1556   1.1     matt 		pm->pm_evictions++;
   1557  1.12     matt 		/*
   1558  1.12     matt 		 * If this is a kernel page, make sure it's active.
   1559  1.12     matt 		 */
   1560  1.12     matt 		if (pm == pmap_kernel()) {
   1561  1.14      chs 			i = pmap_pte_spill(pm, va, FALSE);
   1562  1.12     matt 			KASSERT(i);
   1563  1.12     matt 		}
   1564   1.1     matt 	}
   1565   1.1     matt 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1566   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1567   1.1     matt 	pmap_pvo_enter_depth--;
   1568   1.1     matt #endif
   1569   1.1     matt 	pmap_interrupts_restore(msr);
   1570   1.1     matt 	return 0;
   1571   1.1     matt }
   1572   1.1     matt 
   1573   1.1     matt void
   1574   1.1     matt pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
   1575   1.1     matt {
   1576   1.2     matt 	volatile struct pte *pt;
   1577   1.1     matt 	int ptegidx;
   1578   1.1     matt 
   1579   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1580   1.1     matt 	if (++pmap_pvo_remove_depth > 1)
   1581   1.1     matt 		panic("pmap_pvo_remove: called recursively!");
   1582   1.1     matt #endif
   1583   1.1     matt 
   1584   1.1     matt 	/*
   1585   1.1     matt 	 * If we haven't been supplied the ptegidx, calculate it.
   1586   1.1     matt 	 */
   1587   1.1     matt 	if (pteidx == -1) {
   1588   1.2     matt 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1589   1.1     matt 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1590   1.1     matt 	} else {
   1591   1.1     matt 		ptegidx = pteidx >> 3;
   1592   1.1     matt 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1593   1.1     matt 			ptegidx ^= pmap_pteg_mask;
   1594   1.1     matt 	}
   1595   1.1     matt 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1596   1.1     matt 
   1597   1.1     matt 	/*
   1598   1.1     matt 	 * If there is an active pte entry, we need to deactivate it
   1599   1.1     matt 	 * (and save the ref & chg bits).
   1600   1.1     matt 	 */
   1601   1.1     matt 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1602   1.1     matt 	if (pt != NULL) {
   1603   1.1     matt 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1604  1.12     matt 		PVO_WHERE(pvo, REMOVE);
   1605   1.1     matt 		PVO_PTEGIDX_CLR(pvo);
   1606   1.1     matt 		PMAPCOUNT(ptes_removed);
   1607   1.1     matt 	} else {
   1608   1.1     matt 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1609   1.1     matt 		pvo->pvo_pmap->pm_evictions--;
   1610   1.1     matt 	}
   1611   1.1     matt 
   1612   1.1     matt 	/*
   1613  1.14      chs 	 * Account for executable mappings.
   1614  1.14      chs 	 */
   1615  1.14      chs 	if (PVO_ISEXECUTABLE(pvo))
   1616  1.14      chs 		pvo_clear_exec(pvo);
   1617  1.14      chs 
   1618  1.14      chs 	/*
   1619  1.14      chs 	 * Update our statistics.
   1620   1.1     matt 	 */
   1621   1.1     matt 	pvo->pvo_pmap->pm_stats.resident_count--;
   1622   1.1     matt 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1623   1.1     matt 		pvo->pvo_pmap->pm_stats.wired_count--;
   1624   1.1     matt 
   1625   1.1     matt 	/*
   1626   1.1     matt 	 * Save the REF/CHG bits into their cache if the page is managed.
   1627   1.1     matt 	 */
   1628   1.1     matt 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1629   1.2     matt 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1630   1.1     matt 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1631   1.1     matt 
   1632   1.1     matt 		if (pg != NULL) {
   1633   1.1     matt 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1634   1.1     matt 		}
   1635   1.1     matt 		PMAPCOUNT(unmappings);
   1636   1.1     matt 	} else {
   1637   1.1     matt 		PMAPCOUNT(kernel_unmappings);
   1638   1.1     matt 	}
   1639   1.1     matt 
   1640   1.1     matt 	/*
   1641   1.1     matt 	 * Remove the PVO from its lists and return it to the pool.
   1642   1.1     matt 	 */
   1643   1.1     matt 	LIST_REMOVE(pvo, pvo_vlink);
   1644   1.1     matt 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1645   1.1     matt 	pool_put(pvo->pvo_vaddr & PVO_MANAGED
   1646   1.1     matt 	    ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1647   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1648   1.1     matt 	pmap_pvo_remove_depth--;
   1649   1.1     matt #endif
   1650   1.1     matt }
   1651   1.1     matt 
   1652   1.1     matt /*
   1653  1.14      chs  * Mark a mapping as executable.
   1654  1.14      chs  * If this is the first executable mapping in the segment,
   1655  1.14      chs  * clear the noexec flag.
   1656  1.14      chs  */
   1657  1.14      chs STATIC void
   1658  1.14      chs pvo_set_exec(struct pvo_entry *pvo)
   1659  1.14      chs {
   1660  1.14      chs 	struct pmap *pm = pvo->pvo_pmap;
   1661  1.14      chs 	int sr;
   1662  1.14      chs 
   1663  1.14      chs 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1664  1.14      chs 		return;
   1665  1.14      chs 	}
   1666  1.14      chs 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1667  1.14      chs 	sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1668  1.14      chs 	if (pm->pm_exec[sr]++ == 0) {
   1669  1.14      chs 		pm->pm_sr[sr] &= ~SR_NOEXEC;
   1670  1.14      chs 	}
   1671  1.14      chs }
   1672  1.14      chs 
   1673  1.14      chs /*
   1674  1.14      chs  * Mark a mapping as non-executable.
   1675  1.14      chs  * If this was the last executable mapping in the segment,
   1676  1.14      chs  * set the noexec flag.
   1677  1.14      chs  */
   1678  1.14      chs STATIC void
   1679  1.14      chs pvo_clear_exec(struct pvo_entry *pvo)
   1680  1.14      chs {
   1681  1.14      chs 	struct pmap *pm = pvo->pvo_pmap;
   1682  1.14      chs 	int sr;
   1683  1.14      chs 
   1684  1.14      chs 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1685  1.14      chs 		return;
   1686  1.14      chs 	}
   1687  1.14      chs 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1688  1.14      chs 	sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1689  1.14      chs 	if (--pm->pm_exec[sr] == 0) {
   1690  1.14      chs 		pm->pm_sr[sr] |= SR_NOEXEC;
   1691  1.14      chs 	}
   1692  1.14      chs }
   1693  1.14      chs 
   1694  1.14      chs /*
   1695   1.1     matt  * Insert physical page at pa into the given pmap at virtual address va.
   1696   1.1     matt  */
   1697   1.1     matt int
   1698   1.1     matt pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1699   1.1     matt {
   1700   1.1     matt 	struct mem_region *mp;
   1701   1.1     matt 	struct pvo_head *pvo_head;
   1702   1.1     matt 	struct vm_page *pg;
   1703   1.1     matt 	struct pool *pl;
   1704   1.2     matt 	register_t pte_lo;
   1705   1.1     matt 	int error;
   1706   1.1     matt 	u_int pvo_flags;
   1707   1.1     matt 	u_int was_exec = 0;
   1708   1.1     matt 
   1709   1.1     matt 	if (__predict_false(!pmap_initialized)) {
   1710   1.1     matt 		pvo_head = &pmap_pvo_kunmanaged;
   1711   1.1     matt 		pl = &pmap_upvo_pool;
   1712   1.1     matt 		pvo_flags = 0;
   1713   1.1     matt 		pg = NULL;
   1714   1.1     matt 		was_exec = PTE_EXEC;
   1715   1.1     matt 	} else {
   1716   1.1     matt 		pvo_head = pa_to_pvoh(pa, &pg);
   1717   1.1     matt 		pl = &pmap_mpvo_pool;
   1718   1.1     matt 		pvo_flags = PVO_MANAGED;
   1719   1.1     matt 	}
   1720   1.1     matt 
   1721   1.1     matt 	DPRINTFN(ENTER,
   1722   1.1     matt 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1723   1.1     matt 	    pm, va, pa, prot, flags));
   1724   1.1     matt 
   1725   1.1     matt 	/*
   1726   1.1     matt 	 * If this is a managed page, and it's the first reference to the
   1727   1.1     matt 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1728   1.1     matt 	 */
   1729   1.1     matt 	if (pg != NULL)
   1730   1.1     matt 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1731   1.1     matt 
   1732   1.1     matt 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1733   1.1     matt 
   1734   1.1     matt 	/*
   1735   1.1     matt 	 * Assume the page is cache inhibited and access is guarded unless
   1736   1.1     matt 	 * it's in our available memory array.  If it is in the memory array,
   1737   1.1     matt 	 * asssume it's in memory coherent memory.
   1738   1.1     matt 	 */
   1739   1.1     matt 	pte_lo = PTE_IG;
   1740   1.1     matt 	if ((flags & PMAP_NC) == 0) {
   1741   1.1     matt 		for (mp = mem; mp->size; mp++) {
   1742   1.1     matt 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1743   1.1     matt 				pte_lo = PTE_M;
   1744   1.1     matt 				break;
   1745   1.1     matt 			}
   1746   1.1     matt 		}
   1747   1.1     matt 	}
   1748   1.1     matt 
   1749   1.1     matt 	if (prot & VM_PROT_WRITE)
   1750   1.1     matt 		pte_lo |= PTE_BW;
   1751   1.1     matt 	else
   1752   1.1     matt 		pte_lo |= PTE_BR;
   1753   1.1     matt 
   1754   1.1     matt 	/*
   1755   1.1     matt 	 * If this was in response to a fault, "pre-fault" the PTE's
   1756   1.1     matt 	 * changed/referenced bit appropriately.
   1757   1.1     matt 	 */
   1758   1.1     matt 	if (flags & VM_PROT_WRITE)
   1759   1.1     matt 		pte_lo |= PTE_CHG;
   1760   1.1     matt 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1761   1.1     matt 		pte_lo |= PTE_REF;
   1762   1.1     matt 
   1763   1.1     matt 	/*
   1764   1.1     matt 	 * We need to know if this page can be executable
   1765   1.1     matt 	 */
   1766   1.1     matt 	flags |= (prot & VM_PROT_EXECUTE);
   1767   1.1     matt 
   1768   1.1     matt 	/*
   1769   1.1     matt 	 * Record mapping for later back-translation and pte spilling.
   1770   1.1     matt 	 * This will overwrite any existing mapping.
   1771   1.1     matt 	 */
   1772   1.1     matt 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1773   1.1     matt 
   1774   1.1     matt 	/*
   1775   1.1     matt 	 * Flush the real page from the instruction cache if this page is
   1776   1.1     matt 	 * mapped executable and cacheable and has not been flushed since
   1777   1.1     matt 	 * the last time it was modified.
   1778   1.1     matt 	 */
   1779   1.1     matt 	if (error == 0 &&
   1780   1.1     matt             (flags & VM_PROT_EXECUTE) &&
   1781   1.1     matt             (pte_lo & PTE_I) == 0 &&
   1782   1.1     matt 	    was_exec == 0) {
   1783   1.1     matt 		DPRINTFN(ENTER, (" syncicache"));
   1784   1.1     matt 		PMAPCOUNT(exec_synced);
   1785   1.6  thorpej 		pmap_syncicache(pa, PAGE_SIZE);
   1786   1.1     matt 		if (pg != NULL) {
   1787   1.1     matt 			pmap_attr_save(pg, PTE_EXEC);
   1788   1.1     matt 			PMAPCOUNT(exec_cached);
   1789   1.1     matt #if defined(DEBUG) || defined(PMAPDEBUG)
   1790   1.1     matt 			if (pmapdebug & PMAPDEBUG_ENTER)
   1791   1.1     matt 				printf(" marked-as-exec");
   1792   1.1     matt 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1793   1.1     matt 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1794   1.1     matt 				    pg->phys_addr);
   1795   1.1     matt 
   1796   1.1     matt #endif
   1797   1.1     matt 		}
   1798   1.1     matt 	}
   1799   1.1     matt 
   1800   1.1     matt 	DPRINTFN(ENTER, (": error=%d\n", error));
   1801   1.1     matt 
   1802   1.1     matt 	return error;
   1803   1.1     matt }
   1804   1.1     matt 
   1805   1.1     matt void
   1806   1.1     matt pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1807   1.1     matt {
   1808   1.1     matt 	struct mem_region *mp;
   1809   1.2     matt 	register_t pte_lo;
   1810   1.1     matt 	int error;
   1811   1.1     matt 
   1812   1.1     matt 	if (va < VM_MIN_KERNEL_ADDRESS)
   1813   1.1     matt 		panic("pmap_kenter_pa: attempt to enter "
   1814   1.1     matt 		    "non-kernel address %#lx!", va);
   1815   1.1     matt 
   1816   1.1     matt 	DPRINTFN(KENTER,
   1817   1.1     matt 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1818   1.1     matt 
   1819   1.1     matt 	/*
   1820   1.1     matt 	 * Assume the page is cache inhibited and access is guarded unless
   1821   1.1     matt 	 * it's in our available memory array.  If it is in the memory array,
   1822   1.1     matt 	 * asssume it's in memory coherent memory.
   1823   1.1     matt 	 */
   1824   1.1     matt 	pte_lo = PTE_IG;
   1825   1.4     matt 	if ((prot & PMAP_NC) == 0) {
   1826   1.4     matt 		for (mp = mem; mp->size; mp++) {
   1827   1.4     matt 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1828   1.4     matt 				pte_lo = PTE_M;
   1829   1.4     matt 				break;
   1830   1.4     matt 			}
   1831   1.1     matt 		}
   1832   1.1     matt 	}
   1833   1.1     matt 
   1834   1.1     matt 	if (prot & VM_PROT_WRITE)
   1835   1.1     matt 		pte_lo |= PTE_BW;
   1836   1.1     matt 	else
   1837   1.1     matt 		pte_lo |= PTE_BR;
   1838   1.1     matt 
   1839   1.1     matt 	/*
   1840   1.1     matt 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1841   1.1     matt 	 */
   1842   1.1     matt 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1843   1.1     matt 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1844   1.1     matt 
   1845   1.1     matt 	if (error != 0)
   1846   1.1     matt 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1847   1.1     matt 		      va, pa, error);
   1848   1.1     matt }
   1849   1.1     matt 
   1850   1.1     matt void
   1851   1.1     matt pmap_kremove(vaddr_t va, vsize_t len)
   1852   1.1     matt {
   1853   1.1     matt 	if (va < VM_MIN_KERNEL_ADDRESS)
   1854   1.1     matt 		panic("pmap_kremove: attempt to remove "
   1855   1.1     matt 		    "non-kernel address %#lx!", va);
   1856   1.1     matt 
   1857   1.1     matt 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1858   1.1     matt 	pmap_remove(pmap_kernel(), va, va + len);
   1859   1.1     matt }
   1860   1.1     matt 
   1861   1.1     matt /*
   1862   1.1     matt  * Remove the given range of mapping entries.
   1863   1.1     matt  */
   1864   1.1     matt void
   1865   1.1     matt pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1866   1.1     matt {
   1867   1.1     matt 	struct pvo_entry *pvo;
   1868   1.2     matt 	register_t msr;
   1869   1.1     matt 	int pteidx;
   1870   1.1     matt 
   1871  1.14      chs 	msr = pmap_interrupts_off();
   1872   1.1     matt 	for (; va < endva; va += PAGE_SIZE) {
   1873   1.1     matt 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1874   1.1     matt 		if (pvo != NULL) {
   1875   1.1     matt 			pmap_pvo_remove(pvo, pteidx);
   1876   1.1     matt 		}
   1877   1.1     matt 	}
   1878  1.14      chs 	pmap_interrupts_restore(msr);
   1879   1.1     matt }
   1880   1.1     matt 
   1881   1.1     matt /*
   1882   1.1     matt  * Get the physical page address for the given pmap/virtual address.
   1883   1.1     matt  */
   1884   1.1     matt boolean_t
   1885   1.1     matt pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1886   1.1     matt {
   1887   1.1     matt 	struct pvo_entry *pvo;
   1888   1.2     matt 	register_t msr;
   1889   1.7     matt 
   1890   1.7     matt 	/*
   1891   1.7     matt 	 * If this is a kernel pmap lookup, also check the battable
   1892   1.7     matt 	 * and if we get a hit, translate the VA to a PA using the
   1893   1.7     matt 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   1894   1.7     matt 	 * that will wrap back to 0.
   1895   1.7     matt 	 */
   1896   1.7     matt 	if (pm == pmap_kernel() &&
   1897   1.7     matt 	    (va < VM_MIN_KERNEL_ADDRESS ||
   1898   1.7     matt 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   1899   1.7     matt 		register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   1900   1.8     matt 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   1901   1.7     matt 		if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   1902   1.7     matt 			register_t batl = battable[va >> ADDR_SR_SHFT].batl;
   1903   1.7     matt 			register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   1904   1.7     matt 			*pap = (batl & mask) | (va & ~mask);
   1905   1.7     matt 			return TRUE;
   1906   1.7     matt 		}
   1907   1.7     matt 		return FALSE;
   1908   1.7     matt 	}
   1909   1.1     matt 
   1910   1.1     matt 	msr = pmap_interrupts_off();
   1911   1.1     matt 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   1912   1.1     matt 	if (pvo != NULL) {
   1913   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1914   1.1     matt 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   1915   1.1     matt 	}
   1916   1.1     matt 	pmap_interrupts_restore(msr);
   1917   1.1     matt 	return pvo != NULL;
   1918   1.1     matt }
   1919   1.1     matt 
   1920   1.1     matt /*
   1921   1.1     matt  * Lower the protection on the specified range of this pmap.
   1922   1.1     matt  */
   1923   1.1     matt void
   1924   1.1     matt pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   1925   1.1     matt {
   1926   1.1     matt 	struct pvo_entry *pvo;
   1927   1.2     matt 	volatile struct pte *pt;
   1928   1.2     matt 	register_t msr;
   1929   1.1     matt 	int pteidx;
   1930   1.1     matt 
   1931   1.1     matt 	/*
   1932   1.1     matt 	 * Since this routine only downgrades protection, we should
   1933  1.14      chs 	 * always be called with at least one bit not set.
   1934   1.1     matt 	 */
   1935  1.14      chs 	KASSERT(prot != VM_PROT_ALL);
   1936   1.1     matt 
   1937   1.1     matt 	/*
   1938   1.1     matt 	 * If there is no protection, this is equivalent to
   1939   1.1     matt 	 * remove the pmap from the pmap.
   1940   1.1     matt 	 */
   1941   1.1     matt 	if ((prot & VM_PROT_READ) == 0) {
   1942   1.1     matt 		pmap_remove(pm, va, endva);
   1943   1.1     matt 		return;
   1944   1.1     matt 	}
   1945   1.1     matt 
   1946   1.1     matt 	msr = pmap_interrupts_off();
   1947   1.6  thorpej 	for (; va < endva; va += PAGE_SIZE) {
   1948   1.1     matt 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1949   1.1     matt 		if (pvo == NULL)
   1950   1.1     matt 			continue;
   1951   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1952   1.1     matt 
   1953   1.1     matt 		/*
   1954   1.1     matt 		 * Revoke executable if asked to do so.
   1955   1.1     matt 		 */
   1956   1.1     matt 		if ((prot & VM_PROT_EXECUTE) == 0)
   1957  1.14      chs 			pvo_clear_exec(pvo);
   1958   1.1     matt 
   1959   1.1     matt #if 0
   1960   1.1     matt 		/*
   1961   1.1     matt 		 * If the page is already read-only, no change
   1962   1.1     matt 		 * needs to be made.
   1963   1.1     matt 		 */
   1964   1.1     matt 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   1965   1.1     matt 			continue;
   1966   1.1     matt #endif
   1967   1.1     matt 		/*
   1968   1.1     matt 		 * Grab the PTE pointer before we diddle with
   1969   1.1     matt 		 * the cached PTE copy.
   1970   1.1     matt 		 */
   1971   1.1     matt 		pt = pmap_pvo_to_pte(pvo, pteidx);
   1972   1.1     matt 		/*
   1973   1.1     matt 		 * Change the protection of the page.
   1974   1.1     matt 		 */
   1975   1.1     matt 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   1976   1.1     matt 		pvo->pvo_pte.pte_lo |= PTE_BR;
   1977   1.1     matt 
   1978   1.1     matt 		/*
   1979   1.1     matt 		 * If the PVO is in the page table, update
   1980   1.1     matt 		 * that pte at well.
   1981   1.1     matt 		 */
   1982   1.1     matt 		if (pt != NULL) {
   1983   1.1     matt 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1984  1.12     matt 			PVO_WHERE(pvo, PMAP_PROTECT);
   1985   1.1     matt 			PMAPCOUNT(ptes_changed);
   1986   1.1     matt 		}
   1987   1.1     matt 
   1988   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1989   1.1     matt 	}
   1990   1.1     matt 	pmap_interrupts_restore(msr);
   1991   1.1     matt }
   1992   1.1     matt 
   1993   1.1     matt void
   1994   1.1     matt pmap_unwire(pmap_t pm, vaddr_t va)
   1995   1.1     matt {
   1996   1.1     matt 	struct pvo_entry *pvo;
   1997   1.2     matt 	register_t msr;
   1998   1.1     matt 
   1999   1.1     matt 	msr = pmap_interrupts_off();
   2000   1.1     matt 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2001   1.1     matt 	if (pvo != NULL) {
   2002   1.1     matt 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2003   1.1     matt 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2004   1.1     matt 			pm->pm_stats.wired_count--;
   2005   1.1     matt 		}
   2006   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2007   1.1     matt 	}
   2008   1.1     matt 	pmap_interrupts_restore(msr);
   2009   1.1     matt }
   2010   1.1     matt 
   2011   1.1     matt /*
   2012   1.1     matt  * Lower the protection on the specified physical page.
   2013   1.1     matt  */
   2014   1.1     matt void
   2015   1.1     matt pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2016   1.1     matt {
   2017   1.1     matt 	struct pvo_head *pvo_head;
   2018   1.1     matt 	struct pvo_entry *pvo, *next_pvo;
   2019   1.2     matt 	volatile struct pte *pt;
   2020   1.2     matt 	register_t msr;
   2021   1.1     matt 
   2022  1.14      chs 	KASSERT(prot != VM_PROT_ALL);
   2023   1.1     matt 	msr = pmap_interrupts_off();
   2024   1.1     matt 
   2025   1.1     matt 	/*
   2026   1.1     matt 	 * When UVM reuses a page, it does a pmap_page_protect with
   2027   1.1     matt 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2028   1.1     matt 	 * since we know the page will have different contents.
   2029   1.1     matt 	 */
   2030   1.1     matt 	if ((prot & VM_PROT_READ) == 0) {
   2031   1.1     matt 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2032   1.1     matt 		    pg->phys_addr));
   2033   1.1     matt 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2034   1.1     matt 			PMAPCOUNT(exec_uncached_page_protect);
   2035   1.1     matt 			pmap_attr_clear(pg, PTE_EXEC);
   2036   1.1     matt 		}
   2037   1.1     matt 	}
   2038   1.1     matt 
   2039   1.1     matt 	pvo_head = vm_page_to_pvoh(pg);
   2040   1.1     matt 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2041   1.1     matt 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2042   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2043   1.1     matt 
   2044   1.1     matt 		/*
   2045   1.1     matt 		 * Downgrading to no mapping at all, we just remove the entry.
   2046   1.1     matt 		 */
   2047   1.1     matt 		if ((prot & VM_PROT_READ) == 0) {
   2048   1.1     matt 			pmap_pvo_remove(pvo, -1);
   2049   1.1     matt 			continue;
   2050   1.1     matt 		}
   2051   1.1     matt 
   2052   1.1     matt 		/*
   2053   1.1     matt 		 * If EXEC permission is being revoked, just clear the
   2054   1.1     matt 		 * flag in the PVO.
   2055   1.1     matt 		 */
   2056   1.1     matt 		if ((prot & VM_PROT_EXECUTE) == 0)
   2057  1.14      chs 			pvo_clear_exec(pvo);
   2058   1.1     matt 
   2059   1.1     matt 		/*
   2060   1.1     matt 		 * If this entry is already RO, don't diddle with the
   2061   1.1     matt 		 * page table.
   2062   1.1     matt 		 */
   2063   1.1     matt 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2064   1.1     matt 			PMAP_PVO_CHECK(pvo);
   2065   1.1     matt 			continue;
   2066   1.1     matt 		}
   2067   1.1     matt 
   2068   1.1     matt 		/*
   2069   1.1     matt 		 * Grab the PTE before the we diddle the bits so
   2070   1.1     matt 		 * pvo_to_pte can verify the pte contents are as
   2071   1.1     matt 		 * expected.
   2072   1.1     matt 		 */
   2073   1.1     matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2074   1.1     matt 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2075   1.1     matt 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2076   1.1     matt 		if (pt != NULL) {
   2077   1.1     matt 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2078  1.12     matt 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2079   1.1     matt 			PMAPCOUNT(ptes_changed);
   2080   1.1     matt 		}
   2081   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2082   1.1     matt 	}
   2083   1.1     matt 	pmap_interrupts_restore(msr);
   2084   1.1     matt }
   2085   1.1     matt 
   2086   1.1     matt /*
   2087   1.1     matt  * Activate the address space for the specified process.  If the process
   2088   1.1     matt  * is the current process, load the new MMU context.
   2089   1.1     matt  */
   2090   1.1     matt void
   2091   1.1     matt pmap_activate(struct lwp *l)
   2092   1.1     matt {
   2093   1.1     matt 	struct pcb *pcb = &l->l_addr->u_pcb;
   2094   1.1     matt 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2095   1.1     matt 
   2096   1.1     matt 	DPRINTFN(ACTIVATE,
   2097   1.1     matt 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2098   1.1     matt 
   2099   1.1     matt 	/*
   2100   1.1     matt 	 * XXX Normally performed in cpu_fork().
   2101   1.1     matt 	 */
   2102  1.13     matt 	pcb->pcb_pm = pmap;
   2103   1.1     matt }
   2104   1.1     matt 
   2105   1.1     matt /*
   2106   1.1     matt  * Deactivate the specified process's address space.
   2107   1.1     matt  */
   2108   1.1     matt void
   2109   1.1     matt pmap_deactivate(struct lwp *l)
   2110   1.1     matt {
   2111   1.1     matt }
   2112   1.1     matt 
   2113   1.1     matt boolean_t
   2114   1.1     matt pmap_query_bit(struct vm_page *pg, int ptebit)
   2115   1.1     matt {
   2116   1.1     matt 	struct pvo_entry *pvo;
   2117   1.2     matt 	volatile struct pte *pt;
   2118   1.2     matt 	register_t msr;
   2119   1.1     matt 
   2120   1.1     matt 	if (pmap_attr_fetch(pg) & ptebit)
   2121   1.1     matt 		return TRUE;
   2122  1.14      chs 
   2123   1.1     matt 	msr = pmap_interrupts_off();
   2124   1.1     matt 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2125   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2126   1.1     matt 		/*
   2127   1.1     matt 		 * See if we saved the bit off.  If so cache, it and return
   2128   1.1     matt 		 * success.
   2129   1.1     matt 		 */
   2130   1.1     matt 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2131   1.1     matt 			pmap_attr_save(pg, ptebit);
   2132   1.1     matt 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2133   1.1     matt 			pmap_interrupts_restore(msr);
   2134   1.1     matt 			return TRUE;
   2135   1.1     matt 		}
   2136   1.1     matt 	}
   2137   1.1     matt 	/*
   2138   1.1     matt 	 * No luck, now go thru the hard part of looking at the ptes
   2139   1.1     matt 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2140   1.1     matt 	 * to the PTEs.
   2141   1.1     matt 	 */
   2142   1.1     matt 	SYNC();
   2143   1.1     matt 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2144   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2145   1.1     matt 		/*
   2146   1.1     matt 		 * See if this pvo have a valid PTE.  If so, fetch the
   2147   1.1     matt 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2148   1.1     matt 		 * ptebit is set, cache, it and return success.
   2149   1.1     matt 		 */
   2150   1.1     matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2151   1.1     matt 		if (pt != NULL) {
   2152   1.1     matt 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2153   1.1     matt 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2154   1.1     matt 				pmap_attr_save(pg, ptebit);
   2155   1.1     matt 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2156   1.1     matt 				pmap_interrupts_restore(msr);
   2157   1.1     matt 				return TRUE;
   2158   1.1     matt 			}
   2159   1.1     matt 		}
   2160   1.1     matt 	}
   2161   1.1     matt 	pmap_interrupts_restore(msr);
   2162   1.1     matt 	return FALSE;
   2163   1.1     matt }
   2164   1.1     matt 
   2165   1.1     matt boolean_t
   2166   1.1     matt pmap_clear_bit(struct vm_page *pg, int ptebit)
   2167   1.1     matt {
   2168   1.1     matt 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2169   1.1     matt 	struct pvo_entry *pvo;
   2170   1.2     matt 	volatile struct pte *pt;
   2171   1.2     matt 	register_t msr;
   2172   1.1     matt 	int rv = 0;
   2173   1.1     matt 
   2174   1.1     matt 	msr = pmap_interrupts_off();
   2175   1.1     matt 
   2176   1.1     matt 	/*
   2177   1.1     matt 	 * Fetch the cache value
   2178   1.1     matt 	 */
   2179   1.1     matt 	rv |= pmap_attr_fetch(pg);
   2180   1.1     matt 
   2181   1.1     matt 	/*
   2182   1.1     matt 	 * Clear the cached value.
   2183   1.1     matt 	 */
   2184   1.1     matt 	pmap_attr_clear(pg, ptebit);
   2185   1.1     matt 
   2186   1.1     matt 	/*
   2187   1.1     matt 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2188   1.1     matt 	 * can reset the right ones).  Note that since the pvo entries and
   2189   1.1     matt 	 * list heads are accessed via BAT0 and are never placed in the
   2190   1.1     matt 	 * page table, we don't have to worry about further accesses setting
   2191   1.1     matt 	 * the REF/CHG bits.
   2192   1.1     matt 	 */
   2193   1.1     matt 	SYNC();
   2194   1.1     matt 
   2195   1.1     matt 	/*
   2196   1.1     matt 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2197   1.1     matt 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2198   1.1     matt 	 */
   2199   1.1     matt 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2200   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2201   1.1     matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2202   1.1     matt 		if (pt != NULL) {
   2203   1.1     matt 			/*
   2204   1.1     matt 			 * Only sync the PTE if the bit we are looking
   2205   1.1     matt 			 * for is not already set.
   2206   1.1     matt 			 */
   2207   1.1     matt 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2208   1.1     matt 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2209   1.1     matt 			/*
   2210   1.1     matt 			 * If the bit we are looking for was already set,
   2211   1.1     matt 			 * clear that bit in the pte.
   2212   1.1     matt 			 */
   2213   1.1     matt 			if (pvo->pvo_pte.pte_lo & ptebit)
   2214   1.1     matt 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2215   1.1     matt 		}
   2216   1.1     matt 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2217   1.1     matt 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2218   1.1     matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2219   1.1     matt 	}
   2220   1.1     matt 	pmap_interrupts_restore(msr);
   2221  1.14      chs 
   2222   1.1     matt 	/*
   2223   1.1     matt 	 * If we are clearing the modify bit and this page was marked EXEC
   2224   1.1     matt 	 * and the user of the page thinks the page was modified, then we
   2225   1.1     matt 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2226   1.1     matt 	 * bit if it's not mapped.  The page itself might not have the CHG
   2227   1.1     matt 	 * bit set if the modification was done via DMA to the page.
   2228   1.1     matt 	 */
   2229   1.1     matt 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2230   1.1     matt 		if (LIST_EMPTY(pvoh)) {
   2231   1.1     matt 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2232   1.1     matt 			    pg->phys_addr));
   2233   1.1     matt 			pmap_attr_clear(pg, PTE_EXEC);
   2234   1.1     matt 			PMAPCOUNT(exec_uncached_clear_modify);
   2235   1.1     matt 		} else {
   2236   1.1     matt 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2237   1.1     matt 			    pg->phys_addr));
   2238   1.6  thorpej 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2239   1.1     matt 			PMAPCOUNT(exec_synced_clear_modify);
   2240   1.1     matt 		}
   2241   1.1     matt 	}
   2242   1.1     matt 	return (rv & ptebit) != 0;
   2243   1.1     matt }
   2244   1.1     matt 
   2245   1.1     matt void
   2246   1.1     matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2247   1.1     matt {
   2248   1.1     matt 	struct pvo_entry *pvo;
   2249   1.1     matt 	size_t offset = va & ADDR_POFF;
   2250   1.1     matt 	int s;
   2251   1.1     matt 
   2252   1.1     matt 	s = splvm();
   2253   1.1     matt 	while (len > 0) {
   2254   1.6  thorpej 		size_t seglen = PAGE_SIZE - offset;
   2255   1.1     matt 		if (seglen > len)
   2256   1.1     matt 			seglen = len;
   2257   1.1     matt 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2258   1.1     matt 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2259   1.1     matt 			pmap_syncicache(
   2260   1.1     matt 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2261   1.1     matt 			PMAP_PVO_CHECK(pvo);
   2262   1.1     matt 		}
   2263   1.1     matt 		va += seglen;
   2264   1.1     matt 		len -= seglen;
   2265   1.1     matt 		offset = 0;
   2266   1.1     matt 	}
   2267   1.1     matt 	splx(s);
   2268   1.1     matt }
   2269   1.1     matt 
   2270   1.1     matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2271   1.1     matt void
   2272   1.2     matt pmap_pte_print(volatile struct pte *pt)
   2273   1.1     matt {
   2274   1.1     matt 	printf("PTE %p: ", pt);
   2275   1.1     matt 	/* High word: */
   2276   1.2     matt 	printf("0x%08lx: [", pt->pte_hi);
   2277   1.1     matt 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2278   1.1     matt 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2279   1.2     matt 	printf("0x%06lx 0x%02lx",
   2280   1.1     matt 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2281   1.1     matt 	    pt->pte_hi & PTE_API);
   2282   1.1     matt 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2283   1.1     matt 	/* Low word: */
   2284   1.2     matt 	printf(" 0x%08lx: [", pt->pte_lo);
   2285   1.2     matt 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2286   1.1     matt 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2287   1.1     matt 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2288   1.1     matt 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2289   1.1     matt 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2290   1.1     matt 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2291   1.1     matt 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2292   1.1     matt 	switch (pt->pte_lo & PTE_PP) {
   2293   1.1     matt 	case PTE_BR: printf("br]\n"); break;
   2294   1.1     matt 	case PTE_BW: printf("bw]\n"); break;
   2295   1.1     matt 	case PTE_SO: printf("so]\n"); break;
   2296   1.1     matt 	case PTE_SW: printf("sw]\n"); break;
   2297   1.1     matt 	}
   2298   1.1     matt }
   2299   1.1     matt #endif
   2300   1.1     matt 
   2301   1.1     matt #if defined(DDB)
   2302   1.1     matt void
   2303   1.1     matt pmap_pteg_check(void)
   2304   1.1     matt {
   2305   1.2     matt 	volatile struct pte *pt;
   2306   1.1     matt 	int i;
   2307   1.1     matt 	int ptegidx;
   2308   1.1     matt 	u_int p_valid = 0;
   2309   1.1     matt 	u_int s_valid = 0;
   2310   1.1     matt 	u_int invalid = 0;
   2311   1.1     matt 
   2312   1.1     matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2313   1.1     matt 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2314   1.1     matt 			if (pt->pte_hi & PTE_VALID) {
   2315   1.1     matt 				if (pt->pte_hi & PTE_HID)
   2316   1.1     matt 					s_valid++;
   2317   1.1     matt 				else
   2318   1.1     matt 					p_valid++;
   2319   1.1     matt 			} else
   2320   1.1     matt 				invalid++;
   2321   1.1     matt 		}
   2322   1.1     matt 	}
   2323   1.1     matt 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2324   1.1     matt 		p_valid, p_valid, s_valid, s_valid,
   2325   1.1     matt 		invalid, invalid);
   2326   1.1     matt }
   2327   1.1     matt 
   2328   1.1     matt void
   2329   1.1     matt pmap_print_mmuregs(void)
   2330   1.1     matt {
   2331   1.1     matt 	int i;
   2332   1.1     matt 	u_int cpuvers;
   2333   1.1     matt 	vaddr_t addr;
   2334   1.2     matt 	register_t soft_sr[16];
   2335   1.1     matt 	struct bat soft_ibat[4];
   2336   1.1     matt 	struct bat soft_dbat[4];
   2337   1.2     matt 	register_t sdr1;
   2338   1.1     matt 
   2339   1.1     matt 	cpuvers = MFPVR() >> 16;
   2340   1.1     matt 
   2341   1.1     matt 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2342   1.1     matt 	for (i=0; i<16; i++) {
   2343   1.1     matt 		soft_sr[i] = MFSRIN(addr);
   2344   1.1     matt 		addr += (1 << ADDR_SR_SHFT);
   2345   1.1     matt 	}
   2346   1.1     matt 
   2347   1.1     matt 	/* read iBAT (601: uBAT) registers */
   2348   1.1     matt 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2349   1.1     matt 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2350   1.1     matt 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2351   1.1     matt 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2352   1.1     matt 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2353   1.1     matt 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2354   1.1     matt 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2355   1.1     matt 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2356   1.1     matt 
   2357   1.1     matt 
   2358   1.1     matt 	if (cpuvers != MPC601) {
   2359   1.1     matt 		/* read dBAT registers */
   2360   1.1     matt 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2361   1.1     matt 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2362   1.1     matt 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2363   1.1     matt 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2364   1.1     matt 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2365   1.1     matt 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2366   1.1     matt 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2367   1.1     matt 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2368   1.1     matt 	}
   2369   1.1     matt 
   2370   1.2     matt 	printf("SDR1:\t%#lx\n", sdr1);
   2371   1.1     matt 	printf("SR[]:\t");
   2372   1.1     matt 	addr = 0;
   2373   1.1     matt 	for (i=0; i<4; i++)
   2374   1.2     matt 		printf("0x%08lx,   ", soft_sr[i]);
   2375   1.1     matt 	printf("\n\t");
   2376   1.1     matt 	for ( ; i<8; i++)
   2377   1.2     matt 		printf("0x%08lx,   ", soft_sr[i]);
   2378   1.1     matt 	printf("\n\t");
   2379   1.1     matt 	for ( ; i<12; i++)
   2380   1.2     matt 		printf("0x%08lx,   ", soft_sr[i]);
   2381   1.1     matt 	printf("\n\t");
   2382   1.1     matt 	for ( ; i<16; i++)
   2383   1.2     matt 		printf("0x%08lx,   ", soft_sr[i]);
   2384   1.1     matt 	printf("\n");
   2385   1.1     matt 
   2386   1.1     matt 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2387   1.1     matt 	for (i=0; i<4; i++) {
   2388   1.2     matt 		printf("0x%08lx 0x%08lx, ",
   2389   1.1     matt 			soft_ibat[i].batu, soft_ibat[i].batl);
   2390   1.1     matt 		if (i == 1)
   2391   1.1     matt 			printf("\n\t");
   2392   1.1     matt 	}
   2393   1.1     matt 	if (cpuvers != MPC601) {
   2394   1.1     matt 		printf("\ndBAT[]:\t");
   2395   1.1     matt 		for (i=0; i<4; i++) {
   2396   1.2     matt 			printf("0x%08lx 0x%08lx, ",
   2397   1.1     matt 				soft_dbat[i].batu, soft_dbat[i].batl);
   2398   1.1     matt 			if (i == 1)
   2399   1.1     matt 				printf("\n\t");
   2400   1.1     matt 		}
   2401   1.1     matt 	}
   2402   1.1     matt 	printf("\n");
   2403   1.1     matt }
   2404   1.1     matt 
   2405   1.1     matt void
   2406   1.1     matt pmap_print_pte(pmap_t pm, vaddr_t va)
   2407   1.1     matt {
   2408   1.1     matt 	struct pvo_entry *pvo;
   2409   1.2     matt 	volatile struct pte *pt;
   2410   1.1     matt 	int pteidx;
   2411   1.1     matt 
   2412   1.1     matt 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2413   1.1     matt 	if (pvo != NULL) {
   2414   1.1     matt 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2415   1.1     matt 		if (pt != NULL) {
   2416   1.2     matt 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2417   1.1     matt 				va, pt,
   2418   1.1     matt 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2419   1.1     matt 				pt->pte_hi, pt->pte_lo);
   2420   1.1     matt 		} else {
   2421   1.1     matt 			printf("No valid PTE found\n");
   2422   1.1     matt 		}
   2423   1.1     matt 	} else {
   2424   1.1     matt 		printf("Address not in pmap\n");
   2425   1.1     matt 	}
   2426   1.1     matt }
   2427   1.1     matt 
   2428   1.1     matt void
   2429   1.1     matt pmap_pteg_dist(void)
   2430   1.1     matt {
   2431   1.1     matt 	struct pvo_entry *pvo;
   2432   1.1     matt 	int ptegidx;
   2433   1.1     matt 	int depth;
   2434   1.1     matt 	int max_depth = 0;
   2435   1.1     matt 	unsigned int depths[64];
   2436   1.1     matt 
   2437   1.1     matt 	memset(depths, 0, sizeof(depths));
   2438   1.1     matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2439   1.1     matt 		depth = 0;
   2440   1.1     matt 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2441   1.1     matt 			depth++;
   2442   1.1     matt 		}
   2443   1.1     matt 		if (depth > max_depth)
   2444   1.1     matt 			max_depth = depth;
   2445   1.1     matt 		if (depth > 63)
   2446   1.1     matt 			depth = 63;
   2447   1.1     matt 		depths[depth]++;
   2448   1.1     matt 	}
   2449   1.1     matt 
   2450   1.1     matt 	for (depth = 0; depth < 64; depth++) {
   2451   1.1     matt 		printf("  [%2d]: %8u", depth, depths[depth]);
   2452   1.1     matt 		if ((depth & 3) == 3)
   2453   1.1     matt 			printf("\n");
   2454   1.1     matt 		if (depth == max_depth)
   2455   1.1     matt 			break;
   2456   1.1     matt 	}
   2457   1.1     matt 	if ((depth & 3) != 3)
   2458   1.1     matt 		printf("\n");
   2459   1.1     matt 	printf("Max depth found was %d\n", max_depth);
   2460   1.1     matt }
   2461   1.1     matt #endif /* DEBUG */
   2462   1.1     matt 
   2463   1.1     matt #if defined(PMAPCHECK) || defined(DEBUG)
   2464   1.1     matt void
   2465   1.1     matt pmap_pvo_verify(void)
   2466   1.1     matt {
   2467   1.1     matt 	int ptegidx;
   2468   1.1     matt 	int s;
   2469   1.1     matt 
   2470   1.1     matt 	s = splvm();
   2471   1.1     matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2472   1.1     matt 		struct pvo_entry *pvo;
   2473   1.1     matt 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2474   1.1     matt 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2475   1.1     matt 				panic("pmap_pvo_verify: invalid pvo %p "
   2476   1.1     matt 				    "on list %#x", pvo, ptegidx);
   2477   1.1     matt 			pmap_pvo_check(pvo);
   2478   1.1     matt 		}
   2479   1.1     matt 	}
   2480   1.1     matt 	splx(s);
   2481   1.1     matt }
   2482   1.1     matt #endif /* PMAPCHECK */
   2483   1.1     matt 
   2484   1.1     matt 
   2485   1.1     matt void *
   2486   1.1     matt pmap_pool_ualloc(struct pool *pp, int flags)
   2487   1.1     matt {
   2488   1.1     matt 	struct pvo_page *pvop;
   2489   1.1     matt 
   2490   1.1     matt 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2491   1.1     matt 	if (pvop != NULL) {
   2492   1.1     matt 		pmap_upvop_free--;
   2493   1.1     matt 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2494   1.1     matt 		return pvop;
   2495   1.1     matt 	}
   2496   1.1     matt 	if (uvm.page_init_done != TRUE) {
   2497   1.1     matt 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2498   1.1     matt 	}
   2499   1.1     matt 	return pmap_pool_malloc(pp, flags);
   2500   1.1     matt }
   2501   1.1     matt 
   2502   1.1     matt void *
   2503   1.1     matt pmap_pool_malloc(struct pool *pp, int flags)
   2504   1.1     matt {
   2505   1.1     matt 	struct pvo_page *pvop;
   2506   1.1     matt 	struct vm_page *pg;
   2507   1.1     matt 
   2508   1.1     matt 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2509   1.1     matt 	if (pvop != NULL) {
   2510   1.1     matt 		pmap_mpvop_free--;
   2511   1.1     matt 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2512   1.1     matt 		return pvop;
   2513   1.1     matt 	}
   2514   1.1     matt  again:
   2515   1.1     matt 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2516   1.1     matt 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2517   1.1     matt 	if (__predict_false(pg == NULL)) {
   2518   1.1     matt 		if (flags & PR_WAITOK) {
   2519   1.1     matt 			uvm_wait("plpg");
   2520   1.1     matt 			goto again;
   2521   1.1     matt 		} else {
   2522   1.1     matt 			return (0);
   2523   1.1     matt 		}
   2524   1.1     matt 	}
   2525   1.1     matt 	return (void *) VM_PAGE_TO_PHYS(pg);
   2526   1.1     matt }
   2527   1.1     matt 
   2528   1.1     matt void
   2529   1.1     matt pmap_pool_ufree(struct pool *pp, void *va)
   2530   1.1     matt {
   2531   1.1     matt 	struct pvo_page *pvop;
   2532   1.1     matt #if 0
   2533   1.1     matt 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2534   1.1     matt 		pmap_pool_mfree(va, size, tag);
   2535   1.1     matt 		return;
   2536   1.1     matt 	}
   2537   1.1     matt #endif
   2538   1.1     matt 	pvop = va;
   2539   1.1     matt 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2540   1.1     matt 	pmap_upvop_free++;
   2541   1.1     matt 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2542   1.1     matt 		pmap_upvop_maxfree = pmap_upvop_free;
   2543   1.1     matt }
   2544   1.1     matt 
   2545   1.1     matt void
   2546   1.1     matt pmap_pool_mfree(struct pool *pp, void *va)
   2547   1.1     matt {
   2548   1.1     matt 	struct pvo_page *pvop;
   2549   1.1     matt 
   2550   1.1     matt 	pvop = va;
   2551   1.1     matt 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2552   1.1     matt 	pmap_mpvop_free++;
   2553   1.1     matt 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2554   1.1     matt 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2555   1.1     matt #if 0
   2556   1.1     matt 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2557   1.1     matt #endif
   2558   1.1     matt }
   2559   1.1     matt 
   2560   1.1     matt /*
   2561   1.1     matt  * This routine in bootstraping to steal to-be-managed memory (which will
   2562   1.1     matt  * then be unmanaged).  We use it to grab from the first 256MB for our
   2563   1.1     matt  * pmap needs and above 256MB for other stuff.
   2564   1.1     matt  */
   2565   1.1     matt vaddr_t
   2566  1.10  thorpej pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2567   1.1     matt {
   2568   1.1     matt 	vsize_t size;
   2569   1.1     matt 	vaddr_t va;
   2570   1.1     matt 	paddr_t pa = 0;
   2571   1.1     matt 	int npgs, bank;
   2572   1.1     matt 	struct vm_physseg *ps;
   2573   1.1     matt 
   2574   1.1     matt 	if (uvm.page_init_done == TRUE)
   2575   1.1     matt 		panic("pmap_steal_memory: called _after_ bootstrap");
   2576   1.1     matt 
   2577  1.10  thorpej 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2578  1.10  thorpej 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2579  1.10  thorpej 
   2580   1.1     matt 	size = round_page(vsize);
   2581   1.1     matt 	npgs = atop(size);
   2582   1.1     matt 
   2583   1.1     matt 	/*
   2584   1.1     matt 	 * PA 0 will never be among those given to UVM so we can use it
   2585   1.1     matt 	 * to indicate we couldn't steal any memory.
   2586   1.1     matt 	 */
   2587   1.1     matt 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2588   1.1     matt 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2589   1.1     matt 		    ps->avail_end - ps->avail_start >= npgs) {
   2590   1.1     matt 			pa = ptoa(ps->avail_start);
   2591   1.1     matt 			break;
   2592   1.1     matt 		}
   2593   1.1     matt 	}
   2594   1.1     matt 
   2595   1.1     matt 	if (pa == 0)
   2596   1.1     matt 		panic("pmap_steal_memory: no approriate memory to steal!");
   2597   1.1     matt 
   2598   1.1     matt 	ps->avail_start += npgs;
   2599   1.1     matt 	ps->start += npgs;
   2600   1.1     matt 
   2601   1.1     matt 	/*
   2602   1.1     matt 	 * If we've used up all the pages in the segment, remove it and
   2603   1.1     matt 	 * compact the list.
   2604   1.1     matt 	 */
   2605   1.1     matt 	if (ps->avail_start == ps->end) {
   2606   1.1     matt 		/*
   2607   1.1     matt 		 * If this was the last one, then a very bad thing has occurred
   2608   1.1     matt 		 */
   2609   1.1     matt 		if (--vm_nphysseg == 0)
   2610   1.1     matt 			panic("pmap_steal_memory: out of memory!");
   2611   1.1     matt 
   2612   1.1     matt 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2613   1.1     matt 		for (; bank < vm_nphysseg; bank++, ps++) {
   2614   1.1     matt 			ps[0] = ps[1];
   2615   1.1     matt 		}
   2616   1.1     matt 	}
   2617   1.1     matt 
   2618   1.1     matt 	va = (vaddr_t) pa;
   2619   1.1     matt 	memset((caddr_t) va, 0, size);
   2620   1.1     matt 	pmap_pages_stolen += npgs;
   2621   1.1     matt #ifdef DEBUG
   2622   1.1     matt 	if (pmapdebug && npgs > 1) {
   2623   1.1     matt 		u_int cnt = 0;
   2624   1.1     matt 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2625   1.1     matt 			cnt += ps->avail_end - ps->avail_start;
   2626   1.1     matt 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2627   1.1     matt 		    npgs, pmap_pages_stolen, cnt);
   2628   1.1     matt 	}
   2629   1.1     matt #endif
   2630   1.1     matt 
   2631   1.1     matt 	return va;
   2632   1.1     matt }
   2633   1.1     matt 
   2634   1.1     matt /*
   2635   1.1     matt  * Find a chuck of memory with right size and alignment.
   2636   1.1     matt  */
   2637   1.1     matt void *
   2638   1.1     matt pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2639   1.1     matt {
   2640   1.1     matt 	struct mem_region *mp;
   2641   1.1     matt 	paddr_t s, e;
   2642   1.1     matt 	int i, j;
   2643   1.1     matt 
   2644   1.1     matt 	size = round_page(size);
   2645   1.1     matt 
   2646   1.1     matt 	DPRINTFN(BOOT,
   2647   1.1     matt 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2648   1.1     matt 	    size, alignment, at_end));
   2649   1.1     matt 
   2650   1.6  thorpej 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2651   1.1     matt 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2652   1.1     matt 		    alignment);
   2653   1.1     matt 
   2654   1.1     matt 	if (at_end) {
   2655   1.6  thorpej 		if (alignment != PAGE_SIZE)
   2656   1.1     matt 			panic("pmap_boot_find_memory: invalid ending "
   2657   1.1     matt 			    "alignment %lx", alignment);
   2658   1.1     matt 
   2659   1.1     matt 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2660   1.1     matt 			s = mp->start + mp->size - size;
   2661   1.1     matt 			if (s >= mp->start && mp->size >= size) {
   2662   1.1     matt 				DPRINTFN(BOOT,(": %lx\n", s));
   2663   1.1     matt 				DPRINTFN(BOOT,
   2664   1.1     matt 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2665   1.1     matt 				     "0x%lx size 0x%lx\n", mp - avail,
   2666   1.1     matt 				     mp->start, mp->size));
   2667   1.1     matt 				mp->size -= size;
   2668   1.1     matt 				DPRINTFN(BOOT,
   2669   1.1     matt 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2670   1.1     matt 				     "0x%lx size 0x%lx\n", mp - avail,
   2671   1.1     matt 				     mp->start, mp->size));
   2672   1.1     matt 				return (void *) s;
   2673   1.1     matt 			}
   2674   1.1     matt 		}
   2675   1.1     matt 		panic("pmap_boot_find_memory: no available memory");
   2676   1.1     matt 	}
   2677   1.1     matt 
   2678   1.1     matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2679   1.1     matt 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2680   1.1     matt 		e = s + size;
   2681   1.1     matt 
   2682   1.1     matt 		/*
   2683   1.1     matt 		 * Is the calculated region entirely within the region?
   2684   1.1     matt 		 */
   2685   1.1     matt 		if (s < mp->start || e > mp->start + mp->size)
   2686   1.1     matt 			continue;
   2687   1.1     matt 
   2688   1.1     matt 		DPRINTFN(BOOT,(": %lx\n", s));
   2689   1.1     matt 		if (s == mp->start) {
   2690   1.1     matt 			/*
   2691   1.1     matt 			 * If the block starts at the beginning of region,
   2692   1.1     matt 			 * adjust the size & start. (the region may now be
   2693   1.1     matt 			 * zero in length)
   2694   1.1     matt 			 */
   2695   1.1     matt 			DPRINTFN(BOOT,
   2696   1.1     matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2697   1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2698   1.1     matt 			mp->start += size;
   2699   1.1     matt 			mp->size -= size;
   2700   1.1     matt 			DPRINTFN(BOOT,
   2701   1.1     matt 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2702   1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2703   1.1     matt 		} else if (e == mp->start + mp->size) {
   2704   1.1     matt 			/*
   2705   1.1     matt 			 * If the block starts at the beginning of region,
   2706   1.1     matt 			 * adjust only the size.
   2707   1.1     matt 			 */
   2708   1.1     matt 			DPRINTFN(BOOT,
   2709   1.1     matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2710   1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2711   1.1     matt 			mp->size -= size;
   2712   1.1     matt 			DPRINTFN(BOOT,
   2713   1.1     matt 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2714   1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2715   1.1     matt 		} else {
   2716   1.1     matt 			/*
   2717   1.1     matt 			 * Block is in the middle of the region, so we
   2718   1.1     matt 			 * have to split it in two.
   2719   1.1     matt 			 */
   2720   1.1     matt 			for (j = avail_cnt; j > i + 1; j--) {
   2721   1.1     matt 				avail[j] = avail[j-1];
   2722   1.1     matt 			}
   2723   1.1     matt 			DPRINTFN(BOOT,
   2724   1.1     matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2725   1.1     matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2726   1.1     matt 			mp[1].start = e;
   2727   1.1     matt 			mp[1].size = mp[0].start + mp[0].size - e;
   2728   1.1     matt 			mp[0].size = s - mp[0].start;
   2729   1.1     matt 			avail_cnt++;
   2730   1.1     matt 			for (; i < avail_cnt; i++) {
   2731   1.1     matt 				DPRINTFN(BOOT,
   2732   1.1     matt 				    ("pmap_boot_find_memory: a-avail[%d] "
   2733   1.1     matt 				     "start 0x%lx size 0x%lx\n", i,
   2734   1.1     matt 				     avail[i].start, avail[i].size));
   2735   1.1     matt 			}
   2736   1.1     matt 		}
   2737   1.1     matt 		return (void *) s;
   2738   1.1     matt 	}
   2739   1.1     matt 	panic("pmap_boot_find_memory: not enough memory for "
   2740   1.1     matt 	    "%lx/%lx allocation?", size, alignment);
   2741   1.1     matt }
   2742   1.1     matt 
   2743   1.1     matt /*
   2744   1.1     matt  * This is not part of the defined PMAP interface and is specific to the
   2745   1.1     matt  * PowerPC architecture.  This is called during initppc, before the system
   2746   1.1     matt  * is really initialized.
   2747   1.1     matt  */
   2748   1.1     matt void
   2749   1.1     matt pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2750   1.1     matt {
   2751   1.1     matt 	struct mem_region *mp, tmp;
   2752   1.1     matt 	paddr_t s, e;
   2753   1.1     matt 	psize_t size;
   2754   1.1     matt 	int i, j;
   2755   1.1     matt 
   2756   1.1     matt 	/*
   2757   1.1     matt 	 * Get memory.
   2758   1.1     matt 	 */
   2759   1.1     matt 	mem_regions(&mem, &avail);
   2760   1.1     matt #if defined(DEBUG)
   2761   1.1     matt 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2762   1.1     matt 		printf("pmap_bootstrap: memory configuration:\n");
   2763   1.1     matt 		for (mp = mem; mp->size; mp++) {
   2764   1.1     matt 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2765   1.1     matt 				mp->start, mp->size);
   2766   1.1     matt 		}
   2767   1.1     matt 		for (mp = avail; mp->size; mp++) {
   2768   1.1     matt 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2769   1.1     matt 				mp->start, mp->size);
   2770   1.1     matt 		}
   2771   1.1     matt 	}
   2772   1.1     matt #endif
   2773   1.1     matt 
   2774   1.1     matt 	/*
   2775   1.1     matt 	 * Find out how much physical memory we have and in how many chunks.
   2776   1.1     matt 	 */
   2777   1.1     matt 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2778   1.1     matt 		if (mp->start >= pmap_memlimit)
   2779   1.1     matt 			continue;
   2780   1.1     matt 		if (mp->start + mp->size > pmap_memlimit) {
   2781   1.1     matt 			size = pmap_memlimit - mp->start;
   2782   1.1     matt 			physmem += btoc(size);
   2783   1.1     matt 		} else {
   2784   1.1     matt 			physmem += btoc(mp->size);
   2785   1.1     matt 		}
   2786   1.1     matt 		mem_cnt++;
   2787   1.1     matt 	}
   2788   1.1     matt 
   2789   1.1     matt 	/*
   2790   1.1     matt 	 * Count the number of available entries.
   2791   1.1     matt 	 */
   2792   1.1     matt 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2793   1.1     matt 		avail_cnt++;
   2794   1.1     matt 
   2795   1.1     matt 	/*
   2796   1.1     matt 	 * Page align all regions.
   2797   1.1     matt 	 */
   2798   1.1     matt 	kernelstart = trunc_page(kernelstart);
   2799   1.1     matt 	kernelend = round_page(kernelend);
   2800   1.1     matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2801   1.1     matt 		s = round_page(mp->start);
   2802   1.1     matt 		mp->size -= (s - mp->start);
   2803   1.1     matt 		mp->size = trunc_page(mp->size);
   2804   1.1     matt 		mp->start = s;
   2805   1.1     matt 		e = mp->start + mp->size;
   2806   1.1     matt 
   2807   1.1     matt 		DPRINTFN(BOOT,
   2808   1.1     matt 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2809   1.1     matt 		    i, mp->start, mp->size));
   2810   1.1     matt 
   2811   1.1     matt 		/*
   2812   1.1     matt 		 * Don't allow the end to run beyond our artificial limit
   2813   1.1     matt 		 */
   2814   1.1     matt 		if (e > pmap_memlimit)
   2815   1.1     matt 			e = pmap_memlimit;
   2816   1.1     matt 
   2817   1.1     matt 		/*
   2818   1.1     matt 		 * Is this region empty or strange?  skip it.
   2819   1.1     matt 		 */
   2820   1.1     matt 		if (e <= s) {
   2821   1.1     matt 			mp->start = 0;
   2822   1.1     matt 			mp->size = 0;
   2823   1.1     matt 			continue;
   2824   1.1     matt 		}
   2825   1.1     matt 
   2826   1.1     matt 		/*
   2827   1.1     matt 		 * Does this overlap the beginning of kernel?
   2828   1.1     matt 		 *   Does extend past the end of the kernel?
   2829   1.1     matt 		 */
   2830   1.1     matt 		else if (s < kernelstart && e > kernelstart) {
   2831   1.1     matt 			if (e > kernelend) {
   2832   1.1     matt 				avail[avail_cnt].start = kernelend;
   2833   1.1     matt 				avail[avail_cnt].size = e - kernelend;
   2834   1.1     matt 				avail_cnt++;
   2835   1.1     matt 			}
   2836   1.1     matt 			mp->size = kernelstart - s;
   2837   1.1     matt 		}
   2838   1.1     matt 		/*
   2839   1.1     matt 		 * Check whether this region overlaps the end of the kernel.
   2840   1.1     matt 		 */
   2841   1.1     matt 		else if (s < kernelend && e > kernelend) {
   2842   1.1     matt 			mp->start = kernelend;
   2843   1.1     matt 			mp->size = e - kernelend;
   2844   1.1     matt 		}
   2845   1.1     matt 		/*
   2846   1.1     matt 		 * Look whether this regions is completely inside the kernel.
   2847   1.1     matt 		 * Nuke it if it does.
   2848   1.1     matt 		 */
   2849   1.1     matt 		else if (s >= kernelstart && e <= kernelend) {
   2850   1.1     matt 			mp->start = 0;
   2851   1.1     matt 			mp->size = 0;
   2852   1.1     matt 		}
   2853   1.1     matt 		/*
   2854   1.1     matt 		 * If the user imposed a memory limit, enforce it.
   2855   1.1     matt 		 */
   2856   1.1     matt 		else if (s >= pmap_memlimit) {
   2857   1.6  thorpej 			mp->start = -PAGE_SIZE;	/* let's know why */
   2858   1.1     matt 			mp->size = 0;
   2859   1.1     matt 		}
   2860   1.1     matt 		else {
   2861   1.1     matt 			mp->start = s;
   2862   1.1     matt 			mp->size = e - s;
   2863   1.1     matt 		}
   2864   1.1     matt 		DPRINTFN(BOOT,
   2865   1.1     matt 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   2866   1.1     matt 		    i, mp->start, mp->size));
   2867   1.1     matt 	}
   2868   1.1     matt 
   2869   1.1     matt 	/*
   2870   1.1     matt 	 * Move (and uncount) all the null return to the end.
   2871   1.1     matt 	 */
   2872   1.1     matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2873   1.1     matt 		if (mp->size == 0) {
   2874   1.1     matt 			tmp = avail[i];
   2875   1.1     matt 			avail[i] = avail[--avail_cnt];
   2876   1.1     matt 			avail[avail_cnt] = avail[i];
   2877   1.1     matt 		}
   2878   1.1     matt 	}
   2879   1.1     matt 
   2880   1.1     matt 	/*
   2881   1.1     matt 	 * (Bubble)sort them into asecnding order.
   2882   1.1     matt 	 */
   2883   1.1     matt 	for (i = 0; i < avail_cnt; i++) {
   2884   1.1     matt 		for (j = i + 1; j < avail_cnt; j++) {
   2885   1.1     matt 			if (avail[i].start > avail[j].start) {
   2886   1.1     matt 				tmp = avail[i];
   2887   1.1     matt 				avail[i] = avail[j];
   2888   1.1     matt 				avail[j] = tmp;
   2889   1.1     matt 			}
   2890   1.1     matt 		}
   2891   1.1     matt 	}
   2892   1.1     matt 
   2893   1.1     matt 	/*
   2894   1.1     matt 	 * Make sure they don't overlap.
   2895   1.1     matt 	 */
   2896   1.1     matt 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   2897   1.1     matt 		if (mp[0].start + mp[0].size > mp[1].start) {
   2898   1.1     matt 			mp[0].size = mp[1].start - mp[0].start;
   2899   1.1     matt 		}
   2900   1.1     matt 		DPRINTFN(BOOT,
   2901   1.1     matt 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2902   1.1     matt 		    i, mp->start, mp->size));
   2903   1.1     matt 	}
   2904   1.1     matt 	DPRINTFN(BOOT,
   2905   1.1     matt 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2906   1.1     matt 	    i, mp->start, mp->size));
   2907   1.1     matt 
   2908   1.1     matt #ifdef	PTEGCOUNT
   2909   1.1     matt 	pmap_pteg_cnt = PTEGCOUNT;
   2910   1.1     matt #else /* PTEGCOUNT */
   2911   1.1     matt 	pmap_pteg_cnt = 0x1000;
   2912   1.1     matt 
   2913   1.1     matt 	while (pmap_pteg_cnt < physmem)
   2914   1.1     matt 		pmap_pteg_cnt <<= 1;
   2915   1.1     matt 
   2916   1.1     matt 	pmap_pteg_cnt >>= 1;
   2917   1.1     matt #endif /* PTEGCOUNT */
   2918   1.1     matt 
   2919   1.1     matt 	/*
   2920   1.1     matt 	 * Find suitably aligned memory for PTEG hash table.
   2921   1.1     matt 	 */
   2922   1.2     matt 	size = pmap_pteg_cnt * sizeof(struct pteg);
   2923   1.1     matt 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   2924   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2925   1.1     matt 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   2926   1.1     matt 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   2927   1.1     matt 		    pmap_pteg_table, size);
   2928   1.1     matt #endif
   2929   1.1     matt 
   2930   1.2     matt 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   2931   1.1     matt 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   2932   1.1     matt 
   2933   1.1     matt 	/*
   2934   1.1     matt 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   2935   1.1     matt 	 * with pages.  So we just steal them before giving them to UVM.
   2936   1.1     matt 	 */
   2937   1.1     matt 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   2938   1.6  thorpej 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   2939   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2940   1.1     matt 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   2941   1.1     matt 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   2942   1.1     matt 		    pmap_pvo_table, size);
   2943   1.1     matt #endif
   2944   1.1     matt 
   2945   1.1     matt 	for (i = 0; i < pmap_pteg_cnt; i++)
   2946   1.1     matt 		TAILQ_INIT(&pmap_pvo_table[i]);
   2947   1.1     matt 
   2948   1.1     matt #ifndef MSGBUFADDR
   2949   1.1     matt 	/*
   2950   1.1     matt 	 * Allocate msgbuf in high memory.
   2951   1.1     matt 	 */
   2952   1.6  thorpej 	msgbuf_paddr =
   2953   1.6  thorpej 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   2954   1.1     matt #endif
   2955   1.1     matt 
   2956   1.1     matt #ifdef __HAVE_PMAP_PHYSSEG
   2957   1.1     matt 	{
   2958   1.1     matt 		u_int npgs = 0;
   2959   1.1     matt 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   2960   1.1     matt 			npgs += btoc(mp->size);
   2961   1.1     matt 		size = (sizeof(struct pvo_head) + 1) * npgs;
   2962   1.6  thorpej 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   2963   1.1     matt 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   2964   1.1     matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2965   1.1     matt 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   2966   1.1     matt 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   2967   1.1     matt 			    pmap_physseg.pvoh, size);
   2968   1.1     matt #endif
   2969   1.1     matt 	}
   2970   1.1     matt #endif
   2971   1.1     matt 
   2972   1.1     matt 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   2973   1.1     matt 		paddr_t pfstart = atop(mp->start);
   2974   1.1     matt 		paddr_t pfend = atop(mp->start + mp->size);
   2975   1.1     matt 		if (mp->size == 0)
   2976   1.1     matt 			continue;
   2977   1.1     matt 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   2978   1.1     matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2979   1.1     matt 				VM_FREELIST_FIRST256);
   2980   1.1     matt 		} else if (mp->start >= SEGMENT_LENGTH) {
   2981   1.1     matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2982   1.1     matt 				VM_FREELIST_DEFAULT);
   2983   1.1     matt 		} else {
   2984   1.1     matt 			pfend = atop(SEGMENT_LENGTH);
   2985   1.1     matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2986   1.1     matt 				VM_FREELIST_FIRST256);
   2987   1.1     matt 			pfstart = atop(SEGMENT_LENGTH);
   2988   1.1     matt 			pfend = atop(mp->start + mp->size);
   2989   1.1     matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2990   1.1     matt 				VM_FREELIST_DEFAULT);
   2991   1.1     matt 		}
   2992   1.1     matt 	}
   2993   1.1     matt 
   2994   1.1     matt 	/*
   2995   1.1     matt 	 * Make sure kernel vsid is allocated as well as VSID 0.
   2996   1.1     matt 	 */
   2997   1.1     matt 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   2998   1.1     matt 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   2999   1.1     matt 	pmap_vsid_bitmap[0] |= 1;
   3000   1.1     matt 
   3001   1.1     matt 	/*
   3002   1.1     matt 	 * Initialize kernel pmap and hardware.
   3003   1.1     matt 	 */
   3004   1.1     matt 	for (i = 0; i < 16; i++) {
   3005   1.1     matt 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3006   1.1     matt 		__asm __volatile ("mtsrin %0,%1"
   3007   1.1     matt 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3008   1.1     matt 	}
   3009   1.1     matt 
   3010   1.1     matt 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3011   1.1     matt 	__asm __volatile ("mtsr %0,%1"
   3012   1.1     matt 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3013   1.1     matt #ifdef KERNEL2_SR
   3014   1.1     matt 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3015   1.1     matt 	__asm __volatile ("mtsr %0,%1"
   3016   1.1     matt 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3017   1.1     matt #endif
   3018   1.1     matt 	for (i = 0; i < 16; i++) {
   3019   1.1     matt 		if (iosrtable[i] & SR601_T) {
   3020   1.1     matt 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3021   1.1     matt 			__asm __volatile ("mtsrin %0,%1"
   3022   1.1     matt 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3023   1.1     matt 		}
   3024   1.1     matt 	}
   3025   1.1     matt 
   3026   1.1     matt 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3027   1.2     matt 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3028   1.1     matt 	tlbia();
   3029   1.1     matt 
   3030   1.1     matt #ifdef ALTIVEC
   3031   1.1     matt 	pmap_use_altivec = cpu_altivec;
   3032   1.1     matt #endif
   3033   1.1     matt 
   3034   1.1     matt #ifdef DEBUG
   3035   1.1     matt 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3036   1.1     matt 		u_int cnt;
   3037   1.1     matt 		int bank;
   3038   1.1     matt 		char pbuf[9];
   3039   1.1     matt 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3040   1.1     matt 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3041   1.1     matt 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3042   1.1     matt 			    bank,
   3043   1.1     matt 			    ptoa(vm_physmem[bank].avail_start),
   3044   1.1     matt 			    ptoa(vm_physmem[bank].avail_end),
   3045   1.1     matt 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3046   1.1     matt 		}
   3047   1.1     matt 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3048   1.1     matt 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3049   1.1     matt 		    pbuf, cnt);
   3050   1.1     matt 	}
   3051   1.1     matt #endif
   3052   1.1     matt 
   3053   1.1     matt 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3054   1.1     matt 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3055   1.1     matt 	    &pmap_pool_uallocator);
   3056   1.1     matt 
   3057   1.1     matt 	pool_setlowat(&pmap_upvo_pool, 252);
   3058   1.1     matt 
   3059   1.1     matt 	pool_init(&pmap_pool, sizeof(struct pmap),
   3060   1.1     matt 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3061   1.1     matt }
   3062