pmap.c revision 1.20 1 1.20 wiz /* $NetBSD: pmap.c,v 1.20 2004/02/13 11:36:17 wiz Exp $ */
2 1.1 matt /*-
3 1.1 matt * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 1.1 matt * All rights reserved.
5 1.1 matt *
6 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.1 matt * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by the NetBSD
20 1.1 matt * Foundation, Inc. and its contributors.
21 1.1 matt * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 matt * contributors may be used to endorse or promote products derived
23 1.1 matt * from this software without specific prior written permission.
24 1.1 matt *
25 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
36 1.1 matt */
37 1.1 matt
38 1.1 matt /*
39 1.1 matt * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 matt * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 matt * All rights reserved.
42 1.1 matt *
43 1.1 matt * Redistribution and use in source and binary forms, with or without
44 1.1 matt * modification, are permitted provided that the following conditions
45 1.1 matt * are met:
46 1.1 matt * 1. Redistributions of source code must retain the above copyright
47 1.1 matt * notice, this list of conditions and the following disclaimer.
48 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 matt * notice, this list of conditions and the following disclaimer in the
50 1.1 matt * documentation and/or other materials provided with the distribution.
51 1.1 matt * 3. All advertising materials mentioning features or use of this software
52 1.1 matt * must display the following acknowledgement:
53 1.1 matt * This product includes software developed by TooLs GmbH.
54 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 matt * derived from this software without specific prior written permission.
56 1.1 matt *
57 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 matt */
68 1.11 lukem
69 1.11 lukem #include <sys/cdefs.h>
70 1.20 wiz __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.20 2004/02/13 11:36:17 wiz Exp $");
71 1.1 matt
72 1.18 matt #include "opt_ppcarch.h"
73 1.1 matt #include "opt_altivec.h"
74 1.1 matt #include "opt_pmap.h"
75 1.1 matt #include <sys/param.h>
76 1.1 matt #include <sys/malloc.h>
77 1.1 matt #include <sys/proc.h>
78 1.1 matt #include <sys/user.h>
79 1.1 matt #include <sys/pool.h>
80 1.1 matt #include <sys/queue.h>
81 1.1 matt #include <sys/device.h> /* for evcnt */
82 1.1 matt #include <sys/systm.h>
83 1.1 matt
84 1.1 matt #if __NetBSD_Version__ < 105010000
85 1.1 matt #include <vm/vm.h>
86 1.1 matt #include <vm/vm_kern.h>
87 1.1 matt #define splvm() splimp()
88 1.1 matt #endif
89 1.1 matt
90 1.1 matt #include <uvm/uvm.h>
91 1.1 matt
92 1.1 matt #include <machine/pcb.h>
93 1.1 matt #include <machine/powerpc.h>
94 1.1 matt #include <powerpc/spr.h>
95 1.1 matt #include <powerpc/oea/sr_601.h>
96 1.1 matt #include <powerpc/bat.h>
97 1.1 matt
98 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
99 1.1 matt #define STATIC
100 1.1 matt #else
101 1.1 matt #define STATIC static
102 1.1 matt #endif
103 1.1 matt
104 1.1 matt #ifdef ALTIVEC
105 1.1 matt int pmap_use_altivec;
106 1.1 matt #endif
107 1.1 matt
108 1.2 matt volatile struct pteg *pmap_pteg_table;
109 1.1 matt unsigned int pmap_pteg_cnt;
110 1.1 matt unsigned int pmap_pteg_mask;
111 1.6 thorpej paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
112 1.1 matt
113 1.1 matt struct pmap kernel_pmap_;
114 1.1 matt unsigned int pmap_pages_stolen;
115 1.1 matt u_long pmap_pte_valid;
116 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
117 1.1 matt u_long pmap_pvo_enter_depth;
118 1.1 matt u_long pmap_pvo_remove_depth;
119 1.1 matt #endif
120 1.1 matt
121 1.1 matt int physmem;
122 1.1 matt #ifndef MSGBUFADDR
123 1.1 matt extern paddr_t msgbuf_paddr;
124 1.1 matt #endif
125 1.1 matt
126 1.1 matt static struct mem_region *mem, *avail;
127 1.1 matt static u_int mem_cnt, avail_cnt;
128 1.1 matt
129 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
130 1.1 matt /*
131 1.1 matt * This is a cache of referenced/modified bits.
132 1.1 matt * Bits herein are shifted by ATTRSHFT.
133 1.1 matt */
134 1.1 matt #define ATTR_SHFT 4
135 1.1 matt struct pmap_physseg pmap_physseg;
136 1.1 matt #endif
137 1.1 matt
138 1.1 matt /*
139 1.1 matt * The following structure is exactly 32 bytes long (one cacheline).
140 1.1 matt */
141 1.1 matt struct pvo_entry {
142 1.1 matt LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
143 1.1 matt TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
144 1.1 matt struct pte pvo_pte; /* Prebuilt PTE */
145 1.1 matt pmap_t pvo_pmap; /* ptr to owning pmap */
146 1.1 matt vaddr_t pvo_vaddr; /* VA of entry */
147 1.1 matt #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
148 1.1 matt #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
149 1.1 matt #define PVO_WIRED 0x0010 /* PVO entry is wired */
150 1.1 matt #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
151 1.1 matt #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
152 1.12 matt #define PVO_ENTER_INSERT 0 /* PVO has been removed */
153 1.12 matt #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
154 1.12 matt #define PVO_SPILL_SET 2 /* PVO has been spilled */
155 1.12 matt #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
156 1.12 matt #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
157 1.12 matt #define PVO_PMAP_PROTECT 5 /* PVO has changed */
158 1.12 matt #define PVO_REMOVE 6 /* PVO has been removed */
159 1.12 matt #define PVO_WHERE_MASK 15
160 1.12 matt #define PVO_WHERE_SHFT 8
161 1.1 matt };
162 1.1 matt #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
163 1.1 matt #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
164 1.1 matt #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
165 1.1 matt #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
166 1.1 matt #define PVO_PTEGIDX_CLR(pvo) \
167 1.1 matt ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
168 1.1 matt #define PVO_PTEGIDX_SET(pvo,i) \
169 1.1 matt ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
170 1.12 matt #define PVO_WHERE(pvo,w) \
171 1.12 matt ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
172 1.12 matt (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
173 1.1 matt
174 1.1 matt TAILQ_HEAD(pvo_tqhead, pvo_entry);
175 1.1 matt struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
176 1.1 matt struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
177 1.1 matt struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
178 1.1 matt
179 1.1 matt struct pool pmap_pool; /* pool for pmap structures */
180 1.1 matt struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
181 1.1 matt struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
182 1.1 matt
183 1.1 matt /*
184 1.1 matt * We keep a cache of unmanaged pages to be used for pvo entries for
185 1.1 matt * unmanaged pages.
186 1.1 matt */
187 1.1 matt struct pvo_page {
188 1.1 matt SIMPLEQ_ENTRY(pvo_page) pvop_link;
189 1.1 matt };
190 1.1 matt SIMPLEQ_HEAD(pvop_head, pvo_page);
191 1.1 matt struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
192 1.1 matt struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
193 1.1 matt u_long pmap_upvop_free;
194 1.1 matt u_long pmap_upvop_maxfree;
195 1.1 matt u_long pmap_mpvop_free;
196 1.1 matt u_long pmap_mpvop_maxfree;
197 1.1 matt
198 1.1 matt STATIC void *pmap_pool_ualloc(struct pool *, int);
199 1.1 matt STATIC void *pmap_pool_malloc(struct pool *, int);
200 1.1 matt
201 1.1 matt STATIC void pmap_pool_ufree(struct pool *, void *);
202 1.1 matt STATIC void pmap_pool_mfree(struct pool *, void *);
203 1.1 matt
204 1.1 matt static struct pool_allocator pmap_pool_mallocator = {
205 1.1 matt pmap_pool_malloc, pmap_pool_mfree, 0,
206 1.1 matt };
207 1.1 matt
208 1.1 matt static struct pool_allocator pmap_pool_uallocator = {
209 1.1 matt pmap_pool_ualloc, pmap_pool_ufree, 0,
210 1.1 matt };
211 1.1 matt
212 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
213 1.2 matt void pmap_pte_print(volatile struct pte *);
214 1.1 matt #endif
215 1.1 matt
216 1.1 matt #ifdef DDB
217 1.1 matt void pmap_pteg_check(void);
218 1.1 matt void pmap_pteg_dist(void);
219 1.1 matt void pmap_print_pte(pmap_t, vaddr_t);
220 1.1 matt void pmap_print_mmuregs(void);
221 1.1 matt #endif
222 1.1 matt
223 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
224 1.1 matt #ifdef PMAPCHECK
225 1.1 matt int pmapcheck = 1;
226 1.1 matt #else
227 1.1 matt int pmapcheck = 0;
228 1.1 matt #endif
229 1.1 matt void pmap_pvo_verify(void);
230 1.1 matt STATIC void pmap_pvo_check(const struct pvo_entry *);
231 1.1 matt #define PMAP_PVO_CHECK(pvo) \
232 1.1 matt do { \
233 1.1 matt if (pmapcheck) \
234 1.1 matt pmap_pvo_check(pvo); \
235 1.1 matt } while (0)
236 1.1 matt #else
237 1.1 matt #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
238 1.1 matt #endif
239 1.2 matt STATIC int pmap_pte_insert(int, struct pte *);
240 1.1 matt STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
241 1.2 matt vaddr_t, paddr_t, register_t, int);
242 1.1 matt STATIC void pmap_pvo_remove(struct pvo_entry *, int);
243 1.1 matt STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
244 1.2 matt STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
245 1.14 chs #define pmap_pvo_reclaim(pm) NULL
246 1.14 chs STATIC void pvo_set_exec(struct pvo_entry *);
247 1.14 chs STATIC void pvo_clear_exec(struct pvo_entry *);
248 1.1 matt
249 1.1 matt STATIC void tlbia(void);
250 1.1 matt
251 1.1 matt STATIC void pmap_release(pmap_t);
252 1.1 matt STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
253 1.1 matt
254 1.1 matt #define VSID_NBPW (sizeof(uint32_t) * 8)
255 1.1 matt static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
256 1.1 matt
257 1.1 matt static int pmap_initialized;
258 1.1 matt
259 1.1 matt #if defined(DEBUG) || defined(PMAPDEBUG)
260 1.1 matt #define PMAPDEBUG_BOOT 0x0001
261 1.1 matt #define PMAPDEBUG_PTE 0x0002
262 1.1 matt #define PMAPDEBUG_EXEC 0x0008
263 1.1 matt #define PMAPDEBUG_PVOENTER 0x0010
264 1.1 matt #define PMAPDEBUG_PVOREMOVE 0x0020
265 1.1 matt #define PMAPDEBUG_ACTIVATE 0x0100
266 1.1 matt #define PMAPDEBUG_CREATE 0x0200
267 1.1 matt #define PMAPDEBUG_ENTER 0x1000
268 1.1 matt #define PMAPDEBUG_KENTER 0x2000
269 1.1 matt #define PMAPDEBUG_KREMOVE 0x4000
270 1.1 matt #define PMAPDEBUG_REMOVE 0x8000
271 1.1 matt unsigned int pmapdebug = 0;
272 1.1 matt # define DPRINTF(x) printf x
273 1.1 matt # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
274 1.1 matt #else
275 1.1 matt # define DPRINTF(x)
276 1.1 matt # define DPRINTFN(n, x)
277 1.1 matt #endif
278 1.1 matt
279 1.1 matt
280 1.1 matt #ifdef PMAPCOUNTERS
281 1.1 matt #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
282 1.1 matt #define PMAPCOUNT2(ev) ((ev).ev_count++)
283 1.1 matt
284 1.1 matt struct evcnt pmap_evcnt_mappings =
285 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
286 1.1 matt "pmap", "pages mapped");
287 1.1 matt struct evcnt pmap_evcnt_unmappings =
288 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
289 1.1 matt "pmap", "pages unmapped");
290 1.1 matt
291 1.1 matt struct evcnt pmap_evcnt_kernel_mappings =
292 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
293 1.1 matt "pmap", "kernel pages mapped");
294 1.1 matt struct evcnt pmap_evcnt_kernel_unmappings =
295 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
296 1.1 matt "pmap", "kernel pages unmapped");
297 1.1 matt
298 1.1 matt struct evcnt pmap_evcnt_mappings_replaced =
299 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
300 1.1 matt "pmap", "page mappings replaced");
301 1.1 matt
302 1.1 matt struct evcnt pmap_evcnt_exec_mappings =
303 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
304 1.1 matt "pmap", "exec pages mapped");
305 1.1 matt struct evcnt pmap_evcnt_exec_cached =
306 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
307 1.1 matt "pmap", "exec pages cached");
308 1.1 matt
309 1.1 matt struct evcnt pmap_evcnt_exec_synced =
310 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
311 1.1 matt "pmap", "exec pages synced");
312 1.1 matt struct evcnt pmap_evcnt_exec_synced_clear_modify =
313 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
314 1.1 matt "pmap", "exec pages synced (CM)");
315 1.1 matt
316 1.1 matt struct evcnt pmap_evcnt_exec_uncached_page_protect =
317 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
318 1.1 matt "pmap", "exec pages uncached (PP)");
319 1.1 matt struct evcnt pmap_evcnt_exec_uncached_clear_modify =
320 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
321 1.1 matt "pmap", "exec pages uncached (CM)");
322 1.1 matt struct evcnt pmap_evcnt_exec_uncached_zero_page =
323 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
324 1.1 matt "pmap", "exec pages uncached (ZP)");
325 1.1 matt struct evcnt pmap_evcnt_exec_uncached_copy_page =
326 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
327 1.1 matt "pmap", "exec pages uncached (CP)");
328 1.1 matt
329 1.1 matt struct evcnt pmap_evcnt_updates =
330 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
331 1.1 matt "pmap", "updates");
332 1.1 matt struct evcnt pmap_evcnt_collects =
333 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
334 1.1 matt "pmap", "collects");
335 1.1 matt struct evcnt pmap_evcnt_copies =
336 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
337 1.1 matt "pmap", "copies");
338 1.1 matt
339 1.1 matt struct evcnt pmap_evcnt_ptes_spilled =
340 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
341 1.1 matt "pmap", "ptes spilled from overflow");
342 1.1 matt struct evcnt pmap_evcnt_ptes_unspilled =
343 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
344 1.1 matt "pmap", "ptes not spilled");
345 1.1 matt struct evcnt pmap_evcnt_ptes_evicted =
346 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
347 1.1 matt "pmap", "ptes evicted");
348 1.1 matt
349 1.1 matt struct evcnt pmap_evcnt_ptes_primary[8] = {
350 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
351 1.1 matt "pmap", "ptes added at primary[0]"),
352 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
353 1.1 matt "pmap", "ptes added at primary[1]"),
354 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 1.1 matt "pmap", "ptes added at primary[2]"),
356 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 1.1 matt "pmap", "ptes added at primary[3]"),
358 1.1 matt
359 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
360 1.1 matt "pmap", "ptes added at primary[4]"),
361 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
362 1.1 matt "pmap", "ptes added at primary[5]"),
363 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 1.1 matt "pmap", "ptes added at primary[6]"),
365 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 1.1 matt "pmap", "ptes added at primary[7]"),
367 1.1 matt };
368 1.1 matt struct evcnt pmap_evcnt_ptes_secondary[8] = {
369 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
370 1.1 matt "pmap", "ptes added at secondary[0]"),
371 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
372 1.1 matt "pmap", "ptes added at secondary[1]"),
373 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
374 1.1 matt "pmap", "ptes added at secondary[2]"),
375 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
376 1.1 matt "pmap", "ptes added at secondary[3]"),
377 1.1 matt
378 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
379 1.1 matt "pmap", "ptes added at secondary[4]"),
380 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 1.1 matt "pmap", "ptes added at secondary[5]"),
382 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 1.1 matt "pmap", "ptes added at secondary[6]"),
384 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 1.1 matt "pmap", "ptes added at secondary[7]"),
386 1.1 matt };
387 1.1 matt struct evcnt pmap_evcnt_ptes_removed =
388 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
389 1.1 matt "pmap", "ptes removed");
390 1.1 matt struct evcnt pmap_evcnt_ptes_changed =
391 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 1.1 matt "pmap", "ptes changed");
393 1.1 matt
394 1.1 matt /*
395 1.1 matt * From pmap_subr.c
396 1.1 matt */
397 1.1 matt extern struct evcnt pmap_evcnt_zeroed_pages;
398 1.1 matt extern struct evcnt pmap_evcnt_copied_pages;
399 1.1 matt extern struct evcnt pmap_evcnt_idlezeroed_pages;
400 1.1 matt #else
401 1.1 matt #define PMAPCOUNT(ev) ((void) 0)
402 1.1 matt #define PMAPCOUNT2(ev) ((void) 0)
403 1.1 matt #endif
404 1.1 matt
405 1.1 matt #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
406 1.1 matt #define TLBSYNC() __asm __volatile("tlbsync")
407 1.1 matt #define SYNC() __asm __volatile("sync")
408 1.1 matt #define EIEIO() __asm __volatile("eieio")
409 1.1 matt #define MFMSR() mfmsr()
410 1.1 matt #define MTMSR(psl) mtmsr(psl)
411 1.1 matt #define MFPVR() mfpvr()
412 1.1 matt #define MFSRIN(va) mfsrin(va)
413 1.1 matt #define MFTB() mfrtcltbl()
414 1.1 matt
415 1.18 matt #ifndef PPC_OEA64
416 1.2 matt static __inline register_t
417 1.1 matt mfsrin(vaddr_t va)
418 1.1 matt {
419 1.2 matt register_t sr;
420 1.1 matt __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
421 1.1 matt return sr;
422 1.1 matt }
423 1.18 matt #endif /* PPC_OEA64 */
424 1.1 matt
425 1.2 matt static __inline register_t
426 1.1 matt pmap_interrupts_off(void)
427 1.1 matt {
428 1.2 matt register_t msr = MFMSR();
429 1.1 matt if (msr & PSL_EE)
430 1.1 matt MTMSR(msr & ~PSL_EE);
431 1.1 matt return msr;
432 1.1 matt }
433 1.1 matt
434 1.1 matt static void
435 1.2 matt pmap_interrupts_restore(register_t msr)
436 1.1 matt {
437 1.1 matt if (msr & PSL_EE)
438 1.1 matt MTMSR(msr);
439 1.1 matt }
440 1.1 matt
441 1.1 matt static __inline u_int32_t
442 1.1 matt mfrtcltbl(void)
443 1.1 matt {
444 1.1 matt
445 1.1 matt if ((MFPVR() >> 16) == MPC601)
446 1.1 matt return (mfrtcl() >> 7);
447 1.1 matt else
448 1.1 matt return (mftbl());
449 1.1 matt }
450 1.1 matt
451 1.1 matt /*
452 1.1 matt * These small routines may have to be replaced,
453 1.1 matt * if/when we support processors other that the 604.
454 1.1 matt */
455 1.1 matt
456 1.1 matt void
457 1.1 matt tlbia(void)
458 1.1 matt {
459 1.1 matt caddr_t i;
460 1.1 matt
461 1.1 matt SYNC();
462 1.1 matt /*
463 1.1 matt * Why not use "tlbia"? Because not all processors implement it.
464 1.1 matt *
465 1.20 wiz * This needs to be a per-CPU callback to do the appropriate thing
466 1.1 matt * for the CPU. XXX
467 1.1 matt */
468 1.1 matt for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
469 1.1 matt TLBIE(i);
470 1.1 matt EIEIO();
471 1.1 matt SYNC();
472 1.1 matt }
473 1.1 matt TLBSYNC();
474 1.1 matt SYNC();
475 1.1 matt }
476 1.1 matt
477 1.2 matt static __inline register_t
478 1.2 matt va_to_vsid(const struct pmap *pm, vaddr_t addr)
479 1.1 matt {
480 1.18 matt #ifdef PPC_OEA64
481 1.18 matt #if 0
482 1.18 matt const struct ste *ste;
483 1.18 matt register_t hash;
484 1.18 matt int i;
485 1.18 matt
486 1.18 matt hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
487 1.18 matt
488 1.18 matt /*
489 1.18 matt * Try the primary group first
490 1.18 matt */
491 1.18 matt ste = pm->pm_stes[hash].stes;
492 1.18 matt for (i = 0; i < 8; i++, ste++) {
493 1.18 matt if (ste->ste_hi & STE_V) &&
494 1.18 matt (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
495 1.18 matt return ste;
496 1.18 matt }
497 1.18 matt
498 1.18 matt /*
499 1.18 matt * Then the secondary group.
500 1.18 matt */
501 1.18 matt ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
502 1.18 matt for (i = 0; i < 8; i++, ste++) {
503 1.18 matt if (ste->ste_hi & STE_V) &&
504 1.18 matt (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
505 1.18 matt return addr;
506 1.18 matt }
507 1.18 matt
508 1.18 matt return NULL;
509 1.18 matt #else
510 1.18 matt /*
511 1.18 matt * Rather than searching the STE groups for the VSID, we know
512 1.18 matt * how we generate that from the ESID and so do that.
513 1.18 matt */
514 1.18 matt return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
515 1.18 matt #endif
516 1.18 matt #else
517 1.18 matt return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
518 1.18 matt #endif
519 1.1 matt }
520 1.1 matt
521 1.2 matt static __inline register_t
522 1.2 matt va_to_pteg(const struct pmap *pm, vaddr_t addr)
523 1.1 matt {
524 1.2 matt register_t hash;
525 1.2 matt
526 1.2 matt hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
527 1.1 matt return hash & pmap_pteg_mask;
528 1.1 matt }
529 1.1 matt
530 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
531 1.1 matt /*
532 1.1 matt * Given a PTE in the page table, calculate the VADDR that hashes to it.
533 1.1 matt * The only bit of magic is that the top 4 bits of the address doesn't
534 1.1 matt * technically exist in the PTE. But we know we reserved 4 bits of the
535 1.1 matt * VSID for it so that's how we get it.
536 1.1 matt */
537 1.1 matt static vaddr_t
538 1.2 matt pmap_pte_to_va(volatile const struct pte *pt)
539 1.1 matt {
540 1.1 matt vaddr_t va;
541 1.1 matt uintptr_t ptaddr = (uintptr_t) pt;
542 1.1 matt
543 1.1 matt if (pt->pte_hi & PTE_HID)
544 1.2 matt ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
545 1.1 matt
546 1.18 matt /* PPC Bits 10-19 PPC64 Bits 42-51 */
547 1.4 matt va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
548 1.1 matt va <<= ADDR_PIDX_SHFT;
549 1.1 matt
550 1.18 matt /* PPC Bits 4-9 PPC64 Bits 36-41 */
551 1.1 matt va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
552 1.1 matt
553 1.18 matt #ifdef PPC_OEA64
554 1.18 matt /* PPC63 Bits 0-35 */
555 1.18 matt /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
556 1.18 matt #endif
557 1.18 matt #ifdef PPC_OEA
558 1.1 matt /* PPC Bits 0-3 */
559 1.1 matt va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
560 1.18 matt #endif
561 1.1 matt
562 1.1 matt return va;
563 1.1 matt }
564 1.1 matt #endif
565 1.1 matt
566 1.1 matt static __inline struct pvo_head *
567 1.1 matt pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
568 1.1 matt {
569 1.1 matt #ifdef __HAVE_VM_PAGE_MD
570 1.1 matt struct vm_page *pg;
571 1.1 matt
572 1.1 matt pg = PHYS_TO_VM_PAGE(pa);
573 1.1 matt if (pg_p != NULL)
574 1.1 matt *pg_p = pg;
575 1.1 matt if (pg == NULL)
576 1.1 matt return &pmap_pvo_unmanaged;
577 1.1 matt return &pg->mdpage.mdpg_pvoh;
578 1.1 matt #endif
579 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
580 1.1 matt int bank, pg;
581 1.1 matt
582 1.1 matt bank = vm_physseg_find(atop(pa), &pg);
583 1.1 matt if (pg_p != NULL)
584 1.1 matt *pg_p = pg;
585 1.1 matt if (bank == -1)
586 1.1 matt return &pmap_pvo_unmanaged;
587 1.1 matt return &vm_physmem[bank].pmseg.pvoh[pg];
588 1.1 matt #endif
589 1.1 matt }
590 1.1 matt
591 1.1 matt static __inline struct pvo_head *
592 1.1 matt vm_page_to_pvoh(struct vm_page *pg)
593 1.1 matt {
594 1.1 matt #ifdef __HAVE_VM_PAGE_MD
595 1.1 matt return &pg->mdpage.mdpg_pvoh;
596 1.1 matt #endif
597 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
598 1.1 matt return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
599 1.1 matt #endif
600 1.1 matt }
601 1.1 matt
602 1.1 matt
603 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
604 1.1 matt static __inline char *
605 1.1 matt pa_to_attr(paddr_t pa)
606 1.1 matt {
607 1.1 matt int bank, pg;
608 1.1 matt
609 1.1 matt bank = vm_physseg_find(atop(pa), &pg);
610 1.1 matt if (bank == -1)
611 1.1 matt return NULL;
612 1.1 matt return &vm_physmem[bank].pmseg.attrs[pg];
613 1.1 matt }
614 1.1 matt #endif
615 1.1 matt
616 1.1 matt static __inline void
617 1.1 matt pmap_attr_clear(struct vm_page *pg, int ptebit)
618 1.1 matt {
619 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
620 1.1 matt *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
621 1.1 matt #endif
622 1.1 matt #ifdef __HAVE_VM_PAGE_MD
623 1.1 matt pg->mdpage.mdpg_attrs &= ~ptebit;
624 1.1 matt #endif
625 1.1 matt }
626 1.1 matt
627 1.1 matt static __inline int
628 1.1 matt pmap_attr_fetch(struct vm_page *pg)
629 1.1 matt {
630 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
631 1.1 matt return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
632 1.1 matt #endif
633 1.1 matt #ifdef __HAVE_VM_PAGE_MD
634 1.1 matt return pg->mdpage.mdpg_attrs;
635 1.1 matt #endif
636 1.1 matt }
637 1.1 matt
638 1.1 matt static __inline void
639 1.1 matt pmap_attr_save(struct vm_page *pg, int ptebit)
640 1.1 matt {
641 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
642 1.1 matt *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
643 1.1 matt #endif
644 1.1 matt #ifdef __HAVE_VM_PAGE_MD
645 1.1 matt pg->mdpage.mdpg_attrs |= ptebit;
646 1.1 matt #endif
647 1.1 matt }
648 1.1 matt
649 1.1 matt static __inline int
650 1.2 matt pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
651 1.1 matt {
652 1.1 matt if (pt->pte_hi == pvo_pt->pte_hi
653 1.1 matt #if 0
654 1.1 matt && ((pt->pte_lo ^ pvo_pt->pte_lo) &
655 1.1 matt ~(PTE_REF|PTE_CHG)) == 0
656 1.1 matt #endif
657 1.1 matt )
658 1.1 matt return 1;
659 1.1 matt return 0;
660 1.1 matt }
661 1.1 matt
662 1.1 matt static __inline void
663 1.2 matt pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
664 1.1 matt {
665 1.1 matt /*
666 1.1 matt * Construct the PTE. Default to IMB initially. Valid bit
667 1.1 matt * only gets set when the real pte is set in memory.
668 1.1 matt *
669 1.1 matt * Note: Don't set the valid bit for correct operation of tlb update.
670 1.1 matt */
671 1.2 matt pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
672 1.2 matt | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
673 1.1 matt pt->pte_lo = pte_lo;
674 1.1 matt }
675 1.1 matt
676 1.1 matt static __inline void
677 1.2 matt pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
678 1.1 matt {
679 1.1 matt pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
680 1.1 matt }
681 1.1 matt
682 1.1 matt static __inline void
683 1.2 matt pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
684 1.1 matt {
685 1.1 matt /*
686 1.1 matt * As shown in Section 7.6.3.2.3
687 1.1 matt */
688 1.1 matt pt->pte_lo &= ~ptebit;
689 1.1 matt TLBIE(va);
690 1.1 matt SYNC();
691 1.1 matt EIEIO();
692 1.1 matt TLBSYNC();
693 1.1 matt SYNC();
694 1.1 matt }
695 1.1 matt
696 1.1 matt static __inline void
697 1.2 matt pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
698 1.1 matt {
699 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
700 1.1 matt if (pvo_pt->pte_hi & PTE_VALID)
701 1.1 matt panic("pte_set: setting an already valid pte %p", pvo_pt);
702 1.1 matt #endif
703 1.1 matt pvo_pt->pte_hi |= PTE_VALID;
704 1.1 matt /*
705 1.1 matt * Update the PTE as defined in section 7.6.3.1
706 1.1 matt * Note that the REF/CHG bits are from pvo_pt and thus should
707 1.1 matt * have been saved so this routine can restore them (if desired).
708 1.1 matt */
709 1.1 matt pt->pte_lo = pvo_pt->pte_lo;
710 1.1 matt EIEIO();
711 1.1 matt pt->pte_hi = pvo_pt->pte_hi;
712 1.1 matt SYNC();
713 1.1 matt pmap_pte_valid++;
714 1.1 matt }
715 1.1 matt
716 1.1 matt static __inline void
717 1.2 matt pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
718 1.1 matt {
719 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
720 1.1 matt if ((pvo_pt->pte_hi & PTE_VALID) == 0)
721 1.1 matt panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
722 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0)
723 1.1 matt panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
724 1.1 matt #endif
725 1.1 matt
726 1.1 matt pvo_pt->pte_hi &= ~PTE_VALID;
727 1.1 matt /*
728 1.1 matt * Force the ref & chg bits back into the PTEs.
729 1.1 matt */
730 1.1 matt SYNC();
731 1.1 matt /*
732 1.1 matt * Invalidate the pte ... (Section 7.6.3.3)
733 1.1 matt */
734 1.1 matt pt->pte_hi &= ~PTE_VALID;
735 1.1 matt SYNC();
736 1.1 matt TLBIE(va);
737 1.1 matt SYNC();
738 1.1 matt EIEIO();
739 1.1 matt TLBSYNC();
740 1.1 matt SYNC();
741 1.1 matt /*
742 1.1 matt * Save the ref & chg bits ...
743 1.1 matt */
744 1.1 matt pmap_pte_synch(pt, pvo_pt);
745 1.1 matt pmap_pte_valid--;
746 1.1 matt }
747 1.1 matt
748 1.1 matt static __inline void
749 1.2 matt pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
750 1.1 matt {
751 1.1 matt /*
752 1.1 matt * Invalidate the PTE
753 1.1 matt */
754 1.1 matt pmap_pte_unset(pt, pvo_pt, va);
755 1.1 matt pmap_pte_set(pt, pvo_pt);
756 1.1 matt }
757 1.1 matt
758 1.1 matt /*
759 1.1 matt * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
760 1.1 matt * (either primary or secondary location).
761 1.1 matt *
762 1.1 matt * Note: both the destination and source PTEs must not have PTE_VALID set.
763 1.1 matt */
764 1.1 matt
765 1.1 matt STATIC int
766 1.2 matt pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
767 1.1 matt {
768 1.2 matt volatile struct pte *pt;
769 1.1 matt int i;
770 1.1 matt
771 1.1 matt #if defined(DEBUG)
772 1.18 matt DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
773 1.19 mjl ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
774 1.1 matt #endif
775 1.1 matt /*
776 1.1 matt * First try primary hash.
777 1.1 matt */
778 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
779 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0) {
780 1.1 matt pvo_pt->pte_hi &= ~PTE_HID;
781 1.1 matt pmap_pte_set(pt, pvo_pt);
782 1.1 matt return i;
783 1.1 matt }
784 1.1 matt }
785 1.1 matt
786 1.1 matt /*
787 1.1 matt * Now try secondary hash.
788 1.1 matt */
789 1.1 matt ptegidx ^= pmap_pteg_mask;
790 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
791 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0) {
792 1.1 matt pvo_pt->pte_hi |= PTE_HID;
793 1.1 matt pmap_pte_set(pt, pvo_pt);
794 1.1 matt return i;
795 1.1 matt }
796 1.1 matt }
797 1.1 matt return -1;
798 1.1 matt }
799 1.1 matt
800 1.1 matt /*
801 1.1 matt * Spill handler.
802 1.1 matt *
803 1.1 matt * Tries to spill a page table entry from the overflow area.
804 1.1 matt * This runs in either real mode (if dealing with a exception spill)
805 1.1 matt * or virtual mode when dealing with manually spilling one of the
806 1.1 matt * kernel's pte entries. In either case, interrupts are already
807 1.1 matt * disabled.
808 1.1 matt */
809 1.14 chs
810 1.1 matt int
811 1.14 chs pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
812 1.1 matt {
813 1.1 matt struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
814 1.1 matt struct pvo_entry *pvo;
815 1.15 dyoung /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
816 1.15 dyoung struct pvo_tqhead *pvoh, *vpvoh = NULL;
817 1.1 matt int ptegidx, i, j;
818 1.2 matt volatile struct pteg *pteg;
819 1.2 matt volatile struct pte *pt;
820 1.1 matt
821 1.2 matt ptegidx = va_to_pteg(pm, addr);
822 1.1 matt
823 1.1 matt /*
824 1.1 matt * Have to substitute some entry. Use the primary hash for this.
825 1.12 matt * Use low bits of timebase as random generator. Make sure we are
826 1.12 matt * not picking a kernel pte for replacement.
827 1.1 matt */
828 1.1 matt pteg = &pmap_pteg_table[ptegidx];
829 1.1 matt i = MFTB() & 7;
830 1.12 matt for (j = 0; j < 8; j++) {
831 1.12 matt pt = &pteg->pt[i];
832 1.12 matt if ((pt->pte_hi & PTE_VALID) == 0 ||
833 1.12 matt VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
834 1.12 matt != KERNEL_VSIDBITS)
835 1.12 matt break;
836 1.12 matt i = (i + 1) & 7;
837 1.12 matt }
838 1.12 matt KASSERT(j < 8);
839 1.1 matt
840 1.1 matt source_pvo = NULL;
841 1.1 matt victim_pvo = NULL;
842 1.1 matt pvoh = &pmap_pvo_table[ptegidx];
843 1.1 matt TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
844 1.1 matt
845 1.1 matt /*
846 1.1 matt * We need to find pvo entry for this address...
847 1.1 matt */
848 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
849 1.1 matt
850 1.1 matt /*
851 1.1 matt * If we haven't found the source and we come to a PVO with
852 1.1 matt * a valid PTE, then we know we can't find it because all
853 1.1 matt * evicted PVOs always are first in the list.
854 1.1 matt */
855 1.1 matt if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
856 1.1 matt break;
857 1.2 matt if (source_pvo == NULL && pm == pvo->pvo_pmap &&
858 1.2 matt addr == PVO_VADDR(pvo)) {
859 1.1 matt
860 1.1 matt /*
861 1.1 matt * Now we have found the entry to be spilled into the
862 1.1 matt * pteg. Attempt to insert it into the page table.
863 1.1 matt */
864 1.1 matt j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
865 1.1 matt if (j >= 0) {
866 1.1 matt PVO_PTEGIDX_SET(pvo, j);
867 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
868 1.12 matt PVO_WHERE(pvo, SPILL_INSERT);
869 1.1 matt pvo->pvo_pmap->pm_evictions--;
870 1.1 matt PMAPCOUNT(ptes_spilled);
871 1.1 matt PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
872 1.1 matt ? pmap_evcnt_ptes_secondary
873 1.1 matt : pmap_evcnt_ptes_primary)[j]);
874 1.1 matt
875 1.1 matt /*
876 1.1 matt * Since we keep the evicted entries at the
877 1.1 matt * from of the PVO list, we need move this
878 1.1 matt * (now resident) PVO after the evicted
879 1.1 matt * entries.
880 1.1 matt */
881 1.1 matt next_pvo = TAILQ_NEXT(pvo, pvo_olink);
882 1.1 matt
883 1.1 matt /*
884 1.5 matt * If we don't have to move (either we were the
885 1.5 matt * last entry or the next entry was valid),
886 1.1 matt * don't change our position. Otherwise
887 1.1 matt * move ourselves to the tail of the queue.
888 1.1 matt */
889 1.1 matt if (next_pvo != NULL &&
890 1.1 matt !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
891 1.1 matt TAILQ_REMOVE(pvoh, pvo, pvo_olink);
892 1.1 matt TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
893 1.1 matt }
894 1.1 matt return 1;
895 1.1 matt }
896 1.1 matt source_pvo = pvo;
897 1.14 chs if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
898 1.14 chs return 0;
899 1.14 chs }
900 1.1 matt if (victim_pvo != NULL)
901 1.1 matt break;
902 1.1 matt }
903 1.1 matt
904 1.1 matt /*
905 1.1 matt * We also need the pvo entry of the victim we are replacing
906 1.1 matt * so save the R & C bits of the PTE.
907 1.1 matt */
908 1.1 matt if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
909 1.1 matt pmap_pte_compare(pt, &pvo->pvo_pte)) {
910 1.15 dyoung vpvoh = pvoh; /* *1* */
911 1.1 matt victim_pvo = pvo;
912 1.1 matt if (source_pvo != NULL)
913 1.1 matt break;
914 1.1 matt }
915 1.1 matt }
916 1.1 matt
917 1.1 matt if (source_pvo == NULL) {
918 1.1 matt PMAPCOUNT(ptes_unspilled);
919 1.1 matt return 0;
920 1.1 matt }
921 1.1 matt
922 1.1 matt if (victim_pvo == NULL) {
923 1.1 matt if ((pt->pte_hi & PTE_HID) == 0)
924 1.1 matt panic("pmap_pte_spill: victim p-pte (%p) has "
925 1.1 matt "no pvo entry!", pt);
926 1.1 matt
927 1.1 matt /*
928 1.1 matt * If this is a secondary PTE, we need to search
929 1.1 matt * its primary pvo bucket for the matching PVO.
930 1.1 matt */
931 1.15 dyoung vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
932 1.1 matt TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
933 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
934 1.1 matt
935 1.1 matt /*
936 1.1 matt * We also need the pvo entry of the victim we are
937 1.1 matt * replacing so save the R & C bits of the PTE.
938 1.1 matt */
939 1.1 matt if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
940 1.1 matt victim_pvo = pvo;
941 1.1 matt break;
942 1.1 matt }
943 1.1 matt }
944 1.1 matt if (victim_pvo == NULL)
945 1.1 matt panic("pmap_pte_spill: victim s-pte (%p) has "
946 1.1 matt "no pvo entry!", pt);
947 1.1 matt }
948 1.1 matt
949 1.1 matt /*
950 1.12 matt * The victim should be not be a kernel PVO/PTE entry.
951 1.12 matt */
952 1.12 matt KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
953 1.12 matt KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
954 1.12 matt KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
955 1.12 matt
956 1.12 matt /*
957 1.1 matt * We are invalidating the TLB entry for the EA for the
958 1.1 matt * we are replacing even though its valid; If we don't
959 1.1 matt * we lose any ref/chg bit changes contained in the TLB
960 1.1 matt * entry.
961 1.1 matt */
962 1.1 matt source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
963 1.1 matt
964 1.1 matt /*
965 1.1 matt * To enforce the PVO list ordering constraint that all
966 1.1 matt * evicted entries should come before all valid entries,
967 1.1 matt * move the source PVO to the tail of its list and the
968 1.1 matt * victim PVO to the head of its list (which might not be
969 1.1 matt * the same list, if the victim was using the secondary hash).
970 1.1 matt */
971 1.1 matt TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
972 1.1 matt TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
973 1.1 matt TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
974 1.1 matt TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
975 1.1 matt pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
976 1.1 matt pmap_pte_set(pt, &source_pvo->pvo_pte);
977 1.1 matt victim_pvo->pvo_pmap->pm_evictions++;
978 1.1 matt source_pvo->pvo_pmap->pm_evictions--;
979 1.12 matt PVO_WHERE(victim_pvo, SPILL_UNSET);
980 1.12 matt PVO_WHERE(source_pvo, SPILL_SET);
981 1.1 matt
982 1.1 matt PVO_PTEGIDX_CLR(victim_pvo);
983 1.1 matt PVO_PTEGIDX_SET(source_pvo, i);
984 1.1 matt PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
985 1.1 matt PMAPCOUNT(ptes_spilled);
986 1.1 matt PMAPCOUNT(ptes_evicted);
987 1.1 matt PMAPCOUNT(ptes_removed);
988 1.1 matt
989 1.1 matt PMAP_PVO_CHECK(victim_pvo);
990 1.1 matt PMAP_PVO_CHECK(source_pvo);
991 1.1 matt return 1;
992 1.1 matt }
993 1.1 matt
994 1.1 matt /*
995 1.1 matt * Restrict given range to physical memory
996 1.1 matt */
997 1.1 matt void
998 1.1 matt pmap_real_memory(paddr_t *start, psize_t *size)
999 1.1 matt {
1000 1.1 matt struct mem_region *mp;
1001 1.1 matt
1002 1.1 matt for (mp = mem; mp->size; mp++) {
1003 1.1 matt if (*start + *size > mp->start
1004 1.1 matt && *start < mp->start + mp->size) {
1005 1.1 matt if (*start < mp->start) {
1006 1.1 matt *size -= mp->start - *start;
1007 1.1 matt *start = mp->start;
1008 1.1 matt }
1009 1.1 matt if (*start + *size > mp->start + mp->size)
1010 1.1 matt *size = mp->start + mp->size - *start;
1011 1.1 matt return;
1012 1.1 matt }
1013 1.1 matt }
1014 1.1 matt *size = 0;
1015 1.1 matt }
1016 1.1 matt
1017 1.1 matt /*
1018 1.1 matt * Initialize anything else for pmap handling.
1019 1.1 matt * Called during vm_init().
1020 1.1 matt */
1021 1.1 matt void
1022 1.1 matt pmap_init(void)
1023 1.1 matt {
1024 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
1025 1.1 matt struct pvo_tqhead *pvoh;
1026 1.1 matt int bank;
1027 1.1 matt long sz;
1028 1.1 matt char *attr;
1029 1.1 matt
1030 1.1 matt pvoh = pmap_physseg.pvoh;
1031 1.1 matt attr = pmap_physseg.attrs;
1032 1.1 matt for (bank = 0; bank < vm_nphysseg; bank++) {
1033 1.1 matt sz = vm_physmem[bank].end - vm_physmem[bank].start;
1034 1.1 matt vm_physmem[bank].pmseg.pvoh = pvoh;
1035 1.1 matt vm_physmem[bank].pmseg.attrs = attr;
1036 1.1 matt for (; sz > 0; sz--, pvoh++, attr++) {
1037 1.1 matt TAILQ_INIT(pvoh);
1038 1.1 matt *attr = 0;
1039 1.1 matt }
1040 1.1 matt }
1041 1.1 matt #endif
1042 1.1 matt
1043 1.1 matt pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1044 1.1 matt sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1045 1.1 matt &pmap_pool_mallocator);
1046 1.1 matt
1047 1.1 matt pool_setlowat(&pmap_mpvo_pool, 1008);
1048 1.1 matt
1049 1.1 matt pmap_initialized = 1;
1050 1.1 matt
1051 1.1 matt #ifdef PMAPCOUNTERS
1052 1.1 matt evcnt_attach_static(&pmap_evcnt_mappings);
1053 1.1 matt evcnt_attach_static(&pmap_evcnt_mappings_replaced);
1054 1.1 matt evcnt_attach_static(&pmap_evcnt_unmappings);
1055 1.1 matt
1056 1.1 matt evcnt_attach_static(&pmap_evcnt_kernel_mappings);
1057 1.1 matt evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
1058 1.1 matt
1059 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_mappings);
1060 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_cached);
1061 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_synced);
1062 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
1063 1.1 matt
1064 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
1065 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
1066 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
1067 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
1068 1.1 matt
1069 1.1 matt evcnt_attach_static(&pmap_evcnt_zeroed_pages);
1070 1.1 matt evcnt_attach_static(&pmap_evcnt_copied_pages);
1071 1.1 matt evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
1072 1.1 matt
1073 1.1 matt evcnt_attach_static(&pmap_evcnt_updates);
1074 1.1 matt evcnt_attach_static(&pmap_evcnt_collects);
1075 1.1 matt evcnt_attach_static(&pmap_evcnt_copies);
1076 1.1 matt
1077 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_spilled);
1078 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
1079 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_evicted);
1080 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_removed);
1081 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_changed);
1082 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
1083 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
1084 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
1085 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
1086 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
1087 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
1088 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
1089 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
1090 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
1091 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
1092 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
1093 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
1094 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
1095 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
1096 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
1097 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
1098 1.1 matt #endif
1099 1.1 matt }
1100 1.1 matt
1101 1.1 matt /*
1102 1.10 thorpej * How much virtual space does the kernel get?
1103 1.10 thorpej */
1104 1.10 thorpej void
1105 1.10 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1106 1.10 thorpej {
1107 1.10 thorpej /*
1108 1.10 thorpej * For now, reserve one segment (minus some overhead) for kernel
1109 1.10 thorpej * virtual memory
1110 1.10 thorpej */
1111 1.10 thorpej *start = VM_MIN_KERNEL_ADDRESS;
1112 1.10 thorpej *end = VM_MAX_KERNEL_ADDRESS;
1113 1.10 thorpej }
1114 1.10 thorpej
1115 1.10 thorpej /*
1116 1.1 matt * Allocate, initialize, and return a new physical map.
1117 1.1 matt */
1118 1.1 matt pmap_t
1119 1.1 matt pmap_create(void)
1120 1.1 matt {
1121 1.1 matt pmap_t pm;
1122 1.1 matt
1123 1.1 matt pm = pool_get(&pmap_pool, PR_WAITOK);
1124 1.1 matt memset((caddr_t)pm, 0, sizeof *pm);
1125 1.1 matt pmap_pinit(pm);
1126 1.1 matt
1127 1.1 matt DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1128 1.18 matt "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1129 1.18 matt "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1130 1.19 mjl (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1131 1.19 mjl (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1132 1.19 mjl (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1133 1.19 mjl (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1134 1.19 mjl (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1135 1.19 mjl (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1136 1.19 mjl (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1137 1.19 mjl (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1138 1.1 matt return pm;
1139 1.1 matt }
1140 1.1 matt
1141 1.1 matt /*
1142 1.1 matt * Initialize a preallocated and zeroed pmap structure.
1143 1.1 matt */
1144 1.1 matt void
1145 1.1 matt pmap_pinit(pmap_t pm)
1146 1.1 matt {
1147 1.2 matt register_t entropy = MFTB();
1148 1.2 matt register_t mask;
1149 1.2 matt int i;
1150 1.1 matt
1151 1.1 matt /*
1152 1.1 matt * Allocate some segment registers for this pmap.
1153 1.1 matt */
1154 1.1 matt pm->pm_refs = 1;
1155 1.2 matt for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1156 1.2 matt static register_t pmap_vsidcontext;
1157 1.2 matt register_t hash;
1158 1.2 matt unsigned int n;
1159 1.1 matt
1160 1.1 matt /* Create a new value by multiplying by a prime adding in
1161 1.1 matt * entropy from the timebase register. This is to make the
1162 1.1 matt * VSID more random so that the PT Hash function collides
1163 1.1 matt * less often. (note that the prime causes gcc to do shifts
1164 1.1 matt * instead of a multiply)
1165 1.1 matt */
1166 1.1 matt pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1167 1.1 matt hash = pmap_vsidcontext & (NPMAPS - 1);
1168 1.1 matt if (hash == 0) /* 0 is special, avoid it */
1169 1.1 matt continue;
1170 1.1 matt n = hash >> 5;
1171 1.2 matt mask = 1L << (hash & (VSID_NBPW-1));
1172 1.2 matt hash = pmap_vsidcontext;
1173 1.1 matt if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1174 1.1 matt /* anything free in this bucket? */
1175 1.2 matt if (~pmap_vsid_bitmap[n] == 0) {
1176 1.2 matt entropy = hash >> PTE_VSID_SHFT;
1177 1.1 matt continue;
1178 1.1 matt }
1179 1.1 matt i = ffs(~pmap_vsid_bitmap[n]) - 1;
1180 1.2 matt mask = 1L << i;
1181 1.2 matt hash &= ~(VSID_NBPW-1);
1182 1.1 matt hash |= i;
1183 1.1 matt }
1184 1.18 matt hash &= PTE_VSID >> PTE_VSID_SHFT;
1185 1.1 matt pmap_vsid_bitmap[n] |= mask;
1186 1.18 matt pm->pm_vsid = hash;
1187 1.18 matt #ifndef PPC_OEA64
1188 1.1 matt for (i = 0; i < 16; i++)
1189 1.14 chs pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1190 1.14 chs SR_NOEXEC;
1191 1.18 matt #endif
1192 1.1 matt return;
1193 1.1 matt }
1194 1.1 matt panic("pmap_pinit: out of segments");
1195 1.1 matt }
1196 1.1 matt
1197 1.1 matt /*
1198 1.1 matt * Add a reference to the given pmap.
1199 1.1 matt */
1200 1.1 matt void
1201 1.1 matt pmap_reference(pmap_t pm)
1202 1.1 matt {
1203 1.1 matt pm->pm_refs++;
1204 1.1 matt }
1205 1.1 matt
1206 1.1 matt /*
1207 1.1 matt * Retire the given pmap from service.
1208 1.1 matt * Should only be called if the map contains no valid mappings.
1209 1.1 matt */
1210 1.1 matt void
1211 1.1 matt pmap_destroy(pmap_t pm)
1212 1.1 matt {
1213 1.1 matt if (--pm->pm_refs == 0) {
1214 1.1 matt pmap_release(pm);
1215 1.1 matt pool_put(&pmap_pool, pm);
1216 1.1 matt }
1217 1.1 matt }
1218 1.1 matt
1219 1.1 matt /*
1220 1.1 matt * Release any resources held by the given physical map.
1221 1.1 matt * Called when a pmap initialized by pmap_pinit is being released.
1222 1.1 matt */
1223 1.1 matt void
1224 1.1 matt pmap_release(pmap_t pm)
1225 1.1 matt {
1226 1.1 matt int idx, mask;
1227 1.1 matt
1228 1.1 matt if (pm->pm_sr[0] == 0)
1229 1.1 matt panic("pmap_release");
1230 1.18 matt idx = VSID_TO_HASH(pm->pm_vsid) & (NPMAPS-1);
1231 1.1 matt mask = 1 << (idx % VSID_NBPW);
1232 1.1 matt idx /= VSID_NBPW;
1233 1.1 matt pmap_vsid_bitmap[idx] &= ~mask;
1234 1.1 matt }
1235 1.1 matt
1236 1.1 matt /*
1237 1.1 matt * Copy the range specified by src_addr/len
1238 1.1 matt * from the source map to the range dst_addr/len
1239 1.1 matt * in the destination map.
1240 1.1 matt *
1241 1.1 matt * This routine is only advisory and need not do anything.
1242 1.1 matt */
1243 1.1 matt void
1244 1.1 matt pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1245 1.1 matt vsize_t len, vaddr_t src_addr)
1246 1.1 matt {
1247 1.1 matt PMAPCOUNT(copies);
1248 1.1 matt }
1249 1.1 matt
1250 1.1 matt /*
1251 1.1 matt * Require that all active physical maps contain no
1252 1.1 matt * incorrect entries NOW.
1253 1.1 matt */
1254 1.1 matt void
1255 1.1 matt pmap_update(struct pmap *pmap)
1256 1.1 matt {
1257 1.1 matt PMAPCOUNT(updates);
1258 1.1 matt TLBSYNC();
1259 1.1 matt }
1260 1.1 matt
1261 1.1 matt /*
1262 1.1 matt * Garbage collects the physical map system for
1263 1.1 matt * pages which are no longer used.
1264 1.1 matt * Success need not be guaranteed -- that is, there
1265 1.1 matt * may well be pages which are not referenced, but
1266 1.1 matt * others may be collected.
1267 1.1 matt * Called by the pageout daemon when pages are scarce.
1268 1.1 matt */
1269 1.1 matt void
1270 1.1 matt pmap_collect(pmap_t pm)
1271 1.1 matt {
1272 1.1 matt PMAPCOUNT(collects);
1273 1.1 matt }
1274 1.1 matt
1275 1.1 matt static __inline int
1276 1.1 matt pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1277 1.1 matt {
1278 1.1 matt int pteidx;
1279 1.1 matt /*
1280 1.1 matt * We can find the actual pte entry without searching by
1281 1.1 matt * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1282 1.1 matt * and by noticing the HID bit.
1283 1.1 matt */
1284 1.1 matt pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1285 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_HID)
1286 1.1 matt pteidx ^= pmap_pteg_mask * 8;
1287 1.1 matt return pteidx;
1288 1.1 matt }
1289 1.1 matt
1290 1.2 matt volatile struct pte *
1291 1.1 matt pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1292 1.1 matt {
1293 1.2 matt volatile struct pte *pt;
1294 1.1 matt
1295 1.1 matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1296 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1297 1.1 matt return NULL;
1298 1.1 matt #endif
1299 1.1 matt
1300 1.1 matt /*
1301 1.1 matt * If we haven't been supplied the ptegidx, calculate it.
1302 1.1 matt */
1303 1.1 matt if (pteidx == -1) {
1304 1.1 matt int ptegidx;
1305 1.2 matt ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1306 1.1 matt pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1307 1.1 matt }
1308 1.1 matt
1309 1.1 matt pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1310 1.1 matt
1311 1.1 matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1312 1.1 matt return pt;
1313 1.1 matt #else
1314 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1315 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1316 1.1 matt "pvo but no valid pte index", pvo);
1317 1.1 matt }
1318 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1319 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1320 1.1 matt "pvo but no valid pte", pvo);
1321 1.1 matt }
1322 1.1 matt
1323 1.1 matt if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1324 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1325 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1326 1.1 matt pmap_pte_print(pt);
1327 1.1 matt #endif
1328 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1329 1.1 matt "pmap_pteg_table %p but invalid in pvo",
1330 1.1 matt pvo, pt);
1331 1.1 matt }
1332 1.1 matt if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1333 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1334 1.1 matt pmap_pte_print(pt);
1335 1.1 matt #endif
1336 1.1 matt panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1337 1.1 matt "not match pte %p in pmap_pteg_table",
1338 1.1 matt pvo, pt);
1339 1.1 matt }
1340 1.1 matt return pt;
1341 1.1 matt }
1342 1.1 matt
1343 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1344 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1345 1.1 matt pmap_pte_print(pt);
1346 1.1 matt #endif
1347 1.12 matt panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1348 1.1 matt "pmap_pteg_table but valid in pvo", pvo, pt);
1349 1.1 matt }
1350 1.1 matt return NULL;
1351 1.1 matt #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1352 1.1 matt }
1353 1.1 matt
1354 1.1 matt struct pvo_entry *
1355 1.1 matt pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1356 1.1 matt {
1357 1.1 matt struct pvo_entry *pvo;
1358 1.1 matt int ptegidx;
1359 1.1 matt
1360 1.1 matt va &= ~ADDR_POFF;
1361 1.2 matt ptegidx = va_to_pteg(pm, va);
1362 1.1 matt
1363 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1364 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1365 1.1 matt if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1366 1.1 matt panic("pmap_pvo_find_va: invalid pvo %p on "
1367 1.1 matt "list %#x (%p)", pvo, ptegidx,
1368 1.1 matt &pmap_pvo_table[ptegidx]);
1369 1.1 matt #endif
1370 1.1 matt if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1371 1.1 matt if (pteidx_p)
1372 1.1 matt *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1373 1.1 matt return pvo;
1374 1.1 matt }
1375 1.1 matt }
1376 1.1 matt return NULL;
1377 1.1 matt }
1378 1.1 matt
1379 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1380 1.1 matt void
1381 1.1 matt pmap_pvo_check(const struct pvo_entry *pvo)
1382 1.1 matt {
1383 1.1 matt struct pvo_head *pvo_head;
1384 1.1 matt struct pvo_entry *pvo0;
1385 1.2 matt volatile struct pte *pt;
1386 1.1 matt int failed = 0;
1387 1.1 matt
1388 1.1 matt if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1389 1.1 matt panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1390 1.1 matt
1391 1.1 matt if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1392 1.1 matt printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1393 1.1 matt pvo, pvo->pvo_pmap);
1394 1.1 matt failed = 1;
1395 1.1 matt }
1396 1.1 matt
1397 1.1 matt if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1398 1.1 matt (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1399 1.1 matt printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1400 1.1 matt pvo, TAILQ_NEXT(pvo, pvo_olink));
1401 1.1 matt failed = 1;
1402 1.1 matt }
1403 1.1 matt
1404 1.1 matt if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1405 1.1 matt (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1406 1.1 matt printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1407 1.1 matt pvo, LIST_NEXT(pvo, pvo_vlink));
1408 1.1 matt failed = 1;
1409 1.1 matt }
1410 1.1 matt
1411 1.1 matt if (pvo->pvo_vaddr & PVO_MANAGED) {
1412 1.1 matt pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1413 1.1 matt } else {
1414 1.1 matt if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1415 1.1 matt printf("pmap_pvo_check: pvo %p: non kernel address "
1416 1.1 matt "on kernel unmanaged list\n", pvo);
1417 1.1 matt failed = 1;
1418 1.1 matt }
1419 1.1 matt pvo_head = &pmap_pvo_kunmanaged;
1420 1.1 matt }
1421 1.1 matt LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1422 1.1 matt if (pvo0 == pvo)
1423 1.1 matt break;
1424 1.1 matt }
1425 1.1 matt if (pvo0 == NULL) {
1426 1.1 matt printf("pmap_pvo_check: pvo %p: not present "
1427 1.1 matt "on its vlist head %p\n", pvo, pvo_head);
1428 1.1 matt failed = 1;
1429 1.1 matt }
1430 1.1 matt if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1431 1.1 matt printf("pmap_pvo_check: pvo %p: not present "
1432 1.1 matt "on its olist head\n", pvo);
1433 1.1 matt failed = 1;
1434 1.1 matt }
1435 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
1436 1.1 matt if (pt == NULL) {
1437 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1438 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1439 1.1 matt "no PTE\n", pvo);
1440 1.1 matt failed = 1;
1441 1.1 matt }
1442 1.1 matt } else {
1443 1.1 matt if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1444 1.1 matt (uintptr_t) pt >=
1445 1.1 matt (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1446 1.1 matt printf("pmap_pvo_check: pvo %p: pte %p not in "
1447 1.1 matt "pteg table\n", pvo, pt);
1448 1.1 matt failed = 1;
1449 1.1 matt }
1450 1.1 matt if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1451 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1452 1.1 matt "no PTE\n", pvo);
1453 1.1 matt failed = 1;
1454 1.1 matt }
1455 1.1 matt if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1456 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1457 1.19 mjl "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1458 1.1 matt failed = 1;
1459 1.1 matt }
1460 1.1 matt if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1461 1.1 matt (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1462 1.1 matt printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1463 1.18 matt "%#x/%#x\n", pvo,
1464 1.19 mjl (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1465 1.19 mjl (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1466 1.1 matt failed = 1;
1467 1.1 matt }
1468 1.1 matt if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1469 1.1 matt printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1470 1.1 matt " doesn't not match PVO's VA %#lx\n",
1471 1.1 matt pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1472 1.1 matt failed = 1;
1473 1.1 matt }
1474 1.1 matt if (failed)
1475 1.1 matt pmap_pte_print(pt);
1476 1.1 matt }
1477 1.1 matt if (failed)
1478 1.1 matt panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1479 1.1 matt pvo->pvo_pmap);
1480 1.1 matt }
1481 1.1 matt #endif /* DEBUG || PMAPCHECK */
1482 1.1 matt
1483 1.1 matt /*
1484 1.1 matt * This returns whether this is the first mapping of a page.
1485 1.1 matt */
1486 1.1 matt int
1487 1.1 matt pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1488 1.2 matt vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1489 1.1 matt {
1490 1.1 matt struct pvo_entry *pvo;
1491 1.1 matt struct pvo_tqhead *pvoh;
1492 1.2 matt register_t msr;
1493 1.1 matt int ptegidx;
1494 1.1 matt int i;
1495 1.1 matt int poolflags = PR_NOWAIT;
1496 1.1 matt
1497 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1498 1.1 matt if (pmap_pvo_remove_depth > 0)
1499 1.1 matt panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1500 1.1 matt if (++pmap_pvo_enter_depth > 1)
1501 1.1 matt panic("pmap_pvo_enter: called recursively!");
1502 1.1 matt #endif
1503 1.1 matt
1504 1.1 matt /*
1505 1.1 matt * Compute the PTE Group index.
1506 1.1 matt */
1507 1.1 matt va &= ~ADDR_POFF;
1508 1.2 matt ptegidx = va_to_pteg(pm, va);
1509 1.1 matt
1510 1.1 matt msr = pmap_interrupts_off();
1511 1.1 matt /*
1512 1.1 matt * Remove any existing mapping for this page. Reuse the
1513 1.1 matt * pvo entry if there a mapping.
1514 1.1 matt */
1515 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1516 1.1 matt if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1517 1.1 matt #ifdef DEBUG
1518 1.1 matt if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1519 1.1 matt ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1520 1.1 matt ~(PTE_REF|PTE_CHG)) == 0 &&
1521 1.1 matt va < VM_MIN_KERNEL_ADDRESS) {
1522 1.18 matt printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1523 1.19 mjl pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1524 1.18 matt printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1525 1.19 mjl (unsigned int) pvo->pvo_pte.pte_hi,
1526 1.19 mjl (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1527 1.1 matt pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1528 1.1 matt #ifdef DDBX
1529 1.1 matt Debugger();
1530 1.1 matt #endif
1531 1.1 matt }
1532 1.1 matt #endif
1533 1.1 matt PMAPCOUNT(mappings_replaced);
1534 1.1 matt pmap_pvo_remove(pvo, -1);
1535 1.1 matt break;
1536 1.1 matt }
1537 1.1 matt }
1538 1.1 matt
1539 1.1 matt /*
1540 1.1 matt * If we aren't overwriting an mapping, try to allocate
1541 1.1 matt */
1542 1.1 matt pmap_interrupts_restore(msr);
1543 1.1 matt pvo = pool_get(pl, poolflags);
1544 1.1 matt msr = pmap_interrupts_off();
1545 1.1 matt if (pvo == NULL) {
1546 1.1 matt pvo = pmap_pvo_reclaim(pm);
1547 1.1 matt if (pvo == NULL) {
1548 1.1 matt if ((flags & PMAP_CANFAIL) == 0)
1549 1.1 matt panic("pmap_pvo_enter: failed");
1550 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1551 1.1 matt pmap_pvo_enter_depth--;
1552 1.1 matt #endif
1553 1.1 matt pmap_interrupts_restore(msr);
1554 1.1 matt return ENOMEM;
1555 1.1 matt }
1556 1.1 matt }
1557 1.1 matt pvo->pvo_vaddr = va;
1558 1.1 matt pvo->pvo_pmap = pm;
1559 1.1 matt pvo->pvo_vaddr &= ~ADDR_POFF;
1560 1.1 matt if (flags & VM_PROT_EXECUTE) {
1561 1.1 matt PMAPCOUNT(exec_mappings);
1562 1.14 chs pvo_set_exec(pvo);
1563 1.1 matt }
1564 1.1 matt if (flags & PMAP_WIRED)
1565 1.1 matt pvo->pvo_vaddr |= PVO_WIRED;
1566 1.1 matt if (pvo_head != &pmap_pvo_kunmanaged) {
1567 1.1 matt pvo->pvo_vaddr |= PVO_MANAGED;
1568 1.1 matt PMAPCOUNT(mappings);
1569 1.1 matt } else {
1570 1.1 matt PMAPCOUNT(kernel_mappings);
1571 1.1 matt }
1572 1.2 matt pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1573 1.1 matt
1574 1.1 matt LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1575 1.1 matt if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1576 1.1 matt pvo->pvo_pmap->pm_stats.wired_count++;
1577 1.1 matt pvo->pvo_pmap->pm_stats.resident_count++;
1578 1.1 matt #if defined(DEBUG)
1579 1.1 matt if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1580 1.1 matt DPRINTFN(PVOENTER,
1581 1.1 matt ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1582 1.1 matt pvo, pm, va, pa));
1583 1.1 matt #endif
1584 1.1 matt
1585 1.1 matt /*
1586 1.1 matt * We hope this succeeds but it isn't required.
1587 1.1 matt */
1588 1.1 matt pvoh = &pmap_pvo_table[ptegidx];
1589 1.1 matt i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1590 1.1 matt if (i >= 0) {
1591 1.1 matt PVO_PTEGIDX_SET(pvo, i);
1592 1.12 matt PVO_WHERE(pvo, ENTER_INSERT);
1593 1.1 matt PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1594 1.1 matt ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1595 1.1 matt TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1596 1.1 matt } else {
1597 1.1 matt /*
1598 1.1 matt * Since we didn't have room for this entry (which makes it
1599 1.1 matt * and evicted entry), place it at the head of the list.
1600 1.1 matt */
1601 1.1 matt TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1602 1.1 matt PMAPCOUNT(ptes_evicted);
1603 1.1 matt pm->pm_evictions++;
1604 1.12 matt /*
1605 1.12 matt * If this is a kernel page, make sure it's active.
1606 1.12 matt */
1607 1.12 matt if (pm == pmap_kernel()) {
1608 1.14 chs i = pmap_pte_spill(pm, va, FALSE);
1609 1.12 matt KASSERT(i);
1610 1.12 matt }
1611 1.1 matt }
1612 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1613 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1614 1.1 matt pmap_pvo_enter_depth--;
1615 1.1 matt #endif
1616 1.1 matt pmap_interrupts_restore(msr);
1617 1.1 matt return 0;
1618 1.1 matt }
1619 1.1 matt
1620 1.1 matt void
1621 1.1 matt pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1622 1.1 matt {
1623 1.2 matt volatile struct pte *pt;
1624 1.1 matt int ptegidx;
1625 1.1 matt
1626 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1627 1.1 matt if (++pmap_pvo_remove_depth > 1)
1628 1.1 matt panic("pmap_pvo_remove: called recursively!");
1629 1.1 matt #endif
1630 1.1 matt
1631 1.1 matt /*
1632 1.1 matt * If we haven't been supplied the ptegidx, calculate it.
1633 1.1 matt */
1634 1.1 matt if (pteidx == -1) {
1635 1.2 matt ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1636 1.1 matt pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1637 1.1 matt } else {
1638 1.1 matt ptegidx = pteidx >> 3;
1639 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_HID)
1640 1.1 matt ptegidx ^= pmap_pteg_mask;
1641 1.1 matt }
1642 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1643 1.1 matt
1644 1.1 matt /*
1645 1.1 matt * If there is an active pte entry, we need to deactivate it
1646 1.1 matt * (and save the ref & chg bits).
1647 1.1 matt */
1648 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
1649 1.1 matt if (pt != NULL) {
1650 1.1 matt pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1651 1.12 matt PVO_WHERE(pvo, REMOVE);
1652 1.1 matt PVO_PTEGIDX_CLR(pvo);
1653 1.1 matt PMAPCOUNT(ptes_removed);
1654 1.1 matt } else {
1655 1.1 matt KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1656 1.1 matt pvo->pvo_pmap->pm_evictions--;
1657 1.1 matt }
1658 1.1 matt
1659 1.1 matt /*
1660 1.14 chs * Account for executable mappings.
1661 1.14 chs */
1662 1.14 chs if (PVO_ISEXECUTABLE(pvo))
1663 1.14 chs pvo_clear_exec(pvo);
1664 1.14 chs
1665 1.14 chs /*
1666 1.14 chs * Update our statistics.
1667 1.1 matt */
1668 1.1 matt pvo->pvo_pmap->pm_stats.resident_count--;
1669 1.1 matt if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1670 1.1 matt pvo->pvo_pmap->pm_stats.wired_count--;
1671 1.1 matt
1672 1.1 matt /*
1673 1.1 matt * Save the REF/CHG bits into their cache if the page is managed.
1674 1.1 matt */
1675 1.1 matt if (pvo->pvo_vaddr & PVO_MANAGED) {
1676 1.2 matt register_t ptelo = pvo->pvo_pte.pte_lo;
1677 1.1 matt struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1678 1.1 matt
1679 1.1 matt if (pg != NULL) {
1680 1.1 matt pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1681 1.1 matt }
1682 1.1 matt PMAPCOUNT(unmappings);
1683 1.1 matt } else {
1684 1.1 matt PMAPCOUNT(kernel_unmappings);
1685 1.1 matt }
1686 1.1 matt
1687 1.1 matt /*
1688 1.1 matt * Remove the PVO from its lists and return it to the pool.
1689 1.1 matt */
1690 1.1 matt LIST_REMOVE(pvo, pvo_vlink);
1691 1.1 matt TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1692 1.1 matt pool_put(pvo->pvo_vaddr & PVO_MANAGED
1693 1.1 matt ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1694 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1695 1.1 matt pmap_pvo_remove_depth--;
1696 1.1 matt #endif
1697 1.1 matt }
1698 1.1 matt
1699 1.1 matt /*
1700 1.14 chs * Mark a mapping as executable.
1701 1.14 chs * If this is the first executable mapping in the segment,
1702 1.14 chs * clear the noexec flag.
1703 1.14 chs */
1704 1.14 chs STATIC void
1705 1.14 chs pvo_set_exec(struct pvo_entry *pvo)
1706 1.14 chs {
1707 1.14 chs struct pmap *pm = pvo->pvo_pmap;
1708 1.14 chs
1709 1.14 chs if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1710 1.14 chs return;
1711 1.14 chs }
1712 1.14 chs pvo->pvo_vaddr |= PVO_EXECUTABLE;
1713 1.18 matt #ifdef PPC_OEA
1714 1.18 matt {
1715 1.18 matt int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1716 1.18 matt if (pm->pm_exec[sr]++ == 0) {
1717 1.18 matt pm->pm_sr[sr] &= ~SR_NOEXEC;
1718 1.18 matt }
1719 1.14 chs }
1720 1.18 matt #endif
1721 1.14 chs }
1722 1.14 chs
1723 1.14 chs /*
1724 1.14 chs * Mark a mapping as non-executable.
1725 1.14 chs * If this was the last executable mapping in the segment,
1726 1.14 chs * set the noexec flag.
1727 1.14 chs */
1728 1.14 chs STATIC void
1729 1.14 chs pvo_clear_exec(struct pvo_entry *pvo)
1730 1.14 chs {
1731 1.14 chs struct pmap *pm = pvo->pvo_pmap;
1732 1.14 chs
1733 1.14 chs if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1734 1.14 chs return;
1735 1.14 chs }
1736 1.14 chs pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1737 1.18 matt #ifdef PPC_OEA
1738 1.18 matt {
1739 1.18 matt int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1740 1.18 matt if (--pm->pm_exec[sr] == 0) {
1741 1.18 matt pm->pm_sr[sr] |= SR_NOEXEC;
1742 1.18 matt }
1743 1.14 chs }
1744 1.18 matt #endif
1745 1.14 chs }
1746 1.14 chs
1747 1.14 chs /*
1748 1.1 matt * Insert physical page at pa into the given pmap at virtual address va.
1749 1.1 matt */
1750 1.1 matt int
1751 1.1 matt pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1752 1.1 matt {
1753 1.1 matt struct mem_region *mp;
1754 1.1 matt struct pvo_head *pvo_head;
1755 1.1 matt struct vm_page *pg;
1756 1.1 matt struct pool *pl;
1757 1.2 matt register_t pte_lo;
1758 1.1 matt int error;
1759 1.1 matt u_int pvo_flags;
1760 1.1 matt u_int was_exec = 0;
1761 1.1 matt
1762 1.1 matt if (__predict_false(!pmap_initialized)) {
1763 1.1 matt pvo_head = &pmap_pvo_kunmanaged;
1764 1.1 matt pl = &pmap_upvo_pool;
1765 1.1 matt pvo_flags = 0;
1766 1.1 matt pg = NULL;
1767 1.1 matt was_exec = PTE_EXEC;
1768 1.1 matt } else {
1769 1.1 matt pvo_head = pa_to_pvoh(pa, &pg);
1770 1.1 matt pl = &pmap_mpvo_pool;
1771 1.1 matt pvo_flags = PVO_MANAGED;
1772 1.1 matt }
1773 1.1 matt
1774 1.1 matt DPRINTFN(ENTER,
1775 1.1 matt ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1776 1.1 matt pm, va, pa, prot, flags));
1777 1.1 matt
1778 1.1 matt /*
1779 1.1 matt * If this is a managed page, and it's the first reference to the
1780 1.1 matt * page clear the execness of the page. Otherwise fetch the execness.
1781 1.1 matt */
1782 1.1 matt if (pg != NULL)
1783 1.1 matt was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1784 1.1 matt
1785 1.1 matt DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1786 1.1 matt
1787 1.1 matt /*
1788 1.1 matt * Assume the page is cache inhibited and access is guarded unless
1789 1.1 matt * it's in our available memory array. If it is in the memory array,
1790 1.1 matt * asssume it's in memory coherent memory.
1791 1.1 matt */
1792 1.1 matt pte_lo = PTE_IG;
1793 1.1 matt if ((flags & PMAP_NC) == 0) {
1794 1.1 matt for (mp = mem; mp->size; mp++) {
1795 1.1 matt if (pa >= mp->start && pa < mp->start + mp->size) {
1796 1.1 matt pte_lo = PTE_M;
1797 1.1 matt break;
1798 1.1 matt }
1799 1.1 matt }
1800 1.1 matt }
1801 1.1 matt
1802 1.1 matt if (prot & VM_PROT_WRITE)
1803 1.1 matt pte_lo |= PTE_BW;
1804 1.1 matt else
1805 1.1 matt pte_lo |= PTE_BR;
1806 1.1 matt
1807 1.1 matt /*
1808 1.1 matt * If this was in response to a fault, "pre-fault" the PTE's
1809 1.1 matt * changed/referenced bit appropriately.
1810 1.1 matt */
1811 1.1 matt if (flags & VM_PROT_WRITE)
1812 1.1 matt pte_lo |= PTE_CHG;
1813 1.1 matt if (flags & (VM_PROT_READ|VM_PROT_WRITE))
1814 1.1 matt pte_lo |= PTE_REF;
1815 1.1 matt
1816 1.1 matt /*
1817 1.1 matt * We need to know if this page can be executable
1818 1.1 matt */
1819 1.1 matt flags |= (prot & VM_PROT_EXECUTE);
1820 1.1 matt
1821 1.1 matt /*
1822 1.1 matt * Record mapping for later back-translation and pte spilling.
1823 1.1 matt * This will overwrite any existing mapping.
1824 1.1 matt */
1825 1.1 matt error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1826 1.1 matt
1827 1.1 matt /*
1828 1.1 matt * Flush the real page from the instruction cache if this page is
1829 1.1 matt * mapped executable and cacheable and has not been flushed since
1830 1.1 matt * the last time it was modified.
1831 1.1 matt */
1832 1.1 matt if (error == 0 &&
1833 1.1 matt (flags & VM_PROT_EXECUTE) &&
1834 1.1 matt (pte_lo & PTE_I) == 0 &&
1835 1.1 matt was_exec == 0) {
1836 1.1 matt DPRINTFN(ENTER, (" syncicache"));
1837 1.1 matt PMAPCOUNT(exec_synced);
1838 1.6 thorpej pmap_syncicache(pa, PAGE_SIZE);
1839 1.1 matt if (pg != NULL) {
1840 1.1 matt pmap_attr_save(pg, PTE_EXEC);
1841 1.1 matt PMAPCOUNT(exec_cached);
1842 1.1 matt #if defined(DEBUG) || defined(PMAPDEBUG)
1843 1.1 matt if (pmapdebug & PMAPDEBUG_ENTER)
1844 1.1 matt printf(" marked-as-exec");
1845 1.1 matt else if (pmapdebug & PMAPDEBUG_EXEC)
1846 1.1 matt printf("[pmap_enter: %#lx: marked-as-exec]\n",
1847 1.1 matt pg->phys_addr);
1848 1.1 matt
1849 1.1 matt #endif
1850 1.1 matt }
1851 1.1 matt }
1852 1.1 matt
1853 1.1 matt DPRINTFN(ENTER, (": error=%d\n", error));
1854 1.1 matt
1855 1.1 matt return error;
1856 1.1 matt }
1857 1.1 matt
1858 1.1 matt void
1859 1.1 matt pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1860 1.1 matt {
1861 1.1 matt struct mem_region *mp;
1862 1.2 matt register_t pte_lo;
1863 1.1 matt int error;
1864 1.1 matt
1865 1.1 matt if (va < VM_MIN_KERNEL_ADDRESS)
1866 1.1 matt panic("pmap_kenter_pa: attempt to enter "
1867 1.1 matt "non-kernel address %#lx!", va);
1868 1.1 matt
1869 1.1 matt DPRINTFN(KENTER,
1870 1.1 matt ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1871 1.1 matt
1872 1.1 matt /*
1873 1.1 matt * Assume the page is cache inhibited and access is guarded unless
1874 1.1 matt * it's in our available memory array. If it is in the memory array,
1875 1.1 matt * asssume it's in memory coherent memory.
1876 1.1 matt */
1877 1.1 matt pte_lo = PTE_IG;
1878 1.4 matt if ((prot & PMAP_NC) == 0) {
1879 1.4 matt for (mp = mem; mp->size; mp++) {
1880 1.4 matt if (pa >= mp->start && pa < mp->start + mp->size) {
1881 1.4 matt pte_lo = PTE_M;
1882 1.4 matt break;
1883 1.4 matt }
1884 1.1 matt }
1885 1.1 matt }
1886 1.1 matt
1887 1.1 matt if (prot & VM_PROT_WRITE)
1888 1.1 matt pte_lo |= PTE_BW;
1889 1.1 matt else
1890 1.1 matt pte_lo |= PTE_BR;
1891 1.1 matt
1892 1.1 matt /*
1893 1.1 matt * We don't care about REF/CHG on PVOs on the unmanaged list.
1894 1.1 matt */
1895 1.1 matt error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1896 1.1 matt &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1897 1.1 matt
1898 1.1 matt if (error != 0)
1899 1.1 matt panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1900 1.1 matt va, pa, error);
1901 1.1 matt }
1902 1.1 matt
1903 1.1 matt void
1904 1.1 matt pmap_kremove(vaddr_t va, vsize_t len)
1905 1.1 matt {
1906 1.1 matt if (va < VM_MIN_KERNEL_ADDRESS)
1907 1.1 matt panic("pmap_kremove: attempt to remove "
1908 1.1 matt "non-kernel address %#lx!", va);
1909 1.1 matt
1910 1.1 matt DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1911 1.1 matt pmap_remove(pmap_kernel(), va, va + len);
1912 1.1 matt }
1913 1.1 matt
1914 1.1 matt /*
1915 1.1 matt * Remove the given range of mapping entries.
1916 1.1 matt */
1917 1.1 matt void
1918 1.1 matt pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1919 1.1 matt {
1920 1.1 matt struct pvo_entry *pvo;
1921 1.2 matt register_t msr;
1922 1.1 matt int pteidx;
1923 1.1 matt
1924 1.14 chs msr = pmap_interrupts_off();
1925 1.1 matt for (; va < endva; va += PAGE_SIZE) {
1926 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
1927 1.1 matt if (pvo != NULL) {
1928 1.1 matt pmap_pvo_remove(pvo, pteidx);
1929 1.1 matt }
1930 1.1 matt }
1931 1.14 chs pmap_interrupts_restore(msr);
1932 1.1 matt }
1933 1.1 matt
1934 1.1 matt /*
1935 1.1 matt * Get the physical page address for the given pmap/virtual address.
1936 1.1 matt */
1937 1.1 matt boolean_t
1938 1.1 matt pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
1939 1.1 matt {
1940 1.1 matt struct pvo_entry *pvo;
1941 1.2 matt register_t msr;
1942 1.7 matt
1943 1.7 matt /*
1944 1.7 matt * If this is a kernel pmap lookup, also check the battable
1945 1.7 matt * and if we get a hit, translate the VA to a PA using the
1946 1.7 matt * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
1947 1.7 matt * that will wrap back to 0.
1948 1.7 matt */
1949 1.7 matt if (pm == pmap_kernel() &&
1950 1.7 matt (va < VM_MIN_KERNEL_ADDRESS ||
1951 1.7 matt (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
1952 1.7 matt register_t batu = battable[va >> ADDR_SR_SHFT].batu;
1953 1.8 matt KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
1954 1.7 matt if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
1955 1.7 matt register_t batl = battable[va >> ADDR_SR_SHFT].batl;
1956 1.7 matt register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
1957 1.7 matt *pap = (batl & mask) | (va & ~mask);
1958 1.7 matt return TRUE;
1959 1.7 matt }
1960 1.7 matt return FALSE;
1961 1.7 matt }
1962 1.1 matt
1963 1.1 matt msr = pmap_interrupts_off();
1964 1.1 matt pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1965 1.1 matt if (pvo != NULL) {
1966 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1967 1.1 matt *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1968 1.1 matt }
1969 1.1 matt pmap_interrupts_restore(msr);
1970 1.1 matt return pvo != NULL;
1971 1.1 matt }
1972 1.1 matt
1973 1.1 matt /*
1974 1.1 matt * Lower the protection on the specified range of this pmap.
1975 1.1 matt */
1976 1.1 matt void
1977 1.1 matt pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
1978 1.1 matt {
1979 1.1 matt struct pvo_entry *pvo;
1980 1.2 matt volatile struct pte *pt;
1981 1.2 matt register_t msr;
1982 1.1 matt int pteidx;
1983 1.1 matt
1984 1.1 matt /*
1985 1.1 matt * Since this routine only downgrades protection, we should
1986 1.14 chs * always be called with at least one bit not set.
1987 1.1 matt */
1988 1.14 chs KASSERT(prot != VM_PROT_ALL);
1989 1.1 matt
1990 1.1 matt /*
1991 1.1 matt * If there is no protection, this is equivalent to
1992 1.1 matt * remove the pmap from the pmap.
1993 1.1 matt */
1994 1.1 matt if ((prot & VM_PROT_READ) == 0) {
1995 1.1 matt pmap_remove(pm, va, endva);
1996 1.1 matt return;
1997 1.1 matt }
1998 1.1 matt
1999 1.1 matt msr = pmap_interrupts_off();
2000 1.6 thorpej for (; va < endva; va += PAGE_SIZE) {
2001 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
2002 1.1 matt if (pvo == NULL)
2003 1.1 matt continue;
2004 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2005 1.1 matt
2006 1.1 matt /*
2007 1.1 matt * Revoke executable if asked to do so.
2008 1.1 matt */
2009 1.1 matt if ((prot & VM_PROT_EXECUTE) == 0)
2010 1.14 chs pvo_clear_exec(pvo);
2011 1.1 matt
2012 1.1 matt #if 0
2013 1.1 matt /*
2014 1.1 matt * If the page is already read-only, no change
2015 1.1 matt * needs to be made.
2016 1.1 matt */
2017 1.1 matt if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2018 1.1 matt continue;
2019 1.1 matt #endif
2020 1.1 matt /*
2021 1.1 matt * Grab the PTE pointer before we diddle with
2022 1.1 matt * the cached PTE copy.
2023 1.1 matt */
2024 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
2025 1.1 matt /*
2026 1.1 matt * Change the protection of the page.
2027 1.1 matt */
2028 1.1 matt pvo->pvo_pte.pte_lo &= ~PTE_PP;
2029 1.1 matt pvo->pvo_pte.pte_lo |= PTE_BR;
2030 1.1 matt
2031 1.1 matt /*
2032 1.1 matt * If the PVO is in the page table, update
2033 1.1 matt * that pte at well.
2034 1.1 matt */
2035 1.1 matt if (pt != NULL) {
2036 1.1 matt pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2037 1.12 matt PVO_WHERE(pvo, PMAP_PROTECT);
2038 1.1 matt PMAPCOUNT(ptes_changed);
2039 1.1 matt }
2040 1.1 matt
2041 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2042 1.1 matt }
2043 1.1 matt pmap_interrupts_restore(msr);
2044 1.1 matt }
2045 1.1 matt
2046 1.1 matt void
2047 1.1 matt pmap_unwire(pmap_t pm, vaddr_t va)
2048 1.1 matt {
2049 1.1 matt struct pvo_entry *pvo;
2050 1.2 matt register_t msr;
2051 1.1 matt
2052 1.1 matt msr = pmap_interrupts_off();
2053 1.1 matt pvo = pmap_pvo_find_va(pm, va, NULL);
2054 1.1 matt if (pvo != NULL) {
2055 1.1 matt if (pvo->pvo_vaddr & PVO_WIRED) {
2056 1.1 matt pvo->pvo_vaddr &= ~PVO_WIRED;
2057 1.1 matt pm->pm_stats.wired_count--;
2058 1.1 matt }
2059 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2060 1.1 matt }
2061 1.1 matt pmap_interrupts_restore(msr);
2062 1.1 matt }
2063 1.1 matt
2064 1.1 matt /*
2065 1.1 matt * Lower the protection on the specified physical page.
2066 1.1 matt */
2067 1.1 matt void
2068 1.1 matt pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2069 1.1 matt {
2070 1.1 matt struct pvo_head *pvo_head;
2071 1.1 matt struct pvo_entry *pvo, *next_pvo;
2072 1.2 matt volatile struct pte *pt;
2073 1.2 matt register_t msr;
2074 1.1 matt
2075 1.14 chs KASSERT(prot != VM_PROT_ALL);
2076 1.1 matt msr = pmap_interrupts_off();
2077 1.1 matt
2078 1.1 matt /*
2079 1.1 matt * When UVM reuses a page, it does a pmap_page_protect with
2080 1.1 matt * VM_PROT_NONE. At that point, we can clear the exec flag
2081 1.1 matt * since we know the page will have different contents.
2082 1.1 matt */
2083 1.1 matt if ((prot & VM_PROT_READ) == 0) {
2084 1.1 matt DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2085 1.1 matt pg->phys_addr));
2086 1.1 matt if (pmap_attr_fetch(pg) & PTE_EXEC) {
2087 1.1 matt PMAPCOUNT(exec_uncached_page_protect);
2088 1.1 matt pmap_attr_clear(pg, PTE_EXEC);
2089 1.1 matt }
2090 1.1 matt }
2091 1.1 matt
2092 1.1 matt pvo_head = vm_page_to_pvoh(pg);
2093 1.1 matt for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2094 1.1 matt next_pvo = LIST_NEXT(pvo, pvo_vlink);
2095 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2096 1.1 matt
2097 1.1 matt /*
2098 1.1 matt * Downgrading to no mapping at all, we just remove the entry.
2099 1.1 matt */
2100 1.1 matt if ((prot & VM_PROT_READ) == 0) {
2101 1.1 matt pmap_pvo_remove(pvo, -1);
2102 1.1 matt continue;
2103 1.1 matt }
2104 1.1 matt
2105 1.1 matt /*
2106 1.1 matt * If EXEC permission is being revoked, just clear the
2107 1.1 matt * flag in the PVO.
2108 1.1 matt */
2109 1.1 matt if ((prot & VM_PROT_EXECUTE) == 0)
2110 1.14 chs pvo_clear_exec(pvo);
2111 1.1 matt
2112 1.1 matt /*
2113 1.1 matt * If this entry is already RO, don't diddle with the
2114 1.1 matt * page table.
2115 1.1 matt */
2116 1.1 matt if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2117 1.1 matt PMAP_PVO_CHECK(pvo);
2118 1.1 matt continue;
2119 1.1 matt }
2120 1.1 matt
2121 1.1 matt /*
2122 1.1 matt * Grab the PTE before the we diddle the bits so
2123 1.1 matt * pvo_to_pte can verify the pte contents are as
2124 1.1 matt * expected.
2125 1.1 matt */
2126 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2127 1.1 matt pvo->pvo_pte.pte_lo &= ~PTE_PP;
2128 1.1 matt pvo->pvo_pte.pte_lo |= PTE_BR;
2129 1.1 matt if (pt != NULL) {
2130 1.1 matt pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2131 1.12 matt PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2132 1.1 matt PMAPCOUNT(ptes_changed);
2133 1.1 matt }
2134 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2135 1.1 matt }
2136 1.1 matt pmap_interrupts_restore(msr);
2137 1.1 matt }
2138 1.1 matt
2139 1.1 matt /*
2140 1.1 matt * Activate the address space for the specified process. If the process
2141 1.1 matt * is the current process, load the new MMU context.
2142 1.1 matt */
2143 1.1 matt void
2144 1.1 matt pmap_activate(struct lwp *l)
2145 1.1 matt {
2146 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
2147 1.1 matt pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2148 1.1 matt
2149 1.1 matt DPRINTFN(ACTIVATE,
2150 1.1 matt ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2151 1.1 matt
2152 1.1 matt /*
2153 1.1 matt * XXX Normally performed in cpu_fork().
2154 1.1 matt */
2155 1.13 matt pcb->pcb_pm = pmap;
2156 1.17 matt
2157 1.17 matt /*
2158 1.17 matt * In theory, the SR registers need only be valid on return
2159 1.17 matt * to user space wait to do them there.
2160 1.17 matt */
2161 1.17 matt if (l == curlwp) {
2162 1.17 matt /* Store pointer to new current pmap. */
2163 1.17 matt curpm = pmap;
2164 1.17 matt }
2165 1.1 matt }
2166 1.1 matt
2167 1.1 matt /*
2168 1.1 matt * Deactivate the specified process's address space.
2169 1.1 matt */
2170 1.1 matt void
2171 1.1 matt pmap_deactivate(struct lwp *l)
2172 1.1 matt {
2173 1.1 matt }
2174 1.1 matt
2175 1.1 matt boolean_t
2176 1.1 matt pmap_query_bit(struct vm_page *pg, int ptebit)
2177 1.1 matt {
2178 1.1 matt struct pvo_entry *pvo;
2179 1.2 matt volatile struct pte *pt;
2180 1.2 matt register_t msr;
2181 1.1 matt
2182 1.1 matt if (pmap_attr_fetch(pg) & ptebit)
2183 1.1 matt return TRUE;
2184 1.14 chs
2185 1.1 matt msr = pmap_interrupts_off();
2186 1.1 matt LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2187 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2188 1.1 matt /*
2189 1.1 matt * See if we saved the bit off. If so cache, it and return
2190 1.1 matt * success.
2191 1.1 matt */
2192 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit) {
2193 1.1 matt pmap_attr_save(pg, ptebit);
2194 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2195 1.1 matt pmap_interrupts_restore(msr);
2196 1.1 matt return TRUE;
2197 1.1 matt }
2198 1.1 matt }
2199 1.1 matt /*
2200 1.1 matt * No luck, now go thru the hard part of looking at the ptes
2201 1.1 matt * themselves. Sync so any pending REF/CHG bits are flushed
2202 1.1 matt * to the PTEs.
2203 1.1 matt */
2204 1.1 matt SYNC();
2205 1.1 matt LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2206 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2207 1.1 matt /*
2208 1.1 matt * See if this pvo have a valid PTE. If so, fetch the
2209 1.1 matt * REF/CHG bits from the valid PTE. If the appropriate
2210 1.1 matt * ptebit is set, cache, it and return success.
2211 1.1 matt */
2212 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2213 1.1 matt if (pt != NULL) {
2214 1.1 matt pmap_pte_synch(pt, &pvo->pvo_pte);
2215 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit) {
2216 1.1 matt pmap_attr_save(pg, ptebit);
2217 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2218 1.1 matt pmap_interrupts_restore(msr);
2219 1.1 matt return TRUE;
2220 1.1 matt }
2221 1.1 matt }
2222 1.1 matt }
2223 1.1 matt pmap_interrupts_restore(msr);
2224 1.1 matt return FALSE;
2225 1.1 matt }
2226 1.1 matt
2227 1.1 matt boolean_t
2228 1.1 matt pmap_clear_bit(struct vm_page *pg, int ptebit)
2229 1.1 matt {
2230 1.1 matt struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2231 1.1 matt struct pvo_entry *pvo;
2232 1.2 matt volatile struct pte *pt;
2233 1.2 matt register_t msr;
2234 1.1 matt int rv = 0;
2235 1.1 matt
2236 1.1 matt msr = pmap_interrupts_off();
2237 1.1 matt
2238 1.1 matt /*
2239 1.1 matt * Fetch the cache value
2240 1.1 matt */
2241 1.1 matt rv |= pmap_attr_fetch(pg);
2242 1.1 matt
2243 1.1 matt /*
2244 1.1 matt * Clear the cached value.
2245 1.1 matt */
2246 1.1 matt pmap_attr_clear(pg, ptebit);
2247 1.1 matt
2248 1.1 matt /*
2249 1.1 matt * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2250 1.1 matt * can reset the right ones). Note that since the pvo entries and
2251 1.1 matt * list heads are accessed via BAT0 and are never placed in the
2252 1.1 matt * page table, we don't have to worry about further accesses setting
2253 1.1 matt * the REF/CHG bits.
2254 1.1 matt */
2255 1.1 matt SYNC();
2256 1.1 matt
2257 1.1 matt /*
2258 1.1 matt * For each pvo entry, clear pvo's ptebit. If this pvo have a
2259 1.1 matt * valid PTE. If so, clear the ptebit from the valid PTE.
2260 1.1 matt */
2261 1.1 matt LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2262 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2263 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2264 1.1 matt if (pt != NULL) {
2265 1.1 matt /*
2266 1.1 matt * Only sync the PTE if the bit we are looking
2267 1.1 matt * for is not already set.
2268 1.1 matt */
2269 1.1 matt if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2270 1.1 matt pmap_pte_synch(pt, &pvo->pvo_pte);
2271 1.1 matt /*
2272 1.1 matt * If the bit we are looking for was already set,
2273 1.1 matt * clear that bit in the pte.
2274 1.1 matt */
2275 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit)
2276 1.1 matt pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2277 1.1 matt }
2278 1.1 matt rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2279 1.1 matt pvo->pvo_pte.pte_lo &= ~ptebit;
2280 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2281 1.1 matt }
2282 1.1 matt pmap_interrupts_restore(msr);
2283 1.14 chs
2284 1.1 matt /*
2285 1.1 matt * If we are clearing the modify bit and this page was marked EXEC
2286 1.1 matt * and the user of the page thinks the page was modified, then we
2287 1.1 matt * need to clean it from the icache if it's mapped or clear the EXEC
2288 1.1 matt * bit if it's not mapped. The page itself might not have the CHG
2289 1.1 matt * bit set if the modification was done via DMA to the page.
2290 1.1 matt */
2291 1.1 matt if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2292 1.1 matt if (LIST_EMPTY(pvoh)) {
2293 1.1 matt DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2294 1.1 matt pg->phys_addr));
2295 1.1 matt pmap_attr_clear(pg, PTE_EXEC);
2296 1.1 matt PMAPCOUNT(exec_uncached_clear_modify);
2297 1.1 matt } else {
2298 1.1 matt DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2299 1.1 matt pg->phys_addr));
2300 1.6 thorpej pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2301 1.1 matt PMAPCOUNT(exec_synced_clear_modify);
2302 1.1 matt }
2303 1.1 matt }
2304 1.1 matt return (rv & ptebit) != 0;
2305 1.1 matt }
2306 1.1 matt
2307 1.1 matt void
2308 1.1 matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2309 1.1 matt {
2310 1.1 matt struct pvo_entry *pvo;
2311 1.1 matt size_t offset = va & ADDR_POFF;
2312 1.1 matt int s;
2313 1.1 matt
2314 1.1 matt s = splvm();
2315 1.1 matt while (len > 0) {
2316 1.6 thorpej size_t seglen = PAGE_SIZE - offset;
2317 1.1 matt if (seglen > len)
2318 1.1 matt seglen = len;
2319 1.1 matt pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2320 1.1 matt if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2321 1.1 matt pmap_syncicache(
2322 1.1 matt (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2323 1.1 matt PMAP_PVO_CHECK(pvo);
2324 1.1 matt }
2325 1.1 matt va += seglen;
2326 1.1 matt len -= seglen;
2327 1.1 matt offset = 0;
2328 1.1 matt }
2329 1.1 matt splx(s);
2330 1.1 matt }
2331 1.1 matt
2332 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2333 1.1 matt void
2334 1.2 matt pmap_pte_print(volatile struct pte *pt)
2335 1.1 matt {
2336 1.1 matt printf("PTE %p: ", pt);
2337 1.1 matt /* High word: */
2338 1.2 matt printf("0x%08lx: [", pt->pte_hi);
2339 1.1 matt printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2340 1.1 matt printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2341 1.2 matt printf("0x%06lx 0x%02lx",
2342 1.1 matt (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2343 1.1 matt pt->pte_hi & PTE_API);
2344 1.1 matt printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2345 1.1 matt /* Low word: */
2346 1.2 matt printf(" 0x%08lx: [", pt->pte_lo);
2347 1.2 matt printf("0x%05lx... ", pt->pte_lo >> 12);
2348 1.1 matt printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2349 1.1 matt printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2350 1.1 matt printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2351 1.1 matt printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2352 1.1 matt printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2353 1.1 matt printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2354 1.1 matt switch (pt->pte_lo & PTE_PP) {
2355 1.1 matt case PTE_BR: printf("br]\n"); break;
2356 1.1 matt case PTE_BW: printf("bw]\n"); break;
2357 1.1 matt case PTE_SO: printf("so]\n"); break;
2358 1.1 matt case PTE_SW: printf("sw]\n"); break;
2359 1.1 matt }
2360 1.1 matt }
2361 1.1 matt #endif
2362 1.1 matt
2363 1.1 matt #if defined(DDB)
2364 1.1 matt void
2365 1.1 matt pmap_pteg_check(void)
2366 1.1 matt {
2367 1.2 matt volatile struct pte *pt;
2368 1.1 matt int i;
2369 1.1 matt int ptegidx;
2370 1.1 matt u_int p_valid = 0;
2371 1.1 matt u_int s_valid = 0;
2372 1.1 matt u_int invalid = 0;
2373 1.1 matt
2374 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2375 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2376 1.1 matt if (pt->pte_hi & PTE_VALID) {
2377 1.1 matt if (pt->pte_hi & PTE_HID)
2378 1.1 matt s_valid++;
2379 1.1 matt else
2380 1.1 matt p_valid++;
2381 1.1 matt } else
2382 1.1 matt invalid++;
2383 1.1 matt }
2384 1.1 matt }
2385 1.1 matt printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2386 1.1 matt p_valid, p_valid, s_valid, s_valid,
2387 1.1 matt invalid, invalid);
2388 1.1 matt }
2389 1.1 matt
2390 1.1 matt void
2391 1.1 matt pmap_print_mmuregs(void)
2392 1.1 matt {
2393 1.1 matt int i;
2394 1.1 matt u_int cpuvers;
2395 1.18 matt #ifndef PPC_OEA64
2396 1.1 matt vaddr_t addr;
2397 1.2 matt register_t soft_sr[16];
2398 1.18 matt #endif
2399 1.1 matt struct bat soft_ibat[4];
2400 1.1 matt struct bat soft_dbat[4];
2401 1.2 matt register_t sdr1;
2402 1.1 matt
2403 1.1 matt cpuvers = MFPVR() >> 16;
2404 1.1 matt
2405 1.1 matt __asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2406 1.18 matt #ifndef PPC_OEA64
2407 1.16 kleink addr = 0;
2408 1.1 matt for (i=0; i<16; i++) {
2409 1.1 matt soft_sr[i] = MFSRIN(addr);
2410 1.1 matt addr += (1 << ADDR_SR_SHFT);
2411 1.1 matt }
2412 1.18 matt #endif
2413 1.1 matt
2414 1.1 matt /* read iBAT (601: uBAT) registers */
2415 1.1 matt __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2416 1.1 matt __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2417 1.1 matt __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2418 1.1 matt __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2419 1.1 matt __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2420 1.1 matt __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2421 1.1 matt __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2422 1.1 matt __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2423 1.1 matt
2424 1.1 matt
2425 1.1 matt if (cpuvers != MPC601) {
2426 1.1 matt /* read dBAT registers */
2427 1.1 matt __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2428 1.1 matt __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2429 1.1 matt __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2430 1.1 matt __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2431 1.1 matt __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2432 1.1 matt __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2433 1.1 matt __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2434 1.1 matt __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2435 1.1 matt }
2436 1.1 matt
2437 1.18 matt printf("SDR1:\t0x%lx\n", (long) sdr1);
2438 1.18 matt #ifndef PPC_OEA64
2439 1.1 matt printf("SR[]:\t");
2440 1.1 matt for (i=0; i<4; i++)
2441 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2442 1.1 matt printf("\n\t");
2443 1.1 matt for ( ; i<8; i++)
2444 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2445 1.1 matt printf("\n\t");
2446 1.1 matt for ( ; i<12; i++)
2447 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2448 1.1 matt printf("\n\t");
2449 1.1 matt for ( ; i<16; i++)
2450 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2451 1.1 matt printf("\n");
2452 1.18 matt #endif
2453 1.1 matt
2454 1.1 matt printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2455 1.1 matt for (i=0; i<4; i++) {
2456 1.2 matt printf("0x%08lx 0x%08lx, ",
2457 1.1 matt soft_ibat[i].batu, soft_ibat[i].batl);
2458 1.1 matt if (i == 1)
2459 1.1 matt printf("\n\t");
2460 1.1 matt }
2461 1.1 matt if (cpuvers != MPC601) {
2462 1.1 matt printf("\ndBAT[]:\t");
2463 1.1 matt for (i=0; i<4; i++) {
2464 1.2 matt printf("0x%08lx 0x%08lx, ",
2465 1.1 matt soft_dbat[i].batu, soft_dbat[i].batl);
2466 1.1 matt if (i == 1)
2467 1.1 matt printf("\n\t");
2468 1.1 matt }
2469 1.1 matt }
2470 1.1 matt printf("\n");
2471 1.1 matt }
2472 1.1 matt
2473 1.1 matt void
2474 1.1 matt pmap_print_pte(pmap_t pm, vaddr_t va)
2475 1.1 matt {
2476 1.1 matt struct pvo_entry *pvo;
2477 1.2 matt volatile struct pte *pt;
2478 1.1 matt int pteidx;
2479 1.1 matt
2480 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
2481 1.1 matt if (pvo != NULL) {
2482 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
2483 1.1 matt if (pt != NULL) {
2484 1.2 matt printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2485 1.1 matt va, pt,
2486 1.1 matt pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2487 1.1 matt pt->pte_hi, pt->pte_lo);
2488 1.1 matt } else {
2489 1.1 matt printf("No valid PTE found\n");
2490 1.1 matt }
2491 1.1 matt } else {
2492 1.1 matt printf("Address not in pmap\n");
2493 1.1 matt }
2494 1.1 matt }
2495 1.1 matt
2496 1.1 matt void
2497 1.1 matt pmap_pteg_dist(void)
2498 1.1 matt {
2499 1.1 matt struct pvo_entry *pvo;
2500 1.1 matt int ptegidx;
2501 1.1 matt int depth;
2502 1.1 matt int max_depth = 0;
2503 1.1 matt unsigned int depths[64];
2504 1.1 matt
2505 1.1 matt memset(depths, 0, sizeof(depths));
2506 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2507 1.1 matt depth = 0;
2508 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2509 1.1 matt depth++;
2510 1.1 matt }
2511 1.1 matt if (depth > max_depth)
2512 1.1 matt max_depth = depth;
2513 1.1 matt if (depth > 63)
2514 1.1 matt depth = 63;
2515 1.1 matt depths[depth]++;
2516 1.1 matt }
2517 1.1 matt
2518 1.1 matt for (depth = 0; depth < 64; depth++) {
2519 1.1 matt printf(" [%2d]: %8u", depth, depths[depth]);
2520 1.1 matt if ((depth & 3) == 3)
2521 1.1 matt printf("\n");
2522 1.1 matt if (depth == max_depth)
2523 1.1 matt break;
2524 1.1 matt }
2525 1.1 matt if ((depth & 3) != 3)
2526 1.1 matt printf("\n");
2527 1.1 matt printf("Max depth found was %d\n", max_depth);
2528 1.1 matt }
2529 1.1 matt #endif /* DEBUG */
2530 1.1 matt
2531 1.1 matt #if defined(PMAPCHECK) || defined(DEBUG)
2532 1.1 matt void
2533 1.1 matt pmap_pvo_verify(void)
2534 1.1 matt {
2535 1.1 matt int ptegidx;
2536 1.1 matt int s;
2537 1.1 matt
2538 1.1 matt s = splvm();
2539 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2540 1.1 matt struct pvo_entry *pvo;
2541 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2542 1.1 matt if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2543 1.1 matt panic("pmap_pvo_verify: invalid pvo %p "
2544 1.1 matt "on list %#x", pvo, ptegidx);
2545 1.1 matt pmap_pvo_check(pvo);
2546 1.1 matt }
2547 1.1 matt }
2548 1.1 matt splx(s);
2549 1.1 matt }
2550 1.1 matt #endif /* PMAPCHECK */
2551 1.1 matt
2552 1.1 matt
2553 1.1 matt void *
2554 1.1 matt pmap_pool_ualloc(struct pool *pp, int flags)
2555 1.1 matt {
2556 1.1 matt struct pvo_page *pvop;
2557 1.1 matt
2558 1.1 matt pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2559 1.1 matt if (pvop != NULL) {
2560 1.1 matt pmap_upvop_free--;
2561 1.1 matt SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2562 1.1 matt return pvop;
2563 1.1 matt }
2564 1.1 matt if (uvm.page_init_done != TRUE) {
2565 1.1 matt return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2566 1.1 matt }
2567 1.1 matt return pmap_pool_malloc(pp, flags);
2568 1.1 matt }
2569 1.1 matt
2570 1.1 matt void *
2571 1.1 matt pmap_pool_malloc(struct pool *pp, int flags)
2572 1.1 matt {
2573 1.1 matt struct pvo_page *pvop;
2574 1.1 matt struct vm_page *pg;
2575 1.1 matt
2576 1.1 matt pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2577 1.1 matt if (pvop != NULL) {
2578 1.1 matt pmap_mpvop_free--;
2579 1.1 matt SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2580 1.1 matt return pvop;
2581 1.1 matt }
2582 1.1 matt again:
2583 1.1 matt pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2584 1.1 matt UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2585 1.1 matt if (__predict_false(pg == NULL)) {
2586 1.1 matt if (flags & PR_WAITOK) {
2587 1.1 matt uvm_wait("plpg");
2588 1.1 matt goto again;
2589 1.1 matt } else {
2590 1.1 matt return (0);
2591 1.1 matt }
2592 1.1 matt }
2593 1.1 matt return (void *) VM_PAGE_TO_PHYS(pg);
2594 1.1 matt }
2595 1.1 matt
2596 1.1 matt void
2597 1.1 matt pmap_pool_ufree(struct pool *pp, void *va)
2598 1.1 matt {
2599 1.1 matt struct pvo_page *pvop;
2600 1.1 matt #if 0
2601 1.1 matt if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2602 1.1 matt pmap_pool_mfree(va, size, tag);
2603 1.1 matt return;
2604 1.1 matt }
2605 1.1 matt #endif
2606 1.1 matt pvop = va;
2607 1.1 matt SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2608 1.1 matt pmap_upvop_free++;
2609 1.1 matt if (pmap_upvop_free > pmap_upvop_maxfree)
2610 1.1 matt pmap_upvop_maxfree = pmap_upvop_free;
2611 1.1 matt }
2612 1.1 matt
2613 1.1 matt void
2614 1.1 matt pmap_pool_mfree(struct pool *pp, void *va)
2615 1.1 matt {
2616 1.1 matt struct pvo_page *pvop;
2617 1.1 matt
2618 1.1 matt pvop = va;
2619 1.1 matt SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2620 1.1 matt pmap_mpvop_free++;
2621 1.1 matt if (pmap_mpvop_free > pmap_mpvop_maxfree)
2622 1.1 matt pmap_mpvop_maxfree = pmap_mpvop_free;
2623 1.1 matt #if 0
2624 1.1 matt uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2625 1.1 matt #endif
2626 1.1 matt }
2627 1.1 matt
2628 1.1 matt /*
2629 1.1 matt * This routine in bootstraping to steal to-be-managed memory (which will
2630 1.1 matt * then be unmanaged). We use it to grab from the first 256MB for our
2631 1.1 matt * pmap needs and above 256MB for other stuff.
2632 1.1 matt */
2633 1.1 matt vaddr_t
2634 1.10 thorpej pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2635 1.1 matt {
2636 1.1 matt vsize_t size;
2637 1.1 matt vaddr_t va;
2638 1.1 matt paddr_t pa = 0;
2639 1.1 matt int npgs, bank;
2640 1.1 matt struct vm_physseg *ps;
2641 1.1 matt
2642 1.1 matt if (uvm.page_init_done == TRUE)
2643 1.1 matt panic("pmap_steal_memory: called _after_ bootstrap");
2644 1.1 matt
2645 1.10 thorpej *vstartp = VM_MIN_KERNEL_ADDRESS;
2646 1.10 thorpej *vendp = VM_MAX_KERNEL_ADDRESS;
2647 1.10 thorpej
2648 1.1 matt size = round_page(vsize);
2649 1.1 matt npgs = atop(size);
2650 1.1 matt
2651 1.1 matt /*
2652 1.1 matt * PA 0 will never be among those given to UVM so we can use it
2653 1.1 matt * to indicate we couldn't steal any memory.
2654 1.1 matt */
2655 1.1 matt for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2656 1.1 matt if (ps->free_list == VM_FREELIST_FIRST256 &&
2657 1.1 matt ps->avail_end - ps->avail_start >= npgs) {
2658 1.1 matt pa = ptoa(ps->avail_start);
2659 1.1 matt break;
2660 1.1 matt }
2661 1.1 matt }
2662 1.1 matt
2663 1.1 matt if (pa == 0)
2664 1.1 matt panic("pmap_steal_memory: no approriate memory to steal!");
2665 1.1 matt
2666 1.1 matt ps->avail_start += npgs;
2667 1.1 matt ps->start += npgs;
2668 1.1 matt
2669 1.1 matt /*
2670 1.1 matt * If we've used up all the pages in the segment, remove it and
2671 1.1 matt * compact the list.
2672 1.1 matt */
2673 1.1 matt if (ps->avail_start == ps->end) {
2674 1.1 matt /*
2675 1.1 matt * If this was the last one, then a very bad thing has occurred
2676 1.1 matt */
2677 1.1 matt if (--vm_nphysseg == 0)
2678 1.1 matt panic("pmap_steal_memory: out of memory!");
2679 1.1 matt
2680 1.1 matt printf("pmap_steal_memory: consumed bank %d\n", bank);
2681 1.1 matt for (; bank < vm_nphysseg; bank++, ps++) {
2682 1.1 matt ps[0] = ps[1];
2683 1.1 matt }
2684 1.1 matt }
2685 1.1 matt
2686 1.1 matt va = (vaddr_t) pa;
2687 1.1 matt memset((caddr_t) va, 0, size);
2688 1.1 matt pmap_pages_stolen += npgs;
2689 1.1 matt #ifdef DEBUG
2690 1.1 matt if (pmapdebug && npgs > 1) {
2691 1.1 matt u_int cnt = 0;
2692 1.1 matt for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2693 1.1 matt cnt += ps->avail_end - ps->avail_start;
2694 1.1 matt printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2695 1.1 matt npgs, pmap_pages_stolen, cnt);
2696 1.1 matt }
2697 1.1 matt #endif
2698 1.1 matt
2699 1.1 matt return va;
2700 1.1 matt }
2701 1.1 matt
2702 1.1 matt /*
2703 1.1 matt * Find a chuck of memory with right size and alignment.
2704 1.1 matt */
2705 1.1 matt void *
2706 1.1 matt pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2707 1.1 matt {
2708 1.1 matt struct mem_region *mp;
2709 1.1 matt paddr_t s, e;
2710 1.1 matt int i, j;
2711 1.1 matt
2712 1.1 matt size = round_page(size);
2713 1.1 matt
2714 1.1 matt DPRINTFN(BOOT,
2715 1.1 matt ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2716 1.1 matt size, alignment, at_end));
2717 1.1 matt
2718 1.6 thorpej if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2719 1.1 matt panic("pmap_boot_find_memory: invalid alignment %lx",
2720 1.1 matt alignment);
2721 1.1 matt
2722 1.1 matt if (at_end) {
2723 1.6 thorpej if (alignment != PAGE_SIZE)
2724 1.1 matt panic("pmap_boot_find_memory: invalid ending "
2725 1.1 matt "alignment %lx", alignment);
2726 1.1 matt
2727 1.1 matt for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2728 1.1 matt s = mp->start + mp->size - size;
2729 1.1 matt if (s >= mp->start && mp->size >= size) {
2730 1.1 matt DPRINTFN(BOOT,(": %lx\n", s));
2731 1.1 matt DPRINTFN(BOOT,
2732 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2733 1.1 matt "0x%lx size 0x%lx\n", mp - avail,
2734 1.1 matt mp->start, mp->size));
2735 1.1 matt mp->size -= size;
2736 1.1 matt DPRINTFN(BOOT,
2737 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2738 1.1 matt "0x%lx size 0x%lx\n", mp - avail,
2739 1.1 matt mp->start, mp->size));
2740 1.1 matt return (void *) s;
2741 1.1 matt }
2742 1.1 matt }
2743 1.1 matt panic("pmap_boot_find_memory: no available memory");
2744 1.1 matt }
2745 1.1 matt
2746 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2747 1.1 matt s = (mp->start + alignment - 1) & ~(alignment-1);
2748 1.1 matt e = s + size;
2749 1.1 matt
2750 1.1 matt /*
2751 1.1 matt * Is the calculated region entirely within the region?
2752 1.1 matt */
2753 1.1 matt if (s < mp->start || e > mp->start + mp->size)
2754 1.1 matt continue;
2755 1.1 matt
2756 1.1 matt DPRINTFN(BOOT,(": %lx\n", s));
2757 1.1 matt if (s == mp->start) {
2758 1.1 matt /*
2759 1.1 matt * If the block starts at the beginning of region,
2760 1.1 matt * adjust the size & start. (the region may now be
2761 1.1 matt * zero in length)
2762 1.1 matt */
2763 1.1 matt DPRINTFN(BOOT,
2764 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2765 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2766 1.1 matt mp->start += size;
2767 1.1 matt mp->size -= size;
2768 1.1 matt DPRINTFN(BOOT,
2769 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2770 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2771 1.1 matt } else if (e == mp->start + mp->size) {
2772 1.1 matt /*
2773 1.1 matt * If the block starts at the beginning of region,
2774 1.1 matt * adjust only the size.
2775 1.1 matt */
2776 1.1 matt DPRINTFN(BOOT,
2777 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2778 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2779 1.1 matt mp->size -= size;
2780 1.1 matt DPRINTFN(BOOT,
2781 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2782 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2783 1.1 matt } else {
2784 1.1 matt /*
2785 1.1 matt * Block is in the middle of the region, so we
2786 1.1 matt * have to split it in two.
2787 1.1 matt */
2788 1.1 matt for (j = avail_cnt; j > i + 1; j--) {
2789 1.1 matt avail[j] = avail[j-1];
2790 1.1 matt }
2791 1.1 matt DPRINTFN(BOOT,
2792 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2793 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2794 1.1 matt mp[1].start = e;
2795 1.1 matt mp[1].size = mp[0].start + mp[0].size - e;
2796 1.1 matt mp[0].size = s - mp[0].start;
2797 1.1 matt avail_cnt++;
2798 1.1 matt for (; i < avail_cnt; i++) {
2799 1.1 matt DPRINTFN(BOOT,
2800 1.1 matt ("pmap_boot_find_memory: a-avail[%d] "
2801 1.1 matt "start 0x%lx size 0x%lx\n", i,
2802 1.1 matt avail[i].start, avail[i].size));
2803 1.1 matt }
2804 1.1 matt }
2805 1.1 matt return (void *) s;
2806 1.1 matt }
2807 1.1 matt panic("pmap_boot_find_memory: not enough memory for "
2808 1.1 matt "%lx/%lx allocation?", size, alignment);
2809 1.1 matt }
2810 1.1 matt
2811 1.1 matt /*
2812 1.1 matt * This is not part of the defined PMAP interface and is specific to the
2813 1.1 matt * PowerPC architecture. This is called during initppc, before the system
2814 1.1 matt * is really initialized.
2815 1.1 matt */
2816 1.1 matt void
2817 1.1 matt pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2818 1.1 matt {
2819 1.1 matt struct mem_region *mp, tmp;
2820 1.1 matt paddr_t s, e;
2821 1.1 matt psize_t size;
2822 1.1 matt int i, j;
2823 1.1 matt
2824 1.1 matt /*
2825 1.1 matt * Get memory.
2826 1.1 matt */
2827 1.1 matt mem_regions(&mem, &avail);
2828 1.1 matt #if defined(DEBUG)
2829 1.1 matt if (pmapdebug & PMAPDEBUG_BOOT) {
2830 1.1 matt printf("pmap_bootstrap: memory configuration:\n");
2831 1.1 matt for (mp = mem; mp->size; mp++) {
2832 1.1 matt printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2833 1.1 matt mp->start, mp->size);
2834 1.1 matt }
2835 1.1 matt for (mp = avail; mp->size; mp++) {
2836 1.1 matt printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2837 1.1 matt mp->start, mp->size);
2838 1.1 matt }
2839 1.1 matt }
2840 1.1 matt #endif
2841 1.1 matt
2842 1.1 matt /*
2843 1.1 matt * Find out how much physical memory we have and in how many chunks.
2844 1.1 matt */
2845 1.1 matt for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2846 1.1 matt if (mp->start >= pmap_memlimit)
2847 1.1 matt continue;
2848 1.1 matt if (mp->start + mp->size > pmap_memlimit) {
2849 1.1 matt size = pmap_memlimit - mp->start;
2850 1.1 matt physmem += btoc(size);
2851 1.1 matt } else {
2852 1.1 matt physmem += btoc(mp->size);
2853 1.1 matt }
2854 1.1 matt mem_cnt++;
2855 1.1 matt }
2856 1.1 matt
2857 1.1 matt /*
2858 1.1 matt * Count the number of available entries.
2859 1.1 matt */
2860 1.1 matt for (avail_cnt = 0, mp = avail; mp->size; mp++)
2861 1.1 matt avail_cnt++;
2862 1.1 matt
2863 1.1 matt /*
2864 1.1 matt * Page align all regions.
2865 1.1 matt */
2866 1.1 matt kernelstart = trunc_page(kernelstart);
2867 1.1 matt kernelend = round_page(kernelend);
2868 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2869 1.1 matt s = round_page(mp->start);
2870 1.1 matt mp->size -= (s - mp->start);
2871 1.1 matt mp->size = trunc_page(mp->size);
2872 1.1 matt mp->start = s;
2873 1.1 matt e = mp->start + mp->size;
2874 1.1 matt
2875 1.1 matt DPRINTFN(BOOT,
2876 1.1 matt ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2877 1.1 matt i, mp->start, mp->size));
2878 1.1 matt
2879 1.1 matt /*
2880 1.1 matt * Don't allow the end to run beyond our artificial limit
2881 1.1 matt */
2882 1.1 matt if (e > pmap_memlimit)
2883 1.1 matt e = pmap_memlimit;
2884 1.1 matt
2885 1.1 matt /*
2886 1.1 matt * Is this region empty or strange? skip it.
2887 1.1 matt */
2888 1.1 matt if (e <= s) {
2889 1.1 matt mp->start = 0;
2890 1.1 matt mp->size = 0;
2891 1.1 matt continue;
2892 1.1 matt }
2893 1.1 matt
2894 1.1 matt /*
2895 1.1 matt * Does this overlap the beginning of kernel?
2896 1.1 matt * Does extend past the end of the kernel?
2897 1.1 matt */
2898 1.1 matt else if (s < kernelstart && e > kernelstart) {
2899 1.1 matt if (e > kernelend) {
2900 1.1 matt avail[avail_cnt].start = kernelend;
2901 1.1 matt avail[avail_cnt].size = e - kernelend;
2902 1.1 matt avail_cnt++;
2903 1.1 matt }
2904 1.1 matt mp->size = kernelstart - s;
2905 1.1 matt }
2906 1.1 matt /*
2907 1.1 matt * Check whether this region overlaps the end of the kernel.
2908 1.1 matt */
2909 1.1 matt else if (s < kernelend && e > kernelend) {
2910 1.1 matt mp->start = kernelend;
2911 1.1 matt mp->size = e - kernelend;
2912 1.1 matt }
2913 1.1 matt /*
2914 1.1 matt * Look whether this regions is completely inside the kernel.
2915 1.1 matt * Nuke it if it does.
2916 1.1 matt */
2917 1.1 matt else if (s >= kernelstart && e <= kernelend) {
2918 1.1 matt mp->start = 0;
2919 1.1 matt mp->size = 0;
2920 1.1 matt }
2921 1.1 matt /*
2922 1.1 matt * If the user imposed a memory limit, enforce it.
2923 1.1 matt */
2924 1.1 matt else if (s >= pmap_memlimit) {
2925 1.6 thorpej mp->start = -PAGE_SIZE; /* let's know why */
2926 1.1 matt mp->size = 0;
2927 1.1 matt }
2928 1.1 matt else {
2929 1.1 matt mp->start = s;
2930 1.1 matt mp->size = e - s;
2931 1.1 matt }
2932 1.1 matt DPRINTFN(BOOT,
2933 1.1 matt ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
2934 1.1 matt i, mp->start, mp->size));
2935 1.1 matt }
2936 1.1 matt
2937 1.1 matt /*
2938 1.1 matt * Move (and uncount) all the null return to the end.
2939 1.1 matt */
2940 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2941 1.1 matt if (mp->size == 0) {
2942 1.1 matt tmp = avail[i];
2943 1.1 matt avail[i] = avail[--avail_cnt];
2944 1.1 matt avail[avail_cnt] = avail[i];
2945 1.1 matt }
2946 1.1 matt }
2947 1.1 matt
2948 1.1 matt /*
2949 1.1 matt * (Bubble)sort them into asecnding order.
2950 1.1 matt */
2951 1.1 matt for (i = 0; i < avail_cnt; i++) {
2952 1.1 matt for (j = i + 1; j < avail_cnt; j++) {
2953 1.1 matt if (avail[i].start > avail[j].start) {
2954 1.1 matt tmp = avail[i];
2955 1.1 matt avail[i] = avail[j];
2956 1.1 matt avail[j] = tmp;
2957 1.1 matt }
2958 1.1 matt }
2959 1.1 matt }
2960 1.1 matt
2961 1.1 matt /*
2962 1.1 matt * Make sure they don't overlap.
2963 1.1 matt */
2964 1.1 matt for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
2965 1.1 matt if (mp[0].start + mp[0].size > mp[1].start) {
2966 1.1 matt mp[0].size = mp[1].start - mp[0].start;
2967 1.1 matt }
2968 1.1 matt DPRINTFN(BOOT,
2969 1.1 matt ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2970 1.1 matt i, mp->start, mp->size));
2971 1.1 matt }
2972 1.1 matt DPRINTFN(BOOT,
2973 1.1 matt ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2974 1.1 matt i, mp->start, mp->size));
2975 1.1 matt
2976 1.1 matt #ifdef PTEGCOUNT
2977 1.1 matt pmap_pteg_cnt = PTEGCOUNT;
2978 1.1 matt #else /* PTEGCOUNT */
2979 1.1 matt pmap_pteg_cnt = 0x1000;
2980 1.1 matt
2981 1.1 matt while (pmap_pteg_cnt < physmem)
2982 1.1 matt pmap_pteg_cnt <<= 1;
2983 1.1 matt
2984 1.1 matt pmap_pteg_cnt >>= 1;
2985 1.1 matt #endif /* PTEGCOUNT */
2986 1.1 matt
2987 1.1 matt /*
2988 1.1 matt * Find suitably aligned memory for PTEG hash table.
2989 1.1 matt */
2990 1.2 matt size = pmap_pteg_cnt * sizeof(struct pteg);
2991 1.1 matt pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
2992 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2993 1.1 matt if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
2994 1.1 matt panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
2995 1.1 matt pmap_pteg_table, size);
2996 1.1 matt #endif
2997 1.1 matt
2998 1.2 matt memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
2999 1.1 matt pmap_pteg_mask = pmap_pteg_cnt - 1;
3000 1.1 matt
3001 1.1 matt /*
3002 1.1 matt * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3003 1.1 matt * with pages. So we just steal them before giving them to UVM.
3004 1.1 matt */
3005 1.1 matt size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3006 1.6 thorpej pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3007 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3008 1.1 matt if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3009 1.1 matt panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3010 1.1 matt pmap_pvo_table, size);
3011 1.1 matt #endif
3012 1.1 matt
3013 1.1 matt for (i = 0; i < pmap_pteg_cnt; i++)
3014 1.1 matt TAILQ_INIT(&pmap_pvo_table[i]);
3015 1.1 matt
3016 1.1 matt #ifndef MSGBUFADDR
3017 1.1 matt /*
3018 1.1 matt * Allocate msgbuf in high memory.
3019 1.1 matt */
3020 1.6 thorpej msgbuf_paddr =
3021 1.6 thorpej (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3022 1.1 matt #endif
3023 1.1 matt
3024 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
3025 1.1 matt {
3026 1.1 matt u_int npgs = 0;
3027 1.1 matt for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3028 1.1 matt npgs += btoc(mp->size);
3029 1.1 matt size = (sizeof(struct pvo_head) + 1) * npgs;
3030 1.6 thorpej pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3031 1.1 matt pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3032 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3033 1.1 matt if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3034 1.1 matt panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3035 1.1 matt pmap_physseg.pvoh, size);
3036 1.1 matt #endif
3037 1.1 matt }
3038 1.1 matt #endif
3039 1.1 matt
3040 1.1 matt for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3041 1.1 matt paddr_t pfstart = atop(mp->start);
3042 1.1 matt paddr_t pfend = atop(mp->start + mp->size);
3043 1.1 matt if (mp->size == 0)
3044 1.1 matt continue;
3045 1.1 matt if (mp->start + mp->size <= SEGMENT_LENGTH) {
3046 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3047 1.1 matt VM_FREELIST_FIRST256);
3048 1.1 matt } else if (mp->start >= SEGMENT_LENGTH) {
3049 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3050 1.1 matt VM_FREELIST_DEFAULT);
3051 1.1 matt } else {
3052 1.1 matt pfend = atop(SEGMENT_LENGTH);
3053 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3054 1.1 matt VM_FREELIST_FIRST256);
3055 1.1 matt pfstart = atop(SEGMENT_LENGTH);
3056 1.1 matt pfend = atop(mp->start + mp->size);
3057 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3058 1.1 matt VM_FREELIST_DEFAULT);
3059 1.1 matt }
3060 1.1 matt }
3061 1.1 matt
3062 1.1 matt /*
3063 1.1 matt * Make sure kernel vsid is allocated as well as VSID 0.
3064 1.1 matt */
3065 1.1 matt pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3066 1.1 matt |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3067 1.1 matt pmap_vsid_bitmap[0] |= 1;
3068 1.1 matt
3069 1.1 matt /*
3070 1.1 matt * Initialize kernel pmap and hardware.
3071 1.1 matt */
3072 1.18 matt #ifndef PPC_OEA64
3073 1.1 matt for (i = 0; i < 16; i++) {
3074 1.1 matt pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3075 1.1 matt __asm __volatile ("mtsrin %0,%1"
3076 1.1 matt :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3077 1.1 matt }
3078 1.1 matt
3079 1.1 matt pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3080 1.1 matt __asm __volatile ("mtsr %0,%1"
3081 1.1 matt :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3082 1.1 matt #ifdef KERNEL2_SR
3083 1.1 matt pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3084 1.1 matt __asm __volatile ("mtsr %0,%1"
3085 1.1 matt :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3086 1.1 matt #endif
3087 1.1 matt for (i = 0; i < 16; i++) {
3088 1.1 matt if (iosrtable[i] & SR601_T) {
3089 1.1 matt pmap_kernel()->pm_sr[i] = iosrtable[i];
3090 1.1 matt __asm __volatile ("mtsrin %0,%1"
3091 1.1 matt :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3092 1.1 matt }
3093 1.1 matt }
3094 1.18 matt #endif /* !PPC_OEA64 */
3095 1.18 matt
3096 1.1 matt __asm __volatile ("sync; mtsdr1 %0; isync"
3097 1.2 matt :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3098 1.1 matt tlbia();
3099 1.1 matt
3100 1.1 matt #ifdef ALTIVEC
3101 1.1 matt pmap_use_altivec = cpu_altivec;
3102 1.1 matt #endif
3103 1.1 matt
3104 1.1 matt #ifdef DEBUG
3105 1.1 matt if (pmapdebug & PMAPDEBUG_BOOT) {
3106 1.1 matt u_int cnt;
3107 1.1 matt int bank;
3108 1.1 matt char pbuf[9];
3109 1.1 matt for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3110 1.1 matt cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3111 1.1 matt printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3112 1.1 matt bank,
3113 1.1 matt ptoa(vm_physmem[bank].avail_start),
3114 1.1 matt ptoa(vm_physmem[bank].avail_end),
3115 1.1 matt ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3116 1.1 matt }
3117 1.1 matt format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3118 1.1 matt printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3119 1.1 matt pbuf, cnt);
3120 1.1 matt }
3121 1.1 matt #endif
3122 1.1 matt
3123 1.1 matt pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3124 1.1 matt sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3125 1.1 matt &pmap_pool_uallocator);
3126 1.1 matt
3127 1.1 matt pool_setlowat(&pmap_upvo_pool, 252);
3128 1.1 matt
3129 1.1 matt pool_init(&pmap_pool, sizeof(struct pmap),
3130 1.1 matt sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3131 1.1 matt }
3132