pmap.c revision 1.10.2.1 1 /* $NetBSD: pmap.c,v 1.10.2.1 2004/08/03 10:39:37 skrll Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.10.2.1 2004/08/03 10:39:37 skrll Exp $");
71
72 #include "opt_ppcarch.h"
73 #include "opt_altivec.h"
74 #include "opt_pmap.h"
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83
84 #if __NetBSD_Version__ < 105010000
85 #include <vm/vm.h>
86 #include <vm/vm_kern.h>
87 #define splvm() splimp()
88 #endif
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97
98 #if defined(DEBUG) || defined(PMAPCHECK)
99 #define STATIC
100 #else
101 #define STATIC static
102 #endif
103
104 #ifdef ALTIVEC
105 int pmap_use_altivec;
106 #endif
107
108 volatile struct pteg *pmap_pteg_table;
109 unsigned int pmap_pteg_cnt;
110 unsigned int pmap_pteg_mask;
111 #ifdef PMAP_MEMLIMIT
112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 #else
114 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
115 #endif
116
117 struct pmap kernel_pmap_;
118 unsigned int pmap_pages_stolen;
119 u_long pmap_pte_valid;
120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 u_long pmap_pvo_enter_depth;
122 u_long pmap_pvo_remove_depth;
123 #endif
124
125 int physmem;
126 #ifndef MSGBUFADDR
127 extern paddr_t msgbuf_paddr;
128 #endif
129
130 static struct mem_region *mem, *avail;
131 static u_int mem_cnt, avail_cnt;
132
133 #ifdef __HAVE_PMAP_PHYSSEG
134 /*
135 * This is a cache of referenced/modified bits.
136 * Bits herein are shifted by ATTRSHFT.
137 */
138 #define ATTR_SHFT 4
139 struct pmap_physseg pmap_physseg;
140 #endif
141
142 /*
143 * The following structure is exactly 32 bytes long (one cacheline).
144 */
145 struct pvo_entry {
146 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
147 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
148 struct pte pvo_pte; /* Prebuilt PTE */
149 pmap_t pvo_pmap; /* ptr to owning pmap */
150 vaddr_t pvo_vaddr; /* VA of entry */
151 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
152 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
153 #define PVO_WIRED 0x0010 /* PVO entry is wired */
154 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
155 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
156 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
157 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
158 #define PVO_SPILL_SET 2 /* PVO has been spilled */
159 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
160 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
161 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
162 #define PVO_REMOVE 6 /* PVO has been removed */
163 #define PVO_WHERE_MASK 15
164 #define PVO_WHERE_SHFT 8
165 };
166 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
167 #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 #define PVO_PTEGIDX_CLR(pvo) \
171 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 #define PVO_PTEGIDX_SET(pvo,i) \
173 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 #define PVO_WHERE(pvo,w) \
175 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177
178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
182
183 struct pool pmap_pool; /* pool for pmap structures */
184 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
185 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
186
187 /*
188 * We keep a cache of unmanaged pages to be used for pvo entries for
189 * unmanaged pages.
190 */
191 struct pvo_page {
192 SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 };
194 SIMPLEQ_HEAD(pvop_head, pvo_page);
195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 u_long pmap_upvop_free;
198 u_long pmap_upvop_maxfree;
199 u_long pmap_mpvop_free;
200 u_long pmap_mpvop_maxfree;
201
202 STATIC void *pmap_pool_ualloc(struct pool *, int);
203 STATIC void *pmap_pool_malloc(struct pool *, int);
204
205 STATIC void pmap_pool_ufree(struct pool *, void *);
206 STATIC void pmap_pool_mfree(struct pool *, void *);
207
208 static struct pool_allocator pmap_pool_mallocator = {
209 pmap_pool_malloc, pmap_pool_mfree, 0,
210 };
211
212 static struct pool_allocator pmap_pool_uallocator = {
213 pmap_pool_ualloc, pmap_pool_ufree, 0,
214 };
215
216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 void pmap_pte_print(volatile struct pte *);
218 #endif
219
220 #ifdef DDB
221 void pmap_pteg_check(void);
222 void pmap_pteg_dist(void);
223 void pmap_print_pte(pmap_t, vaddr_t);
224 void pmap_print_mmuregs(void);
225 #endif
226
227 #if defined(DEBUG) || defined(PMAPCHECK)
228 #ifdef PMAPCHECK
229 int pmapcheck = 1;
230 #else
231 int pmapcheck = 0;
232 #endif
233 void pmap_pvo_verify(void);
234 STATIC void pmap_pvo_check(const struct pvo_entry *);
235 #define PMAP_PVO_CHECK(pvo) \
236 do { \
237 if (pmapcheck) \
238 pmap_pvo_check(pvo); \
239 } while (0)
240 #else
241 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
242 #endif
243 STATIC int pmap_pte_insert(int, struct pte *);
244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 vaddr_t, paddr_t, register_t, int);
246 STATIC void pmap_pvo_remove(struct pvo_entry *, int);
247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
249 #define pmap_pvo_reclaim(pm) NULL
250 STATIC void pvo_set_exec(struct pvo_entry *);
251 STATIC void pvo_clear_exec(struct pvo_entry *);
252
253 STATIC void tlbia(void);
254
255 STATIC void pmap_release(pmap_t);
256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
257
258 #define VSID_NBPW (sizeof(uint32_t) * 8)
259 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
260
261 static int pmap_initialized;
262
263 #if defined(DEBUG) || defined(PMAPDEBUG)
264 #define PMAPDEBUG_BOOT 0x0001
265 #define PMAPDEBUG_PTE 0x0002
266 #define PMAPDEBUG_EXEC 0x0008
267 #define PMAPDEBUG_PVOENTER 0x0010
268 #define PMAPDEBUG_PVOREMOVE 0x0020
269 #define PMAPDEBUG_ACTIVATE 0x0100
270 #define PMAPDEBUG_CREATE 0x0200
271 #define PMAPDEBUG_ENTER 0x1000
272 #define PMAPDEBUG_KENTER 0x2000
273 #define PMAPDEBUG_KREMOVE 0x4000
274 #define PMAPDEBUG_REMOVE 0x8000
275 unsigned int pmapdebug = 0;
276 # define DPRINTF(x) printf x
277 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
278 #else
279 # define DPRINTF(x)
280 # define DPRINTFN(n, x)
281 #endif
282
283
284 #ifdef PMAPCOUNTERS
285 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
286 #define PMAPCOUNT2(ev) ((ev).ev_count++)
287
288 struct evcnt pmap_evcnt_mappings =
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
290 "pmap", "pages mapped");
291 struct evcnt pmap_evcnt_unmappings =
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
293 "pmap", "pages unmapped");
294
295 struct evcnt pmap_evcnt_kernel_mappings =
296 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
297 "pmap", "kernel pages mapped");
298 struct evcnt pmap_evcnt_kernel_unmappings =
299 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
300 "pmap", "kernel pages unmapped");
301
302 struct evcnt pmap_evcnt_mappings_replaced =
303 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
304 "pmap", "page mappings replaced");
305
306 struct evcnt pmap_evcnt_exec_mappings =
307 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
308 "pmap", "exec pages mapped");
309 struct evcnt pmap_evcnt_exec_cached =
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
311 "pmap", "exec pages cached");
312
313 struct evcnt pmap_evcnt_exec_synced =
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
315 "pmap", "exec pages synced");
316 struct evcnt pmap_evcnt_exec_synced_clear_modify =
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
318 "pmap", "exec pages synced (CM)");
319
320 struct evcnt pmap_evcnt_exec_uncached_page_protect =
321 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
322 "pmap", "exec pages uncached (PP)");
323 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
324 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
325 "pmap", "exec pages uncached (CM)");
326 struct evcnt pmap_evcnt_exec_uncached_zero_page =
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
328 "pmap", "exec pages uncached (ZP)");
329 struct evcnt pmap_evcnt_exec_uncached_copy_page =
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
331 "pmap", "exec pages uncached (CP)");
332
333 struct evcnt pmap_evcnt_updates =
334 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
335 "pmap", "updates");
336 struct evcnt pmap_evcnt_collects =
337 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
338 "pmap", "collects");
339 struct evcnt pmap_evcnt_copies =
340 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
341 "pmap", "copies");
342
343 struct evcnt pmap_evcnt_ptes_spilled =
344 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
345 "pmap", "ptes spilled from overflow");
346 struct evcnt pmap_evcnt_ptes_unspilled =
347 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
348 "pmap", "ptes not spilled");
349 struct evcnt pmap_evcnt_ptes_evicted =
350 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
351 "pmap", "ptes evicted");
352
353 struct evcnt pmap_evcnt_ptes_primary[8] = {
354 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 "pmap", "ptes added at primary[0]"),
356 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 "pmap", "ptes added at primary[1]"),
358 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
359 "pmap", "ptes added at primary[2]"),
360 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
361 "pmap", "ptes added at primary[3]"),
362
363 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 "pmap", "ptes added at primary[4]"),
365 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 "pmap", "ptes added at primary[5]"),
367 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
368 "pmap", "ptes added at primary[6]"),
369 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
370 "pmap", "ptes added at primary[7]"),
371 };
372 struct evcnt pmap_evcnt_ptes_secondary[8] = {
373 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
374 "pmap", "ptes added at secondary[0]"),
375 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
376 "pmap", "ptes added at secondary[1]"),
377 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
378 "pmap", "ptes added at secondary[2]"),
379 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
380 "pmap", "ptes added at secondary[3]"),
381
382 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 "pmap", "ptes added at secondary[4]"),
384 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 "pmap", "ptes added at secondary[5]"),
386 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
387 "pmap", "ptes added at secondary[6]"),
388 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
389 "pmap", "ptes added at secondary[7]"),
390 };
391 struct evcnt pmap_evcnt_ptes_removed =
392 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
393 "pmap", "ptes removed");
394 struct evcnt pmap_evcnt_ptes_changed =
395 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 "pmap", "ptes changed");
397
398 /*
399 * From pmap_subr.c
400 */
401 extern struct evcnt pmap_evcnt_zeroed_pages;
402 extern struct evcnt pmap_evcnt_copied_pages;
403 extern struct evcnt pmap_evcnt_idlezeroed_pages;
404 #else
405 #define PMAPCOUNT(ev) ((void) 0)
406 #define PMAPCOUNT2(ev) ((void) 0)
407 #endif
408
409 #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
410 #define TLBSYNC() __asm __volatile("tlbsync")
411 #define SYNC() __asm __volatile("sync")
412 #define EIEIO() __asm __volatile("eieio")
413 #define MFMSR() mfmsr()
414 #define MTMSR(psl) mtmsr(psl)
415 #define MFPVR() mfpvr()
416 #define MFSRIN(va) mfsrin(va)
417 #define MFTB() mfrtcltbl()
418
419 #ifndef PPC_OEA64
420 static __inline register_t
421 mfsrin(vaddr_t va)
422 {
423 register_t sr;
424 __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
425 return sr;
426 }
427 #endif /* PPC_OEA64 */
428
429 static __inline register_t
430 pmap_interrupts_off(void)
431 {
432 register_t msr = MFMSR();
433 if (msr & PSL_EE)
434 MTMSR(msr & ~PSL_EE);
435 return msr;
436 }
437
438 static void
439 pmap_interrupts_restore(register_t msr)
440 {
441 if (msr & PSL_EE)
442 MTMSR(msr);
443 }
444
445 static __inline u_int32_t
446 mfrtcltbl(void)
447 {
448
449 if ((MFPVR() >> 16) == MPC601)
450 return (mfrtcl() >> 7);
451 else
452 return (mftbl());
453 }
454
455 /*
456 * These small routines may have to be replaced,
457 * if/when we support processors other that the 604.
458 */
459
460 void
461 tlbia(void)
462 {
463 caddr_t i;
464
465 SYNC();
466 /*
467 * Why not use "tlbia"? Because not all processors implement it.
468 *
469 * This needs to be a per-CPU callback to do the appropriate thing
470 * for the CPU. XXX
471 */
472 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
473 TLBIE(i);
474 EIEIO();
475 SYNC();
476 }
477 TLBSYNC();
478 SYNC();
479 }
480
481 static __inline register_t
482 va_to_vsid(const struct pmap *pm, vaddr_t addr)
483 {
484 #ifdef PPC_OEA64
485 #if 0
486 const struct ste *ste;
487 register_t hash;
488 int i;
489
490 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
491
492 /*
493 * Try the primary group first
494 */
495 ste = pm->pm_stes[hash].stes;
496 for (i = 0; i < 8; i++, ste++) {
497 if (ste->ste_hi & STE_V) &&
498 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
499 return ste;
500 }
501
502 /*
503 * Then the secondary group.
504 */
505 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
506 for (i = 0; i < 8; i++, ste++) {
507 if (ste->ste_hi & STE_V) &&
508 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
509 return addr;
510 }
511
512 return NULL;
513 #else
514 /*
515 * Rather than searching the STE groups for the VSID, we know
516 * how we generate that from the ESID and so do that.
517 */
518 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
519 #endif
520 #else
521 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
522 #endif
523 }
524
525 static __inline register_t
526 va_to_pteg(const struct pmap *pm, vaddr_t addr)
527 {
528 register_t hash;
529
530 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
531 return hash & pmap_pteg_mask;
532 }
533
534 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
535 /*
536 * Given a PTE in the page table, calculate the VADDR that hashes to it.
537 * The only bit of magic is that the top 4 bits of the address doesn't
538 * technically exist in the PTE. But we know we reserved 4 bits of the
539 * VSID for it so that's how we get it.
540 */
541 static vaddr_t
542 pmap_pte_to_va(volatile const struct pte *pt)
543 {
544 vaddr_t va;
545 uintptr_t ptaddr = (uintptr_t) pt;
546
547 if (pt->pte_hi & PTE_HID)
548 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
549
550 /* PPC Bits 10-19 PPC64 Bits 42-51 */
551 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
552 va <<= ADDR_PIDX_SHFT;
553
554 /* PPC Bits 4-9 PPC64 Bits 36-41 */
555 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
556
557 #ifdef PPC_OEA64
558 /* PPC63 Bits 0-35 */
559 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
560 #endif
561 #ifdef PPC_OEA
562 /* PPC Bits 0-3 */
563 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
564 #endif
565
566 return va;
567 }
568 #endif
569
570 static __inline struct pvo_head *
571 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
572 {
573 #ifdef __HAVE_VM_PAGE_MD
574 struct vm_page *pg;
575
576 pg = PHYS_TO_VM_PAGE(pa);
577 if (pg_p != NULL)
578 *pg_p = pg;
579 if (pg == NULL)
580 return &pmap_pvo_unmanaged;
581 return &pg->mdpage.mdpg_pvoh;
582 #endif
583 #ifdef __HAVE_PMAP_PHYSSEG
584 int bank, pg;
585
586 bank = vm_physseg_find(atop(pa), &pg);
587 if (pg_p != NULL)
588 *pg_p = pg;
589 if (bank == -1)
590 return &pmap_pvo_unmanaged;
591 return &vm_physmem[bank].pmseg.pvoh[pg];
592 #endif
593 }
594
595 static __inline struct pvo_head *
596 vm_page_to_pvoh(struct vm_page *pg)
597 {
598 #ifdef __HAVE_VM_PAGE_MD
599 return &pg->mdpage.mdpg_pvoh;
600 #endif
601 #ifdef __HAVE_PMAP_PHYSSEG
602 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
603 #endif
604 }
605
606
607 #ifdef __HAVE_PMAP_PHYSSEG
608 static __inline char *
609 pa_to_attr(paddr_t pa)
610 {
611 int bank, pg;
612
613 bank = vm_physseg_find(atop(pa), &pg);
614 if (bank == -1)
615 return NULL;
616 return &vm_physmem[bank].pmseg.attrs[pg];
617 }
618 #endif
619
620 static __inline void
621 pmap_attr_clear(struct vm_page *pg, int ptebit)
622 {
623 #ifdef __HAVE_PMAP_PHYSSEG
624 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
625 #endif
626 #ifdef __HAVE_VM_PAGE_MD
627 pg->mdpage.mdpg_attrs &= ~ptebit;
628 #endif
629 }
630
631 static __inline int
632 pmap_attr_fetch(struct vm_page *pg)
633 {
634 #ifdef __HAVE_PMAP_PHYSSEG
635 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
636 #endif
637 #ifdef __HAVE_VM_PAGE_MD
638 return pg->mdpage.mdpg_attrs;
639 #endif
640 }
641
642 static __inline void
643 pmap_attr_save(struct vm_page *pg, int ptebit)
644 {
645 #ifdef __HAVE_PMAP_PHYSSEG
646 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
647 #endif
648 #ifdef __HAVE_VM_PAGE_MD
649 pg->mdpage.mdpg_attrs |= ptebit;
650 #endif
651 }
652
653 static __inline int
654 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
655 {
656 if (pt->pte_hi == pvo_pt->pte_hi
657 #if 0
658 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
659 ~(PTE_REF|PTE_CHG)) == 0
660 #endif
661 )
662 return 1;
663 return 0;
664 }
665
666 static __inline void
667 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
668 {
669 /*
670 * Construct the PTE. Default to IMB initially. Valid bit
671 * only gets set when the real pte is set in memory.
672 *
673 * Note: Don't set the valid bit for correct operation of tlb update.
674 */
675 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
676 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
677 pt->pte_lo = pte_lo;
678 }
679
680 static __inline void
681 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
682 {
683 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
684 }
685
686 static __inline void
687 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
688 {
689 /*
690 * As shown in Section 7.6.3.2.3
691 */
692 pt->pte_lo &= ~ptebit;
693 TLBIE(va);
694 SYNC();
695 EIEIO();
696 TLBSYNC();
697 SYNC();
698 }
699
700 static __inline void
701 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
702 {
703 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
704 if (pvo_pt->pte_hi & PTE_VALID)
705 panic("pte_set: setting an already valid pte %p", pvo_pt);
706 #endif
707 pvo_pt->pte_hi |= PTE_VALID;
708 /*
709 * Update the PTE as defined in section 7.6.3.1
710 * Note that the REF/CHG bits are from pvo_pt and thus should
711 * have been saved so this routine can restore them (if desired).
712 */
713 pt->pte_lo = pvo_pt->pte_lo;
714 EIEIO();
715 pt->pte_hi = pvo_pt->pte_hi;
716 SYNC();
717 pmap_pte_valid++;
718 }
719
720 static __inline void
721 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
722 {
723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
724 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
725 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
726 if ((pt->pte_hi & PTE_VALID) == 0)
727 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
728 #endif
729
730 pvo_pt->pte_hi &= ~PTE_VALID;
731 /*
732 * Force the ref & chg bits back into the PTEs.
733 */
734 SYNC();
735 /*
736 * Invalidate the pte ... (Section 7.6.3.3)
737 */
738 pt->pte_hi &= ~PTE_VALID;
739 SYNC();
740 TLBIE(va);
741 SYNC();
742 EIEIO();
743 TLBSYNC();
744 SYNC();
745 /*
746 * Save the ref & chg bits ...
747 */
748 pmap_pte_synch(pt, pvo_pt);
749 pmap_pte_valid--;
750 }
751
752 static __inline void
753 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
754 {
755 /*
756 * Invalidate the PTE
757 */
758 pmap_pte_unset(pt, pvo_pt, va);
759 pmap_pte_set(pt, pvo_pt);
760 }
761
762 /*
763 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
764 * (either primary or secondary location).
765 *
766 * Note: both the destination and source PTEs must not have PTE_VALID set.
767 */
768
769 STATIC int
770 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
771 {
772 volatile struct pte *pt;
773 int i;
774
775 #if defined(DEBUG)
776 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
777 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
778 #endif
779 /*
780 * First try primary hash.
781 */
782 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
783 if ((pt->pte_hi & PTE_VALID) == 0) {
784 pvo_pt->pte_hi &= ~PTE_HID;
785 pmap_pte_set(pt, pvo_pt);
786 return i;
787 }
788 }
789
790 /*
791 * Now try secondary hash.
792 */
793 ptegidx ^= pmap_pteg_mask;
794 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
795 if ((pt->pte_hi & PTE_VALID) == 0) {
796 pvo_pt->pte_hi |= PTE_HID;
797 pmap_pte_set(pt, pvo_pt);
798 return i;
799 }
800 }
801 return -1;
802 }
803
804 /*
805 * Spill handler.
806 *
807 * Tries to spill a page table entry from the overflow area.
808 * This runs in either real mode (if dealing with a exception spill)
809 * or virtual mode when dealing with manually spilling one of the
810 * kernel's pte entries. In either case, interrupts are already
811 * disabled.
812 */
813
814 int
815 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
816 {
817 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
818 struct pvo_entry *pvo;
819 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
820 struct pvo_tqhead *pvoh, *vpvoh = NULL;
821 int ptegidx, i, j;
822 volatile struct pteg *pteg;
823 volatile struct pte *pt;
824
825 ptegidx = va_to_pteg(pm, addr);
826
827 /*
828 * Have to substitute some entry. Use the primary hash for this.
829 * Use low bits of timebase as random generator. Make sure we are
830 * not picking a kernel pte for replacement.
831 */
832 pteg = &pmap_pteg_table[ptegidx];
833 i = MFTB() & 7;
834 for (j = 0; j < 8; j++) {
835 pt = &pteg->pt[i];
836 if ((pt->pte_hi & PTE_VALID) == 0 ||
837 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
838 != KERNEL_VSIDBITS)
839 break;
840 i = (i + 1) & 7;
841 }
842 KASSERT(j < 8);
843
844 source_pvo = NULL;
845 victim_pvo = NULL;
846 pvoh = &pmap_pvo_table[ptegidx];
847 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
848
849 /*
850 * We need to find pvo entry for this address...
851 */
852 PMAP_PVO_CHECK(pvo); /* sanity check */
853
854 /*
855 * If we haven't found the source and we come to a PVO with
856 * a valid PTE, then we know we can't find it because all
857 * evicted PVOs always are first in the list.
858 */
859 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
860 break;
861 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
862 addr == PVO_VADDR(pvo)) {
863
864 /*
865 * Now we have found the entry to be spilled into the
866 * pteg. Attempt to insert it into the page table.
867 */
868 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
869 if (j >= 0) {
870 PVO_PTEGIDX_SET(pvo, j);
871 PMAP_PVO_CHECK(pvo); /* sanity check */
872 PVO_WHERE(pvo, SPILL_INSERT);
873 pvo->pvo_pmap->pm_evictions--;
874 PMAPCOUNT(ptes_spilled);
875 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
876 ? pmap_evcnt_ptes_secondary
877 : pmap_evcnt_ptes_primary)[j]);
878
879 /*
880 * Since we keep the evicted entries at the
881 * from of the PVO list, we need move this
882 * (now resident) PVO after the evicted
883 * entries.
884 */
885 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
886
887 /*
888 * If we don't have to move (either we were the
889 * last entry or the next entry was valid),
890 * don't change our position. Otherwise
891 * move ourselves to the tail of the queue.
892 */
893 if (next_pvo != NULL &&
894 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
895 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
896 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
897 }
898 return 1;
899 }
900 source_pvo = pvo;
901 if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
902 return 0;
903 }
904 if (victim_pvo != NULL)
905 break;
906 }
907
908 /*
909 * We also need the pvo entry of the victim we are replacing
910 * so save the R & C bits of the PTE.
911 */
912 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
913 pmap_pte_compare(pt, &pvo->pvo_pte)) {
914 vpvoh = pvoh; /* *1* */
915 victim_pvo = pvo;
916 if (source_pvo != NULL)
917 break;
918 }
919 }
920
921 if (source_pvo == NULL) {
922 PMAPCOUNT(ptes_unspilled);
923 return 0;
924 }
925
926 if (victim_pvo == NULL) {
927 if ((pt->pte_hi & PTE_HID) == 0)
928 panic("pmap_pte_spill: victim p-pte (%p) has "
929 "no pvo entry!", pt);
930
931 /*
932 * If this is a secondary PTE, we need to search
933 * its primary pvo bucket for the matching PVO.
934 */
935 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
936 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
937 PMAP_PVO_CHECK(pvo); /* sanity check */
938
939 /*
940 * We also need the pvo entry of the victim we are
941 * replacing so save the R & C bits of the PTE.
942 */
943 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
944 victim_pvo = pvo;
945 break;
946 }
947 }
948 if (victim_pvo == NULL)
949 panic("pmap_pte_spill: victim s-pte (%p) has "
950 "no pvo entry!", pt);
951 }
952
953 /*
954 * The victim should be not be a kernel PVO/PTE entry.
955 */
956 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
957 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
958 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
959
960 /*
961 * We are invalidating the TLB entry for the EA for the
962 * we are replacing even though its valid; If we don't
963 * we lose any ref/chg bit changes contained in the TLB
964 * entry.
965 */
966 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
967
968 /*
969 * To enforce the PVO list ordering constraint that all
970 * evicted entries should come before all valid entries,
971 * move the source PVO to the tail of its list and the
972 * victim PVO to the head of its list (which might not be
973 * the same list, if the victim was using the secondary hash).
974 */
975 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
976 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
977 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
978 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
979 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
980 pmap_pte_set(pt, &source_pvo->pvo_pte);
981 victim_pvo->pvo_pmap->pm_evictions++;
982 source_pvo->pvo_pmap->pm_evictions--;
983 PVO_WHERE(victim_pvo, SPILL_UNSET);
984 PVO_WHERE(source_pvo, SPILL_SET);
985
986 PVO_PTEGIDX_CLR(victim_pvo);
987 PVO_PTEGIDX_SET(source_pvo, i);
988 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
989 PMAPCOUNT(ptes_spilled);
990 PMAPCOUNT(ptes_evicted);
991 PMAPCOUNT(ptes_removed);
992
993 PMAP_PVO_CHECK(victim_pvo);
994 PMAP_PVO_CHECK(source_pvo);
995 return 1;
996 }
997
998 /*
999 * Restrict given range to physical memory
1000 */
1001 void
1002 pmap_real_memory(paddr_t *start, psize_t *size)
1003 {
1004 struct mem_region *mp;
1005
1006 for (mp = mem; mp->size; mp++) {
1007 if (*start + *size > mp->start
1008 && *start < mp->start + mp->size) {
1009 if (*start < mp->start) {
1010 *size -= mp->start - *start;
1011 *start = mp->start;
1012 }
1013 if (*start + *size > mp->start + mp->size)
1014 *size = mp->start + mp->size - *start;
1015 return;
1016 }
1017 }
1018 *size = 0;
1019 }
1020
1021 /*
1022 * Initialize anything else for pmap handling.
1023 * Called during vm_init().
1024 */
1025 void
1026 pmap_init(void)
1027 {
1028 #ifdef __HAVE_PMAP_PHYSSEG
1029 struct pvo_tqhead *pvoh;
1030 int bank;
1031 long sz;
1032 char *attr;
1033
1034 pvoh = pmap_physseg.pvoh;
1035 attr = pmap_physseg.attrs;
1036 for (bank = 0; bank < vm_nphysseg; bank++) {
1037 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1038 vm_physmem[bank].pmseg.pvoh = pvoh;
1039 vm_physmem[bank].pmseg.attrs = attr;
1040 for (; sz > 0; sz--, pvoh++, attr++) {
1041 TAILQ_INIT(pvoh);
1042 *attr = 0;
1043 }
1044 }
1045 #endif
1046
1047 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1048 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1049 &pmap_pool_mallocator);
1050
1051 pool_setlowat(&pmap_mpvo_pool, 1008);
1052
1053 pmap_initialized = 1;
1054
1055 #ifdef PMAPCOUNTERS
1056 evcnt_attach_static(&pmap_evcnt_mappings);
1057 evcnt_attach_static(&pmap_evcnt_mappings_replaced);
1058 evcnt_attach_static(&pmap_evcnt_unmappings);
1059
1060 evcnt_attach_static(&pmap_evcnt_kernel_mappings);
1061 evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
1062
1063 evcnt_attach_static(&pmap_evcnt_exec_mappings);
1064 evcnt_attach_static(&pmap_evcnt_exec_cached);
1065 evcnt_attach_static(&pmap_evcnt_exec_synced);
1066 evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
1067
1068 evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
1069 evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
1070 evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
1071 evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
1072
1073 evcnt_attach_static(&pmap_evcnt_zeroed_pages);
1074 evcnt_attach_static(&pmap_evcnt_copied_pages);
1075 evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
1076
1077 evcnt_attach_static(&pmap_evcnt_updates);
1078 evcnt_attach_static(&pmap_evcnt_collects);
1079 evcnt_attach_static(&pmap_evcnt_copies);
1080
1081 evcnt_attach_static(&pmap_evcnt_ptes_spilled);
1082 evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
1083 evcnt_attach_static(&pmap_evcnt_ptes_evicted);
1084 evcnt_attach_static(&pmap_evcnt_ptes_removed);
1085 evcnt_attach_static(&pmap_evcnt_ptes_changed);
1086 evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
1087 evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
1088 evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
1089 evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
1090 evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
1091 evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
1092 evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
1093 evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
1094 evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
1095 evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
1096 evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
1097 evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
1098 evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
1099 evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
1100 evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
1101 evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
1102 #endif
1103 }
1104
1105 /*
1106 * How much virtual space does the kernel get?
1107 */
1108 void
1109 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1110 {
1111 /*
1112 * For now, reserve one segment (minus some overhead) for kernel
1113 * virtual memory
1114 */
1115 *start = VM_MIN_KERNEL_ADDRESS;
1116 *end = VM_MAX_KERNEL_ADDRESS;
1117 }
1118
1119 /*
1120 * Allocate, initialize, and return a new physical map.
1121 */
1122 pmap_t
1123 pmap_create(void)
1124 {
1125 pmap_t pm;
1126
1127 pm = pool_get(&pmap_pool, PR_WAITOK);
1128 memset((caddr_t)pm, 0, sizeof *pm);
1129 pmap_pinit(pm);
1130
1131 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1132 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1133 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1134 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1135 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1136 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1137 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1138 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1139 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1140 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1141 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1142 return pm;
1143 }
1144
1145 /*
1146 * Initialize a preallocated and zeroed pmap structure.
1147 */
1148 void
1149 pmap_pinit(pmap_t pm)
1150 {
1151 register_t entropy = MFTB();
1152 register_t mask;
1153 int i;
1154
1155 /*
1156 * Allocate some segment registers for this pmap.
1157 */
1158 pm->pm_refs = 1;
1159 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1160 static register_t pmap_vsidcontext;
1161 register_t hash;
1162 unsigned int n;
1163
1164 /* Create a new value by multiplying by a prime adding in
1165 * entropy from the timebase register. This is to make the
1166 * VSID more random so that the PT Hash function collides
1167 * less often. (note that the prime causes gcc to do shifts
1168 * instead of a multiply)
1169 */
1170 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1171 hash = pmap_vsidcontext & (NPMAPS - 1);
1172 if (hash == 0) { /* 0 is special, avoid it */
1173 entropy += 0xbadf00d;
1174 continue;
1175 }
1176 n = hash >> 5;
1177 mask = 1L << (hash & (VSID_NBPW-1));
1178 hash = pmap_vsidcontext;
1179 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1180 /* anything free in this bucket? */
1181 if (~pmap_vsid_bitmap[n] == 0) {
1182 entropy = hash ^ (hash >> 16);
1183 continue;
1184 }
1185 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1186 mask = 1L << i;
1187 hash &= ~(VSID_NBPW-1);
1188 hash |= i;
1189 }
1190 hash &= PTE_VSID >> PTE_VSID_SHFT;
1191 pmap_vsid_bitmap[n] |= mask;
1192 pm->pm_vsid = hash;
1193 #ifndef PPC_OEA64
1194 for (i = 0; i < 16; i++)
1195 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1196 SR_NOEXEC;
1197 #endif
1198 return;
1199 }
1200 panic("pmap_pinit: out of segments");
1201 }
1202
1203 /*
1204 * Add a reference to the given pmap.
1205 */
1206 void
1207 pmap_reference(pmap_t pm)
1208 {
1209 pm->pm_refs++;
1210 }
1211
1212 /*
1213 * Retire the given pmap from service.
1214 * Should only be called if the map contains no valid mappings.
1215 */
1216 void
1217 pmap_destroy(pmap_t pm)
1218 {
1219 if (--pm->pm_refs == 0) {
1220 pmap_release(pm);
1221 pool_put(&pmap_pool, pm);
1222 }
1223 }
1224
1225 /*
1226 * Release any resources held by the given physical map.
1227 * Called when a pmap initialized by pmap_pinit is being released.
1228 */
1229 void
1230 pmap_release(pmap_t pm)
1231 {
1232 int idx, mask;
1233
1234 if (pm->pm_sr[0] == 0)
1235 panic("pmap_release");
1236 idx = pm->pm_vsid & (NPMAPS-1);
1237 mask = 1 << (idx % VSID_NBPW);
1238 idx /= VSID_NBPW;
1239
1240 KASSERT(pmap_vsid_bitmap[idx] & mask);
1241 pmap_vsid_bitmap[idx] &= ~mask;
1242 }
1243
1244 /*
1245 * Copy the range specified by src_addr/len
1246 * from the source map to the range dst_addr/len
1247 * in the destination map.
1248 *
1249 * This routine is only advisory and need not do anything.
1250 */
1251 void
1252 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1253 vsize_t len, vaddr_t src_addr)
1254 {
1255 PMAPCOUNT(copies);
1256 }
1257
1258 /*
1259 * Require that all active physical maps contain no
1260 * incorrect entries NOW.
1261 */
1262 void
1263 pmap_update(struct pmap *pmap)
1264 {
1265 PMAPCOUNT(updates);
1266 TLBSYNC();
1267 }
1268
1269 /*
1270 * Garbage collects the physical map system for
1271 * pages which are no longer used.
1272 * Success need not be guaranteed -- that is, there
1273 * may well be pages which are not referenced, but
1274 * others may be collected.
1275 * Called by the pageout daemon when pages are scarce.
1276 */
1277 void
1278 pmap_collect(pmap_t pm)
1279 {
1280 PMAPCOUNT(collects);
1281 }
1282
1283 static __inline int
1284 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1285 {
1286 int pteidx;
1287 /*
1288 * We can find the actual pte entry without searching by
1289 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1290 * and by noticing the HID bit.
1291 */
1292 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1293 if (pvo->pvo_pte.pte_hi & PTE_HID)
1294 pteidx ^= pmap_pteg_mask * 8;
1295 return pteidx;
1296 }
1297
1298 volatile struct pte *
1299 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1300 {
1301 volatile struct pte *pt;
1302
1303 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1304 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1305 return NULL;
1306 #endif
1307
1308 /*
1309 * If we haven't been supplied the ptegidx, calculate it.
1310 */
1311 if (pteidx == -1) {
1312 int ptegidx;
1313 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1314 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1315 }
1316
1317 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1318
1319 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1320 return pt;
1321 #else
1322 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1323 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1324 "pvo but no valid pte index", pvo);
1325 }
1326 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1327 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1328 "pvo but no valid pte", pvo);
1329 }
1330
1331 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1332 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1333 #if defined(DEBUG) || defined(PMAPCHECK)
1334 pmap_pte_print(pt);
1335 #endif
1336 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1337 "pmap_pteg_table %p but invalid in pvo",
1338 pvo, pt);
1339 }
1340 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1341 #if defined(DEBUG) || defined(PMAPCHECK)
1342 pmap_pte_print(pt);
1343 #endif
1344 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1345 "not match pte %p in pmap_pteg_table",
1346 pvo, pt);
1347 }
1348 return pt;
1349 }
1350
1351 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1352 #if defined(DEBUG) || defined(PMAPCHECK)
1353 pmap_pte_print(pt);
1354 #endif
1355 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1356 "pmap_pteg_table but valid in pvo", pvo, pt);
1357 }
1358 return NULL;
1359 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1360 }
1361
1362 struct pvo_entry *
1363 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1364 {
1365 struct pvo_entry *pvo;
1366 int ptegidx;
1367
1368 va &= ~ADDR_POFF;
1369 ptegidx = va_to_pteg(pm, va);
1370
1371 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1372 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1373 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1374 panic("pmap_pvo_find_va: invalid pvo %p on "
1375 "list %#x (%p)", pvo, ptegidx,
1376 &pmap_pvo_table[ptegidx]);
1377 #endif
1378 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1379 if (pteidx_p)
1380 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1381 return pvo;
1382 }
1383 }
1384 return NULL;
1385 }
1386
1387 #if defined(DEBUG) || defined(PMAPCHECK)
1388 void
1389 pmap_pvo_check(const struct pvo_entry *pvo)
1390 {
1391 struct pvo_head *pvo_head;
1392 struct pvo_entry *pvo0;
1393 volatile struct pte *pt;
1394 int failed = 0;
1395
1396 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1397 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1398
1399 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1400 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1401 pvo, pvo->pvo_pmap);
1402 failed = 1;
1403 }
1404
1405 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1406 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1407 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1408 pvo, TAILQ_NEXT(pvo, pvo_olink));
1409 failed = 1;
1410 }
1411
1412 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1413 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1414 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1415 pvo, LIST_NEXT(pvo, pvo_vlink));
1416 failed = 1;
1417 }
1418
1419 if (pvo->pvo_vaddr & PVO_MANAGED) {
1420 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1421 } else {
1422 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1423 printf("pmap_pvo_check: pvo %p: non kernel address "
1424 "on kernel unmanaged list\n", pvo);
1425 failed = 1;
1426 }
1427 pvo_head = &pmap_pvo_kunmanaged;
1428 }
1429 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1430 if (pvo0 == pvo)
1431 break;
1432 }
1433 if (pvo0 == NULL) {
1434 printf("pmap_pvo_check: pvo %p: not present "
1435 "on its vlist head %p\n", pvo, pvo_head);
1436 failed = 1;
1437 }
1438 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1439 printf("pmap_pvo_check: pvo %p: not present "
1440 "on its olist head\n", pvo);
1441 failed = 1;
1442 }
1443 pt = pmap_pvo_to_pte(pvo, -1);
1444 if (pt == NULL) {
1445 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1446 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1447 "no PTE\n", pvo);
1448 failed = 1;
1449 }
1450 } else {
1451 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1452 (uintptr_t) pt >=
1453 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1454 printf("pmap_pvo_check: pvo %p: pte %p not in "
1455 "pteg table\n", pvo, pt);
1456 failed = 1;
1457 }
1458 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1459 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1460 "no PTE\n", pvo);
1461 failed = 1;
1462 }
1463 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1464 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1465 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1466 failed = 1;
1467 }
1468 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1469 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1470 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1471 "%#x/%#x\n", pvo,
1472 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1473 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1474 failed = 1;
1475 }
1476 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1477 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1478 " doesn't not match PVO's VA %#lx\n",
1479 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1480 failed = 1;
1481 }
1482 if (failed)
1483 pmap_pte_print(pt);
1484 }
1485 if (failed)
1486 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1487 pvo->pvo_pmap);
1488 }
1489 #endif /* DEBUG || PMAPCHECK */
1490
1491 /*
1492 * This returns whether this is the first mapping of a page.
1493 */
1494 int
1495 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1496 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1497 {
1498 struct pvo_entry *pvo;
1499 struct pvo_tqhead *pvoh;
1500 register_t msr;
1501 int ptegidx;
1502 int i;
1503 int poolflags = PR_NOWAIT;
1504
1505 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1506 if (pmap_pvo_remove_depth > 0)
1507 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1508 if (++pmap_pvo_enter_depth > 1)
1509 panic("pmap_pvo_enter: called recursively!");
1510 #endif
1511
1512 /*
1513 * Compute the PTE Group index.
1514 */
1515 va &= ~ADDR_POFF;
1516 ptegidx = va_to_pteg(pm, va);
1517
1518 msr = pmap_interrupts_off();
1519 /*
1520 * Remove any existing mapping for this page. Reuse the
1521 * pvo entry if there a mapping.
1522 */
1523 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1524 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1525 #ifdef DEBUG
1526 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1527 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1528 ~(PTE_REF|PTE_CHG)) == 0 &&
1529 va < VM_MIN_KERNEL_ADDRESS) {
1530 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1531 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1532 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1533 (unsigned int) pvo->pvo_pte.pte_hi,
1534 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1535 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1536 #ifdef DDBX
1537 Debugger();
1538 #endif
1539 }
1540 #endif
1541 PMAPCOUNT(mappings_replaced);
1542 pmap_pvo_remove(pvo, -1);
1543 break;
1544 }
1545 }
1546
1547 /*
1548 * If we aren't overwriting an mapping, try to allocate
1549 */
1550 pmap_interrupts_restore(msr);
1551 pvo = pool_get(pl, poolflags);
1552 msr = pmap_interrupts_off();
1553 if (pvo == NULL) {
1554 pvo = pmap_pvo_reclaim(pm);
1555 if (pvo == NULL) {
1556 if ((flags & PMAP_CANFAIL) == 0)
1557 panic("pmap_pvo_enter: failed");
1558 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1559 pmap_pvo_enter_depth--;
1560 #endif
1561 pmap_interrupts_restore(msr);
1562 return ENOMEM;
1563 }
1564 }
1565 pvo->pvo_vaddr = va;
1566 pvo->pvo_pmap = pm;
1567 pvo->pvo_vaddr &= ~ADDR_POFF;
1568 if (flags & VM_PROT_EXECUTE) {
1569 PMAPCOUNT(exec_mappings);
1570 pvo_set_exec(pvo);
1571 }
1572 if (flags & PMAP_WIRED)
1573 pvo->pvo_vaddr |= PVO_WIRED;
1574 if (pvo_head != &pmap_pvo_kunmanaged) {
1575 pvo->pvo_vaddr |= PVO_MANAGED;
1576 PMAPCOUNT(mappings);
1577 } else {
1578 PMAPCOUNT(kernel_mappings);
1579 }
1580 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1581
1582 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1583 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1584 pvo->pvo_pmap->pm_stats.wired_count++;
1585 pvo->pvo_pmap->pm_stats.resident_count++;
1586 #if defined(DEBUG)
1587 if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1588 DPRINTFN(PVOENTER,
1589 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1590 pvo, pm, va, pa));
1591 #endif
1592
1593 /*
1594 * We hope this succeeds but it isn't required.
1595 */
1596 pvoh = &pmap_pvo_table[ptegidx];
1597 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1598 if (i >= 0) {
1599 PVO_PTEGIDX_SET(pvo, i);
1600 PVO_WHERE(pvo, ENTER_INSERT);
1601 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1602 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1603 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1604 } else {
1605 /*
1606 * Since we didn't have room for this entry (which makes it
1607 * and evicted entry), place it at the head of the list.
1608 */
1609 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1610 PMAPCOUNT(ptes_evicted);
1611 pm->pm_evictions++;
1612 /*
1613 * If this is a kernel page, make sure it's active.
1614 */
1615 if (pm == pmap_kernel()) {
1616 i = pmap_pte_spill(pm, va, FALSE);
1617 KASSERT(i);
1618 }
1619 }
1620 PMAP_PVO_CHECK(pvo); /* sanity check */
1621 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1622 pmap_pvo_enter_depth--;
1623 #endif
1624 pmap_interrupts_restore(msr);
1625 return 0;
1626 }
1627
1628 void
1629 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1630 {
1631 volatile struct pte *pt;
1632 int ptegidx;
1633
1634 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1635 if (++pmap_pvo_remove_depth > 1)
1636 panic("pmap_pvo_remove: called recursively!");
1637 #endif
1638
1639 /*
1640 * If we haven't been supplied the ptegidx, calculate it.
1641 */
1642 if (pteidx == -1) {
1643 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1644 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1645 } else {
1646 ptegidx = pteidx >> 3;
1647 if (pvo->pvo_pte.pte_hi & PTE_HID)
1648 ptegidx ^= pmap_pteg_mask;
1649 }
1650 PMAP_PVO_CHECK(pvo); /* sanity check */
1651
1652 /*
1653 * If there is an active pte entry, we need to deactivate it
1654 * (and save the ref & chg bits).
1655 */
1656 pt = pmap_pvo_to_pte(pvo, pteidx);
1657 if (pt != NULL) {
1658 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1659 PVO_WHERE(pvo, REMOVE);
1660 PVO_PTEGIDX_CLR(pvo);
1661 PMAPCOUNT(ptes_removed);
1662 } else {
1663 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1664 pvo->pvo_pmap->pm_evictions--;
1665 }
1666
1667 /*
1668 * Account for executable mappings.
1669 */
1670 if (PVO_ISEXECUTABLE(pvo))
1671 pvo_clear_exec(pvo);
1672
1673 /*
1674 * Update our statistics.
1675 */
1676 pvo->pvo_pmap->pm_stats.resident_count--;
1677 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1678 pvo->pvo_pmap->pm_stats.wired_count--;
1679
1680 /*
1681 * Save the REF/CHG bits into their cache if the page is managed.
1682 */
1683 if (pvo->pvo_vaddr & PVO_MANAGED) {
1684 register_t ptelo = pvo->pvo_pte.pte_lo;
1685 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1686
1687 if (pg != NULL) {
1688 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1689 }
1690 PMAPCOUNT(unmappings);
1691 } else {
1692 PMAPCOUNT(kernel_unmappings);
1693 }
1694
1695 /*
1696 * Remove the PVO from its lists and return it to the pool.
1697 */
1698 LIST_REMOVE(pvo, pvo_vlink);
1699 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1700 pool_put(pvo->pvo_vaddr & PVO_MANAGED
1701 ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1702 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1703 pmap_pvo_remove_depth--;
1704 #endif
1705 }
1706
1707 /*
1708 * Mark a mapping as executable.
1709 * If this is the first executable mapping in the segment,
1710 * clear the noexec flag.
1711 */
1712 STATIC void
1713 pvo_set_exec(struct pvo_entry *pvo)
1714 {
1715 struct pmap *pm = pvo->pvo_pmap;
1716
1717 if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1718 return;
1719 }
1720 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1721 #ifdef PPC_OEA
1722 {
1723 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1724 if (pm->pm_exec[sr]++ == 0) {
1725 pm->pm_sr[sr] &= ~SR_NOEXEC;
1726 }
1727 }
1728 #endif
1729 }
1730
1731 /*
1732 * Mark a mapping as non-executable.
1733 * If this was the last executable mapping in the segment,
1734 * set the noexec flag.
1735 */
1736 STATIC void
1737 pvo_clear_exec(struct pvo_entry *pvo)
1738 {
1739 struct pmap *pm = pvo->pvo_pmap;
1740
1741 if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1742 return;
1743 }
1744 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1745 #ifdef PPC_OEA
1746 {
1747 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1748 if (--pm->pm_exec[sr] == 0) {
1749 pm->pm_sr[sr] |= SR_NOEXEC;
1750 }
1751 }
1752 #endif
1753 }
1754
1755 /*
1756 * Insert physical page at pa into the given pmap at virtual address va.
1757 */
1758 int
1759 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1760 {
1761 struct mem_region *mp;
1762 struct pvo_head *pvo_head;
1763 struct vm_page *pg;
1764 struct pool *pl;
1765 register_t pte_lo;
1766 int error;
1767 u_int pvo_flags;
1768 u_int was_exec = 0;
1769
1770 if (__predict_false(!pmap_initialized)) {
1771 pvo_head = &pmap_pvo_kunmanaged;
1772 pl = &pmap_upvo_pool;
1773 pvo_flags = 0;
1774 pg = NULL;
1775 was_exec = PTE_EXEC;
1776 } else {
1777 pvo_head = pa_to_pvoh(pa, &pg);
1778 pl = &pmap_mpvo_pool;
1779 pvo_flags = PVO_MANAGED;
1780 }
1781
1782 DPRINTFN(ENTER,
1783 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1784 pm, va, pa, prot, flags));
1785
1786 /*
1787 * If this is a managed page, and it's the first reference to the
1788 * page clear the execness of the page. Otherwise fetch the execness.
1789 */
1790 if (pg != NULL)
1791 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1792
1793 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1794
1795 /*
1796 * Assume the page is cache inhibited and access is guarded unless
1797 * it's in our available memory array. If it is in the memory array,
1798 * asssume it's in memory coherent memory.
1799 */
1800 pte_lo = PTE_IG;
1801 if ((flags & PMAP_NC) == 0) {
1802 for (mp = mem; mp->size; mp++) {
1803 if (pa >= mp->start && pa < mp->start + mp->size) {
1804 pte_lo = PTE_M;
1805 break;
1806 }
1807 }
1808 }
1809
1810 if (prot & VM_PROT_WRITE)
1811 pte_lo |= PTE_BW;
1812 else
1813 pte_lo |= PTE_BR;
1814
1815 /*
1816 * If this was in response to a fault, "pre-fault" the PTE's
1817 * changed/referenced bit appropriately.
1818 */
1819 if (flags & VM_PROT_WRITE)
1820 pte_lo |= PTE_CHG;
1821 if (flags & (VM_PROT_READ|VM_PROT_WRITE))
1822 pte_lo |= PTE_REF;
1823
1824 /*
1825 * We need to know if this page can be executable
1826 */
1827 flags |= (prot & VM_PROT_EXECUTE);
1828
1829 /*
1830 * Record mapping for later back-translation and pte spilling.
1831 * This will overwrite any existing mapping.
1832 */
1833 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1834
1835 /*
1836 * Flush the real page from the instruction cache if this page is
1837 * mapped executable and cacheable and has not been flushed since
1838 * the last time it was modified.
1839 */
1840 if (error == 0 &&
1841 (flags & VM_PROT_EXECUTE) &&
1842 (pte_lo & PTE_I) == 0 &&
1843 was_exec == 0) {
1844 DPRINTFN(ENTER, (" syncicache"));
1845 PMAPCOUNT(exec_synced);
1846 pmap_syncicache(pa, PAGE_SIZE);
1847 if (pg != NULL) {
1848 pmap_attr_save(pg, PTE_EXEC);
1849 PMAPCOUNT(exec_cached);
1850 #if defined(DEBUG) || defined(PMAPDEBUG)
1851 if (pmapdebug & PMAPDEBUG_ENTER)
1852 printf(" marked-as-exec");
1853 else if (pmapdebug & PMAPDEBUG_EXEC)
1854 printf("[pmap_enter: %#lx: marked-as-exec]\n",
1855 pg->phys_addr);
1856
1857 #endif
1858 }
1859 }
1860
1861 DPRINTFN(ENTER, (": error=%d\n", error));
1862
1863 return error;
1864 }
1865
1866 void
1867 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1868 {
1869 struct mem_region *mp;
1870 register_t pte_lo;
1871 int error;
1872
1873 if (va < VM_MIN_KERNEL_ADDRESS)
1874 panic("pmap_kenter_pa: attempt to enter "
1875 "non-kernel address %#lx!", va);
1876
1877 DPRINTFN(KENTER,
1878 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1879
1880 /*
1881 * Assume the page is cache inhibited and access is guarded unless
1882 * it's in our available memory array. If it is in the memory array,
1883 * asssume it's in memory coherent memory.
1884 */
1885 pte_lo = PTE_IG;
1886 if ((prot & PMAP_NC) == 0) {
1887 for (mp = mem; mp->size; mp++) {
1888 if (pa >= mp->start && pa < mp->start + mp->size) {
1889 pte_lo = PTE_M;
1890 break;
1891 }
1892 }
1893 }
1894
1895 if (prot & VM_PROT_WRITE)
1896 pte_lo |= PTE_BW;
1897 else
1898 pte_lo |= PTE_BR;
1899
1900 /*
1901 * We don't care about REF/CHG on PVOs on the unmanaged list.
1902 */
1903 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1904 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1905
1906 if (error != 0)
1907 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1908 va, pa, error);
1909 }
1910
1911 void
1912 pmap_kremove(vaddr_t va, vsize_t len)
1913 {
1914 if (va < VM_MIN_KERNEL_ADDRESS)
1915 panic("pmap_kremove: attempt to remove "
1916 "non-kernel address %#lx!", va);
1917
1918 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1919 pmap_remove(pmap_kernel(), va, va + len);
1920 }
1921
1922 /*
1923 * Remove the given range of mapping entries.
1924 */
1925 void
1926 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1927 {
1928 struct pvo_entry *pvo;
1929 register_t msr;
1930 int pteidx;
1931
1932 msr = pmap_interrupts_off();
1933 for (; va < endva; va += PAGE_SIZE) {
1934 pvo = pmap_pvo_find_va(pm, va, &pteidx);
1935 if (pvo != NULL) {
1936 pmap_pvo_remove(pvo, pteidx);
1937 }
1938 }
1939 pmap_interrupts_restore(msr);
1940 }
1941
1942 /*
1943 * Get the physical page address for the given pmap/virtual address.
1944 */
1945 boolean_t
1946 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
1947 {
1948 struct pvo_entry *pvo;
1949 register_t msr;
1950
1951 /*
1952 * If this is a kernel pmap lookup, also check the battable
1953 * and if we get a hit, translate the VA to a PA using the
1954 * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
1955 * that will wrap back to 0.
1956 */
1957 if (pm == pmap_kernel() &&
1958 (va < VM_MIN_KERNEL_ADDRESS ||
1959 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
1960 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
1961 if ((MFPVR() >> 16) != MPC601) {
1962 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
1963 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
1964 register_t batl =
1965 battable[va >> ADDR_SR_SHFT].batl;
1966 register_t mask =
1967 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
1968 *pap = (batl & mask) | (va & ~mask);
1969 return TRUE;
1970 }
1971 } else {
1972 register_t batu = battable[va >> 23].batu;
1973 register_t batl = battable[va >> 23].batl;
1974 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
1975 if (BAT601_VALID_P(batl) &&
1976 BAT601_VA_MATCH_P(batu, batl, va)) {
1977 register_t mask =
1978 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
1979 *pap = (batl & mask) | (va & ~mask);
1980 return TRUE;
1981 } else if (SR601_VALID_P(sr) &&
1982 SR601_PA_MATCH_P(sr, va)) {
1983 *pap = va;
1984 return TRUE;
1985 }
1986 }
1987 return FALSE;
1988 }
1989
1990 msr = pmap_interrupts_off();
1991 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1992 if (pvo != NULL) {
1993 PMAP_PVO_CHECK(pvo); /* sanity check */
1994 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1995 }
1996 pmap_interrupts_restore(msr);
1997 return pvo != NULL;
1998 }
1999
2000 /*
2001 * Lower the protection on the specified range of this pmap.
2002 */
2003 void
2004 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2005 {
2006 struct pvo_entry *pvo;
2007 volatile struct pte *pt;
2008 register_t msr;
2009 int pteidx;
2010
2011 /*
2012 * Since this routine only downgrades protection, we should
2013 * always be called with at least one bit not set.
2014 */
2015 KASSERT(prot != VM_PROT_ALL);
2016
2017 /*
2018 * If there is no protection, this is equivalent to
2019 * remove the pmap from the pmap.
2020 */
2021 if ((prot & VM_PROT_READ) == 0) {
2022 pmap_remove(pm, va, endva);
2023 return;
2024 }
2025
2026 msr = pmap_interrupts_off();
2027 for (; va < endva; va += PAGE_SIZE) {
2028 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2029 if (pvo == NULL)
2030 continue;
2031 PMAP_PVO_CHECK(pvo); /* sanity check */
2032
2033 /*
2034 * Revoke executable if asked to do so.
2035 */
2036 if ((prot & VM_PROT_EXECUTE) == 0)
2037 pvo_clear_exec(pvo);
2038
2039 #if 0
2040 /*
2041 * If the page is already read-only, no change
2042 * needs to be made.
2043 */
2044 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2045 continue;
2046 #endif
2047 /*
2048 * Grab the PTE pointer before we diddle with
2049 * the cached PTE copy.
2050 */
2051 pt = pmap_pvo_to_pte(pvo, pteidx);
2052 /*
2053 * Change the protection of the page.
2054 */
2055 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2056 pvo->pvo_pte.pte_lo |= PTE_BR;
2057
2058 /*
2059 * If the PVO is in the page table, update
2060 * that pte at well.
2061 */
2062 if (pt != NULL) {
2063 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2064 PVO_WHERE(pvo, PMAP_PROTECT);
2065 PMAPCOUNT(ptes_changed);
2066 }
2067
2068 PMAP_PVO_CHECK(pvo); /* sanity check */
2069 }
2070 pmap_interrupts_restore(msr);
2071 }
2072
2073 void
2074 pmap_unwire(pmap_t pm, vaddr_t va)
2075 {
2076 struct pvo_entry *pvo;
2077 register_t msr;
2078
2079 msr = pmap_interrupts_off();
2080 pvo = pmap_pvo_find_va(pm, va, NULL);
2081 if (pvo != NULL) {
2082 if (pvo->pvo_vaddr & PVO_WIRED) {
2083 pvo->pvo_vaddr &= ~PVO_WIRED;
2084 pm->pm_stats.wired_count--;
2085 }
2086 PMAP_PVO_CHECK(pvo); /* sanity check */
2087 }
2088 pmap_interrupts_restore(msr);
2089 }
2090
2091 /*
2092 * Lower the protection on the specified physical page.
2093 */
2094 void
2095 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2096 {
2097 struct pvo_head *pvo_head;
2098 struct pvo_entry *pvo, *next_pvo;
2099 volatile struct pte *pt;
2100 register_t msr;
2101
2102 KASSERT(prot != VM_PROT_ALL);
2103 msr = pmap_interrupts_off();
2104
2105 /*
2106 * When UVM reuses a page, it does a pmap_page_protect with
2107 * VM_PROT_NONE. At that point, we can clear the exec flag
2108 * since we know the page will have different contents.
2109 */
2110 if ((prot & VM_PROT_READ) == 0) {
2111 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2112 pg->phys_addr));
2113 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2114 PMAPCOUNT(exec_uncached_page_protect);
2115 pmap_attr_clear(pg, PTE_EXEC);
2116 }
2117 }
2118
2119 pvo_head = vm_page_to_pvoh(pg);
2120 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2121 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2122 PMAP_PVO_CHECK(pvo); /* sanity check */
2123
2124 /*
2125 * Downgrading to no mapping at all, we just remove the entry.
2126 */
2127 if ((prot & VM_PROT_READ) == 0) {
2128 pmap_pvo_remove(pvo, -1);
2129 continue;
2130 }
2131
2132 /*
2133 * If EXEC permission is being revoked, just clear the
2134 * flag in the PVO.
2135 */
2136 if ((prot & VM_PROT_EXECUTE) == 0)
2137 pvo_clear_exec(pvo);
2138
2139 /*
2140 * If this entry is already RO, don't diddle with the
2141 * page table.
2142 */
2143 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2144 PMAP_PVO_CHECK(pvo);
2145 continue;
2146 }
2147
2148 /*
2149 * Grab the PTE before the we diddle the bits so
2150 * pvo_to_pte can verify the pte contents are as
2151 * expected.
2152 */
2153 pt = pmap_pvo_to_pte(pvo, -1);
2154 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2155 pvo->pvo_pte.pte_lo |= PTE_BR;
2156 if (pt != NULL) {
2157 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2158 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2159 PMAPCOUNT(ptes_changed);
2160 }
2161 PMAP_PVO_CHECK(pvo); /* sanity check */
2162 }
2163 pmap_interrupts_restore(msr);
2164 }
2165
2166 /*
2167 * Activate the address space for the specified process. If the process
2168 * is the current process, load the new MMU context.
2169 */
2170 void
2171 pmap_activate(struct lwp *l)
2172 {
2173 struct pcb *pcb = &l->l_addr->u_pcb;
2174 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2175
2176 DPRINTFN(ACTIVATE,
2177 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2178
2179 /*
2180 * XXX Normally performed in cpu_fork().
2181 */
2182 pcb->pcb_pm = pmap;
2183
2184 /*
2185 * In theory, the SR registers need only be valid on return
2186 * to user space wait to do them there.
2187 */
2188 if (l == curlwp) {
2189 /* Store pointer to new current pmap. */
2190 curpm = pmap;
2191 }
2192 }
2193
2194 /*
2195 * Deactivate the specified process's address space.
2196 */
2197 void
2198 pmap_deactivate(struct lwp *l)
2199 {
2200 }
2201
2202 boolean_t
2203 pmap_query_bit(struct vm_page *pg, int ptebit)
2204 {
2205 struct pvo_entry *pvo;
2206 volatile struct pte *pt;
2207 register_t msr;
2208
2209 if (pmap_attr_fetch(pg) & ptebit)
2210 return TRUE;
2211
2212 msr = pmap_interrupts_off();
2213 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2214 PMAP_PVO_CHECK(pvo); /* sanity check */
2215 /*
2216 * See if we saved the bit off. If so cache, it and return
2217 * success.
2218 */
2219 if (pvo->pvo_pte.pte_lo & ptebit) {
2220 pmap_attr_save(pg, ptebit);
2221 PMAP_PVO_CHECK(pvo); /* sanity check */
2222 pmap_interrupts_restore(msr);
2223 return TRUE;
2224 }
2225 }
2226 /*
2227 * No luck, now go thru the hard part of looking at the ptes
2228 * themselves. Sync so any pending REF/CHG bits are flushed
2229 * to the PTEs.
2230 */
2231 SYNC();
2232 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2233 PMAP_PVO_CHECK(pvo); /* sanity check */
2234 /*
2235 * See if this pvo have a valid PTE. If so, fetch the
2236 * REF/CHG bits from the valid PTE. If the appropriate
2237 * ptebit is set, cache, it and return success.
2238 */
2239 pt = pmap_pvo_to_pte(pvo, -1);
2240 if (pt != NULL) {
2241 pmap_pte_synch(pt, &pvo->pvo_pte);
2242 if (pvo->pvo_pte.pte_lo & ptebit) {
2243 pmap_attr_save(pg, ptebit);
2244 PMAP_PVO_CHECK(pvo); /* sanity check */
2245 pmap_interrupts_restore(msr);
2246 return TRUE;
2247 }
2248 }
2249 }
2250 pmap_interrupts_restore(msr);
2251 return FALSE;
2252 }
2253
2254 boolean_t
2255 pmap_clear_bit(struct vm_page *pg, int ptebit)
2256 {
2257 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2258 struct pvo_entry *pvo;
2259 volatile struct pte *pt;
2260 register_t msr;
2261 int rv = 0;
2262
2263 msr = pmap_interrupts_off();
2264
2265 /*
2266 * Fetch the cache value
2267 */
2268 rv |= pmap_attr_fetch(pg);
2269
2270 /*
2271 * Clear the cached value.
2272 */
2273 pmap_attr_clear(pg, ptebit);
2274
2275 /*
2276 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2277 * can reset the right ones). Note that since the pvo entries and
2278 * list heads are accessed via BAT0 and are never placed in the
2279 * page table, we don't have to worry about further accesses setting
2280 * the REF/CHG bits.
2281 */
2282 SYNC();
2283
2284 /*
2285 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2286 * valid PTE. If so, clear the ptebit from the valid PTE.
2287 */
2288 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2289 PMAP_PVO_CHECK(pvo); /* sanity check */
2290 pt = pmap_pvo_to_pte(pvo, -1);
2291 if (pt != NULL) {
2292 /*
2293 * Only sync the PTE if the bit we are looking
2294 * for is not already set.
2295 */
2296 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2297 pmap_pte_synch(pt, &pvo->pvo_pte);
2298 /*
2299 * If the bit we are looking for was already set,
2300 * clear that bit in the pte.
2301 */
2302 if (pvo->pvo_pte.pte_lo & ptebit)
2303 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2304 }
2305 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2306 pvo->pvo_pte.pte_lo &= ~ptebit;
2307 PMAP_PVO_CHECK(pvo); /* sanity check */
2308 }
2309 pmap_interrupts_restore(msr);
2310
2311 /*
2312 * If we are clearing the modify bit and this page was marked EXEC
2313 * and the user of the page thinks the page was modified, then we
2314 * need to clean it from the icache if it's mapped or clear the EXEC
2315 * bit if it's not mapped. The page itself might not have the CHG
2316 * bit set if the modification was done via DMA to the page.
2317 */
2318 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2319 if (LIST_EMPTY(pvoh)) {
2320 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2321 pg->phys_addr));
2322 pmap_attr_clear(pg, PTE_EXEC);
2323 PMAPCOUNT(exec_uncached_clear_modify);
2324 } else {
2325 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2326 pg->phys_addr));
2327 pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2328 PMAPCOUNT(exec_synced_clear_modify);
2329 }
2330 }
2331 return (rv & ptebit) != 0;
2332 }
2333
2334 void
2335 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2336 {
2337 struct pvo_entry *pvo;
2338 size_t offset = va & ADDR_POFF;
2339 int s;
2340
2341 s = splvm();
2342 while (len > 0) {
2343 size_t seglen = PAGE_SIZE - offset;
2344 if (seglen > len)
2345 seglen = len;
2346 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2347 if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2348 pmap_syncicache(
2349 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2350 PMAP_PVO_CHECK(pvo);
2351 }
2352 va += seglen;
2353 len -= seglen;
2354 offset = 0;
2355 }
2356 splx(s);
2357 }
2358
2359 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2360 void
2361 pmap_pte_print(volatile struct pte *pt)
2362 {
2363 printf("PTE %p: ", pt);
2364 /* High word: */
2365 printf("0x%08lx: [", pt->pte_hi);
2366 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2367 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2368 printf("0x%06lx 0x%02lx",
2369 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2370 pt->pte_hi & PTE_API);
2371 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2372 /* Low word: */
2373 printf(" 0x%08lx: [", pt->pte_lo);
2374 printf("0x%05lx... ", pt->pte_lo >> 12);
2375 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2376 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2377 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2378 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2379 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2380 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2381 switch (pt->pte_lo & PTE_PP) {
2382 case PTE_BR: printf("br]\n"); break;
2383 case PTE_BW: printf("bw]\n"); break;
2384 case PTE_SO: printf("so]\n"); break;
2385 case PTE_SW: printf("sw]\n"); break;
2386 }
2387 }
2388 #endif
2389
2390 #if defined(DDB)
2391 void
2392 pmap_pteg_check(void)
2393 {
2394 volatile struct pte *pt;
2395 int i;
2396 int ptegidx;
2397 u_int p_valid = 0;
2398 u_int s_valid = 0;
2399 u_int invalid = 0;
2400
2401 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2402 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2403 if (pt->pte_hi & PTE_VALID) {
2404 if (pt->pte_hi & PTE_HID)
2405 s_valid++;
2406 else
2407 p_valid++;
2408 } else
2409 invalid++;
2410 }
2411 }
2412 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2413 p_valid, p_valid, s_valid, s_valid,
2414 invalid, invalid);
2415 }
2416
2417 void
2418 pmap_print_mmuregs(void)
2419 {
2420 int i;
2421 u_int cpuvers;
2422 #ifndef PPC_OEA64
2423 vaddr_t addr;
2424 register_t soft_sr[16];
2425 #endif
2426 struct bat soft_ibat[4];
2427 struct bat soft_dbat[4];
2428 register_t sdr1;
2429
2430 cpuvers = MFPVR() >> 16;
2431
2432 __asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2433 #ifndef PPC_OEA64
2434 addr = 0;
2435 for (i=0; i<16; i++) {
2436 soft_sr[i] = MFSRIN(addr);
2437 addr += (1 << ADDR_SR_SHFT);
2438 }
2439 #endif
2440
2441 /* read iBAT (601: uBAT) registers */
2442 __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2443 __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2444 __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2445 __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2446 __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2447 __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2448 __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2449 __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2450
2451
2452 if (cpuvers != MPC601) {
2453 /* read dBAT registers */
2454 __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2455 __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2456 __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2457 __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2458 __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2459 __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2460 __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2461 __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2462 }
2463
2464 printf("SDR1:\t0x%lx\n", (long) sdr1);
2465 #ifndef PPC_OEA64
2466 printf("SR[]:\t");
2467 for (i=0; i<4; i++)
2468 printf("0x%08lx, ", soft_sr[i]);
2469 printf("\n\t");
2470 for ( ; i<8; i++)
2471 printf("0x%08lx, ", soft_sr[i]);
2472 printf("\n\t");
2473 for ( ; i<12; i++)
2474 printf("0x%08lx, ", soft_sr[i]);
2475 printf("\n\t");
2476 for ( ; i<16; i++)
2477 printf("0x%08lx, ", soft_sr[i]);
2478 printf("\n");
2479 #endif
2480
2481 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2482 for (i=0; i<4; i++) {
2483 printf("0x%08lx 0x%08lx, ",
2484 soft_ibat[i].batu, soft_ibat[i].batl);
2485 if (i == 1)
2486 printf("\n\t");
2487 }
2488 if (cpuvers != MPC601) {
2489 printf("\ndBAT[]:\t");
2490 for (i=0; i<4; i++) {
2491 printf("0x%08lx 0x%08lx, ",
2492 soft_dbat[i].batu, soft_dbat[i].batl);
2493 if (i == 1)
2494 printf("\n\t");
2495 }
2496 }
2497 printf("\n");
2498 }
2499
2500 void
2501 pmap_print_pte(pmap_t pm, vaddr_t va)
2502 {
2503 struct pvo_entry *pvo;
2504 volatile struct pte *pt;
2505 int pteidx;
2506
2507 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2508 if (pvo != NULL) {
2509 pt = pmap_pvo_to_pte(pvo, pteidx);
2510 if (pt != NULL) {
2511 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2512 va, pt,
2513 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2514 pt->pte_hi, pt->pte_lo);
2515 } else {
2516 printf("No valid PTE found\n");
2517 }
2518 } else {
2519 printf("Address not in pmap\n");
2520 }
2521 }
2522
2523 void
2524 pmap_pteg_dist(void)
2525 {
2526 struct pvo_entry *pvo;
2527 int ptegidx;
2528 int depth;
2529 int max_depth = 0;
2530 unsigned int depths[64];
2531
2532 memset(depths, 0, sizeof(depths));
2533 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2534 depth = 0;
2535 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2536 depth++;
2537 }
2538 if (depth > max_depth)
2539 max_depth = depth;
2540 if (depth > 63)
2541 depth = 63;
2542 depths[depth]++;
2543 }
2544
2545 for (depth = 0; depth < 64; depth++) {
2546 printf(" [%2d]: %8u", depth, depths[depth]);
2547 if ((depth & 3) == 3)
2548 printf("\n");
2549 if (depth == max_depth)
2550 break;
2551 }
2552 if ((depth & 3) != 3)
2553 printf("\n");
2554 printf("Max depth found was %d\n", max_depth);
2555 }
2556 #endif /* DEBUG */
2557
2558 #if defined(PMAPCHECK) || defined(DEBUG)
2559 void
2560 pmap_pvo_verify(void)
2561 {
2562 int ptegidx;
2563 int s;
2564
2565 s = splvm();
2566 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2567 struct pvo_entry *pvo;
2568 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2569 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2570 panic("pmap_pvo_verify: invalid pvo %p "
2571 "on list %#x", pvo, ptegidx);
2572 pmap_pvo_check(pvo);
2573 }
2574 }
2575 splx(s);
2576 }
2577 #endif /* PMAPCHECK */
2578
2579
2580 void *
2581 pmap_pool_ualloc(struct pool *pp, int flags)
2582 {
2583 struct pvo_page *pvop;
2584
2585 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2586 if (pvop != NULL) {
2587 pmap_upvop_free--;
2588 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2589 return pvop;
2590 }
2591 if (uvm.page_init_done != TRUE) {
2592 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2593 }
2594 return pmap_pool_malloc(pp, flags);
2595 }
2596
2597 void *
2598 pmap_pool_malloc(struct pool *pp, int flags)
2599 {
2600 struct pvo_page *pvop;
2601 struct vm_page *pg;
2602
2603 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2604 if (pvop != NULL) {
2605 pmap_mpvop_free--;
2606 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2607 return pvop;
2608 }
2609 again:
2610 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2611 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2612 if (__predict_false(pg == NULL)) {
2613 if (flags & PR_WAITOK) {
2614 uvm_wait("plpg");
2615 goto again;
2616 } else {
2617 return (0);
2618 }
2619 }
2620 return (void *) VM_PAGE_TO_PHYS(pg);
2621 }
2622
2623 void
2624 pmap_pool_ufree(struct pool *pp, void *va)
2625 {
2626 struct pvo_page *pvop;
2627 #if 0
2628 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2629 pmap_pool_mfree(va, size, tag);
2630 return;
2631 }
2632 #endif
2633 pvop = va;
2634 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2635 pmap_upvop_free++;
2636 if (pmap_upvop_free > pmap_upvop_maxfree)
2637 pmap_upvop_maxfree = pmap_upvop_free;
2638 }
2639
2640 void
2641 pmap_pool_mfree(struct pool *pp, void *va)
2642 {
2643 struct pvo_page *pvop;
2644
2645 pvop = va;
2646 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2647 pmap_mpvop_free++;
2648 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2649 pmap_mpvop_maxfree = pmap_mpvop_free;
2650 #if 0
2651 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2652 #endif
2653 }
2654
2655 /*
2656 * This routine in bootstraping to steal to-be-managed memory (which will
2657 * then be unmanaged). We use it to grab from the first 256MB for our
2658 * pmap needs and above 256MB for other stuff.
2659 */
2660 vaddr_t
2661 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2662 {
2663 vsize_t size;
2664 vaddr_t va;
2665 paddr_t pa = 0;
2666 int npgs, bank;
2667 struct vm_physseg *ps;
2668
2669 if (uvm.page_init_done == TRUE)
2670 panic("pmap_steal_memory: called _after_ bootstrap");
2671
2672 *vstartp = VM_MIN_KERNEL_ADDRESS;
2673 *vendp = VM_MAX_KERNEL_ADDRESS;
2674
2675 size = round_page(vsize);
2676 npgs = atop(size);
2677
2678 /*
2679 * PA 0 will never be among those given to UVM so we can use it
2680 * to indicate we couldn't steal any memory.
2681 */
2682 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2683 if (ps->free_list == VM_FREELIST_FIRST256 &&
2684 ps->avail_end - ps->avail_start >= npgs) {
2685 pa = ptoa(ps->avail_start);
2686 break;
2687 }
2688 }
2689
2690 if (pa == 0)
2691 panic("pmap_steal_memory: no approriate memory to steal!");
2692
2693 ps->avail_start += npgs;
2694 ps->start += npgs;
2695
2696 /*
2697 * If we've used up all the pages in the segment, remove it and
2698 * compact the list.
2699 */
2700 if (ps->avail_start == ps->end) {
2701 /*
2702 * If this was the last one, then a very bad thing has occurred
2703 */
2704 if (--vm_nphysseg == 0)
2705 panic("pmap_steal_memory: out of memory!");
2706
2707 printf("pmap_steal_memory: consumed bank %d\n", bank);
2708 for (; bank < vm_nphysseg; bank++, ps++) {
2709 ps[0] = ps[1];
2710 }
2711 }
2712
2713 va = (vaddr_t) pa;
2714 memset((caddr_t) va, 0, size);
2715 pmap_pages_stolen += npgs;
2716 #ifdef DEBUG
2717 if (pmapdebug && npgs > 1) {
2718 u_int cnt = 0;
2719 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2720 cnt += ps->avail_end - ps->avail_start;
2721 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2722 npgs, pmap_pages_stolen, cnt);
2723 }
2724 #endif
2725
2726 return va;
2727 }
2728
2729 /*
2730 * Find a chuck of memory with right size and alignment.
2731 */
2732 void *
2733 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2734 {
2735 struct mem_region *mp;
2736 paddr_t s, e;
2737 int i, j;
2738
2739 size = round_page(size);
2740
2741 DPRINTFN(BOOT,
2742 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2743 size, alignment, at_end));
2744
2745 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2746 panic("pmap_boot_find_memory: invalid alignment %lx",
2747 alignment);
2748
2749 if (at_end) {
2750 if (alignment != PAGE_SIZE)
2751 panic("pmap_boot_find_memory: invalid ending "
2752 "alignment %lx", alignment);
2753
2754 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2755 s = mp->start + mp->size - size;
2756 if (s >= mp->start && mp->size >= size) {
2757 DPRINTFN(BOOT,(": %lx\n", s));
2758 DPRINTFN(BOOT,
2759 ("pmap_boot_find_memory: b-avail[%d] start "
2760 "0x%lx size 0x%lx\n", mp - avail,
2761 mp->start, mp->size));
2762 mp->size -= size;
2763 DPRINTFN(BOOT,
2764 ("pmap_boot_find_memory: a-avail[%d] start "
2765 "0x%lx size 0x%lx\n", mp - avail,
2766 mp->start, mp->size));
2767 return (void *) s;
2768 }
2769 }
2770 panic("pmap_boot_find_memory: no available memory");
2771 }
2772
2773 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2774 s = (mp->start + alignment - 1) & ~(alignment-1);
2775 e = s + size;
2776
2777 /*
2778 * Is the calculated region entirely within the region?
2779 */
2780 if (s < mp->start || e > mp->start + mp->size)
2781 continue;
2782
2783 DPRINTFN(BOOT,(": %lx\n", s));
2784 if (s == mp->start) {
2785 /*
2786 * If the block starts at the beginning of region,
2787 * adjust the size & start. (the region may now be
2788 * zero in length)
2789 */
2790 DPRINTFN(BOOT,
2791 ("pmap_boot_find_memory: b-avail[%d] start "
2792 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2793 mp->start += size;
2794 mp->size -= size;
2795 DPRINTFN(BOOT,
2796 ("pmap_boot_find_memory: a-avail[%d] start "
2797 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2798 } else if (e == mp->start + mp->size) {
2799 /*
2800 * If the block starts at the beginning of region,
2801 * adjust only the size.
2802 */
2803 DPRINTFN(BOOT,
2804 ("pmap_boot_find_memory: b-avail[%d] start "
2805 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2806 mp->size -= size;
2807 DPRINTFN(BOOT,
2808 ("pmap_boot_find_memory: a-avail[%d] start "
2809 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2810 } else {
2811 /*
2812 * Block is in the middle of the region, so we
2813 * have to split it in two.
2814 */
2815 for (j = avail_cnt; j > i + 1; j--) {
2816 avail[j] = avail[j-1];
2817 }
2818 DPRINTFN(BOOT,
2819 ("pmap_boot_find_memory: b-avail[%d] start "
2820 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2821 mp[1].start = e;
2822 mp[1].size = mp[0].start + mp[0].size - e;
2823 mp[0].size = s - mp[0].start;
2824 avail_cnt++;
2825 for (; i < avail_cnt; i++) {
2826 DPRINTFN(BOOT,
2827 ("pmap_boot_find_memory: a-avail[%d] "
2828 "start 0x%lx size 0x%lx\n", i,
2829 avail[i].start, avail[i].size));
2830 }
2831 }
2832 return (void *) s;
2833 }
2834 panic("pmap_boot_find_memory: not enough memory for "
2835 "%lx/%lx allocation?", size, alignment);
2836 }
2837
2838 /*
2839 * This is not part of the defined PMAP interface and is specific to the
2840 * PowerPC architecture. This is called during initppc, before the system
2841 * is really initialized.
2842 */
2843 void
2844 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2845 {
2846 struct mem_region *mp, tmp;
2847 paddr_t s, e;
2848 psize_t size;
2849 int i, j;
2850
2851 /*
2852 * Get memory.
2853 */
2854 mem_regions(&mem, &avail);
2855 #if defined(DEBUG)
2856 if (pmapdebug & PMAPDEBUG_BOOT) {
2857 printf("pmap_bootstrap: memory configuration:\n");
2858 for (mp = mem; mp->size; mp++) {
2859 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2860 mp->start, mp->size);
2861 }
2862 for (mp = avail; mp->size; mp++) {
2863 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2864 mp->start, mp->size);
2865 }
2866 }
2867 #endif
2868
2869 /*
2870 * Find out how much physical memory we have and in how many chunks.
2871 */
2872 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2873 if (mp->start >= pmap_memlimit)
2874 continue;
2875 if (mp->start + mp->size > pmap_memlimit) {
2876 size = pmap_memlimit - mp->start;
2877 physmem += btoc(size);
2878 } else {
2879 physmem += btoc(mp->size);
2880 }
2881 mem_cnt++;
2882 }
2883
2884 /*
2885 * Count the number of available entries.
2886 */
2887 for (avail_cnt = 0, mp = avail; mp->size; mp++)
2888 avail_cnt++;
2889
2890 /*
2891 * Page align all regions.
2892 */
2893 kernelstart = trunc_page(kernelstart);
2894 kernelend = round_page(kernelend);
2895 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2896 s = round_page(mp->start);
2897 mp->size -= (s - mp->start);
2898 mp->size = trunc_page(mp->size);
2899 mp->start = s;
2900 e = mp->start + mp->size;
2901
2902 DPRINTFN(BOOT,
2903 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2904 i, mp->start, mp->size));
2905
2906 /*
2907 * Don't allow the end to run beyond our artificial limit
2908 */
2909 if (e > pmap_memlimit)
2910 e = pmap_memlimit;
2911
2912 /*
2913 * Is this region empty or strange? skip it.
2914 */
2915 if (e <= s) {
2916 mp->start = 0;
2917 mp->size = 0;
2918 continue;
2919 }
2920
2921 /*
2922 * Does this overlap the beginning of kernel?
2923 * Does extend past the end of the kernel?
2924 */
2925 else if (s < kernelstart && e > kernelstart) {
2926 if (e > kernelend) {
2927 avail[avail_cnt].start = kernelend;
2928 avail[avail_cnt].size = e - kernelend;
2929 avail_cnt++;
2930 }
2931 mp->size = kernelstart - s;
2932 }
2933 /*
2934 * Check whether this region overlaps the end of the kernel.
2935 */
2936 else if (s < kernelend && e > kernelend) {
2937 mp->start = kernelend;
2938 mp->size = e - kernelend;
2939 }
2940 /*
2941 * Look whether this regions is completely inside the kernel.
2942 * Nuke it if it does.
2943 */
2944 else if (s >= kernelstart && e <= kernelend) {
2945 mp->start = 0;
2946 mp->size = 0;
2947 }
2948 /*
2949 * If the user imposed a memory limit, enforce it.
2950 */
2951 else if (s >= pmap_memlimit) {
2952 mp->start = -PAGE_SIZE; /* let's know why */
2953 mp->size = 0;
2954 }
2955 else {
2956 mp->start = s;
2957 mp->size = e - s;
2958 }
2959 DPRINTFN(BOOT,
2960 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
2961 i, mp->start, mp->size));
2962 }
2963
2964 /*
2965 * Move (and uncount) all the null return to the end.
2966 */
2967 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2968 if (mp->size == 0) {
2969 tmp = avail[i];
2970 avail[i] = avail[--avail_cnt];
2971 avail[avail_cnt] = avail[i];
2972 }
2973 }
2974
2975 /*
2976 * (Bubble)sort them into asecnding order.
2977 */
2978 for (i = 0; i < avail_cnt; i++) {
2979 for (j = i + 1; j < avail_cnt; j++) {
2980 if (avail[i].start > avail[j].start) {
2981 tmp = avail[i];
2982 avail[i] = avail[j];
2983 avail[j] = tmp;
2984 }
2985 }
2986 }
2987
2988 /*
2989 * Make sure they don't overlap.
2990 */
2991 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
2992 if (mp[0].start + mp[0].size > mp[1].start) {
2993 mp[0].size = mp[1].start - mp[0].start;
2994 }
2995 DPRINTFN(BOOT,
2996 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2997 i, mp->start, mp->size));
2998 }
2999 DPRINTFN(BOOT,
3000 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3001 i, mp->start, mp->size));
3002
3003 #ifdef PTEGCOUNT
3004 pmap_pteg_cnt = PTEGCOUNT;
3005 #else /* PTEGCOUNT */
3006 pmap_pteg_cnt = 0x1000;
3007
3008 while (pmap_pteg_cnt < physmem)
3009 pmap_pteg_cnt <<= 1;
3010
3011 pmap_pteg_cnt >>= 1;
3012 #endif /* PTEGCOUNT */
3013
3014 /*
3015 * Find suitably aligned memory for PTEG hash table.
3016 */
3017 size = pmap_pteg_cnt * sizeof(struct pteg);
3018 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3019 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3020 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3021 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3022 pmap_pteg_table, size);
3023 #endif
3024
3025 memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
3026 pmap_pteg_mask = pmap_pteg_cnt - 1;
3027
3028 /*
3029 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3030 * with pages. So we just steal them before giving them to UVM.
3031 */
3032 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3033 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3034 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3035 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3036 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3037 pmap_pvo_table, size);
3038 #endif
3039
3040 for (i = 0; i < pmap_pteg_cnt; i++)
3041 TAILQ_INIT(&pmap_pvo_table[i]);
3042
3043 #ifndef MSGBUFADDR
3044 /*
3045 * Allocate msgbuf in high memory.
3046 */
3047 msgbuf_paddr =
3048 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3049 #endif
3050
3051 #ifdef __HAVE_PMAP_PHYSSEG
3052 {
3053 u_int npgs = 0;
3054 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3055 npgs += btoc(mp->size);
3056 size = (sizeof(struct pvo_head) + 1) * npgs;
3057 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3058 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3059 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3060 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3061 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3062 pmap_physseg.pvoh, size);
3063 #endif
3064 }
3065 #endif
3066
3067 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3068 paddr_t pfstart = atop(mp->start);
3069 paddr_t pfend = atop(mp->start + mp->size);
3070 if (mp->size == 0)
3071 continue;
3072 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3073 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3074 VM_FREELIST_FIRST256);
3075 } else if (mp->start >= SEGMENT_LENGTH) {
3076 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3077 VM_FREELIST_DEFAULT);
3078 } else {
3079 pfend = atop(SEGMENT_LENGTH);
3080 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3081 VM_FREELIST_FIRST256);
3082 pfstart = atop(SEGMENT_LENGTH);
3083 pfend = atop(mp->start + mp->size);
3084 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3085 VM_FREELIST_DEFAULT);
3086 }
3087 }
3088
3089 /*
3090 * Make sure kernel vsid is allocated as well as VSID 0.
3091 */
3092 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3093 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3094 pmap_vsid_bitmap[0] |= 1;
3095
3096 /*
3097 * Initialize kernel pmap and hardware.
3098 */
3099 #ifndef PPC_OEA64
3100 for (i = 0; i < 16; i++) {
3101 pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3102 __asm __volatile ("mtsrin %0,%1"
3103 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3104 }
3105
3106 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3107 __asm __volatile ("mtsr %0,%1"
3108 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3109 #ifdef KERNEL2_SR
3110 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3111 __asm __volatile ("mtsr %0,%1"
3112 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3113 #endif
3114 for (i = 0; i < 16; i++) {
3115 if (iosrtable[i] & SR601_T) {
3116 pmap_kernel()->pm_sr[i] = iosrtable[i];
3117 __asm __volatile ("mtsrin %0,%1"
3118 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3119 }
3120 }
3121 #endif /* !PPC_OEA64 */
3122
3123 __asm __volatile ("sync; mtsdr1 %0; isync"
3124 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3125 tlbia();
3126
3127 #ifdef ALTIVEC
3128 pmap_use_altivec = cpu_altivec;
3129 #endif
3130
3131 #ifdef DEBUG
3132 if (pmapdebug & PMAPDEBUG_BOOT) {
3133 u_int cnt;
3134 int bank;
3135 char pbuf[9];
3136 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3137 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3138 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3139 bank,
3140 ptoa(vm_physmem[bank].avail_start),
3141 ptoa(vm_physmem[bank].avail_end),
3142 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3143 }
3144 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3145 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3146 pbuf, cnt);
3147 }
3148 #endif
3149
3150 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3151 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3152 &pmap_pool_uallocator);
3153
3154 pool_setlowat(&pmap_upvo_pool, 252);
3155
3156 pool_init(&pmap_pool, sizeof(struct pmap),
3157 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3158 }
3159