pmap.c revision 1.7 1 1.7 matt /* $NetBSD: pmap.c,v 1.7 2003/04/04 22:38:05 matt Exp $ */
2 1.1 matt /*-
3 1.1 matt * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 1.1 matt * All rights reserved.
5 1.1 matt *
6 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.1 matt * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by the NetBSD
20 1.1 matt * Foundation, Inc. and its contributors.
21 1.1 matt * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 matt * contributors may be used to endorse or promote products derived
23 1.1 matt * from this software without specific prior written permission.
24 1.1 matt *
25 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
36 1.1 matt */
37 1.1 matt
38 1.1 matt /*
39 1.1 matt * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 matt * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 matt * All rights reserved.
42 1.1 matt *
43 1.1 matt * Redistribution and use in source and binary forms, with or without
44 1.1 matt * modification, are permitted provided that the following conditions
45 1.1 matt * are met:
46 1.1 matt * 1. Redistributions of source code must retain the above copyright
47 1.1 matt * notice, this list of conditions and the following disclaimer.
48 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 matt * notice, this list of conditions and the following disclaimer in the
50 1.1 matt * documentation and/or other materials provided with the distribution.
51 1.1 matt * 3. All advertising materials mentioning features or use of this software
52 1.1 matt * must display the following acknowledgement:
53 1.1 matt * This product includes software developed by TooLs GmbH.
54 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 matt * derived from this software without specific prior written permission.
56 1.1 matt *
57 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 matt */
68 1.1 matt
69 1.1 matt #include "opt_altivec.h"
70 1.1 matt #include "opt_pmap.h"
71 1.1 matt #include <sys/param.h>
72 1.1 matt #include <sys/malloc.h>
73 1.1 matt #include <sys/proc.h>
74 1.1 matt #include <sys/user.h>
75 1.1 matt #include <sys/pool.h>
76 1.1 matt #include <sys/queue.h>
77 1.1 matt #include <sys/device.h> /* for evcnt */
78 1.1 matt #include <sys/systm.h>
79 1.1 matt
80 1.1 matt #if __NetBSD_Version__ < 105010000
81 1.1 matt #include <vm/vm.h>
82 1.1 matt #include <vm/vm_kern.h>
83 1.1 matt #define splvm() splimp()
84 1.1 matt #endif
85 1.1 matt
86 1.1 matt #include <uvm/uvm.h>
87 1.1 matt
88 1.1 matt #include <machine/pcb.h>
89 1.1 matt #include <machine/powerpc.h>
90 1.1 matt #include <powerpc/spr.h>
91 1.1 matt #include <powerpc/oea/sr_601.h>
92 1.1 matt #if __NetBSD_Version__ > 105010000
93 1.1 matt #include <powerpc/oea/bat.h>
94 1.1 matt #else
95 1.1 matt #include <powerpc/bat.h>
96 1.1 matt #endif
97 1.1 matt
98 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
99 1.1 matt #define STATIC
100 1.1 matt #else
101 1.1 matt #define STATIC static
102 1.1 matt #endif
103 1.1 matt
104 1.1 matt #ifdef ALTIVEC
105 1.1 matt int pmap_use_altivec;
106 1.1 matt #endif
107 1.1 matt
108 1.2 matt volatile struct pteg *pmap_pteg_table;
109 1.1 matt unsigned int pmap_pteg_cnt;
110 1.1 matt unsigned int pmap_pteg_mask;
111 1.6 thorpej paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
112 1.1 matt
113 1.1 matt struct pmap kernel_pmap_;
114 1.1 matt unsigned int pmap_pages_stolen;
115 1.1 matt u_long pmap_pte_valid;
116 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
117 1.1 matt u_long pmap_pvo_enter_depth;
118 1.1 matt u_long pmap_pvo_remove_depth;
119 1.1 matt #endif
120 1.1 matt
121 1.1 matt int physmem;
122 1.1 matt #ifndef MSGBUFADDR
123 1.1 matt extern paddr_t msgbuf_paddr;
124 1.1 matt #endif
125 1.1 matt
126 1.1 matt static struct mem_region *mem, *avail;
127 1.1 matt static u_int mem_cnt, avail_cnt;
128 1.1 matt
129 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
130 1.1 matt /*
131 1.1 matt * This is a cache of referenced/modified bits.
132 1.1 matt * Bits herein are shifted by ATTRSHFT.
133 1.1 matt */
134 1.1 matt #define ATTR_SHFT 4
135 1.1 matt struct pmap_physseg pmap_physseg;
136 1.1 matt #endif
137 1.1 matt
138 1.1 matt /*
139 1.1 matt * The following structure is exactly 32 bytes long (one cacheline).
140 1.1 matt */
141 1.1 matt struct pvo_entry {
142 1.1 matt LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
143 1.1 matt TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
144 1.1 matt struct pte pvo_pte; /* Prebuilt PTE */
145 1.1 matt pmap_t pvo_pmap; /* ptr to owning pmap */
146 1.1 matt vaddr_t pvo_vaddr; /* VA of entry */
147 1.1 matt #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
148 1.1 matt #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
149 1.1 matt #define PVO_WIRED 0x0010 /* PVO entry is wired */
150 1.1 matt #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
151 1.1 matt #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
152 1.1 matt };
153 1.1 matt #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
154 1.1 matt #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
155 1.1 matt #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
156 1.1 matt #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
157 1.1 matt #define PVO_PTEGIDX_CLR(pvo) \
158 1.1 matt ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
159 1.1 matt #define PVO_PTEGIDX_SET(pvo,i) \
160 1.1 matt ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
161 1.1 matt
162 1.1 matt TAILQ_HEAD(pvo_tqhead, pvo_entry);
163 1.1 matt struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
164 1.1 matt struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
165 1.1 matt struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
166 1.1 matt
167 1.1 matt struct pool pmap_pool; /* pool for pmap structures */
168 1.1 matt struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
169 1.1 matt struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
170 1.1 matt
171 1.1 matt /*
172 1.1 matt * We keep a cache of unmanaged pages to be used for pvo entries for
173 1.1 matt * unmanaged pages.
174 1.1 matt */
175 1.1 matt struct pvo_page {
176 1.1 matt SIMPLEQ_ENTRY(pvo_page) pvop_link;
177 1.1 matt };
178 1.1 matt SIMPLEQ_HEAD(pvop_head, pvo_page);
179 1.1 matt struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
180 1.1 matt struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
181 1.1 matt u_long pmap_upvop_free;
182 1.1 matt u_long pmap_upvop_maxfree;
183 1.1 matt u_long pmap_mpvop_free;
184 1.1 matt u_long pmap_mpvop_maxfree;
185 1.1 matt
186 1.1 matt STATIC void *pmap_pool_ualloc(struct pool *, int);
187 1.1 matt STATIC void *pmap_pool_malloc(struct pool *, int);
188 1.1 matt
189 1.1 matt STATIC void pmap_pool_ufree(struct pool *, void *);
190 1.1 matt STATIC void pmap_pool_mfree(struct pool *, void *);
191 1.1 matt
192 1.1 matt static struct pool_allocator pmap_pool_mallocator = {
193 1.1 matt pmap_pool_malloc, pmap_pool_mfree, 0,
194 1.1 matt };
195 1.1 matt
196 1.1 matt static struct pool_allocator pmap_pool_uallocator = {
197 1.1 matt pmap_pool_ualloc, pmap_pool_ufree, 0,
198 1.1 matt };
199 1.1 matt
200 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
201 1.2 matt void pmap_pte_print(volatile struct pte *);
202 1.1 matt #endif
203 1.1 matt
204 1.1 matt #ifdef DDB
205 1.1 matt void pmap_pteg_check(void);
206 1.1 matt void pmap_pteg_dist(void);
207 1.1 matt void pmap_print_pte(pmap_t, vaddr_t);
208 1.1 matt void pmap_print_mmuregs(void);
209 1.1 matt #endif
210 1.1 matt
211 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
212 1.1 matt #ifdef PMAPCHECK
213 1.1 matt int pmapcheck = 1;
214 1.1 matt #else
215 1.1 matt int pmapcheck = 0;
216 1.1 matt #endif
217 1.1 matt void pmap_pvo_verify(void);
218 1.1 matt STATIC void pmap_pvo_check(const struct pvo_entry *);
219 1.1 matt #define PMAP_PVO_CHECK(pvo) \
220 1.1 matt do { \
221 1.1 matt if (pmapcheck) \
222 1.1 matt pmap_pvo_check(pvo); \
223 1.1 matt } while (0)
224 1.1 matt #else
225 1.1 matt #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
226 1.1 matt #endif
227 1.2 matt STATIC int pmap_pte_insert(int, struct pte *);
228 1.1 matt STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
229 1.2 matt vaddr_t, paddr_t, register_t, int);
230 1.1 matt STATIC void pmap_pvo_remove(struct pvo_entry *, int);
231 1.1 matt STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
232 1.2 matt STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
233 1.1 matt
234 1.1 matt STATIC void tlbia(void);
235 1.1 matt
236 1.1 matt STATIC void pmap_release(pmap_t);
237 1.1 matt STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
238 1.1 matt
239 1.1 matt #define VSID_NBPW (sizeof(uint32_t) * 8)
240 1.1 matt static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
241 1.1 matt
242 1.1 matt static int pmap_initialized;
243 1.1 matt
244 1.1 matt #if defined(DEBUG) || defined(PMAPDEBUG)
245 1.1 matt #define PMAPDEBUG_BOOT 0x0001
246 1.1 matt #define PMAPDEBUG_PTE 0x0002
247 1.1 matt #define PMAPDEBUG_EXEC 0x0008
248 1.1 matt #define PMAPDEBUG_PVOENTER 0x0010
249 1.1 matt #define PMAPDEBUG_PVOREMOVE 0x0020
250 1.1 matt #define PMAPDEBUG_ACTIVATE 0x0100
251 1.1 matt #define PMAPDEBUG_CREATE 0x0200
252 1.1 matt #define PMAPDEBUG_ENTER 0x1000
253 1.1 matt #define PMAPDEBUG_KENTER 0x2000
254 1.1 matt #define PMAPDEBUG_KREMOVE 0x4000
255 1.1 matt #define PMAPDEBUG_REMOVE 0x8000
256 1.1 matt unsigned int pmapdebug = 0;
257 1.1 matt # define DPRINTF(x) printf x
258 1.1 matt # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
259 1.1 matt #else
260 1.1 matt # define DPRINTF(x)
261 1.1 matt # define DPRINTFN(n, x)
262 1.1 matt #endif
263 1.1 matt
264 1.1 matt
265 1.1 matt #ifdef PMAPCOUNTERS
266 1.1 matt #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
267 1.1 matt #define PMAPCOUNT2(ev) ((ev).ev_count++)
268 1.1 matt
269 1.1 matt struct evcnt pmap_evcnt_mappings =
270 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
271 1.1 matt "pmap", "pages mapped");
272 1.1 matt struct evcnt pmap_evcnt_unmappings =
273 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
274 1.1 matt "pmap", "pages unmapped");
275 1.1 matt
276 1.1 matt struct evcnt pmap_evcnt_kernel_mappings =
277 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
278 1.1 matt "pmap", "kernel pages mapped");
279 1.1 matt struct evcnt pmap_evcnt_kernel_unmappings =
280 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
281 1.1 matt "pmap", "kernel pages unmapped");
282 1.1 matt
283 1.1 matt struct evcnt pmap_evcnt_mappings_replaced =
284 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
285 1.1 matt "pmap", "page mappings replaced");
286 1.1 matt
287 1.1 matt struct evcnt pmap_evcnt_exec_mappings =
288 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
289 1.1 matt "pmap", "exec pages mapped");
290 1.1 matt struct evcnt pmap_evcnt_exec_cached =
291 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
292 1.1 matt "pmap", "exec pages cached");
293 1.1 matt
294 1.1 matt struct evcnt pmap_evcnt_exec_synced =
295 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
296 1.1 matt "pmap", "exec pages synced");
297 1.1 matt struct evcnt pmap_evcnt_exec_synced_clear_modify =
298 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
299 1.1 matt "pmap", "exec pages synced (CM)");
300 1.1 matt
301 1.1 matt struct evcnt pmap_evcnt_exec_uncached_page_protect =
302 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
303 1.1 matt "pmap", "exec pages uncached (PP)");
304 1.1 matt struct evcnt pmap_evcnt_exec_uncached_clear_modify =
305 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
306 1.1 matt "pmap", "exec pages uncached (CM)");
307 1.1 matt struct evcnt pmap_evcnt_exec_uncached_zero_page =
308 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
309 1.1 matt "pmap", "exec pages uncached (ZP)");
310 1.1 matt struct evcnt pmap_evcnt_exec_uncached_copy_page =
311 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
312 1.1 matt "pmap", "exec pages uncached (CP)");
313 1.1 matt
314 1.1 matt struct evcnt pmap_evcnt_updates =
315 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
316 1.1 matt "pmap", "updates");
317 1.1 matt struct evcnt pmap_evcnt_collects =
318 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
319 1.1 matt "pmap", "collects");
320 1.1 matt struct evcnt pmap_evcnt_copies =
321 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
322 1.1 matt "pmap", "copies");
323 1.1 matt
324 1.1 matt struct evcnt pmap_evcnt_ptes_spilled =
325 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
326 1.1 matt "pmap", "ptes spilled from overflow");
327 1.1 matt struct evcnt pmap_evcnt_ptes_unspilled =
328 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
329 1.1 matt "pmap", "ptes not spilled");
330 1.1 matt struct evcnt pmap_evcnt_ptes_evicted =
331 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
332 1.1 matt "pmap", "ptes evicted");
333 1.1 matt
334 1.1 matt struct evcnt pmap_evcnt_ptes_primary[8] = {
335 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
336 1.1 matt "pmap", "ptes added at primary[0]"),
337 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
338 1.1 matt "pmap", "ptes added at primary[1]"),
339 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
340 1.1 matt "pmap", "ptes added at primary[2]"),
341 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
342 1.1 matt "pmap", "ptes added at primary[3]"),
343 1.1 matt
344 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
345 1.1 matt "pmap", "ptes added at primary[4]"),
346 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
347 1.1 matt "pmap", "ptes added at primary[5]"),
348 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
349 1.1 matt "pmap", "ptes added at primary[6]"),
350 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
351 1.1 matt "pmap", "ptes added at primary[7]"),
352 1.1 matt };
353 1.1 matt struct evcnt pmap_evcnt_ptes_secondary[8] = {
354 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 1.1 matt "pmap", "ptes added at secondary[0]"),
356 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 1.1 matt "pmap", "ptes added at secondary[1]"),
358 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
359 1.1 matt "pmap", "ptes added at secondary[2]"),
360 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
361 1.1 matt "pmap", "ptes added at secondary[3]"),
362 1.1 matt
363 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 1.1 matt "pmap", "ptes added at secondary[4]"),
365 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 1.1 matt "pmap", "ptes added at secondary[5]"),
367 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
368 1.1 matt "pmap", "ptes added at secondary[6]"),
369 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
370 1.1 matt "pmap", "ptes added at secondary[7]"),
371 1.1 matt };
372 1.1 matt struct evcnt pmap_evcnt_ptes_removed =
373 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
374 1.1 matt "pmap", "ptes removed");
375 1.1 matt struct evcnt pmap_evcnt_ptes_changed =
376 1.1 matt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
377 1.1 matt "pmap", "ptes changed");
378 1.1 matt
379 1.1 matt /*
380 1.1 matt * From pmap_subr.c
381 1.1 matt */
382 1.1 matt extern struct evcnt pmap_evcnt_zeroed_pages;
383 1.1 matt extern struct evcnt pmap_evcnt_copied_pages;
384 1.1 matt extern struct evcnt pmap_evcnt_idlezeroed_pages;
385 1.1 matt #else
386 1.1 matt #define PMAPCOUNT(ev) ((void) 0)
387 1.1 matt #define PMAPCOUNT2(ev) ((void) 0)
388 1.1 matt #endif
389 1.1 matt
390 1.1 matt #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
391 1.1 matt #define TLBSYNC() __asm __volatile("tlbsync")
392 1.1 matt #define SYNC() __asm __volatile("sync")
393 1.1 matt #define EIEIO() __asm __volatile("eieio")
394 1.1 matt #define MFMSR() mfmsr()
395 1.1 matt #define MTMSR(psl) mtmsr(psl)
396 1.1 matt #define MFPVR() mfpvr()
397 1.1 matt #define MFSRIN(va) mfsrin(va)
398 1.1 matt #define MFTB() mfrtcltbl()
399 1.1 matt
400 1.2 matt static __inline register_t
401 1.1 matt mfsrin(vaddr_t va)
402 1.1 matt {
403 1.2 matt register_t sr;
404 1.1 matt __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
405 1.1 matt return sr;
406 1.1 matt }
407 1.1 matt
408 1.2 matt static __inline register_t
409 1.1 matt pmap_interrupts_off(void)
410 1.1 matt {
411 1.2 matt register_t msr = MFMSR();
412 1.1 matt if (msr & PSL_EE)
413 1.1 matt MTMSR(msr & ~PSL_EE);
414 1.1 matt return msr;
415 1.1 matt }
416 1.1 matt
417 1.1 matt static void
418 1.2 matt pmap_interrupts_restore(register_t msr)
419 1.1 matt {
420 1.1 matt if (msr & PSL_EE)
421 1.1 matt MTMSR(msr);
422 1.1 matt }
423 1.1 matt
424 1.1 matt static __inline u_int32_t
425 1.1 matt mfrtcltbl(void)
426 1.1 matt {
427 1.1 matt
428 1.1 matt if ((MFPVR() >> 16) == MPC601)
429 1.1 matt return (mfrtcl() >> 7);
430 1.1 matt else
431 1.1 matt return (mftbl());
432 1.1 matt }
433 1.1 matt
434 1.1 matt /*
435 1.1 matt * These small routines may have to be replaced,
436 1.1 matt * if/when we support processors other that the 604.
437 1.1 matt */
438 1.1 matt
439 1.1 matt void
440 1.1 matt tlbia(void)
441 1.1 matt {
442 1.1 matt caddr_t i;
443 1.1 matt
444 1.1 matt SYNC();
445 1.1 matt /*
446 1.1 matt * Why not use "tlbia"? Because not all processors implement it.
447 1.1 matt *
448 1.1 matt * This needs to be a per-cpu callback to do the appropriate thing
449 1.1 matt * for the CPU. XXX
450 1.1 matt */
451 1.1 matt for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
452 1.1 matt TLBIE(i);
453 1.1 matt EIEIO();
454 1.1 matt SYNC();
455 1.1 matt }
456 1.1 matt TLBSYNC();
457 1.1 matt SYNC();
458 1.1 matt }
459 1.1 matt
460 1.2 matt static __inline register_t
461 1.2 matt va_to_vsid(const struct pmap *pm, vaddr_t addr)
462 1.1 matt {
463 1.2 matt return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID);
464 1.1 matt }
465 1.1 matt
466 1.2 matt static __inline register_t
467 1.2 matt va_to_pteg(const struct pmap *pm, vaddr_t addr)
468 1.1 matt {
469 1.2 matt register_t hash;
470 1.2 matt
471 1.2 matt hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
472 1.1 matt return hash & pmap_pteg_mask;
473 1.1 matt }
474 1.1 matt
475 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
476 1.1 matt /*
477 1.1 matt * Given a PTE in the page table, calculate the VADDR that hashes to it.
478 1.1 matt * The only bit of magic is that the top 4 bits of the address doesn't
479 1.1 matt * technically exist in the PTE. But we know we reserved 4 bits of the
480 1.1 matt * VSID for it so that's how we get it.
481 1.1 matt */
482 1.1 matt static vaddr_t
483 1.2 matt pmap_pte_to_va(volatile const struct pte *pt)
484 1.1 matt {
485 1.1 matt vaddr_t va;
486 1.1 matt uintptr_t ptaddr = (uintptr_t) pt;
487 1.1 matt
488 1.1 matt if (pt->pte_hi & PTE_HID)
489 1.2 matt ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
490 1.1 matt
491 1.1 matt /* PPC Bits 10-19 */
492 1.4 matt va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
493 1.1 matt va <<= ADDR_PIDX_SHFT;
494 1.1 matt
495 1.1 matt /* PPC Bits 4-9 */
496 1.1 matt va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
497 1.1 matt
498 1.1 matt /* PPC Bits 0-3 */
499 1.1 matt va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
500 1.1 matt
501 1.1 matt return va;
502 1.1 matt }
503 1.1 matt #endif
504 1.1 matt
505 1.1 matt static __inline struct pvo_head *
506 1.1 matt pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
507 1.1 matt {
508 1.1 matt #ifdef __HAVE_VM_PAGE_MD
509 1.1 matt struct vm_page *pg;
510 1.1 matt
511 1.1 matt pg = PHYS_TO_VM_PAGE(pa);
512 1.1 matt if (pg_p != NULL)
513 1.1 matt *pg_p = pg;
514 1.1 matt if (pg == NULL)
515 1.1 matt return &pmap_pvo_unmanaged;
516 1.1 matt return &pg->mdpage.mdpg_pvoh;
517 1.1 matt #endif
518 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
519 1.1 matt int bank, pg;
520 1.1 matt
521 1.1 matt bank = vm_physseg_find(atop(pa), &pg);
522 1.1 matt if (pg_p != NULL)
523 1.1 matt *pg_p = pg;
524 1.1 matt if (bank == -1)
525 1.1 matt return &pmap_pvo_unmanaged;
526 1.1 matt return &vm_physmem[bank].pmseg.pvoh[pg];
527 1.1 matt #endif
528 1.1 matt }
529 1.1 matt
530 1.1 matt static __inline struct pvo_head *
531 1.1 matt vm_page_to_pvoh(struct vm_page *pg)
532 1.1 matt {
533 1.1 matt #ifdef __HAVE_VM_PAGE_MD
534 1.1 matt return &pg->mdpage.mdpg_pvoh;
535 1.1 matt #endif
536 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
537 1.1 matt return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
538 1.1 matt #endif
539 1.1 matt }
540 1.1 matt
541 1.1 matt
542 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
543 1.1 matt static __inline char *
544 1.1 matt pa_to_attr(paddr_t pa)
545 1.1 matt {
546 1.1 matt int bank, pg;
547 1.1 matt
548 1.1 matt bank = vm_physseg_find(atop(pa), &pg);
549 1.1 matt if (bank == -1)
550 1.1 matt return NULL;
551 1.1 matt return &vm_physmem[bank].pmseg.attrs[pg];
552 1.1 matt }
553 1.1 matt #endif
554 1.1 matt
555 1.1 matt static __inline void
556 1.1 matt pmap_attr_clear(struct vm_page *pg, int ptebit)
557 1.1 matt {
558 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
559 1.1 matt *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
560 1.1 matt #endif
561 1.1 matt #ifdef __HAVE_VM_PAGE_MD
562 1.1 matt pg->mdpage.mdpg_attrs &= ~ptebit;
563 1.1 matt #endif
564 1.1 matt }
565 1.1 matt
566 1.1 matt static __inline int
567 1.1 matt pmap_attr_fetch(struct vm_page *pg)
568 1.1 matt {
569 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
570 1.1 matt return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
571 1.1 matt #endif
572 1.1 matt #ifdef __HAVE_VM_PAGE_MD
573 1.1 matt return pg->mdpage.mdpg_attrs;
574 1.1 matt #endif
575 1.1 matt }
576 1.1 matt
577 1.1 matt static __inline void
578 1.1 matt pmap_attr_save(struct vm_page *pg, int ptebit)
579 1.1 matt {
580 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
581 1.1 matt *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
582 1.1 matt #endif
583 1.1 matt #ifdef __HAVE_VM_PAGE_MD
584 1.1 matt pg->mdpage.mdpg_attrs |= ptebit;
585 1.1 matt #endif
586 1.1 matt }
587 1.1 matt
588 1.1 matt static __inline int
589 1.2 matt pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
590 1.1 matt {
591 1.1 matt if (pt->pte_hi == pvo_pt->pte_hi
592 1.1 matt #if 0
593 1.1 matt && ((pt->pte_lo ^ pvo_pt->pte_lo) &
594 1.1 matt ~(PTE_REF|PTE_CHG)) == 0
595 1.1 matt #endif
596 1.1 matt )
597 1.1 matt return 1;
598 1.1 matt return 0;
599 1.1 matt }
600 1.1 matt
601 1.1 matt static __inline void
602 1.2 matt pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
603 1.1 matt {
604 1.1 matt /*
605 1.1 matt * Construct the PTE. Default to IMB initially. Valid bit
606 1.1 matt * only gets set when the real pte is set in memory.
607 1.1 matt *
608 1.1 matt * Note: Don't set the valid bit for correct operation of tlb update.
609 1.1 matt */
610 1.2 matt pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
611 1.2 matt | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
612 1.1 matt pt->pte_lo = pte_lo;
613 1.1 matt }
614 1.1 matt
615 1.1 matt static __inline void
616 1.2 matt pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
617 1.1 matt {
618 1.1 matt pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
619 1.1 matt }
620 1.1 matt
621 1.1 matt static __inline void
622 1.2 matt pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
623 1.1 matt {
624 1.1 matt /*
625 1.1 matt * As shown in Section 7.6.3.2.3
626 1.1 matt */
627 1.1 matt pt->pte_lo &= ~ptebit;
628 1.1 matt TLBIE(va);
629 1.1 matt SYNC();
630 1.1 matt EIEIO();
631 1.1 matt TLBSYNC();
632 1.1 matt SYNC();
633 1.1 matt }
634 1.1 matt
635 1.1 matt static __inline void
636 1.2 matt pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
637 1.1 matt {
638 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
639 1.1 matt if (pvo_pt->pte_hi & PTE_VALID)
640 1.1 matt panic("pte_set: setting an already valid pte %p", pvo_pt);
641 1.1 matt #endif
642 1.1 matt pvo_pt->pte_hi |= PTE_VALID;
643 1.1 matt /*
644 1.1 matt * Update the PTE as defined in section 7.6.3.1
645 1.1 matt * Note that the REF/CHG bits are from pvo_pt and thus should
646 1.1 matt * have been saved so this routine can restore them (if desired).
647 1.1 matt */
648 1.1 matt pt->pte_lo = pvo_pt->pte_lo;
649 1.1 matt EIEIO();
650 1.1 matt pt->pte_hi = pvo_pt->pte_hi;
651 1.1 matt SYNC();
652 1.1 matt pmap_pte_valid++;
653 1.1 matt }
654 1.1 matt
655 1.1 matt static __inline void
656 1.2 matt pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
657 1.1 matt {
658 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
659 1.1 matt if ((pvo_pt->pte_hi & PTE_VALID) == 0)
660 1.1 matt panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
661 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0)
662 1.1 matt panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
663 1.1 matt #endif
664 1.1 matt
665 1.1 matt pvo_pt->pte_hi &= ~PTE_VALID;
666 1.1 matt /*
667 1.1 matt * Force the ref & chg bits back into the PTEs.
668 1.1 matt */
669 1.1 matt SYNC();
670 1.1 matt /*
671 1.1 matt * Invalidate the pte ... (Section 7.6.3.3)
672 1.1 matt */
673 1.1 matt pt->pte_hi &= ~PTE_VALID;
674 1.1 matt SYNC();
675 1.1 matt TLBIE(va);
676 1.1 matt SYNC();
677 1.1 matt EIEIO();
678 1.1 matt TLBSYNC();
679 1.1 matt SYNC();
680 1.1 matt /*
681 1.1 matt * Save the ref & chg bits ...
682 1.1 matt */
683 1.1 matt pmap_pte_synch(pt, pvo_pt);
684 1.1 matt pmap_pte_valid--;
685 1.1 matt }
686 1.1 matt
687 1.1 matt static __inline void
688 1.2 matt pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
689 1.1 matt {
690 1.1 matt /*
691 1.1 matt * Invalidate the PTE
692 1.1 matt */
693 1.1 matt pmap_pte_unset(pt, pvo_pt, va);
694 1.1 matt pmap_pte_set(pt, pvo_pt);
695 1.1 matt }
696 1.1 matt
697 1.1 matt /*
698 1.1 matt * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
699 1.1 matt * (either primary or secondary location).
700 1.1 matt *
701 1.1 matt * Note: both the destination and source PTEs must not have PTE_VALID set.
702 1.1 matt */
703 1.1 matt
704 1.1 matt STATIC int
705 1.2 matt pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
706 1.1 matt {
707 1.2 matt volatile struct pte *pt;
708 1.1 matt int i;
709 1.1 matt
710 1.1 matt #if defined(DEBUG)
711 1.2 matt DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%lx 0x%lx\n",
712 1.1 matt ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
713 1.1 matt #endif
714 1.1 matt /*
715 1.1 matt * First try primary hash.
716 1.1 matt */
717 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
718 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0) {
719 1.1 matt pvo_pt->pte_hi &= ~PTE_HID;
720 1.1 matt pmap_pte_set(pt, pvo_pt);
721 1.1 matt return i;
722 1.1 matt }
723 1.1 matt }
724 1.1 matt
725 1.1 matt /*
726 1.1 matt * Now try secondary hash.
727 1.1 matt */
728 1.1 matt ptegidx ^= pmap_pteg_mask;
729 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
730 1.1 matt if ((pt->pte_hi & PTE_VALID) == 0) {
731 1.1 matt pvo_pt->pte_hi |= PTE_HID;
732 1.1 matt pmap_pte_set(pt, pvo_pt);
733 1.1 matt return i;
734 1.1 matt }
735 1.1 matt }
736 1.1 matt return -1;
737 1.1 matt }
738 1.1 matt
739 1.1 matt /*
740 1.1 matt * Spill handler.
741 1.1 matt *
742 1.1 matt * Tries to spill a page table entry from the overflow area.
743 1.1 matt * This runs in either real mode (if dealing with a exception spill)
744 1.1 matt * or virtual mode when dealing with manually spilling one of the
745 1.1 matt * kernel's pte entries. In either case, interrupts are already
746 1.1 matt * disabled.
747 1.1 matt */
748 1.1 matt int
749 1.1 matt pmap_pte_spill(struct pmap *pm, vaddr_t addr)
750 1.1 matt {
751 1.1 matt struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
752 1.1 matt struct pvo_entry *pvo;
753 1.1 matt struct pvo_tqhead *pvoh, *vpvoh;
754 1.1 matt int ptegidx, i, j;
755 1.2 matt volatile struct pteg *pteg;
756 1.2 matt volatile struct pte *pt;
757 1.1 matt
758 1.2 matt ptegidx = va_to_pteg(pm, addr);
759 1.1 matt
760 1.1 matt /*
761 1.1 matt * Have to substitute some entry. Use the primary hash for this.
762 1.1 matt *
763 1.1 matt * Use low bits of timebase as random generator
764 1.1 matt */
765 1.1 matt pteg = &pmap_pteg_table[ptegidx];
766 1.1 matt i = MFTB() & 7;
767 1.1 matt pt = &pteg->pt[i];
768 1.1 matt
769 1.1 matt source_pvo = NULL;
770 1.1 matt victim_pvo = NULL;
771 1.1 matt pvoh = &pmap_pvo_table[ptegidx];
772 1.1 matt TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
773 1.1 matt
774 1.1 matt /*
775 1.1 matt * We need to find pvo entry for this address...
776 1.1 matt */
777 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
778 1.1 matt
779 1.1 matt /*
780 1.1 matt * If we haven't found the source and we come to a PVO with
781 1.1 matt * a valid PTE, then we know we can't find it because all
782 1.1 matt * evicted PVOs always are first in the list.
783 1.1 matt */
784 1.1 matt if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
785 1.1 matt break;
786 1.2 matt if (source_pvo == NULL && pm == pvo->pvo_pmap &&
787 1.2 matt addr == PVO_VADDR(pvo)) {
788 1.1 matt
789 1.1 matt /*
790 1.1 matt * Now we have found the entry to be spilled into the
791 1.1 matt * pteg. Attempt to insert it into the page table.
792 1.1 matt */
793 1.1 matt j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
794 1.1 matt if (j >= 0) {
795 1.1 matt PVO_PTEGIDX_SET(pvo, j);
796 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
797 1.1 matt pvo->pvo_pmap->pm_evictions--;
798 1.1 matt PMAPCOUNT(ptes_spilled);
799 1.1 matt PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
800 1.1 matt ? pmap_evcnt_ptes_secondary
801 1.1 matt : pmap_evcnt_ptes_primary)[j]);
802 1.1 matt
803 1.1 matt /*
804 1.1 matt * Since we keep the evicted entries at the
805 1.1 matt * from of the PVO list, we need move this
806 1.1 matt * (now resident) PVO after the evicted
807 1.1 matt * entries.
808 1.1 matt */
809 1.1 matt next_pvo = TAILQ_NEXT(pvo, pvo_olink);
810 1.1 matt
811 1.1 matt /*
812 1.5 matt * If we don't have to move (either we were the
813 1.5 matt * last entry or the next entry was valid),
814 1.1 matt * don't change our position. Otherwise
815 1.1 matt * move ourselves to the tail of the queue.
816 1.1 matt */
817 1.1 matt if (next_pvo != NULL &&
818 1.1 matt !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
819 1.1 matt TAILQ_REMOVE(pvoh, pvo, pvo_olink);
820 1.1 matt TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
821 1.1 matt }
822 1.1 matt return 1;
823 1.1 matt }
824 1.1 matt source_pvo = pvo;
825 1.1 matt if (victim_pvo != NULL)
826 1.1 matt break;
827 1.1 matt }
828 1.1 matt
829 1.1 matt /*
830 1.1 matt * We also need the pvo entry of the victim we are replacing
831 1.1 matt * so save the R & C bits of the PTE.
832 1.1 matt */
833 1.1 matt if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
834 1.1 matt pmap_pte_compare(pt, &pvo->pvo_pte)) {
835 1.1 matt vpvoh = pvoh;
836 1.1 matt victim_pvo = pvo;
837 1.1 matt if (source_pvo != NULL)
838 1.1 matt break;
839 1.1 matt }
840 1.1 matt }
841 1.1 matt
842 1.1 matt if (source_pvo == NULL) {
843 1.1 matt PMAPCOUNT(ptes_unspilled);
844 1.1 matt return 0;
845 1.1 matt }
846 1.1 matt
847 1.1 matt if (victim_pvo == NULL) {
848 1.1 matt if ((pt->pte_hi & PTE_HID) == 0)
849 1.1 matt panic("pmap_pte_spill: victim p-pte (%p) has "
850 1.1 matt "no pvo entry!", pt);
851 1.1 matt
852 1.1 matt /*
853 1.1 matt * If this is a secondary PTE, we need to search
854 1.1 matt * its primary pvo bucket for the matching PVO.
855 1.1 matt */
856 1.1 matt vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
857 1.1 matt TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
858 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
859 1.1 matt
860 1.1 matt /*
861 1.1 matt * We also need the pvo entry of the victim we are
862 1.1 matt * replacing so save the R & C bits of the PTE.
863 1.1 matt */
864 1.1 matt if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
865 1.1 matt victim_pvo = pvo;
866 1.1 matt break;
867 1.1 matt }
868 1.1 matt }
869 1.1 matt if (victim_pvo == NULL)
870 1.1 matt panic("pmap_pte_spill: victim s-pte (%p) has "
871 1.1 matt "no pvo entry!", pt);
872 1.1 matt }
873 1.1 matt
874 1.1 matt /*
875 1.1 matt * We are invalidating the TLB entry for the EA for the
876 1.1 matt * we are replacing even though its valid; If we don't
877 1.1 matt * we lose any ref/chg bit changes contained in the TLB
878 1.1 matt * entry.
879 1.1 matt */
880 1.1 matt source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
881 1.1 matt
882 1.1 matt /*
883 1.1 matt * To enforce the PVO list ordering constraint that all
884 1.1 matt * evicted entries should come before all valid entries,
885 1.1 matt * move the source PVO to the tail of its list and the
886 1.1 matt * victim PVO to the head of its list (which might not be
887 1.1 matt * the same list, if the victim was using the secondary hash).
888 1.1 matt */
889 1.1 matt TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
890 1.1 matt TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
891 1.1 matt TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
892 1.1 matt TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
893 1.1 matt pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
894 1.1 matt pmap_pte_set(pt, &source_pvo->pvo_pte);
895 1.1 matt victim_pvo->pvo_pmap->pm_evictions++;
896 1.1 matt source_pvo->pvo_pmap->pm_evictions--;
897 1.1 matt
898 1.1 matt PVO_PTEGIDX_CLR(victim_pvo);
899 1.1 matt PVO_PTEGIDX_SET(source_pvo, i);
900 1.1 matt PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
901 1.1 matt PMAPCOUNT(ptes_spilled);
902 1.1 matt PMAPCOUNT(ptes_evicted);
903 1.1 matt PMAPCOUNT(ptes_removed);
904 1.1 matt
905 1.1 matt PMAP_PVO_CHECK(victim_pvo);
906 1.1 matt PMAP_PVO_CHECK(source_pvo);
907 1.1 matt return 1;
908 1.1 matt }
909 1.1 matt
910 1.1 matt /*
911 1.1 matt * Restrict given range to physical memory
912 1.1 matt */
913 1.1 matt void
914 1.1 matt pmap_real_memory(paddr_t *start, psize_t *size)
915 1.1 matt {
916 1.1 matt struct mem_region *mp;
917 1.1 matt
918 1.1 matt for (mp = mem; mp->size; mp++) {
919 1.1 matt if (*start + *size > mp->start
920 1.1 matt && *start < mp->start + mp->size) {
921 1.1 matt if (*start < mp->start) {
922 1.1 matt *size -= mp->start - *start;
923 1.1 matt *start = mp->start;
924 1.1 matt }
925 1.1 matt if (*start + *size > mp->start + mp->size)
926 1.1 matt *size = mp->start + mp->size - *start;
927 1.1 matt return;
928 1.1 matt }
929 1.1 matt }
930 1.1 matt *size = 0;
931 1.1 matt }
932 1.1 matt
933 1.1 matt /*
934 1.1 matt * Initialize anything else for pmap handling.
935 1.1 matt * Called during vm_init().
936 1.1 matt */
937 1.1 matt void
938 1.1 matt pmap_init(void)
939 1.1 matt {
940 1.1 matt int s;
941 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
942 1.1 matt struct pvo_tqhead *pvoh;
943 1.1 matt int bank;
944 1.1 matt long sz;
945 1.1 matt char *attr;
946 1.1 matt
947 1.1 matt s = splvm();
948 1.1 matt pvoh = pmap_physseg.pvoh;
949 1.1 matt attr = pmap_physseg.attrs;
950 1.1 matt for (bank = 0; bank < vm_nphysseg; bank++) {
951 1.1 matt sz = vm_physmem[bank].end - vm_physmem[bank].start;
952 1.1 matt vm_physmem[bank].pmseg.pvoh = pvoh;
953 1.1 matt vm_physmem[bank].pmseg.attrs = attr;
954 1.1 matt for (; sz > 0; sz--, pvoh++, attr++) {
955 1.1 matt TAILQ_INIT(pvoh);
956 1.1 matt *attr = 0;
957 1.1 matt }
958 1.1 matt }
959 1.1 matt splx(s);
960 1.1 matt #endif
961 1.1 matt
962 1.1 matt s = splvm();
963 1.1 matt pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
964 1.1 matt sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
965 1.1 matt &pmap_pool_mallocator);
966 1.1 matt
967 1.1 matt pool_setlowat(&pmap_mpvo_pool, 1008);
968 1.1 matt
969 1.1 matt pmap_initialized = 1;
970 1.1 matt splx(s);
971 1.1 matt
972 1.1 matt #ifdef PMAPCOUNTERS
973 1.1 matt evcnt_attach_static(&pmap_evcnt_mappings);
974 1.1 matt evcnt_attach_static(&pmap_evcnt_mappings_replaced);
975 1.1 matt evcnt_attach_static(&pmap_evcnt_unmappings);
976 1.1 matt
977 1.1 matt evcnt_attach_static(&pmap_evcnt_kernel_mappings);
978 1.1 matt evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
979 1.1 matt
980 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_mappings);
981 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_cached);
982 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_synced);
983 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
984 1.1 matt
985 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
986 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
987 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
988 1.1 matt evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
989 1.1 matt
990 1.1 matt evcnt_attach_static(&pmap_evcnt_zeroed_pages);
991 1.1 matt evcnt_attach_static(&pmap_evcnt_copied_pages);
992 1.1 matt evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
993 1.1 matt
994 1.1 matt evcnt_attach_static(&pmap_evcnt_updates);
995 1.1 matt evcnt_attach_static(&pmap_evcnt_collects);
996 1.1 matt evcnt_attach_static(&pmap_evcnt_copies);
997 1.1 matt
998 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_spilled);
999 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
1000 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_evicted);
1001 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_removed);
1002 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_changed);
1003 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
1004 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
1005 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
1006 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
1007 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
1008 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
1009 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
1010 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
1011 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
1012 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
1013 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
1014 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
1015 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
1016 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
1017 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
1018 1.1 matt evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
1019 1.1 matt #endif
1020 1.1 matt }
1021 1.1 matt
1022 1.1 matt /*
1023 1.1 matt * How much virtual space does the kernel get?
1024 1.1 matt */
1025 1.1 matt void
1026 1.1 matt pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1027 1.1 matt {
1028 1.1 matt /*
1029 1.1 matt * For now, reserve one segment (minus some overhead) for kernel
1030 1.1 matt * virtual memory
1031 1.1 matt */
1032 1.1 matt *start = VM_MIN_KERNEL_ADDRESS;
1033 1.1 matt *end = VM_MAX_KERNEL_ADDRESS;
1034 1.1 matt }
1035 1.1 matt
1036 1.1 matt /*
1037 1.1 matt * Allocate, initialize, and return a new physical map.
1038 1.1 matt */
1039 1.1 matt pmap_t
1040 1.1 matt pmap_create(void)
1041 1.1 matt {
1042 1.1 matt pmap_t pm;
1043 1.1 matt
1044 1.1 matt pm = pool_get(&pmap_pool, PR_WAITOK);
1045 1.1 matt memset((caddr_t)pm, 0, sizeof *pm);
1046 1.1 matt pmap_pinit(pm);
1047 1.1 matt
1048 1.1 matt DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1049 1.2 matt "\t%06lx %06lx %06lx %06lx %06lx %06lx %06lx %06lx\n"
1050 1.2 matt "\t%06lx %06lx %06lx %06lx %06lx %06lx %06lx %06lx\n", pm,
1051 1.1 matt pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
1052 1.1 matt pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
1053 1.1 matt pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
1054 1.1 matt pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
1055 1.1 matt return pm;
1056 1.1 matt }
1057 1.1 matt
1058 1.1 matt /*
1059 1.1 matt * Initialize a preallocated and zeroed pmap structure.
1060 1.1 matt */
1061 1.1 matt void
1062 1.1 matt pmap_pinit(pmap_t pm)
1063 1.1 matt {
1064 1.2 matt register_t entropy = MFTB();
1065 1.2 matt register_t mask;
1066 1.2 matt int i;
1067 1.1 matt
1068 1.1 matt /*
1069 1.1 matt * Allocate some segment registers for this pmap.
1070 1.1 matt */
1071 1.1 matt pm->pm_refs = 1;
1072 1.2 matt for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1073 1.2 matt static register_t pmap_vsidcontext;
1074 1.2 matt register_t hash;
1075 1.2 matt unsigned int n;
1076 1.1 matt
1077 1.1 matt /* Create a new value by multiplying by a prime adding in
1078 1.1 matt * entropy from the timebase register. This is to make the
1079 1.1 matt * VSID more random so that the PT Hash function collides
1080 1.1 matt * less often. (note that the prime causes gcc to do shifts
1081 1.1 matt * instead of a multiply)
1082 1.1 matt */
1083 1.1 matt pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1084 1.1 matt hash = pmap_vsidcontext & (NPMAPS - 1);
1085 1.1 matt if (hash == 0) /* 0 is special, avoid it */
1086 1.1 matt continue;
1087 1.1 matt n = hash >> 5;
1088 1.2 matt mask = 1L << (hash & (VSID_NBPW-1));
1089 1.2 matt hash = pmap_vsidcontext;
1090 1.1 matt if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1091 1.1 matt /* anything free in this bucket? */
1092 1.2 matt if (~pmap_vsid_bitmap[n] == 0) {
1093 1.2 matt entropy = hash >> PTE_VSID_SHFT;
1094 1.1 matt continue;
1095 1.1 matt }
1096 1.1 matt i = ffs(~pmap_vsid_bitmap[n]) - 1;
1097 1.2 matt mask = 1L << i;
1098 1.2 matt hash &= ~(VSID_NBPW-1);
1099 1.1 matt hash |= i;
1100 1.1 matt }
1101 1.2 matt /*
1102 1.2 matt * Make sure clear out SR_KEY_LEN bits because we put our
1103 1.2 matt * our data in those bits (to identify the segment).
1104 1.2 matt */
1105 1.2 matt hash &= PTE_VSID >> (PTE_VSID_SHFT + SR_KEY_LEN);
1106 1.1 matt pmap_vsid_bitmap[n] |= mask;
1107 1.1 matt for (i = 0; i < 16; i++)
1108 1.1 matt pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY;
1109 1.1 matt return;
1110 1.1 matt }
1111 1.1 matt panic("pmap_pinit: out of segments");
1112 1.1 matt }
1113 1.1 matt
1114 1.1 matt /*
1115 1.1 matt * Add a reference to the given pmap.
1116 1.1 matt */
1117 1.1 matt void
1118 1.1 matt pmap_reference(pmap_t pm)
1119 1.1 matt {
1120 1.1 matt pm->pm_refs++;
1121 1.1 matt }
1122 1.1 matt
1123 1.1 matt /*
1124 1.1 matt * Retire the given pmap from service.
1125 1.1 matt * Should only be called if the map contains no valid mappings.
1126 1.1 matt */
1127 1.1 matt void
1128 1.1 matt pmap_destroy(pmap_t pm)
1129 1.1 matt {
1130 1.1 matt if (--pm->pm_refs == 0) {
1131 1.1 matt pmap_release(pm);
1132 1.1 matt pool_put(&pmap_pool, pm);
1133 1.1 matt }
1134 1.1 matt }
1135 1.1 matt
1136 1.1 matt /*
1137 1.1 matt * Release any resources held by the given physical map.
1138 1.1 matt * Called when a pmap initialized by pmap_pinit is being released.
1139 1.1 matt */
1140 1.1 matt void
1141 1.1 matt pmap_release(pmap_t pm)
1142 1.1 matt {
1143 1.1 matt int idx, mask;
1144 1.1 matt
1145 1.1 matt if (pm->pm_sr[0] == 0)
1146 1.1 matt panic("pmap_release");
1147 1.1 matt idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1);
1148 1.1 matt mask = 1 << (idx % VSID_NBPW);
1149 1.1 matt idx /= VSID_NBPW;
1150 1.1 matt pmap_vsid_bitmap[idx] &= ~mask;
1151 1.1 matt }
1152 1.1 matt
1153 1.1 matt /*
1154 1.1 matt * Copy the range specified by src_addr/len
1155 1.1 matt * from the source map to the range dst_addr/len
1156 1.1 matt * in the destination map.
1157 1.1 matt *
1158 1.1 matt * This routine is only advisory and need not do anything.
1159 1.1 matt */
1160 1.1 matt void
1161 1.1 matt pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1162 1.1 matt vsize_t len, vaddr_t src_addr)
1163 1.1 matt {
1164 1.1 matt PMAPCOUNT(copies);
1165 1.1 matt }
1166 1.1 matt
1167 1.1 matt /*
1168 1.1 matt * Require that all active physical maps contain no
1169 1.1 matt * incorrect entries NOW.
1170 1.1 matt */
1171 1.1 matt void
1172 1.1 matt pmap_update(struct pmap *pmap)
1173 1.1 matt {
1174 1.1 matt PMAPCOUNT(updates);
1175 1.1 matt TLBSYNC();
1176 1.1 matt }
1177 1.1 matt
1178 1.1 matt /*
1179 1.1 matt * Garbage collects the physical map system for
1180 1.1 matt * pages which are no longer used.
1181 1.1 matt * Success need not be guaranteed -- that is, there
1182 1.1 matt * may well be pages which are not referenced, but
1183 1.1 matt * others may be collected.
1184 1.1 matt * Called by the pageout daemon when pages are scarce.
1185 1.1 matt */
1186 1.1 matt void
1187 1.1 matt pmap_collect(pmap_t pm)
1188 1.1 matt {
1189 1.1 matt PMAPCOUNT(collects);
1190 1.1 matt }
1191 1.1 matt
1192 1.1 matt static __inline int
1193 1.1 matt pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1194 1.1 matt {
1195 1.1 matt int pteidx;
1196 1.1 matt /*
1197 1.1 matt * We can find the actual pte entry without searching by
1198 1.1 matt * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1199 1.1 matt * and by noticing the HID bit.
1200 1.1 matt */
1201 1.1 matt pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1202 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_HID)
1203 1.1 matt pteidx ^= pmap_pteg_mask * 8;
1204 1.1 matt return pteidx;
1205 1.1 matt }
1206 1.1 matt
1207 1.2 matt volatile struct pte *
1208 1.1 matt pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1209 1.1 matt {
1210 1.2 matt volatile struct pte *pt;
1211 1.1 matt
1212 1.1 matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1213 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1214 1.1 matt return NULL;
1215 1.1 matt #endif
1216 1.1 matt
1217 1.1 matt /*
1218 1.1 matt * If we haven't been supplied the ptegidx, calculate it.
1219 1.1 matt */
1220 1.1 matt if (pteidx == -1) {
1221 1.1 matt int ptegidx;
1222 1.2 matt ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1223 1.1 matt pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1224 1.1 matt }
1225 1.1 matt
1226 1.1 matt pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1227 1.1 matt
1228 1.1 matt #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1229 1.1 matt return pt;
1230 1.1 matt #else
1231 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1232 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1233 1.1 matt "pvo but no valid pte index", pvo);
1234 1.1 matt }
1235 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1236 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1237 1.1 matt "pvo but no valid pte", pvo);
1238 1.1 matt }
1239 1.1 matt
1240 1.1 matt if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1241 1.1 matt if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1242 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1243 1.1 matt pmap_pte_print(pt);
1244 1.1 matt #endif
1245 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1246 1.1 matt "pmap_pteg_table %p but invalid in pvo",
1247 1.1 matt pvo, pt);
1248 1.1 matt }
1249 1.1 matt if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1250 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1251 1.1 matt pmap_pte_print(pt);
1252 1.1 matt #endif
1253 1.1 matt panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1254 1.1 matt "not match pte %p in pmap_pteg_table",
1255 1.1 matt pvo, pt);
1256 1.1 matt }
1257 1.1 matt return pt;
1258 1.1 matt }
1259 1.1 matt
1260 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1261 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1262 1.1 matt pmap_pte_print(pt);
1263 1.1 matt #endif
1264 1.1 matt panic("pmap_pvo_to_pte: pvo %p: has invalid pte %p in "
1265 1.1 matt "pmap_pteg_table but valid in pvo", pvo, pt);
1266 1.1 matt }
1267 1.1 matt return NULL;
1268 1.1 matt #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1269 1.1 matt }
1270 1.1 matt
1271 1.1 matt struct pvo_entry *
1272 1.1 matt pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1273 1.1 matt {
1274 1.1 matt struct pvo_entry *pvo;
1275 1.1 matt int ptegidx;
1276 1.1 matt
1277 1.1 matt va &= ~ADDR_POFF;
1278 1.2 matt ptegidx = va_to_pteg(pm, va);
1279 1.1 matt
1280 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1281 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1282 1.1 matt if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1283 1.1 matt panic("pmap_pvo_find_va: invalid pvo %p on "
1284 1.1 matt "list %#x (%p)", pvo, ptegidx,
1285 1.1 matt &pmap_pvo_table[ptegidx]);
1286 1.1 matt #endif
1287 1.1 matt if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1288 1.1 matt if (pteidx_p)
1289 1.1 matt *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1290 1.1 matt return pvo;
1291 1.1 matt }
1292 1.1 matt }
1293 1.1 matt return NULL;
1294 1.1 matt }
1295 1.1 matt
1296 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK)
1297 1.1 matt void
1298 1.1 matt pmap_pvo_check(const struct pvo_entry *pvo)
1299 1.1 matt {
1300 1.1 matt struct pvo_head *pvo_head;
1301 1.1 matt struct pvo_entry *pvo0;
1302 1.2 matt volatile struct pte *pt;
1303 1.1 matt int failed = 0;
1304 1.1 matt
1305 1.1 matt if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1306 1.1 matt panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1307 1.1 matt
1308 1.1 matt if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1309 1.1 matt printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1310 1.1 matt pvo, pvo->pvo_pmap);
1311 1.1 matt failed = 1;
1312 1.1 matt }
1313 1.1 matt
1314 1.1 matt if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1315 1.1 matt (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1316 1.1 matt printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1317 1.1 matt pvo, TAILQ_NEXT(pvo, pvo_olink));
1318 1.1 matt failed = 1;
1319 1.1 matt }
1320 1.1 matt
1321 1.1 matt if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1322 1.1 matt (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1323 1.1 matt printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1324 1.1 matt pvo, LIST_NEXT(pvo, pvo_vlink));
1325 1.1 matt failed = 1;
1326 1.1 matt }
1327 1.1 matt
1328 1.1 matt if (pvo->pvo_vaddr & PVO_MANAGED) {
1329 1.1 matt pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1330 1.1 matt } else {
1331 1.1 matt if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1332 1.1 matt printf("pmap_pvo_check: pvo %p: non kernel address "
1333 1.1 matt "on kernel unmanaged list\n", pvo);
1334 1.1 matt failed = 1;
1335 1.1 matt }
1336 1.1 matt pvo_head = &pmap_pvo_kunmanaged;
1337 1.1 matt }
1338 1.1 matt LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1339 1.1 matt if (pvo0 == pvo)
1340 1.1 matt break;
1341 1.1 matt }
1342 1.1 matt if (pvo0 == NULL) {
1343 1.1 matt printf("pmap_pvo_check: pvo %p: not present "
1344 1.1 matt "on its vlist head %p\n", pvo, pvo_head);
1345 1.1 matt failed = 1;
1346 1.1 matt }
1347 1.1 matt if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1348 1.1 matt printf("pmap_pvo_check: pvo %p: not present "
1349 1.1 matt "on its olist head\n", pvo);
1350 1.1 matt failed = 1;
1351 1.1 matt }
1352 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
1353 1.1 matt if (pt == NULL) {
1354 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1355 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1356 1.1 matt "no PTE\n", pvo);
1357 1.1 matt failed = 1;
1358 1.1 matt }
1359 1.1 matt } else {
1360 1.1 matt if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1361 1.1 matt (uintptr_t) pt >=
1362 1.1 matt (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1363 1.1 matt printf("pmap_pvo_check: pvo %p: pte %p not in "
1364 1.1 matt "pteg table\n", pvo, pt);
1365 1.1 matt failed = 1;
1366 1.1 matt }
1367 1.1 matt if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1368 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1369 1.1 matt "no PTE\n", pvo);
1370 1.1 matt failed = 1;
1371 1.1 matt }
1372 1.1 matt if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1373 1.1 matt printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1374 1.2 matt "%#lx/%#lx\n", pvo, pvo->pvo_pte.pte_hi, pt->pte_hi);
1375 1.1 matt failed = 1;
1376 1.1 matt }
1377 1.1 matt if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1378 1.1 matt (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1379 1.1 matt printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1380 1.2 matt "%#lx/%#lx\n", pvo,
1381 1.1 matt pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN),
1382 1.1 matt pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN));
1383 1.1 matt failed = 1;
1384 1.1 matt }
1385 1.1 matt if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1386 1.1 matt printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1387 1.1 matt " doesn't not match PVO's VA %#lx\n",
1388 1.1 matt pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1389 1.1 matt failed = 1;
1390 1.1 matt }
1391 1.1 matt if (failed)
1392 1.1 matt pmap_pte_print(pt);
1393 1.1 matt }
1394 1.1 matt if (failed)
1395 1.1 matt panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1396 1.1 matt pvo->pvo_pmap);
1397 1.1 matt }
1398 1.1 matt #endif /* DEBUG || PMAPCHECK */
1399 1.1 matt
1400 1.1 matt /*
1401 1.1 matt * This returns whether this is the first mapping of a page.
1402 1.1 matt */
1403 1.1 matt int
1404 1.1 matt pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1405 1.2 matt vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1406 1.1 matt {
1407 1.1 matt struct pvo_entry *pvo;
1408 1.1 matt struct pvo_tqhead *pvoh;
1409 1.2 matt register_t msr;
1410 1.1 matt int ptegidx;
1411 1.1 matt int i;
1412 1.1 matt int poolflags = PR_NOWAIT;
1413 1.1 matt
1414 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1415 1.1 matt if (pmap_pvo_remove_depth > 0)
1416 1.1 matt panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1417 1.1 matt if (++pmap_pvo_enter_depth > 1)
1418 1.1 matt panic("pmap_pvo_enter: called recursively!");
1419 1.1 matt #endif
1420 1.1 matt
1421 1.1 matt /*
1422 1.1 matt * Compute the PTE Group index.
1423 1.1 matt */
1424 1.1 matt va &= ~ADDR_POFF;
1425 1.2 matt ptegidx = va_to_pteg(pm, va);
1426 1.1 matt
1427 1.1 matt msr = pmap_interrupts_off();
1428 1.1 matt /*
1429 1.1 matt * Remove any existing mapping for this page. Reuse the
1430 1.1 matt * pvo entry if there a mapping.
1431 1.1 matt */
1432 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1433 1.1 matt if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1434 1.1 matt #ifdef DEBUG
1435 1.1 matt if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1436 1.1 matt ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1437 1.1 matt ~(PTE_REF|PTE_CHG)) == 0 &&
1438 1.1 matt va < VM_MIN_KERNEL_ADDRESS) {
1439 1.2 matt printf("pmap_pvo_enter: pvo %p: dup %#lx/%#lx\n",
1440 1.1 matt pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1441 1.2 matt printf("pmap_pvo_enter: pte_hi=%#lx sr=%#lx\n",
1442 1.1 matt pvo->pvo_pte.pte_hi,
1443 1.1 matt pm->pm_sr[va >> ADDR_SR_SHFT]);
1444 1.1 matt pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1445 1.1 matt #ifdef DDBX
1446 1.1 matt Debugger();
1447 1.1 matt #endif
1448 1.1 matt }
1449 1.1 matt #endif
1450 1.1 matt PMAPCOUNT(mappings_replaced);
1451 1.1 matt pmap_pvo_remove(pvo, -1);
1452 1.1 matt break;
1453 1.1 matt }
1454 1.1 matt }
1455 1.1 matt
1456 1.1 matt /*
1457 1.1 matt * If we aren't overwriting an mapping, try to allocate
1458 1.1 matt */
1459 1.1 matt pmap_interrupts_restore(msr);
1460 1.1 matt pvo = pool_get(pl, poolflags);
1461 1.1 matt msr = pmap_interrupts_off();
1462 1.1 matt if (pvo == NULL) {
1463 1.1 matt #if 0
1464 1.1 matt pvo = pmap_pvo_reclaim(pm);
1465 1.1 matt if (pvo == NULL) {
1466 1.1 matt #endif
1467 1.1 matt if ((flags & PMAP_CANFAIL) == 0)
1468 1.1 matt panic("pmap_pvo_enter: failed");
1469 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1470 1.1 matt pmap_pvo_enter_depth--;
1471 1.1 matt #endif
1472 1.1 matt pmap_interrupts_restore(msr);
1473 1.1 matt return ENOMEM;
1474 1.1 matt #if 0
1475 1.1 matt }
1476 1.1 matt #endif
1477 1.1 matt }
1478 1.1 matt pvo->pvo_vaddr = va;
1479 1.1 matt pvo->pvo_pmap = pm;
1480 1.1 matt pvo->pvo_vaddr &= ~ADDR_POFF;
1481 1.1 matt if (flags & VM_PROT_EXECUTE) {
1482 1.1 matt PMAPCOUNT(exec_mappings);
1483 1.1 matt pvo->pvo_vaddr |= PVO_EXECUTABLE;
1484 1.1 matt }
1485 1.1 matt if (flags & PMAP_WIRED)
1486 1.1 matt pvo->pvo_vaddr |= PVO_WIRED;
1487 1.1 matt if (pvo_head != &pmap_pvo_kunmanaged) {
1488 1.1 matt pvo->pvo_vaddr |= PVO_MANAGED;
1489 1.1 matt PMAPCOUNT(mappings);
1490 1.1 matt } else {
1491 1.1 matt PMAPCOUNT(kernel_mappings);
1492 1.1 matt }
1493 1.2 matt pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1494 1.1 matt
1495 1.1 matt LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1496 1.1 matt if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1497 1.1 matt pvo->pvo_pmap->pm_stats.wired_count++;
1498 1.1 matt pvo->pvo_pmap->pm_stats.resident_count++;
1499 1.1 matt #if defined(DEBUG)
1500 1.1 matt if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1501 1.1 matt DPRINTFN(PVOENTER,
1502 1.1 matt ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1503 1.1 matt pvo, pm, va, pa));
1504 1.1 matt #endif
1505 1.1 matt
1506 1.1 matt /*
1507 1.1 matt * We hope this succeeds but it isn't required.
1508 1.1 matt */
1509 1.1 matt pvoh = &pmap_pvo_table[ptegidx];
1510 1.1 matt i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1511 1.1 matt if (i >= 0) {
1512 1.1 matt PVO_PTEGIDX_SET(pvo, i);
1513 1.1 matt PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1514 1.1 matt ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1515 1.1 matt TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1516 1.1 matt } else {
1517 1.1 matt
1518 1.1 matt /*
1519 1.1 matt * Since we didn't have room for this entry (which makes it
1520 1.1 matt * and evicted entry), place it at the head of the list.
1521 1.1 matt */
1522 1.1 matt TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1523 1.1 matt PMAPCOUNT(ptes_evicted);
1524 1.1 matt pm->pm_evictions++;
1525 1.1 matt }
1526 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1527 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1528 1.1 matt pmap_pvo_enter_depth--;
1529 1.1 matt #endif
1530 1.1 matt pmap_interrupts_restore(msr);
1531 1.1 matt return 0;
1532 1.1 matt }
1533 1.1 matt
1534 1.1 matt void
1535 1.1 matt pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1536 1.1 matt {
1537 1.2 matt volatile struct pte *pt;
1538 1.1 matt int ptegidx;
1539 1.1 matt
1540 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1541 1.1 matt if (++pmap_pvo_remove_depth > 1)
1542 1.1 matt panic("pmap_pvo_remove: called recursively!");
1543 1.1 matt #endif
1544 1.1 matt
1545 1.1 matt /*
1546 1.1 matt * If we haven't been supplied the ptegidx, calculate it.
1547 1.1 matt */
1548 1.1 matt if (pteidx == -1) {
1549 1.2 matt ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1550 1.1 matt pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1551 1.1 matt } else {
1552 1.1 matt ptegidx = pteidx >> 3;
1553 1.1 matt if (pvo->pvo_pte.pte_hi & PTE_HID)
1554 1.1 matt ptegidx ^= pmap_pteg_mask;
1555 1.1 matt }
1556 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1557 1.1 matt
1558 1.1 matt /*
1559 1.1 matt * If there is an active pte entry, we need to deactivate it
1560 1.1 matt * (and save the ref & chg bits).
1561 1.1 matt */
1562 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
1563 1.1 matt if (pt != NULL) {
1564 1.1 matt pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1565 1.1 matt PVO_PTEGIDX_CLR(pvo);
1566 1.1 matt PMAPCOUNT(ptes_removed);
1567 1.1 matt } else {
1568 1.1 matt KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1569 1.1 matt pvo->pvo_pmap->pm_evictions--;
1570 1.1 matt }
1571 1.1 matt
1572 1.1 matt /*
1573 1.1 matt * Update our statistics
1574 1.1 matt */
1575 1.1 matt pvo->pvo_pmap->pm_stats.resident_count--;
1576 1.1 matt if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1577 1.1 matt pvo->pvo_pmap->pm_stats.wired_count--;
1578 1.1 matt
1579 1.1 matt /*
1580 1.1 matt * Save the REF/CHG bits into their cache if the page is managed.
1581 1.1 matt */
1582 1.1 matt if (pvo->pvo_vaddr & PVO_MANAGED) {
1583 1.2 matt register_t ptelo = pvo->pvo_pte.pte_lo;
1584 1.1 matt struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1585 1.1 matt
1586 1.1 matt if (pg != NULL) {
1587 1.1 matt pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1588 1.1 matt }
1589 1.1 matt PMAPCOUNT(unmappings);
1590 1.1 matt } else {
1591 1.1 matt PMAPCOUNT(kernel_unmappings);
1592 1.1 matt }
1593 1.1 matt
1594 1.1 matt /*
1595 1.1 matt * Remove the PVO from its lists and return it to the pool.
1596 1.1 matt */
1597 1.1 matt LIST_REMOVE(pvo, pvo_vlink);
1598 1.1 matt TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1599 1.1 matt pool_put(pvo->pvo_vaddr & PVO_MANAGED
1600 1.1 matt ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1601 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1602 1.1 matt pmap_pvo_remove_depth--;
1603 1.1 matt #endif
1604 1.1 matt }
1605 1.1 matt
1606 1.1 matt /*
1607 1.1 matt * Insert physical page at pa into the given pmap at virtual address va.
1608 1.1 matt */
1609 1.1 matt int
1610 1.1 matt pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1611 1.1 matt {
1612 1.1 matt struct mem_region *mp;
1613 1.1 matt struct pvo_head *pvo_head;
1614 1.1 matt struct vm_page *pg;
1615 1.1 matt struct pool *pl;
1616 1.2 matt register_t pte_lo;
1617 1.1 matt int s;
1618 1.1 matt int error;
1619 1.1 matt u_int pvo_flags;
1620 1.1 matt u_int was_exec = 0;
1621 1.1 matt
1622 1.1 matt if (__predict_false(!pmap_initialized)) {
1623 1.1 matt pvo_head = &pmap_pvo_kunmanaged;
1624 1.1 matt pl = &pmap_upvo_pool;
1625 1.1 matt pvo_flags = 0;
1626 1.1 matt pg = NULL;
1627 1.1 matt was_exec = PTE_EXEC;
1628 1.1 matt } else {
1629 1.1 matt pvo_head = pa_to_pvoh(pa, &pg);
1630 1.1 matt pl = &pmap_mpvo_pool;
1631 1.1 matt pvo_flags = PVO_MANAGED;
1632 1.1 matt }
1633 1.1 matt
1634 1.1 matt DPRINTFN(ENTER,
1635 1.1 matt ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1636 1.1 matt pm, va, pa, prot, flags));
1637 1.1 matt
1638 1.1 matt /*
1639 1.1 matt * If this is a managed page, and it's the first reference to the
1640 1.1 matt * page clear the execness of the page. Otherwise fetch the execness.
1641 1.1 matt */
1642 1.1 matt if (pg != NULL)
1643 1.1 matt was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1644 1.1 matt
1645 1.1 matt DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1646 1.1 matt
1647 1.1 matt /*
1648 1.1 matt * Assume the page is cache inhibited and access is guarded unless
1649 1.1 matt * it's in our available memory array. If it is in the memory array,
1650 1.1 matt * asssume it's in memory coherent memory.
1651 1.1 matt */
1652 1.1 matt pte_lo = PTE_IG;
1653 1.1 matt if ((flags & PMAP_NC) == 0) {
1654 1.1 matt for (mp = mem; mp->size; mp++) {
1655 1.1 matt if (pa >= mp->start && pa < mp->start + mp->size) {
1656 1.1 matt pte_lo = PTE_M;
1657 1.1 matt break;
1658 1.1 matt }
1659 1.1 matt }
1660 1.1 matt }
1661 1.1 matt
1662 1.1 matt if (prot & VM_PROT_WRITE)
1663 1.1 matt pte_lo |= PTE_BW;
1664 1.1 matt else
1665 1.1 matt pte_lo |= PTE_BR;
1666 1.1 matt
1667 1.1 matt /*
1668 1.1 matt * If this was in response to a fault, "pre-fault" the PTE's
1669 1.1 matt * changed/referenced bit appropriately.
1670 1.1 matt */
1671 1.1 matt if (flags & VM_PROT_WRITE)
1672 1.1 matt pte_lo |= PTE_CHG;
1673 1.1 matt if (flags & (VM_PROT_READ|VM_PROT_WRITE))
1674 1.1 matt pte_lo |= PTE_REF;
1675 1.1 matt
1676 1.1 matt #if 0
1677 1.1 matt if (pm == pmap_kernel()) {
1678 1.1 matt if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_READ)
1679 1.1 matt printf("pmap_pvo_enter: Kernel RO va %#lx pa %#lx\n",
1680 1.1 matt va, pa);
1681 1.1 matt if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_NONE)
1682 1.1 matt printf("pmap_pvo_enter: Kernel N/A va %#lx pa %#lx\n",
1683 1.1 matt va, pa);
1684 1.1 matt }
1685 1.1 matt #endif
1686 1.1 matt
1687 1.1 matt /*
1688 1.1 matt * We need to know if this page can be executable
1689 1.1 matt */
1690 1.1 matt flags |= (prot & VM_PROT_EXECUTE);
1691 1.1 matt
1692 1.1 matt /*
1693 1.1 matt * Record mapping for later back-translation and pte spilling.
1694 1.1 matt * This will overwrite any existing mapping.
1695 1.1 matt */
1696 1.1 matt s = splvm();
1697 1.1 matt error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1698 1.1 matt splx(s);
1699 1.1 matt
1700 1.1 matt /*
1701 1.1 matt * Flush the real page from the instruction cache if this page is
1702 1.1 matt * mapped executable and cacheable and has not been flushed since
1703 1.1 matt * the last time it was modified.
1704 1.1 matt */
1705 1.1 matt if (error == 0 &&
1706 1.1 matt (flags & VM_PROT_EXECUTE) &&
1707 1.1 matt (pte_lo & PTE_I) == 0 &&
1708 1.1 matt was_exec == 0) {
1709 1.1 matt DPRINTFN(ENTER, (" syncicache"));
1710 1.1 matt PMAPCOUNT(exec_synced);
1711 1.6 thorpej pmap_syncicache(pa, PAGE_SIZE);
1712 1.1 matt if (pg != NULL) {
1713 1.1 matt pmap_attr_save(pg, PTE_EXEC);
1714 1.1 matt PMAPCOUNT(exec_cached);
1715 1.1 matt #if defined(DEBUG) || defined(PMAPDEBUG)
1716 1.1 matt if (pmapdebug & PMAPDEBUG_ENTER)
1717 1.1 matt printf(" marked-as-exec");
1718 1.1 matt else if (pmapdebug & PMAPDEBUG_EXEC)
1719 1.1 matt printf("[pmap_enter: %#lx: marked-as-exec]\n",
1720 1.1 matt pg->phys_addr);
1721 1.1 matt
1722 1.1 matt #endif
1723 1.1 matt }
1724 1.1 matt }
1725 1.1 matt
1726 1.1 matt DPRINTFN(ENTER, (": error=%d\n", error));
1727 1.1 matt
1728 1.1 matt return error;
1729 1.1 matt }
1730 1.1 matt
1731 1.1 matt void
1732 1.1 matt pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1733 1.1 matt {
1734 1.1 matt struct mem_region *mp;
1735 1.2 matt register_t pte_lo;
1736 1.2 matt register_t msr;
1737 1.1 matt int error;
1738 1.1 matt int s;
1739 1.1 matt
1740 1.1 matt if (va < VM_MIN_KERNEL_ADDRESS)
1741 1.1 matt panic("pmap_kenter_pa: attempt to enter "
1742 1.1 matt "non-kernel address %#lx!", va);
1743 1.1 matt
1744 1.1 matt DPRINTFN(KENTER,
1745 1.1 matt ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1746 1.1 matt
1747 1.1 matt /*
1748 1.1 matt * Assume the page is cache inhibited and access is guarded unless
1749 1.1 matt * it's in our available memory array. If it is in the memory array,
1750 1.1 matt * asssume it's in memory coherent memory.
1751 1.1 matt */
1752 1.1 matt pte_lo = PTE_IG;
1753 1.4 matt if ((prot & PMAP_NC) == 0) {
1754 1.4 matt for (mp = mem; mp->size; mp++) {
1755 1.4 matt if (pa >= mp->start && pa < mp->start + mp->size) {
1756 1.4 matt pte_lo = PTE_M;
1757 1.4 matt break;
1758 1.4 matt }
1759 1.1 matt }
1760 1.1 matt }
1761 1.1 matt
1762 1.1 matt if (prot & VM_PROT_WRITE)
1763 1.1 matt pte_lo |= PTE_BW;
1764 1.1 matt else
1765 1.1 matt pte_lo |= PTE_BR;
1766 1.1 matt
1767 1.1 matt /*
1768 1.1 matt * We don't care about REF/CHG on PVOs on the unmanaged list.
1769 1.1 matt */
1770 1.1 matt s = splvm();
1771 1.1 matt msr = pmap_interrupts_off();
1772 1.1 matt error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1773 1.1 matt &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1774 1.1 matt pmap_interrupts_restore(msr);
1775 1.1 matt splx(s);
1776 1.1 matt
1777 1.1 matt if (error != 0)
1778 1.1 matt panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1779 1.1 matt va, pa, error);
1780 1.1 matt }
1781 1.1 matt
1782 1.1 matt void
1783 1.1 matt pmap_kremove(vaddr_t va, vsize_t len)
1784 1.1 matt {
1785 1.1 matt if (va < VM_MIN_KERNEL_ADDRESS)
1786 1.1 matt panic("pmap_kremove: attempt to remove "
1787 1.1 matt "non-kernel address %#lx!", va);
1788 1.1 matt
1789 1.1 matt DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1790 1.1 matt pmap_remove(pmap_kernel(), va, va + len);
1791 1.1 matt }
1792 1.1 matt
1793 1.1 matt /*
1794 1.1 matt * Remove the given range of mapping entries.
1795 1.1 matt */
1796 1.1 matt void
1797 1.1 matt pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1798 1.1 matt {
1799 1.1 matt struct pvo_entry *pvo;
1800 1.2 matt register_t msr;
1801 1.1 matt int pteidx;
1802 1.1 matt int s;
1803 1.1 matt
1804 1.1 matt for (; va < endva; va += PAGE_SIZE) {
1805 1.1 matt s = splvm();
1806 1.1 matt msr = pmap_interrupts_off();
1807 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
1808 1.1 matt if (pvo != NULL) {
1809 1.1 matt pmap_pvo_remove(pvo, pteidx);
1810 1.1 matt }
1811 1.1 matt pmap_interrupts_restore(msr);
1812 1.1 matt splx(s);
1813 1.1 matt }
1814 1.1 matt }
1815 1.1 matt
1816 1.1 matt /*
1817 1.1 matt * Get the physical page address for the given pmap/virtual address.
1818 1.1 matt */
1819 1.1 matt boolean_t
1820 1.1 matt pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
1821 1.1 matt {
1822 1.1 matt struct pvo_entry *pvo;
1823 1.2 matt register_t msr;
1824 1.1 matt int s;
1825 1.7 matt
1826 1.7 matt /*
1827 1.7 matt * If this is a kernel pmap lookup, also check the battable
1828 1.7 matt * and if we get a hit, translate the VA to a PA using the
1829 1.7 matt * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
1830 1.7 matt * that will wrap back to 0.
1831 1.7 matt */
1832 1.7 matt if (pm == pmap_kernel() &&
1833 1.7 matt (va < VM_MIN_KERNEL_ADDRESS ||
1834 1.7 matt (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
1835 1.7 matt register_t batu = battable[va >> ADDR_SR_SHFT].batu;
1836 1.7 matt if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
1837 1.7 matt register_t batl = battable[va >> ADDR_SR_SHFT].batl;
1838 1.7 matt register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
1839 1.7 matt *pap = (batl & mask) | (va & ~mask);
1840 1.7 matt return TRUE;
1841 1.7 matt }
1842 1.7 matt return FALSE;
1843 1.7 matt }
1844 1.1 matt
1845 1.1 matt s = splvm();
1846 1.1 matt msr = pmap_interrupts_off();
1847 1.1 matt pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1848 1.1 matt if (pvo != NULL) {
1849 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1850 1.1 matt *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1851 1.1 matt }
1852 1.1 matt pmap_interrupts_restore(msr);
1853 1.1 matt splx(s);
1854 1.1 matt return pvo != NULL;
1855 1.1 matt }
1856 1.1 matt
1857 1.1 matt /*
1858 1.1 matt * Lower the protection on the specified range of this pmap.
1859 1.1 matt *
1860 1.1 matt * There are only two cases: either the protection is going to 0,
1861 1.1 matt * or it is going to read-only.
1862 1.1 matt */
1863 1.1 matt void
1864 1.1 matt pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
1865 1.1 matt {
1866 1.1 matt struct pvo_entry *pvo;
1867 1.2 matt volatile struct pte *pt;
1868 1.2 matt register_t msr;
1869 1.1 matt int s;
1870 1.1 matt int pteidx;
1871 1.1 matt
1872 1.1 matt /*
1873 1.1 matt * Since this routine only downgrades protection, we should
1874 1.1 matt * always be called without WRITE permisison.
1875 1.1 matt */
1876 1.1 matt KASSERT((prot & VM_PROT_WRITE) == 0);
1877 1.1 matt
1878 1.1 matt /*
1879 1.1 matt * If there is no protection, this is equivalent to
1880 1.1 matt * remove the pmap from the pmap.
1881 1.1 matt */
1882 1.1 matt if ((prot & VM_PROT_READ) == 0) {
1883 1.1 matt pmap_remove(pm, va, endva);
1884 1.1 matt return;
1885 1.1 matt }
1886 1.1 matt
1887 1.1 matt s = splvm();
1888 1.1 matt msr = pmap_interrupts_off();
1889 1.1 matt
1890 1.6 thorpej for (; va < endva; va += PAGE_SIZE) {
1891 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
1892 1.1 matt if (pvo == NULL)
1893 1.1 matt continue;
1894 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1895 1.1 matt
1896 1.1 matt /*
1897 1.1 matt * Revoke executable if asked to do so.
1898 1.1 matt */
1899 1.1 matt if ((prot & VM_PROT_EXECUTE) == 0)
1900 1.1 matt pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1901 1.1 matt
1902 1.1 matt #if 0
1903 1.1 matt /*
1904 1.1 matt * If the page is already read-only, no change
1905 1.1 matt * needs to be made.
1906 1.1 matt */
1907 1.1 matt if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
1908 1.1 matt continue;
1909 1.1 matt #endif
1910 1.1 matt /*
1911 1.1 matt * Grab the PTE pointer before we diddle with
1912 1.1 matt * the cached PTE copy.
1913 1.1 matt */
1914 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
1915 1.1 matt /*
1916 1.1 matt * Change the protection of the page.
1917 1.1 matt */
1918 1.1 matt pvo->pvo_pte.pte_lo &= ~PTE_PP;
1919 1.1 matt pvo->pvo_pte.pte_lo |= PTE_BR;
1920 1.1 matt
1921 1.1 matt /*
1922 1.1 matt * If the PVO is in the page table, update
1923 1.1 matt * that pte at well.
1924 1.1 matt */
1925 1.1 matt if (pt != NULL) {
1926 1.1 matt pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1927 1.1 matt PMAPCOUNT(ptes_changed);
1928 1.1 matt }
1929 1.1 matt
1930 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1931 1.1 matt }
1932 1.1 matt
1933 1.1 matt pmap_interrupts_restore(msr);
1934 1.1 matt splx(s);
1935 1.1 matt }
1936 1.1 matt
1937 1.1 matt void
1938 1.1 matt pmap_unwire(pmap_t pm, vaddr_t va)
1939 1.1 matt {
1940 1.1 matt struct pvo_entry *pvo;
1941 1.2 matt register_t msr;
1942 1.1 matt int s;
1943 1.1 matt
1944 1.1 matt s = splvm();
1945 1.1 matt msr = pmap_interrupts_off();
1946 1.1 matt
1947 1.1 matt pvo = pmap_pvo_find_va(pm, va, NULL);
1948 1.1 matt if (pvo != NULL) {
1949 1.1 matt if (pvo->pvo_vaddr & PVO_WIRED) {
1950 1.1 matt pvo->pvo_vaddr &= ~PVO_WIRED;
1951 1.1 matt pm->pm_stats.wired_count--;
1952 1.1 matt }
1953 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
1954 1.1 matt }
1955 1.1 matt
1956 1.1 matt pmap_interrupts_restore(msr);
1957 1.1 matt splx(s);
1958 1.1 matt }
1959 1.1 matt
1960 1.1 matt /*
1961 1.1 matt * Lower the protection on the specified physical page.
1962 1.1 matt *
1963 1.1 matt * There are only two cases: either the protection is going to 0,
1964 1.1 matt * or it is going to read-only.
1965 1.1 matt */
1966 1.1 matt void
1967 1.1 matt pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1968 1.1 matt {
1969 1.1 matt struct pvo_head *pvo_head;
1970 1.1 matt struct pvo_entry *pvo, *next_pvo;
1971 1.2 matt volatile struct pte *pt;
1972 1.2 matt register_t msr;
1973 1.1 matt int s;
1974 1.1 matt
1975 1.1 matt /*
1976 1.1 matt * Since this routine only downgrades protection, if the
1977 1.1 matt * maximal protection is desired, there isn't any change
1978 1.1 matt * to be made.
1979 1.1 matt */
1980 1.1 matt KASSERT((prot & VM_PROT_WRITE) == 0);
1981 1.1 matt if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE))
1982 1.1 matt return;
1983 1.1 matt
1984 1.1 matt s = splvm();
1985 1.1 matt msr = pmap_interrupts_off();
1986 1.1 matt
1987 1.1 matt /*
1988 1.1 matt * When UVM reuses a page, it does a pmap_page_protect with
1989 1.1 matt * VM_PROT_NONE. At that point, we can clear the exec flag
1990 1.1 matt * since we know the page will have different contents.
1991 1.1 matt */
1992 1.1 matt if ((prot & VM_PROT_READ) == 0) {
1993 1.1 matt DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
1994 1.1 matt pg->phys_addr));
1995 1.1 matt if (pmap_attr_fetch(pg) & PTE_EXEC) {
1996 1.1 matt PMAPCOUNT(exec_uncached_page_protect);
1997 1.1 matt pmap_attr_clear(pg, PTE_EXEC);
1998 1.1 matt }
1999 1.1 matt }
2000 1.1 matt
2001 1.1 matt pvo_head = vm_page_to_pvoh(pg);
2002 1.1 matt for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2003 1.1 matt next_pvo = LIST_NEXT(pvo, pvo_vlink);
2004 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2005 1.1 matt
2006 1.1 matt /*
2007 1.1 matt * Downgrading to no mapping at all, we just remove the entry.
2008 1.1 matt */
2009 1.1 matt if ((prot & VM_PROT_READ) == 0) {
2010 1.1 matt pmap_pvo_remove(pvo, -1);
2011 1.1 matt continue;
2012 1.1 matt }
2013 1.1 matt
2014 1.1 matt /*
2015 1.1 matt * If EXEC permission is being revoked, just clear the
2016 1.1 matt * flag in the PVO.
2017 1.1 matt */
2018 1.1 matt if ((prot & VM_PROT_EXECUTE) == 0)
2019 1.1 matt pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
2020 1.1 matt
2021 1.1 matt /*
2022 1.1 matt * If this entry is already RO, don't diddle with the
2023 1.1 matt * page table.
2024 1.1 matt */
2025 1.1 matt if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2026 1.1 matt PMAP_PVO_CHECK(pvo);
2027 1.1 matt continue;
2028 1.1 matt }
2029 1.1 matt
2030 1.1 matt /*
2031 1.1 matt * Grab the PTE before the we diddle the bits so
2032 1.1 matt * pvo_to_pte can verify the pte contents are as
2033 1.1 matt * expected.
2034 1.1 matt */
2035 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2036 1.1 matt pvo->pvo_pte.pte_lo &= ~PTE_PP;
2037 1.1 matt pvo->pvo_pte.pte_lo |= PTE_BR;
2038 1.1 matt if (pt != NULL) {
2039 1.1 matt pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2040 1.1 matt PMAPCOUNT(ptes_changed);
2041 1.1 matt }
2042 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2043 1.1 matt }
2044 1.1 matt
2045 1.1 matt pmap_interrupts_restore(msr);
2046 1.1 matt splx(s);
2047 1.1 matt }
2048 1.1 matt
2049 1.1 matt /*
2050 1.1 matt * Activate the address space for the specified process. If the process
2051 1.1 matt * is the current process, load the new MMU context.
2052 1.1 matt */
2053 1.1 matt void
2054 1.1 matt pmap_activate(struct lwp *l)
2055 1.1 matt {
2056 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
2057 1.1 matt pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2058 1.1 matt
2059 1.1 matt DPRINTFN(ACTIVATE,
2060 1.1 matt ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2061 1.1 matt
2062 1.1 matt /*
2063 1.1 matt * XXX Normally performed in cpu_fork().
2064 1.1 matt */
2065 1.1 matt if (pcb->pcb_pm != pmap) {
2066 1.1 matt pcb->pcb_pm = pmap;
2067 1.1 matt pcb->pcb_pmreal = pmap;
2068 1.1 matt }
2069 1.1 matt
2070 1.1 matt /*
2071 1.1 matt * In theory, the SR registers need only be valid on return
2072 1.1 matt * to user space wait to do them there.
2073 1.1 matt */
2074 1.1 matt if (l == curlwp) {
2075 1.1 matt /* Store pointer to new current pmap. */
2076 1.1 matt curpm = pmap;
2077 1.1 matt }
2078 1.1 matt }
2079 1.1 matt
2080 1.1 matt /*
2081 1.1 matt * Deactivate the specified process's address space.
2082 1.1 matt */
2083 1.1 matt void
2084 1.1 matt pmap_deactivate(struct lwp *l)
2085 1.1 matt {
2086 1.1 matt }
2087 1.1 matt
2088 1.1 matt boolean_t
2089 1.1 matt pmap_query_bit(struct vm_page *pg, int ptebit)
2090 1.1 matt {
2091 1.1 matt struct pvo_entry *pvo;
2092 1.2 matt volatile struct pte *pt;
2093 1.2 matt register_t msr;
2094 1.1 matt int s;
2095 1.1 matt
2096 1.1 matt if (pmap_attr_fetch(pg) & ptebit)
2097 1.1 matt return TRUE;
2098 1.1 matt s = splvm();
2099 1.1 matt msr = pmap_interrupts_off();
2100 1.1 matt LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2101 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2102 1.1 matt /*
2103 1.1 matt * See if we saved the bit off. If so cache, it and return
2104 1.1 matt * success.
2105 1.1 matt */
2106 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit) {
2107 1.1 matt pmap_attr_save(pg, ptebit);
2108 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2109 1.1 matt pmap_interrupts_restore(msr);
2110 1.1 matt splx(s);
2111 1.1 matt return TRUE;
2112 1.1 matt }
2113 1.1 matt }
2114 1.1 matt /*
2115 1.1 matt * No luck, now go thru the hard part of looking at the ptes
2116 1.1 matt * themselves. Sync so any pending REF/CHG bits are flushed
2117 1.1 matt * to the PTEs.
2118 1.1 matt */
2119 1.1 matt SYNC();
2120 1.1 matt LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2121 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2122 1.1 matt /*
2123 1.1 matt * See if this pvo have a valid PTE. If so, fetch the
2124 1.1 matt * REF/CHG bits from the valid PTE. If the appropriate
2125 1.1 matt * ptebit is set, cache, it and return success.
2126 1.1 matt */
2127 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2128 1.1 matt if (pt != NULL) {
2129 1.1 matt pmap_pte_synch(pt, &pvo->pvo_pte);
2130 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit) {
2131 1.1 matt pmap_attr_save(pg, ptebit);
2132 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2133 1.1 matt pmap_interrupts_restore(msr);
2134 1.1 matt splx(s);
2135 1.1 matt return TRUE;
2136 1.1 matt }
2137 1.1 matt }
2138 1.1 matt }
2139 1.1 matt pmap_interrupts_restore(msr);
2140 1.1 matt splx(s);
2141 1.1 matt return FALSE;
2142 1.1 matt }
2143 1.1 matt
2144 1.1 matt boolean_t
2145 1.1 matt pmap_clear_bit(struct vm_page *pg, int ptebit)
2146 1.1 matt {
2147 1.1 matt struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2148 1.1 matt struct pvo_entry *pvo;
2149 1.2 matt volatile struct pte *pt;
2150 1.2 matt register_t msr;
2151 1.1 matt int rv = 0;
2152 1.1 matt int s;
2153 1.1 matt
2154 1.1 matt s = splvm();
2155 1.1 matt msr = pmap_interrupts_off();
2156 1.1 matt
2157 1.1 matt /*
2158 1.1 matt * Fetch the cache value
2159 1.1 matt */
2160 1.1 matt rv |= pmap_attr_fetch(pg);
2161 1.1 matt
2162 1.1 matt /*
2163 1.1 matt * Clear the cached value.
2164 1.1 matt */
2165 1.1 matt pmap_attr_clear(pg, ptebit);
2166 1.1 matt
2167 1.1 matt /*
2168 1.1 matt * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2169 1.1 matt * can reset the right ones). Note that since the pvo entries and
2170 1.1 matt * list heads are accessed via BAT0 and are never placed in the
2171 1.1 matt * page table, we don't have to worry about further accesses setting
2172 1.1 matt * the REF/CHG bits.
2173 1.1 matt */
2174 1.1 matt SYNC();
2175 1.1 matt
2176 1.1 matt /*
2177 1.1 matt * For each pvo entry, clear pvo's ptebit. If this pvo have a
2178 1.1 matt * valid PTE. If so, clear the ptebit from the valid PTE.
2179 1.1 matt */
2180 1.1 matt LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2181 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2182 1.1 matt pt = pmap_pvo_to_pte(pvo, -1);
2183 1.1 matt if (pt != NULL) {
2184 1.1 matt /*
2185 1.1 matt * Only sync the PTE if the bit we are looking
2186 1.1 matt * for is not already set.
2187 1.1 matt */
2188 1.1 matt if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2189 1.1 matt pmap_pte_synch(pt, &pvo->pvo_pte);
2190 1.1 matt /*
2191 1.1 matt * If the bit we are looking for was already set,
2192 1.1 matt * clear that bit in the pte.
2193 1.1 matt */
2194 1.1 matt if (pvo->pvo_pte.pte_lo & ptebit)
2195 1.1 matt pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2196 1.1 matt }
2197 1.1 matt rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2198 1.1 matt pvo->pvo_pte.pte_lo &= ~ptebit;
2199 1.1 matt PMAP_PVO_CHECK(pvo); /* sanity check */
2200 1.1 matt }
2201 1.1 matt pmap_interrupts_restore(msr);
2202 1.1 matt splx(s);
2203 1.1 matt /*
2204 1.1 matt * If we are clearing the modify bit and this page was marked EXEC
2205 1.1 matt * and the user of the page thinks the page was modified, then we
2206 1.1 matt * need to clean it from the icache if it's mapped or clear the EXEC
2207 1.1 matt * bit if it's not mapped. The page itself might not have the CHG
2208 1.1 matt * bit set if the modification was done via DMA to the page.
2209 1.1 matt */
2210 1.1 matt if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2211 1.1 matt if (LIST_EMPTY(pvoh)) {
2212 1.1 matt DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2213 1.1 matt pg->phys_addr));
2214 1.1 matt pmap_attr_clear(pg, PTE_EXEC);
2215 1.1 matt PMAPCOUNT(exec_uncached_clear_modify);
2216 1.1 matt } else {
2217 1.1 matt DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2218 1.1 matt pg->phys_addr));
2219 1.6 thorpej pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2220 1.1 matt PMAPCOUNT(exec_synced_clear_modify);
2221 1.1 matt }
2222 1.1 matt }
2223 1.1 matt return (rv & ptebit) != 0;
2224 1.1 matt }
2225 1.1 matt
2226 1.1 matt void
2227 1.1 matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2228 1.1 matt {
2229 1.1 matt struct pvo_entry *pvo;
2230 1.1 matt size_t offset = va & ADDR_POFF;
2231 1.1 matt int s;
2232 1.1 matt
2233 1.1 matt s = splvm();
2234 1.1 matt while (len > 0) {
2235 1.6 thorpej size_t seglen = PAGE_SIZE - offset;
2236 1.1 matt if (seglen > len)
2237 1.1 matt seglen = len;
2238 1.1 matt pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2239 1.1 matt if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2240 1.1 matt pmap_syncicache(
2241 1.1 matt (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2242 1.1 matt PMAP_PVO_CHECK(pvo);
2243 1.1 matt }
2244 1.1 matt va += seglen;
2245 1.1 matt len -= seglen;
2246 1.1 matt offset = 0;
2247 1.1 matt }
2248 1.1 matt splx(s);
2249 1.1 matt }
2250 1.1 matt
2251 1.1 matt #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2252 1.1 matt void
2253 1.2 matt pmap_pte_print(volatile struct pte *pt)
2254 1.1 matt {
2255 1.1 matt printf("PTE %p: ", pt);
2256 1.1 matt /* High word: */
2257 1.2 matt printf("0x%08lx: [", pt->pte_hi);
2258 1.1 matt printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2259 1.1 matt printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2260 1.2 matt printf("0x%06lx 0x%02lx",
2261 1.1 matt (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2262 1.1 matt pt->pte_hi & PTE_API);
2263 1.1 matt printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2264 1.1 matt /* Low word: */
2265 1.2 matt printf(" 0x%08lx: [", pt->pte_lo);
2266 1.2 matt printf("0x%05lx... ", pt->pte_lo >> 12);
2267 1.1 matt printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2268 1.1 matt printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2269 1.1 matt printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2270 1.1 matt printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2271 1.1 matt printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2272 1.1 matt printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2273 1.1 matt switch (pt->pte_lo & PTE_PP) {
2274 1.1 matt case PTE_BR: printf("br]\n"); break;
2275 1.1 matt case PTE_BW: printf("bw]\n"); break;
2276 1.1 matt case PTE_SO: printf("so]\n"); break;
2277 1.1 matt case PTE_SW: printf("sw]\n"); break;
2278 1.1 matt }
2279 1.1 matt }
2280 1.1 matt #endif
2281 1.1 matt
2282 1.1 matt #if defined(DDB)
2283 1.1 matt void
2284 1.1 matt pmap_pteg_check(void)
2285 1.1 matt {
2286 1.2 matt volatile struct pte *pt;
2287 1.1 matt int i;
2288 1.1 matt int ptegidx;
2289 1.1 matt u_int p_valid = 0;
2290 1.1 matt u_int s_valid = 0;
2291 1.1 matt u_int invalid = 0;
2292 1.1 matt
2293 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2294 1.1 matt for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2295 1.1 matt if (pt->pte_hi & PTE_VALID) {
2296 1.1 matt if (pt->pte_hi & PTE_HID)
2297 1.1 matt s_valid++;
2298 1.1 matt else
2299 1.1 matt p_valid++;
2300 1.1 matt } else
2301 1.1 matt invalid++;
2302 1.1 matt }
2303 1.1 matt }
2304 1.1 matt printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2305 1.1 matt p_valid, p_valid, s_valid, s_valid,
2306 1.1 matt invalid, invalid);
2307 1.1 matt }
2308 1.1 matt
2309 1.1 matt void
2310 1.1 matt pmap_print_mmuregs(void)
2311 1.1 matt {
2312 1.1 matt int i;
2313 1.1 matt u_int cpuvers;
2314 1.1 matt vaddr_t addr;
2315 1.2 matt register_t soft_sr[16];
2316 1.1 matt struct bat soft_ibat[4];
2317 1.1 matt struct bat soft_dbat[4];
2318 1.2 matt register_t sdr1;
2319 1.1 matt
2320 1.1 matt cpuvers = MFPVR() >> 16;
2321 1.1 matt
2322 1.1 matt __asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2323 1.1 matt for (i=0; i<16; i++) {
2324 1.1 matt soft_sr[i] = MFSRIN(addr);
2325 1.1 matt addr += (1 << ADDR_SR_SHFT);
2326 1.1 matt }
2327 1.1 matt
2328 1.1 matt /* read iBAT (601: uBAT) registers */
2329 1.1 matt __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2330 1.1 matt __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2331 1.1 matt __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2332 1.1 matt __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2333 1.1 matt __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2334 1.1 matt __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2335 1.1 matt __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2336 1.1 matt __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2337 1.1 matt
2338 1.1 matt
2339 1.1 matt if (cpuvers != MPC601) {
2340 1.1 matt /* read dBAT registers */
2341 1.1 matt __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2342 1.1 matt __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2343 1.1 matt __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2344 1.1 matt __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2345 1.1 matt __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2346 1.1 matt __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2347 1.1 matt __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2348 1.1 matt __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2349 1.1 matt }
2350 1.1 matt
2351 1.2 matt printf("SDR1:\t%#lx\n", sdr1);
2352 1.1 matt printf("SR[]:\t");
2353 1.1 matt addr = 0;
2354 1.1 matt for (i=0; i<4; i++)
2355 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2356 1.1 matt printf("\n\t");
2357 1.1 matt for ( ; i<8; i++)
2358 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2359 1.1 matt printf("\n\t");
2360 1.1 matt for ( ; i<12; i++)
2361 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2362 1.1 matt printf("\n\t");
2363 1.1 matt for ( ; i<16; i++)
2364 1.2 matt printf("0x%08lx, ", soft_sr[i]);
2365 1.1 matt printf("\n");
2366 1.1 matt
2367 1.1 matt printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2368 1.1 matt for (i=0; i<4; i++) {
2369 1.2 matt printf("0x%08lx 0x%08lx, ",
2370 1.1 matt soft_ibat[i].batu, soft_ibat[i].batl);
2371 1.1 matt if (i == 1)
2372 1.1 matt printf("\n\t");
2373 1.1 matt }
2374 1.1 matt if (cpuvers != MPC601) {
2375 1.1 matt printf("\ndBAT[]:\t");
2376 1.1 matt for (i=0; i<4; i++) {
2377 1.2 matt printf("0x%08lx 0x%08lx, ",
2378 1.1 matt soft_dbat[i].batu, soft_dbat[i].batl);
2379 1.1 matt if (i == 1)
2380 1.1 matt printf("\n\t");
2381 1.1 matt }
2382 1.1 matt }
2383 1.1 matt printf("\n");
2384 1.1 matt }
2385 1.1 matt
2386 1.1 matt void
2387 1.1 matt pmap_print_pte(pmap_t pm, vaddr_t va)
2388 1.1 matt {
2389 1.1 matt struct pvo_entry *pvo;
2390 1.2 matt volatile struct pte *pt;
2391 1.1 matt int pteidx;
2392 1.1 matt
2393 1.1 matt pvo = pmap_pvo_find_va(pm, va, &pteidx);
2394 1.1 matt if (pvo != NULL) {
2395 1.1 matt pt = pmap_pvo_to_pte(pvo, pteidx);
2396 1.1 matt if (pt != NULL) {
2397 1.2 matt printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2398 1.1 matt va, pt,
2399 1.1 matt pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2400 1.1 matt pt->pte_hi, pt->pte_lo);
2401 1.1 matt } else {
2402 1.1 matt printf("No valid PTE found\n");
2403 1.1 matt }
2404 1.1 matt } else {
2405 1.1 matt printf("Address not in pmap\n");
2406 1.1 matt }
2407 1.1 matt }
2408 1.1 matt
2409 1.1 matt void
2410 1.1 matt pmap_pteg_dist(void)
2411 1.1 matt {
2412 1.1 matt struct pvo_entry *pvo;
2413 1.1 matt int ptegidx;
2414 1.1 matt int depth;
2415 1.1 matt int max_depth = 0;
2416 1.1 matt unsigned int depths[64];
2417 1.1 matt
2418 1.1 matt memset(depths, 0, sizeof(depths));
2419 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2420 1.1 matt depth = 0;
2421 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2422 1.1 matt depth++;
2423 1.1 matt }
2424 1.1 matt if (depth > max_depth)
2425 1.1 matt max_depth = depth;
2426 1.1 matt if (depth > 63)
2427 1.1 matt depth = 63;
2428 1.1 matt depths[depth]++;
2429 1.1 matt }
2430 1.1 matt
2431 1.1 matt for (depth = 0; depth < 64; depth++) {
2432 1.1 matt printf(" [%2d]: %8u", depth, depths[depth]);
2433 1.1 matt if ((depth & 3) == 3)
2434 1.1 matt printf("\n");
2435 1.1 matt if (depth == max_depth)
2436 1.1 matt break;
2437 1.1 matt }
2438 1.1 matt if ((depth & 3) != 3)
2439 1.1 matt printf("\n");
2440 1.1 matt printf("Max depth found was %d\n", max_depth);
2441 1.1 matt }
2442 1.1 matt #endif /* DEBUG */
2443 1.1 matt
2444 1.1 matt #if defined(PMAPCHECK) || defined(DEBUG)
2445 1.1 matt void
2446 1.1 matt pmap_pvo_verify(void)
2447 1.1 matt {
2448 1.1 matt int ptegidx;
2449 1.1 matt int s;
2450 1.1 matt
2451 1.1 matt s = splvm();
2452 1.1 matt for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2453 1.1 matt struct pvo_entry *pvo;
2454 1.1 matt TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2455 1.1 matt if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2456 1.1 matt panic("pmap_pvo_verify: invalid pvo %p "
2457 1.1 matt "on list %#x", pvo, ptegidx);
2458 1.1 matt pmap_pvo_check(pvo);
2459 1.1 matt }
2460 1.1 matt }
2461 1.1 matt splx(s);
2462 1.1 matt }
2463 1.1 matt #endif /* PMAPCHECK */
2464 1.1 matt
2465 1.1 matt
2466 1.1 matt void *
2467 1.1 matt pmap_pool_ualloc(struct pool *pp, int flags)
2468 1.1 matt {
2469 1.1 matt struct pvo_page *pvop;
2470 1.1 matt
2471 1.1 matt pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2472 1.1 matt if (pvop != NULL) {
2473 1.1 matt pmap_upvop_free--;
2474 1.1 matt SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2475 1.1 matt return pvop;
2476 1.1 matt }
2477 1.1 matt if (uvm.page_init_done != TRUE) {
2478 1.1 matt return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2479 1.1 matt }
2480 1.1 matt return pmap_pool_malloc(pp, flags);
2481 1.1 matt }
2482 1.1 matt
2483 1.1 matt void *
2484 1.1 matt pmap_pool_malloc(struct pool *pp, int flags)
2485 1.1 matt {
2486 1.1 matt struct pvo_page *pvop;
2487 1.1 matt struct vm_page *pg;
2488 1.1 matt
2489 1.1 matt pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2490 1.1 matt if (pvop != NULL) {
2491 1.1 matt pmap_mpvop_free--;
2492 1.1 matt SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2493 1.1 matt return pvop;
2494 1.1 matt }
2495 1.1 matt again:
2496 1.1 matt pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2497 1.1 matt UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2498 1.1 matt if (__predict_false(pg == NULL)) {
2499 1.1 matt if (flags & PR_WAITOK) {
2500 1.1 matt uvm_wait("plpg");
2501 1.1 matt goto again;
2502 1.1 matt } else {
2503 1.1 matt return (0);
2504 1.1 matt }
2505 1.1 matt }
2506 1.1 matt return (void *) VM_PAGE_TO_PHYS(pg);
2507 1.1 matt }
2508 1.1 matt
2509 1.1 matt void
2510 1.1 matt pmap_pool_ufree(struct pool *pp, void *va)
2511 1.1 matt {
2512 1.1 matt struct pvo_page *pvop;
2513 1.1 matt #if 0
2514 1.1 matt if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2515 1.1 matt pmap_pool_mfree(va, size, tag);
2516 1.1 matt return;
2517 1.1 matt }
2518 1.1 matt #endif
2519 1.1 matt pvop = va;
2520 1.1 matt SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2521 1.1 matt pmap_upvop_free++;
2522 1.1 matt if (pmap_upvop_free > pmap_upvop_maxfree)
2523 1.1 matt pmap_upvop_maxfree = pmap_upvop_free;
2524 1.1 matt }
2525 1.1 matt
2526 1.1 matt void
2527 1.1 matt pmap_pool_mfree(struct pool *pp, void *va)
2528 1.1 matt {
2529 1.1 matt struct pvo_page *pvop;
2530 1.1 matt
2531 1.1 matt pvop = va;
2532 1.1 matt SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2533 1.1 matt pmap_mpvop_free++;
2534 1.1 matt if (pmap_mpvop_free > pmap_mpvop_maxfree)
2535 1.1 matt pmap_mpvop_maxfree = pmap_mpvop_free;
2536 1.1 matt #if 0
2537 1.1 matt uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2538 1.1 matt #endif
2539 1.1 matt }
2540 1.1 matt
2541 1.1 matt /*
2542 1.1 matt * This routine in bootstraping to steal to-be-managed memory (which will
2543 1.1 matt * then be unmanaged). We use it to grab from the first 256MB for our
2544 1.1 matt * pmap needs and above 256MB for other stuff.
2545 1.1 matt */
2546 1.1 matt vaddr_t
2547 1.1 matt pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2548 1.1 matt {
2549 1.1 matt vsize_t size;
2550 1.1 matt vaddr_t va;
2551 1.1 matt paddr_t pa = 0;
2552 1.1 matt int npgs, bank;
2553 1.1 matt struct vm_physseg *ps;
2554 1.1 matt
2555 1.1 matt if (uvm.page_init_done == TRUE)
2556 1.1 matt panic("pmap_steal_memory: called _after_ bootstrap");
2557 1.1 matt
2558 1.1 matt *vstartp = VM_MIN_KERNEL_ADDRESS;
2559 1.1 matt *vendp = VM_MAX_KERNEL_ADDRESS;
2560 1.1 matt
2561 1.1 matt size = round_page(vsize);
2562 1.1 matt npgs = atop(size);
2563 1.1 matt
2564 1.1 matt /*
2565 1.1 matt * PA 0 will never be among those given to UVM so we can use it
2566 1.1 matt * to indicate we couldn't steal any memory.
2567 1.1 matt */
2568 1.1 matt for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2569 1.1 matt if (ps->free_list == VM_FREELIST_FIRST256 &&
2570 1.1 matt ps->avail_end - ps->avail_start >= npgs) {
2571 1.1 matt pa = ptoa(ps->avail_start);
2572 1.1 matt break;
2573 1.1 matt }
2574 1.1 matt }
2575 1.1 matt
2576 1.1 matt if (pa == 0)
2577 1.1 matt panic("pmap_steal_memory: no approriate memory to steal!");
2578 1.1 matt
2579 1.1 matt ps->avail_start += npgs;
2580 1.1 matt ps->start += npgs;
2581 1.1 matt
2582 1.1 matt /*
2583 1.1 matt * If we've used up all the pages in the segment, remove it and
2584 1.1 matt * compact the list.
2585 1.1 matt */
2586 1.1 matt if (ps->avail_start == ps->end) {
2587 1.1 matt /*
2588 1.1 matt * If this was the last one, then a very bad thing has occurred
2589 1.1 matt */
2590 1.1 matt if (--vm_nphysseg == 0)
2591 1.1 matt panic("pmap_steal_memory: out of memory!");
2592 1.1 matt
2593 1.1 matt printf("pmap_steal_memory: consumed bank %d\n", bank);
2594 1.1 matt for (; bank < vm_nphysseg; bank++, ps++) {
2595 1.1 matt ps[0] = ps[1];
2596 1.1 matt }
2597 1.1 matt }
2598 1.1 matt
2599 1.1 matt va = (vaddr_t) pa;
2600 1.1 matt memset((caddr_t) va, 0, size);
2601 1.1 matt pmap_pages_stolen += npgs;
2602 1.1 matt #ifdef DEBUG
2603 1.1 matt if (pmapdebug && npgs > 1) {
2604 1.1 matt u_int cnt = 0;
2605 1.1 matt for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2606 1.1 matt cnt += ps->avail_end - ps->avail_start;
2607 1.1 matt printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2608 1.1 matt npgs, pmap_pages_stolen, cnt);
2609 1.1 matt }
2610 1.1 matt #endif
2611 1.1 matt
2612 1.1 matt return va;
2613 1.1 matt }
2614 1.1 matt
2615 1.1 matt /*
2616 1.1 matt * Find a chuck of memory with right size and alignment.
2617 1.1 matt */
2618 1.1 matt void *
2619 1.1 matt pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2620 1.1 matt {
2621 1.1 matt struct mem_region *mp;
2622 1.1 matt paddr_t s, e;
2623 1.1 matt int i, j;
2624 1.1 matt
2625 1.1 matt size = round_page(size);
2626 1.1 matt
2627 1.1 matt DPRINTFN(BOOT,
2628 1.1 matt ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2629 1.1 matt size, alignment, at_end));
2630 1.1 matt
2631 1.6 thorpej if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2632 1.1 matt panic("pmap_boot_find_memory: invalid alignment %lx",
2633 1.1 matt alignment);
2634 1.1 matt
2635 1.1 matt if (at_end) {
2636 1.6 thorpej if (alignment != PAGE_SIZE)
2637 1.1 matt panic("pmap_boot_find_memory: invalid ending "
2638 1.1 matt "alignment %lx", alignment);
2639 1.1 matt
2640 1.1 matt for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2641 1.1 matt s = mp->start + mp->size - size;
2642 1.1 matt if (s >= mp->start && mp->size >= size) {
2643 1.1 matt DPRINTFN(BOOT,(": %lx\n", s));
2644 1.1 matt DPRINTFN(BOOT,
2645 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2646 1.1 matt "0x%lx size 0x%lx\n", mp - avail,
2647 1.1 matt mp->start, mp->size));
2648 1.1 matt mp->size -= size;
2649 1.1 matt DPRINTFN(BOOT,
2650 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2651 1.1 matt "0x%lx size 0x%lx\n", mp - avail,
2652 1.1 matt mp->start, mp->size));
2653 1.1 matt return (void *) s;
2654 1.1 matt }
2655 1.1 matt }
2656 1.1 matt panic("pmap_boot_find_memory: no available memory");
2657 1.1 matt }
2658 1.1 matt
2659 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2660 1.1 matt s = (mp->start + alignment - 1) & ~(alignment-1);
2661 1.1 matt e = s + size;
2662 1.1 matt
2663 1.1 matt /*
2664 1.1 matt * Is the calculated region entirely within the region?
2665 1.1 matt */
2666 1.1 matt if (s < mp->start || e > mp->start + mp->size)
2667 1.1 matt continue;
2668 1.1 matt
2669 1.1 matt DPRINTFN(BOOT,(": %lx\n", s));
2670 1.1 matt if (s == mp->start) {
2671 1.1 matt /*
2672 1.1 matt * If the block starts at the beginning of region,
2673 1.1 matt * adjust the size & start. (the region may now be
2674 1.1 matt * zero in length)
2675 1.1 matt */
2676 1.1 matt DPRINTFN(BOOT,
2677 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2678 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2679 1.1 matt mp->start += size;
2680 1.1 matt mp->size -= size;
2681 1.1 matt DPRINTFN(BOOT,
2682 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2683 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2684 1.1 matt } else if (e == mp->start + mp->size) {
2685 1.1 matt /*
2686 1.1 matt * If the block starts at the beginning of region,
2687 1.1 matt * adjust only the size.
2688 1.1 matt */
2689 1.1 matt DPRINTFN(BOOT,
2690 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2691 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2692 1.1 matt mp->size -= size;
2693 1.1 matt DPRINTFN(BOOT,
2694 1.1 matt ("pmap_boot_find_memory: a-avail[%d] start "
2695 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2696 1.1 matt } else {
2697 1.1 matt /*
2698 1.1 matt * Block is in the middle of the region, so we
2699 1.1 matt * have to split it in two.
2700 1.1 matt */
2701 1.1 matt for (j = avail_cnt; j > i + 1; j--) {
2702 1.1 matt avail[j] = avail[j-1];
2703 1.1 matt }
2704 1.1 matt DPRINTFN(BOOT,
2705 1.1 matt ("pmap_boot_find_memory: b-avail[%d] start "
2706 1.1 matt "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2707 1.1 matt mp[1].start = e;
2708 1.1 matt mp[1].size = mp[0].start + mp[0].size - e;
2709 1.1 matt mp[0].size = s - mp[0].start;
2710 1.1 matt avail_cnt++;
2711 1.1 matt for (; i < avail_cnt; i++) {
2712 1.1 matt DPRINTFN(BOOT,
2713 1.1 matt ("pmap_boot_find_memory: a-avail[%d] "
2714 1.1 matt "start 0x%lx size 0x%lx\n", i,
2715 1.1 matt avail[i].start, avail[i].size));
2716 1.1 matt }
2717 1.1 matt }
2718 1.1 matt return (void *) s;
2719 1.1 matt }
2720 1.1 matt panic("pmap_boot_find_memory: not enough memory for "
2721 1.1 matt "%lx/%lx allocation?", size, alignment);
2722 1.1 matt }
2723 1.1 matt
2724 1.1 matt /*
2725 1.1 matt * This is not part of the defined PMAP interface and is specific to the
2726 1.1 matt * PowerPC architecture. This is called during initppc, before the system
2727 1.1 matt * is really initialized.
2728 1.1 matt */
2729 1.1 matt void
2730 1.1 matt pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2731 1.1 matt {
2732 1.1 matt struct mem_region *mp, tmp;
2733 1.1 matt paddr_t s, e;
2734 1.1 matt psize_t size;
2735 1.1 matt int i, j;
2736 1.1 matt
2737 1.1 matt /*
2738 1.1 matt * Get memory.
2739 1.1 matt */
2740 1.1 matt mem_regions(&mem, &avail);
2741 1.1 matt #if defined(DEBUG)
2742 1.1 matt if (pmapdebug & PMAPDEBUG_BOOT) {
2743 1.1 matt printf("pmap_bootstrap: memory configuration:\n");
2744 1.1 matt for (mp = mem; mp->size; mp++) {
2745 1.1 matt printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2746 1.1 matt mp->start, mp->size);
2747 1.1 matt }
2748 1.1 matt for (mp = avail; mp->size; mp++) {
2749 1.1 matt printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2750 1.1 matt mp->start, mp->size);
2751 1.1 matt }
2752 1.1 matt }
2753 1.1 matt #endif
2754 1.1 matt
2755 1.1 matt /*
2756 1.1 matt * Find out how much physical memory we have and in how many chunks.
2757 1.1 matt */
2758 1.1 matt for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2759 1.1 matt if (mp->start >= pmap_memlimit)
2760 1.1 matt continue;
2761 1.1 matt if (mp->start + mp->size > pmap_memlimit) {
2762 1.1 matt size = pmap_memlimit - mp->start;
2763 1.1 matt physmem += btoc(size);
2764 1.1 matt } else {
2765 1.1 matt physmem += btoc(mp->size);
2766 1.1 matt }
2767 1.1 matt mem_cnt++;
2768 1.1 matt }
2769 1.1 matt
2770 1.1 matt /*
2771 1.1 matt * Count the number of available entries.
2772 1.1 matt */
2773 1.1 matt for (avail_cnt = 0, mp = avail; mp->size; mp++)
2774 1.1 matt avail_cnt++;
2775 1.1 matt
2776 1.1 matt /*
2777 1.1 matt * Page align all regions.
2778 1.1 matt */
2779 1.1 matt kernelstart = trunc_page(kernelstart);
2780 1.1 matt kernelend = round_page(kernelend);
2781 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2782 1.1 matt s = round_page(mp->start);
2783 1.1 matt mp->size -= (s - mp->start);
2784 1.1 matt mp->size = trunc_page(mp->size);
2785 1.1 matt mp->start = s;
2786 1.1 matt e = mp->start + mp->size;
2787 1.1 matt
2788 1.1 matt DPRINTFN(BOOT,
2789 1.1 matt ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2790 1.1 matt i, mp->start, mp->size));
2791 1.1 matt
2792 1.1 matt /*
2793 1.1 matt * Don't allow the end to run beyond our artificial limit
2794 1.1 matt */
2795 1.1 matt if (e > pmap_memlimit)
2796 1.1 matt e = pmap_memlimit;
2797 1.1 matt
2798 1.1 matt /*
2799 1.1 matt * Is this region empty or strange? skip it.
2800 1.1 matt */
2801 1.1 matt if (e <= s) {
2802 1.1 matt mp->start = 0;
2803 1.1 matt mp->size = 0;
2804 1.1 matt continue;
2805 1.1 matt }
2806 1.1 matt
2807 1.1 matt /*
2808 1.1 matt * Does this overlap the beginning of kernel?
2809 1.1 matt * Does extend past the end of the kernel?
2810 1.1 matt */
2811 1.1 matt else if (s < kernelstart && e > kernelstart) {
2812 1.1 matt if (e > kernelend) {
2813 1.1 matt avail[avail_cnt].start = kernelend;
2814 1.1 matt avail[avail_cnt].size = e - kernelend;
2815 1.1 matt avail_cnt++;
2816 1.1 matt }
2817 1.1 matt mp->size = kernelstart - s;
2818 1.1 matt }
2819 1.1 matt /*
2820 1.1 matt * Check whether this region overlaps the end of the kernel.
2821 1.1 matt */
2822 1.1 matt else if (s < kernelend && e > kernelend) {
2823 1.1 matt mp->start = kernelend;
2824 1.1 matt mp->size = e - kernelend;
2825 1.1 matt }
2826 1.1 matt /*
2827 1.1 matt * Look whether this regions is completely inside the kernel.
2828 1.1 matt * Nuke it if it does.
2829 1.1 matt */
2830 1.1 matt else if (s >= kernelstart && e <= kernelend) {
2831 1.1 matt mp->start = 0;
2832 1.1 matt mp->size = 0;
2833 1.1 matt }
2834 1.1 matt /*
2835 1.1 matt * If the user imposed a memory limit, enforce it.
2836 1.1 matt */
2837 1.1 matt else if (s >= pmap_memlimit) {
2838 1.6 thorpej mp->start = -PAGE_SIZE; /* let's know why */
2839 1.1 matt mp->size = 0;
2840 1.1 matt }
2841 1.1 matt else {
2842 1.1 matt mp->start = s;
2843 1.1 matt mp->size = e - s;
2844 1.1 matt }
2845 1.1 matt DPRINTFN(BOOT,
2846 1.1 matt ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
2847 1.1 matt i, mp->start, mp->size));
2848 1.1 matt }
2849 1.1 matt
2850 1.1 matt /*
2851 1.1 matt * Move (and uncount) all the null return to the end.
2852 1.1 matt */
2853 1.1 matt for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2854 1.1 matt if (mp->size == 0) {
2855 1.1 matt tmp = avail[i];
2856 1.1 matt avail[i] = avail[--avail_cnt];
2857 1.1 matt avail[avail_cnt] = avail[i];
2858 1.1 matt }
2859 1.1 matt }
2860 1.1 matt
2861 1.1 matt /*
2862 1.1 matt * (Bubble)sort them into asecnding order.
2863 1.1 matt */
2864 1.1 matt for (i = 0; i < avail_cnt; i++) {
2865 1.1 matt for (j = i + 1; j < avail_cnt; j++) {
2866 1.1 matt if (avail[i].start > avail[j].start) {
2867 1.1 matt tmp = avail[i];
2868 1.1 matt avail[i] = avail[j];
2869 1.1 matt avail[j] = tmp;
2870 1.1 matt }
2871 1.1 matt }
2872 1.1 matt }
2873 1.1 matt
2874 1.1 matt /*
2875 1.1 matt * Make sure they don't overlap.
2876 1.1 matt */
2877 1.1 matt for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
2878 1.1 matt if (mp[0].start + mp[0].size > mp[1].start) {
2879 1.1 matt mp[0].size = mp[1].start - mp[0].start;
2880 1.1 matt }
2881 1.1 matt DPRINTFN(BOOT,
2882 1.1 matt ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2883 1.1 matt i, mp->start, mp->size));
2884 1.1 matt }
2885 1.1 matt DPRINTFN(BOOT,
2886 1.1 matt ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2887 1.1 matt i, mp->start, mp->size));
2888 1.1 matt
2889 1.1 matt #ifdef PTEGCOUNT
2890 1.1 matt pmap_pteg_cnt = PTEGCOUNT;
2891 1.1 matt #else /* PTEGCOUNT */
2892 1.1 matt pmap_pteg_cnt = 0x1000;
2893 1.1 matt
2894 1.1 matt while (pmap_pteg_cnt < physmem)
2895 1.1 matt pmap_pteg_cnt <<= 1;
2896 1.1 matt
2897 1.1 matt pmap_pteg_cnt >>= 1;
2898 1.1 matt #endif /* PTEGCOUNT */
2899 1.1 matt
2900 1.1 matt /*
2901 1.1 matt * Find suitably aligned memory for PTEG hash table.
2902 1.1 matt */
2903 1.2 matt size = pmap_pteg_cnt * sizeof(struct pteg);
2904 1.1 matt pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
2905 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2906 1.1 matt if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
2907 1.1 matt panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
2908 1.1 matt pmap_pteg_table, size);
2909 1.1 matt #endif
2910 1.1 matt
2911 1.2 matt memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
2912 1.1 matt pmap_pteg_mask = pmap_pteg_cnt - 1;
2913 1.1 matt
2914 1.1 matt /*
2915 1.1 matt * We cannot do pmap_steal_memory here since UVM hasn't been loaded
2916 1.1 matt * with pages. So we just steal them before giving them to UVM.
2917 1.1 matt */
2918 1.1 matt size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
2919 1.6 thorpej pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
2920 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2921 1.1 matt if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
2922 1.1 matt panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
2923 1.1 matt pmap_pvo_table, size);
2924 1.1 matt #endif
2925 1.1 matt
2926 1.1 matt for (i = 0; i < pmap_pteg_cnt; i++)
2927 1.1 matt TAILQ_INIT(&pmap_pvo_table[i]);
2928 1.1 matt
2929 1.1 matt #ifndef MSGBUFADDR
2930 1.1 matt /*
2931 1.1 matt * Allocate msgbuf in high memory.
2932 1.1 matt */
2933 1.6 thorpej msgbuf_paddr =
2934 1.6 thorpej (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
2935 1.1 matt #endif
2936 1.1 matt
2937 1.1 matt #ifdef __HAVE_PMAP_PHYSSEG
2938 1.1 matt {
2939 1.1 matt u_int npgs = 0;
2940 1.1 matt for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
2941 1.1 matt npgs += btoc(mp->size);
2942 1.1 matt size = (sizeof(struct pvo_head) + 1) * npgs;
2943 1.6 thorpej pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
2944 1.1 matt pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
2945 1.1 matt #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2946 1.1 matt if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
2947 1.1 matt panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
2948 1.1 matt pmap_physseg.pvoh, size);
2949 1.1 matt #endif
2950 1.1 matt }
2951 1.1 matt #endif
2952 1.1 matt
2953 1.1 matt for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
2954 1.1 matt paddr_t pfstart = atop(mp->start);
2955 1.1 matt paddr_t pfend = atop(mp->start + mp->size);
2956 1.1 matt if (mp->size == 0)
2957 1.1 matt continue;
2958 1.1 matt if (mp->start + mp->size <= SEGMENT_LENGTH) {
2959 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
2960 1.1 matt VM_FREELIST_FIRST256);
2961 1.1 matt } else if (mp->start >= SEGMENT_LENGTH) {
2962 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
2963 1.1 matt VM_FREELIST_DEFAULT);
2964 1.1 matt } else {
2965 1.1 matt pfend = atop(SEGMENT_LENGTH);
2966 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
2967 1.1 matt VM_FREELIST_FIRST256);
2968 1.1 matt pfstart = atop(SEGMENT_LENGTH);
2969 1.1 matt pfend = atop(mp->start + mp->size);
2970 1.1 matt uvm_page_physload(pfstart, pfend, pfstart, pfend,
2971 1.1 matt VM_FREELIST_DEFAULT);
2972 1.1 matt }
2973 1.1 matt }
2974 1.1 matt
2975 1.1 matt /*
2976 1.1 matt * Make sure kernel vsid is allocated as well as VSID 0.
2977 1.1 matt */
2978 1.1 matt pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
2979 1.1 matt |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
2980 1.1 matt pmap_vsid_bitmap[0] |= 1;
2981 1.1 matt
2982 1.1 matt /*
2983 1.1 matt * Initialize kernel pmap and hardware.
2984 1.1 matt */
2985 1.1 matt for (i = 0; i < 16; i++) {
2986 1.1 matt pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
2987 1.1 matt __asm __volatile ("mtsrin %0,%1"
2988 1.1 matt :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
2989 1.1 matt }
2990 1.1 matt
2991 1.1 matt pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
2992 1.1 matt __asm __volatile ("mtsr %0,%1"
2993 1.1 matt :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
2994 1.1 matt #ifdef KERNEL2_SR
2995 1.1 matt pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
2996 1.1 matt __asm __volatile ("mtsr %0,%1"
2997 1.1 matt :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
2998 1.1 matt #endif
2999 1.1 matt for (i = 0; i < 16; i++) {
3000 1.1 matt if (iosrtable[i] & SR601_T) {
3001 1.1 matt pmap_kernel()->pm_sr[i] = iosrtable[i];
3002 1.1 matt __asm __volatile ("mtsrin %0,%1"
3003 1.1 matt :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3004 1.1 matt }
3005 1.1 matt }
3006 1.1 matt
3007 1.1 matt __asm __volatile ("sync; mtsdr1 %0; isync"
3008 1.2 matt :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3009 1.1 matt tlbia();
3010 1.1 matt
3011 1.1 matt #ifdef ALTIVEC
3012 1.1 matt pmap_use_altivec = cpu_altivec;
3013 1.1 matt #endif
3014 1.1 matt
3015 1.1 matt #ifdef DEBUG
3016 1.1 matt if (pmapdebug & PMAPDEBUG_BOOT) {
3017 1.1 matt u_int cnt;
3018 1.1 matt int bank;
3019 1.1 matt char pbuf[9];
3020 1.1 matt for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3021 1.1 matt cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3022 1.1 matt printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3023 1.1 matt bank,
3024 1.1 matt ptoa(vm_physmem[bank].avail_start),
3025 1.1 matt ptoa(vm_physmem[bank].avail_end),
3026 1.1 matt ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3027 1.1 matt }
3028 1.1 matt format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3029 1.1 matt printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3030 1.1 matt pbuf, cnt);
3031 1.1 matt }
3032 1.1 matt #endif
3033 1.1 matt
3034 1.1 matt pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3035 1.1 matt sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3036 1.1 matt &pmap_pool_uallocator);
3037 1.1 matt
3038 1.1 matt pool_setlowat(&pmap_upvo_pool, 252);
3039 1.1 matt
3040 1.1 matt pool_init(&pmap_pool, sizeof(struct pmap),
3041 1.1 matt sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3042 1.1 matt }
3043