Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.2
      1  1.2  matt /*	$NetBSD: pmap.c,v 1.2 2003/02/05 07:05:20 matt Exp $	*/
      2  1.1  matt /*-
      3  1.1  matt  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  1.1  matt  * All rights reserved.
      5  1.1  matt  *
      6  1.1  matt  * This code is derived from software contributed to The NetBSD Foundation
      7  1.1  matt  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  1.1  matt  *
      9  1.1  matt  * Redistribution and use in source and binary forms, with or without
     10  1.1  matt  * modification, are permitted provided that the following conditions
     11  1.1  matt  * are met:
     12  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     13  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     14  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  matt  *    documentation and/or other materials provided with the distribution.
     17  1.1  matt  * 3. All advertising materials mentioning features or use of this software
     18  1.1  matt  *    must display the following acknowledgement:
     19  1.1  matt  *        This product includes software developed by the NetBSD
     20  1.1  matt  *        Foundation, Inc. and its contributors.
     21  1.1  matt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  1.1  matt  *    contributors may be used to endorse or promote products derived
     23  1.1  matt  *    from this software without specific prior written permission.
     24  1.1  matt  *
     25  1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  1.1  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     36  1.1  matt  */
     37  1.1  matt 
     38  1.1  matt /*
     39  1.1  matt  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  1.1  matt  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  1.1  matt  * All rights reserved.
     42  1.1  matt  *
     43  1.1  matt  * Redistribution and use in source and binary forms, with or without
     44  1.1  matt  * modification, are permitted provided that the following conditions
     45  1.1  matt  * are met:
     46  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     47  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     48  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     49  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     50  1.1  matt  *    documentation and/or other materials provided with the distribution.
     51  1.1  matt  * 3. All advertising materials mentioning features or use of this software
     52  1.1  matt  *    must display the following acknowledgement:
     53  1.1  matt  *	This product includes software developed by TooLs GmbH.
     54  1.1  matt  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  1.1  matt  *    derived from this software without specific prior written permission.
     56  1.1  matt  *
     57  1.1  matt  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  1.1  matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  1.1  matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  1.1  matt  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  1.1  matt  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  1.1  matt  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  1.1  matt  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  1.1  matt  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  1.1  matt  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  1.1  matt  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  1.1  matt  */
     68  1.1  matt 
     69  1.1  matt #include "opt_altivec.h"
     70  1.1  matt #include "opt_pmap.h"
     71  1.1  matt #include <sys/param.h>
     72  1.1  matt #include <sys/malloc.h>
     73  1.1  matt #include <sys/proc.h>
     74  1.1  matt #include <sys/user.h>
     75  1.1  matt #include <sys/pool.h>
     76  1.1  matt #include <sys/queue.h>
     77  1.1  matt #include <sys/device.h>		/* for evcnt */
     78  1.1  matt #include <sys/systm.h>
     79  1.1  matt 
     80  1.1  matt #if __NetBSD_Version__ < 105010000
     81  1.1  matt #include <vm/vm.h>
     82  1.1  matt #include <vm/vm_kern.h>
     83  1.1  matt #define	splvm()		splimp()
     84  1.1  matt #endif
     85  1.1  matt 
     86  1.1  matt #include <uvm/uvm.h>
     87  1.1  matt 
     88  1.1  matt #include <machine/pcb.h>
     89  1.1  matt #include <machine/powerpc.h>
     90  1.1  matt #include <powerpc/spr.h>
     91  1.1  matt #include <powerpc/oea/sr_601.h>
     92  1.1  matt #if __NetBSD_Version__ > 105010000
     93  1.1  matt #include <powerpc/oea/bat.h>
     94  1.1  matt #else
     95  1.1  matt #include <powerpc/bat.h>
     96  1.1  matt #endif
     97  1.1  matt 
     98  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK)
     99  1.1  matt #define	STATIC
    100  1.1  matt #else
    101  1.1  matt #define	STATIC	static
    102  1.1  matt #endif
    103  1.1  matt 
    104  1.1  matt #ifdef ALTIVEC
    105  1.1  matt int pmap_use_altivec;
    106  1.1  matt #endif
    107  1.1  matt 
    108  1.2  matt volatile struct pteg *pmap_pteg_table;
    109  1.1  matt unsigned int pmap_pteg_cnt;
    110  1.1  matt unsigned int pmap_pteg_mask;
    111  1.1  matt paddr_t pmap_memlimit = -NBPG;		/* there is no limit */
    112  1.1  matt 
    113  1.1  matt struct pmap kernel_pmap_;
    114  1.1  matt unsigned int pmap_pages_stolen;
    115  1.1  matt u_long pmap_pte_valid;
    116  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    117  1.1  matt u_long pmap_pvo_enter_depth;
    118  1.1  matt u_long pmap_pvo_remove_depth;
    119  1.1  matt #endif
    120  1.1  matt 
    121  1.1  matt int physmem;
    122  1.1  matt #ifndef MSGBUFADDR
    123  1.1  matt extern paddr_t msgbuf_paddr;
    124  1.1  matt #endif
    125  1.1  matt 
    126  1.1  matt static struct mem_region *mem, *avail;
    127  1.1  matt static u_int mem_cnt, avail_cnt;
    128  1.1  matt 
    129  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
    130  1.1  matt /*
    131  1.1  matt  * This is a cache of referenced/modified bits.
    132  1.1  matt  * Bits herein are shifted by ATTRSHFT.
    133  1.1  matt  */
    134  1.1  matt #define	ATTR_SHFT	4
    135  1.1  matt struct pmap_physseg pmap_physseg;
    136  1.1  matt #endif
    137  1.1  matt 
    138  1.1  matt /*
    139  1.1  matt  * The following structure is exactly 32 bytes long (one cacheline).
    140  1.1  matt  */
    141  1.1  matt struct pvo_entry {
    142  1.1  matt 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    143  1.1  matt 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    144  1.1  matt 	struct pte pvo_pte;			/* Prebuilt PTE */
    145  1.1  matt 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    146  1.1  matt 	vaddr_t pvo_vaddr;			/* VA of entry */
    147  1.1  matt #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    148  1.1  matt #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    149  1.1  matt #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    150  1.1  matt #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    151  1.1  matt #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    152  1.1  matt };
    153  1.1  matt #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    154  1.1  matt #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    155  1.1  matt #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    156  1.1  matt #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    157  1.1  matt #define	PVO_PTEGIDX_CLR(pvo)	\
    158  1.1  matt 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    159  1.1  matt #define	PVO_PTEGIDX_SET(pvo,i)	\
    160  1.1  matt 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    161  1.1  matt 
    162  1.1  matt TAILQ_HEAD(pvo_tqhead, pvo_entry);
    163  1.1  matt struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    164  1.1  matt struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    165  1.1  matt struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    166  1.1  matt 
    167  1.1  matt struct pool pmap_pool;		/* pool for pmap structures */
    168  1.1  matt struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    169  1.1  matt struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    170  1.1  matt 
    171  1.1  matt /*
    172  1.1  matt  * We keep a cache of unmanaged pages to be used for pvo entries for
    173  1.1  matt  * unmanaged pages.
    174  1.1  matt  */
    175  1.1  matt struct pvo_page {
    176  1.1  matt 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    177  1.1  matt };
    178  1.1  matt SIMPLEQ_HEAD(pvop_head, pvo_page);
    179  1.1  matt struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    180  1.1  matt struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    181  1.1  matt u_long pmap_upvop_free;
    182  1.1  matt u_long pmap_upvop_maxfree;
    183  1.1  matt u_long pmap_mpvop_free;
    184  1.1  matt u_long pmap_mpvop_maxfree;
    185  1.1  matt 
    186  1.1  matt STATIC void *pmap_pool_ualloc(struct pool *, int);
    187  1.1  matt STATIC void *pmap_pool_malloc(struct pool *, int);
    188  1.1  matt 
    189  1.1  matt STATIC void pmap_pool_ufree(struct pool *, void *);
    190  1.1  matt STATIC void pmap_pool_mfree(struct pool *, void *);
    191  1.1  matt 
    192  1.1  matt static struct pool_allocator pmap_pool_mallocator = {
    193  1.1  matt 	pmap_pool_malloc, pmap_pool_mfree, 0,
    194  1.1  matt };
    195  1.1  matt 
    196  1.1  matt static struct pool_allocator pmap_pool_uallocator = {
    197  1.1  matt 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    198  1.1  matt };
    199  1.1  matt 
    200  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    201  1.2  matt void pmap_pte_print(volatile struct pte *);
    202  1.1  matt #endif
    203  1.1  matt 
    204  1.1  matt #ifdef DDB
    205  1.1  matt void pmap_pteg_check(void);
    206  1.1  matt void pmap_pteg_dist(void);
    207  1.1  matt void pmap_print_pte(pmap_t, vaddr_t);
    208  1.1  matt void pmap_print_mmuregs(void);
    209  1.1  matt #endif
    210  1.1  matt 
    211  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK)
    212  1.1  matt #ifdef PMAPCHECK
    213  1.1  matt int pmapcheck = 1;
    214  1.1  matt #else
    215  1.1  matt int pmapcheck = 0;
    216  1.1  matt #endif
    217  1.1  matt void pmap_pvo_verify(void);
    218  1.1  matt STATIC void pmap_pvo_check(const struct pvo_entry *);
    219  1.1  matt #define	PMAP_PVO_CHECK(pvo)	 		\
    220  1.1  matt 	do {					\
    221  1.1  matt 		if (pmapcheck)			\
    222  1.1  matt 			pmap_pvo_check(pvo);	\
    223  1.1  matt 	} while (0)
    224  1.1  matt #else
    225  1.1  matt #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    226  1.1  matt #endif
    227  1.2  matt STATIC int pmap_pte_insert(int, struct pte *);
    228  1.1  matt STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    229  1.2  matt 	vaddr_t, paddr_t, register_t, int);
    230  1.1  matt STATIC void pmap_pvo_remove(struct pvo_entry *, int);
    231  1.1  matt STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    232  1.2  matt STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    233  1.1  matt 
    234  1.1  matt STATIC void tlbia(void);
    235  1.1  matt 
    236  1.1  matt STATIC void pmap_release(pmap_t);
    237  1.1  matt STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    238  1.1  matt 
    239  1.1  matt #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    240  1.1  matt static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    241  1.1  matt 
    242  1.1  matt static int pmap_initialized;
    243  1.1  matt 
    244  1.1  matt #if defined(DEBUG) || defined(PMAPDEBUG)
    245  1.1  matt #define	PMAPDEBUG_BOOT		0x0001
    246  1.1  matt #define	PMAPDEBUG_PTE		0x0002
    247  1.1  matt #define	PMAPDEBUG_EXEC		0x0008
    248  1.1  matt #define	PMAPDEBUG_PVOENTER	0x0010
    249  1.1  matt #define	PMAPDEBUG_PVOREMOVE	0x0020
    250  1.1  matt #define	PMAPDEBUG_ACTIVATE	0x0100
    251  1.1  matt #define	PMAPDEBUG_CREATE	0x0200
    252  1.1  matt #define	PMAPDEBUG_ENTER		0x1000
    253  1.1  matt #define	PMAPDEBUG_KENTER	0x2000
    254  1.1  matt #define	PMAPDEBUG_KREMOVE	0x4000
    255  1.1  matt #define	PMAPDEBUG_REMOVE	0x8000
    256  1.1  matt unsigned int pmapdebug = 0;
    257  1.1  matt # define DPRINTF(x)		printf x
    258  1.1  matt # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    259  1.1  matt #else
    260  1.1  matt # define DPRINTF(x)
    261  1.1  matt # define DPRINTFN(n, x)
    262  1.1  matt #endif
    263  1.1  matt 
    264  1.1  matt 
    265  1.1  matt #ifdef PMAPCOUNTERS
    266  1.1  matt #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    267  1.1  matt #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    268  1.1  matt 
    269  1.1  matt struct evcnt pmap_evcnt_mappings =
    270  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    271  1.1  matt 	    "pmap", "pages mapped");
    272  1.1  matt struct evcnt pmap_evcnt_unmappings =
    273  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    274  1.1  matt 	    "pmap", "pages unmapped");
    275  1.1  matt 
    276  1.1  matt struct evcnt pmap_evcnt_kernel_mappings =
    277  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    278  1.1  matt 	    "pmap", "kernel pages mapped");
    279  1.1  matt struct evcnt pmap_evcnt_kernel_unmappings =
    280  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    281  1.1  matt 	    "pmap", "kernel pages unmapped");
    282  1.1  matt 
    283  1.1  matt struct evcnt pmap_evcnt_mappings_replaced =
    284  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    285  1.1  matt 	    "pmap", "page mappings replaced");
    286  1.1  matt 
    287  1.1  matt struct evcnt pmap_evcnt_exec_mappings =
    288  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    289  1.1  matt 	    "pmap", "exec pages mapped");
    290  1.1  matt struct evcnt pmap_evcnt_exec_cached =
    291  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    292  1.1  matt 	    "pmap", "exec pages cached");
    293  1.1  matt 
    294  1.1  matt struct evcnt pmap_evcnt_exec_synced =
    295  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    296  1.1  matt 	    "pmap", "exec pages synced");
    297  1.1  matt struct evcnt pmap_evcnt_exec_synced_clear_modify =
    298  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    299  1.1  matt 	    "pmap", "exec pages synced (CM)");
    300  1.1  matt 
    301  1.1  matt struct evcnt pmap_evcnt_exec_uncached_page_protect =
    302  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    303  1.1  matt 	    "pmap", "exec pages uncached (PP)");
    304  1.1  matt struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    305  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    306  1.1  matt 	    "pmap", "exec pages uncached (CM)");
    307  1.1  matt struct evcnt pmap_evcnt_exec_uncached_zero_page =
    308  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    309  1.1  matt 	    "pmap", "exec pages uncached (ZP)");
    310  1.1  matt struct evcnt pmap_evcnt_exec_uncached_copy_page =
    311  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    312  1.1  matt 	    "pmap", "exec pages uncached (CP)");
    313  1.1  matt 
    314  1.1  matt struct evcnt pmap_evcnt_updates =
    315  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    316  1.1  matt 	    "pmap", "updates");
    317  1.1  matt struct evcnt pmap_evcnt_collects =
    318  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    319  1.1  matt 	    "pmap", "collects");
    320  1.1  matt struct evcnt pmap_evcnt_copies =
    321  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    322  1.1  matt 	    "pmap", "copies");
    323  1.1  matt 
    324  1.1  matt struct evcnt pmap_evcnt_ptes_spilled =
    325  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    326  1.1  matt 	    "pmap", "ptes spilled from overflow");
    327  1.1  matt struct evcnt pmap_evcnt_ptes_unspilled =
    328  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    329  1.1  matt 	    "pmap", "ptes not spilled");
    330  1.1  matt struct evcnt pmap_evcnt_ptes_evicted =
    331  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    332  1.1  matt 	    "pmap", "ptes evicted");
    333  1.1  matt 
    334  1.1  matt struct evcnt pmap_evcnt_ptes_primary[8] = {
    335  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    336  1.1  matt 	    "pmap", "ptes added at primary[0]"),
    337  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    338  1.1  matt 	    "pmap", "ptes added at primary[1]"),
    339  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    340  1.1  matt 	    "pmap", "ptes added at primary[2]"),
    341  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    342  1.1  matt 	    "pmap", "ptes added at primary[3]"),
    343  1.1  matt 
    344  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    345  1.1  matt 	    "pmap", "ptes added at primary[4]"),
    346  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    347  1.1  matt 	    "pmap", "ptes added at primary[5]"),
    348  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    349  1.1  matt 	    "pmap", "ptes added at primary[6]"),
    350  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    351  1.1  matt 	    "pmap", "ptes added at primary[7]"),
    352  1.1  matt };
    353  1.1  matt struct evcnt pmap_evcnt_ptes_secondary[8] = {
    354  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    355  1.1  matt 	    "pmap", "ptes added at secondary[0]"),
    356  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    357  1.1  matt 	    "pmap", "ptes added at secondary[1]"),
    358  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    359  1.1  matt 	    "pmap", "ptes added at secondary[2]"),
    360  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    361  1.1  matt 	    "pmap", "ptes added at secondary[3]"),
    362  1.1  matt 
    363  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364  1.1  matt 	    "pmap", "ptes added at secondary[4]"),
    365  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366  1.1  matt 	    "pmap", "ptes added at secondary[5]"),
    367  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    368  1.1  matt 	    "pmap", "ptes added at secondary[6]"),
    369  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    370  1.1  matt 	    "pmap", "ptes added at secondary[7]"),
    371  1.1  matt };
    372  1.1  matt struct evcnt pmap_evcnt_ptes_removed =
    373  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    374  1.1  matt 	    "pmap", "ptes removed");
    375  1.1  matt struct evcnt pmap_evcnt_ptes_changed =
    376  1.1  matt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377  1.1  matt 	    "pmap", "ptes changed");
    378  1.1  matt 
    379  1.1  matt /*
    380  1.1  matt  * From pmap_subr.c
    381  1.1  matt  */
    382  1.1  matt extern struct evcnt pmap_evcnt_zeroed_pages;
    383  1.1  matt extern struct evcnt pmap_evcnt_copied_pages;
    384  1.1  matt extern struct evcnt pmap_evcnt_idlezeroed_pages;
    385  1.1  matt #else
    386  1.1  matt #define	PMAPCOUNT(ev)	((void) 0)
    387  1.1  matt #define	PMAPCOUNT2(ev)	((void) 0)
    388  1.1  matt #endif
    389  1.1  matt 
    390  1.1  matt #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    391  1.1  matt #define	TLBSYNC()	__asm __volatile("tlbsync")
    392  1.1  matt #define	SYNC()		__asm __volatile("sync")
    393  1.1  matt #define	EIEIO()		__asm __volatile("eieio")
    394  1.1  matt #define	MFMSR()		mfmsr()
    395  1.1  matt #define	MTMSR(psl)	mtmsr(psl)
    396  1.1  matt #define	MFPVR()		mfpvr()
    397  1.1  matt #define	MFSRIN(va)	mfsrin(va)
    398  1.1  matt #define	MFTB()		mfrtcltbl()
    399  1.1  matt 
    400  1.2  matt static __inline register_t
    401  1.1  matt mfsrin(vaddr_t va)
    402  1.1  matt {
    403  1.2  matt 	register_t sr;
    404  1.1  matt 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    405  1.1  matt 	return sr;
    406  1.1  matt }
    407  1.1  matt 
    408  1.2  matt static __inline register_t
    409  1.1  matt pmap_interrupts_off(void)
    410  1.1  matt {
    411  1.2  matt 	register_t msr = MFMSR();
    412  1.1  matt 	if (msr & PSL_EE)
    413  1.1  matt 		MTMSR(msr & ~PSL_EE);
    414  1.1  matt 	return msr;
    415  1.1  matt }
    416  1.1  matt 
    417  1.1  matt static void
    418  1.2  matt pmap_interrupts_restore(register_t msr)
    419  1.1  matt {
    420  1.1  matt 	if (msr & PSL_EE)
    421  1.1  matt 		MTMSR(msr);
    422  1.1  matt }
    423  1.1  matt 
    424  1.1  matt static __inline u_int32_t
    425  1.1  matt mfrtcltbl(void)
    426  1.1  matt {
    427  1.1  matt 
    428  1.1  matt 	if ((MFPVR() >> 16) == MPC601)
    429  1.1  matt 		return (mfrtcl() >> 7);
    430  1.1  matt 	else
    431  1.1  matt 		return (mftbl());
    432  1.1  matt }
    433  1.1  matt 
    434  1.1  matt /*
    435  1.1  matt  * These small routines may have to be replaced,
    436  1.1  matt  * if/when we support processors other that the 604.
    437  1.1  matt  */
    438  1.1  matt 
    439  1.1  matt void
    440  1.1  matt tlbia(void)
    441  1.1  matt {
    442  1.1  matt 	caddr_t i;
    443  1.1  matt 
    444  1.1  matt 	SYNC();
    445  1.1  matt 	/*
    446  1.1  matt 	 * Why not use "tlbia"?  Because not all processors implement it.
    447  1.1  matt 	 *
    448  1.1  matt 	 * This needs to be a per-cpu callback to do the appropriate thing
    449  1.1  matt 	 * for the CPU. XXX
    450  1.1  matt 	 */
    451  1.1  matt 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    452  1.1  matt 		TLBIE(i);
    453  1.1  matt 		EIEIO();
    454  1.1  matt 		SYNC();
    455  1.1  matt 	}
    456  1.1  matt 	TLBSYNC();
    457  1.1  matt 	SYNC();
    458  1.1  matt }
    459  1.1  matt 
    460  1.2  matt static __inline register_t
    461  1.2  matt va_to_vsid(const struct pmap *pm, vaddr_t addr)
    462  1.1  matt {
    463  1.2  matt 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID);
    464  1.1  matt }
    465  1.1  matt 
    466  1.2  matt static __inline register_t
    467  1.2  matt va_to_pteg(const struct pmap *pm, vaddr_t addr)
    468  1.1  matt {
    469  1.2  matt 	register_t hash;
    470  1.2  matt 
    471  1.2  matt 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    472  1.1  matt 	return hash & pmap_pteg_mask;
    473  1.1  matt }
    474  1.1  matt 
    475  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    476  1.1  matt /*
    477  1.1  matt  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    478  1.1  matt  * The only bit of magic is that the top 4 bits of the address doesn't
    479  1.1  matt  * technically exist in the PTE.  But we know we reserved 4 bits of the
    480  1.1  matt  * VSID for it so that's how we get it.
    481  1.1  matt  */
    482  1.1  matt static vaddr_t
    483  1.2  matt pmap_pte_to_va(volatile const struct pte *pt)
    484  1.1  matt {
    485  1.1  matt 	vaddr_t va;
    486  1.1  matt 	uintptr_t ptaddr = (uintptr_t) pt;
    487  1.1  matt 
    488  1.1  matt 	if (pt->pte_hi & PTE_HID)
    489  1.2  matt 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    490  1.1  matt 
    491  1.1  matt 	/* PPC Bits 10-19 */
    492  1.2  matt 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr * sizeof(struct pteg))) & 0x3ff;
    493  1.1  matt 	va <<= ADDR_PIDX_SHFT;
    494  1.1  matt 
    495  1.1  matt 	/* PPC Bits 4-9 */
    496  1.1  matt 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    497  1.1  matt 
    498  1.1  matt 	/* PPC Bits 0-3 */
    499  1.1  matt 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    500  1.1  matt 
    501  1.1  matt 	return va;
    502  1.1  matt }
    503  1.1  matt #endif
    504  1.1  matt 
    505  1.1  matt static __inline struct pvo_head *
    506  1.1  matt pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    507  1.1  matt {
    508  1.1  matt #ifdef __HAVE_VM_PAGE_MD
    509  1.1  matt 	struct vm_page *pg;
    510  1.1  matt 
    511  1.1  matt 	pg = PHYS_TO_VM_PAGE(pa);
    512  1.1  matt 	if (pg_p != NULL)
    513  1.1  matt 		*pg_p = pg;
    514  1.1  matt 	if (pg == NULL)
    515  1.1  matt 		return &pmap_pvo_unmanaged;
    516  1.1  matt 	return &pg->mdpage.mdpg_pvoh;
    517  1.1  matt #endif
    518  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
    519  1.1  matt 	int bank, pg;
    520  1.1  matt 
    521  1.1  matt 	bank = vm_physseg_find(atop(pa), &pg);
    522  1.1  matt 	if (pg_p != NULL)
    523  1.1  matt 		*pg_p = pg;
    524  1.1  matt 	if (bank == -1)
    525  1.1  matt 		return &pmap_pvo_unmanaged;
    526  1.1  matt 	return &vm_physmem[bank].pmseg.pvoh[pg];
    527  1.1  matt #endif
    528  1.1  matt }
    529  1.1  matt 
    530  1.1  matt static __inline struct pvo_head *
    531  1.1  matt vm_page_to_pvoh(struct vm_page *pg)
    532  1.1  matt {
    533  1.1  matt #ifdef __HAVE_VM_PAGE_MD
    534  1.1  matt 	return &pg->mdpage.mdpg_pvoh;
    535  1.1  matt #endif
    536  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
    537  1.1  matt 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    538  1.1  matt #endif
    539  1.1  matt }
    540  1.1  matt 
    541  1.1  matt 
    542  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
    543  1.1  matt static __inline char *
    544  1.1  matt pa_to_attr(paddr_t pa)
    545  1.1  matt {
    546  1.1  matt 	int bank, pg;
    547  1.1  matt 
    548  1.1  matt 	bank = vm_physseg_find(atop(pa), &pg);
    549  1.1  matt 	if (bank == -1)
    550  1.1  matt 		return NULL;
    551  1.1  matt 	return &vm_physmem[bank].pmseg.attrs[pg];
    552  1.1  matt }
    553  1.1  matt #endif
    554  1.1  matt 
    555  1.1  matt static __inline void
    556  1.1  matt pmap_attr_clear(struct vm_page *pg, int ptebit)
    557  1.1  matt {
    558  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
    559  1.1  matt 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    560  1.1  matt #endif
    561  1.1  matt #ifdef __HAVE_VM_PAGE_MD
    562  1.1  matt 	pg->mdpage.mdpg_attrs &= ~ptebit;
    563  1.1  matt #endif
    564  1.1  matt }
    565  1.1  matt 
    566  1.1  matt static __inline int
    567  1.1  matt pmap_attr_fetch(struct vm_page *pg)
    568  1.1  matt {
    569  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
    570  1.1  matt 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    571  1.1  matt #endif
    572  1.1  matt #ifdef __HAVE_VM_PAGE_MD
    573  1.1  matt 	return pg->mdpage.mdpg_attrs;
    574  1.1  matt #endif
    575  1.1  matt }
    576  1.1  matt 
    577  1.1  matt static __inline void
    578  1.1  matt pmap_attr_save(struct vm_page *pg, int ptebit)
    579  1.1  matt {
    580  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
    581  1.1  matt 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    582  1.1  matt #endif
    583  1.1  matt #ifdef __HAVE_VM_PAGE_MD
    584  1.1  matt 	pg->mdpage.mdpg_attrs |= ptebit;
    585  1.1  matt #endif
    586  1.1  matt }
    587  1.1  matt 
    588  1.1  matt static __inline int
    589  1.2  matt pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    590  1.1  matt {
    591  1.1  matt 	if (pt->pte_hi == pvo_pt->pte_hi
    592  1.1  matt #if 0
    593  1.1  matt 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    594  1.1  matt 	        ~(PTE_REF|PTE_CHG)) == 0
    595  1.1  matt #endif
    596  1.1  matt 	    )
    597  1.1  matt 		return 1;
    598  1.1  matt 	return 0;
    599  1.1  matt }
    600  1.1  matt 
    601  1.1  matt static __inline void
    602  1.2  matt pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    603  1.1  matt {
    604  1.1  matt 	/*
    605  1.1  matt 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    606  1.1  matt 	 * only gets set when the real pte is set in memory.
    607  1.1  matt 	 *
    608  1.1  matt 	 * Note: Don't set the valid bit for correct operation of tlb update.
    609  1.1  matt 	 */
    610  1.2  matt 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    611  1.2  matt 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    612  1.1  matt 	pt->pte_lo = pte_lo;
    613  1.1  matt }
    614  1.1  matt 
    615  1.1  matt static __inline void
    616  1.2  matt pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    617  1.1  matt {
    618  1.1  matt 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    619  1.1  matt }
    620  1.1  matt 
    621  1.1  matt static __inline void
    622  1.2  matt pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    623  1.1  matt {
    624  1.1  matt 	/*
    625  1.1  matt 	 * As shown in Section 7.6.3.2.3
    626  1.1  matt 	 */
    627  1.1  matt 	pt->pte_lo &= ~ptebit;
    628  1.1  matt 	TLBIE(va);
    629  1.1  matt 	SYNC();
    630  1.1  matt 	EIEIO();
    631  1.1  matt 	TLBSYNC();
    632  1.1  matt 	SYNC();
    633  1.1  matt }
    634  1.1  matt 
    635  1.1  matt static __inline void
    636  1.2  matt pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    637  1.1  matt {
    638  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    639  1.1  matt 	if (pvo_pt->pte_hi & PTE_VALID)
    640  1.1  matt 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    641  1.1  matt #endif
    642  1.1  matt 	pvo_pt->pte_hi |= PTE_VALID;
    643  1.1  matt 	/*
    644  1.1  matt 	 * Update the PTE as defined in section 7.6.3.1
    645  1.1  matt 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    646  1.1  matt 	 * have been saved so this routine can restore them (if desired).
    647  1.1  matt 	 */
    648  1.1  matt 	pt->pte_lo = pvo_pt->pte_lo;
    649  1.1  matt 	EIEIO();
    650  1.1  matt 	pt->pte_hi = pvo_pt->pte_hi;
    651  1.1  matt 	SYNC();
    652  1.1  matt 	pmap_pte_valid++;
    653  1.1  matt }
    654  1.1  matt 
    655  1.1  matt static __inline void
    656  1.2  matt pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    657  1.1  matt {
    658  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    659  1.1  matt 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    660  1.1  matt 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    661  1.1  matt 	if ((pt->pte_hi & PTE_VALID) == 0)
    662  1.1  matt 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    663  1.1  matt #endif
    664  1.1  matt 
    665  1.1  matt 	pvo_pt->pte_hi &= ~PTE_VALID;
    666  1.1  matt 	/*
    667  1.1  matt 	 * Force the ref & chg bits back into the PTEs.
    668  1.1  matt 	 */
    669  1.1  matt 	SYNC();
    670  1.1  matt 	/*
    671  1.1  matt 	 * Invalidate the pte ... (Section 7.6.3.3)
    672  1.1  matt 	 */
    673  1.1  matt 	pt->pte_hi &= ~PTE_VALID;
    674  1.1  matt 	SYNC();
    675  1.1  matt 	TLBIE(va);
    676  1.1  matt 	SYNC();
    677  1.1  matt 	EIEIO();
    678  1.1  matt 	TLBSYNC();
    679  1.1  matt 	SYNC();
    680  1.1  matt 	/*
    681  1.1  matt 	 * Save the ref & chg bits ...
    682  1.1  matt 	 */
    683  1.1  matt 	pmap_pte_synch(pt, pvo_pt);
    684  1.1  matt 	pmap_pte_valid--;
    685  1.1  matt }
    686  1.1  matt 
    687  1.1  matt static __inline void
    688  1.2  matt pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    689  1.1  matt {
    690  1.1  matt 	/*
    691  1.1  matt 	 * Invalidate the PTE
    692  1.1  matt 	 */
    693  1.1  matt 	pmap_pte_unset(pt, pvo_pt, va);
    694  1.1  matt 	pmap_pte_set(pt, pvo_pt);
    695  1.1  matt }
    696  1.1  matt 
    697  1.1  matt /*
    698  1.1  matt  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    699  1.1  matt  * (either primary or secondary location).
    700  1.1  matt  *
    701  1.1  matt  * Note: both the destination and source PTEs must not have PTE_VALID set.
    702  1.1  matt  */
    703  1.1  matt 
    704  1.1  matt STATIC int
    705  1.2  matt pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    706  1.1  matt {
    707  1.2  matt 	volatile struct pte *pt;
    708  1.1  matt 	int i;
    709  1.1  matt 
    710  1.1  matt #if defined(DEBUG)
    711  1.2  matt 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%lx 0x%lx\n",
    712  1.1  matt 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    713  1.1  matt #endif
    714  1.1  matt 	/*
    715  1.1  matt 	 * First try primary hash.
    716  1.1  matt 	 */
    717  1.1  matt 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    718  1.1  matt 		if ((pt->pte_hi & PTE_VALID) == 0) {
    719  1.1  matt 			pvo_pt->pte_hi &= ~PTE_HID;
    720  1.1  matt 			pmap_pte_set(pt, pvo_pt);
    721  1.1  matt 			return i;
    722  1.1  matt 		}
    723  1.1  matt 	}
    724  1.1  matt 
    725  1.1  matt 	/*
    726  1.1  matt 	 * Now try secondary hash.
    727  1.1  matt 	 */
    728  1.1  matt 	ptegidx ^= pmap_pteg_mask;
    729  1.1  matt 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    730  1.1  matt 		if ((pt->pte_hi & PTE_VALID) == 0) {
    731  1.1  matt 			pvo_pt->pte_hi |= PTE_HID;
    732  1.1  matt 			pmap_pte_set(pt, pvo_pt);
    733  1.1  matt 			return i;
    734  1.1  matt 		}
    735  1.1  matt 	}
    736  1.1  matt 	return -1;
    737  1.1  matt }
    738  1.1  matt 
    739  1.1  matt /*
    740  1.1  matt  * Spill handler.
    741  1.1  matt  *
    742  1.1  matt  * Tries to spill a page table entry from the overflow area.
    743  1.1  matt  * This runs in either real mode (if dealing with a exception spill)
    744  1.1  matt  * or virtual mode when dealing with manually spilling one of the
    745  1.1  matt  * kernel's pte entries.  In either case, interrupts are already
    746  1.1  matt  * disabled.
    747  1.1  matt  */
    748  1.1  matt int
    749  1.1  matt pmap_pte_spill(struct pmap *pm, vaddr_t addr)
    750  1.1  matt {
    751  1.1  matt 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    752  1.1  matt 	struct pvo_entry *pvo;
    753  1.1  matt 	struct pvo_tqhead *pvoh, *vpvoh;
    754  1.1  matt 	int ptegidx, i, j;
    755  1.2  matt 	volatile struct pteg *pteg;
    756  1.2  matt 	volatile struct pte *pt;
    757  1.1  matt 
    758  1.2  matt 	ptegidx = va_to_pteg(pm, addr);
    759  1.1  matt 
    760  1.1  matt 	/*
    761  1.1  matt 	 * Have to substitute some entry. Use the primary hash for this.
    762  1.1  matt 	 *
    763  1.1  matt 	 * Use low bits of timebase as random generator
    764  1.1  matt 	 */
    765  1.1  matt 	pteg = &pmap_pteg_table[ptegidx];
    766  1.1  matt 	i = MFTB() & 7;
    767  1.1  matt 	pt = &pteg->pt[i];
    768  1.1  matt 
    769  1.1  matt 	source_pvo = NULL;
    770  1.1  matt 	victim_pvo = NULL;
    771  1.1  matt 	pvoh = &pmap_pvo_table[ptegidx];
    772  1.1  matt 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    773  1.1  matt 
    774  1.1  matt 		/*
    775  1.1  matt 		 * We need to find pvo entry for this address...
    776  1.1  matt 		 */
    777  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    778  1.1  matt 
    779  1.1  matt 		/*
    780  1.1  matt 		 * If we haven't found the source and we come to a PVO with
    781  1.1  matt 		 * a valid PTE, then we know we can't find it because all
    782  1.1  matt 		 * evicted PVOs always are first in the list.
    783  1.1  matt 		 */
    784  1.1  matt 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    785  1.1  matt 			break;
    786  1.2  matt 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    787  1.2  matt 		    addr == PVO_VADDR(pvo)) {
    788  1.1  matt 
    789  1.1  matt 			/*
    790  1.1  matt 			 * Now we have found the entry to be spilled into the
    791  1.1  matt 			 * pteg.  Attempt to insert it into the page table.
    792  1.1  matt 			 */
    793  1.1  matt 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    794  1.1  matt 			if (j >= 0) {
    795  1.1  matt 				PVO_PTEGIDX_SET(pvo, j);
    796  1.1  matt 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    797  1.1  matt 				pvo->pvo_pmap->pm_evictions--;
    798  1.1  matt 				PMAPCOUNT(ptes_spilled);
    799  1.1  matt 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    800  1.1  matt 				    ? pmap_evcnt_ptes_secondary
    801  1.1  matt 				    : pmap_evcnt_ptes_primary)[j]);
    802  1.1  matt 
    803  1.1  matt 				/*
    804  1.1  matt 				 * Since we keep the evicted entries at the
    805  1.1  matt 				 * from of the PVO list, we need move this
    806  1.1  matt 				 * (now resident) PVO after the evicted
    807  1.1  matt 				 * entries.
    808  1.1  matt 				 */
    809  1.1  matt 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    810  1.1  matt 
    811  1.1  matt 				/*
    812  1.1  matt 				 * If we don't have to move (either we were
    813  1.1  matt 				 * the last entry or the next entry was valid,
    814  1.1  matt 				 * don't change our position.  Otherwise
    815  1.1  matt 				 * move ourselves to the tail of the queue.
    816  1.1  matt 				 */
    817  1.1  matt 				if (next_pvo != NULL &&
    818  1.1  matt 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    819  1.1  matt 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    820  1.1  matt 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    821  1.1  matt 				}
    822  1.1  matt 				return 1;
    823  1.1  matt 			}
    824  1.1  matt 			source_pvo = pvo;
    825  1.1  matt 			if (victim_pvo != NULL)
    826  1.1  matt 				break;
    827  1.1  matt 		}
    828  1.1  matt 
    829  1.1  matt 		/*
    830  1.1  matt 		 * We also need the pvo entry of the victim we are replacing
    831  1.1  matt 		 * so save the R & C bits of the PTE.
    832  1.1  matt 		 */
    833  1.1  matt 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    834  1.1  matt 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    835  1.1  matt 			vpvoh = pvoh;
    836  1.1  matt 			victim_pvo = pvo;
    837  1.1  matt 			if (source_pvo != NULL)
    838  1.1  matt 				break;
    839  1.1  matt 		}
    840  1.1  matt 	}
    841  1.1  matt 
    842  1.1  matt 	if (source_pvo == NULL) {
    843  1.1  matt 		PMAPCOUNT(ptes_unspilled);
    844  1.1  matt 		return 0;
    845  1.1  matt 	}
    846  1.1  matt 
    847  1.1  matt 	if (victim_pvo == NULL) {
    848  1.1  matt 		if ((pt->pte_hi & PTE_HID) == 0)
    849  1.1  matt 			panic("pmap_pte_spill: victim p-pte (%p) has "
    850  1.1  matt 			    "no pvo entry!", pt);
    851  1.1  matt 
    852  1.1  matt 		/*
    853  1.1  matt 		 * If this is a secondary PTE, we need to search
    854  1.1  matt 		 * its primary pvo bucket for the matching PVO.
    855  1.1  matt 		 */
    856  1.1  matt 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
    857  1.1  matt 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    858  1.1  matt 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    859  1.1  matt 
    860  1.1  matt 			/*
    861  1.1  matt 			 * We also need the pvo entry of the victim we are
    862  1.1  matt 			 * replacing so save the R & C bits of the PTE.
    863  1.1  matt 			 */
    864  1.1  matt 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    865  1.1  matt 				victim_pvo = pvo;
    866  1.1  matt 				break;
    867  1.1  matt 			}
    868  1.1  matt 		}
    869  1.1  matt 		if (victim_pvo == NULL)
    870  1.1  matt 			panic("pmap_pte_spill: victim s-pte (%p) has "
    871  1.1  matt 			    "no pvo entry!", pt);
    872  1.1  matt 	}
    873  1.1  matt 
    874  1.1  matt 	/*
    875  1.1  matt 	 * We are invalidating the TLB entry for the EA for the
    876  1.1  matt 	 * we are replacing even though its valid; If we don't
    877  1.1  matt 	 * we lose any ref/chg bit changes contained in the TLB
    878  1.1  matt 	 * entry.
    879  1.1  matt 	 */
    880  1.1  matt 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    881  1.1  matt 
    882  1.1  matt 	/*
    883  1.1  matt 	 * To enforce the PVO list ordering constraint that all
    884  1.1  matt 	 * evicted entries should come before all valid entries,
    885  1.1  matt 	 * move the source PVO to the tail of its list and the
    886  1.1  matt 	 * victim PVO to the head of its list (which might not be
    887  1.1  matt 	 * the same list, if the victim was using the secondary hash).
    888  1.1  matt 	 */
    889  1.1  matt 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    890  1.1  matt 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    891  1.1  matt 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    892  1.1  matt 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    893  1.1  matt 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    894  1.1  matt 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    895  1.1  matt 	victim_pvo->pvo_pmap->pm_evictions++;
    896  1.1  matt 	source_pvo->pvo_pmap->pm_evictions--;
    897  1.1  matt 
    898  1.1  matt 	PVO_PTEGIDX_CLR(victim_pvo);
    899  1.1  matt 	PVO_PTEGIDX_SET(source_pvo, i);
    900  1.1  matt 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    901  1.1  matt 	PMAPCOUNT(ptes_spilled);
    902  1.1  matt 	PMAPCOUNT(ptes_evicted);
    903  1.1  matt 	PMAPCOUNT(ptes_removed);
    904  1.1  matt 
    905  1.1  matt 	PMAP_PVO_CHECK(victim_pvo);
    906  1.1  matt 	PMAP_PVO_CHECK(source_pvo);
    907  1.1  matt 	return 1;
    908  1.1  matt }
    909  1.1  matt 
    910  1.1  matt /*
    911  1.1  matt  * Restrict given range to physical memory
    912  1.1  matt  */
    913  1.1  matt void
    914  1.1  matt pmap_real_memory(paddr_t *start, psize_t *size)
    915  1.1  matt {
    916  1.1  matt 	struct mem_region *mp;
    917  1.1  matt 
    918  1.1  matt 	for (mp = mem; mp->size; mp++) {
    919  1.1  matt 		if (*start + *size > mp->start
    920  1.1  matt 		    && *start < mp->start + mp->size) {
    921  1.1  matt 			if (*start < mp->start) {
    922  1.1  matt 				*size -= mp->start - *start;
    923  1.1  matt 				*start = mp->start;
    924  1.1  matt 			}
    925  1.1  matt 			if (*start + *size > mp->start + mp->size)
    926  1.1  matt 				*size = mp->start + mp->size - *start;
    927  1.1  matt 			return;
    928  1.1  matt 		}
    929  1.1  matt 	}
    930  1.1  matt 	*size = 0;
    931  1.1  matt }
    932  1.1  matt 
    933  1.1  matt /*
    934  1.1  matt  * Initialize anything else for pmap handling.
    935  1.1  matt  * Called during vm_init().
    936  1.1  matt  */
    937  1.1  matt void
    938  1.1  matt pmap_init(void)
    939  1.1  matt {
    940  1.1  matt 	int s;
    941  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
    942  1.1  matt 	struct pvo_tqhead *pvoh;
    943  1.1  matt 	int bank;
    944  1.1  matt 	long sz;
    945  1.1  matt 	char *attr;
    946  1.1  matt 
    947  1.1  matt 	s = splvm();
    948  1.1  matt 	pvoh = pmap_physseg.pvoh;
    949  1.1  matt 	attr = pmap_physseg.attrs;
    950  1.1  matt 	for (bank = 0; bank < vm_nphysseg; bank++) {
    951  1.1  matt 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
    952  1.1  matt 		vm_physmem[bank].pmseg.pvoh = pvoh;
    953  1.1  matt 		vm_physmem[bank].pmseg.attrs = attr;
    954  1.1  matt 		for (; sz > 0; sz--, pvoh++, attr++) {
    955  1.1  matt 			TAILQ_INIT(pvoh);
    956  1.1  matt 			*attr = 0;
    957  1.1  matt 		}
    958  1.1  matt 	}
    959  1.1  matt 	splx(s);
    960  1.1  matt #endif
    961  1.1  matt 
    962  1.1  matt 	s = splvm();
    963  1.1  matt 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
    964  1.1  matt 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
    965  1.1  matt 	    &pmap_pool_mallocator);
    966  1.1  matt 
    967  1.1  matt 	pool_setlowat(&pmap_mpvo_pool, 1008);
    968  1.1  matt 
    969  1.1  matt 	pmap_initialized = 1;
    970  1.1  matt 	splx(s);
    971  1.1  matt 
    972  1.1  matt #ifdef PMAPCOUNTERS
    973  1.1  matt 	evcnt_attach_static(&pmap_evcnt_mappings);
    974  1.1  matt 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
    975  1.1  matt 	evcnt_attach_static(&pmap_evcnt_unmappings);
    976  1.1  matt 
    977  1.1  matt 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
    978  1.1  matt 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
    979  1.1  matt 
    980  1.1  matt 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
    981  1.1  matt 	evcnt_attach_static(&pmap_evcnt_exec_cached);
    982  1.1  matt 	evcnt_attach_static(&pmap_evcnt_exec_synced);
    983  1.1  matt 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
    984  1.1  matt 
    985  1.1  matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
    986  1.1  matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
    987  1.1  matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
    988  1.1  matt 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
    989  1.1  matt 
    990  1.1  matt 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
    991  1.1  matt 	evcnt_attach_static(&pmap_evcnt_copied_pages);
    992  1.1  matt 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
    993  1.1  matt 
    994  1.1  matt 	evcnt_attach_static(&pmap_evcnt_updates);
    995  1.1  matt 	evcnt_attach_static(&pmap_evcnt_collects);
    996  1.1  matt 	evcnt_attach_static(&pmap_evcnt_copies);
    997  1.1  matt 
    998  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
    999  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1000  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1001  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1002  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1003  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1004  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1005  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1006  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1007  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1008  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1009  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1010  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1011  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1012  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1013  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1014  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1015  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1016  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1017  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1018  1.1  matt 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1019  1.1  matt #endif
   1020  1.1  matt }
   1021  1.1  matt 
   1022  1.1  matt /*
   1023  1.1  matt  * How much virtual space does the kernel get?
   1024  1.1  matt  */
   1025  1.1  matt void
   1026  1.1  matt pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1027  1.1  matt {
   1028  1.1  matt 	/*
   1029  1.1  matt 	 * For now, reserve one segment (minus some overhead) for kernel
   1030  1.1  matt 	 * virtual memory
   1031  1.1  matt 	 */
   1032  1.1  matt 	*start = VM_MIN_KERNEL_ADDRESS;
   1033  1.1  matt 	*end = VM_MAX_KERNEL_ADDRESS;
   1034  1.1  matt }
   1035  1.1  matt 
   1036  1.1  matt /*
   1037  1.1  matt  * Allocate, initialize, and return a new physical map.
   1038  1.1  matt  */
   1039  1.1  matt pmap_t
   1040  1.1  matt pmap_create(void)
   1041  1.1  matt {
   1042  1.1  matt 	pmap_t pm;
   1043  1.1  matt 
   1044  1.1  matt 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1045  1.1  matt 	memset((caddr_t)pm, 0, sizeof *pm);
   1046  1.1  matt 	pmap_pinit(pm);
   1047  1.1  matt 
   1048  1.1  matt 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1049  1.2  matt 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n"
   1050  1.2  matt 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n", pm,
   1051  1.1  matt 	    pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
   1052  1.1  matt 	    pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
   1053  1.1  matt 	    pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
   1054  1.1  matt 	    pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
   1055  1.1  matt 	return pm;
   1056  1.1  matt }
   1057  1.1  matt 
   1058  1.1  matt /*
   1059  1.1  matt  * Initialize a preallocated and zeroed pmap structure.
   1060  1.1  matt  */
   1061  1.1  matt void
   1062  1.1  matt pmap_pinit(pmap_t pm)
   1063  1.1  matt {
   1064  1.2  matt 	register_t entropy = MFTB();
   1065  1.2  matt 	register_t mask;
   1066  1.2  matt 	int i;
   1067  1.1  matt 
   1068  1.1  matt 	/*
   1069  1.1  matt 	 * Allocate some segment registers for this pmap.
   1070  1.1  matt 	 */
   1071  1.1  matt 	pm->pm_refs = 1;
   1072  1.2  matt 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1073  1.2  matt 		static register_t pmap_vsidcontext;
   1074  1.2  matt 		register_t hash;
   1075  1.2  matt 		unsigned int n;
   1076  1.1  matt 
   1077  1.1  matt 		/* Create a new value by multiplying by a prime adding in
   1078  1.1  matt 		 * entropy from the timebase register.  This is to make the
   1079  1.1  matt 		 * VSID more random so that the PT Hash function collides
   1080  1.1  matt 		 * less often. (note that the prime causes gcc to do shifts
   1081  1.1  matt 		 * instead of a multiply)
   1082  1.1  matt 		 */
   1083  1.1  matt 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1084  1.1  matt 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1085  1.1  matt 		if (hash == 0)			/* 0 is special, avoid it */
   1086  1.1  matt 			continue;
   1087  1.1  matt 		n = hash >> 5;
   1088  1.2  matt 		mask = 1L << (hash & (VSID_NBPW-1));
   1089  1.2  matt 		hash = pmap_vsidcontext;
   1090  1.1  matt 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1091  1.1  matt 			/* anything free in this bucket? */
   1092  1.2  matt 			if (~pmap_vsid_bitmap[n] == 0) {
   1093  1.2  matt 				entropy = hash >> PTE_VSID_SHFT;
   1094  1.1  matt 				continue;
   1095  1.1  matt 			}
   1096  1.1  matt 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1097  1.2  matt 			mask = 1L << i;
   1098  1.2  matt 			hash &= ~(VSID_NBPW-1);
   1099  1.1  matt 			hash |= i;
   1100  1.1  matt 		}
   1101  1.2  matt 		/*
   1102  1.2  matt 		 * Make sure clear out SR_KEY_LEN bits because we put our
   1103  1.2  matt 		 * our data in those bits (to identify the segment).
   1104  1.2  matt 		 */
   1105  1.2  matt 		hash &= PTE_VSID >> (PTE_VSID_SHFT + SR_KEY_LEN);
   1106  1.1  matt 		pmap_vsid_bitmap[n] |= mask;
   1107  1.1  matt 		for (i = 0; i < 16; i++)
   1108  1.1  matt 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY;
   1109  1.1  matt 		return;
   1110  1.1  matt 	}
   1111  1.1  matt 	panic("pmap_pinit: out of segments");
   1112  1.1  matt }
   1113  1.1  matt 
   1114  1.1  matt /*
   1115  1.1  matt  * Add a reference to the given pmap.
   1116  1.1  matt  */
   1117  1.1  matt void
   1118  1.1  matt pmap_reference(pmap_t pm)
   1119  1.1  matt {
   1120  1.1  matt 	pm->pm_refs++;
   1121  1.1  matt }
   1122  1.1  matt 
   1123  1.1  matt /*
   1124  1.1  matt  * Retire the given pmap from service.
   1125  1.1  matt  * Should only be called if the map contains no valid mappings.
   1126  1.1  matt  */
   1127  1.1  matt void
   1128  1.1  matt pmap_destroy(pmap_t pm)
   1129  1.1  matt {
   1130  1.1  matt 	if (--pm->pm_refs == 0) {
   1131  1.1  matt 		pmap_release(pm);
   1132  1.1  matt 		pool_put(&pmap_pool, pm);
   1133  1.1  matt 	}
   1134  1.1  matt }
   1135  1.1  matt 
   1136  1.1  matt /*
   1137  1.1  matt  * Release any resources held by the given physical map.
   1138  1.1  matt  * Called when a pmap initialized by pmap_pinit is being released.
   1139  1.1  matt  */
   1140  1.1  matt void
   1141  1.1  matt pmap_release(pmap_t pm)
   1142  1.1  matt {
   1143  1.1  matt 	int idx, mask;
   1144  1.1  matt 
   1145  1.1  matt 	if (pm->pm_sr[0] == 0)
   1146  1.1  matt 		panic("pmap_release");
   1147  1.1  matt 	idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1);
   1148  1.1  matt 	mask = 1 << (idx % VSID_NBPW);
   1149  1.1  matt 	idx /= VSID_NBPW;
   1150  1.1  matt 	pmap_vsid_bitmap[idx] &= ~mask;
   1151  1.1  matt }
   1152  1.1  matt 
   1153  1.1  matt /*
   1154  1.1  matt  * Copy the range specified by src_addr/len
   1155  1.1  matt  * from the source map to the range dst_addr/len
   1156  1.1  matt  * in the destination map.
   1157  1.1  matt  *
   1158  1.1  matt  * This routine is only advisory and need not do anything.
   1159  1.1  matt  */
   1160  1.1  matt void
   1161  1.1  matt pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1162  1.1  matt 	vsize_t len, vaddr_t src_addr)
   1163  1.1  matt {
   1164  1.1  matt 	PMAPCOUNT(copies);
   1165  1.1  matt }
   1166  1.1  matt 
   1167  1.1  matt /*
   1168  1.1  matt  * Require that all active physical maps contain no
   1169  1.1  matt  * incorrect entries NOW.
   1170  1.1  matt  */
   1171  1.1  matt void
   1172  1.1  matt pmap_update(struct pmap *pmap)
   1173  1.1  matt {
   1174  1.1  matt 	PMAPCOUNT(updates);
   1175  1.1  matt 	TLBSYNC();
   1176  1.1  matt }
   1177  1.1  matt 
   1178  1.1  matt /*
   1179  1.1  matt  * Garbage collects the physical map system for
   1180  1.1  matt  * pages which are no longer used.
   1181  1.1  matt  * Success need not be guaranteed -- that is, there
   1182  1.1  matt  * may well be pages which are not referenced, but
   1183  1.1  matt  * others may be collected.
   1184  1.1  matt  * Called by the pageout daemon when pages are scarce.
   1185  1.1  matt  */
   1186  1.1  matt void
   1187  1.1  matt pmap_collect(pmap_t pm)
   1188  1.1  matt {
   1189  1.1  matt 	PMAPCOUNT(collects);
   1190  1.1  matt }
   1191  1.1  matt 
   1192  1.1  matt static __inline int
   1193  1.1  matt pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1194  1.1  matt {
   1195  1.1  matt 	int pteidx;
   1196  1.1  matt 	/*
   1197  1.1  matt 	 * We can find the actual pte entry without searching by
   1198  1.1  matt 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1199  1.1  matt 	 * and by noticing the HID bit.
   1200  1.1  matt 	 */
   1201  1.1  matt 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1202  1.1  matt 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1203  1.1  matt 		pteidx ^= pmap_pteg_mask * 8;
   1204  1.1  matt 	return pteidx;
   1205  1.1  matt }
   1206  1.1  matt 
   1207  1.2  matt volatile struct pte *
   1208  1.1  matt pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1209  1.1  matt {
   1210  1.2  matt 	volatile struct pte *pt;
   1211  1.1  matt 
   1212  1.1  matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1213  1.1  matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1214  1.1  matt 		return NULL;
   1215  1.1  matt #endif
   1216  1.1  matt 
   1217  1.1  matt 	/*
   1218  1.1  matt 	 * If we haven't been supplied the ptegidx, calculate it.
   1219  1.1  matt 	 */
   1220  1.1  matt 	if (pteidx == -1) {
   1221  1.1  matt 		int ptegidx;
   1222  1.2  matt 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1223  1.1  matt 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1224  1.1  matt 	}
   1225  1.1  matt 
   1226  1.1  matt 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1227  1.1  matt 
   1228  1.1  matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1229  1.1  matt 	return pt;
   1230  1.1  matt #else
   1231  1.1  matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1232  1.1  matt 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1233  1.1  matt 		    "pvo but no valid pte index", pvo);
   1234  1.1  matt 	}
   1235  1.1  matt 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1236  1.1  matt 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1237  1.1  matt 		    "pvo but no valid pte", pvo);
   1238  1.1  matt 	}
   1239  1.1  matt 
   1240  1.1  matt 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1241  1.1  matt 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1242  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK)
   1243  1.1  matt 			pmap_pte_print(pt);
   1244  1.1  matt #endif
   1245  1.1  matt 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1246  1.1  matt 			    "pmap_pteg_table %p but invalid in pvo",
   1247  1.1  matt 			    pvo, pt);
   1248  1.1  matt 		}
   1249  1.1  matt 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1250  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK)
   1251  1.1  matt 			pmap_pte_print(pt);
   1252  1.1  matt #endif
   1253  1.1  matt 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1254  1.1  matt 			    "not match pte %p in pmap_pteg_table",
   1255  1.1  matt 			    pvo, pt);
   1256  1.1  matt 		}
   1257  1.1  matt 		return pt;
   1258  1.1  matt 	}
   1259  1.1  matt 
   1260  1.1  matt 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1261  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK)
   1262  1.1  matt 		pmap_pte_print(pt);
   1263  1.1  matt #endif
   1264  1.1  matt 		panic("pmap_pvo_to_pte: pvo %p: has invalid pte %p in "
   1265  1.1  matt 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1266  1.1  matt 	}
   1267  1.1  matt 	return NULL;
   1268  1.1  matt #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1269  1.1  matt }
   1270  1.1  matt 
   1271  1.1  matt struct pvo_entry *
   1272  1.1  matt pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1273  1.1  matt {
   1274  1.1  matt 	struct pvo_entry *pvo;
   1275  1.1  matt 	int ptegidx;
   1276  1.1  matt 
   1277  1.1  matt 	va &= ~ADDR_POFF;
   1278  1.2  matt 	ptegidx = va_to_pteg(pm, va);
   1279  1.1  matt 
   1280  1.1  matt 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1281  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1282  1.1  matt 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1283  1.1  matt 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1284  1.1  matt 			    "list %#x (%p)", pvo, ptegidx,
   1285  1.1  matt 			     &pmap_pvo_table[ptegidx]);
   1286  1.1  matt #endif
   1287  1.1  matt 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1288  1.1  matt 			if (pteidx_p)
   1289  1.1  matt 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1290  1.1  matt 			return pvo;
   1291  1.1  matt 		}
   1292  1.1  matt 	}
   1293  1.1  matt 	return NULL;
   1294  1.1  matt }
   1295  1.1  matt 
   1296  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK)
   1297  1.1  matt void
   1298  1.1  matt pmap_pvo_check(const struct pvo_entry *pvo)
   1299  1.1  matt {
   1300  1.1  matt 	struct pvo_head *pvo_head;
   1301  1.1  matt 	struct pvo_entry *pvo0;
   1302  1.2  matt 	volatile struct pte *pt;
   1303  1.1  matt 	int failed = 0;
   1304  1.1  matt 
   1305  1.1  matt 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1306  1.1  matt 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1307  1.1  matt 
   1308  1.1  matt 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1309  1.1  matt 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1310  1.1  matt 		    pvo, pvo->pvo_pmap);
   1311  1.1  matt 		failed = 1;
   1312  1.1  matt 	}
   1313  1.1  matt 
   1314  1.1  matt 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1315  1.1  matt 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1316  1.1  matt 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1317  1.1  matt 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1318  1.1  matt 		failed = 1;
   1319  1.1  matt 	}
   1320  1.1  matt 
   1321  1.1  matt 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1322  1.1  matt 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1323  1.1  matt 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1324  1.1  matt 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1325  1.1  matt 		failed = 1;
   1326  1.1  matt 	}
   1327  1.1  matt 
   1328  1.1  matt 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1329  1.1  matt 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1330  1.1  matt 	} else {
   1331  1.1  matt 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1332  1.1  matt 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1333  1.1  matt 			    "on kernel unmanaged list\n", pvo);
   1334  1.1  matt 			failed = 1;
   1335  1.1  matt 		}
   1336  1.1  matt 		pvo_head = &pmap_pvo_kunmanaged;
   1337  1.1  matt 	}
   1338  1.1  matt 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1339  1.1  matt 		if (pvo0 == pvo)
   1340  1.1  matt 			break;
   1341  1.1  matt 	}
   1342  1.1  matt 	if (pvo0 == NULL) {
   1343  1.1  matt 		printf("pmap_pvo_check: pvo %p: not present "
   1344  1.1  matt 		    "on its vlist head %p\n", pvo, pvo_head);
   1345  1.1  matt 		failed = 1;
   1346  1.1  matt 	}
   1347  1.1  matt 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1348  1.1  matt 		printf("pmap_pvo_check: pvo %p: not present "
   1349  1.1  matt 		    "on its olist head\n", pvo);
   1350  1.1  matt 		failed = 1;
   1351  1.1  matt 	}
   1352  1.1  matt 	pt = pmap_pvo_to_pte(pvo, -1);
   1353  1.1  matt 	if (pt == NULL) {
   1354  1.1  matt 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1355  1.1  matt 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1356  1.1  matt 			    "no PTE\n", pvo);
   1357  1.1  matt 			failed = 1;
   1358  1.1  matt 		}
   1359  1.1  matt 	} else {
   1360  1.1  matt 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1361  1.1  matt 		    (uintptr_t) pt >=
   1362  1.1  matt 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1363  1.1  matt 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1364  1.1  matt 			    "pteg table\n", pvo, pt);
   1365  1.1  matt 			failed = 1;
   1366  1.1  matt 		}
   1367  1.1  matt 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1368  1.1  matt 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1369  1.1  matt 			    "no PTE\n", pvo);
   1370  1.1  matt 			failed = 1;
   1371  1.1  matt 		}
   1372  1.1  matt 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1373  1.1  matt 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1374  1.2  matt 			    "%#lx/%#lx\n", pvo, pvo->pvo_pte.pte_hi, pt->pte_hi);
   1375  1.1  matt 			failed = 1;
   1376  1.1  matt 		}
   1377  1.1  matt 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1378  1.1  matt 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1379  1.1  matt 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1380  1.2  matt 			    "%#lx/%#lx\n", pvo,
   1381  1.1  matt 			    pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN),
   1382  1.1  matt 			    pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN));
   1383  1.1  matt 			failed = 1;
   1384  1.1  matt 		}
   1385  1.1  matt 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1386  1.1  matt 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1387  1.1  matt 			    " doesn't not match PVO's VA %#lx\n",
   1388  1.1  matt 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1389  1.1  matt 			failed = 1;
   1390  1.1  matt 		}
   1391  1.1  matt 		if (failed)
   1392  1.1  matt 			pmap_pte_print(pt);
   1393  1.1  matt 	}
   1394  1.1  matt 	if (failed)
   1395  1.1  matt 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1396  1.1  matt 		    pvo->pvo_pmap);
   1397  1.1  matt }
   1398  1.1  matt #endif /* DEBUG || PMAPCHECK */
   1399  1.1  matt 
   1400  1.1  matt /*
   1401  1.1  matt  * This returns whether this is the first mapping of a page.
   1402  1.1  matt  */
   1403  1.1  matt int
   1404  1.1  matt pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1405  1.2  matt 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1406  1.1  matt {
   1407  1.1  matt 	struct pvo_entry *pvo;
   1408  1.1  matt 	struct pvo_tqhead *pvoh;
   1409  1.2  matt 	register_t msr;
   1410  1.1  matt 	int ptegidx;
   1411  1.1  matt 	int i;
   1412  1.1  matt 	int poolflags = PR_NOWAIT;
   1413  1.1  matt 
   1414  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1415  1.1  matt 	if (pmap_pvo_remove_depth > 0)
   1416  1.1  matt 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1417  1.1  matt 	if (++pmap_pvo_enter_depth > 1)
   1418  1.1  matt 		panic("pmap_pvo_enter: called recursively!");
   1419  1.1  matt #endif
   1420  1.1  matt 
   1421  1.1  matt 	/*
   1422  1.1  matt 	 * Compute the PTE Group index.
   1423  1.1  matt 	 */
   1424  1.1  matt 	va &= ~ADDR_POFF;
   1425  1.2  matt 	ptegidx = va_to_pteg(pm, va);
   1426  1.1  matt 
   1427  1.1  matt 	msr = pmap_interrupts_off();
   1428  1.1  matt 	/*
   1429  1.1  matt 	 * Remove any existing mapping for this page.  Reuse the
   1430  1.1  matt 	 * pvo entry if there a mapping.
   1431  1.1  matt 	 */
   1432  1.1  matt 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1433  1.1  matt 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1434  1.1  matt #ifdef DEBUG
   1435  1.1  matt 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1436  1.1  matt 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1437  1.1  matt 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1438  1.1  matt 			   va < VM_MIN_KERNEL_ADDRESS) {
   1439  1.2  matt 				printf("pmap_pvo_enter: pvo %p: dup %#lx/%#lx\n",
   1440  1.1  matt 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1441  1.2  matt 				printf("pmap_pvo_enter: pte_hi=%#lx sr=%#lx\n",
   1442  1.1  matt 				    pvo->pvo_pte.pte_hi,
   1443  1.1  matt 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1444  1.1  matt 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1445  1.1  matt #ifdef DDBX
   1446  1.1  matt 				Debugger();
   1447  1.1  matt #endif
   1448  1.1  matt 			}
   1449  1.1  matt #endif
   1450  1.1  matt 			PMAPCOUNT(mappings_replaced);
   1451  1.1  matt 			pmap_pvo_remove(pvo, -1);
   1452  1.1  matt 			break;
   1453  1.1  matt 		}
   1454  1.1  matt 	}
   1455  1.1  matt 
   1456  1.1  matt 	/*
   1457  1.1  matt 	 * If we aren't overwriting an mapping, try to allocate
   1458  1.1  matt 	 */
   1459  1.1  matt 	pmap_interrupts_restore(msr);
   1460  1.1  matt 	pvo = pool_get(pl, poolflags);
   1461  1.1  matt 	msr = pmap_interrupts_off();
   1462  1.1  matt 	if (pvo == NULL) {
   1463  1.1  matt #if 0
   1464  1.1  matt 		pvo = pmap_pvo_reclaim(pm);
   1465  1.1  matt 		if (pvo == NULL) {
   1466  1.1  matt #endif
   1467  1.1  matt 			if ((flags & PMAP_CANFAIL) == 0)
   1468  1.1  matt 				panic("pmap_pvo_enter: failed");
   1469  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1470  1.1  matt 			pmap_pvo_enter_depth--;
   1471  1.1  matt #endif
   1472  1.1  matt 			pmap_interrupts_restore(msr);
   1473  1.1  matt 			return ENOMEM;
   1474  1.1  matt #if 0
   1475  1.1  matt 		}
   1476  1.1  matt #endif
   1477  1.1  matt 	}
   1478  1.1  matt 	pvo->pvo_vaddr = va;
   1479  1.1  matt 	pvo->pvo_pmap = pm;
   1480  1.1  matt 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1481  1.1  matt 	if (flags & VM_PROT_EXECUTE) {
   1482  1.1  matt 		PMAPCOUNT(exec_mappings);
   1483  1.1  matt 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1484  1.1  matt 	}
   1485  1.1  matt 	if (flags & PMAP_WIRED)
   1486  1.1  matt 		pvo->pvo_vaddr |= PVO_WIRED;
   1487  1.1  matt 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1488  1.1  matt 		pvo->pvo_vaddr |= PVO_MANAGED;
   1489  1.1  matt 		PMAPCOUNT(mappings);
   1490  1.1  matt 	} else {
   1491  1.1  matt 		PMAPCOUNT(kernel_mappings);
   1492  1.1  matt 	}
   1493  1.2  matt 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1494  1.1  matt 
   1495  1.1  matt 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1496  1.1  matt 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1497  1.1  matt 		pvo->pvo_pmap->pm_stats.wired_count++;
   1498  1.1  matt 	pvo->pvo_pmap->pm_stats.resident_count++;
   1499  1.1  matt #if defined(DEBUG)
   1500  1.1  matt 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1501  1.1  matt 		DPRINTFN(PVOENTER,
   1502  1.1  matt 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1503  1.1  matt 		    pvo, pm, va, pa));
   1504  1.1  matt #endif
   1505  1.1  matt 
   1506  1.1  matt 	/*
   1507  1.1  matt 	 * We hope this succeeds but it isn't required.
   1508  1.1  matt 	 */
   1509  1.1  matt 	pvoh = &pmap_pvo_table[ptegidx];
   1510  1.1  matt 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1511  1.1  matt 	if (i >= 0) {
   1512  1.1  matt 		PVO_PTEGIDX_SET(pvo, i);
   1513  1.1  matt 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1514  1.1  matt 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1515  1.1  matt 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1516  1.1  matt 	} else {
   1517  1.1  matt 
   1518  1.1  matt 		/*
   1519  1.1  matt 		 * Since we didn't have room for this entry (which makes it
   1520  1.1  matt 		 * and evicted entry), place it at the head of the list.
   1521  1.1  matt 		 */
   1522  1.1  matt 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1523  1.1  matt 		PMAPCOUNT(ptes_evicted);
   1524  1.1  matt 		pm->pm_evictions++;
   1525  1.1  matt 	}
   1526  1.1  matt 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1527  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1528  1.1  matt 	pmap_pvo_enter_depth--;
   1529  1.1  matt #endif
   1530  1.1  matt 	pmap_interrupts_restore(msr);
   1531  1.1  matt 	return 0;
   1532  1.1  matt }
   1533  1.1  matt 
   1534  1.1  matt void
   1535  1.1  matt pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
   1536  1.1  matt {
   1537  1.2  matt 	volatile struct pte *pt;
   1538  1.1  matt 	int ptegidx;
   1539  1.1  matt 
   1540  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1541  1.1  matt 	if (++pmap_pvo_remove_depth > 1)
   1542  1.1  matt 		panic("pmap_pvo_remove: called recursively!");
   1543  1.1  matt #endif
   1544  1.1  matt 
   1545  1.1  matt 	/*
   1546  1.1  matt 	 * If we haven't been supplied the ptegidx, calculate it.
   1547  1.1  matt 	 */
   1548  1.1  matt 	if (pteidx == -1) {
   1549  1.2  matt 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1550  1.1  matt 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1551  1.1  matt 	} else {
   1552  1.1  matt 		ptegidx = pteidx >> 3;
   1553  1.1  matt 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1554  1.1  matt 			ptegidx ^= pmap_pteg_mask;
   1555  1.1  matt 	}
   1556  1.1  matt 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1557  1.1  matt 
   1558  1.1  matt 	/*
   1559  1.1  matt 	 * If there is an active pte entry, we need to deactivate it
   1560  1.1  matt 	 * (and save the ref & chg bits).
   1561  1.1  matt 	 */
   1562  1.1  matt 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1563  1.1  matt 	if (pt != NULL) {
   1564  1.1  matt 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1565  1.1  matt 		PVO_PTEGIDX_CLR(pvo);
   1566  1.1  matt 		PMAPCOUNT(ptes_removed);
   1567  1.1  matt 	} else {
   1568  1.1  matt 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1569  1.1  matt 		pvo->pvo_pmap->pm_evictions--;
   1570  1.1  matt 	}
   1571  1.1  matt 
   1572  1.1  matt 	/*
   1573  1.1  matt 	 * Update our statistics
   1574  1.1  matt 	 */
   1575  1.1  matt 	pvo->pvo_pmap->pm_stats.resident_count--;
   1576  1.1  matt 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1577  1.1  matt 		pvo->pvo_pmap->pm_stats.wired_count--;
   1578  1.1  matt 
   1579  1.1  matt 	/*
   1580  1.1  matt 	 * Save the REF/CHG bits into their cache if the page is managed.
   1581  1.1  matt 	 */
   1582  1.1  matt 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1583  1.2  matt 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1584  1.1  matt 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1585  1.1  matt 
   1586  1.1  matt 		if (pg != NULL) {
   1587  1.1  matt 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1588  1.1  matt 		}
   1589  1.1  matt 		PMAPCOUNT(unmappings);
   1590  1.1  matt 	} else {
   1591  1.1  matt 		PMAPCOUNT(kernel_unmappings);
   1592  1.1  matt 	}
   1593  1.1  matt 
   1594  1.1  matt 	/*
   1595  1.1  matt 	 * Remove the PVO from its lists and return it to the pool.
   1596  1.1  matt 	 */
   1597  1.1  matt 	LIST_REMOVE(pvo, pvo_vlink);
   1598  1.1  matt 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1599  1.1  matt 	pool_put(pvo->pvo_vaddr & PVO_MANAGED
   1600  1.1  matt 	    ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1601  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1602  1.1  matt 	pmap_pvo_remove_depth--;
   1603  1.1  matt #endif
   1604  1.1  matt }
   1605  1.1  matt 
   1606  1.1  matt /*
   1607  1.1  matt  * Insert physical page at pa into the given pmap at virtual address va.
   1608  1.1  matt  */
   1609  1.1  matt int
   1610  1.1  matt pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1611  1.1  matt {
   1612  1.1  matt 	struct mem_region *mp;
   1613  1.1  matt 	struct pvo_head *pvo_head;
   1614  1.1  matt 	struct vm_page *pg;
   1615  1.1  matt 	struct pool *pl;
   1616  1.2  matt 	register_t pte_lo;
   1617  1.1  matt 	int s;
   1618  1.1  matt 	int error;
   1619  1.1  matt 	u_int pvo_flags;
   1620  1.1  matt 	u_int was_exec = 0;
   1621  1.1  matt 
   1622  1.1  matt 	if (__predict_false(!pmap_initialized)) {
   1623  1.1  matt 		pvo_head = &pmap_pvo_kunmanaged;
   1624  1.1  matt 		pl = &pmap_upvo_pool;
   1625  1.1  matt 		pvo_flags = 0;
   1626  1.1  matt 		pg = NULL;
   1627  1.1  matt 		was_exec = PTE_EXEC;
   1628  1.1  matt 	} else {
   1629  1.1  matt 		pvo_head = pa_to_pvoh(pa, &pg);
   1630  1.1  matt 		pl = &pmap_mpvo_pool;
   1631  1.1  matt 		pvo_flags = PVO_MANAGED;
   1632  1.1  matt 	}
   1633  1.1  matt 
   1634  1.1  matt 	DPRINTFN(ENTER,
   1635  1.1  matt 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1636  1.1  matt 	    pm, va, pa, prot, flags));
   1637  1.1  matt 
   1638  1.1  matt 	/*
   1639  1.1  matt 	 * If this is a managed page, and it's the first reference to the
   1640  1.1  matt 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1641  1.1  matt 	 */
   1642  1.1  matt 	if (pg != NULL)
   1643  1.1  matt 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1644  1.1  matt 
   1645  1.1  matt 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1646  1.1  matt 
   1647  1.1  matt 	/*
   1648  1.1  matt 	 * Assume the page is cache inhibited and access is guarded unless
   1649  1.1  matt 	 * it's in our available memory array.  If it is in the memory array,
   1650  1.1  matt 	 * asssume it's in memory coherent memory.
   1651  1.1  matt 	 */
   1652  1.1  matt 	pte_lo = PTE_IG;
   1653  1.1  matt 	if ((flags & PMAP_NC) == 0) {
   1654  1.1  matt 		for (mp = mem; mp->size; mp++) {
   1655  1.1  matt 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1656  1.1  matt 				pte_lo = PTE_M;
   1657  1.1  matt 				break;
   1658  1.1  matt 			}
   1659  1.1  matt 		}
   1660  1.1  matt 	}
   1661  1.1  matt 
   1662  1.1  matt 	if (prot & VM_PROT_WRITE)
   1663  1.1  matt 		pte_lo |= PTE_BW;
   1664  1.1  matt 	else
   1665  1.1  matt 		pte_lo |= PTE_BR;
   1666  1.1  matt 
   1667  1.1  matt 	/*
   1668  1.1  matt 	 * If this was in response to a fault, "pre-fault" the PTE's
   1669  1.1  matt 	 * changed/referenced bit appropriately.
   1670  1.1  matt 	 */
   1671  1.1  matt 	if (flags & VM_PROT_WRITE)
   1672  1.1  matt 		pte_lo |= PTE_CHG;
   1673  1.1  matt 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1674  1.1  matt 		pte_lo |= PTE_REF;
   1675  1.1  matt 
   1676  1.1  matt #if 0
   1677  1.1  matt 	if (pm == pmap_kernel()) {
   1678  1.1  matt 		if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_READ)
   1679  1.1  matt 			printf("pmap_pvo_enter: Kernel RO va %#lx pa %#lx\n",
   1680  1.1  matt 				va, pa);
   1681  1.1  matt 		if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_NONE)
   1682  1.1  matt 			printf("pmap_pvo_enter: Kernel N/A va %#lx pa %#lx\n",
   1683  1.1  matt 				va, pa);
   1684  1.1  matt 	}
   1685  1.1  matt #endif
   1686  1.1  matt 
   1687  1.1  matt 	/*
   1688  1.1  matt 	 * We need to know if this page can be executable
   1689  1.1  matt 	 */
   1690  1.1  matt 	flags |= (prot & VM_PROT_EXECUTE);
   1691  1.1  matt 
   1692  1.1  matt 	/*
   1693  1.1  matt 	 * Record mapping for later back-translation and pte spilling.
   1694  1.1  matt 	 * This will overwrite any existing mapping.
   1695  1.1  matt 	 */
   1696  1.1  matt 	s = splvm();
   1697  1.1  matt 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1698  1.1  matt 	splx(s);
   1699  1.1  matt 
   1700  1.1  matt 	/*
   1701  1.1  matt 	 * Flush the real page from the instruction cache if this page is
   1702  1.1  matt 	 * mapped executable and cacheable and has not been flushed since
   1703  1.1  matt 	 * the last time it was modified.
   1704  1.1  matt 	 */
   1705  1.1  matt 	if (error == 0 &&
   1706  1.1  matt             (flags & VM_PROT_EXECUTE) &&
   1707  1.1  matt             (pte_lo & PTE_I) == 0 &&
   1708  1.1  matt 	    was_exec == 0) {
   1709  1.1  matt 		DPRINTFN(ENTER, (" syncicache"));
   1710  1.1  matt 		PMAPCOUNT(exec_synced);
   1711  1.1  matt 		pmap_syncicache(pa, NBPG);
   1712  1.1  matt 		if (pg != NULL) {
   1713  1.1  matt 			pmap_attr_save(pg, PTE_EXEC);
   1714  1.1  matt 			PMAPCOUNT(exec_cached);
   1715  1.1  matt #if defined(DEBUG) || defined(PMAPDEBUG)
   1716  1.1  matt 			if (pmapdebug & PMAPDEBUG_ENTER)
   1717  1.1  matt 				printf(" marked-as-exec");
   1718  1.1  matt 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1719  1.1  matt 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1720  1.1  matt 				    pg->phys_addr);
   1721  1.1  matt 
   1722  1.1  matt #endif
   1723  1.1  matt 		}
   1724  1.1  matt 	}
   1725  1.1  matt 
   1726  1.1  matt 	DPRINTFN(ENTER, (": error=%d\n", error));
   1727  1.1  matt 
   1728  1.1  matt 	return error;
   1729  1.1  matt }
   1730  1.1  matt 
   1731  1.1  matt void
   1732  1.1  matt pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1733  1.1  matt {
   1734  1.1  matt 	struct mem_region *mp;
   1735  1.2  matt 	register_t pte_lo;
   1736  1.2  matt 	register_t msr;
   1737  1.1  matt 	int error;
   1738  1.1  matt 	int s;
   1739  1.1  matt 
   1740  1.1  matt 	if (va < VM_MIN_KERNEL_ADDRESS)
   1741  1.1  matt 		panic("pmap_kenter_pa: attempt to enter "
   1742  1.1  matt 		    "non-kernel address %#lx!", va);
   1743  1.1  matt 
   1744  1.1  matt 	DPRINTFN(KENTER,
   1745  1.1  matt 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1746  1.1  matt 
   1747  1.1  matt 	/*
   1748  1.1  matt 	 * Assume the page is cache inhibited and access is guarded unless
   1749  1.1  matt 	 * it's in our available memory array.  If it is in the memory array,
   1750  1.1  matt 	 * asssume it's in memory coherent memory.
   1751  1.1  matt 	 */
   1752  1.1  matt 	pte_lo = PTE_IG;
   1753  1.1  matt 	for (mp = mem; mp->size; mp++) {
   1754  1.1  matt 		if (pa >= mp->start && pa < mp->start + mp->size) {
   1755  1.1  matt 			pte_lo = PTE_M;
   1756  1.1  matt 			break;
   1757  1.1  matt 		}
   1758  1.1  matt 	}
   1759  1.1  matt 
   1760  1.1  matt 	if (prot & VM_PROT_WRITE)
   1761  1.1  matt 		pte_lo |= PTE_BW;
   1762  1.1  matt 	else
   1763  1.1  matt 		pte_lo |= PTE_BR;
   1764  1.1  matt 
   1765  1.1  matt 	/*
   1766  1.1  matt 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1767  1.1  matt 	 */
   1768  1.1  matt 	s = splvm();
   1769  1.1  matt 	msr = pmap_interrupts_off();
   1770  1.1  matt 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1771  1.1  matt 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1772  1.1  matt 	pmap_interrupts_restore(msr);
   1773  1.1  matt 	splx(s);
   1774  1.1  matt 
   1775  1.1  matt 	if (error != 0)
   1776  1.1  matt 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1777  1.1  matt 		      va, pa, error);
   1778  1.1  matt }
   1779  1.1  matt 
   1780  1.1  matt void
   1781  1.1  matt pmap_kremove(vaddr_t va, vsize_t len)
   1782  1.1  matt {
   1783  1.1  matt 	if (va < VM_MIN_KERNEL_ADDRESS)
   1784  1.1  matt 		panic("pmap_kremove: attempt to remove "
   1785  1.1  matt 		    "non-kernel address %#lx!", va);
   1786  1.1  matt 
   1787  1.1  matt 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1788  1.1  matt 	pmap_remove(pmap_kernel(), va, va + len);
   1789  1.1  matt }
   1790  1.1  matt 
   1791  1.1  matt /*
   1792  1.1  matt  * Remove the given range of mapping entries.
   1793  1.1  matt  */
   1794  1.1  matt void
   1795  1.1  matt pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1796  1.1  matt {
   1797  1.1  matt 	struct pvo_entry *pvo;
   1798  1.2  matt 	register_t msr;
   1799  1.1  matt 	int pteidx;
   1800  1.1  matt 	int s;
   1801  1.1  matt 
   1802  1.1  matt 	for (; va < endva; va += PAGE_SIZE) {
   1803  1.1  matt 		s = splvm();
   1804  1.1  matt 		msr = pmap_interrupts_off();
   1805  1.1  matt 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1806  1.1  matt 		if (pvo != NULL) {
   1807  1.1  matt 			pmap_pvo_remove(pvo, pteidx);
   1808  1.1  matt 		}
   1809  1.1  matt 		pmap_interrupts_restore(msr);
   1810  1.1  matt 		splx(s);
   1811  1.1  matt 	}
   1812  1.1  matt }
   1813  1.1  matt 
   1814  1.1  matt /*
   1815  1.1  matt  * Get the physical page address for the given pmap/virtual address.
   1816  1.1  matt  */
   1817  1.1  matt boolean_t
   1818  1.1  matt pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1819  1.1  matt {
   1820  1.1  matt 	struct pvo_entry *pvo;
   1821  1.2  matt 	register_t msr;
   1822  1.1  matt 	int s;
   1823  1.1  matt 
   1824  1.1  matt 	s = splvm();
   1825  1.1  matt 	msr = pmap_interrupts_off();
   1826  1.1  matt 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   1827  1.1  matt 	if (pvo != NULL) {
   1828  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1829  1.1  matt 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   1830  1.1  matt 	}
   1831  1.1  matt 	pmap_interrupts_restore(msr);
   1832  1.1  matt 	splx(s);
   1833  1.1  matt 	return pvo != NULL;
   1834  1.1  matt }
   1835  1.1  matt 
   1836  1.1  matt /*
   1837  1.1  matt  * Lower the protection on the specified range of this pmap.
   1838  1.1  matt  *
   1839  1.1  matt  * There are only two cases: either the protection is going to 0,
   1840  1.1  matt  * or it is going to read-only.
   1841  1.1  matt  */
   1842  1.1  matt void
   1843  1.1  matt pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   1844  1.1  matt {
   1845  1.1  matt 	struct pvo_entry *pvo;
   1846  1.2  matt 	volatile struct pte *pt;
   1847  1.2  matt 	register_t msr;
   1848  1.1  matt 	int s;
   1849  1.1  matt 	int pteidx;
   1850  1.1  matt 
   1851  1.1  matt 	/*
   1852  1.1  matt 	 * Since this routine only downgrades protection, we should
   1853  1.1  matt 	 * always be called without WRITE permisison.
   1854  1.1  matt 	 */
   1855  1.1  matt 	KASSERT((prot & VM_PROT_WRITE) == 0);
   1856  1.1  matt 
   1857  1.1  matt 	/*
   1858  1.1  matt 	 * If there is no protection, this is equivalent to
   1859  1.1  matt 	 * remove the pmap from the pmap.
   1860  1.1  matt 	 */
   1861  1.1  matt 	if ((prot & VM_PROT_READ) == 0) {
   1862  1.1  matt 		pmap_remove(pm, va, endva);
   1863  1.1  matt 		return;
   1864  1.1  matt 	}
   1865  1.1  matt 
   1866  1.1  matt 	s = splvm();
   1867  1.1  matt 	msr = pmap_interrupts_off();
   1868  1.1  matt 
   1869  1.1  matt 	for (; va < endva; va += NBPG) {
   1870  1.1  matt 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1871  1.1  matt 		if (pvo == NULL)
   1872  1.1  matt 			continue;
   1873  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1874  1.1  matt 
   1875  1.1  matt 		/*
   1876  1.1  matt 		 * Revoke executable if asked to do so.
   1877  1.1  matt 		 */
   1878  1.1  matt 		if ((prot & VM_PROT_EXECUTE) == 0)
   1879  1.1  matt 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1880  1.1  matt 
   1881  1.1  matt #if 0
   1882  1.1  matt 		/*
   1883  1.1  matt 		 * If the page is already read-only, no change
   1884  1.1  matt 		 * needs to be made.
   1885  1.1  matt 		 */
   1886  1.1  matt 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   1887  1.1  matt 			continue;
   1888  1.1  matt #endif
   1889  1.1  matt 		/*
   1890  1.1  matt 		 * Grab the PTE pointer before we diddle with
   1891  1.1  matt 		 * the cached PTE copy.
   1892  1.1  matt 		 */
   1893  1.1  matt 		pt = pmap_pvo_to_pte(pvo, pteidx);
   1894  1.1  matt 		/*
   1895  1.1  matt 		 * Change the protection of the page.
   1896  1.1  matt 		 */
   1897  1.1  matt 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   1898  1.1  matt 		pvo->pvo_pte.pte_lo |= PTE_BR;
   1899  1.1  matt 
   1900  1.1  matt 		/*
   1901  1.1  matt 		 * If the PVO is in the page table, update
   1902  1.1  matt 		 * that pte at well.
   1903  1.1  matt 		 */
   1904  1.1  matt 		if (pt != NULL) {
   1905  1.1  matt 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1906  1.1  matt 			PMAPCOUNT(ptes_changed);
   1907  1.1  matt 		}
   1908  1.1  matt 
   1909  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1910  1.1  matt 	}
   1911  1.1  matt 
   1912  1.1  matt 	pmap_interrupts_restore(msr);
   1913  1.1  matt 	splx(s);
   1914  1.1  matt }
   1915  1.1  matt 
   1916  1.1  matt void
   1917  1.1  matt pmap_unwire(pmap_t pm, vaddr_t va)
   1918  1.1  matt {
   1919  1.1  matt 	struct pvo_entry *pvo;
   1920  1.2  matt 	register_t msr;
   1921  1.1  matt 	int s;
   1922  1.1  matt 
   1923  1.1  matt 	s = splvm();
   1924  1.1  matt 	msr = pmap_interrupts_off();
   1925  1.1  matt 
   1926  1.1  matt 	pvo = pmap_pvo_find_va(pm, va, NULL);
   1927  1.1  matt 	if (pvo != NULL) {
   1928  1.1  matt 		if (pvo->pvo_vaddr & PVO_WIRED) {
   1929  1.1  matt 			pvo->pvo_vaddr &= ~PVO_WIRED;
   1930  1.1  matt 			pm->pm_stats.wired_count--;
   1931  1.1  matt 		}
   1932  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1933  1.1  matt 	}
   1934  1.1  matt 
   1935  1.1  matt 	pmap_interrupts_restore(msr);
   1936  1.1  matt 	splx(s);
   1937  1.1  matt }
   1938  1.1  matt 
   1939  1.1  matt /*
   1940  1.1  matt  * Lower the protection on the specified physical page.
   1941  1.1  matt  *
   1942  1.1  matt  * There are only two cases: either the protection is going to 0,
   1943  1.1  matt  * or it is going to read-only.
   1944  1.1  matt  */
   1945  1.1  matt void
   1946  1.1  matt pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1947  1.1  matt {
   1948  1.1  matt 	struct pvo_head *pvo_head;
   1949  1.1  matt 	struct pvo_entry *pvo, *next_pvo;
   1950  1.2  matt 	volatile struct pte *pt;
   1951  1.2  matt 	register_t msr;
   1952  1.1  matt 	int s;
   1953  1.1  matt 
   1954  1.1  matt 	/*
   1955  1.1  matt 	 * Since this routine only downgrades protection, if the
   1956  1.1  matt 	 * maximal protection is desired, there isn't any change
   1957  1.1  matt 	 * to be made.
   1958  1.1  matt 	 */
   1959  1.1  matt 	KASSERT((prot & VM_PROT_WRITE) == 0);
   1960  1.1  matt 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE))
   1961  1.1  matt 		return;
   1962  1.1  matt 
   1963  1.1  matt 	s = splvm();
   1964  1.1  matt 	msr = pmap_interrupts_off();
   1965  1.1  matt 
   1966  1.1  matt 	/*
   1967  1.1  matt 	 * When UVM reuses a page, it does a pmap_page_protect with
   1968  1.1  matt 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   1969  1.1  matt 	 * since we know the page will have different contents.
   1970  1.1  matt 	 */
   1971  1.1  matt 	if ((prot & VM_PROT_READ) == 0) {
   1972  1.1  matt 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   1973  1.1  matt 		    pg->phys_addr));
   1974  1.1  matt 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   1975  1.1  matt 			PMAPCOUNT(exec_uncached_page_protect);
   1976  1.1  matt 			pmap_attr_clear(pg, PTE_EXEC);
   1977  1.1  matt 		}
   1978  1.1  matt 	}
   1979  1.1  matt 
   1980  1.1  matt 	pvo_head = vm_page_to_pvoh(pg);
   1981  1.1  matt 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   1982  1.1  matt 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   1983  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1984  1.1  matt 
   1985  1.1  matt 		/*
   1986  1.1  matt 		 * Downgrading to no mapping at all, we just remove the entry.
   1987  1.1  matt 		 */
   1988  1.1  matt 		if ((prot & VM_PROT_READ) == 0) {
   1989  1.1  matt 			pmap_pvo_remove(pvo, -1);
   1990  1.1  matt 			continue;
   1991  1.1  matt 		}
   1992  1.1  matt 
   1993  1.1  matt 		/*
   1994  1.1  matt 		 * If EXEC permission is being revoked, just clear the
   1995  1.1  matt 		 * flag in the PVO.
   1996  1.1  matt 		 */
   1997  1.1  matt 		if ((prot & VM_PROT_EXECUTE) == 0)
   1998  1.1  matt 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1999  1.1  matt 
   2000  1.1  matt 		/*
   2001  1.1  matt 		 * If this entry is already RO, don't diddle with the
   2002  1.1  matt 		 * page table.
   2003  1.1  matt 		 */
   2004  1.1  matt 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2005  1.1  matt 			PMAP_PVO_CHECK(pvo);
   2006  1.1  matt 			continue;
   2007  1.1  matt 		}
   2008  1.1  matt 
   2009  1.1  matt 		/*
   2010  1.1  matt 		 * Grab the PTE before the we diddle the bits so
   2011  1.1  matt 		 * pvo_to_pte can verify the pte contents are as
   2012  1.1  matt 		 * expected.
   2013  1.1  matt 		 */
   2014  1.1  matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2015  1.1  matt 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2016  1.1  matt 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2017  1.1  matt 		if (pt != NULL) {
   2018  1.1  matt 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2019  1.1  matt 			PMAPCOUNT(ptes_changed);
   2020  1.1  matt 		}
   2021  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2022  1.1  matt 	}
   2023  1.1  matt 
   2024  1.1  matt 	pmap_interrupts_restore(msr);
   2025  1.1  matt 	splx(s);
   2026  1.1  matt }
   2027  1.1  matt 
   2028  1.1  matt /*
   2029  1.1  matt  * Activate the address space for the specified process.  If the process
   2030  1.1  matt  * is the current process, load the new MMU context.
   2031  1.1  matt  */
   2032  1.1  matt void
   2033  1.1  matt pmap_activate(struct lwp *l)
   2034  1.1  matt {
   2035  1.1  matt 	struct pcb *pcb = &l->l_addr->u_pcb;
   2036  1.1  matt 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2037  1.1  matt 
   2038  1.1  matt 	DPRINTFN(ACTIVATE,
   2039  1.1  matt 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2040  1.1  matt 
   2041  1.1  matt 	/*
   2042  1.1  matt 	 * XXX Normally performed in cpu_fork().
   2043  1.1  matt 	 */
   2044  1.1  matt 	if (pcb->pcb_pm != pmap) {
   2045  1.1  matt 		pcb->pcb_pm = pmap;
   2046  1.1  matt 		pcb->pcb_pmreal = pmap;
   2047  1.1  matt 	}
   2048  1.1  matt 
   2049  1.1  matt 	/*
   2050  1.1  matt 	 * In theory, the SR registers need only be valid on return
   2051  1.1  matt 	 * to user space wait to do them there.
   2052  1.1  matt 	 */
   2053  1.1  matt 	if (l == curlwp) {
   2054  1.1  matt 		/* Store pointer to new current pmap. */
   2055  1.1  matt 		curpm = pmap;
   2056  1.1  matt 	}
   2057  1.1  matt }
   2058  1.1  matt 
   2059  1.1  matt /*
   2060  1.1  matt  * Deactivate the specified process's address space.
   2061  1.1  matt  */
   2062  1.1  matt void
   2063  1.1  matt pmap_deactivate(struct lwp *l)
   2064  1.1  matt {
   2065  1.1  matt }
   2066  1.1  matt 
   2067  1.1  matt boolean_t
   2068  1.1  matt pmap_query_bit(struct vm_page *pg, int ptebit)
   2069  1.1  matt {
   2070  1.1  matt 	struct pvo_entry *pvo;
   2071  1.2  matt 	volatile struct pte *pt;
   2072  1.2  matt 	register_t msr;
   2073  1.1  matt 	int s;
   2074  1.1  matt 
   2075  1.1  matt 	if (pmap_attr_fetch(pg) & ptebit)
   2076  1.1  matt 		return TRUE;
   2077  1.1  matt 	s = splvm();
   2078  1.1  matt 	msr = pmap_interrupts_off();
   2079  1.1  matt 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2080  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2081  1.1  matt 		/*
   2082  1.1  matt 		 * See if we saved the bit off.  If so cache, it and return
   2083  1.1  matt 		 * success.
   2084  1.1  matt 		 */
   2085  1.1  matt 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2086  1.1  matt 			pmap_attr_save(pg, ptebit);
   2087  1.1  matt 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2088  1.1  matt 			pmap_interrupts_restore(msr);
   2089  1.1  matt 			splx(s);
   2090  1.1  matt 			return TRUE;
   2091  1.1  matt 		}
   2092  1.1  matt 	}
   2093  1.1  matt 	/*
   2094  1.1  matt 	 * No luck, now go thru the hard part of looking at the ptes
   2095  1.1  matt 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2096  1.1  matt 	 * to the PTEs.
   2097  1.1  matt 	 */
   2098  1.1  matt 	SYNC();
   2099  1.1  matt 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2100  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2101  1.1  matt 		/*
   2102  1.1  matt 		 * See if this pvo have a valid PTE.  If so, fetch the
   2103  1.1  matt 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2104  1.1  matt 		 * ptebit is set, cache, it and return success.
   2105  1.1  matt 		 */
   2106  1.1  matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2107  1.1  matt 		if (pt != NULL) {
   2108  1.1  matt 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2109  1.1  matt 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2110  1.1  matt 				pmap_attr_save(pg, ptebit);
   2111  1.1  matt 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2112  1.1  matt 				pmap_interrupts_restore(msr);
   2113  1.1  matt 				splx(s);
   2114  1.1  matt 				return TRUE;
   2115  1.1  matt 			}
   2116  1.1  matt 		}
   2117  1.1  matt 	}
   2118  1.1  matt 	pmap_interrupts_restore(msr);
   2119  1.1  matt 	splx(s);
   2120  1.1  matt 	return FALSE;
   2121  1.1  matt }
   2122  1.1  matt 
   2123  1.1  matt boolean_t
   2124  1.1  matt pmap_clear_bit(struct vm_page *pg, int ptebit)
   2125  1.1  matt {
   2126  1.1  matt 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2127  1.1  matt 	struct pvo_entry *pvo;
   2128  1.2  matt 	volatile struct pte *pt;
   2129  1.2  matt 	register_t msr;
   2130  1.1  matt 	int rv = 0;
   2131  1.1  matt 	int s;
   2132  1.1  matt 
   2133  1.1  matt 	s = splvm();
   2134  1.1  matt 	msr = pmap_interrupts_off();
   2135  1.1  matt 
   2136  1.1  matt 	/*
   2137  1.1  matt 	 * Fetch the cache value
   2138  1.1  matt 	 */
   2139  1.1  matt 	rv |= pmap_attr_fetch(pg);
   2140  1.1  matt 
   2141  1.1  matt 	/*
   2142  1.1  matt 	 * Clear the cached value.
   2143  1.1  matt 	 */
   2144  1.1  matt 	pmap_attr_clear(pg, ptebit);
   2145  1.1  matt 
   2146  1.1  matt 	/*
   2147  1.1  matt 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2148  1.1  matt 	 * can reset the right ones).  Note that since the pvo entries and
   2149  1.1  matt 	 * list heads are accessed via BAT0 and are never placed in the
   2150  1.1  matt 	 * page table, we don't have to worry about further accesses setting
   2151  1.1  matt 	 * the REF/CHG bits.
   2152  1.1  matt 	 */
   2153  1.1  matt 	SYNC();
   2154  1.1  matt 
   2155  1.1  matt 	/*
   2156  1.1  matt 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2157  1.1  matt 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2158  1.1  matt 	 */
   2159  1.1  matt 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2160  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2161  1.1  matt 		pt = pmap_pvo_to_pte(pvo, -1);
   2162  1.1  matt 		if (pt != NULL) {
   2163  1.1  matt 			/*
   2164  1.1  matt 			 * Only sync the PTE if the bit we are looking
   2165  1.1  matt 			 * for is not already set.
   2166  1.1  matt 			 */
   2167  1.1  matt 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2168  1.1  matt 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2169  1.1  matt 			/*
   2170  1.1  matt 			 * If the bit we are looking for was already set,
   2171  1.1  matt 			 * clear that bit in the pte.
   2172  1.1  matt 			 */
   2173  1.1  matt 			if (pvo->pvo_pte.pte_lo & ptebit)
   2174  1.1  matt 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2175  1.1  matt 		}
   2176  1.1  matt 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2177  1.1  matt 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2178  1.1  matt 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2179  1.1  matt 	}
   2180  1.1  matt 	pmap_interrupts_restore(msr);
   2181  1.1  matt 	splx(s);
   2182  1.1  matt 	/*
   2183  1.1  matt 	 * If we are clearing the modify bit and this page was marked EXEC
   2184  1.1  matt 	 * and the user of the page thinks the page was modified, then we
   2185  1.1  matt 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2186  1.1  matt 	 * bit if it's not mapped.  The page itself might not have the CHG
   2187  1.1  matt 	 * bit set if the modification was done via DMA to the page.
   2188  1.1  matt 	 */
   2189  1.1  matt 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2190  1.1  matt 		if (LIST_EMPTY(pvoh)) {
   2191  1.1  matt 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2192  1.1  matt 			    pg->phys_addr));
   2193  1.1  matt 			pmap_attr_clear(pg, PTE_EXEC);
   2194  1.1  matt 			PMAPCOUNT(exec_uncached_clear_modify);
   2195  1.1  matt 		} else {
   2196  1.1  matt 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2197  1.1  matt 			    pg->phys_addr));
   2198  1.1  matt 			pmap_syncicache(pg->phys_addr, NBPG);
   2199  1.1  matt 			PMAPCOUNT(exec_synced_clear_modify);
   2200  1.1  matt 		}
   2201  1.1  matt 	}
   2202  1.1  matt 	return (rv & ptebit) != 0;
   2203  1.1  matt }
   2204  1.1  matt 
   2205  1.1  matt void
   2206  1.1  matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2207  1.1  matt {
   2208  1.1  matt 	struct pvo_entry *pvo;
   2209  1.1  matt 	size_t offset = va & ADDR_POFF;
   2210  1.1  matt 	int s;
   2211  1.1  matt 
   2212  1.1  matt 	s = splvm();
   2213  1.1  matt 	while (len > 0) {
   2214  1.1  matt 		size_t seglen = NBPG - offset;
   2215  1.1  matt 		if (seglen > len)
   2216  1.1  matt 			seglen = len;
   2217  1.1  matt 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2218  1.1  matt 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2219  1.1  matt 			pmap_syncicache(
   2220  1.1  matt 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2221  1.1  matt 			PMAP_PVO_CHECK(pvo);
   2222  1.1  matt 		}
   2223  1.1  matt 		va += seglen;
   2224  1.1  matt 		len -= seglen;
   2225  1.1  matt 		offset = 0;
   2226  1.1  matt 	}
   2227  1.1  matt 	splx(s);
   2228  1.1  matt }
   2229  1.1  matt 
   2230  1.1  matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2231  1.1  matt void
   2232  1.2  matt pmap_pte_print(volatile struct pte *pt)
   2233  1.1  matt {
   2234  1.1  matt 	printf("PTE %p: ", pt);
   2235  1.1  matt 	/* High word: */
   2236  1.2  matt 	printf("0x%08lx: [", pt->pte_hi);
   2237  1.1  matt 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2238  1.1  matt 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2239  1.2  matt 	printf("0x%06lx 0x%02lx",
   2240  1.1  matt 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2241  1.1  matt 	    pt->pte_hi & PTE_API);
   2242  1.1  matt 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2243  1.1  matt 	/* Low word: */
   2244  1.2  matt 	printf(" 0x%08lx: [", pt->pte_lo);
   2245  1.2  matt 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2246  1.1  matt 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2247  1.1  matt 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2248  1.1  matt 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2249  1.1  matt 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2250  1.1  matt 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2251  1.1  matt 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2252  1.1  matt 	switch (pt->pte_lo & PTE_PP) {
   2253  1.1  matt 	case PTE_BR: printf("br]\n"); break;
   2254  1.1  matt 	case PTE_BW: printf("bw]\n"); break;
   2255  1.1  matt 	case PTE_SO: printf("so]\n"); break;
   2256  1.1  matt 	case PTE_SW: printf("sw]\n"); break;
   2257  1.1  matt 	}
   2258  1.1  matt }
   2259  1.1  matt #endif
   2260  1.1  matt 
   2261  1.1  matt #if defined(DDB)
   2262  1.1  matt void
   2263  1.1  matt pmap_pteg_check(void)
   2264  1.1  matt {
   2265  1.2  matt 	volatile struct pte *pt;
   2266  1.1  matt 	int i;
   2267  1.1  matt 	int ptegidx;
   2268  1.1  matt 	u_int p_valid = 0;
   2269  1.1  matt 	u_int s_valid = 0;
   2270  1.1  matt 	u_int invalid = 0;
   2271  1.1  matt 
   2272  1.1  matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2273  1.1  matt 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2274  1.1  matt 			if (pt->pte_hi & PTE_VALID) {
   2275  1.1  matt 				if (pt->pte_hi & PTE_HID)
   2276  1.1  matt 					s_valid++;
   2277  1.1  matt 				else
   2278  1.1  matt 					p_valid++;
   2279  1.1  matt 			} else
   2280  1.1  matt 				invalid++;
   2281  1.1  matt 		}
   2282  1.1  matt 	}
   2283  1.1  matt 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2284  1.1  matt 		p_valid, p_valid, s_valid, s_valid,
   2285  1.1  matt 		invalid, invalid);
   2286  1.1  matt }
   2287  1.1  matt 
   2288  1.1  matt void
   2289  1.1  matt pmap_print_mmuregs(void)
   2290  1.1  matt {
   2291  1.1  matt 	int i;
   2292  1.1  matt 	u_int cpuvers;
   2293  1.1  matt 	vaddr_t addr;
   2294  1.2  matt 	register_t soft_sr[16];
   2295  1.1  matt 	struct bat soft_ibat[4];
   2296  1.1  matt 	struct bat soft_dbat[4];
   2297  1.2  matt 	register_t sdr1;
   2298  1.1  matt 
   2299  1.1  matt 	cpuvers = MFPVR() >> 16;
   2300  1.1  matt 
   2301  1.1  matt 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2302  1.1  matt 	for (i=0; i<16; i++) {
   2303  1.1  matt 		soft_sr[i] = MFSRIN(addr);
   2304  1.1  matt 		addr += (1 << ADDR_SR_SHFT);
   2305  1.1  matt 	}
   2306  1.1  matt 
   2307  1.1  matt 	/* read iBAT (601: uBAT) registers */
   2308  1.1  matt 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2309  1.1  matt 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2310  1.1  matt 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2311  1.1  matt 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2312  1.1  matt 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2313  1.1  matt 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2314  1.1  matt 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2315  1.1  matt 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2316  1.1  matt 
   2317  1.1  matt 
   2318  1.1  matt 	if (cpuvers != MPC601) {
   2319  1.1  matt 		/* read dBAT registers */
   2320  1.1  matt 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2321  1.1  matt 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2322  1.1  matt 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2323  1.1  matt 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2324  1.1  matt 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2325  1.1  matt 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2326  1.1  matt 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2327  1.1  matt 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2328  1.1  matt 	}
   2329  1.1  matt 
   2330  1.2  matt 	printf("SDR1:\t%#lx\n", sdr1);
   2331  1.1  matt 	printf("SR[]:\t");
   2332  1.1  matt 	addr = 0;
   2333  1.1  matt 	for (i=0; i<4; i++)
   2334  1.2  matt 		printf("0x%08lx,   ", soft_sr[i]);
   2335  1.1  matt 	printf("\n\t");
   2336  1.1  matt 	for ( ; i<8; i++)
   2337  1.2  matt 		printf("0x%08lx,   ", soft_sr[i]);
   2338  1.1  matt 	printf("\n\t");
   2339  1.1  matt 	for ( ; i<12; i++)
   2340  1.2  matt 		printf("0x%08lx,   ", soft_sr[i]);
   2341  1.1  matt 	printf("\n\t");
   2342  1.1  matt 	for ( ; i<16; i++)
   2343  1.2  matt 		printf("0x%08lx,   ", soft_sr[i]);
   2344  1.1  matt 	printf("\n");
   2345  1.1  matt 
   2346  1.1  matt 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2347  1.1  matt 	for (i=0; i<4; i++) {
   2348  1.2  matt 		printf("0x%08lx 0x%08lx, ",
   2349  1.1  matt 			soft_ibat[i].batu, soft_ibat[i].batl);
   2350  1.1  matt 		if (i == 1)
   2351  1.1  matt 			printf("\n\t");
   2352  1.1  matt 	}
   2353  1.1  matt 	if (cpuvers != MPC601) {
   2354  1.1  matt 		printf("\ndBAT[]:\t");
   2355  1.1  matt 		for (i=0; i<4; i++) {
   2356  1.2  matt 			printf("0x%08lx 0x%08lx, ",
   2357  1.1  matt 				soft_dbat[i].batu, soft_dbat[i].batl);
   2358  1.1  matt 			if (i == 1)
   2359  1.1  matt 				printf("\n\t");
   2360  1.1  matt 		}
   2361  1.1  matt 	}
   2362  1.1  matt 	printf("\n");
   2363  1.1  matt }
   2364  1.1  matt 
   2365  1.1  matt void
   2366  1.1  matt pmap_print_pte(pmap_t pm, vaddr_t va)
   2367  1.1  matt {
   2368  1.1  matt 	struct pvo_entry *pvo;
   2369  1.2  matt 	volatile struct pte *pt;
   2370  1.1  matt 	int pteidx;
   2371  1.1  matt 
   2372  1.1  matt 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2373  1.1  matt 	if (pvo != NULL) {
   2374  1.1  matt 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2375  1.1  matt 		if (pt != NULL) {
   2376  1.2  matt 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2377  1.1  matt 				va, pt,
   2378  1.1  matt 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2379  1.1  matt 				pt->pte_hi, pt->pte_lo);
   2380  1.1  matt 		} else {
   2381  1.1  matt 			printf("No valid PTE found\n");
   2382  1.1  matt 		}
   2383  1.1  matt 	} else {
   2384  1.1  matt 		printf("Address not in pmap\n");
   2385  1.1  matt 	}
   2386  1.1  matt }
   2387  1.1  matt 
   2388  1.1  matt void
   2389  1.1  matt pmap_pteg_dist(void)
   2390  1.1  matt {
   2391  1.1  matt 	struct pvo_entry *pvo;
   2392  1.1  matt 	int ptegidx;
   2393  1.1  matt 	int depth;
   2394  1.1  matt 	int max_depth = 0;
   2395  1.1  matt 	unsigned int depths[64];
   2396  1.1  matt 
   2397  1.1  matt 	memset(depths, 0, sizeof(depths));
   2398  1.1  matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2399  1.1  matt 		depth = 0;
   2400  1.1  matt 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2401  1.1  matt 			depth++;
   2402  1.1  matt 		}
   2403  1.1  matt 		if (depth > max_depth)
   2404  1.1  matt 			max_depth = depth;
   2405  1.1  matt 		if (depth > 63)
   2406  1.1  matt 			depth = 63;
   2407  1.1  matt 		depths[depth]++;
   2408  1.1  matt 	}
   2409  1.1  matt 
   2410  1.1  matt 	for (depth = 0; depth < 64; depth++) {
   2411  1.1  matt 		printf("  [%2d]: %8u", depth, depths[depth]);
   2412  1.1  matt 		if ((depth & 3) == 3)
   2413  1.1  matt 			printf("\n");
   2414  1.1  matt 		if (depth == max_depth)
   2415  1.1  matt 			break;
   2416  1.1  matt 	}
   2417  1.1  matt 	if ((depth & 3) != 3)
   2418  1.1  matt 		printf("\n");
   2419  1.1  matt 	printf("Max depth found was %d\n", max_depth);
   2420  1.1  matt }
   2421  1.1  matt #endif /* DEBUG */
   2422  1.1  matt 
   2423  1.1  matt #if defined(PMAPCHECK) || defined(DEBUG)
   2424  1.1  matt void
   2425  1.1  matt pmap_pvo_verify(void)
   2426  1.1  matt {
   2427  1.1  matt 	int ptegidx;
   2428  1.1  matt 	int s;
   2429  1.1  matt 
   2430  1.1  matt 	s = splvm();
   2431  1.1  matt 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2432  1.1  matt 		struct pvo_entry *pvo;
   2433  1.1  matt 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2434  1.1  matt 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2435  1.1  matt 				panic("pmap_pvo_verify: invalid pvo %p "
   2436  1.1  matt 				    "on list %#x", pvo, ptegidx);
   2437  1.1  matt 			pmap_pvo_check(pvo);
   2438  1.1  matt 		}
   2439  1.1  matt 	}
   2440  1.1  matt 	splx(s);
   2441  1.1  matt }
   2442  1.1  matt #endif /* PMAPCHECK */
   2443  1.1  matt 
   2444  1.1  matt 
   2445  1.1  matt void *
   2446  1.1  matt pmap_pool_ualloc(struct pool *pp, int flags)
   2447  1.1  matt {
   2448  1.1  matt 	struct pvo_page *pvop;
   2449  1.1  matt 
   2450  1.1  matt 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2451  1.1  matt 	if (pvop != NULL) {
   2452  1.1  matt 		pmap_upvop_free--;
   2453  1.1  matt 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2454  1.1  matt 		return pvop;
   2455  1.1  matt 	}
   2456  1.1  matt 	if (uvm.page_init_done != TRUE) {
   2457  1.1  matt 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2458  1.1  matt 	}
   2459  1.1  matt 	return pmap_pool_malloc(pp, flags);
   2460  1.1  matt }
   2461  1.1  matt 
   2462  1.1  matt void *
   2463  1.1  matt pmap_pool_malloc(struct pool *pp, int flags)
   2464  1.1  matt {
   2465  1.1  matt 	struct pvo_page *pvop;
   2466  1.1  matt 	struct vm_page *pg;
   2467  1.1  matt 
   2468  1.1  matt 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2469  1.1  matt 	if (pvop != NULL) {
   2470  1.1  matt 		pmap_mpvop_free--;
   2471  1.1  matt 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2472  1.1  matt 		return pvop;
   2473  1.1  matt 	}
   2474  1.1  matt  again:
   2475  1.1  matt 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2476  1.1  matt 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2477  1.1  matt 	if (__predict_false(pg == NULL)) {
   2478  1.1  matt 		if (flags & PR_WAITOK) {
   2479  1.1  matt 			uvm_wait("plpg");
   2480  1.1  matt 			goto again;
   2481  1.1  matt 		} else {
   2482  1.1  matt 			return (0);
   2483  1.1  matt 		}
   2484  1.1  matt 	}
   2485  1.1  matt 	return (void *) VM_PAGE_TO_PHYS(pg);
   2486  1.1  matt }
   2487  1.1  matt 
   2488  1.1  matt void
   2489  1.1  matt pmap_pool_ufree(struct pool *pp, void *va)
   2490  1.1  matt {
   2491  1.1  matt 	struct pvo_page *pvop;
   2492  1.1  matt #if 0
   2493  1.1  matt 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2494  1.1  matt 		pmap_pool_mfree(va, size, tag);
   2495  1.1  matt 		return;
   2496  1.1  matt 	}
   2497  1.1  matt #endif
   2498  1.1  matt 	pvop = va;
   2499  1.1  matt 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2500  1.1  matt 	pmap_upvop_free++;
   2501  1.1  matt 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2502  1.1  matt 		pmap_upvop_maxfree = pmap_upvop_free;
   2503  1.1  matt }
   2504  1.1  matt 
   2505  1.1  matt void
   2506  1.1  matt pmap_pool_mfree(struct pool *pp, void *va)
   2507  1.1  matt {
   2508  1.1  matt 	struct pvo_page *pvop;
   2509  1.1  matt 
   2510  1.1  matt 	pvop = va;
   2511  1.1  matt 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2512  1.1  matt 	pmap_mpvop_free++;
   2513  1.1  matt 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2514  1.1  matt 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2515  1.1  matt #if 0
   2516  1.1  matt 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2517  1.1  matt #endif
   2518  1.1  matt }
   2519  1.1  matt 
   2520  1.1  matt /*
   2521  1.1  matt  * This routine in bootstraping to steal to-be-managed memory (which will
   2522  1.1  matt  * then be unmanaged).  We use it to grab from the first 256MB for our
   2523  1.1  matt  * pmap needs and above 256MB for other stuff.
   2524  1.1  matt  */
   2525  1.1  matt vaddr_t
   2526  1.1  matt pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2527  1.1  matt {
   2528  1.1  matt 	vsize_t size;
   2529  1.1  matt 	vaddr_t va;
   2530  1.1  matt 	paddr_t pa = 0;
   2531  1.1  matt 	int npgs, bank;
   2532  1.1  matt 	struct vm_physseg *ps;
   2533  1.1  matt 
   2534  1.1  matt 	if (uvm.page_init_done == TRUE)
   2535  1.1  matt 		panic("pmap_steal_memory: called _after_ bootstrap");
   2536  1.1  matt 
   2537  1.1  matt 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2538  1.1  matt 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2539  1.1  matt 
   2540  1.1  matt 	size = round_page(vsize);
   2541  1.1  matt 	npgs = atop(size);
   2542  1.1  matt 
   2543  1.1  matt 	/*
   2544  1.1  matt 	 * PA 0 will never be among those given to UVM so we can use it
   2545  1.1  matt 	 * to indicate we couldn't steal any memory.
   2546  1.1  matt 	 */
   2547  1.1  matt 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2548  1.1  matt 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2549  1.1  matt 		    ps->avail_end - ps->avail_start >= npgs) {
   2550  1.1  matt 			pa = ptoa(ps->avail_start);
   2551  1.1  matt 			break;
   2552  1.1  matt 		}
   2553  1.1  matt 	}
   2554  1.1  matt 
   2555  1.1  matt 	if (pa == 0)
   2556  1.1  matt 		panic("pmap_steal_memory: no approriate memory to steal!");
   2557  1.1  matt 
   2558  1.1  matt 	ps->avail_start += npgs;
   2559  1.1  matt 	ps->start += npgs;
   2560  1.1  matt 
   2561  1.1  matt 	/*
   2562  1.1  matt 	 * If we've used up all the pages in the segment, remove it and
   2563  1.1  matt 	 * compact the list.
   2564  1.1  matt 	 */
   2565  1.1  matt 	if (ps->avail_start == ps->end) {
   2566  1.1  matt 		/*
   2567  1.1  matt 		 * If this was the last one, then a very bad thing has occurred
   2568  1.1  matt 		 */
   2569  1.1  matt 		if (--vm_nphysseg == 0)
   2570  1.1  matt 			panic("pmap_steal_memory: out of memory!");
   2571  1.1  matt 
   2572  1.1  matt 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2573  1.1  matt 		for (; bank < vm_nphysseg; bank++, ps++) {
   2574  1.1  matt 			ps[0] = ps[1];
   2575  1.1  matt 		}
   2576  1.1  matt 	}
   2577  1.1  matt 
   2578  1.1  matt 	va = (vaddr_t) pa;
   2579  1.1  matt 	memset((caddr_t) va, 0, size);
   2580  1.1  matt 	pmap_pages_stolen += npgs;
   2581  1.1  matt #ifdef DEBUG
   2582  1.1  matt 	if (pmapdebug && npgs > 1) {
   2583  1.1  matt 		u_int cnt = 0;
   2584  1.1  matt 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2585  1.1  matt 			cnt += ps->avail_end - ps->avail_start;
   2586  1.1  matt 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2587  1.1  matt 		    npgs, pmap_pages_stolen, cnt);
   2588  1.1  matt 	}
   2589  1.1  matt #endif
   2590  1.1  matt 
   2591  1.1  matt 	return va;
   2592  1.1  matt }
   2593  1.1  matt 
   2594  1.1  matt /*
   2595  1.1  matt  * Find a chuck of memory with right size and alignment.
   2596  1.1  matt  */
   2597  1.1  matt void *
   2598  1.1  matt pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2599  1.1  matt {
   2600  1.1  matt 	struct mem_region *mp;
   2601  1.1  matt 	paddr_t s, e;
   2602  1.1  matt 	int i, j;
   2603  1.1  matt 
   2604  1.1  matt 	size = round_page(size);
   2605  1.1  matt 
   2606  1.1  matt 	DPRINTFN(BOOT,
   2607  1.1  matt 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2608  1.1  matt 	    size, alignment, at_end));
   2609  1.1  matt 
   2610  1.1  matt 	if (alignment < NBPG || (alignment & (alignment-1)) != 0)
   2611  1.1  matt 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2612  1.1  matt 		    alignment);
   2613  1.1  matt 
   2614  1.1  matt 	if (at_end) {
   2615  1.1  matt 		if (alignment != NBPG)
   2616  1.1  matt 			panic("pmap_boot_find_memory: invalid ending "
   2617  1.1  matt 			    "alignment %lx", alignment);
   2618  1.1  matt 
   2619  1.1  matt 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2620  1.1  matt 			s = mp->start + mp->size - size;
   2621  1.1  matt 			if (s >= mp->start && mp->size >= size) {
   2622  1.1  matt 				DPRINTFN(BOOT,(": %lx\n", s));
   2623  1.1  matt 				DPRINTFN(BOOT,
   2624  1.1  matt 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2625  1.1  matt 				     "0x%lx size 0x%lx\n", mp - avail,
   2626  1.1  matt 				     mp->start, mp->size));
   2627  1.1  matt 				mp->size -= size;
   2628  1.1  matt 				DPRINTFN(BOOT,
   2629  1.1  matt 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2630  1.1  matt 				     "0x%lx size 0x%lx\n", mp - avail,
   2631  1.1  matt 				     mp->start, mp->size));
   2632  1.1  matt 				return (void *) s;
   2633  1.1  matt 			}
   2634  1.1  matt 		}
   2635  1.1  matt 		panic("pmap_boot_find_memory: no available memory");
   2636  1.1  matt 	}
   2637  1.1  matt 
   2638  1.1  matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2639  1.1  matt 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2640  1.1  matt 		e = s + size;
   2641  1.1  matt 
   2642  1.1  matt 		/*
   2643  1.1  matt 		 * Is the calculated region entirely within the region?
   2644  1.1  matt 		 */
   2645  1.1  matt 		if (s < mp->start || e > mp->start + mp->size)
   2646  1.1  matt 			continue;
   2647  1.1  matt 
   2648  1.1  matt 		DPRINTFN(BOOT,(": %lx\n", s));
   2649  1.1  matt 		if (s == mp->start) {
   2650  1.1  matt 			/*
   2651  1.1  matt 			 * If the block starts at the beginning of region,
   2652  1.1  matt 			 * adjust the size & start. (the region may now be
   2653  1.1  matt 			 * zero in length)
   2654  1.1  matt 			 */
   2655  1.1  matt 			DPRINTFN(BOOT,
   2656  1.1  matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2657  1.1  matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2658  1.1  matt 			mp->start += size;
   2659  1.1  matt 			mp->size -= size;
   2660  1.1  matt 			DPRINTFN(BOOT,
   2661  1.1  matt 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2662  1.1  matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2663  1.1  matt 		} else if (e == mp->start + mp->size) {
   2664  1.1  matt 			/*
   2665  1.1  matt 			 * If the block starts at the beginning of region,
   2666  1.1  matt 			 * adjust only the size.
   2667  1.1  matt 			 */
   2668  1.1  matt 			DPRINTFN(BOOT,
   2669  1.1  matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2670  1.1  matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2671  1.1  matt 			mp->size -= size;
   2672  1.1  matt 			DPRINTFN(BOOT,
   2673  1.1  matt 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2674  1.1  matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2675  1.1  matt 		} else {
   2676  1.1  matt 			/*
   2677  1.1  matt 			 * Block is in the middle of the region, so we
   2678  1.1  matt 			 * have to split it in two.
   2679  1.1  matt 			 */
   2680  1.1  matt 			for (j = avail_cnt; j > i + 1; j--) {
   2681  1.1  matt 				avail[j] = avail[j-1];
   2682  1.1  matt 			}
   2683  1.1  matt 			DPRINTFN(BOOT,
   2684  1.1  matt 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2685  1.1  matt 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2686  1.1  matt 			mp[1].start = e;
   2687  1.1  matt 			mp[1].size = mp[0].start + mp[0].size - e;
   2688  1.1  matt 			mp[0].size = s - mp[0].start;
   2689  1.1  matt 			avail_cnt++;
   2690  1.1  matt 			for (; i < avail_cnt; i++) {
   2691  1.1  matt 				DPRINTFN(BOOT,
   2692  1.1  matt 				    ("pmap_boot_find_memory: a-avail[%d] "
   2693  1.1  matt 				     "start 0x%lx size 0x%lx\n", i,
   2694  1.1  matt 				     avail[i].start, avail[i].size));
   2695  1.1  matt 			}
   2696  1.1  matt 		}
   2697  1.1  matt 		return (void *) s;
   2698  1.1  matt 	}
   2699  1.1  matt 	panic("pmap_boot_find_memory: not enough memory for "
   2700  1.1  matt 	    "%lx/%lx allocation?", size, alignment);
   2701  1.1  matt }
   2702  1.1  matt 
   2703  1.1  matt /*
   2704  1.1  matt  * This is not part of the defined PMAP interface and is specific to the
   2705  1.1  matt  * PowerPC architecture.  This is called during initppc, before the system
   2706  1.1  matt  * is really initialized.
   2707  1.1  matt  */
   2708  1.1  matt void
   2709  1.1  matt pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2710  1.1  matt {
   2711  1.1  matt 	struct mem_region *mp, tmp;
   2712  1.1  matt 	paddr_t s, e;
   2713  1.1  matt 	psize_t size;
   2714  1.1  matt 	int i, j;
   2715  1.1  matt 
   2716  1.1  matt 	/*
   2717  1.1  matt 	 * Get memory.
   2718  1.1  matt 	 */
   2719  1.1  matt 	mem_regions(&mem, &avail);
   2720  1.1  matt #if defined(DEBUG)
   2721  1.1  matt 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2722  1.1  matt 		printf("pmap_bootstrap: memory configuration:\n");
   2723  1.1  matt 		for (mp = mem; mp->size; mp++) {
   2724  1.1  matt 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2725  1.1  matt 				mp->start, mp->size);
   2726  1.1  matt 		}
   2727  1.1  matt 		for (mp = avail; mp->size; mp++) {
   2728  1.1  matt 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2729  1.1  matt 				mp->start, mp->size);
   2730  1.1  matt 		}
   2731  1.1  matt 	}
   2732  1.1  matt #endif
   2733  1.1  matt 
   2734  1.1  matt 	/*
   2735  1.1  matt 	 * Find out how much physical memory we have and in how many chunks.
   2736  1.1  matt 	 */
   2737  1.1  matt 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2738  1.1  matt 		if (mp->start >= pmap_memlimit)
   2739  1.1  matt 			continue;
   2740  1.1  matt 		if (mp->start + mp->size > pmap_memlimit) {
   2741  1.1  matt 			size = pmap_memlimit - mp->start;
   2742  1.1  matt 			physmem += btoc(size);
   2743  1.1  matt 		} else {
   2744  1.1  matt 			physmem += btoc(mp->size);
   2745  1.1  matt 		}
   2746  1.1  matt 		mem_cnt++;
   2747  1.1  matt 	}
   2748  1.1  matt 
   2749  1.1  matt 	/*
   2750  1.1  matt 	 * Count the number of available entries.
   2751  1.1  matt 	 */
   2752  1.1  matt 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2753  1.1  matt 		avail_cnt++;
   2754  1.1  matt 
   2755  1.1  matt 	/*
   2756  1.1  matt 	 * Page align all regions.
   2757  1.1  matt 	 */
   2758  1.1  matt 	kernelstart = trunc_page(kernelstart);
   2759  1.1  matt 	kernelend = round_page(kernelend);
   2760  1.1  matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2761  1.1  matt 		s = round_page(mp->start);
   2762  1.1  matt 		mp->size -= (s - mp->start);
   2763  1.1  matt 		mp->size = trunc_page(mp->size);
   2764  1.1  matt 		mp->start = s;
   2765  1.1  matt 		e = mp->start + mp->size;
   2766  1.1  matt 
   2767  1.1  matt 		DPRINTFN(BOOT,
   2768  1.1  matt 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2769  1.1  matt 		    i, mp->start, mp->size));
   2770  1.1  matt 
   2771  1.1  matt 		/*
   2772  1.1  matt 		 * Don't allow the end to run beyond our artificial limit
   2773  1.1  matt 		 */
   2774  1.1  matt 		if (e > pmap_memlimit)
   2775  1.1  matt 			e = pmap_memlimit;
   2776  1.1  matt 
   2777  1.1  matt 		/*
   2778  1.1  matt 		 * Is this region empty or strange?  skip it.
   2779  1.1  matt 		 */
   2780  1.1  matt 		if (e <= s) {
   2781  1.1  matt 			mp->start = 0;
   2782  1.1  matt 			mp->size = 0;
   2783  1.1  matt 			continue;
   2784  1.1  matt 		}
   2785  1.1  matt 
   2786  1.1  matt 		/*
   2787  1.1  matt 		 * Does this overlap the beginning of kernel?
   2788  1.1  matt 		 *   Does extend past the end of the kernel?
   2789  1.1  matt 		 */
   2790  1.1  matt 		else if (s < kernelstart && e > kernelstart) {
   2791  1.1  matt 			if (e > kernelend) {
   2792  1.1  matt 				avail[avail_cnt].start = kernelend;
   2793  1.1  matt 				avail[avail_cnt].size = e - kernelend;
   2794  1.1  matt 				avail_cnt++;
   2795  1.1  matt 			}
   2796  1.1  matt 			mp->size = kernelstart - s;
   2797  1.1  matt 		}
   2798  1.1  matt 		/*
   2799  1.1  matt 		 * Check whether this region overlaps the end of the kernel.
   2800  1.1  matt 		 */
   2801  1.1  matt 		else if (s < kernelend && e > kernelend) {
   2802  1.1  matt 			mp->start = kernelend;
   2803  1.1  matt 			mp->size = e - kernelend;
   2804  1.1  matt 		}
   2805  1.1  matt 		/*
   2806  1.1  matt 		 * Look whether this regions is completely inside the kernel.
   2807  1.1  matt 		 * Nuke it if it does.
   2808  1.1  matt 		 */
   2809  1.1  matt 		else if (s >= kernelstart && e <= kernelend) {
   2810  1.1  matt 			mp->start = 0;
   2811  1.1  matt 			mp->size = 0;
   2812  1.1  matt 		}
   2813  1.1  matt 		/*
   2814  1.1  matt 		 * If the user imposed a memory limit, enforce it.
   2815  1.1  matt 		 */
   2816  1.1  matt 		else if (s >= pmap_memlimit) {
   2817  1.1  matt 			mp->start = -NBPG;	/* let's know why */
   2818  1.1  matt 			mp->size = 0;
   2819  1.1  matt 		}
   2820  1.1  matt 		else {
   2821  1.1  matt 			mp->start = s;
   2822  1.1  matt 			mp->size = e - s;
   2823  1.1  matt 		}
   2824  1.1  matt 		DPRINTFN(BOOT,
   2825  1.1  matt 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   2826  1.1  matt 		    i, mp->start, mp->size));
   2827  1.1  matt 	}
   2828  1.1  matt 
   2829  1.1  matt 	/*
   2830  1.1  matt 	 * Move (and uncount) all the null return to the end.
   2831  1.1  matt 	 */
   2832  1.1  matt 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2833  1.1  matt 		if (mp->size == 0) {
   2834  1.1  matt 			tmp = avail[i];
   2835  1.1  matt 			avail[i] = avail[--avail_cnt];
   2836  1.1  matt 			avail[avail_cnt] = avail[i];
   2837  1.1  matt 		}
   2838  1.1  matt 	}
   2839  1.1  matt 
   2840  1.1  matt 	/*
   2841  1.1  matt 	 * (Bubble)sort them into asecnding order.
   2842  1.1  matt 	 */
   2843  1.1  matt 	for (i = 0; i < avail_cnt; i++) {
   2844  1.1  matt 		for (j = i + 1; j < avail_cnt; j++) {
   2845  1.1  matt 			if (avail[i].start > avail[j].start) {
   2846  1.1  matt 				tmp = avail[i];
   2847  1.1  matt 				avail[i] = avail[j];
   2848  1.1  matt 				avail[j] = tmp;
   2849  1.1  matt 			}
   2850  1.1  matt 		}
   2851  1.1  matt 	}
   2852  1.1  matt 
   2853  1.1  matt 	/*
   2854  1.1  matt 	 * Make sure they don't overlap.
   2855  1.1  matt 	 */
   2856  1.1  matt 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   2857  1.1  matt 		if (mp[0].start + mp[0].size > mp[1].start) {
   2858  1.1  matt 			mp[0].size = mp[1].start - mp[0].start;
   2859  1.1  matt 		}
   2860  1.1  matt 		DPRINTFN(BOOT,
   2861  1.1  matt 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2862  1.1  matt 		    i, mp->start, mp->size));
   2863  1.1  matt 	}
   2864  1.1  matt 	DPRINTFN(BOOT,
   2865  1.1  matt 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2866  1.1  matt 	    i, mp->start, mp->size));
   2867  1.1  matt 
   2868  1.1  matt #ifdef	PTEGCOUNT
   2869  1.1  matt 	pmap_pteg_cnt = PTEGCOUNT;
   2870  1.1  matt #else /* PTEGCOUNT */
   2871  1.1  matt 	pmap_pteg_cnt = 0x1000;
   2872  1.1  matt 
   2873  1.1  matt 	while (pmap_pteg_cnt < physmem)
   2874  1.1  matt 		pmap_pteg_cnt <<= 1;
   2875  1.1  matt 
   2876  1.1  matt 	pmap_pteg_cnt >>= 1;
   2877  1.1  matt #endif /* PTEGCOUNT */
   2878  1.1  matt 
   2879  1.1  matt 	/*
   2880  1.1  matt 	 * Find suitably aligned memory for PTEG hash table.
   2881  1.1  matt 	 */
   2882  1.2  matt 	size = pmap_pteg_cnt * sizeof(struct pteg);
   2883  1.1  matt 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   2884  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2885  1.1  matt 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   2886  1.1  matt 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   2887  1.1  matt 		    pmap_pteg_table, size);
   2888  1.1  matt #endif
   2889  1.1  matt 
   2890  1.2  matt 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   2891  1.1  matt 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   2892  1.1  matt 
   2893  1.1  matt 	/*
   2894  1.1  matt 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   2895  1.1  matt 	 * with pages.  So we just steal them before giving them to UVM.
   2896  1.1  matt 	 */
   2897  1.1  matt 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   2898  1.1  matt 	pmap_pvo_table = pmap_boot_find_memory(size, NBPG, 0);
   2899  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2900  1.1  matt 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   2901  1.1  matt 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   2902  1.1  matt 		    pmap_pvo_table, size);
   2903  1.1  matt #endif
   2904  1.1  matt 
   2905  1.1  matt 	for (i = 0; i < pmap_pteg_cnt; i++)
   2906  1.1  matt 		TAILQ_INIT(&pmap_pvo_table[i]);
   2907  1.1  matt 
   2908  1.1  matt #ifndef MSGBUFADDR
   2909  1.1  matt 	/*
   2910  1.1  matt 	 * Allocate msgbuf in high memory.
   2911  1.1  matt 	 */
   2912  1.1  matt 	msgbuf_paddr = (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, NBPG, 1);
   2913  1.1  matt #endif
   2914  1.1  matt 
   2915  1.1  matt #ifdef __HAVE_PMAP_PHYSSEG
   2916  1.1  matt 	{
   2917  1.1  matt 		u_int npgs = 0;
   2918  1.1  matt 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   2919  1.1  matt 			npgs += btoc(mp->size);
   2920  1.1  matt 		size = (sizeof(struct pvo_head) + 1) * npgs;
   2921  1.1  matt 		pmap_physseg.pvoh = pmap_boot_find_memory(size, NBPG, 0);
   2922  1.1  matt 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   2923  1.1  matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2924  1.1  matt 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   2925  1.1  matt 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   2926  1.1  matt 			    pmap_physseg.pvoh, size);
   2927  1.1  matt #endif
   2928  1.1  matt 	}
   2929  1.1  matt #endif
   2930  1.1  matt 
   2931  1.1  matt 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   2932  1.1  matt 		paddr_t pfstart = atop(mp->start);
   2933  1.1  matt 		paddr_t pfend = atop(mp->start + mp->size);
   2934  1.1  matt 		if (mp->size == 0)
   2935  1.1  matt 			continue;
   2936  1.1  matt 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   2937  1.1  matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2938  1.1  matt 				VM_FREELIST_FIRST256);
   2939  1.1  matt 		} else if (mp->start >= SEGMENT_LENGTH) {
   2940  1.1  matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2941  1.1  matt 				VM_FREELIST_DEFAULT);
   2942  1.1  matt 		} else {
   2943  1.1  matt 			pfend = atop(SEGMENT_LENGTH);
   2944  1.1  matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2945  1.1  matt 				VM_FREELIST_FIRST256);
   2946  1.1  matt 			pfstart = atop(SEGMENT_LENGTH);
   2947  1.1  matt 			pfend = atop(mp->start + mp->size);
   2948  1.1  matt 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2949  1.1  matt 				VM_FREELIST_DEFAULT);
   2950  1.1  matt 		}
   2951  1.1  matt 	}
   2952  1.1  matt 
   2953  1.1  matt 	/*
   2954  1.1  matt 	 * Make sure kernel vsid is allocated as well as VSID 0.
   2955  1.1  matt 	 */
   2956  1.1  matt 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   2957  1.1  matt 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   2958  1.1  matt 	pmap_vsid_bitmap[0] |= 1;
   2959  1.1  matt 
   2960  1.1  matt 	/*
   2961  1.1  matt 	 * Initialize kernel pmap and hardware.
   2962  1.1  matt 	 */
   2963  1.1  matt 	for (i = 0; i < 16; i++) {
   2964  1.1  matt 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   2965  1.1  matt 		__asm __volatile ("mtsrin %0,%1"
   2966  1.1  matt 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   2967  1.1  matt 	}
   2968  1.1  matt 
   2969  1.1  matt 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   2970  1.1  matt 	__asm __volatile ("mtsr %0,%1"
   2971  1.1  matt 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   2972  1.1  matt #ifdef KERNEL2_SR
   2973  1.1  matt 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   2974  1.1  matt 	__asm __volatile ("mtsr %0,%1"
   2975  1.1  matt 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   2976  1.1  matt #endif
   2977  1.1  matt 	for (i = 0; i < 16; i++) {
   2978  1.1  matt 		if (iosrtable[i] & SR601_T) {
   2979  1.1  matt 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   2980  1.1  matt 			__asm __volatile ("mtsrin %0,%1"
   2981  1.1  matt 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   2982  1.1  matt 		}
   2983  1.1  matt 	}
   2984  1.1  matt 
   2985  1.1  matt 	__asm __volatile ("sync; mtsdr1 %0; isync"
   2986  1.2  matt 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   2987  1.1  matt 	tlbia();
   2988  1.1  matt 
   2989  1.1  matt #ifdef ALTIVEC
   2990  1.1  matt 	pmap_use_altivec = cpu_altivec;
   2991  1.1  matt #endif
   2992  1.1  matt 
   2993  1.1  matt #ifdef DEBUG
   2994  1.1  matt 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2995  1.1  matt 		u_int cnt;
   2996  1.1  matt 		int bank;
   2997  1.1  matt 		char pbuf[9];
   2998  1.1  matt 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   2999  1.1  matt 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3000  1.1  matt 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3001  1.1  matt 			    bank,
   3002  1.1  matt 			    ptoa(vm_physmem[bank].avail_start),
   3003  1.1  matt 			    ptoa(vm_physmem[bank].avail_end),
   3004  1.1  matt 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3005  1.1  matt 		}
   3006  1.1  matt 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3007  1.1  matt 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3008  1.1  matt 		    pbuf, cnt);
   3009  1.1  matt #ifdef DDB
   3010  1.1  matt 		Debugger();
   3011  1.1  matt #endif
   3012  1.1  matt 	}
   3013  1.1  matt #endif
   3014  1.1  matt 
   3015  1.1  matt 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3016  1.1  matt 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3017  1.1  matt 	    &pmap_pool_uallocator);
   3018  1.1  matt 
   3019  1.1  matt 	pool_setlowat(&pmap_upvo_pool, 252);
   3020  1.1  matt 
   3021  1.1  matt 	pool_init(&pmap_pool, sizeof(struct pmap),
   3022  1.1  matt 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3023  1.1  matt }
   3024