pmap.c revision 1.35 1 1.35 perry /* $NetBSD: pmap.c,v 1.35 2005/12/24 20:07:28 perry Exp $ */
2 1.1 matt /*-
3 1.1 matt * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 1.1 matt * All rights reserved.
5 1.1 matt *
6 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.1 matt * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by the NetBSD
20 1.1 matt * Foundation, Inc. and its contributors.
21 1.1 matt * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 matt * contributors may be used to endorse or promote products derived
23 1.1 matt * from this software without specific prior written permission.
24 1.1 matt *
25 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
36 1.1 matt */
37 1.1 matt
38 1.1 matt /*
39 1.1 matt * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 matt * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 matt * All rights reserved.
42 1.1 matt *
43 1.1 matt * Redistribution and use in source and binary forms, with or without
44 1.1 matt * modification, are permitted provided that the following conditions
45 1.1 matt * are met:
46 1.1 matt * 1. Redistributions of source code must retain the above copyright
47 1.1 matt * notice, this list of conditions and the following disclaimer.
48 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 matt * notice, this list of conditions and the following disclaimer in the
50 1.1 matt * documentation and/or other materials provided with the distribution.
51 1.1 matt * 3. All advertising materials mentioning features or use of this software
52 1.1 matt * must display the following acknowledgement:
53 1.1 matt * This product includes software developed by TooLs GmbH.
54 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 matt * derived from this software without specific prior written permission.
56 1.1 matt *
57 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 matt */
68 1.11 lukem
69 1.11 lukem #include <sys/cdefs.h>
70 1.35 perry __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.35 2005/12/24 20:07:28 perry Exp $");
71 1.1 matt
72 1.18 matt #include "opt_ppcarch.h"
73 1.1 matt #include "opt_altivec.h"
74 1.1 matt #include "opt_pmap.h"
75 1.1 matt #include <sys/param.h>
76 1.1 matt #include <sys/malloc.h>
77 1.1 matt #include <sys/proc.h>
78 1.1 matt #include <sys/user.h>
79 1.1 matt #include <sys/pool.h>
80 1.1 matt #include <sys/queue.h>
81 1.1 matt #include <sys/device.h> /* for evcnt */
82 1.1 matt #include <sys/systm.h>
83 1.1 matt
84 1.1 matt #if __NetBSD_Version__ < 105010000
85 1.1 matt #include <vm/vm.h>
86 1.1 matt #include <vm/vm_kern.h>
87 1.1 matt #define splvm() splimp()
88 1.1 matt #endif
89 1.1 matt
90 1.1 matt #include <uvm/uvm.h>
91 1.1 matt
92 1.1 matt #include <machine/pcb.h>
93 1.1 matt #include <machine/powerpc.h>
94 1.1 matt #include <powerpc/spr.h>
95 1.1 matt #include <powerpc/oea/sr_601.h>
96 1.1 matt #include <powerpc/bat.h>
97 1.1 matt
98 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
99 1.1 matt #define STATIC
100 1.1 matt #else
101 1.1 matt #define STATIC static
102 1.1 matt #endif
103 1.1 matt
104 1.1 matt #ifdef ALTIVEC
105 1.1 matt int pmap_use_altivec;
106 1.1 matt #endif
107 1.1 matt
108 1.2 matt volatile struct pteg *pmap_pteg_table;
109 1.1 matt unsigned int pmap_pteg_cnt;
110 1.1 matt unsigned int pmap_pteg_mask;
111 1.21 aymeric #ifdef PMAP_MEMLIMIT
112 1.21 aymeric paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 1.21 aymeric #else
114 1.6 thorpej paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
115 1.21 aymeric #endif
116 1.1 matt
117 1.1 matt struct pmap kernel_pmap_;
118 1.1 matt unsigned int pmap_pages_stolen;
119 1.1 matt u_long pmap_pte_valid;
120 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 1.1 matt u_long pmap_pvo_enter_depth;
122 1.1 matt u_long pmap_pvo_remove_depth;
123 1.1 matt #endif
124 1.1 matt
125 1.1 matt int physmem;
126 1.1 matt #ifndef MSGBUFADDR
127 1.1 matt extern paddr_t msgbuf_paddr;
128 1.1 matt #endif
129 1.1 matt
130 1.1 matt static struct mem_region *mem, *avail;
131 1.1 matt static u_int mem_cnt, avail_cnt;
132 1.1 matt
133 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
134 1.1 matt /*
135 1.1 matt * This is a cache of referenced/modified bits.
136 1.1 matt * Bits herein are shifted by ATTRSHFT.
137 1.1 matt */
138 1.1 matt #define ATTR_SHFT 4
139 1.1 matt struct pmap_physseg pmap_physseg;
140 1.1 matt #endif
141 1.1 matt
142 1.1 matt /*
143 1.1 matt * The following structure is exactly 32 bytes long (one cacheline).
144 1.1 matt */
145 1.1 matt struct pvo_entry {
146 1.1 matt LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
147 1.1 matt TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
148 1.1 matt struct pte pvo_pte; /* Prebuilt PTE */
149 1.1 matt pmap_t pvo_pmap; /* ptr to owning pmap */
150 1.1 matt vaddr_t pvo_vaddr; /* VA of entry */
151 1.1 matt #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
152 1.1 matt #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
153 1.1 matt #define PVO_WIRED 0x0010 /* PVO entry is wired */
154 1.1 matt #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
155 1.1 matt #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
156 1.12 matt #define PVO_ENTER_INSERT 0 /* PVO has been removed */
157 1.12 matt #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
158 1.12 matt #define PVO_SPILL_SET 2 /* PVO has been spilled */
159 1.12 matt #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
160 1.12 matt #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
161 1.12 matt #define PVO_PMAP_PROTECT 5 /* PVO has changed */
162 1.12 matt #define PVO_REMOVE 6 /* PVO has been removed */
163 1.12 matt #define PVO_WHERE_MASK 15
164 1.12 matt #define PVO_WHERE_SHFT 8
165 1.1 matt };
166 1.1 matt #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
167 1.1 matt #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 1.1 matt #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 1.1 matt #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 1.1 matt #define PVO_PTEGIDX_CLR(pvo) \
171 1.1 matt ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 1.1 matt #define PVO_PTEGIDX_SET(pvo,i) \
173 1.1 matt ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 1.12 matt #define PVO_WHERE(pvo,w) \
175 1.12 matt ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 1.12 matt (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177 1.1 matt
178 1.1 matt TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 1.1 matt struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
180 1.1 matt struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
181 1.1 matt struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
182 1.1 matt
183 1.1 matt struct pool pmap_pool; /* pool for pmap structures */
184 1.1 matt struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
185 1.1 matt struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
186 1.1 matt
187 1.1 matt /*
188 1.1 matt * We keep a cache of unmanaged pages to be used for pvo entries for
189 1.1 matt * unmanaged pages.
190 1.1 matt */
191 1.1 matt struct pvo_page {
192 1.1 matt SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 1.1 matt };
194 1.1 matt SIMPLEQ_HEAD(pvop_head, pvo_page);
195 1.1 matt struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 1.1 matt struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 1.1 matt u_long pmap_upvop_free;
198 1.1 matt u_long pmap_upvop_maxfree;
199 1.1 matt u_long pmap_mpvop_free;
200 1.1 matt u_long pmap_mpvop_maxfree;
201 1.1 matt
202 1.1 matt STATIC void *pmap_pool_ualloc(struct pool *, int);
203 1.1 matt STATIC void *pmap_pool_malloc(struct pool *, int);
204 1.1 matt
205 1.1 matt STATIC void pmap_pool_ufree(struct pool *, void *);
206 1.1 matt STATIC void pmap_pool_mfree(struct pool *, void *);
207 1.1 matt
208 1.1 matt static struct pool_allocator pmap_pool_mallocator = {
209 1.1 matt pmap_pool_malloc, pmap_pool_mfree, 0,
210 1.1 matt };
211 1.1 matt
212 1.1 matt static struct pool_allocator pmap_pool_uallocator = {
213 1.1 matt pmap_pool_ualloc, pmap_pool_ufree, 0,
214 1.1 matt };
215 1.1 matt
216 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 1.2 matt void pmap_pte_print(volatile struct pte *);
218 1.1 matt #endif
219 1.1 matt
220 1.1 matt #ifdef DDB
221 1.1 matt void pmap_pteg_check(void);
222 1.1 matt void pmap_pteg_dist(void);
223 1.1 matt void pmap_print_pte(pmap_t, vaddr_t);
224 1.1 matt void pmap_print_mmuregs(void);
225 1.1 matt #endif
226 1.1 matt
227 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
228 1.1 matt #ifdef PMAPCHECK
229 1.1 matt int pmapcheck = 1;
230 1.1 matt #else
231 1.1 matt int pmapcheck = 0;
232 1.1 matt #endif
233 1.1 matt void pmap_pvo_verify(void);
234 1.1 matt STATIC void pmap_pvo_check(const struct pvo_entry *);
235 1.1 matt #define PMAP_PVO_CHECK(pvo) \
236 1.1 matt do { \
237 1.1 matt if (pmapcheck) \
238 1.1 matt pmap_pvo_check(pvo); \
239 1.1 matt } while (0)
240 1.1 matt #else
241 1.1 matt #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
242 1.1 matt #endif
243 1.2 matt STATIC int pmap_pte_insert(int, struct pte *);
244 1.1 matt STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 1.2 matt vaddr_t, paddr_t, register_t, int);
246 1.33 chs STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
247 1.33 chs STATIC void pmap_pvo_free(struct pvo_entry *);
248 1.33 chs STATIC void pmap_pvo_free_list(struct pvo_head *);
249 1.1 matt STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
250 1.2 matt STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
251 1.25 chs STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
252 1.14 chs STATIC void pvo_set_exec(struct pvo_entry *);
253 1.14 chs STATIC void pvo_clear_exec(struct pvo_entry *);
254 1.1 matt
255 1.1 matt STATIC void tlbia(void);
256 1.1 matt
257 1.1 matt STATIC void pmap_release(pmap_t);
258 1.1 matt STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
259 1.1 matt
260 1.25 chs static uint32_t pmap_pvo_reclaim_nextidx;
261 1.25 chs #ifdef DEBUG
262 1.25 chs static int pmap_pvo_reclaim_debugctr;
263 1.25 chs #endif
264 1.25 chs
265 1.1 matt #define VSID_NBPW (sizeof(uint32_t) * 8)
266 1.1 matt static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
267 1.1 matt
268 1.1 matt static int pmap_initialized;
269 1.1 matt
270 1.1 matt #if defined(DEBUG) || defined(PMAPDEBUG)
271 1.1 matt #define PMAPDEBUG_BOOT 0x0001
272 1.1 matt #define PMAPDEBUG_PTE 0x0002
273 1.1 matt #define PMAPDEBUG_EXEC 0x0008
274 1.1 matt #define PMAPDEBUG_PVOENTER 0x0010
275 1.1 matt #define PMAPDEBUG_PVOREMOVE 0x0020
276 1.1 matt #define PMAPDEBUG_ACTIVATE 0x0100
277 1.1 matt #define PMAPDEBUG_CREATE 0x0200
278 1.1 matt #define PMAPDEBUG_ENTER 0x1000
279 1.1 matt #define PMAPDEBUG_KENTER 0x2000
280 1.1 matt #define PMAPDEBUG_KREMOVE 0x4000
281 1.1 matt #define PMAPDEBUG_REMOVE 0x8000
282 1.1 matt unsigned int pmapdebug = 0;
283 1.1 matt # define DPRINTF(x) printf x
284 1.1 matt # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
285 1.1 matt #else
286 1.1 matt # define DPRINTF(x)
287 1.1 matt # define DPRINTFN(n, x)
288 1.1 matt #endif
289 1.1 matt
290 1.1 matt
291 1.1 matt #ifdef PMAPCOUNTERS
292 1.1 matt #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
293 1.1 matt #define PMAPCOUNT2(ev) ((ev).ev_count++)
294 1.1 matt
295 1.1 matt struct evcnt pmap_evcnt_mappings =
296 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
297 1.1 matt "pmap", "pages mapped");
298 1.1 matt struct evcnt pmap_evcnt_unmappings =
299 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
300 1.1 matt "pmap", "pages unmapped");
301 1.1 matt
302 1.1 matt struct evcnt pmap_evcnt_kernel_mappings =
303 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
304 1.1 matt "pmap", "kernel pages mapped");
305 1.1 matt struct evcnt pmap_evcnt_kernel_unmappings =
306 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
307 1.1 matt "pmap", "kernel pages unmapped");
308 1.1 matt
309 1.1 matt struct evcnt pmap_evcnt_mappings_replaced =
310 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
311 1.1 matt "pmap", "page mappings replaced");
312 1.1 matt
313 1.1 matt struct evcnt pmap_evcnt_exec_mappings =
314 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
315 1.1 matt "pmap", "exec pages mapped");
316 1.1 matt struct evcnt pmap_evcnt_exec_cached =
317 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
318 1.1 matt "pmap", "exec pages cached");
319 1.1 matt
320 1.1 matt struct evcnt pmap_evcnt_exec_synced =
321 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
322 1.1 matt "pmap", "exec pages synced");
323 1.1 matt struct evcnt pmap_evcnt_exec_synced_clear_modify =
324 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
325 1.1 matt "pmap", "exec pages synced (CM)");
326 1.1 matt
327 1.1 matt struct evcnt pmap_evcnt_exec_uncached_page_protect =
328 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
329 1.1 matt "pmap", "exec pages uncached (PP)");
330 1.1 matt struct evcnt pmap_evcnt_exec_uncached_clear_modify =
331 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
332 1.1 matt "pmap", "exec pages uncached (CM)");
333 1.1 matt struct evcnt pmap_evcnt_exec_uncached_zero_page =
334 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
335 1.1 matt "pmap", "exec pages uncached (ZP)");
336 1.1 matt struct evcnt pmap_evcnt_exec_uncached_copy_page =
337 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
338 1.1 matt "pmap", "exec pages uncached (CP)");
339 1.1 matt
340 1.1 matt struct evcnt pmap_evcnt_updates =
341 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
342 1.1 matt "pmap", "updates");
343 1.1 matt struct evcnt pmap_evcnt_collects =
344 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
345 1.1 matt "pmap", "collects");
346 1.1 matt struct evcnt pmap_evcnt_copies =
347 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
348 1.1 matt "pmap", "copies");
349 1.1 matt
350 1.1 matt struct evcnt pmap_evcnt_ptes_spilled =
351 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
352 1.1 matt "pmap", "ptes spilled from overflow");
353 1.1 matt struct evcnt pmap_evcnt_ptes_unspilled =
354 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 1.1 matt "pmap", "ptes not spilled");
356 1.1 matt struct evcnt pmap_evcnt_ptes_evicted =
357 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
358 1.1 matt "pmap", "ptes evicted");
359 1.1 matt
360 1.1 matt struct evcnt pmap_evcnt_ptes_primary[8] = {
361 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
362 1.1 matt "pmap", "ptes added at primary[0]"),
363 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 1.1 matt "pmap", "ptes added at primary[1]"),
365 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 1.1 matt "pmap", "ptes added at primary[2]"),
367 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
368 1.1 matt "pmap", "ptes added at primary[3]"),
369 1.1 matt
370 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
371 1.1 matt "pmap", "ptes added at primary[4]"),
372 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 1.1 matt "pmap", "ptes added at primary[5]"),
374 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
375 1.1 matt "pmap", "ptes added at primary[6]"),
376 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
377 1.1 matt "pmap", "ptes added at primary[7]"),
378 1.1 matt };
379 1.1 matt struct evcnt pmap_evcnt_ptes_secondary[8] = {
380 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 1.1 matt "pmap", "ptes added at secondary[0]"),
382 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 1.1 matt "pmap", "ptes added at secondary[1]"),
384 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 1.1 matt "pmap", "ptes added at secondary[2]"),
386 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
387 1.1 matt "pmap", "ptes added at secondary[3]"),
388 1.1 matt
389 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 1.1 matt "pmap", "ptes added at secondary[4]"),
391 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 1.1 matt "pmap", "ptes added at secondary[5]"),
393 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
394 1.1 matt "pmap", "ptes added at secondary[6]"),
395 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 1.1 matt "pmap", "ptes added at secondary[7]"),
397 1.1 matt };
398 1.1 matt struct evcnt pmap_evcnt_ptes_removed =
399 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
400 1.1 matt "pmap", "ptes removed");
401 1.1 matt struct evcnt pmap_evcnt_ptes_changed =
402 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
403 1.1 matt "pmap", "ptes changed");
404 1.26 matt struct evcnt pmap_evcnt_pvos_reclaimed =
405 1.26 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
406 1.26 matt "pmap", "pvos reclaimed");
407 1.26 matt struct evcnt pmap_evcnt_pvos_failed =
408 1.26 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
409 1.26 matt "pmap", "pvo allocation failures");
410 1.1 matt
411 1.1 matt /*
412 1.1 matt * From pmap_subr.c
413 1.1 matt */
414 1.1 matt extern struct evcnt pmap_evcnt_zeroed_pages;
415 1.1 matt extern struct evcnt pmap_evcnt_copied_pages;
416 1.1 matt extern struct evcnt pmap_evcnt_idlezeroed_pages;
417 1.26 matt
418 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
419 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
420 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
421 1.26 matt
422 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
423 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
424 1.26 matt
425 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
426 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
427 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
428 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
429 1.26 matt
430 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
431 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
432 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
433 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
434 1.26 matt
435 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
436 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
437 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
438 1.26 matt
439 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
440 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
441 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
442 1.26 matt
443 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
444 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
445 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
446 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
447 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
448 1.26 matt
449 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
450 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
451 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
452 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
453 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
454 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
455 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
456 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
457 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
458 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
459 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
460 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
461 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
462 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
463 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
464 1.26 matt EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
465 1.26 matt
466 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
467 1.26 matt EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
468 1.1 matt #else
469 1.1 matt #define PMAPCOUNT(ev) ((void) 0)
470 1.1 matt #define PMAPCOUNT2(ev) ((void) 0)
471 1.1 matt #endif
472 1.1 matt
473 1.35 perry #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
474 1.35 perry #define TLBSYNC() __asm volatile("tlbsync")
475 1.35 perry #define SYNC() __asm volatile("sync")
476 1.35 perry #define EIEIO() __asm volatile("eieio")
477 1.1 matt #define MFMSR() mfmsr()
478 1.1 matt #define MTMSR(psl) mtmsr(psl)
479 1.1 matt #define MFPVR() mfpvr()
480 1.1 matt #define MFSRIN(va) mfsrin(va)
481 1.1 matt #define MFTB() mfrtcltbl()
482 1.1 matt
483 1.18 matt #ifndef PPC_OEA64
484 1.35 perry static inline register_t
485 1.1 matt mfsrin(vaddr_t va)
486 1.1 matt {
487 1.2 matt register_t sr;
488 1.35 perry __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
489 1.1 matt return sr;
490 1.1 matt }
491 1.18 matt #endif /* PPC_OEA64 */
492 1.1 matt
493 1.35 perry static inline register_t
494 1.1 matt pmap_interrupts_off(void)
495 1.1 matt {
496 1.2 matt register_t msr = MFMSR();
497 1.1 matt if (msr & PSL_EE)
498 1.1 matt MTMSR(msr & ~PSL_EE);
499 1.1 matt return msr;
500 1.1 matt }
501 1.1 matt
502 1.1 matt static void
503 1.2 matt pmap_interrupts_restore(register_t msr)
504 1.1 matt {
505 1.1 matt if (msr & PSL_EE)
506 1.1 matt MTMSR(msr);
507 1.1 matt }
508 1.1 matt
509 1.35 perry static inline u_int32_t
510 1.1 matt mfrtcltbl(void)
511 1.1 matt {
512 1.1 matt
513 1.1 matt if ((MFPVR() >> 16) == MPC601)
514 1.1 matt return (mfrtcl() >> 7);
515 1.1 matt else
516 1.1 matt return (mftbl());
517 1.1 matt }
518 1.1 matt
519 1.1 matt /*
520 1.1 matt * These small routines may have to be replaced,
521 1.1 matt * if/when we support processors other that the 604.
522 1.1 matt */
523 1.1 matt
524 1.1 matt void
525 1.1 matt tlbia(void)
526 1.1 matt {
527 1.1 matt caddr_t i;
528 1.1 matt
529 1.1 matt SYNC();
530 1.1 matt /*
531 1.1 matt * Why not use "tlbia"? Because not all processors implement it.
532 1.1 matt *
533 1.20 wiz * This needs to be a per-CPU callback to do the appropriate thing
534 1.1 matt * for the CPU. XXX
535 1.1 matt */
536 1.1 matt for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
537 1.1 matt TLBIE(i);
538 1.1 matt EIEIO();
539 1.1 matt SYNC();
540 1.1 matt }
541 1.1 matt TLBSYNC();
542 1.1 matt SYNC();
543 1.1 matt }
544 1.1 matt
545 1.35 perry static inline register_t
546 1.2 matt va_to_vsid(const struct pmap *pm, vaddr_t addr)
547 1.1 matt {
548 1.18 matt #ifdef PPC_OEA64
549 1.18 matt #if 0
550 1.18 matt const struct ste *ste;
551 1.18 matt register_t hash;
552 1.18 matt int i;
553 1.18 matt
554 1.18 matt hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
555 1.18 matt
556 1.18 matt /*
557 1.18 matt * Try the primary group first
558 1.18 matt */
559 1.18 matt ste = pm->pm_stes[hash].stes;
560 1.18 matt for (i = 0; i < 8; i++, ste++) {
561 1.18 matt if (ste->ste_hi & STE_V) &&
562 1.18 matt (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
563 1.18 matt return ste;
564 1.18 matt }
565 1.18 matt
566 1.18 matt /*
567 1.18 matt * Then the secondary group.
568 1.18 matt */
569 1.18 matt ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
570 1.18 matt for (i = 0; i < 8; i++, ste++) {
571 1.18 matt if (ste->ste_hi & STE_V) &&
572 1.18 matt (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
573 1.18 matt return addr;
574 1.18 matt }
575 1.18 matt
576 1.18 matt return NULL;
577 1.18 matt #else
578 1.18 matt /*
579 1.18 matt * Rather than searching the STE groups for the VSID, we know
580 1.18 matt * how we generate that from the ESID and so do that.
581 1.18 matt */
582 1.18 matt return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
583 1.18 matt #endif
584 1.18 matt #else
585 1.18 matt return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
586 1.18 matt #endif
587 1.1 matt }
588 1.1 matt
589 1.35 perry static inline register_t
590 1.2 matt va_to_pteg(const struct pmap *pm, vaddr_t addr)
591 1.1 matt {
592 1.2 matt register_t hash;
593 1.2 matt
594 1.2 matt hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
595 1.1 matt return hash & pmap_pteg_mask;
596 1.1 matt }
597 1.1 matt
598 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
599 1.1 matt /*
600 1.1 matt * Given a PTE in the page table, calculate the VADDR that hashes to it.
601 1.1 matt * The only bit of magic is that the top 4 bits of the address doesn't
602 1.1 matt * technically exist in the PTE. But we know we reserved 4 bits of the
603 1.1 matt * VSID for it so that's how we get it.
604 1.1 matt */
605 1.1 matt static vaddr_t
606 1.2 matt pmap_pte_to_va(volatile const struct pte *pt)
607 1.1 matt {
608 1.1 matt vaddr_t va;
609 1.1 matt uintptr_t ptaddr = (uintptr_t) pt;
610 1.1 matt
611 1.1 matt if (pt->pte_hi & PTE_HID)
612 1.2 matt ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
613 1.1 matt
614 1.18 matt /* PPC Bits 10-19 PPC64 Bits 42-51 */
615 1.4 matt va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
616 1.1 matt va <<= ADDR_PIDX_SHFT;
617 1.1 matt
618 1.18 matt /* PPC Bits 4-9 PPC64 Bits 36-41 */
619 1.1 matt va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
620 1.1 matt
621 1.18 matt #ifdef PPC_OEA64
622 1.18 matt /* PPC63 Bits 0-35 */
623 1.18 matt /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
624 1.18 matt #endif
625 1.18 matt #ifdef PPC_OEA
626 1.1 matt /* PPC Bits 0-3 */
627 1.1 matt va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
628 1.18 matt #endif
629 1.1 matt
630 1.1 matt return va;
631 1.1 matt }
632 1.1 matt #endif
633 1.1 matt
634 1.35 perry static inline struct pvo_head *
635 1.1 matt pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
636 1.1 matt {
637 1.1 matt #ifdef __HAVE_VM_PAGE_MD
638 1.1 matt struct vm_page *pg;
639 1.1 matt
640 1.1 matt pg = PHYS_TO_VM_PAGE(pa);
641 1.1 matt if (pg_p != NULL)
642 1.1 matt *pg_p = pg;
643 1.1 matt if (pg == NULL)
644 1.1 matt return &pmap_pvo_unmanaged;
645 1.1 matt return &pg->mdpage.mdpg_pvoh;
646 1.1 matt #endif
647 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
648 1.1 matt int bank, pg;
649 1.1 matt
650 1.1 matt bank = vm_physseg_find(atop(pa), &pg);
651 1.1 matt if (pg_p != NULL)
652 1.1 matt *pg_p = pg;
653 1.1 matt if (bank == -1)
654 1.1 matt return &pmap_pvo_unmanaged;
655 1.1 matt return &vm_physmem[bank].pmseg.pvoh[pg];
656 1.1 matt #endif
657 1.1 matt }
658 1.1 matt
659 1.35 perry static inline struct pvo_head *
660 1.1 matt vm_page_to_pvoh(struct vm_page *pg)
661 1.1 matt {
662 1.1 matt #ifdef __HAVE_VM_PAGE_MD
663 1.1 matt return &pg->mdpage.mdpg_pvoh;
664 1.1 matt #endif
665 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
666 1.1 matt return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
667 1.1 matt #endif
668 1.1 matt }
669 1.1 matt
670 1.1 matt
671 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
672 1.35 perry static inline char *
673 1.1 matt pa_to_attr(paddr_t pa)
674 1.1 matt {
675 1.1 matt int bank, pg;
676 1.1 matt
677 1.1 matt bank = vm_physseg_find(atop(pa), &pg);
678 1.1 matt if (bank == -1)
679 1.1 matt return NULL;
680 1.1 matt return &vm_physmem[bank].pmseg.attrs[pg];
681 1.1 matt }
682 1.1 matt #endif
683 1.1 matt
684 1.35 perry static inline void
685 1.1 matt pmap_attr_clear(struct vm_page *pg, int ptebit)
686 1.1 matt {
687 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
688 1.1 matt *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
689 1.1 matt #endif
690 1.1 matt #ifdef __HAVE_VM_PAGE_MD
691 1.1 matt pg->mdpage.mdpg_attrs &= ~ptebit;
692 1.1 matt #endif
693 1.1 matt }
694 1.1 matt
695 1.35 perry static inline int
696 1.1 matt pmap_attr_fetch(struct vm_page *pg)
697 1.1 matt {
698 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
699 1.1 matt return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
700 1.1 matt #endif
701 1.1 matt #ifdef __HAVE_VM_PAGE_MD
702 1.1 matt return pg->mdpage.mdpg_attrs;
703 1.1 matt #endif
704 1.1 matt }
705 1.1 matt
706 1.35 perry static inline void
707 1.1 matt pmap_attr_save(struct vm_page *pg, int ptebit)
708 1.1 matt {
709 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
710 1.1 matt *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
711 1.1 matt #endif
712 1.1 matt #ifdef __HAVE_VM_PAGE_MD
713 1.1 matt pg->mdpage.mdpg_attrs |= ptebit;
714 1.1 matt #endif
715 1.1 matt }
716 1.1 matt
717 1.35 perry static inline int
718 1.2 matt pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
719 1.1 matt {
720 1.1 matt if (pt->pte_hi == pvo_pt->pte_hi
721 1.1 matt #if 0
722 1.1 matt && ((pt->pte_lo ^ pvo_pt->pte_lo) &
723 1.1 matt ~(PTE_REF|PTE_CHG)) == 0
724 1.1 matt #endif
725 1.1 matt )
726 1.1 matt return 1;
727 1.1 matt return 0;
728 1.1 matt }
729 1.1 matt
730 1.35 perry static inline void
731 1.2 matt pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
732 1.1 matt {
733 1.1 matt /*
734 1.1 matt * Construct the PTE. Default to IMB initially. Valid bit
735 1.1 matt * only gets set when the real pte is set in memory.
736 1.1 matt *
737 1.1 matt * Note: Don't set the valid bit for correct operation of tlb update.
738 1.1 matt */
739 1.2 matt pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
740 1.2 matt | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
741 1.1 matt pt->pte_lo = pte_lo;
742 1.1 matt }
743 1.1 matt
744 1.35 perry static inline void
745 1.2 matt pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
746 1.1 matt {
747 1.1 matt pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
748 1.1 matt }
749 1.1 matt
750 1.35 perry static inline void
751 1.2 matt pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
752 1.1 matt {
753 1.1 matt /*
754 1.1 matt * As shown in Section 7.6.3.2.3
755 1.1 matt */
756 1.1 matt pt->pte_lo &= ~ptebit;
757 1.1 matt TLBIE(va);
758 1.1 matt SYNC();
759 1.1 matt EIEIO();
760 1.1 matt TLBSYNC();
761 1.1 matt SYNC();
762 1.1 matt }
763 1.1 matt
764 1.35 perry static inline void
765 1.2 matt pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
766 1.1 matt {
767 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
768 1.1 matt if (pvo_pt->pte_hi & PTE_VALID)
769 1.1 matt panic("pte_set: setting an already valid pte %p", pvo_pt);
770 1.1 matt #endif
771 1.1 matt pvo_pt->pte_hi |= PTE_VALID;
772 1.1 matt /*
773 1.1 matt * Update the PTE as defined in section 7.6.3.1
774 1.1 matt * Note that the REF/CHG bits are from pvo_pt and thus should
775 1.1 matt * have been saved so this routine can restore them (if desired).
776 1.1 matt */
777 1.1 matt pt->pte_lo = pvo_pt->pte_lo;
778 1.1 matt EIEIO();
779 1.1 matt pt->pte_hi = pvo_pt->pte_hi;
780 1.1 matt SYNC();
781 1.1 matt pmap_pte_valid++;
782 1.1 matt }
783 1.1 matt
784 1.35 perry static inline void
785 1.2 matt pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
786 1.1 matt {
787 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
788 1.1 matt if ((pvo_pt->pte_hi & PTE_VALID) == 0)
789 1.1 matt panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
790 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0)
791 1.1 matt panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
792 1.1 matt #endif
793 1.1 matt
794 1.1 matt pvo_pt->pte_hi &= ~PTE_VALID;
795 1.1 matt /*
796 1.1 matt * Force the ref & chg bits back into the PTEs.
797 1.1 matt */
798 1.1 matt SYNC();
799 1.1 matt /*
800 1.1 matt * Invalidate the pte ... (Section 7.6.3.3)
801 1.1 matt */
802 1.1 matt pt->pte_hi &= ~PTE_VALID;
803 1.1 matt SYNC();
804 1.1 matt TLBIE(va);
805 1.1 matt SYNC();
806 1.1 matt EIEIO();
807 1.1 matt TLBSYNC();
808 1.1 matt SYNC();
809 1.1 matt /*
810 1.1 matt * Save the ref & chg bits ...
811 1.1 matt */
812 1.1 matt pmap_pte_synch(pt, pvo_pt);
813 1.1 matt pmap_pte_valid--;
814 1.1 matt }
815 1.1 matt
816 1.35 perry static inline void
817 1.2 matt pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
818 1.1 matt {
819 1.1 matt /*
820 1.1 matt * Invalidate the PTE
821 1.1 matt */
822 1.1 matt pmap_pte_unset(pt, pvo_pt, va);
823 1.1 matt pmap_pte_set(pt, pvo_pt);
824 1.1 matt }
825 1.1 matt
826 1.1 matt /*
827 1.1 matt * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
828 1.1 matt * (either primary or secondary location).
829 1.1 matt *
830 1.1 matt * Note: both the destination and source PTEs must not have PTE_VALID set.
831 1.1 matt */
832 1.1 matt
833 1.1 matt STATIC int
834 1.2 matt pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
835 1.1 matt {
836 1.2 matt volatile struct pte *pt;
837 1.1 matt int i;
838 1.1 matt
839 1.1 matt #if defined(DEBUG)
840 1.18 matt DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
841 1.19 mjl ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
842 1.1 matt #endif
843 1.1 matt /*
844 1.1 matt * First try primary hash.
845 1.1 matt */
846 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
847 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0) {
848 1.1 matt pvo_pt->pte_hi &= ~PTE_HID;
849 1.1 matt pmap_pte_set(pt, pvo_pt);
850 1.1 matt return i;
851 1.1 matt }
852 1.1 matt }
853 1.1 matt
854 1.1 matt /*
855 1.1 matt * Now try secondary hash.
856 1.1 matt */
857 1.1 matt ptegidx ^= pmap_pteg_mask;
858 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
859 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0) {
860 1.1 matt pvo_pt->pte_hi |= PTE_HID;
861 1.1 matt pmap_pte_set(pt, pvo_pt);
862 1.1 matt return i;
863 1.1 matt }
864 1.1 matt }
865 1.1 matt return -1;
866 1.1 matt }
867 1.1 matt
868 1.1 matt /*
869 1.1 matt * Spill handler.
870 1.1 matt *
871 1.1 matt * Tries to spill a page table entry from the overflow area.
872 1.1 matt * This runs in either real mode (if dealing with a exception spill)
873 1.1 matt * or virtual mode when dealing with manually spilling one of the
874 1.1 matt * kernel's pte entries. In either case, interrupts are already
875 1.1 matt * disabled.
876 1.1 matt */
877 1.14 chs
878 1.1 matt int
879 1.14 chs pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
880 1.1 matt {
881 1.1 matt struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
882 1.1 matt struct pvo_entry *pvo;
883 1.15 dyoung /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
884 1.15 dyoung struct pvo_tqhead *pvoh, *vpvoh = NULL;
885 1.1 matt int ptegidx, i, j;
886 1.2 matt volatile struct pteg *pteg;
887 1.2 matt volatile struct pte *pt;
888 1.1 matt
889 1.2 matt ptegidx = va_to_pteg(pm, addr);
890 1.1 matt
891 1.1 matt /*
892 1.1 matt * Have to substitute some entry. Use the primary hash for this.
893 1.12 matt * Use low bits of timebase as random generator. Make sure we are
894 1.12 matt * not picking a kernel pte for replacement.
895 1.1 matt */
896 1.1 matt pteg = &pmap_pteg_table[ptegidx];
897 1.1 matt i = MFTB() & 7;
898 1.12 matt for (j = 0; j < 8; j++) {
899 1.12 matt pt = &pteg->pt[i];
900 1.12 matt if ((pt->pte_hi & PTE_VALID) == 0 ||
901 1.12 matt VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
902 1.12 matt != KERNEL_VSIDBITS)
903 1.12 matt break;
904 1.12 matt i = (i + 1) & 7;
905 1.12 matt }
906 1.12 matt KASSERT(j < 8);
907 1.1 matt
908 1.1 matt source_pvo = NULL;
909 1.1 matt victim_pvo = NULL;
910 1.1 matt pvoh = &pmap_pvo_table[ptegidx];
911 1.1 matt TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
912 1.1 matt
913 1.1 matt /*
914 1.1 matt * We need to find pvo entry for this address...
915 1.1 matt */
916 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
917 1.1 matt
918 1.1 matt /*
919 1.1 matt * If we haven't found the source and we come to a PVO with
920 1.1 matt * a valid PTE, then we know we can't find it because all
921 1.1 matt * evicted PVOs always are first in the list.
922 1.1 matt */
923 1.1 matt if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
924 1.1 matt break;
925 1.2 matt if (source_pvo == NULL && pm == pvo->pvo_pmap &&
926 1.2 matt addr == PVO_VADDR(pvo)) {
927 1.1 matt
928 1.1 matt /*
929 1.1 matt * Now we have found the entry to be spilled into the
930 1.1 matt * pteg. Attempt to insert it into the page table.
931 1.1 matt */
932 1.1 matt j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
933 1.1 matt if (j >= 0) {
934 1.1 matt PVO_PTEGIDX_SET(pvo, j);
935 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
936 1.12 matt PVO_WHERE(pvo, SPILL_INSERT);
937 1.1 matt pvo->pvo_pmap->pm_evictions--;
938 1.1 matt PMAPCOUNT(ptes_spilled);
939 1.1 matt PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
940 1.1 matt ? pmap_evcnt_ptes_secondary
941 1.1 matt : pmap_evcnt_ptes_primary)[j]);
942 1.1 matt
943 1.1 matt /*
944 1.1 matt * Since we keep the evicted entries at the
945 1.1 matt * from of the PVO list, we need move this
946 1.1 matt * (now resident) PVO after the evicted
947 1.1 matt * entries.
948 1.1 matt */
949 1.1 matt next_pvo = TAILQ_NEXT(pvo, pvo_olink);
950 1.1 matt
951 1.1 matt /*
952 1.5 matt * If we don't have to move (either we were the
953 1.5 matt * last entry or the next entry was valid),
954 1.1 matt * don't change our position. Otherwise
955 1.1 matt * move ourselves to the tail of the queue.
956 1.1 matt */
957 1.1 matt if (next_pvo != NULL &&
958 1.1 matt !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
959 1.1 matt TAILQ_REMOVE(pvoh, pvo, pvo_olink);
960 1.1 matt TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
961 1.1 matt }
962 1.1 matt return 1;
963 1.1 matt }
964 1.1 matt source_pvo = pvo;
965 1.14 chs if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
966 1.14 chs return 0;
967 1.14 chs }
968 1.1 matt if (victim_pvo != NULL)
969 1.1 matt break;
970 1.1 matt }
971 1.1 matt
972 1.1 matt /*
973 1.1 matt * We also need the pvo entry of the victim we are replacing
974 1.1 matt * so save the R & C bits of the PTE.
975 1.1 matt */
976 1.1 matt if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
977 1.1 matt pmap_pte_compare(pt, &pvo->pvo_pte)) {
978 1.15 dyoung vpvoh = pvoh; /* *1* */
979 1.1 matt victim_pvo = pvo;
980 1.1 matt if (source_pvo != NULL)
981 1.1 matt break;
982 1.1 matt }
983 1.1 matt }
984 1.1 matt
985 1.1 matt if (source_pvo == NULL) {
986 1.1 matt PMAPCOUNT(ptes_unspilled);
987 1.1 matt return 0;
988 1.1 matt }
989 1.1 matt
990 1.1 matt if (victim_pvo == NULL) {
991 1.1 matt if ((pt->pte_hi & PTE_HID) == 0)
992 1.1 matt panic("pmap_pte_spill: victim p-pte (%p) has "
993 1.1 matt "no pvo entry!", pt);
994 1.1 matt
995 1.1 matt /*
996 1.1 matt * If this is a secondary PTE, we need to search
997 1.1 matt * its primary pvo bucket for the matching PVO.
998 1.1 matt */
999 1.15 dyoung vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1000 1.1 matt TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1001 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1002 1.1 matt
1003 1.1 matt /*
1004 1.1 matt * We also need the pvo entry of the victim we are
1005 1.1 matt * replacing so save the R & C bits of the PTE.
1006 1.1 matt */
1007 1.1 matt if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1008 1.1 matt victim_pvo = pvo;
1009 1.1 matt break;
1010 1.1 matt }
1011 1.1 matt }
1012 1.1 matt if (victim_pvo == NULL)
1013 1.1 matt panic("pmap_pte_spill: victim s-pte (%p) has "
1014 1.1 matt "no pvo entry!", pt);
1015 1.1 matt }
1016 1.1 matt
1017 1.1 matt /*
1018 1.12 matt * The victim should be not be a kernel PVO/PTE entry.
1019 1.12 matt */
1020 1.12 matt KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1021 1.12 matt KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1022 1.12 matt KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1023 1.12 matt
1024 1.12 matt /*
1025 1.1 matt * We are invalidating the TLB entry for the EA for the
1026 1.1 matt * we are replacing even though its valid; If we don't
1027 1.1 matt * we lose any ref/chg bit changes contained in the TLB
1028 1.1 matt * entry.
1029 1.1 matt */
1030 1.1 matt source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1031 1.1 matt
1032 1.1 matt /*
1033 1.1 matt * To enforce the PVO list ordering constraint that all
1034 1.1 matt * evicted entries should come before all valid entries,
1035 1.1 matt * move the source PVO to the tail of its list and the
1036 1.1 matt * victim PVO to the head of its list (which might not be
1037 1.1 matt * the same list, if the victim was using the secondary hash).
1038 1.1 matt */
1039 1.1 matt TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1040 1.1 matt TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1041 1.1 matt TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1042 1.1 matt TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1043 1.1 matt pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1044 1.1 matt pmap_pte_set(pt, &source_pvo->pvo_pte);
1045 1.1 matt victim_pvo->pvo_pmap->pm_evictions++;
1046 1.1 matt source_pvo->pvo_pmap->pm_evictions--;
1047 1.12 matt PVO_WHERE(victim_pvo, SPILL_UNSET);
1048 1.12 matt PVO_WHERE(source_pvo, SPILL_SET);
1049 1.1 matt
1050 1.1 matt PVO_PTEGIDX_CLR(victim_pvo);
1051 1.1 matt PVO_PTEGIDX_SET(source_pvo, i);
1052 1.1 matt PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1053 1.1 matt PMAPCOUNT(ptes_spilled);
1054 1.1 matt PMAPCOUNT(ptes_evicted);
1055 1.1 matt PMAPCOUNT(ptes_removed);
1056 1.1 matt
1057 1.1 matt PMAP_PVO_CHECK(victim_pvo);
1058 1.1 matt PMAP_PVO_CHECK(source_pvo);
1059 1.1 matt return 1;
1060 1.1 matt }
1061 1.1 matt
1062 1.1 matt /*
1063 1.1 matt * Restrict given range to physical memory
1064 1.1 matt */
1065 1.1 matt void
1066 1.1 matt pmap_real_memory(paddr_t *start, psize_t *size)
1067 1.1 matt {
1068 1.1 matt struct mem_region *mp;
1069 1.1 matt
1070 1.1 matt for (mp = mem; mp->size; mp++) {
1071 1.1 matt if (*start + *size > mp->start
1072 1.1 matt && *start < mp->start + mp->size) {
1073 1.1 matt if (*start < mp->start) {
1074 1.1 matt *size -= mp->start - *start;
1075 1.1 matt *start = mp->start;
1076 1.1 matt }
1077 1.1 matt if (*start + *size > mp->start + mp->size)
1078 1.1 matt *size = mp->start + mp->size - *start;
1079 1.1 matt return;
1080 1.1 matt }
1081 1.1 matt }
1082 1.1 matt *size = 0;
1083 1.1 matt }
1084 1.1 matt
1085 1.1 matt /*
1086 1.1 matt * Initialize anything else for pmap handling.
1087 1.1 matt * Called during vm_init().
1088 1.1 matt */
1089 1.1 matt void
1090 1.1 matt pmap_init(void)
1091 1.1 matt {
1092 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
1093 1.1 matt struct pvo_tqhead *pvoh;
1094 1.1 matt int bank;
1095 1.1 matt long sz;
1096 1.1 matt char *attr;
1097 1.1 matt
1098 1.1 matt pvoh = pmap_physseg.pvoh;
1099 1.1 matt attr = pmap_physseg.attrs;
1100 1.1 matt for (bank = 0; bank < vm_nphysseg; bank++) {
1101 1.1 matt sz = vm_physmem[bank].end - vm_physmem[bank].start;
1102 1.1 matt vm_physmem[bank].pmseg.pvoh = pvoh;
1103 1.1 matt vm_physmem[bank].pmseg.attrs = attr;
1104 1.1 matt for (; sz > 0; sz--, pvoh++, attr++) {
1105 1.1 matt TAILQ_INIT(pvoh);
1106 1.1 matt *attr = 0;
1107 1.1 matt }
1108 1.1 matt }
1109 1.1 matt #endif
1110 1.1 matt
1111 1.1 matt pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1112 1.1 matt sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1113 1.1 matt &pmap_pool_mallocator);
1114 1.1 matt
1115 1.1 matt pool_setlowat(&pmap_mpvo_pool, 1008);
1116 1.1 matt
1117 1.1 matt pmap_initialized = 1;
1118 1.1 matt
1119 1.1 matt }
1120 1.1 matt
1121 1.1 matt /*
1122 1.10 thorpej * How much virtual space does the kernel get?
1123 1.10 thorpej */
1124 1.10 thorpej void
1125 1.10 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1126 1.10 thorpej {
1127 1.10 thorpej /*
1128 1.10 thorpej * For now, reserve one segment (minus some overhead) for kernel
1129 1.10 thorpej * virtual memory
1130 1.10 thorpej */
1131 1.10 thorpej *start = VM_MIN_KERNEL_ADDRESS;
1132 1.10 thorpej *end = VM_MAX_KERNEL_ADDRESS;
1133 1.10 thorpej }
1134 1.10 thorpej
1135 1.10 thorpej /*
1136 1.1 matt * Allocate, initialize, and return a new physical map.
1137 1.1 matt */
1138 1.1 matt pmap_t
1139 1.1 matt pmap_create(void)
1140 1.1 matt {
1141 1.1 matt pmap_t pm;
1142 1.1 matt
1143 1.1 matt pm = pool_get(&pmap_pool, PR_WAITOK);
1144 1.1 matt memset((caddr_t)pm, 0, sizeof *pm);
1145 1.1 matt pmap_pinit(pm);
1146 1.1 matt
1147 1.1 matt DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1148 1.18 matt "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1149 1.18 matt "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1150 1.19 mjl (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1151 1.19 mjl (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1152 1.19 mjl (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1153 1.19 mjl (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1154 1.19 mjl (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1155 1.19 mjl (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1156 1.19 mjl (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1157 1.19 mjl (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1158 1.1 matt return pm;
1159 1.1 matt }
1160 1.1 matt
1161 1.1 matt /*
1162 1.1 matt * Initialize a preallocated and zeroed pmap structure.
1163 1.1 matt */
1164 1.1 matt void
1165 1.1 matt pmap_pinit(pmap_t pm)
1166 1.1 matt {
1167 1.2 matt register_t entropy = MFTB();
1168 1.2 matt register_t mask;
1169 1.2 matt int i;
1170 1.1 matt
1171 1.1 matt /*
1172 1.1 matt * Allocate some segment registers for this pmap.
1173 1.1 matt */
1174 1.1 matt pm->pm_refs = 1;
1175 1.2 matt for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1176 1.2 matt static register_t pmap_vsidcontext;
1177 1.2 matt register_t hash;
1178 1.2 matt unsigned int n;
1179 1.1 matt
1180 1.1 matt /* Create a new value by multiplying by a prime adding in
1181 1.1 matt * entropy from the timebase register. This is to make the
1182 1.1 matt * VSID more random so that the PT Hash function collides
1183 1.1 matt * less often. (note that the prime causes gcc to do shifts
1184 1.1 matt * instead of a multiply)
1185 1.1 matt */
1186 1.1 matt pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1187 1.1 matt hash = pmap_vsidcontext & (NPMAPS - 1);
1188 1.23 aymeric if (hash == 0) { /* 0 is special, avoid it */
1189 1.23 aymeric entropy += 0xbadf00d;
1190 1.1 matt continue;
1191 1.23 aymeric }
1192 1.1 matt n = hash >> 5;
1193 1.2 matt mask = 1L << (hash & (VSID_NBPW-1));
1194 1.2 matt hash = pmap_vsidcontext;
1195 1.1 matt if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1196 1.1 matt /* anything free in this bucket? */
1197 1.2 matt if (~pmap_vsid_bitmap[n] == 0) {
1198 1.23 aymeric entropy = hash ^ (hash >> 16);
1199 1.1 matt continue;
1200 1.1 matt }
1201 1.1 matt i = ffs(~pmap_vsid_bitmap[n]) - 1;
1202 1.2 matt mask = 1L << i;
1203 1.2 matt hash &= ~(VSID_NBPW-1);
1204 1.1 matt hash |= i;
1205 1.1 matt }
1206 1.18 matt hash &= PTE_VSID >> PTE_VSID_SHFT;
1207 1.1 matt pmap_vsid_bitmap[n] |= mask;
1208 1.18 matt pm->pm_vsid = hash;
1209 1.18 matt #ifndef PPC_OEA64
1210 1.1 matt for (i = 0; i < 16; i++)
1211 1.14 chs pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1212 1.14 chs SR_NOEXEC;
1213 1.18 matt #endif
1214 1.1 matt return;
1215 1.1 matt }
1216 1.1 matt panic("pmap_pinit: out of segments");
1217 1.1 matt }
1218 1.1 matt
1219 1.1 matt /*
1220 1.1 matt * Add a reference to the given pmap.
1221 1.1 matt */
1222 1.1 matt void
1223 1.1 matt pmap_reference(pmap_t pm)
1224 1.1 matt {
1225 1.1 matt pm->pm_refs++;
1226 1.1 matt }
1227 1.1 matt
1228 1.1 matt /*
1229 1.1 matt * Retire the given pmap from service.
1230 1.1 matt * Should only be called if the map contains no valid mappings.
1231 1.1 matt */
1232 1.1 matt void
1233 1.1 matt pmap_destroy(pmap_t pm)
1234 1.1 matt {
1235 1.1 matt if (--pm->pm_refs == 0) {
1236 1.1 matt pmap_release(pm);
1237 1.1 matt pool_put(&pmap_pool, pm);
1238 1.1 matt }
1239 1.1 matt }
1240 1.1 matt
1241 1.1 matt /*
1242 1.1 matt * Release any resources held by the given physical map.
1243 1.1 matt * Called when a pmap initialized by pmap_pinit is being released.
1244 1.1 matt */
1245 1.1 matt void
1246 1.1 matt pmap_release(pmap_t pm)
1247 1.1 matt {
1248 1.1 matt int idx, mask;
1249 1.1 matt
1250 1.1 matt if (pm->pm_sr[0] == 0)
1251 1.1 matt panic("pmap_release");
1252 1.22 aymeric idx = pm->pm_vsid & (NPMAPS-1);
1253 1.1 matt mask = 1 << (idx % VSID_NBPW);
1254 1.1 matt idx /= VSID_NBPW;
1255 1.22 aymeric
1256 1.22 aymeric KASSERT(pmap_vsid_bitmap[idx] & mask);
1257 1.1 matt pmap_vsid_bitmap[idx] &= ~mask;
1258 1.1 matt }
1259 1.1 matt
1260 1.1 matt /*
1261 1.1 matt * Copy the range specified by src_addr/len
1262 1.1 matt * from the source map to the range dst_addr/len
1263 1.1 matt * in the destination map.
1264 1.1 matt *
1265 1.1 matt * This routine is only advisory and need not do anything.
1266 1.1 matt */
1267 1.1 matt void
1268 1.1 matt pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1269 1.1 matt vsize_t len, vaddr_t src_addr)
1270 1.1 matt {
1271 1.1 matt PMAPCOUNT(copies);
1272 1.1 matt }
1273 1.1 matt
1274 1.1 matt /*
1275 1.1 matt * Require that all active physical maps contain no
1276 1.1 matt * incorrect entries NOW.
1277 1.1 matt */
1278 1.1 matt void
1279 1.1 matt pmap_update(struct pmap *pmap)
1280 1.1 matt {
1281 1.1 matt PMAPCOUNT(updates);
1282 1.1 matt TLBSYNC();
1283 1.1 matt }
1284 1.1 matt
1285 1.1 matt /*
1286 1.1 matt * Garbage collects the physical map system for
1287 1.1 matt * pages which are no longer used.
1288 1.1 matt * Success need not be guaranteed -- that is, there
1289 1.1 matt * may well be pages which are not referenced, but
1290 1.1 matt * others may be collected.
1291 1.1 matt * Called by the pageout daemon when pages are scarce.
1292 1.1 matt */
1293 1.1 matt void
1294 1.1 matt pmap_collect(pmap_t pm)
1295 1.1 matt {
1296 1.1 matt PMAPCOUNT(collects);
1297 1.1 matt }
1298 1.1 matt
1299 1.35 perry static inline int
1300 1.1 matt pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1301 1.1 matt {
1302 1.1 matt int pteidx;
1303 1.1 matt /*
1304 1.1 matt * We can find the actual pte entry without searching by
1305 1.1 matt * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1306 1.1 matt * and by noticing the HID bit.
1307 1.1 matt */
1308 1.1 matt pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1309 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_HID)
1310 1.1 matt pteidx ^= pmap_pteg_mask * 8;
1311 1.1 matt return pteidx;
1312 1.1 matt }
1313 1.1 matt
1314 1.2 matt volatile struct pte *
1315 1.1 matt pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1316 1.1 matt {
1317 1.2 matt volatile struct pte *pt;
1318 1.1 matt
1319 1.1 matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1320 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1321 1.1 matt return NULL;
1322 1.1 matt #endif
1323 1.1 matt
1324 1.1 matt /*
1325 1.1 matt * If we haven't been supplied the ptegidx, calculate it.
1326 1.1 matt */
1327 1.1 matt if (pteidx == -1) {
1328 1.1 matt int ptegidx;
1329 1.2 matt ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1330 1.1 matt pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1331 1.1 matt }
1332 1.1 matt
1333 1.1 matt pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1334 1.1 matt
1335 1.1 matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1336 1.1 matt return pt;
1337 1.1 matt #else
1338 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1339 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1340 1.1 matt "pvo but no valid pte index", pvo);
1341 1.1 matt }
1342 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1343 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1344 1.1 matt "pvo but no valid pte", pvo);
1345 1.1 matt }
1346 1.1 matt
1347 1.1 matt if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1348 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1349 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1350 1.1 matt pmap_pte_print(pt);
1351 1.1 matt #endif
1352 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1353 1.1 matt "pmap_pteg_table %p but invalid in pvo",
1354 1.1 matt pvo, pt);
1355 1.1 matt }
1356 1.1 matt if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1357 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1358 1.1 matt pmap_pte_print(pt);
1359 1.1 matt #endif
1360 1.1 matt panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1361 1.1 matt "not match pte %p in pmap_pteg_table",
1362 1.1 matt pvo, pt);
1363 1.1 matt }
1364 1.1 matt return pt;
1365 1.1 matt }
1366 1.1 matt
1367 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1368 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1369 1.1 matt pmap_pte_print(pt);
1370 1.1 matt #endif
1371 1.12 matt panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1372 1.1 matt "pmap_pteg_table but valid in pvo", pvo, pt);
1373 1.1 matt }
1374 1.1 matt return NULL;
1375 1.1 matt #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1376 1.1 matt }
1377 1.1 matt
1378 1.1 matt struct pvo_entry *
1379 1.1 matt pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1380 1.1 matt {
1381 1.1 matt struct pvo_entry *pvo;
1382 1.1 matt int ptegidx;
1383 1.1 matt
1384 1.1 matt va &= ~ADDR_POFF;
1385 1.2 matt ptegidx = va_to_pteg(pm, va);
1386 1.1 matt
1387 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1388 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1389 1.1 matt if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1390 1.1 matt panic("pmap_pvo_find_va: invalid pvo %p on "
1391 1.1 matt "list %#x (%p)", pvo, ptegidx,
1392 1.1 matt &pmap_pvo_table[ptegidx]);
1393 1.1 matt #endif
1394 1.1 matt if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1395 1.1 matt if (pteidx_p)
1396 1.1 matt *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1397 1.1 matt return pvo;
1398 1.1 matt }
1399 1.1 matt }
1400 1.1 matt return NULL;
1401 1.1 matt }
1402 1.1 matt
1403 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1404 1.1 matt void
1405 1.1 matt pmap_pvo_check(const struct pvo_entry *pvo)
1406 1.1 matt {
1407 1.1 matt struct pvo_head *pvo_head;
1408 1.1 matt struct pvo_entry *pvo0;
1409 1.2 matt volatile struct pte *pt;
1410 1.1 matt int failed = 0;
1411 1.1 matt
1412 1.1 matt if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1413 1.1 matt panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1414 1.1 matt
1415 1.1 matt if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1416 1.1 matt printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1417 1.1 matt pvo, pvo->pvo_pmap);
1418 1.1 matt failed = 1;
1419 1.1 matt }
1420 1.1 matt
1421 1.1 matt if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1422 1.1 matt (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1423 1.1 matt printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1424 1.1 matt pvo, TAILQ_NEXT(pvo, pvo_olink));
1425 1.1 matt failed = 1;
1426 1.1 matt }
1427 1.1 matt
1428 1.1 matt if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1429 1.1 matt (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1430 1.1 matt printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1431 1.1 matt pvo, LIST_NEXT(pvo, pvo_vlink));
1432 1.1 matt failed = 1;
1433 1.1 matt }
1434 1.1 matt
1435 1.1 matt if (pvo->pvo_vaddr & PVO_MANAGED) {
1436 1.1 matt pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1437 1.1 matt } else {
1438 1.1 matt if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1439 1.1 matt printf("pmap_pvo_check: pvo %p: non kernel address "
1440 1.1 matt "on kernel unmanaged list\n", pvo);
1441 1.1 matt failed = 1;
1442 1.1 matt }
1443 1.1 matt pvo_head = &pmap_pvo_kunmanaged;
1444 1.1 matt }
1445 1.1 matt LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1446 1.1 matt if (pvo0 == pvo)
1447 1.1 matt break;
1448 1.1 matt }
1449 1.1 matt if (pvo0 == NULL) {
1450 1.1 matt printf("pmap_pvo_check: pvo %p: not present "
1451 1.1 matt "on its vlist head %p\n", pvo, pvo_head);
1452 1.1 matt failed = 1;
1453 1.1 matt }
1454 1.1 matt if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1455 1.1 matt printf("pmap_pvo_check: pvo %p: not present "
1456 1.1 matt "on its olist head\n", pvo);
1457 1.1 matt failed = 1;
1458 1.1 matt }
1459 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
1460 1.1 matt if (pt == NULL) {
1461 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1462 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1463 1.1 matt "no PTE\n", pvo);
1464 1.1 matt failed = 1;
1465 1.1 matt }
1466 1.1 matt } else {
1467 1.1 matt if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1468 1.1 matt (uintptr_t) pt >=
1469 1.1 matt (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1470 1.1 matt printf("pmap_pvo_check: pvo %p: pte %p not in "
1471 1.1 matt "pteg table\n", pvo, pt);
1472 1.1 matt failed = 1;
1473 1.1 matt }
1474 1.1 matt if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1475 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1476 1.1 matt "no PTE\n", pvo);
1477 1.1 matt failed = 1;
1478 1.1 matt }
1479 1.1 matt if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1480 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1481 1.19 mjl "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1482 1.1 matt failed = 1;
1483 1.1 matt }
1484 1.1 matt if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1485 1.1 matt (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1486 1.1 matt printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1487 1.18 matt "%#x/%#x\n", pvo,
1488 1.19 mjl (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1489 1.19 mjl (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1490 1.1 matt failed = 1;
1491 1.1 matt }
1492 1.1 matt if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1493 1.1 matt printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1494 1.1 matt " doesn't not match PVO's VA %#lx\n",
1495 1.1 matt pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1496 1.1 matt failed = 1;
1497 1.1 matt }
1498 1.1 matt if (failed)
1499 1.1 matt pmap_pte_print(pt);
1500 1.1 matt }
1501 1.1 matt if (failed)
1502 1.1 matt panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1503 1.1 matt pvo->pvo_pmap);
1504 1.1 matt }
1505 1.1 matt #endif /* DEBUG || PMAPCHECK */
1506 1.1 matt
1507 1.1 matt /*
1508 1.25 chs * Search the PVO table looking for a non-wired entry.
1509 1.25 chs * If we find one, remove it and return it.
1510 1.25 chs */
1511 1.25 chs
1512 1.25 chs struct pvo_entry *
1513 1.25 chs pmap_pvo_reclaim(struct pmap *pm)
1514 1.25 chs {
1515 1.25 chs struct pvo_tqhead *pvoh;
1516 1.25 chs struct pvo_entry *pvo;
1517 1.25 chs uint32_t idx, endidx;
1518 1.25 chs
1519 1.25 chs endidx = pmap_pvo_reclaim_nextidx;
1520 1.25 chs for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1521 1.25 chs idx = (idx + 1) & pmap_pteg_mask) {
1522 1.25 chs pvoh = &pmap_pvo_table[idx];
1523 1.25 chs TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1524 1.25 chs if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
1525 1.33 chs pmap_pvo_remove(pvo, -1, NULL);
1526 1.25 chs pmap_pvo_reclaim_nextidx = idx;
1527 1.26 matt PMAPCOUNT(pvos_reclaimed);
1528 1.25 chs return pvo;
1529 1.25 chs }
1530 1.25 chs }
1531 1.25 chs }
1532 1.25 chs return NULL;
1533 1.25 chs }
1534 1.25 chs
1535 1.25 chs /*
1536 1.1 matt * This returns whether this is the first mapping of a page.
1537 1.1 matt */
1538 1.1 matt int
1539 1.1 matt pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1540 1.2 matt vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1541 1.1 matt {
1542 1.1 matt struct pvo_entry *pvo;
1543 1.1 matt struct pvo_tqhead *pvoh;
1544 1.2 matt register_t msr;
1545 1.1 matt int ptegidx;
1546 1.1 matt int i;
1547 1.1 matt int poolflags = PR_NOWAIT;
1548 1.1 matt
1549 1.28 chs /*
1550 1.28 chs * Compute the PTE Group index.
1551 1.28 chs */
1552 1.28 chs va &= ~ADDR_POFF;
1553 1.28 chs ptegidx = va_to_pteg(pm, va);
1554 1.28 chs
1555 1.28 chs msr = pmap_interrupts_off();
1556 1.28 chs
1557 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1558 1.1 matt if (pmap_pvo_remove_depth > 0)
1559 1.1 matt panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1560 1.1 matt if (++pmap_pvo_enter_depth > 1)
1561 1.1 matt panic("pmap_pvo_enter: called recursively!");
1562 1.1 matt #endif
1563 1.1 matt
1564 1.1 matt /*
1565 1.1 matt * Remove any existing mapping for this page. Reuse the
1566 1.1 matt * pvo entry if there a mapping.
1567 1.1 matt */
1568 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1569 1.1 matt if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1570 1.1 matt #ifdef DEBUG
1571 1.1 matt if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1572 1.1 matt ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1573 1.1 matt ~(PTE_REF|PTE_CHG)) == 0 &&
1574 1.1 matt va < VM_MIN_KERNEL_ADDRESS) {
1575 1.18 matt printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1576 1.19 mjl pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1577 1.18 matt printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1578 1.19 mjl (unsigned int) pvo->pvo_pte.pte_hi,
1579 1.19 mjl (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1580 1.1 matt pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1581 1.1 matt #ifdef DDBX
1582 1.1 matt Debugger();
1583 1.1 matt #endif
1584 1.1 matt }
1585 1.1 matt #endif
1586 1.1 matt PMAPCOUNT(mappings_replaced);
1587 1.33 chs pmap_pvo_remove(pvo, -1, NULL);
1588 1.1 matt break;
1589 1.1 matt }
1590 1.1 matt }
1591 1.1 matt
1592 1.1 matt /*
1593 1.1 matt * If we aren't overwriting an mapping, try to allocate
1594 1.1 matt */
1595 1.26 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1596 1.26 matt --pmap_pvo_enter_depth;
1597 1.26 matt #endif
1598 1.1 matt pmap_interrupts_restore(msr);
1599 1.33 chs if (pvo) {
1600 1.33 chs pmap_pvo_free(pvo);
1601 1.33 chs }
1602 1.1 matt pvo = pool_get(pl, poolflags);
1603 1.25 chs
1604 1.25 chs #ifdef DEBUG
1605 1.25 chs /*
1606 1.25 chs * Exercise pmap_pvo_reclaim() a little.
1607 1.25 chs */
1608 1.25 chs if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1609 1.25 chs pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1610 1.25 chs (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1611 1.25 chs pool_put(pl, pvo);
1612 1.25 chs pvo = NULL;
1613 1.25 chs }
1614 1.25 chs #endif
1615 1.25 chs
1616 1.1 matt msr = pmap_interrupts_off();
1617 1.26 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1618 1.26 matt ++pmap_pvo_enter_depth;
1619 1.26 matt #endif
1620 1.1 matt if (pvo == NULL) {
1621 1.1 matt pvo = pmap_pvo_reclaim(pm);
1622 1.1 matt if (pvo == NULL) {
1623 1.1 matt if ((flags & PMAP_CANFAIL) == 0)
1624 1.1 matt panic("pmap_pvo_enter: failed");
1625 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1626 1.1 matt pmap_pvo_enter_depth--;
1627 1.1 matt #endif
1628 1.26 matt PMAPCOUNT(pvos_failed);
1629 1.1 matt pmap_interrupts_restore(msr);
1630 1.1 matt return ENOMEM;
1631 1.1 matt }
1632 1.1 matt }
1633 1.25 chs
1634 1.1 matt pvo->pvo_vaddr = va;
1635 1.1 matt pvo->pvo_pmap = pm;
1636 1.1 matt pvo->pvo_vaddr &= ~ADDR_POFF;
1637 1.1 matt if (flags & VM_PROT_EXECUTE) {
1638 1.1 matt PMAPCOUNT(exec_mappings);
1639 1.14 chs pvo_set_exec(pvo);
1640 1.1 matt }
1641 1.1 matt if (flags & PMAP_WIRED)
1642 1.1 matt pvo->pvo_vaddr |= PVO_WIRED;
1643 1.1 matt if (pvo_head != &pmap_pvo_kunmanaged) {
1644 1.1 matt pvo->pvo_vaddr |= PVO_MANAGED;
1645 1.1 matt PMAPCOUNT(mappings);
1646 1.1 matt } else {
1647 1.1 matt PMAPCOUNT(kernel_mappings);
1648 1.1 matt }
1649 1.2 matt pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1650 1.1 matt
1651 1.1 matt LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1652 1.1 matt if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1653 1.1 matt pvo->pvo_pmap->pm_stats.wired_count++;
1654 1.1 matt pvo->pvo_pmap->pm_stats.resident_count++;
1655 1.1 matt #if defined(DEBUG)
1656 1.1 matt if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1657 1.1 matt DPRINTFN(PVOENTER,
1658 1.1 matt ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1659 1.1 matt pvo, pm, va, pa));
1660 1.1 matt #endif
1661 1.1 matt
1662 1.1 matt /*
1663 1.1 matt * We hope this succeeds but it isn't required.
1664 1.1 matt */
1665 1.1 matt pvoh = &pmap_pvo_table[ptegidx];
1666 1.1 matt i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1667 1.1 matt if (i >= 0) {
1668 1.1 matt PVO_PTEGIDX_SET(pvo, i);
1669 1.12 matt PVO_WHERE(pvo, ENTER_INSERT);
1670 1.1 matt PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1671 1.1 matt ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1672 1.1 matt TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1673 1.1 matt } else {
1674 1.1 matt /*
1675 1.1 matt * Since we didn't have room for this entry (which makes it
1676 1.1 matt * and evicted entry), place it at the head of the list.
1677 1.1 matt */
1678 1.1 matt TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1679 1.1 matt PMAPCOUNT(ptes_evicted);
1680 1.1 matt pm->pm_evictions++;
1681 1.12 matt /*
1682 1.12 matt * If this is a kernel page, make sure it's active.
1683 1.12 matt */
1684 1.12 matt if (pm == pmap_kernel()) {
1685 1.14 chs i = pmap_pte_spill(pm, va, FALSE);
1686 1.12 matt KASSERT(i);
1687 1.12 matt }
1688 1.1 matt }
1689 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1690 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1691 1.1 matt pmap_pvo_enter_depth--;
1692 1.1 matt #endif
1693 1.1 matt pmap_interrupts_restore(msr);
1694 1.1 matt return 0;
1695 1.1 matt }
1696 1.1 matt
1697 1.1 matt void
1698 1.33 chs pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1699 1.1 matt {
1700 1.2 matt volatile struct pte *pt;
1701 1.1 matt int ptegidx;
1702 1.1 matt
1703 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1704 1.1 matt if (++pmap_pvo_remove_depth > 1)
1705 1.1 matt panic("pmap_pvo_remove: called recursively!");
1706 1.1 matt #endif
1707 1.1 matt
1708 1.1 matt /*
1709 1.1 matt * If we haven't been supplied the ptegidx, calculate it.
1710 1.1 matt */
1711 1.1 matt if (pteidx == -1) {
1712 1.2 matt ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1713 1.1 matt pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1714 1.1 matt } else {
1715 1.1 matt ptegidx = pteidx >> 3;
1716 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_HID)
1717 1.1 matt ptegidx ^= pmap_pteg_mask;
1718 1.1 matt }
1719 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1720 1.1 matt
1721 1.1 matt /*
1722 1.1 matt * If there is an active pte entry, we need to deactivate it
1723 1.1 matt * (and save the ref & chg bits).
1724 1.1 matt */
1725 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
1726 1.1 matt if (pt != NULL) {
1727 1.1 matt pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1728 1.12 matt PVO_WHERE(pvo, REMOVE);
1729 1.1 matt PVO_PTEGIDX_CLR(pvo);
1730 1.1 matt PMAPCOUNT(ptes_removed);
1731 1.1 matt } else {
1732 1.1 matt KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1733 1.1 matt pvo->pvo_pmap->pm_evictions--;
1734 1.1 matt }
1735 1.1 matt
1736 1.1 matt /*
1737 1.14 chs * Account for executable mappings.
1738 1.14 chs */
1739 1.14 chs if (PVO_ISEXECUTABLE(pvo))
1740 1.14 chs pvo_clear_exec(pvo);
1741 1.14 chs
1742 1.14 chs /*
1743 1.14 chs * Update our statistics.
1744 1.1 matt */
1745 1.1 matt pvo->pvo_pmap->pm_stats.resident_count--;
1746 1.1 matt if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1747 1.1 matt pvo->pvo_pmap->pm_stats.wired_count--;
1748 1.1 matt
1749 1.1 matt /*
1750 1.1 matt * Save the REF/CHG bits into their cache if the page is managed.
1751 1.1 matt */
1752 1.1 matt if (pvo->pvo_vaddr & PVO_MANAGED) {
1753 1.2 matt register_t ptelo = pvo->pvo_pte.pte_lo;
1754 1.1 matt struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1755 1.1 matt
1756 1.1 matt if (pg != NULL) {
1757 1.1 matt pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1758 1.1 matt }
1759 1.1 matt PMAPCOUNT(unmappings);
1760 1.1 matt } else {
1761 1.1 matt PMAPCOUNT(kernel_unmappings);
1762 1.1 matt }
1763 1.1 matt
1764 1.1 matt /*
1765 1.1 matt * Remove the PVO from its lists and return it to the pool.
1766 1.1 matt */
1767 1.1 matt LIST_REMOVE(pvo, pvo_vlink);
1768 1.1 matt TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1769 1.33 chs if (pvol) {
1770 1.33 chs LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1771 1.25 chs }
1772 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1773 1.1 matt pmap_pvo_remove_depth--;
1774 1.1 matt #endif
1775 1.1 matt }
1776 1.1 matt
1777 1.33 chs void
1778 1.33 chs pmap_pvo_free(struct pvo_entry *pvo)
1779 1.33 chs {
1780 1.33 chs
1781 1.33 chs pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
1782 1.33 chs &pmap_upvo_pool, pvo);
1783 1.33 chs }
1784 1.33 chs
1785 1.33 chs void
1786 1.33 chs pmap_pvo_free_list(struct pvo_head *pvol)
1787 1.33 chs {
1788 1.33 chs struct pvo_entry *pvo, *npvo;
1789 1.33 chs
1790 1.33 chs for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1791 1.33 chs npvo = LIST_NEXT(pvo, pvo_vlink);
1792 1.33 chs LIST_REMOVE(pvo, pvo_vlink);
1793 1.33 chs pmap_pvo_free(pvo);
1794 1.33 chs }
1795 1.33 chs }
1796 1.33 chs
1797 1.1 matt /*
1798 1.14 chs * Mark a mapping as executable.
1799 1.14 chs * If this is the first executable mapping in the segment,
1800 1.14 chs * clear the noexec flag.
1801 1.14 chs */
1802 1.14 chs STATIC void
1803 1.14 chs pvo_set_exec(struct pvo_entry *pvo)
1804 1.14 chs {
1805 1.14 chs struct pmap *pm = pvo->pvo_pmap;
1806 1.14 chs
1807 1.14 chs if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1808 1.14 chs return;
1809 1.14 chs }
1810 1.14 chs pvo->pvo_vaddr |= PVO_EXECUTABLE;
1811 1.18 matt #ifdef PPC_OEA
1812 1.18 matt {
1813 1.18 matt int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1814 1.18 matt if (pm->pm_exec[sr]++ == 0) {
1815 1.18 matt pm->pm_sr[sr] &= ~SR_NOEXEC;
1816 1.18 matt }
1817 1.14 chs }
1818 1.18 matt #endif
1819 1.14 chs }
1820 1.14 chs
1821 1.14 chs /*
1822 1.14 chs * Mark a mapping as non-executable.
1823 1.14 chs * If this was the last executable mapping in the segment,
1824 1.14 chs * set the noexec flag.
1825 1.14 chs */
1826 1.14 chs STATIC void
1827 1.14 chs pvo_clear_exec(struct pvo_entry *pvo)
1828 1.14 chs {
1829 1.14 chs struct pmap *pm = pvo->pvo_pmap;
1830 1.14 chs
1831 1.14 chs if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1832 1.14 chs return;
1833 1.14 chs }
1834 1.14 chs pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1835 1.18 matt #ifdef PPC_OEA
1836 1.18 matt {
1837 1.18 matt int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1838 1.18 matt if (--pm->pm_exec[sr] == 0) {
1839 1.18 matt pm->pm_sr[sr] |= SR_NOEXEC;
1840 1.18 matt }
1841 1.14 chs }
1842 1.18 matt #endif
1843 1.14 chs }
1844 1.14 chs
1845 1.14 chs /*
1846 1.1 matt * Insert physical page at pa into the given pmap at virtual address va.
1847 1.1 matt */
1848 1.1 matt int
1849 1.1 matt pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1850 1.1 matt {
1851 1.1 matt struct mem_region *mp;
1852 1.1 matt struct pvo_head *pvo_head;
1853 1.1 matt struct vm_page *pg;
1854 1.1 matt struct pool *pl;
1855 1.2 matt register_t pte_lo;
1856 1.1 matt int error;
1857 1.1 matt u_int pvo_flags;
1858 1.1 matt u_int was_exec = 0;
1859 1.1 matt
1860 1.1 matt if (__predict_false(!pmap_initialized)) {
1861 1.1 matt pvo_head = &pmap_pvo_kunmanaged;
1862 1.1 matt pl = &pmap_upvo_pool;
1863 1.1 matt pvo_flags = 0;
1864 1.1 matt pg = NULL;
1865 1.1 matt was_exec = PTE_EXEC;
1866 1.1 matt } else {
1867 1.1 matt pvo_head = pa_to_pvoh(pa, &pg);
1868 1.1 matt pl = &pmap_mpvo_pool;
1869 1.1 matt pvo_flags = PVO_MANAGED;
1870 1.1 matt }
1871 1.1 matt
1872 1.1 matt DPRINTFN(ENTER,
1873 1.1 matt ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1874 1.1 matt pm, va, pa, prot, flags));
1875 1.1 matt
1876 1.1 matt /*
1877 1.1 matt * If this is a managed page, and it's the first reference to the
1878 1.1 matt * page clear the execness of the page. Otherwise fetch the execness.
1879 1.1 matt */
1880 1.1 matt if (pg != NULL)
1881 1.1 matt was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1882 1.1 matt
1883 1.1 matt DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1884 1.1 matt
1885 1.1 matt /*
1886 1.1 matt * Assume the page is cache inhibited and access is guarded unless
1887 1.1 matt * it's in our available memory array. If it is in the memory array,
1888 1.1 matt * asssume it's in memory coherent memory.
1889 1.1 matt */
1890 1.1 matt pte_lo = PTE_IG;
1891 1.1 matt if ((flags & PMAP_NC) == 0) {
1892 1.1 matt for (mp = mem; mp->size; mp++) {
1893 1.1 matt if (pa >= mp->start && pa < mp->start + mp->size) {
1894 1.1 matt pte_lo = PTE_M;
1895 1.1 matt break;
1896 1.1 matt }
1897 1.1 matt }
1898 1.1 matt }
1899 1.1 matt
1900 1.1 matt if (prot & VM_PROT_WRITE)
1901 1.1 matt pte_lo |= PTE_BW;
1902 1.1 matt else
1903 1.1 matt pte_lo |= PTE_BR;
1904 1.1 matt
1905 1.1 matt /*
1906 1.1 matt * If this was in response to a fault, "pre-fault" the PTE's
1907 1.1 matt * changed/referenced bit appropriately.
1908 1.1 matt */
1909 1.1 matt if (flags & VM_PROT_WRITE)
1910 1.1 matt pte_lo |= PTE_CHG;
1911 1.30 chs if (flags & VM_PROT_ALL)
1912 1.1 matt pte_lo |= PTE_REF;
1913 1.1 matt
1914 1.1 matt /*
1915 1.1 matt * We need to know if this page can be executable
1916 1.1 matt */
1917 1.1 matt flags |= (prot & VM_PROT_EXECUTE);
1918 1.1 matt
1919 1.1 matt /*
1920 1.1 matt * Record mapping for later back-translation and pte spilling.
1921 1.1 matt * This will overwrite any existing mapping.
1922 1.1 matt */
1923 1.1 matt error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1924 1.1 matt
1925 1.1 matt /*
1926 1.1 matt * Flush the real page from the instruction cache if this page is
1927 1.1 matt * mapped executable and cacheable and has not been flushed since
1928 1.1 matt * the last time it was modified.
1929 1.1 matt */
1930 1.1 matt if (error == 0 &&
1931 1.1 matt (flags & VM_PROT_EXECUTE) &&
1932 1.1 matt (pte_lo & PTE_I) == 0 &&
1933 1.1 matt was_exec == 0) {
1934 1.1 matt DPRINTFN(ENTER, (" syncicache"));
1935 1.1 matt PMAPCOUNT(exec_synced);
1936 1.6 thorpej pmap_syncicache(pa, PAGE_SIZE);
1937 1.1 matt if (pg != NULL) {
1938 1.1 matt pmap_attr_save(pg, PTE_EXEC);
1939 1.1 matt PMAPCOUNT(exec_cached);
1940 1.1 matt #if defined(DEBUG) || defined(PMAPDEBUG)
1941 1.1 matt if (pmapdebug & PMAPDEBUG_ENTER)
1942 1.1 matt printf(" marked-as-exec");
1943 1.1 matt else if (pmapdebug & PMAPDEBUG_EXEC)
1944 1.1 matt printf("[pmap_enter: %#lx: marked-as-exec]\n",
1945 1.34 yamt VM_PAGE_TO_PHYS(pg));
1946 1.1 matt
1947 1.1 matt #endif
1948 1.1 matt }
1949 1.1 matt }
1950 1.1 matt
1951 1.1 matt DPRINTFN(ENTER, (": error=%d\n", error));
1952 1.1 matt
1953 1.1 matt return error;
1954 1.1 matt }
1955 1.1 matt
1956 1.1 matt void
1957 1.1 matt pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1958 1.1 matt {
1959 1.1 matt struct mem_region *mp;
1960 1.2 matt register_t pte_lo;
1961 1.1 matt int error;
1962 1.1 matt
1963 1.1 matt if (va < VM_MIN_KERNEL_ADDRESS)
1964 1.1 matt panic("pmap_kenter_pa: attempt to enter "
1965 1.1 matt "non-kernel address %#lx!", va);
1966 1.1 matt
1967 1.1 matt DPRINTFN(KENTER,
1968 1.1 matt ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1969 1.1 matt
1970 1.1 matt /*
1971 1.1 matt * Assume the page is cache inhibited and access is guarded unless
1972 1.1 matt * it's in our available memory array. If it is in the memory array,
1973 1.1 matt * asssume it's in memory coherent memory.
1974 1.1 matt */
1975 1.1 matt pte_lo = PTE_IG;
1976 1.4 matt if ((prot & PMAP_NC) == 0) {
1977 1.4 matt for (mp = mem; mp->size; mp++) {
1978 1.4 matt if (pa >= mp->start && pa < mp->start + mp->size) {
1979 1.4 matt pte_lo = PTE_M;
1980 1.4 matt break;
1981 1.4 matt }
1982 1.1 matt }
1983 1.1 matt }
1984 1.1 matt
1985 1.1 matt if (prot & VM_PROT_WRITE)
1986 1.1 matt pte_lo |= PTE_BW;
1987 1.1 matt else
1988 1.1 matt pte_lo |= PTE_BR;
1989 1.1 matt
1990 1.1 matt /*
1991 1.1 matt * We don't care about REF/CHG on PVOs on the unmanaged list.
1992 1.1 matt */
1993 1.1 matt error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1994 1.1 matt &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1995 1.1 matt
1996 1.1 matt if (error != 0)
1997 1.1 matt panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1998 1.1 matt va, pa, error);
1999 1.1 matt }
2000 1.1 matt
2001 1.1 matt void
2002 1.1 matt pmap_kremove(vaddr_t va, vsize_t len)
2003 1.1 matt {
2004 1.1 matt if (va < VM_MIN_KERNEL_ADDRESS)
2005 1.1 matt panic("pmap_kremove: attempt to remove "
2006 1.1 matt "non-kernel address %#lx!", va);
2007 1.1 matt
2008 1.1 matt DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
2009 1.1 matt pmap_remove(pmap_kernel(), va, va + len);
2010 1.1 matt }
2011 1.1 matt
2012 1.1 matt /*
2013 1.1 matt * Remove the given range of mapping entries.
2014 1.1 matt */
2015 1.1 matt void
2016 1.1 matt pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2017 1.1 matt {
2018 1.33 chs struct pvo_head pvol;
2019 1.1 matt struct pvo_entry *pvo;
2020 1.2 matt register_t msr;
2021 1.1 matt int pteidx;
2022 1.1 matt
2023 1.33 chs LIST_INIT(&pvol);
2024 1.14 chs msr = pmap_interrupts_off();
2025 1.1 matt for (; va < endva; va += PAGE_SIZE) {
2026 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
2027 1.1 matt if (pvo != NULL) {
2028 1.33 chs pmap_pvo_remove(pvo, pteidx, &pvol);
2029 1.1 matt }
2030 1.1 matt }
2031 1.14 chs pmap_interrupts_restore(msr);
2032 1.33 chs pmap_pvo_free_list(&pvol);
2033 1.1 matt }
2034 1.1 matt
2035 1.1 matt /*
2036 1.1 matt * Get the physical page address for the given pmap/virtual address.
2037 1.1 matt */
2038 1.1 matt boolean_t
2039 1.1 matt pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2040 1.1 matt {
2041 1.1 matt struct pvo_entry *pvo;
2042 1.2 matt register_t msr;
2043 1.7 matt
2044 1.7 matt /*
2045 1.7 matt * If this is a kernel pmap lookup, also check the battable
2046 1.7 matt * and if we get a hit, translate the VA to a PA using the
2047 1.7 matt * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
2048 1.7 matt * that will wrap back to 0.
2049 1.7 matt */
2050 1.7 matt if (pm == pmap_kernel() &&
2051 1.7 matt (va < VM_MIN_KERNEL_ADDRESS ||
2052 1.7 matt (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2053 1.8 matt KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2054 1.24 kleink if ((MFPVR() >> 16) != MPC601) {
2055 1.24 kleink register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2056 1.24 kleink if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2057 1.24 kleink register_t batl =
2058 1.24 kleink battable[va >> ADDR_SR_SHFT].batl;
2059 1.24 kleink register_t mask =
2060 1.24 kleink (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2061 1.29 briggs if (pap)
2062 1.29 briggs *pap = (batl & mask) | (va & ~mask);
2063 1.24 kleink return TRUE;
2064 1.24 kleink }
2065 1.24 kleink } else {
2066 1.24 kleink register_t batu = battable[va >> 23].batu;
2067 1.24 kleink register_t batl = battable[va >> 23].batl;
2068 1.24 kleink register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2069 1.24 kleink if (BAT601_VALID_P(batl) &&
2070 1.24 kleink BAT601_VA_MATCH_P(batu, batl, va)) {
2071 1.24 kleink register_t mask =
2072 1.24 kleink (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2073 1.29 briggs if (pap)
2074 1.29 briggs *pap = (batl & mask) | (va & ~mask);
2075 1.24 kleink return TRUE;
2076 1.24 kleink } else if (SR601_VALID_P(sr) &&
2077 1.24 kleink SR601_PA_MATCH_P(sr, va)) {
2078 1.29 briggs if (pap)
2079 1.29 briggs *pap = va;
2080 1.24 kleink return TRUE;
2081 1.24 kleink }
2082 1.7 matt }
2083 1.7 matt return FALSE;
2084 1.7 matt }
2085 1.1 matt
2086 1.1 matt msr = pmap_interrupts_off();
2087 1.1 matt pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2088 1.1 matt if (pvo != NULL) {
2089 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2090 1.29 briggs if (pap)
2091 1.29 briggs *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2092 1.29 briggs | (va & ADDR_POFF);
2093 1.1 matt }
2094 1.1 matt pmap_interrupts_restore(msr);
2095 1.1 matt return pvo != NULL;
2096 1.1 matt }
2097 1.1 matt
2098 1.1 matt /*
2099 1.1 matt * Lower the protection on the specified range of this pmap.
2100 1.1 matt */
2101 1.1 matt void
2102 1.1 matt pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2103 1.1 matt {
2104 1.1 matt struct pvo_entry *pvo;
2105 1.2 matt volatile struct pte *pt;
2106 1.2 matt register_t msr;
2107 1.1 matt int pteidx;
2108 1.1 matt
2109 1.1 matt /*
2110 1.1 matt * Since this routine only downgrades protection, we should
2111 1.14 chs * always be called with at least one bit not set.
2112 1.1 matt */
2113 1.14 chs KASSERT(prot != VM_PROT_ALL);
2114 1.1 matt
2115 1.1 matt /*
2116 1.1 matt * If there is no protection, this is equivalent to
2117 1.1 matt * remove the pmap from the pmap.
2118 1.1 matt */
2119 1.1 matt if ((prot & VM_PROT_READ) == 0) {
2120 1.1 matt pmap_remove(pm, va, endva);
2121 1.1 matt return;
2122 1.1 matt }
2123 1.1 matt
2124 1.1 matt msr = pmap_interrupts_off();
2125 1.6 thorpej for (; va < endva; va += PAGE_SIZE) {
2126 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
2127 1.1 matt if (pvo == NULL)
2128 1.1 matt continue;
2129 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2130 1.1 matt
2131 1.1 matt /*
2132 1.1 matt * Revoke executable if asked to do so.
2133 1.1 matt */
2134 1.1 matt if ((prot & VM_PROT_EXECUTE) == 0)
2135 1.14 chs pvo_clear_exec(pvo);
2136 1.1 matt
2137 1.1 matt #if 0
2138 1.1 matt /*
2139 1.1 matt * If the page is already read-only, no change
2140 1.1 matt * needs to be made.
2141 1.1 matt */
2142 1.1 matt if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2143 1.1 matt continue;
2144 1.1 matt #endif
2145 1.1 matt /*
2146 1.1 matt * Grab the PTE pointer before we diddle with
2147 1.1 matt * the cached PTE copy.
2148 1.1 matt */
2149 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
2150 1.1 matt /*
2151 1.1 matt * Change the protection of the page.
2152 1.1 matt */
2153 1.1 matt pvo->pvo_pte.pte_lo &= ~PTE_PP;
2154 1.1 matt pvo->pvo_pte.pte_lo |= PTE_BR;
2155 1.1 matt
2156 1.1 matt /*
2157 1.1 matt * If the PVO is in the page table, update
2158 1.1 matt * that pte at well.
2159 1.1 matt */
2160 1.1 matt if (pt != NULL) {
2161 1.1 matt pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2162 1.12 matt PVO_WHERE(pvo, PMAP_PROTECT);
2163 1.1 matt PMAPCOUNT(ptes_changed);
2164 1.1 matt }
2165 1.1 matt
2166 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2167 1.1 matt }
2168 1.1 matt pmap_interrupts_restore(msr);
2169 1.1 matt }
2170 1.1 matt
2171 1.1 matt void
2172 1.1 matt pmap_unwire(pmap_t pm, vaddr_t va)
2173 1.1 matt {
2174 1.1 matt struct pvo_entry *pvo;
2175 1.2 matt register_t msr;
2176 1.1 matt
2177 1.1 matt msr = pmap_interrupts_off();
2178 1.1 matt pvo = pmap_pvo_find_va(pm, va, NULL);
2179 1.1 matt if (pvo != NULL) {
2180 1.1 matt if (pvo->pvo_vaddr & PVO_WIRED) {
2181 1.1 matt pvo->pvo_vaddr &= ~PVO_WIRED;
2182 1.1 matt pm->pm_stats.wired_count--;
2183 1.1 matt }
2184 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2185 1.1 matt }
2186 1.1 matt pmap_interrupts_restore(msr);
2187 1.1 matt }
2188 1.1 matt
2189 1.1 matt /*
2190 1.1 matt * Lower the protection on the specified physical page.
2191 1.1 matt */
2192 1.1 matt void
2193 1.1 matt pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2194 1.1 matt {
2195 1.33 chs struct pvo_head *pvo_head, pvol;
2196 1.1 matt struct pvo_entry *pvo, *next_pvo;
2197 1.2 matt volatile struct pte *pt;
2198 1.2 matt register_t msr;
2199 1.1 matt
2200 1.14 chs KASSERT(prot != VM_PROT_ALL);
2201 1.33 chs LIST_INIT(&pvol);
2202 1.1 matt msr = pmap_interrupts_off();
2203 1.1 matt
2204 1.1 matt /*
2205 1.1 matt * When UVM reuses a page, it does a pmap_page_protect with
2206 1.1 matt * VM_PROT_NONE. At that point, we can clear the exec flag
2207 1.1 matt * since we know the page will have different contents.
2208 1.1 matt */
2209 1.1 matt if ((prot & VM_PROT_READ) == 0) {
2210 1.1 matt DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2211 1.34 yamt VM_PAGE_TO_PHYS(pg)));
2212 1.1 matt if (pmap_attr_fetch(pg) & PTE_EXEC) {
2213 1.1 matt PMAPCOUNT(exec_uncached_page_protect);
2214 1.1 matt pmap_attr_clear(pg, PTE_EXEC);
2215 1.1 matt }
2216 1.1 matt }
2217 1.1 matt
2218 1.1 matt pvo_head = vm_page_to_pvoh(pg);
2219 1.1 matt for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2220 1.1 matt next_pvo = LIST_NEXT(pvo, pvo_vlink);
2221 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2222 1.1 matt
2223 1.1 matt /*
2224 1.1 matt * Downgrading to no mapping at all, we just remove the entry.
2225 1.1 matt */
2226 1.1 matt if ((prot & VM_PROT_READ) == 0) {
2227 1.33 chs pmap_pvo_remove(pvo, -1, &pvol);
2228 1.1 matt continue;
2229 1.1 matt }
2230 1.1 matt
2231 1.1 matt /*
2232 1.1 matt * If EXEC permission is being revoked, just clear the
2233 1.1 matt * flag in the PVO.
2234 1.1 matt */
2235 1.1 matt if ((prot & VM_PROT_EXECUTE) == 0)
2236 1.14 chs pvo_clear_exec(pvo);
2237 1.1 matt
2238 1.1 matt /*
2239 1.1 matt * If this entry is already RO, don't diddle with the
2240 1.1 matt * page table.
2241 1.1 matt */
2242 1.1 matt if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2243 1.1 matt PMAP_PVO_CHECK(pvo);
2244 1.1 matt continue;
2245 1.1 matt }
2246 1.1 matt
2247 1.1 matt /*
2248 1.1 matt * Grab the PTE before the we diddle the bits so
2249 1.1 matt * pvo_to_pte can verify the pte contents are as
2250 1.1 matt * expected.
2251 1.1 matt */
2252 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2253 1.1 matt pvo->pvo_pte.pte_lo &= ~PTE_PP;
2254 1.1 matt pvo->pvo_pte.pte_lo |= PTE_BR;
2255 1.1 matt if (pt != NULL) {
2256 1.1 matt pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2257 1.12 matt PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2258 1.1 matt PMAPCOUNT(ptes_changed);
2259 1.1 matt }
2260 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2261 1.1 matt }
2262 1.1 matt pmap_interrupts_restore(msr);
2263 1.33 chs pmap_pvo_free_list(&pvol);
2264 1.1 matt }
2265 1.1 matt
2266 1.1 matt /*
2267 1.1 matt * Activate the address space for the specified process. If the process
2268 1.1 matt * is the current process, load the new MMU context.
2269 1.1 matt */
2270 1.1 matt void
2271 1.1 matt pmap_activate(struct lwp *l)
2272 1.1 matt {
2273 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
2274 1.1 matt pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2275 1.1 matt
2276 1.1 matt DPRINTFN(ACTIVATE,
2277 1.1 matt ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2278 1.1 matt
2279 1.1 matt /*
2280 1.1 matt * XXX Normally performed in cpu_fork().
2281 1.1 matt */
2282 1.13 matt pcb->pcb_pm = pmap;
2283 1.17 matt
2284 1.17 matt /*
2285 1.17 matt * In theory, the SR registers need only be valid on return
2286 1.17 matt * to user space wait to do them there.
2287 1.17 matt */
2288 1.17 matt if (l == curlwp) {
2289 1.17 matt /* Store pointer to new current pmap. */
2290 1.17 matt curpm = pmap;
2291 1.17 matt }
2292 1.1 matt }
2293 1.1 matt
2294 1.1 matt /*
2295 1.1 matt * Deactivate the specified process's address space.
2296 1.1 matt */
2297 1.1 matt void
2298 1.1 matt pmap_deactivate(struct lwp *l)
2299 1.1 matt {
2300 1.1 matt }
2301 1.1 matt
2302 1.1 matt boolean_t
2303 1.1 matt pmap_query_bit(struct vm_page *pg, int ptebit)
2304 1.1 matt {
2305 1.1 matt struct pvo_entry *pvo;
2306 1.2 matt volatile struct pte *pt;
2307 1.2 matt register_t msr;
2308 1.1 matt
2309 1.1 matt if (pmap_attr_fetch(pg) & ptebit)
2310 1.1 matt return TRUE;
2311 1.14 chs
2312 1.1 matt msr = pmap_interrupts_off();
2313 1.1 matt LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2314 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2315 1.1 matt /*
2316 1.1 matt * See if we saved the bit off. If so cache, it and return
2317 1.1 matt * success.
2318 1.1 matt */
2319 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit) {
2320 1.1 matt pmap_attr_save(pg, ptebit);
2321 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2322 1.1 matt pmap_interrupts_restore(msr);
2323 1.1 matt return TRUE;
2324 1.1 matt }
2325 1.1 matt }
2326 1.1 matt /*
2327 1.1 matt * No luck, now go thru the hard part of looking at the ptes
2328 1.1 matt * themselves. Sync so any pending REF/CHG bits are flushed
2329 1.1 matt * to the PTEs.
2330 1.1 matt */
2331 1.1 matt SYNC();
2332 1.1 matt LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2333 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2334 1.1 matt /*
2335 1.1 matt * See if this pvo have a valid PTE. If so, fetch the
2336 1.1 matt * REF/CHG bits from the valid PTE. If the appropriate
2337 1.1 matt * ptebit is set, cache, it and return success.
2338 1.1 matt */
2339 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2340 1.1 matt if (pt != NULL) {
2341 1.1 matt pmap_pte_synch(pt, &pvo->pvo_pte);
2342 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit) {
2343 1.1 matt pmap_attr_save(pg, ptebit);
2344 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2345 1.1 matt pmap_interrupts_restore(msr);
2346 1.1 matt return TRUE;
2347 1.1 matt }
2348 1.1 matt }
2349 1.1 matt }
2350 1.1 matt pmap_interrupts_restore(msr);
2351 1.1 matt return FALSE;
2352 1.1 matt }
2353 1.1 matt
2354 1.1 matt boolean_t
2355 1.1 matt pmap_clear_bit(struct vm_page *pg, int ptebit)
2356 1.1 matt {
2357 1.1 matt struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2358 1.1 matt struct pvo_entry *pvo;
2359 1.2 matt volatile struct pte *pt;
2360 1.2 matt register_t msr;
2361 1.1 matt int rv = 0;
2362 1.1 matt
2363 1.1 matt msr = pmap_interrupts_off();
2364 1.1 matt
2365 1.1 matt /*
2366 1.1 matt * Fetch the cache value
2367 1.1 matt */
2368 1.1 matt rv |= pmap_attr_fetch(pg);
2369 1.1 matt
2370 1.1 matt /*
2371 1.1 matt * Clear the cached value.
2372 1.1 matt */
2373 1.1 matt pmap_attr_clear(pg, ptebit);
2374 1.1 matt
2375 1.1 matt /*
2376 1.1 matt * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2377 1.1 matt * can reset the right ones). Note that since the pvo entries and
2378 1.1 matt * list heads are accessed via BAT0 and are never placed in the
2379 1.1 matt * page table, we don't have to worry about further accesses setting
2380 1.1 matt * the REF/CHG bits.
2381 1.1 matt */
2382 1.1 matt SYNC();
2383 1.1 matt
2384 1.1 matt /*
2385 1.1 matt * For each pvo entry, clear pvo's ptebit. If this pvo have a
2386 1.1 matt * valid PTE. If so, clear the ptebit from the valid PTE.
2387 1.1 matt */
2388 1.1 matt LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2389 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2390 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2391 1.1 matt if (pt != NULL) {
2392 1.1 matt /*
2393 1.1 matt * Only sync the PTE if the bit we are looking
2394 1.1 matt * for is not already set.
2395 1.1 matt */
2396 1.1 matt if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2397 1.1 matt pmap_pte_synch(pt, &pvo->pvo_pte);
2398 1.1 matt /*
2399 1.1 matt * If the bit we are looking for was already set,
2400 1.1 matt * clear that bit in the pte.
2401 1.1 matt */
2402 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit)
2403 1.1 matt pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2404 1.1 matt }
2405 1.1 matt rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2406 1.1 matt pvo->pvo_pte.pte_lo &= ~ptebit;
2407 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2408 1.1 matt }
2409 1.1 matt pmap_interrupts_restore(msr);
2410 1.14 chs
2411 1.1 matt /*
2412 1.1 matt * If we are clearing the modify bit and this page was marked EXEC
2413 1.1 matt * and the user of the page thinks the page was modified, then we
2414 1.1 matt * need to clean it from the icache if it's mapped or clear the EXEC
2415 1.1 matt * bit if it's not mapped. The page itself might not have the CHG
2416 1.1 matt * bit set if the modification was done via DMA to the page.
2417 1.1 matt */
2418 1.1 matt if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2419 1.1 matt if (LIST_EMPTY(pvoh)) {
2420 1.1 matt DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2421 1.34 yamt VM_PAGE_TO_PHYS(pg)));
2422 1.1 matt pmap_attr_clear(pg, PTE_EXEC);
2423 1.1 matt PMAPCOUNT(exec_uncached_clear_modify);
2424 1.1 matt } else {
2425 1.1 matt DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2426 1.34 yamt VM_PAGE_TO_PHYS(pg)));
2427 1.34 yamt pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2428 1.1 matt PMAPCOUNT(exec_synced_clear_modify);
2429 1.1 matt }
2430 1.1 matt }
2431 1.1 matt return (rv & ptebit) != 0;
2432 1.1 matt }
2433 1.1 matt
2434 1.1 matt void
2435 1.1 matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2436 1.1 matt {
2437 1.1 matt struct pvo_entry *pvo;
2438 1.1 matt size_t offset = va & ADDR_POFF;
2439 1.1 matt int s;
2440 1.1 matt
2441 1.1 matt s = splvm();
2442 1.1 matt while (len > 0) {
2443 1.6 thorpej size_t seglen = PAGE_SIZE - offset;
2444 1.1 matt if (seglen > len)
2445 1.1 matt seglen = len;
2446 1.1 matt pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2447 1.1 matt if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2448 1.1 matt pmap_syncicache(
2449 1.1 matt (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2450 1.1 matt PMAP_PVO_CHECK(pvo);
2451 1.1 matt }
2452 1.1 matt va += seglen;
2453 1.1 matt len -= seglen;
2454 1.1 matt offset = 0;
2455 1.1 matt }
2456 1.1 matt splx(s);
2457 1.1 matt }
2458 1.1 matt
2459 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2460 1.1 matt void
2461 1.2 matt pmap_pte_print(volatile struct pte *pt)
2462 1.1 matt {
2463 1.1 matt printf("PTE %p: ", pt);
2464 1.1 matt /* High word: */
2465 1.2 matt printf("0x%08lx: [", pt->pte_hi);
2466 1.1 matt printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2467 1.1 matt printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2468 1.2 matt printf("0x%06lx 0x%02lx",
2469 1.1 matt (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2470 1.1 matt pt->pte_hi & PTE_API);
2471 1.1 matt printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2472 1.1 matt /* Low word: */
2473 1.2 matt printf(" 0x%08lx: [", pt->pte_lo);
2474 1.2 matt printf("0x%05lx... ", pt->pte_lo >> 12);
2475 1.1 matt printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2476 1.1 matt printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2477 1.1 matt printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2478 1.1 matt printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2479 1.1 matt printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2480 1.1 matt printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2481 1.1 matt switch (pt->pte_lo & PTE_PP) {
2482 1.1 matt case PTE_BR: printf("br]\n"); break;
2483 1.1 matt case PTE_BW: printf("bw]\n"); break;
2484 1.1 matt case PTE_SO: printf("so]\n"); break;
2485 1.1 matt case PTE_SW: printf("sw]\n"); break;
2486 1.1 matt }
2487 1.1 matt }
2488 1.1 matt #endif
2489 1.1 matt
2490 1.1 matt #if defined(DDB)
2491 1.1 matt void
2492 1.1 matt pmap_pteg_check(void)
2493 1.1 matt {
2494 1.2 matt volatile struct pte *pt;
2495 1.1 matt int i;
2496 1.1 matt int ptegidx;
2497 1.1 matt u_int p_valid = 0;
2498 1.1 matt u_int s_valid = 0;
2499 1.1 matt u_int invalid = 0;
2500 1.1 matt
2501 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2502 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2503 1.1 matt if (pt->pte_hi & PTE_VALID) {
2504 1.1 matt if (pt->pte_hi & PTE_HID)
2505 1.1 matt s_valid++;
2506 1.1 matt else
2507 1.1 matt p_valid++;
2508 1.1 matt } else
2509 1.1 matt invalid++;
2510 1.1 matt }
2511 1.1 matt }
2512 1.1 matt printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2513 1.1 matt p_valid, p_valid, s_valid, s_valid,
2514 1.1 matt invalid, invalid);
2515 1.1 matt }
2516 1.1 matt
2517 1.1 matt void
2518 1.1 matt pmap_print_mmuregs(void)
2519 1.1 matt {
2520 1.1 matt int i;
2521 1.1 matt u_int cpuvers;
2522 1.18 matt #ifndef PPC_OEA64
2523 1.1 matt vaddr_t addr;
2524 1.2 matt register_t soft_sr[16];
2525 1.18 matt #endif
2526 1.1 matt struct bat soft_ibat[4];
2527 1.1 matt struct bat soft_dbat[4];
2528 1.2 matt register_t sdr1;
2529 1.1 matt
2530 1.1 matt cpuvers = MFPVR() >> 16;
2531 1.35 perry __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2532 1.18 matt #ifndef PPC_OEA64
2533 1.16 kleink addr = 0;
2534 1.27 chs for (i = 0; i < 16; i++) {
2535 1.1 matt soft_sr[i] = MFSRIN(addr);
2536 1.1 matt addr += (1 << ADDR_SR_SHFT);
2537 1.1 matt }
2538 1.18 matt #endif
2539 1.1 matt
2540 1.1 matt /* read iBAT (601: uBAT) registers */
2541 1.35 perry __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2542 1.35 perry __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2543 1.35 perry __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2544 1.35 perry __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2545 1.35 perry __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2546 1.35 perry __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2547 1.35 perry __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2548 1.35 perry __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2549 1.1 matt
2550 1.1 matt
2551 1.1 matt if (cpuvers != MPC601) {
2552 1.1 matt /* read dBAT registers */
2553 1.35 perry __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2554 1.35 perry __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2555 1.35 perry __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2556 1.35 perry __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2557 1.35 perry __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2558 1.35 perry __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2559 1.35 perry __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2560 1.35 perry __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2561 1.1 matt }
2562 1.1 matt
2563 1.18 matt printf("SDR1:\t0x%lx\n", (long) sdr1);
2564 1.18 matt #ifndef PPC_OEA64
2565 1.1 matt printf("SR[]:\t");
2566 1.27 chs for (i = 0; i < 4; i++)
2567 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2568 1.1 matt printf("\n\t");
2569 1.27 chs for ( ; i < 8; i++)
2570 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2571 1.1 matt printf("\n\t");
2572 1.27 chs for ( ; i < 12; i++)
2573 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2574 1.1 matt printf("\n\t");
2575 1.27 chs for ( ; i < 16; i++)
2576 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2577 1.1 matt printf("\n");
2578 1.18 matt #endif
2579 1.1 matt
2580 1.1 matt printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2581 1.27 chs for (i = 0; i < 4; i++) {
2582 1.2 matt printf("0x%08lx 0x%08lx, ",
2583 1.1 matt soft_ibat[i].batu, soft_ibat[i].batl);
2584 1.1 matt if (i == 1)
2585 1.1 matt printf("\n\t");
2586 1.1 matt }
2587 1.1 matt if (cpuvers != MPC601) {
2588 1.1 matt printf("\ndBAT[]:\t");
2589 1.27 chs for (i = 0; i < 4; i++) {
2590 1.2 matt printf("0x%08lx 0x%08lx, ",
2591 1.1 matt soft_dbat[i].batu, soft_dbat[i].batl);
2592 1.1 matt if (i == 1)
2593 1.1 matt printf("\n\t");
2594 1.1 matt }
2595 1.1 matt }
2596 1.1 matt printf("\n");
2597 1.1 matt }
2598 1.1 matt
2599 1.1 matt void
2600 1.1 matt pmap_print_pte(pmap_t pm, vaddr_t va)
2601 1.1 matt {
2602 1.1 matt struct pvo_entry *pvo;
2603 1.2 matt volatile struct pte *pt;
2604 1.1 matt int pteidx;
2605 1.1 matt
2606 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
2607 1.1 matt if (pvo != NULL) {
2608 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
2609 1.1 matt if (pt != NULL) {
2610 1.2 matt printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2611 1.1 matt va, pt,
2612 1.1 matt pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2613 1.1 matt pt->pte_hi, pt->pte_lo);
2614 1.1 matt } else {
2615 1.1 matt printf("No valid PTE found\n");
2616 1.1 matt }
2617 1.1 matt } else {
2618 1.1 matt printf("Address not in pmap\n");
2619 1.1 matt }
2620 1.1 matt }
2621 1.1 matt
2622 1.1 matt void
2623 1.1 matt pmap_pteg_dist(void)
2624 1.1 matt {
2625 1.1 matt struct pvo_entry *pvo;
2626 1.1 matt int ptegidx;
2627 1.1 matt int depth;
2628 1.1 matt int max_depth = 0;
2629 1.1 matt unsigned int depths[64];
2630 1.1 matt
2631 1.1 matt memset(depths, 0, sizeof(depths));
2632 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2633 1.1 matt depth = 0;
2634 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2635 1.1 matt depth++;
2636 1.1 matt }
2637 1.1 matt if (depth > max_depth)
2638 1.1 matt max_depth = depth;
2639 1.1 matt if (depth > 63)
2640 1.1 matt depth = 63;
2641 1.1 matt depths[depth]++;
2642 1.1 matt }
2643 1.1 matt
2644 1.1 matt for (depth = 0; depth < 64; depth++) {
2645 1.1 matt printf(" [%2d]: %8u", depth, depths[depth]);
2646 1.1 matt if ((depth & 3) == 3)
2647 1.1 matt printf("\n");
2648 1.1 matt if (depth == max_depth)
2649 1.1 matt break;
2650 1.1 matt }
2651 1.1 matt if ((depth & 3) != 3)
2652 1.1 matt printf("\n");
2653 1.1 matt printf("Max depth found was %d\n", max_depth);
2654 1.1 matt }
2655 1.1 matt #endif /* DEBUG */
2656 1.1 matt
2657 1.1 matt #if defined(PMAPCHECK) || defined(DEBUG)
2658 1.1 matt void
2659 1.1 matt pmap_pvo_verify(void)
2660 1.1 matt {
2661 1.1 matt int ptegidx;
2662 1.1 matt int s;
2663 1.1 matt
2664 1.1 matt s = splvm();
2665 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2666 1.1 matt struct pvo_entry *pvo;
2667 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2668 1.1 matt if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2669 1.1 matt panic("pmap_pvo_verify: invalid pvo %p "
2670 1.1 matt "on list %#x", pvo, ptegidx);
2671 1.1 matt pmap_pvo_check(pvo);
2672 1.1 matt }
2673 1.1 matt }
2674 1.1 matt splx(s);
2675 1.1 matt }
2676 1.1 matt #endif /* PMAPCHECK */
2677 1.1 matt
2678 1.1 matt
2679 1.1 matt void *
2680 1.1 matt pmap_pool_ualloc(struct pool *pp, int flags)
2681 1.1 matt {
2682 1.1 matt struct pvo_page *pvop;
2683 1.1 matt
2684 1.1 matt pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2685 1.1 matt if (pvop != NULL) {
2686 1.1 matt pmap_upvop_free--;
2687 1.1 matt SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2688 1.1 matt return pvop;
2689 1.1 matt }
2690 1.1 matt if (uvm.page_init_done != TRUE) {
2691 1.1 matt return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2692 1.1 matt }
2693 1.1 matt return pmap_pool_malloc(pp, flags);
2694 1.1 matt }
2695 1.1 matt
2696 1.1 matt void *
2697 1.1 matt pmap_pool_malloc(struct pool *pp, int flags)
2698 1.1 matt {
2699 1.1 matt struct pvo_page *pvop;
2700 1.1 matt struct vm_page *pg;
2701 1.1 matt
2702 1.1 matt pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2703 1.1 matt if (pvop != NULL) {
2704 1.1 matt pmap_mpvop_free--;
2705 1.1 matt SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2706 1.1 matt return pvop;
2707 1.1 matt }
2708 1.1 matt again:
2709 1.1 matt pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2710 1.1 matt UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2711 1.1 matt if (__predict_false(pg == NULL)) {
2712 1.1 matt if (flags & PR_WAITOK) {
2713 1.1 matt uvm_wait("plpg");
2714 1.1 matt goto again;
2715 1.1 matt } else {
2716 1.1 matt return (0);
2717 1.1 matt }
2718 1.1 matt }
2719 1.1 matt return (void *) VM_PAGE_TO_PHYS(pg);
2720 1.1 matt }
2721 1.1 matt
2722 1.1 matt void
2723 1.1 matt pmap_pool_ufree(struct pool *pp, void *va)
2724 1.1 matt {
2725 1.1 matt struct pvo_page *pvop;
2726 1.1 matt #if 0
2727 1.1 matt if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2728 1.1 matt pmap_pool_mfree(va, size, tag);
2729 1.1 matt return;
2730 1.1 matt }
2731 1.1 matt #endif
2732 1.1 matt pvop = va;
2733 1.1 matt SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2734 1.1 matt pmap_upvop_free++;
2735 1.1 matt if (pmap_upvop_free > pmap_upvop_maxfree)
2736 1.1 matt pmap_upvop_maxfree = pmap_upvop_free;
2737 1.1 matt }
2738 1.1 matt
2739 1.1 matt void
2740 1.1 matt pmap_pool_mfree(struct pool *pp, void *va)
2741 1.1 matt {
2742 1.1 matt struct pvo_page *pvop;
2743 1.1 matt
2744 1.1 matt pvop = va;
2745 1.1 matt SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2746 1.1 matt pmap_mpvop_free++;
2747 1.1 matt if (pmap_mpvop_free > pmap_mpvop_maxfree)
2748 1.1 matt pmap_mpvop_maxfree = pmap_mpvop_free;
2749 1.1 matt #if 0
2750 1.1 matt uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2751 1.1 matt #endif
2752 1.1 matt }
2753 1.1 matt
2754 1.1 matt /*
2755 1.1 matt * This routine in bootstraping to steal to-be-managed memory (which will
2756 1.1 matt * then be unmanaged). We use it to grab from the first 256MB for our
2757 1.1 matt * pmap needs and above 256MB for other stuff.
2758 1.1 matt */
2759 1.1 matt vaddr_t
2760 1.10 thorpej pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2761 1.1 matt {
2762 1.1 matt vsize_t size;
2763 1.1 matt vaddr_t va;
2764 1.1 matt paddr_t pa = 0;
2765 1.1 matt int npgs, bank;
2766 1.1 matt struct vm_physseg *ps;
2767 1.1 matt
2768 1.1 matt if (uvm.page_init_done == TRUE)
2769 1.1 matt panic("pmap_steal_memory: called _after_ bootstrap");
2770 1.1 matt
2771 1.10 thorpej *vstartp = VM_MIN_KERNEL_ADDRESS;
2772 1.10 thorpej *vendp = VM_MAX_KERNEL_ADDRESS;
2773 1.10 thorpej
2774 1.1 matt size = round_page(vsize);
2775 1.1 matt npgs = atop(size);
2776 1.1 matt
2777 1.1 matt /*
2778 1.1 matt * PA 0 will never be among those given to UVM so we can use it
2779 1.1 matt * to indicate we couldn't steal any memory.
2780 1.1 matt */
2781 1.1 matt for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2782 1.1 matt if (ps->free_list == VM_FREELIST_FIRST256 &&
2783 1.1 matt ps->avail_end - ps->avail_start >= npgs) {
2784 1.1 matt pa = ptoa(ps->avail_start);
2785 1.1 matt break;
2786 1.1 matt }
2787 1.1 matt }
2788 1.1 matt
2789 1.1 matt if (pa == 0)
2790 1.1 matt panic("pmap_steal_memory: no approriate memory to steal!");
2791 1.1 matt
2792 1.1 matt ps->avail_start += npgs;
2793 1.1 matt ps->start += npgs;
2794 1.1 matt
2795 1.1 matt /*
2796 1.1 matt * If we've used up all the pages in the segment, remove it and
2797 1.1 matt * compact the list.
2798 1.1 matt */
2799 1.1 matt if (ps->avail_start == ps->end) {
2800 1.1 matt /*
2801 1.1 matt * If this was the last one, then a very bad thing has occurred
2802 1.1 matt */
2803 1.1 matt if (--vm_nphysseg == 0)
2804 1.1 matt panic("pmap_steal_memory: out of memory!");
2805 1.1 matt
2806 1.1 matt printf("pmap_steal_memory: consumed bank %d\n", bank);
2807 1.1 matt for (; bank < vm_nphysseg; bank++, ps++) {
2808 1.1 matt ps[0] = ps[1];
2809 1.1 matt }
2810 1.1 matt }
2811 1.1 matt
2812 1.1 matt va = (vaddr_t) pa;
2813 1.1 matt memset((caddr_t) va, 0, size);
2814 1.1 matt pmap_pages_stolen += npgs;
2815 1.1 matt #ifdef DEBUG
2816 1.1 matt if (pmapdebug && npgs > 1) {
2817 1.1 matt u_int cnt = 0;
2818 1.1 matt for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2819 1.1 matt cnt += ps->avail_end - ps->avail_start;
2820 1.1 matt printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2821 1.1 matt npgs, pmap_pages_stolen, cnt);
2822 1.1 matt }
2823 1.1 matt #endif
2824 1.1 matt
2825 1.1 matt return va;
2826 1.1 matt }
2827 1.1 matt
2828 1.1 matt /*
2829 1.1 matt * Find a chuck of memory with right size and alignment.
2830 1.1 matt */
2831 1.1 matt void *
2832 1.1 matt pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2833 1.1 matt {
2834 1.1 matt struct mem_region *mp;
2835 1.1 matt paddr_t s, e;
2836 1.1 matt int i, j;
2837 1.1 matt
2838 1.1 matt size = round_page(size);
2839 1.1 matt
2840 1.1 matt DPRINTFN(BOOT,
2841 1.1 matt ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2842 1.1 matt size, alignment, at_end));
2843 1.1 matt
2844 1.6 thorpej if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2845 1.1 matt panic("pmap_boot_find_memory: invalid alignment %lx",
2846 1.1 matt alignment);
2847 1.1 matt
2848 1.1 matt if (at_end) {
2849 1.6 thorpej if (alignment != PAGE_SIZE)
2850 1.1 matt panic("pmap_boot_find_memory: invalid ending "
2851 1.1 matt "alignment %lx", alignment);
2852 1.1 matt
2853 1.1 matt for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2854 1.1 matt s = mp->start + mp->size - size;
2855 1.1 matt if (s >= mp->start && mp->size >= size) {
2856 1.1 matt DPRINTFN(BOOT,(": %lx\n", s));
2857 1.1 matt DPRINTFN(BOOT,
2858 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2859 1.1 matt "0x%lx size 0x%lx\n", mp - avail,
2860 1.1 matt mp->start, mp->size));
2861 1.1 matt mp->size -= size;
2862 1.1 matt DPRINTFN(BOOT,
2863 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2864 1.1 matt "0x%lx size 0x%lx\n", mp - avail,
2865 1.1 matt mp->start, mp->size));
2866 1.1 matt return (void *) s;
2867 1.1 matt }
2868 1.1 matt }
2869 1.1 matt panic("pmap_boot_find_memory: no available memory");
2870 1.1 matt }
2871 1.1 matt
2872 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2873 1.1 matt s = (mp->start + alignment - 1) & ~(alignment-1);
2874 1.1 matt e = s + size;
2875 1.1 matt
2876 1.1 matt /*
2877 1.1 matt * Is the calculated region entirely within the region?
2878 1.1 matt */
2879 1.1 matt if (s < mp->start || e > mp->start + mp->size)
2880 1.1 matt continue;
2881 1.1 matt
2882 1.1 matt DPRINTFN(BOOT,(": %lx\n", s));
2883 1.1 matt if (s == mp->start) {
2884 1.1 matt /*
2885 1.1 matt * If the block starts at the beginning of region,
2886 1.1 matt * adjust the size & start. (the region may now be
2887 1.1 matt * zero in length)
2888 1.1 matt */
2889 1.1 matt DPRINTFN(BOOT,
2890 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2891 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2892 1.1 matt mp->start += size;
2893 1.1 matt mp->size -= size;
2894 1.1 matt DPRINTFN(BOOT,
2895 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2896 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2897 1.1 matt } else if (e == mp->start + mp->size) {
2898 1.1 matt /*
2899 1.1 matt * If the block starts at the beginning of region,
2900 1.1 matt * adjust only the size.
2901 1.1 matt */
2902 1.1 matt DPRINTFN(BOOT,
2903 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2904 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2905 1.1 matt mp->size -= size;
2906 1.1 matt DPRINTFN(BOOT,
2907 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2908 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2909 1.1 matt } else {
2910 1.1 matt /*
2911 1.1 matt * Block is in the middle of the region, so we
2912 1.1 matt * have to split it in two.
2913 1.1 matt */
2914 1.1 matt for (j = avail_cnt; j > i + 1; j--) {
2915 1.1 matt avail[j] = avail[j-1];
2916 1.1 matt }
2917 1.1 matt DPRINTFN(BOOT,
2918 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2919 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2920 1.1 matt mp[1].start = e;
2921 1.1 matt mp[1].size = mp[0].start + mp[0].size - e;
2922 1.1 matt mp[0].size = s - mp[0].start;
2923 1.1 matt avail_cnt++;
2924 1.1 matt for (; i < avail_cnt; i++) {
2925 1.1 matt DPRINTFN(BOOT,
2926 1.1 matt ("pmap_boot_find_memory: a-avail[%d] "
2927 1.1 matt "start 0x%lx size 0x%lx\n", i,
2928 1.1 matt avail[i].start, avail[i].size));
2929 1.1 matt }
2930 1.1 matt }
2931 1.1 matt return (void *) s;
2932 1.1 matt }
2933 1.1 matt panic("pmap_boot_find_memory: not enough memory for "
2934 1.1 matt "%lx/%lx allocation?", size, alignment);
2935 1.1 matt }
2936 1.1 matt
2937 1.1 matt /*
2938 1.1 matt * This is not part of the defined PMAP interface and is specific to the
2939 1.1 matt * PowerPC architecture. This is called during initppc, before the system
2940 1.1 matt * is really initialized.
2941 1.1 matt */
2942 1.1 matt void
2943 1.1 matt pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2944 1.1 matt {
2945 1.1 matt struct mem_region *mp, tmp;
2946 1.1 matt paddr_t s, e;
2947 1.1 matt psize_t size;
2948 1.1 matt int i, j;
2949 1.1 matt
2950 1.1 matt /*
2951 1.1 matt * Get memory.
2952 1.1 matt */
2953 1.1 matt mem_regions(&mem, &avail);
2954 1.1 matt #if defined(DEBUG)
2955 1.1 matt if (pmapdebug & PMAPDEBUG_BOOT) {
2956 1.1 matt printf("pmap_bootstrap: memory configuration:\n");
2957 1.1 matt for (mp = mem; mp->size; mp++) {
2958 1.1 matt printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2959 1.1 matt mp->start, mp->size);
2960 1.1 matt }
2961 1.1 matt for (mp = avail; mp->size; mp++) {
2962 1.1 matt printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2963 1.1 matt mp->start, mp->size);
2964 1.1 matt }
2965 1.1 matt }
2966 1.1 matt #endif
2967 1.1 matt
2968 1.1 matt /*
2969 1.1 matt * Find out how much physical memory we have and in how many chunks.
2970 1.1 matt */
2971 1.1 matt for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2972 1.1 matt if (mp->start >= pmap_memlimit)
2973 1.1 matt continue;
2974 1.1 matt if (mp->start + mp->size > pmap_memlimit) {
2975 1.1 matt size = pmap_memlimit - mp->start;
2976 1.1 matt physmem += btoc(size);
2977 1.1 matt } else {
2978 1.1 matt physmem += btoc(mp->size);
2979 1.1 matt }
2980 1.1 matt mem_cnt++;
2981 1.1 matt }
2982 1.1 matt
2983 1.1 matt /*
2984 1.1 matt * Count the number of available entries.
2985 1.1 matt */
2986 1.1 matt for (avail_cnt = 0, mp = avail; mp->size; mp++)
2987 1.1 matt avail_cnt++;
2988 1.1 matt
2989 1.1 matt /*
2990 1.1 matt * Page align all regions.
2991 1.1 matt */
2992 1.1 matt kernelstart = trunc_page(kernelstart);
2993 1.1 matt kernelend = round_page(kernelend);
2994 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2995 1.1 matt s = round_page(mp->start);
2996 1.1 matt mp->size -= (s - mp->start);
2997 1.1 matt mp->size = trunc_page(mp->size);
2998 1.1 matt mp->start = s;
2999 1.1 matt e = mp->start + mp->size;
3000 1.1 matt
3001 1.1 matt DPRINTFN(BOOT,
3002 1.1 matt ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
3003 1.1 matt i, mp->start, mp->size));
3004 1.1 matt
3005 1.1 matt /*
3006 1.1 matt * Don't allow the end to run beyond our artificial limit
3007 1.1 matt */
3008 1.1 matt if (e > pmap_memlimit)
3009 1.1 matt e = pmap_memlimit;
3010 1.1 matt
3011 1.1 matt /*
3012 1.1 matt * Is this region empty or strange? skip it.
3013 1.1 matt */
3014 1.1 matt if (e <= s) {
3015 1.1 matt mp->start = 0;
3016 1.1 matt mp->size = 0;
3017 1.1 matt continue;
3018 1.1 matt }
3019 1.1 matt
3020 1.1 matt /*
3021 1.1 matt * Does this overlap the beginning of kernel?
3022 1.1 matt * Does extend past the end of the kernel?
3023 1.1 matt */
3024 1.1 matt else if (s < kernelstart && e > kernelstart) {
3025 1.1 matt if (e > kernelend) {
3026 1.1 matt avail[avail_cnt].start = kernelend;
3027 1.1 matt avail[avail_cnt].size = e - kernelend;
3028 1.1 matt avail_cnt++;
3029 1.1 matt }
3030 1.1 matt mp->size = kernelstart - s;
3031 1.1 matt }
3032 1.1 matt /*
3033 1.1 matt * Check whether this region overlaps the end of the kernel.
3034 1.1 matt */
3035 1.1 matt else if (s < kernelend && e > kernelend) {
3036 1.1 matt mp->start = kernelend;
3037 1.1 matt mp->size = e - kernelend;
3038 1.1 matt }
3039 1.1 matt /*
3040 1.1 matt * Look whether this regions is completely inside the kernel.
3041 1.1 matt * Nuke it if it does.
3042 1.1 matt */
3043 1.1 matt else if (s >= kernelstart && e <= kernelend) {
3044 1.1 matt mp->start = 0;
3045 1.1 matt mp->size = 0;
3046 1.1 matt }
3047 1.1 matt /*
3048 1.1 matt * If the user imposed a memory limit, enforce it.
3049 1.1 matt */
3050 1.1 matt else if (s >= pmap_memlimit) {
3051 1.6 thorpej mp->start = -PAGE_SIZE; /* let's know why */
3052 1.1 matt mp->size = 0;
3053 1.1 matt }
3054 1.1 matt else {
3055 1.1 matt mp->start = s;
3056 1.1 matt mp->size = e - s;
3057 1.1 matt }
3058 1.1 matt DPRINTFN(BOOT,
3059 1.1 matt ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3060 1.1 matt i, mp->start, mp->size));
3061 1.1 matt }
3062 1.1 matt
3063 1.1 matt /*
3064 1.1 matt * Move (and uncount) all the null return to the end.
3065 1.1 matt */
3066 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3067 1.1 matt if (mp->size == 0) {
3068 1.1 matt tmp = avail[i];
3069 1.1 matt avail[i] = avail[--avail_cnt];
3070 1.1 matt avail[avail_cnt] = avail[i];
3071 1.1 matt }
3072 1.1 matt }
3073 1.1 matt
3074 1.1 matt /*
3075 1.1 matt * (Bubble)sort them into asecnding order.
3076 1.1 matt */
3077 1.1 matt for (i = 0; i < avail_cnt; i++) {
3078 1.1 matt for (j = i + 1; j < avail_cnt; j++) {
3079 1.1 matt if (avail[i].start > avail[j].start) {
3080 1.1 matt tmp = avail[i];
3081 1.1 matt avail[i] = avail[j];
3082 1.1 matt avail[j] = tmp;
3083 1.1 matt }
3084 1.1 matt }
3085 1.1 matt }
3086 1.1 matt
3087 1.1 matt /*
3088 1.1 matt * Make sure they don't overlap.
3089 1.1 matt */
3090 1.1 matt for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3091 1.1 matt if (mp[0].start + mp[0].size > mp[1].start) {
3092 1.1 matt mp[0].size = mp[1].start - mp[0].start;
3093 1.1 matt }
3094 1.1 matt DPRINTFN(BOOT,
3095 1.1 matt ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3096 1.1 matt i, mp->start, mp->size));
3097 1.1 matt }
3098 1.1 matt DPRINTFN(BOOT,
3099 1.1 matt ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3100 1.1 matt i, mp->start, mp->size));
3101 1.1 matt
3102 1.1 matt #ifdef PTEGCOUNT
3103 1.1 matt pmap_pteg_cnt = PTEGCOUNT;
3104 1.1 matt #else /* PTEGCOUNT */
3105 1.1 matt pmap_pteg_cnt = 0x1000;
3106 1.1 matt
3107 1.1 matt while (pmap_pteg_cnt < physmem)
3108 1.1 matt pmap_pteg_cnt <<= 1;
3109 1.1 matt
3110 1.1 matt pmap_pteg_cnt >>= 1;
3111 1.1 matt #endif /* PTEGCOUNT */
3112 1.1 matt
3113 1.1 matt /*
3114 1.1 matt * Find suitably aligned memory for PTEG hash table.
3115 1.1 matt */
3116 1.2 matt size = pmap_pteg_cnt * sizeof(struct pteg);
3117 1.1 matt pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3118 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3119 1.1 matt if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3120 1.1 matt panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3121 1.1 matt pmap_pteg_table, size);
3122 1.1 matt #endif
3123 1.1 matt
3124 1.32 he memset(__UNVOLATILE(pmap_pteg_table), 0,
3125 1.32 he pmap_pteg_cnt * sizeof(struct pteg));
3126 1.1 matt pmap_pteg_mask = pmap_pteg_cnt - 1;
3127 1.1 matt
3128 1.1 matt /*
3129 1.1 matt * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3130 1.1 matt * with pages. So we just steal them before giving them to UVM.
3131 1.1 matt */
3132 1.1 matt size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3133 1.6 thorpej pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3134 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3135 1.1 matt if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3136 1.1 matt panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3137 1.1 matt pmap_pvo_table, size);
3138 1.1 matt #endif
3139 1.1 matt
3140 1.1 matt for (i = 0; i < pmap_pteg_cnt; i++)
3141 1.1 matt TAILQ_INIT(&pmap_pvo_table[i]);
3142 1.1 matt
3143 1.1 matt #ifndef MSGBUFADDR
3144 1.1 matt /*
3145 1.1 matt * Allocate msgbuf in high memory.
3146 1.1 matt */
3147 1.6 thorpej msgbuf_paddr =
3148 1.6 thorpej (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3149 1.1 matt #endif
3150 1.1 matt
3151 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
3152 1.1 matt {
3153 1.1 matt u_int npgs = 0;
3154 1.1 matt for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3155 1.1 matt npgs += btoc(mp->size);
3156 1.1 matt size = (sizeof(struct pvo_head) + 1) * npgs;
3157 1.6 thorpej pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3158 1.1 matt pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3159 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3160 1.1 matt if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3161 1.1 matt panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3162 1.1 matt pmap_physseg.pvoh, size);
3163 1.1 matt #endif
3164 1.1 matt }
3165 1.1 matt #endif
3166 1.1 matt
3167 1.1 matt for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3168 1.1 matt paddr_t pfstart = atop(mp->start);
3169 1.1 matt paddr_t pfend = atop(mp->start + mp->size);
3170 1.1 matt if (mp->size == 0)
3171 1.1 matt continue;
3172 1.1 matt if (mp->start + mp->size <= SEGMENT_LENGTH) {
3173 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3174 1.1 matt VM_FREELIST_FIRST256);
3175 1.1 matt } else if (mp->start >= SEGMENT_LENGTH) {
3176 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3177 1.1 matt VM_FREELIST_DEFAULT);
3178 1.1 matt } else {
3179 1.1 matt pfend = atop(SEGMENT_LENGTH);
3180 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3181 1.1 matt VM_FREELIST_FIRST256);
3182 1.1 matt pfstart = atop(SEGMENT_LENGTH);
3183 1.1 matt pfend = atop(mp->start + mp->size);
3184 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
3185 1.1 matt VM_FREELIST_DEFAULT);
3186 1.1 matt }
3187 1.1 matt }
3188 1.1 matt
3189 1.1 matt /*
3190 1.1 matt * Make sure kernel vsid is allocated as well as VSID 0.
3191 1.1 matt */
3192 1.1 matt pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3193 1.1 matt |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3194 1.1 matt pmap_vsid_bitmap[0] |= 1;
3195 1.1 matt
3196 1.1 matt /*
3197 1.1 matt * Initialize kernel pmap and hardware.
3198 1.1 matt */
3199 1.18 matt #ifndef PPC_OEA64
3200 1.1 matt for (i = 0; i < 16; i++) {
3201 1.1 matt pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3202 1.35 perry __asm volatile ("mtsrin %0,%1"
3203 1.1 matt :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3204 1.1 matt }
3205 1.1 matt
3206 1.1 matt pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3207 1.35 perry __asm volatile ("mtsr %0,%1"
3208 1.1 matt :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3209 1.1 matt #ifdef KERNEL2_SR
3210 1.1 matt pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3211 1.35 perry __asm volatile ("mtsr %0,%1"
3212 1.1 matt :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3213 1.1 matt #endif
3214 1.1 matt for (i = 0; i < 16; i++) {
3215 1.1 matt if (iosrtable[i] & SR601_T) {
3216 1.1 matt pmap_kernel()->pm_sr[i] = iosrtable[i];
3217 1.35 perry __asm volatile ("mtsrin %0,%1"
3218 1.1 matt :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3219 1.1 matt }
3220 1.1 matt }
3221 1.18 matt #endif /* !PPC_OEA64 */
3222 1.18 matt
3223 1.35 perry __asm volatile ("sync; mtsdr1 %0; isync"
3224 1.2 matt :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3225 1.1 matt tlbia();
3226 1.1 matt
3227 1.1 matt #ifdef ALTIVEC
3228 1.1 matt pmap_use_altivec = cpu_altivec;
3229 1.1 matt #endif
3230 1.1 matt
3231 1.1 matt #ifdef DEBUG
3232 1.1 matt if (pmapdebug & PMAPDEBUG_BOOT) {
3233 1.1 matt u_int cnt;
3234 1.1 matt int bank;
3235 1.1 matt char pbuf[9];
3236 1.1 matt for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3237 1.1 matt cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3238 1.1 matt printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3239 1.1 matt bank,
3240 1.1 matt ptoa(vm_physmem[bank].avail_start),
3241 1.1 matt ptoa(vm_physmem[bank].avail_end),
3242 1.1 matt ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3243 1.1 matt }
3244 1.1 matt format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3245 1.1 matt printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3246 1.1 matt pbuf, cnt);
3247 1.1 matt }
3248 1.1 matt #endif
3249 1.1 matt
3250 1.1 matt pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3251 1.1 matt sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3252 1.1 matt &pmap_pool_uallocator);
3253 1.1 matt
3254 1.1 matt pool_setlowat(&pmap_upvo_pool, 252);
3255 1.1 matt
3256 1.1 matt pool_init(&pmap_pool, sizeof(struct pmap),
3257 1.1 matt sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3258 1.1 matt }
3259