Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.105
      1 /*	$NetBSD: pmap.c,v 1.105 2021/03/12 18:10:00 thorpej Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.105 2021/03/12 18:10:00 thorpej Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #ifdef _KERNEL_OPT
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 #include "opt_ppcarch.h"
     75 #endif
     76 
     77 #include <sys/param.h>
     78 #include <sys/proc.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 #include <sys/atomic.h>
     84 
     85 #include <uvm/uvm.h>
     86 #include <uvm/uvm_physseg.h>
     87 
     88 #include <machine/powerpc.h>
     89 #include <powerpc/bat.h>
     90 #include <powerpc/pcb.h>
     91 #include <powerpc/psl.h>
     92 #include <powerpc/spr.h>
     93 #include <powerpc/oea/spr.h>
     94 #include <powerpc/oea/sr_601.h>
     95 
     96 #ifdef ALTIVEC
     97 extern int pmap_use_altivec;
     98 #endif
     99 
    100 #ifdef PMAP_MEMLIMIT
    101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    102 #else
    103 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    104 #endif
    105 
    106 extern struct pmap kernel_pmap_;
    107 static unsigned int pmap_pages_stolen;
    108 static u_long pmap_pte_valid;
    109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    110 static u_long pmap_pvo_enter_depth;
    111 static u_long pmap_pvo_remove_depth;
    112 #endif
    113 
    114 #ifndef MSGBUFADDR
    115 extern paddr_t msgbuf_paddr;
    116 #endif
    117 
    118 static struct mem_region *mem, *avail;
    119 static u_int mem_cnt, avail_cnt;
    120 
    121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    122 # define	PMAP_OEA 1
    123 #endif
    124 
    125 #if defined(PMAP_OEA)
    126 #define	_PRIxpte	"lx"
    127 #else
    128 #define	_PRIxpte	PRIx64
    129 #endif
    130 #define	_PRIxpa		"lx"
    131 #define	_PRIxva		"lx"
    132 #define	_PRIsr  	"lx"
    133 
    134 #ifdef PMAP_NEEDS_FIXUP
    135 #if defined(PMAP_OEA)
    136 #define	PMAPNAME(name)	pmap32_##name
    137 #elif defined(PMAP_OEA64)
    138 #define	PMAPNAME(name)	pmap64_##name
    139 #elif defined(PMAP_OEA64_BRIDGE)
    140 #define	PMAPNAME(name)	pmap64bridge_##name
    141 #else
    142 #error unknown variant for pmap
    143 #endif
    144 #endif /* PMAP_NEEDS_FIXUP */
    145 
    146 #ifdef PMAPNAME
    147 #define	STATIC			static
    148 #define pmap_pte_spill		PMAPNAME(pte_spill)
    149 #define pmap_real_memory	PMAPNAME(real_memory)
    150 #define pmap_init		PMAPNAME(init)
    151 #define pmap_virtual_space	PMAPNAME(virtual_space)
    152 #define pmap_create		PMAPNAME(create)
    153 #define pmap_reference		PMAPNAME(reference)
    154 #define pmap_destroy		PMAPNAME(destroy)
    155 #define pmap_copy		PMAPNAME(copy)
    156 #define pmap_update		PMAPNAME(update)
    157 #define pmap_enter		PMAPNAME(enter)
    158 #define pmap_remove		PMAPNAME(remove)
    159 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    160 #define pmap_kremove		PMAPNAME(kremove)
    161 #define pmap_extract		PMAPNAME(extract)
    162 #define pmap_protect		PMAPNAME(protect)
    163 #define pmap_unwire		PMAPNAME(unwire)
    164 #define pmap_page_protect	PMAPNAME(page_protect)
    165 #define pmap_query_bit		PMAPNAME(query_bit)
    166 #define pmap_clear_bit		PMAPNAME(clear_bit)
    167 
    168 #define pmap_activate		PMAPNAME(activate)
    169 #define pmap_deactivate		PMAPNAME(deactivate)
    170 
    171 #define pmap_pinit		PMAPNAME(pinit)
    172 #define pmap_procwr		PMAPNAME(procwr)
    173 
    174 #define pmap_pool		PMAPNAME(pool)
    175 #define pmap_upvo_pool		PMAPNAME(upvo_pool)
    176 #define pmap_mpvo_pool		PMAPNAME(mpvo_pool)
    177 #define pmap_pvo_table		PMAPNAME(pvo_table)
    178 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    179 #define pmap_pte_print		PMAPNAME(pte_print)
    180 #define pmap_pteg_check		PMAPNAME(pteg_check)
    181 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    182 #define pmap_print_pte		PMAPNAME(print_pte)
    183 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    184 #endif
    185 #if defined(DEBUG) || defined(PMAPCHECK)
    186 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    187 #define pmapcheck		PMAPNAME(check)
    188 #endif
    189 #if defined(DEBUG) || defined(PMAPDEBUG)
    190 #define pmapdebug		PMAPNAME(debug)
    191 #endif
    192 #define pmap_steal_memory	PMAPNAME(steal_memory)
    193 #define pmap_bootstrap		PMAPNAME(bootstrap)
    194 #define pmap_bootstrap1		PMAPNAME(bootstrap1)
    195 #define pmap_bootstrap2		PMAPNAME(bootstrap2)
    196 #else
    197 #define	STATIC			/* nothing */
    198 #endif /* PMAPNAME */
    199 
    200 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    201 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    202 STATIC void pmap_init(void);
    203 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    204 STATIC pmap_t pmap_create(void);
    205 STATIC void pmap_reference(pmap_t);
    206 STATIC void pmap_destroy(pmap_t);
    207 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    208 STATIC void pmap_update(pmap_t);
    209 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    210 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    211 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    212 STATIC void pmap_kremove(vaddr_t, vsize_t);
    213 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    214 
    215 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    216 STATIC void pmap_unwire(pmap_t, vaddr_t);
    217 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    218 STATIC bool pmap_query_bit(struct vm_page *, int);
    219 STATIC bool pmap_clear_bit(struct vm_page *, int);
    220 
    221 STATIC void pmap_activate(struct lwp *);
    222 STATIC void pmap_deactivate(struct lwp *);
    223 
    224 STATIC void pmap_pinit(pmap_t pm);
    225 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    226 
    227 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    228 STATIC void pmap_pte_print(volatile struct pte *);
    229 STATIC void pmap_pteg_check(void);
    230 STATIC void pmap_print_mmuregs(void);
    231 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    232 STATIC void pmap_pteg_dist(void);
    233 #endif
    234 #if defined(DEBUG) || defined(PMAPCHECK)
    235 STATIC void pmap_pvo_verify(void);
    236 #endif
    237 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    238 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    239 STATIC void pmap_bootstrap1(paddr_t, paddr_t);
    240 STATIC void pmap_bootstrap2(void);
    241 
    242 #ifdef PMAPNAME
    243 const struct pmap_ops PMAPNAME(ops) = {
    244 	.pmapop_pte_spill = pmap_pte_spill,
    245 	.pmapop_real_memory = pmap_real_memory,
    246 	.pmapop_init = pmap_init,
    247 	.pmapop_virtual_space = pmap_virtual_space,
    248 	.pmapop_create = pmap_create,
    249 	.pmapop_reference = pmap_reference,
    250 	.pmapop_destroy = pmap_destroy,
    251 	.pmapop_copy = pmap_copy,
    252 	.pmapop_update = pmap_update,
    253 	.pmapop_enter = pmap_enter,
    254 	.pmapop_remove = pmap_remove,
    255 	.pmapop_kenter_pa = pmap_kenter_pa,
    256 	.pmapop_kremove = pmap_kremove,
    257 	.pmapop_extract = pmap_extract,
    258 	.pmapop_protect = pmap_protect,
    259 	.pmapop_unwire = pmap_unwire,
    260 	.pmapop_page_protect = pmap_page_protect,
    261 	.pmapop_query_bit = pmap_query_bit,
    262 	.pmapop_clear_bit = pmap_clear_bit,
    263 	.pmapop_activate = pmap_activate,
    264 	.pmapop_deactivate = pmap_deactivate,
    265 	.pmapop_pinit = pmap_pinit,
    266 	.pmapop_procwr = pmap_procwr,
    267 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    268 	.pmapop_pte_print = pmap_pte_print,
    269 	.pmapop_pteg_check = pmap_pteg_check,
    270 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    271 	.pmapop_print_pte = pmap_print_pte,
    272 	.pmapop_pteg_dist = pmap_pteg_dist,
    273 #else
    274 	.pmapop_pte_print = NULL,
    275 	.pmapop_pteg_check = NULL,
    276 	.pmapop_print_mmuregs = NULL,
    277 	.pmapop_print_pte = NULL,
    278 	.pmapop_pteg_dist = NULL,
    279 #endif
    280 #if defined(DEBUG) || defined(PMAPCHECK)
    281 	.pmapop_pvo_verify = pmap_pvo_verify,
    282 #else
    283 	.pmapop_pvo_verify = NULL,
    284 #endif
    285 	.pmapop_steal_memory = pmap_steal_memory,
    286 	.pmapop_bootstrap = pmap_bootstrap,
    287 	.pmapop_bootstrap1 = pmap_bootstrap1,
    288 	.pmapop_bootstrap2 = pmap_bootstrap2,
    289 };
    290 #endif /* !PMAPNAME */
    291 
    292 /*
    293  * The following structure is aligned to 32 bytes
    294  */
    295 struct pvo_entry {
    296 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    297 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    298 	struct pte pvo_pte;			/* Prebuilt PTE */
    299 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    300 	vaddr_t pvo_vaddr;			/* VA of entry */
    301 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    302 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    303 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    304 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    305 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    306 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    307 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    308 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    309 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    310 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    311 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    312 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    313 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    314 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    315 #define	PVO_REMOVE		6		/* PVO has been removed */
    316 #define	PVO_WHERE_MASK		15
    317 #define	PVO_WHERE_SHFT		8
    318 } __attribute__ ((aligned (32)));
    319 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    320 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    321 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    322 #define	PVO_PTEGIDX_CLR(pvo)	\
    323 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    324 #define	PVO_PTEGIDX_SET(pvo,i)	\
    325 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    326 #define	PVO_WHERE(pvo,w)	\
    327 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    328 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    329 
    330 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    331 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    332 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    333 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    334 
    335 struct pool pmap_pool;		/* pool for pmap structures */
    336 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    337 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    338 
    339 /*
    340  * We keep a cache of unmanaged pages to be used for pvo entries for
    341  * unmanaged pages.
    342  */
    343 struct pvo_page {
    344 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    345 };
    346 SIMPLEQ_HEAD(pvop_head, pvo_page);
    347 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    348 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    349 static u_long pmap_upvop_free;
    350 static u_long pmap_upvop_maxfree;
    351 static u_long pmap_mpvop_free;
    352 static u_long pmap_mpvop_maxfree;
    353 
    354 static void *pmap_pool_ualloc(struct pool *, int);
    355 static void *pmap_pool_malloc(struct pool *, int);
    356 
    357 static void pmap_pool_ufree(struct pool *, void *);
    358 static void pmap_pool_mfree(struct pool *, void *);
    359 
    360 static struct pool_allocator pmap_pool_mallocator = {
    361 	.pa_alloc = pmap_pool_malloc,
    362 	.pa_free = pmap_pool_mfree,
    363 	.pa_pagesz = 0,
    364 };
    365 
    366 static struct pool_allocator pmap_pool_uallocator = {
    367 	.pa_alloc = pmap_pool_ualloc,
    368 	.pa_free = pmap_pool_ufree,
    369 	.pa_pagesz = 0,
    370 };
    371 
    372 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    373 void pmap_pte_print(volatile struct pte *);
    374 void pmap_pteg_check(void);
    375 void pmap_pteg_dist(void);
    376 void pmap_print_pte(pmap_t, vaddr_t);
    377 void pmap_print_mmuregs(void);
    378 #endif
    379 
    380 #if defined(DEBUG) || defined(PMAPCHECK)
    381 #ifdef PMAPCHECK
    382 int pmapcheck = 1;
    383 #else
    384 int pmapcheck = 0;
    385 #endif
    386 void pmap_pvo_verify(void);
    387 static void pmap_pvo_check(const struct pvo_entry *);
    388 #define	PMAP_PVO_CHECK(pvo)	 		\
    389 	do {					\
    390 		if (pmapcheck)			\
    391 			pmap_pvo_check(pvo);	\
    392 	} while (0)
    393 #else
    394 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    395 #endif
    396 static int pmap_pte_insert(int, struct pte *);
    397 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    398 	vaddr_t, paddr_t, register_t, int);
    399 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    400 static void pmap_pvo_free(struct pvo_entry *);
    401 static void pmap_pvo_free_list(struct pvo_head *);
    402 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    403 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    404 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    405 static void pvo_set_exec(struct pvo_entry *);
    406 static void pvo_clear_exec(struct pvo_entry *);
    407 
    408 static void tlbia(void);
    409 
    410 static void pmap_release(pmap_t);
    411 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    412 
    413 static uint32_t pmap_pvo_reclaim_nextidx;
    414 #ifdef DEBUG
    415 static int pmap_pvo_reclaim_debugctr;
    416 #endif
    417 
    418 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    419 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    420 
    421 static int pmap_initialized;
    422 
    423 #if defined(DEBUG) || defined(PMAPDEBUG)
    424 #define	PMAPDEBUG_BOOT		0x0001
    425 #define	PMAPDEBUG_PTE		0x0002
    426 #define	PMAPDEBUG_EXEC		0x0008
    427 #define	PMAPDEBUG_PVOENTER	0x0010
    428 #define	PMAPDEBUG_PVOREMOVE	0x0020
    429 #define	PMAPDEBUG_ACTIVATE	0x0100
    430 #define	PMAPDEBUG_CREATE	0x0200
    431 #define	PMAPDEBUG_ENTER		0x1000
    432 #define	PMAPDEBUG_KENTER	0x2000
    433 #define	PMAPDEBUG_KREMOVE	0x4000
    434 #define	PMAPDEBUG_REMOVE	0x8000
    435 
    436 unsigned int pmapdebug = 0;
    437 
    438 # define DPRINTF(x, ...)	printf(x, __VA_ARGS__)
    439 # define DPRINTFN(n, x, ...)	do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
    440 #else
    441 # define DPRINTF(x, ...)	do { } while (0)
    442 # define DPRINTFN(n, x, ...)	do { } while (0)
    443 #endif
    444 
    445 
    446 #ifdef PMAPCOUNTERS
    447 /*
    448  * From pmap_subr.c
    449  */
    450 extern struct evcnt pmap_evcnt_mappings;
    451 extern struct evcnt pmap_evcnt_unmappings;
    452 
    453 extern struct evcnt pmap_evcnt_kernel_mappings;
    454 extern struct evcnt pmap_evcnt_kernel_unmappings;
    455 
    456 extern struct evcnt pmap_evcnt_mappings_replaced;
    457 
    458 extern struct evcnt pmap_evcnt_exec_mappings;
    459 extern struct evcnt pmap_evcnt_exec_cached;
    460 
    461 extern struct evcnt pmap_evcnt_exec_synced;
    462 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    463 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    464 
    465 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    466 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    467 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    468 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    469 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    470 
    471 extern struct evcnt pmap_evcnt_updates;
    472 extern struct evcnt pmap_evcnt_collects;
    473 extern struct evcnt pmap_evcnt_copies;
    474 
    475 extern struct evcnt pmap_evcnt_ptes_spilled;
    476 extern struct evcnt pmap_evcnt_ptes_unspilled;
    477 extern struct evcnt pmap_evcnt_ptes_evicted;
    478 
    479 extern struct evcnt pmap_evcnt_ptes_primary[8];
    480 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    481 extern struct evcnt pmap_evcnt_ptes_removed;
    482 extern struct evcnt pmap_evcnt_ptes_changed;
    483 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    484 extern struct evcnt pmap_evcnt_pvos_failed;
    485 
    486 extern struct evcnt pmap_evcnt_zeroed_pages;
    487 extern struct evcnt pmap_evcnt_copied_pages;
    488 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    489 
    490 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    491 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    492 #else
    493 #define	PMAPCOUNT(ev)	((void) 0)
    494 #define	PMAPCOUNT2(ev)	((void) 0)
    495 #endif
    496 
    497 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    498 
    499 /* XXXSL: this needs to be moved to assembler */
    500 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    501 
    502 #ifdef MD_TLBSYNC
    503 #define TLBSYNC()	MD_TLBSYNC()
    504 #else
    505 #define	TLBSYNC()	__asm volatile("tlbsync")
    506 #endif
    507 #define	SYNC()		__asm volatile("sync")
    508 #define	EIEIO()		__asm volatile("eieio")
    509 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    510 #define	MFMSR()		mfmsr()
    511 #define	MTMSR(psl)	mtmsr(psl)
    512 #define	MFPVR()		mfpvr()
    513 #define	MFSRIN(va)	mfsrin(va)
    514 #define	MFTB()		mfrtcltbl()
    515 
    516 #if defined(DDB) && !defined(PMAP_OEA64)
    517 static inline register_t
    518 mfsrin(vaddr_t va)
    519 {
    520 	register_t sr;
    521 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    522 	return sr;
    523 }
    524 #endif	/* DDB && !PMAP_OEA64 */
    525 
    526 #if defined (PMAP_OEA64_BRIDGE)
    527 extern void mfmsr64 (register64_t *result);
    528 #endif /* PMAP_OEA64_BRIDGE */
    529 
    530 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    531 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    532 
    533 static inline register_t
    534 pmap_interrupts_off(void)
    535 {
    536 	register_t msr = MFMSR();
    537 	if (msr & PSL_EE)
    538 		MTMSR(msr & ~PSL_EE);
    539 	return msr;
    540 }
    541 
    542 static void
    543 pmap_interrupts_restore(register_t msr)
    544 {
    545 	if (msr & PSL_EE)
    546 		MTMSR(msr);
    547 }
    548 
    549 static inline u_int32_t
    550 mfrtcltbl(void)
    551 {
    552 #ifdef PPC_OEA601
    553 	if ((MFPVR() >> 16) == MPC601)
    554 		return (mfrtcl() >> 7);
    555 	else
    556 #endif
    557 		return (mftbl());
    558 }
    559 
    560 /*
    561  * These small routines may have to be replaced,
    562  * if/when we support processors other that the 604.
    563  */
    564 
    565 void
    566 tlbia(void)
    567 {
    568 	char *i;
    569 
    570 	SYNC();
    571 #if defined(PMAP_OEA)
    572 	/*
    573 	 * Why not use "tlbia"?  Because not all processors implement it.
    574 	 *
    575 	 * This needs to be a per-CPU callback to do the appropriate thing
    576 	 * for the CPU. XXX
    577 	 */
    578 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    579 		TLBIE(i);
    580 		EIEIO();
    581 		SYNC();
    582 	}
    583 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    584 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    585 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    586 		TLBIEL(i);
    587 		EIEIO();
    588 		SYNC();
    589 	}
    590 #endif
    591 	TLBSYNC();
    592 	SYNC();
    593 }
    594 
    595 static inline register_t
    596 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    597 {
    598 	/*
    599 	 * Rather than searching the STE groups for the VSID or extracting
    600 	 * it from the SR, we know how we generate that from the ESID and
    601 	 * so do that.
    602 	 *
    603 	 * This makes the code the same for OEA and OEA64, and also allows
    604 	 * us to generate a correct-for-that-address-space VSID even if the
    605 	 * pmap contains a different SR value at any given moment (e.g.
    606 	 * kernel pmap on a 601 that is using I/O segments).
    607 	 */
    608 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    609 }
    610 
    611 static inline register_t
    612 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    613 {
    614 	register_t hash;
    615 
    616 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    617 	return hash & pmap_pteg_mask;
    618 }
    619 
    620 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    621 /*
    622  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    623  * The only bit of magic is that the top 4 bits of the address doesn't
    624  * technically exist in the PTE.  But we know we reserved 4 bits of the
    625  * VSID for it so that's how we get it.
    626  */
    627 static vaddr_t
    628 pmap_pte_to_va(volatile const struct pte *pt)
    629 {
    630 	vaddr_t va;
    631 	uintptr_t ptaddr = (uintptr_t) pt;
    632 
    633 	if (pt->pte_hi & PTE_HID)
    634 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    635 
    636 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    637 #if defined(PMAP_OEA)
    638 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    639 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    640 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    641 #endif
    642 	va <<= ADDR_PIDX_SHFT;
    643 
    644 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    645 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    646 
    647 #if defined(PMAP_OEA64)
    648 	/* PPC63 Bits 0-35 */
    649 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    650 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    651 	/* PPC Bits 0-3 */
    652 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    653 #endif
    654 
    655 	return va;
    656 }
    657 #endif
    658 
    659 static inline struct pvo_head *
    660 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    661 {
    662 	struct vm_page *pg;
    663 	struct vm_page_md *md;
    664 
    665 	pg = PHYS_TO_VM_PAGE(pa);
    666 	if (pg_p != NULL)
    667 		*pg_p = pg;
    668 	if (pg == NULL)
    669 		return &pmap_pvo_unmanaged;
    670 	md = VM_PAGE_TO_MD(pg);
    671 	return &md->mdpg_pvoh;
    672 }
    673 
    674 static inline struct pvo_head *
    675 vm_page_to_pvoh(struct vm_page *pg)
    676 {
    677 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    678 
    679 	return &md->mdpg_pvoh;
    680 }
    681 
    682 
    683 static inline void
    684 pmap_attr_clear(struct vm_page *pg, int ptebit)
    685 {
    686 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    687 
    688 	md->mdpg_attrs &= ~ptebit;
    689 }
    690 
    691 static inline int
    692 pmap_attr_fetch(struct vm_page *pg)
    693 {
    694 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    695 
    696 	return md->mdpg_attrs;
    697 }
    698 
    699 static inline void
    700 pmap_attr_save(struct vm_page *pg, int ptebit)
    701 {
    702 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    703 
    704 	md->mdpg_attrs |= ptebit;
    705 }
    706 
    707 static inline int
    708 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    709 {
    710 	if (pt->pte_hi == pvo_pt->pte_hi
    711 #if 0
    712 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    713 	        ~(PTE_REF|PTE_CHG)) == 0
    714 #endif
    715 	    )
    716 		return 1;
    717 	return 0;
    718 }
    719 
    720 static inline void
    721 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    722 {
    723 	/*
    724 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    725 	 * only gets set when the real pte is set in memory.
    726 	 *
    727 	 * Note: Don't set the valid bit for correct operation of tlb update.
    728 	 */
    729 #if defined(PMAP_OEA)
    730 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    731 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    732 	pt->pte_lo = pte_lo;
    733 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
    734 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    735 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    736 	pt->pte_lo = (u_int64_t) pte_lo;
    737 #endif /* PMAP_OEA */
    738 }
    739 
    740 static inline void
    741 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    742 {
    743 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    744 }
    745 
    746 static inline void
    747 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    748 {
    749 	/*
    750 	 * As shown in Section 7.6.3.2.3
    751 	 */
    752 	pt->pte_lo &= ~ptebit;
    753 	TLBIE(va);
    754 	SYNC();
    755 	EIEIO();
    756 	TLBSYNC();
    757 	SYNC();
    758 #ifdef MULTIPROCESSOR
    759 	DCBST(pt);
    760 #endif
    761 }
    762 
    763 static inline void
    764 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    765 {
    766 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    767 	if (pvo_pt->pte_hi & PTE_VALID)
    768 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    769 #endif
    770 	pvo_pt->pte_hi |= PTE_VALID;
    771 
    772 	/*
    773 	 * Update the PTE as defined in section 7.6.3.1
    774 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    775 	 * have been saved so this routine can restore them (if desired).
    776 	 */
    777 	pt->pte_lo = pvo_pt->pte_lo;
    778 	EIEIO();
    779 	pt->pte_hi = pvo_pt->pte_hi;
    780 	TLBSYNC();
    781 	SYNC();
    782 #ifdef MULTIPROCESSOR
    783 	DCBST(pt);
    784 #endif
    785 	pmap_pte_valid++;
    786 }
    787 
    788 static inline void
    789 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    790 {
    791 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    792 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    793 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    794 	if ((pt->pte_hi & PTE_VALID) == 0)
    795 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    796 #endif
    797 
    798 	pvo_pt->pte_hi &= ~PTE_VALID;
    799 	/*
    800 	 * Force the ref & chg bits back into the PTEs.
    801 	 */
    802 	SYNC();
    803 	/*
    804 	 * Invalidate the pte ... (Section 7.6.3.3)
    805 	 */
    806 	pt->pte_hi &= ~PTE_VALID;
    807 	SYNC();
    808 	TLBIE(va);
    809 	SYNC();
    810 	EIEIO();
    811 	TLBSYNC();
    812 	SYNC();
    813 	/*
    814 	 * Save the ref & chg bits ...
    815 	 */
    816 	pmap_pte_synch(pt, pvo_pt);
    817 	pmap_pte_valid--;
    818 }
    819 
    820 static inline void
    821 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    822 {
    823 	/*
    824 	 * Invalidate the PTE
    825 	 */
    826 	pmap_pte_unset(pt, pvo_pt, va);
    827 	pmap_pte_set(pt, pvo_pt);
    828 }
    829 
    830 /*
    831  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    832  * (either primary or secondary location).
    833  *
    834  * Note: both the destination and source PTEs must not have PTE_VALID set.
    835  */
    836 
    837 static int
    838 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    839 {
    840 	volatile struct pte *pt;
    841 	int i;
    842 
    843 #if defined(DEBUG)
    844 	DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    845 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
    846 #endif
    847 	/*
    848 	 * First try primary hash.
    849 	 */
    850 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    851 		if ((pt->pte_hi & PTE_VALID) == 0) {
    852 			pvo_pt->pte_hi &= ~PTE_HID;
    853 			pmap_pte_set(pt, pvo_pt);
    854 			return i;
    855 		}
    856 	}
    857 
    858 	/*
    859 	 * Now try secondary hash.
    860 	 */
    861 	ptegidx ^= pmap_pteg_mask;
    862 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    863 		if ((pt->pte_hi & PTE_VALID) == 0) {
    864 			pvo_pt->pte_hi |= PTE_HID;
    865 			pmap_pte_set(pt, pvo_pt);
    866 			return i;
    867 		}
    868 	}
    869 	return -1;
    870 }
    871 
    872 /*
    873  * Spill handler.
    874  *
    875  * Tries to spill a page table entry from the overflow area.
    876  * This runs in either real mode (if dealing with a exception spill)
    877  * or virtual mode when dealing with manually spilling one of the
    878  * kernel's pte entries.  In either case, interrupts are already
    879  * disabled.
    880  */
    881 
    882 int
    883 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    884 {
    885 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    886 	struct pvo_entry *pvo;
    887 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    888 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    889 	int ptegidx, i, j;
    890 	volatile struct pteg *pteg;
    891 	volatile struct pte *pt;
    892 
    893 	PMAP_LOCK();
    894 
    895 	ptegidx = va_to_pteg(pm, addr);
    896 
    897 	/*
    898 	 * Have to substitute some entry. Use the primary hash for this.
    899 	 * Use low bits of timebase as random generator.  Make sure we are
    900 	 * not picking a kernel pte for replacement.
    901 	 */
    902 	pteg = &pmap_pteg_table[ptegidx];
    903 	i = MFTB() & 7;
    904 	for (j = 0; j < 8; j++) {
    905 		pt = &pteg->pt[i];
    906 		if ((pt->pte_hi & PTE_VALID) == 0)
    907 			break;
    908 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    909 				< PHYSMAP_VSIDBITS)
    910 			break;
    911 		i = (i + 1) & 7;
    912 	}
    913 	KASSERT(j < 8);
    914 
    915 	source_pvo = NULL;
    916 	victim_pvo = NULL;
    917 	pvoh = &pmap_pvo_table[ptegidx];
    918 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    919 
    920 		/*
    921 		 * We need to find pvo entry for this address...
    922 		 */
    923 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    924 
    925 		/*
    926 		 * If we haven't found the source and we come to a PVO with
    927 		 * a valid PTE, then we know we can't find it because all
    928 		 * evicted PVOs always are first in the list.
    929 		 */
    930 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    931 			break;
    932 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    933 		    addr == PVO_VADDR(pvo)) {
    934 
    935 			/*
    936 			 * Now we have found the entry to be spilled into the
    937 			 * pteg.  Attempt to insert it into the page table.
    938 			 */
    939 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    940 			if (j >= 0) {
    941 				PVO_PTEGIDX_SET(pvo, j);
    942 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    943 				PVO_WHERE(pvo, SPILL_INSERT);
    944 				pvo->pvo_pmap->pm_evictions--;
    945 				PMAPCOUNT(ptes_spilled);
    946 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    947 				    ? pmap_evcnt_ptes_secondary
    948 				    : pmap_evcnt_ptes_primary)[j]);
    949 
    950 				/*
    951 				 * Since we keep the evicted entries at the
    952 				 * from of the PVO list, we need move this
    953 				 * (now resident) PVO after the evicted
    954 				 * entries.
    955 				 */
    956 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    957 
    958 				/*
    959 				 * If we don't have to move (either we were the
    960 				 * last entry or the next entry was valid),
    961 				 * don't change our position.  Otherwise
    962 				 * move ourselves to the tail of the queue.
    963 				 */
    964 				if (next_pvo != NULL &&
    965 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    966 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    967 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    968 				}
    969 				PMAP_UNLOCK();
    970 				return 1;
    971 			}
    972 			source_pvo = pvo;
    973 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    974 				PMAP_UNLOCK();
    975 				return 0;
    976 			}
    977 			if (victim_pvo != NULL)
    978 				break;
    979 		}
    980 
    981 		/*
    982 		 * We also need the pvo entry of the victim we are replacing
    983 		 * so save the R & C bits of the PTE.
    984 		 */
    985 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    986 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    987 			vpvoh = pvoh;			/* *1* */
    988 			victim_pvo = pvo;
    989 			if (source_pvo != NULL)
    990 				break;
    991 		}
    992 	}
    993 
    994 	if (source_pvo == NULL) {
    995 		PMAPCOUNT(ptes_unspilled);
    996 		PMAP_UNLOCK();
    997 		return 0;
    998 	}
    999 
   1000 	if (victim_pvo == NULL) {
   1001 		if ((pt->pte_hi & PTE_HID) == 0)
   1002 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1003 			    "no pvo entry!", pt);
   1004 
   1005 		/*
   1006 		 * If this is a secondary PTE, we need to search
   1007 		 * its primary pvo bucket for the matching PVO.
   1008 		 */
   1009 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1010 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1011 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1012 
   1013 			/*
   1014 			 * We also need the pvo entry of the victim we are
   1015 			 * replacing so save the R & C bits of the PTE.
   1016 			 */
   1017 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1018 				victim_pvo = pvo;
   1019 				break;
   1020 			}
   1021 		}
   1022 		if (victim_pvo == NULL)
   1023 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1024 			    "no pvo entry!", pt);
   1025 	}
   1026 
   1027 	/*
   1028 	 * The victim should be not be a kernel PVO/PTE entry.
   1029 	 */
   1030 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1031 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1032 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1033 
   1034 	/*
   1035 	 * We are invalidating the TLB entry for the EA for the
   1036 	 * we are replacing even though its valid; If we don't
   1037 	 * we lose any ref/chg bit changes contained in the TLB
   1038 	 * entry.
   1039 	 */
   1040 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1041 
   1042 	/*
   1043 	 * To enforce the PVO list ordering constraint that all
   1044 	 * evicted entries should come before all valid entries,
   1045 	 * move the source PVO to the tail of its list and the
   1046 	 * victim PVO to the head of its list (which might not be
   1047 	 * the same list, if the victim was using the secondary hash).
   1048 	 */
   1049 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1050 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1051 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1052 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1053 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1054 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1055 	victim_pvo->pvo_pmap->pm_evictions++;
   1056 	source_pvo->pvo_pmap->pm_evictions--;
   1057 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1058 	PVO_WHERE(source_pvo, SPILL_SET);
   1059 
   1060 	PVO_PTEGIDX_CLR(victim_pvo);
   1061 	PVO_PTEGIDX_SET(source_pvo, i);
   1062 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1063 	PMAPCOUNT(ptes_spilled);
   1064 	PMAPCOUNT(ptes_evicted);
   1065 	PMAPCOUNT(ptes_removed);
   1066 
   1067 	PMAP_PVO_CHECK(victim_pvo);
   1068 	PMAP_PVO_CHECK(source_pvo);
   1069 
   1070 	PMAP_UNLOCK();
   1071 	return 1;
   1072 }
   1073 
   1074 /*
   1075  * Restrict given range to physical memory
   1076  */
   1077 void
   1078 pmap_real_memory(paddr_t *start, psize_t *size)
   1079 {
   1080 	struct mem_region *mp;
   1081 
   1082 	for (mp = mem; mp->size; mp++) {
   1083 		if (*start + *size > mp->start
   1084 		    && *start < mp->start + mp->size) {
   1085 			if (*start < mp->start) {
   1086 				*size -= mp->start - *start;
   1087 				*start = mp->start;
   1088 			}
   1089 			if (*start + *size > mp->start + mp->size)
   1090 				*size = mp->start + mp->size - *start;
   1091 			return;
   1092 		}
   1093 	}
   1094 	*size = 0;
   1095 }
   1096 
   1097 /*
   1098  * Initialize anything else for pmap handling.
   1099  * Called during vm_init().
   1100  */
   1101 void
   1102 pmap_init(void)
   1103 {
   1104 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1105 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1106 	    &pmap_pool_mallocator, IPL_NONE);
   1107 
   1108 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1109 
   1110 	pmap_initialized = 1;
   1111 
   1112 }
   1113 
   1114 /*
   1115  * How much virtual space does the kernel get?
   1116  */
   1117 void
   1118 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1119 {
   1120 	/*
   1121 	 * For now, reserve one segment (minus some overhead) for kernel
   1122 	 * virtual memory
   1123 	 */
   1124 	*start = VM_MIN_KERNEL_ADDRESS;
   1125 	*end = VM_MAX_KERNEL_ADDRESS;
   1126 }
   1127 
   1128 /*
   1129  * Allocate, initialize, and return a new physical map.
   1130  */
   1131 pmap_t
   1132 pmap_create(void)
   1133 {
   1134 	pmap_t pm;
   1135 
   1136 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1137 	KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
   1138 	memset((void *)pm, 0, sizeof *pm);
   1139 	pmap_pinit(pm);
   1140 
   1141 	DPRINTFN(CREATE, "pmap_create: pm %p:\n"
   1142 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1143 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1144 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1145 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1146 	    pm,
   1147 	    pm->pm_sr[0], pm->pm_sr[1],
   1148 	    pm->pm_sr[2], pm->pm_sr[3],
   1149 	    pm->pm_sr[4], pm->pm_sr[5],
   1150 	    pm->pm_sr[6], pm->pm_sr[7],
   1151 	    pm->pm_sr[8], pm->pm_sr[9],
   1152 	    pm->pm_sr[10], pm->pm_sr[11],
   1153 	    pm->pm_sr[12], pm->pm_sr[13],
   1154 	    pm->pm_sr[14], pm->pm_sr[15]);
   1155 	return pm;
   1156 }
   1157 
   1158 /*
   1159  * Initialize a preallocated and zeroed pmap structure.
   1160  */
   1161 void
   1162 pmap_pinit(pmap_t pm)
   1163 {
   1164 	register_t entropy = MFTB();
   1165 	register_t mask;
   1166 	int i;
   1167 
   1168 	/*
   1169 	 * Allocate some segment registers for this pmap.
   1170 	 */
   1171 	pm->pm_refs = 1;
   1172 	PMAP_LOCK();
   1173 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1174 		static register_t pmap_vsidcontext;
   1175 		register_t hash;
   1176 		unsigned int n;
   1177 
   1178 		/* Create a new value by multiplying by a prime adding in
   1179 		 * entropy from the timebase register.  This is to make the
   1180 		 * VSID more random so that the PT Hash function collides
   1181 		 * less often. (note that the prime causes gcc to do shifts
   1182 		 * instead of a multiply)
   1183 		 */
   1184 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1185 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1186 		if (hash == 0) {		/* 0 is special, avoid it */
   1187 			entropy += 0xbadf00d;
   1188 			continue;
   1189 		}
   1190 		n = hash >> 5;
   1191 		mask = 1L << (hash & (VSID_NBPW-1));
   1192 		hash = pmap_vsidcontext;
   1193 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1194 			/* anything free in this bucket? */
   1195 			if (~pmap_vsid_bitmap[n] == 0) {
   1196 				entropy = hash ^ (hash >> 16);
   1197 				continue;
   1198 			}
   1199 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1200 			mask = 1L << i;
   1201 			hash &= ~(VSID_NBPW-1);
   1202 			hash |= i;
   1203 		}
   1204 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1205 		pmap_vsid_bitmap[n] |= mask;
   1206 		pm->pm_vsid = hash;
   1207 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1208 		for (i = 0; i < 16; i++)
   1209 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1210 			    SR_NOEXEC;
   1211 #endif
   1212 		PMAP_UNLOCK();
   1213 		return;
   1214 	}
   1215 	PMAP_UNLOCK();
   1216 	panic("pmap_pinit: out of segments");
   1217 }
   1218 
   1219 /*
   1220  * Add a reference to the given pmap.
   1221  */
   1222 void
   1223 pmap_reference(pmap_t pm)
   1224 {
   1225 	atomic_inc_uint(&pm->pm_refs);
   1226 }
   1227 
   1228 /*
   1229  * Retire the given pmap from service.
   1230  * Should only be called if the map contains no valid mappings.
   1231  */
   1232 void
   1233 pmap_destroy(pmap_t pm)
   1234 {
   1235 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1236 		pmap_release(pm);
   1237 		pool_put(&pmap_pool, pm);
   1238 	}
   1239 }
   1240 
   1241 /*
   1242  * Release any resources held by the given physical map.
   1243  * Called when a pmap initialized by pmap_pinit is being released.
   1244  */
   1245 void
   1246 pmap_release(pmap_t pm)
   1247 {
   1248 	int idx, mask;
   1249 
   1250 	KASSERT(pm->pm_stats.resident_count == 0);
   1251 	KASSERT(pm->pm_stats.wired_count == 0);
   1252 
   1253 	PMAP_LOCK();
   1254 	if (pm->pm_sr[0] == 0)
   1255 		panic("pmap_release");
   1256 	idx = pm->pm_vsid & (NPMAPS-1);
   1257 	mask = 1 << (idx % VSID_NBPW);
   1258 	idx /= VSID_NBPW;
   1259 
   1260 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1261 	pmap_vsid_bitmap[idx] &= ~mask;
   1262 	PMAP_UNLOCK();
   1263 }
   1264 
   1265 /*
   1266  * Copy the range specified by src_addr/len
   1267  * from the source map to the range dst_addr/len
   1268  * in the destination map.
   1269  *
   1270  * This routine is only advisory and need not do anything.
   1271  */
   1272 void
   1273 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1274 	vsize_t len, vaddr_t src_addr)
   1275 {
   1276 	PMAPCOUNT(copies);
   1277 }
   1278 
   1279 /*
   1280  * Require that all active physical maps contain no
   1281  * incorrect entries NOW.
   1282  */
   1283 void
   1284 pmap_update(struct pmap *pmap)
   1285 {
   1286 	PMAPCOUNT(updates);
   1287 	TLBSYNC();
   1288 }
   1289 
   1290 static inline int
   1291 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1292 {
   1293 	int pteidx;
   1294 	/*
   1295 	 * We can find the actual pte entry without searching by
   1296 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1297 	 * and by noticing the HID bit.
   1298 	 */
   1299 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1300 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1301 		pteidx ^= pmap_pteg_mask * 8;
   1302 	return pteidx;
   1303 }
   1304 
   1305 volatile struct pte *
   1306 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1307 {
   1308 	volatile struct pte *pt;
   1309 
   1310 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1311 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1312 		return NULL;
   1313 #endif
   1314 
   1315 	/*
   1316 	 * If we haven't been supplied the ptegidx, calculate it.
   1317 	 */
   1318 	if (pteidx == -1) {
   1319 		int ptegidx;
   1320 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1321 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1322 	}
   1323 
   1324 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1325 
   1326 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1327 	return pt;
   1328 #else
   1329 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1330 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1331 		    "pvo but no valid pte index", pvo);
   1332 	}
   1333 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1334 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1335 		    "pvo but no valid pte", pvo);
   1336 	}
   1337 
   1338 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1339 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1340 #if defined(DEBUG) || defined(PMAPCHECK)
   1341 			pmap_pte_print(pt);
   1342 #endif
   1343 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1344 			    "pmap_pteg_table %p but invalid in pvo",
   1345 			    pvo, pt);
   1346 		}
   1347 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1348 #if defined(DEBUG) || defined(PMAPCHECK)
   1349 			pmap_pte_print(pt);
   1350 #endif
   1351 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1352 			    "not match pte %p in pmap_pteg_table",
   1353 			    pvo, pt);
   1354 		}
   1355 		return pt;
   1356 	}
   1357 
   1358 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1359 #if defined(DEBUG) || defined(PMAPCHECK)
   1360 		pmap_pte_print(pt);
   1361 #endif
   1362 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1363 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1364 	}
   1365 	return NULL;
   1366 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1367 }
   1368 
   1369 struct pvo_entry *
   1370 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1371 {
   1372 	struct pvo_entry *pvo;
   1373 	int ptegidx;
   1374 
   1375 	va &= ~ADDR_POFF;
   1376 	ptegidx = va_to_pteg(pm, va);
   1377 
   1378 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1379 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1380 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1381 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1382 			    "list %#x (%p)", pvo, ptegidx,
   1383 			     &pmap_pvo_table[ptegidx]);
   1384 #endif
   1385 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1386 			if (pteidx_p)
   1387 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1388 			return pvo;
   1389 		}
   1390 	}
   1391 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1392 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1393 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1394 	return NULL;
   1395 }
   1396 
   1397 #if defined(DEBUG) || defined(PMAPCHECK)
   1398 void
   1399 pmap_pvo_check(const struct pvo_entry *pvo)
   1400 {
   1401 	struct pvo_head *pvo_head;
   1402 	struct pvo_entry *pvo0;
   1403 	volatile struct pte *pt;
   1404 	int failed = 0;
   1405 
   1406 	PMAP_LOCK();
   1407 
   1408 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1409 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1410 
   1411 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1412 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1413 		    pvo, pvo->pvo_pmap);
   1414 		failed = 1;
   1415 	}
   1416 
   1417 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1418 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1419 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1420 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1421 		failed = 1;
   1422 	}
   1423 
   1424 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1425 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1426 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1427 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1428 		failed = 1;
   1429 	}
   1430 
   1431 	if (PVO_MANAGED_P(pvo)) {
   1432 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1433 	} else {
   1434 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1435 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1436 			    "on kernel unmanaged list\n", pvo);
   1437 			failed = 1;
   1438 		}
   1439 		pvo_head = &pmap_pvo_kunmanaged;
   1440 	}
   1441 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1442 		if (pvo0 == pvo)
   1443 			break;
   1444 	}
   1445 	if (pvo0 == NULL) {
   1446 		printf("pmap_pvo_check: pvo %p: not present "
   1447 		    "on its vlist head %p\n", pvo, pvo_head);
   1448 		failed = 1;
   1449 	}
   1450 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1451 		printf("pmap_pvo_check: pvo %p: not present "
   1452 		    "on its olist head\n", pvo);
   1453 		failed = 1;
   1454 	}
   1455 	pt = pmap_pvo_to_pte(pvo, -1);
   1456 	if (pt == NULL) {
   1457 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1458 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1459 			    "no PTE\n", pvo);
   1460 			failed = 1;
   1461 		}
   1462 	} else {
   1463 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1464 		    (uintptr_t) pt >=
   1465 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1466 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1467 			    "pteg table\n", pvo, pt);
   1468 			failed = 1;
   1469 		}
   1470 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1471 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1472 			    "no PTE\n", pvo);
   1473 			failed = 1;
   1474 		}
   1475 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1476 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1477 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1478 			    pvo->pvo_pte.pte_hi,
   1479 			    pt->pte_hi);
   1480 			failed = 1;
   1481 		}
   1482 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1483 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1484 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1485 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1486 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1487 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1488 			failed = 1;
   1489 		}
   1490 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1491 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1492 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1493 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1494 			failed = 1;
   1495 		}
   1496 		if (failed)
   1497 			pmap_pte_print(pt);
   1498 	}
   1499 	if (failed)
   1500 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1501 		    pvo->pvo_pmap);
   1502 
   1503 	PMAP_UNLOCK();
   1504 }
   1505 #endif /* DEBUG || PMAPCHECK */
   1506 
   1507 /*
   1508  * Search the PVO table looking for a non-wired entry.
   1509  * If we find one, remove it and return it.
   1510  */
   1511 
   1512 struct pvo_entry *
   1513 pmap_pvo_reclaim(struct pmap *pm)
   1514 {
   1515 	struct pvo_tqhead *pvoh;
   1516 	struct pvo_entry *pvo;
   1517 	uint32_t idx, endidx;
   1518 
   1519 	endidx = pmap_pvo_reclaim_nextidx;
   1520 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1521 	     idx = (idx + 1) & pmap_pteg_mask) {
   1522 		pvoh = &pmap_pvo_table[idx];
   1523 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1524 			if (!PVO_WIRED_P(pvo)) {
   1525 				pmap_pvo_remove(pvo, -1, NULL);
   1526 				pmap_pvo_reclaim_nextidx = idx;
   1527 				PMAPCOUNT(pvos_reclaimed);
   1528 				return pvo;
   1529 			}
   1530 		}
   1531 	}
   1532 	return NULL;
   1533 }
   1534 
   1535 static struct pool *
   1536 pmap_pvo_pl(struct pvo_entry *pvo)
   1537 {
   1538 
   1539 	return PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool;
   1540 }
   1541 
   1542 /*
   1543  * This returns whether this is the first mapping of a page.
   1544  */
   1545 int
   1546 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1547 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1548 {
   1549 	struct pvo_entry *pvo;
   1550 	struct pvo_tqhead *pvoh;
   1551 	register_t msr;
   1552 	int ptegidx;
   1553 	int i;
   1554 	int poolflags = PR_NOWAIT;
   1555 
   1556 	/*
   1557 	 * Compute the PTE Group index.
   1558 	 */
   1559 	va &= ~ADDR_POFF;
   1560 	ptegidx = va_to_pteg(pm, va);
   1561 
   1562 	msr = pmap_interrupts_off();
   1563 
   1564 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1565 	if (pmap_pvo_remove_depth > 0)
   1566 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1567 	if (++pmap_pvo_enter_depth > 1)
   1568 		panic("pmap_pvo_enter: called recursively!");
   1569 #endif
   1570 
   1571 	/*
   1572 	 * Remove any existing mapping for this page.  Reuse the
   1573 	 * pvo entry if there a mapping.
   1574 	 */
   1575 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1576 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1577 #ifdef DEBUG
   1578 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1579 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1580 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1581 			   va < VM_MIN_KERNEL_ADDRESS) {
   1582 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1583 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1584 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1585 				    pvo->pvo_pte.pte_hi,
   1586 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1587 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1588 #ifdef DDBX
   1589 				Debugger();
   1590 #endif
   1591 			}
   1592 #endif
   1593 			PMAPCOUNT(mappings_replaced);
   1594 			pmap_pvo_remove(pvo, -1, NULL);
   1595 			break;
   1596 		}
   1597 	}
   1598 
   1599 	/*
   1600 	 * If we aren't overwriting an mapping, try to allocate
   1601 	 */
   1602 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1603 	--pmap_pvo_enter_depth;
   1604 #endif
   1605 	pmap_interrupts_restore(msr);
   1606 	if (pvo) {
   1607 		KASSERT(pmap_pvo_pl(pvo) == pl);
   1608 	} else {
   1609 		pvo = pool_get(pl, poolflags);
   1610 	}
   1611 	KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
   1612 
   1613 #ifdef DEBUG
   1614 	/*
   1615 	 * Exercise pmap_pvo_reclaim() a little.
   1616 	 */
   1617 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1618 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1619 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1620 		pool_put(pl, pvo);
   1621 		pvo = NULL;
   1622 	}
   1623 #endif
   1624 
   1625 	msr = pmap_interrupts_off();
   1626 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1627 	++pmap_pvo_enter_depth;
   1628 #endif
   1629 	if (pvo == NULL) {
   1630 		pvo = pmap_pvo_reclaim(pm);
   1631 		if (pvo == NULL) {
   1632 			if ((flags & PMAP_CANFAIL) == 0)
   1633 				panic("pmap_pvo_enter: failed");
   1634 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1635 			pmap_pvo_enter_depth--;
   1636 #endif
   1637 			PMAPCOUNT(pvos_failed);
   1638 			pmap_interrupts_restore(msr);
   1639 			return ENOMEM;
   1640 		}
   1641 	}
   1642 
   1643 	pvo->pvo_vaddr = va;
   1644 	pvo->pvo_pmap = pm;
   1645 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1646 	if (flags & VM_PROT_EXECUTE) {
   1647 		PMAPCOUNT(exec_mappings);
   1648 		pvo_set_exec(pvo);
   1649 	}
   1650 	if (flags & PMAP_WIRED)
   1651 		pvo->pvo_vaddr |= PVO_WIRED;
   1652 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1653 		pvo->pvo_vaddr |= PVO_MANAGED;
   1654 		PMAPCOUNT(mappings);
   1655 	} else {
   1656 		PMAPCOUNT(kernel_mappings);
   1657 	}
   1658 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1659 
   1660 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1661 	if (PVO_WIRED_P(pvo))
   1662 		pvo->pvo_pmap->pm_stats.wired_count++;
   1663 	pvo->pvo_pmap->pm_stats.resident_count++;
   1664 #if defined(DEBUG)
   1665 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1666 		DPRINTFN(PVOENTER,
   1667 		    "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1668 		    pvo, pm, va, pa);
   1669 #endif
   1670 
   1671 	/*
   1672 	 * We hope this succeeds but it isn't required.
   1673 	 */
   1674 	pvoh = &pmap_pvo_table[ptegidx];
   1675 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1676 	if (i >= 0) {
   1677 		PVO_PTEGIDX_SET(pvo, i);
   1678 		PVO_WHERE(pvo, ENTER_INSERT);
   1679 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1680 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1681 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1682 
   1683 	} else {
   1684 		/*
   1685 		 * Since we didn't have room for this entry (which makes it
   1686 		 * and evicted entry), place it at the head of the list.
   1687 		 */
   1688 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1689 		PMAPCOUNT(ptes_evicted);
   1690 		pm->pm_evictions++;
   1691 		/*
   1692 		 * If this is a kernel page, make sure it's active.
   1693 		 */
   1694 		if (pm == pmap_kernel()) {
   1695 			i = pmap_pte_spill(pm, va, false);
   1696 			KASSERT(i);
   1697 		}
   1698 	}
   1699 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1700 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1701 	pmap_pvo_enter_depth--;
   1702 #endif
   1703 	pmap_interrupts_restore(msr);
   1704 	return 0;
   1705 }
   1706 
   1707 static void
   1708 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1709 {
   1710 	volatile struct pte *pt;
   1711 	int ptegidx;
   1712 
   1713 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1714 	if (++pmap_pvo_remove_depth > 1)
   1715 		panic("pmap_pvo_remove: called recursively!");
   1716 #endif
   1717 
   1718 	/*
   1719 	 * If we haven't been supplied the ptegidx, calculate it.
   1720 	 */
   1721 	if (pteidx == -1) {
   1722 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1723 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1724 	} else {
   1725 		ptegidx = pteidx >> 3;
   1726 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1727 			ptegidx ^= pmap_pteg_mask;
   1728 	}
   1729 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1730 
   1731 	/*
   1732 	 * If there is an active pte entry, we need to deactivate it
   1733 	 * (and save the ref & chg bits).
   1734 	 */
   1735 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1736 	if (pt != NULL) {
   1737 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1738 		PVO_WHERE(pvo, REMOVE);
   1739 		PVO_PTEGIDX_CLR(pvo);
   1740 		PMAPCOUNT(ptes_removed);
   1741 	} else {
   1742 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1743 		pvo->pvo_pmap->pm_evictions--;
   1744 	}
   1745 
   1746 	/*
   1747 	 * Account for executable mappings.
   1748 	 */
   1749 	if (PVO_EXECUTABLE_P(pvo))
   1750 		pvo_clear_exec(pvo);
   1751 
   1752 	/*
   1753 	 * Update our statistics.
   1754 	 */
   1755 	pvo->pvo_pmap->pm_stats.resident_count--;
   1756 	if (PVO_WIRED_P(pvo))
   1757 		pvo->pvo_pmap->pm_stats.wired_count--;
   1758 
   1759 	/*
   1760 	 * Save the REF/CHG bits into their cache if the page is managed.
   1761 	 */
   1762 	if (PVO_MANAGED_P(pvo)) {
   1763 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1764 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1765 
   1766 		if (pg != NULL) {
   1767 			/*
   1768 			 * If this page was changed and it is mapped exec,
   1769 			 * invalidate it.
   1770 			 */
   1771 			if ((ptelo & PTE_CHG) &&
   1772 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1773 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1774 				if (LIST_EMPTY(pvoh)) {
   1775 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1776 					    "%#" _PRIxpa ": clear-exec]\n",
   1777 					    VM_PAGE_TO_PHYS(pg));
   1778 					pmap_attr_clear(pg, PTE_EXEC);
   1779 					PMAPCOUNT(exec_uncached_pvo_remove);
   1780 				} else {
   1781 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1782 					    "%#" _PRIxpa ": syncicache]\n",
   1783 					    VM_PAGE_TO_PHYS(pg));
   1784 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1785 					    PAGE_SIZE);
   1786 					PMAPCOUNT(exec_synced_pvo_remove);
   1787 				}
   1788 			}
   1789 
   1790 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1791 		}
   1792 		PMAPCOUNT(unmappings);
   1793 	} else {
   1794 		PMAPCOUNT(kernel_unmappings);
   1795 	}
   1796 
   1797 	/*
   1798 	 * Remove the PVO from its lists and return it to the pool.
   1799 	 */
   1800 	LIST_REMOVE(pvo, pvo_vlink);
   1801 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1802 	if (pvol) {
   1803 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1804 	}
   1805 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1806 	pmap_pvo_remove_depth--;
   1807 #endif
   1808 }
   1809 
   1810 void
   1811 pmap_pvo_free(struct pvo_entry *pvo)
   1812 {
   1813 
   1814 	pool_put(pmap_pvo_pl(pvo), pvo);
   1815 }
   1816 
   1817 void
   1818 pmap_pvo_free_list(struct pvo_head *pvol)
   1819 {
   1820 	struct pvo_entry *pvo, *npvo;
   1821 
   1822 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1823 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1824 		LIST_REMOVE(pvo, pvo_vlink);
   1825 		pmap_pvo_free(pvo);
   1826 	}
   1827 }
   1828 
   1829 /*
   1830  * Mark a mapping as executable.
   1831  * If this is the first executable mapping in the segment,
   1832  * clear the noexec flag.
   1833  */
   1834 static void
   1835 pvo_set_exec(struct pvo_entry *pvo)
   1836 {
   1837 	struct pmap *pm = pvo->pvo_pmap;
   1838 
   1839 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1840 		return;
   1841 	}
   1842 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1843 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1844 	{
   1845 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1846 		if (pm->pm_exec[sr]++ == 0) {
   1847 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1848 		}
   1849 	}
   1850 #endif
   1851 }
   1852 
   1853 /*
   1854  * Mark a mapping as non-executable.
   1855  * If this was the last executable mapping in the segment,
   1856  * set the noexec flag.
   1857  */
   1858 static void
   1859 pvo_clear_exec(struct pvo_entry *pvo)
   1860 {
   1861 	struct pmap *pm = pvo->pvo_pmap;
   1862 
   1863 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1864 		return;
   1865 	}
   1866 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1867 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1868 	{
   1869 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1870 		if (--pm->pm_exec[sr] == 0) {
   1871 			pm->pm_sr[sr] |= SR_NOEXEC;
   1872 		}
   1873 	}
   1874 #endif
   1875 }
   1876 
   1877 /*
   1878  * Insert physical page at pa into the given pmap at virtual address va.
   1879  */
   1880 int
   1881 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1882 {
   1883 	struct mem_region *mp;
   1884 	struct pvo_head *pvo_head;
   1885 	struct vm_page *pg;
   1886 	struct pool *pl;
   1887 	register_t pte_lo;
   1888 	int error;
   1889 	u_int was_exec = 0;
   1890 
   1891 	PMAP_LOCK();
   1892 
   1893 	if (__predict_false(!pmap_initialized)) {
   1894 		pvo_head = &pmap_pvo_kunmanaged;
   1895 		pl = &pmap_upvo_pool;
   1896 		pg = NULL;
   1897 		was_exec = PTE_EXEC;
   1898 	} else {
   1899 		pvo_head = pa_to_pvoh(pa, &pg);
   1900 		pl = &pmap_mpvo_pool;
   1901 	}
   1902 
   1903 	DPRINTFN(ENTER,
   1904 	    "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1905 	    pm, va, pa, prot, flags);
   1906 
   1907 	/*
   1908 	 * If this is a managed page, and it's the first reference to the
   1909 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1910 	 */
   1911 	if (pg != NULL)
   1912 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1913 
   1914 	DPRINTFN(ENTER, " was_exec=%d", was_exec);
   1915 
   1916 	/*
   1917 	 * Assume the page is cache inhibited and access is guarded unless
   1918 	 * it's in our available memory array.  If it is in the memory array,
   1919 	 * asssume it's in memory coherent memory.
   1920 	 */
   1921 	if (flags & PMAP_MD_PREFETCHABLE) {
   1922 		pte_lo = 0;
   1923 	} else
   1924 		pte_lo = PTE_G;
   1925 
   1926 	if ((flags & PMAP_NOCACHE) == 0) {
   1927 		for (mp = mem; mp->size; mp++) {
   1928 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1929 				pte_lo = PTE_M;
   1930 				break;
   1931 			}
   1932 		}
   1933 #ifdef MULTIPROCESSOR
   1934 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   1935 			pte_lo = PTE_M;
   1936 #endif
   1937 	} else {
   1938 		pte_lo |= PTE_I;
   1939 	}
   1940 
   1941 	if (prot & VM_PROT_WRITE)
   1942 		pte_lo |= PTE_BW;
   1943 	else
   1944 		pte_lo |= PTE_BR;
   1945 
   1946 	/*
   1947 	 * If this was in response to a fault, "pre-fault" the PTE's
   1948 	 * changed/referenced bit appropriately.
   1949 	 */
   1950 	if (flags & VM_PROT_WRITE)
   1951 		pte_lo |= PTE_CHG;
   1952 	if (flags & VM_PROT_ALL)
   1953 		pte_lo |= PTE_REF;
   1954 
   1955 	/*
   1956 	 * We need to know if this page can be executable
   1957 	 */
   1958 	flags |= (prot & VM_PROT_EXECUTE);
   1959 
   1960 	/*
   1961 	 * Record mapping for later back-translation and pte spilling.
   1962 	 * This will overwrite any existing mapping.
   1963 	 */
   1964 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1965 
   1966 	/*
   1967 	 * Flush the real page from the instruction cache if this page is
   1968 	 * mapped executable and cacheable and has not been flushed since
   1969 	 * the last time it was modified.
   1970 	 */
   1971 	if (error == 0 &&
   1972             (flags & VM_PROT_EXECUTE) &&
   1973             (pte_lo & PTE_I) == 0 &&
   1974 	    was_exec == 0) {
   1975 		DPRINTFN(ENTER, " %s", "syncicache");
   1976 		PMAPCOUNT(exec_synced);
   1977 		pmap_syncicache(pa, PAGE_SIZE);
   1978 		if (pg != NULL) {
   1979 			pmap_attr_save(pg, PTE_EXEC);
   1980 			PMAPCOUNT(exec_cached);
   1981 #if defined(DEBUG) || defined(PMAPDEBUG)
   1982 			if (pmapdebug & PMAPDEBUG_ENTER)
   1983 				printf(" marked-as-exec");
   1984 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1985 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1986 				    VM_PAGE_TO_PHYS(pg));
   1987 
   1988 #endif
   1989 		}
   1990 	}
   1991 
   1992 	DPRINTFN(ENTER, ": error=%d\n", error);
   1993 
   1994 	PMAP_UNLOCK();
   1995 
   1996 	return error;
   1997 }
   1998 
   1999 void
   2000 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2001 {
   2002 	struct mem_region *mp;
   2003 	register_t pte_lo;
   2004 	int error;
   2005 
   2006 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
   2007 	if (va < VM_MIN_KERNEL_ADDRESS)
   2008 		panic("pmap_kenter_pa: attempt to enter "
   2009 		    "non-kernel address %#" _PRIxva "!", va);
   2010 #endif
   2011 
   2012 	DPRINTFN(KENTER,
   2013 	    "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
   2014 
   2015 	PMAP_LOCK();
   2016 
   2017 	/*
   2018 	 * Assume the page is cache inhibited and access is guarded unless
   2019 	 * it's in our available memory array.  If it is in the memory array,
   2020 	 * asssume it's in memory coherent memory.
   2021 	 */
   2022 	pte_lo = PTE_IG;
   2023 	if ((flags & PMAP_NOCACHE) == 0) {
   2024 		for (mp = mem; mp->size; mp++) {
   2025 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2026 				pte_lo = PTE_M;
   2027 				break;
   2028 			}
   2029 		}
   2030 #ifdef MULTIPROCESSOR
   2031 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   2032 			pte_lo = PTE_M;
   2033 #endif
   2034 	}
   2035 
   2036 	if (prot & VM_PROT_WRITE)
   2037 		pte_lo |= PTE_BW;
   2038 	else
   2039 		pte_lo |= PTE_BR;
   2040 
   2041 	/*
   2042 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2043 	 */
   2044 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2045 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2046 
   2047 	if (error != 0)
   2048 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2049 		      va, pa, error);
   2050 
   2051 	PMAP_UNLOCK();
   2052 }
   2053 
   2054 void
   2055 pmap_kremove(vaddr_t va, vsize_t len)
   2056 {
   2057 	if (va < VM_MIN_KERNEL_ADDRESS)
   2058 		panic("pmap_kremove: attempt to remove "
   2059 		    "non-kernel address %#" _PRIxva "!", va);
   2060 
   2061 	DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
   2062 	pmap_remove(pmap_kernel(), va, va + len);
   2063 }
   2064 
   2065 /*
   2066  * Remove the given range of mapping entries.
   2067  */
   2068 void
   2069 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2070 {
   2071 	struct pvo_head pvol;
   2072 	struct pvo_entry *pvo;
   2073 	register_t msr;
   2074 	int pteidx;
   2075 
   2076 	PMAP_LOCK();
   2077 	LIST_INIT(&pvol);
   2078 	msr = pmap_interrupts_off();
   2079 	for (; va < endva; va += PAGE_SIZE) {
   2080 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2081 		if (pvo != NULL) {
   2082 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2083 		}
   2084 	}
   2085 	pmap_interrupts_restore(msr);
   2086 	pmap_pvo_free_list(&pvol);
   2087 	PMAP_UNLOCK();
   2088 }
   2089 
   2090 #if defined(PMAP_OEA)
   2091 #ifdef PPC_OEA601
   2092 bool
   2093 pmap_extract_ioseg601(vaddr_t va, paddr_t *pap)
   2094 {
   2095 	if ((MFPVR() >> 16) != MPC601)
   2096 		return false;
   2097 
   2098 	const register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2099 
   2100 	if (SR601_VALID_P(sr) && SR601_PA_MATCH_P(sr, va)) {
   2101 		if (pap)
   2102 			*pap = va;
   2103 		return true;
   2104 	}
   2105 	return false;
   2106 }
   2107 
   2108 static bool
   2109 pmap_extract_battable601(vaddr_t va, paddr_t *pap)
   2110 {
   2111 	const register_t batu = battable[va >> 23].batu;
   2112 	const register_t batl = battable[va >> 23].batl;
   2113 
   2114 	if (BAT601_VALID_P(batl) && BAT601_VA_MATCH_P(batu, batl, va)) {
   2115 		const register_t mask =
   2116 		    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2117 		if (pap)
   2118 			*pap = (batl & mask) | (va & ~mask);
   2119 		return true;
   2120 	}
   2121 	return false;
   2122 }
   2123 #endif /* PPC_OEA601 */
   2124 
   2125 bool
   2126 pmap_extract_battable(vaddr_t va, paddr_t *pap)
   2127 {
   2128 #ifdef PPC_OEA601
   2129 	if ((MFPVR() >> 16) == MPC601)
   2130 		return pmap_extract_battable601(va, pap);
   2131 #endif /* PPC_OEA601 */
   2132 
   2133 	if (oeacpufeat & OEACPU_NOBAT)
   2134 		return false;
   2135 
   2136 	const register_t batu = battable[BAT_VA2IDX(va)].batu;
   2137 
   2138 	if (BAT_VALID_P(batu, 0) && BAT_VA_MATCH_P(batu, va)) {
   2139 		const register_t batl = battable[BAT_VA2IDX(va)].batl;
   2140 		const register_t mask =
   2141 		    (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
   2142 		if (pap)
   2143 			*pap = (batl & mask) | (va & ~mask);
   2144 		return true;
   2145 	}
   2146 	return false;
   2147 }
   2148 #endif /* PMAP_OEA */
   2149 
   2150 /*
   2151  * Get the physical page address for the given pmap/virtual address.
   2152  */
   2153 bool
   2154 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2155 {
   2156 	struct pvo_entry *pvo;
   2157 	register_t msr;
   2158 
   2159 	PMAP_LOCK();
   2160 
   2161 	/*
   2162 	 * If this is the kernel pmap, check the battable and I/O
   2163 	 * segments for a hit.  This is done only for regions outside
   2164 	 * VM_MIN_KERNEL_ADDRESS-VM_MAX_KERNEL_ADDRESS.
   2165 	 *
   2166 	 * Be careful when checking VM_MAX_KERNEL_ADDRESS; you don't
   2167 	 * want to wrap around to 0.
   2168 	 */
   2169 	if (pm == pmap_kernel() &&
   2170 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2171 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2172 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2173 #if defined(PMAP_OEA)
   2174 #ifdef PPC_OEA601
   2175 		if (pmap_extract_ioseg601(va, pap)) {
   2176 			PMAP_UNLOCK();
   2177 			return true;
   2178 		}
   2179 #endif /* PPC_OEA601 */
   2180 		if (pmap_extract_battable(va, pap)) {
   2181 			PMAP_UNLOCK();
   2182 			return true;
   2183 		}
   2184 		/*
   2185 		 * We still check the HTAB...
   2186 		 */
   2187 #elif defined(PMAP_OEA64_BRIDGE)
   2188 		if (va < SEGMENT_LENGTH) {
   2189 			if (pap)
   2190 				*pap = va;
   2191 			PMAP_UNLOCK();
   2192 			return true;
   2193 		}
   2194 		/*
   2195 		 * We still check the HTAB...
   2196 		 */
   2197 #elif defined(PMAP_OEA64)
   2198 #error PPC_OEA64 not supported
   2199 #endif /* PPC_OEA */
   2200 	}
   2201 
   2202 	msr = pmap_interrupts_off();
   2203 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2204 	if (pvo != NULL) {
   2205 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2206 		if (pap)
   2207 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2208 			    | (va & ADDR_POFF);
   2209 	}
   2210 	pmap_interrupts_restore(msr);
   2211 	PMAP_UNLOCK();
   2212 	return pvo != NULL;
   2213 }
   2214 
   2215 /*
   2216  * Lower the protection on the specified range of this pmap.
   2217  */
   2218 void
   2219 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2220 {
   2221 	struct pvo_entry *pvo;
   2222 	volatile struct pte *pt;
   2223 	register_t msr;
   2224 	int pteidx;
   2225 
   2226 	/*
   2227 	 * Since this routine only downgrades protection, we should
   2228 	 * always be called with at least one bit not set.
   2229 	 */
   2230 	KASSERT(prot != VM_PROT_ALL);
   2231 
   2232 	/*
   2233 	 * If there is no protection, this is equivalent to
   2234 	 * remove the pmap from the pmap.
   2235 	 */
   2236 	if ((prot & VM_PROT_READ) == 0) {
   2237 		pmap_remove(pm, va, endva);
   2238 		return;
   2239 	}
   2240 
   2241 	PMAP_LOCK();
   2242 
   2243 	msr = pmap_interrupts_off();
   2244 	for (; va < endva; va += PAGE_SIZE) {
   2245 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2246 		if (pvo == NULL)
   2247 			continue;
   2248 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2249 
   2250 		/*
   2251 		 * Revoke executable if asked to do so.
   2252 		 */
   2253 		if ((prot & VM_PROT_EXECUTE) == 0)
   2254 			pvo_clear_exec(pvo);
   2255 
   2256 #if 0
   2257 		/*
   2258 		 * If the page is already read-only, no change
   2259 		 * needs to be made.
   2260 		 */
   2261 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2262 			continue;
   2263 #endif
   2264 		/*
   2265 		 * Grab the PTE pointer before we diddle with
   2266 		 * the cached PTE copy.
   2267 		 */
   2268 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2269 		/*
   2270 		 * Change the protection of the page.
   2271 		 */
   2272 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2273 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2274 
   2275 		/*
   2276 		 * If the PVO is in the page table, update
   2277 		 * that pte at well.
   2278 		 */
   2279 		if (pt != NULL) {
   2280 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2281 			PVO_WHERE(pvo, PMAP_PROTECT);
   2282 			PMAPCOUNT(ptes_changed);
   2283 		}
   2284 
   2285 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2286 	}
   2287 	pmap_interrupts_restore(msr);
   2288 	PMAP_UNLOCK();
   2289 }
   2290 
   2291 void
   2292 pmap_unwire(pmap_t pm, vaddr_t va)
   2293 {
   2294 	struct pvo_entry *pvo;
   2295 	register_t msr;
   2296 
   2297 	PMAP_LOCK();
   2298 	msr = pmap_interrupts_off();
   2299 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2300 	if (pvo != NULL) {
   2301 		if (PVO_WIRED_P(pvo)) {
   2302 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2303 			pm->pm_stats.wired_count--;
   2304 		}
   2305 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2306 	}
   2307 	pmap_interrupts_restore(msr);
   2308 	PMAP_UNLOCK();
   2309 }
   2310 
   2311 /*
   2312  * Lower the protection on the specified physical page.
   2313  */
   2314 void
   2315 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2316 {
   2317 	struct pvo_head *pvo_head, pvol;
   2318 	struct pvo_entry *pvo, *next_pvo;
   2319 	volatile struct pte *pt;
   2320 	register_t msr;
   2321 
   2322 	PMAP_LOCK();
   2323 
   2324 	KASSERT(prot != VM_PROT_ALL);
   2325 	LIST_INIT(&pvol);
   2326 	msr = pmap_interrupts_off();
   2327 
   2328 	/*
   2329 	 * When UVM reuses a page, it does a pmap_page_protect with
   2330 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2331 	 * since we know the page will have different contents.
   2332 	 */
   2333 	if ((prot & VM_PROT_READ) == 0) {
   2334 		DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2335 		    VM_PAGE_TO_PHYS(pg));
   2336 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2337 			PMAPCOUNT(exec_uncached_page_protect);
   2338 			pmap_attr_clear(pg, PTE_EXEC);
   2339 		}
   2340 	}
   2341 
   2342 	pvo_head = vm_page_to_pvoh(pg);
   2343 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2344 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2345 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2346 
   2347 		/*
   2348 		 * Downgrading to no mapping at all, we just remove the entry.
   2349 		 */
   2350 		if ((prot & VM_PROT_READ) == 0) {
   2351 			pmap_pvo_remove(pvo, -1, &pvol);
   2352 			continue;
   2353 		}
   2354 
   2355 		/*
   2356 		 * If EXEC permission is being revoked, just clear the
   2357 		 * flag in the PVO.
   2358 		 */
   2359 		if ((prot & VM_PROT_EXECUTE) == 0)
   2360 			pvo_clear_exec(pvo);
   2361 
   2362 		/*
   2363 		 * If this entry is already RO, don't diddle with the
   2364 		 * page table.
   2365 		 */
   2366 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2367 			PMAP_PVO_CHECK(pvo);
   2368 			continue;
   2369 		}
   2370 
   2371 		/*
   2372 		 * Grab the PTE before the we diddle the bits so
   2373 		 * pvo_to_pte can verify the pte contents are as
   2374 		 * expected.
   2375 		 */
   2376 		pt = pmap_pvo_to_pte(pvo, -1);
   2377 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2378 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2379 		if (pt != NULL) {
   2380 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2381 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2382 			PMAPCOUNT(ptes_changed);
   2383 		}
   2384 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2385 	}
   2386 	pmap_interrupts_restore(msr);
   2387 	pmap_pvo_free_list(&pvol);
   2388 
   2389 	PMAP_UNLOCK();
   2390 }
   2391 
   2392 /*
   2393  * Activate the address space for the specified process.  If the process
   2394  * is the current process, load the new MMU context.
   2395  */
   2396 void
   2397 pmap_activate(struct lwp *l)
   2398 {
   2399 	struct pcb *pcb = lwp_getpcb(l);
   2400 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2401 
   2402 	DPRINTFN(ACTIVATE,
   2403 	    "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
   2404 
   2405 	/*
   2406 	 * XXX Normally performed in cpu_lwp_fork().
   2407 	 */
   2408 	pcb->pcb_pm = pmap;
   2409 
   2410 	/*
   2411 	* In theory, the SR registers need only be valid on return
   2412 	* to user space wait to do them there.
   2413 	*/
   2414 	if (l == curlwp) {
   2415 		/* Store pointer to new current pmap. */
   2416 		curpm = pmap;
   2417 	}
   2418 }
   2419 
   2420 /*
   2421  * Deactivate the specified process's address space.
   2422  */
   2423 void
   2424 pmap_deactivate(struct lwp *l)
   2425 {
   2426 }
   2427 
   2428 bool
   2429 pmap_query_bit(struct vm_page *pg, int ptebit)
   2430 {
   2431 	struct pvo_entry *pvo;
   2432 	volatile struct pte *pt;
   2433 	register_t msr;
   2434 
   2435 	PMAP_LOCK();
   2436 
   2437 	if (pmap_attr_fetch(pg) & ptebit) {
   2438 		PMAP_UNLOCK();
   2439 		return true;
   2440 	}
   2441 
   2442 	msr = pmap_interrupts_off();
   2443 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2444 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2445 		/*
   2446 		 * See if we saved the bit off.  If so cache, it and return
   2447 		 * success.
   2448 		 */
   2449 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2450 			pmap_attr_save(pg, ptebit);
   2451 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2452 			pmap_interrupts_restore(msr);
   2453 			PMAP_UNLOCK();
   2454 			return true;
   2455 		}
   2456 	}
   2457 	/*
   2458 	 * No luck, now go thru the hard part of looking at the ptes
   2459 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2460 	 * to the PTEs.
   2461 	 */
   2462 	SYNC();
   2463 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2464 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2465 		/*
   2466 		 * See if this pvo have a valid PTE.  If so, fetch the
   2467 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2468 		 * ptebit is set, cache, it and return success.
   2469 		 */
   2470 		pt = pmap_pvo_to_pte(pvo, -1);
   2471 		if (pt != NULL) {
   2472 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2473 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2474 				pmap_attr_save(pg, ptebit);
   2475 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2476 				pmap_interrupts_restore(msr);
   2477 				PMAP_UNLOCK();
   2478 				return true;
   2479 			}
   2480 		}
   2481 	}
   2482 	pmap_interrupts_restore(msr);
   2483 	PMAP_UNLOCK();
   2484 	return false;
   2485 }
   2486 
   2487 bool
   2488 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2489 {
   2490 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2491 	struct pvo_entry *pvo;
   2492 	volatile struct pte *pt;
   2493 	register_t msr;
   2494 	int rv = 0;
   2495 
   2496 	PMAP_LOCK();
   2497 	msr = pmap_interrupts_off();
   2498 
   2499 	/*
   2500 	 * Fetch the cache value
   2501 	 */
   2502 	rv |= pmap_attr_fetch(pg);
   2503 
   2504 	/*
   2505 	 * Clear the cached value.
   2506 	 */
   2507 	pmap_attr_clear(pg, ptebit);
   2508 
   2509 	/*
   2510 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2511 	 * can reset the right ones).  Note that since the pvo entries and
   2512 	 * list heads are accessed via BAT0 and are never placed in the
   2513 	 * page table, we don't have to worry about further accesses setting
   2514 	 * the REF/CHG bits.
   2515 	 */
   2516 	SYNC();
   2517 
   2518 	/*
   2519 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2520 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2521 	 */
   2522 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2523 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2524 		pt = pmap_pvo_to_pte(pvo, -1);
   2525 		if (pt != NULL) {
   2526 			/*
   2527 			 * Only sync the PTE if the bit we are looking
   2528 			 * for is not already set.
   2529 			 */
   2530 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2531 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2532 			/*
   2533 			 * If the bit we are looking for was already set,
   2534 			 * clear that bit in the pte.
   2535 			 */
   2536 			if (pvo->pvo_pte.pte_lo & ptebit)
   2537 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2538 		}
   2539 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2540 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2541 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2542 	}
   2543 	pmap_interrupts_restore(msr);
   2544 
   2545 	/*
   2546 	 * If we are clearing the modify bit and this page was marked EXEC
   2547 	 * and the user of the page thinks the page was modified, then we
   2548 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2549 	 * bit if it's not mapped.  The page itself might not have the CHG
   2550 	 * bit set if the modification was done via DMA to the page.
   2551 	 */
   2552 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2553 		if (LIST_EMPTY(pvoh)) {
   2554 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2555 			    VM_PAGE_TO_PHYS(pg));
   2556 			pmap_attr_clear(pg, PTE_EXEC);
   2557 			PMAPCOUNT(exec_uncached_clear_modify);
   2558 		} else {
   2559 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2560 			    VM_PAGE_TO_PHYS(pg));
   2561 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2562 			PMAPCOUNT(exec_synced_clear_modify);
   2563 		}
   2564 	}
   2565 	PMAP_UNLOCK();
   2566 	return (rv & ptebit) != 0;
   2567 }
   2568 
   2569 void
   2570 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2571 {
   2572 	struct pvo_entry *pvo;
   2573 	size_t offset = va & ADDR_POFF;
   2574 	int s;
   2575 
   2576 	PMAP_LOCK();
   2577 	s = splvm();
   2578 	while (len > 0) {
   2579 		size_t seglen = PAGE_SIZE - offset;
   2580 		if (seglen > len)
   2581 			seglen = len;
   2582 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2583 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2584 			pmap_syncicache(
   2585 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2586 			PMAP_PVO_CHECK(pvo);
   2587 		}
   2588 		va += seglen;
   2589 		len -= seglen;
   2590 		offset = 0;
   2591 	}
   2592 	splx(s);
   2593 	PMAP_UNLOCK();
   2594 }
   2595 
   2596 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2597 void
   2598 pmap_pte_print(volatile struct pte *pt)
   2599 {
   2600 	printf("PTE %p: ", pt);
   2601 
   2602 #if defined(PMAP_OEA)
   2603 	/* High word: */
   2604 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2605 #else
   2606 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2607 #endif /* PMAP_OEA */
   2608 
   2609 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2610 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2611 
   2612 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2613 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2614 	    pt->pte_hi & PTE_API);
   2615 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2616 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2617 #else
   2618 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2619 #endif /* PMAP_OEA */
   2620 
   2621 	/* Low word: */
   2622 #if defined (PMAP_OEA)
   2623 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2624 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2625 #else
   2626 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2627 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2628 #endif
   2629 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2630 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2631 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2632 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2633 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2634 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2635 	switch (pt->pte_lo & PTE_PP) {
   2636 	case PTE_BR: printf("br]\n"); break;
   2637 	case PTE_BW: printf("bw]\n"); break;
   2638 	case PTE_SO: printf("so]\n"); break;
   2639 	case PTE_SW: printf("sw]\n"); break;
   2640 	}
   2641 }
   2642 #endif
   2643 
   2644 #if defined(DDB)
   2645 void
   2646 pmap_pteg_check(void)
   2647 {
   2648 	volatile struct pte *pt;
   2649 	int i;
   2650 	int ptegidx;
   2651 	u_int p_valid = 0;
   2652 	u_int s_valid = 0;
   2653 	u_int invalid = 0;
   2654 
   2655 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2656 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2657 			if (pt->pte_hi & PTE_VALID) {
   2658 				if (pt->pte_hi & PTE_HID)
   2659 					s_valid++;
   2660 				else
   2661 				{
   2662 					p_valid++;
   2663 				}
   2664 			} else
   2665 				invalid++;
   2666 		}
   2667 	}
   2668 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2669 		p_valid, p_valid, s_valid, s_valid,
   2670 		invalid, invalid);
   2671 }
   2672 
   2673 void
   2674 pmap_print_mmuregs(void)
   2675 {
   2676 	int i;
   2677 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2678 	u_int cpuvers;
   2679 #endif
   2680 #ifndef PMAP_OEA64
   2681 	vaddr_t addr;
   2682 	register_t soft_sr[16];
   2683 #endif
   2684 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2685 	struct bat soft_ibat[4];
   2686 	struct bat soft_dbat[4];
   2687 #endif
   2688 	paddr_t sdr1;
   2689 
   2690 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2691 	cpuvers = MFPVR() >> 16;
   2692 #endif
   2693 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2694 #ifndef PMAP_OEA64
   2695 	addr = 0;
   2696 	for (i = 0; i < 16; i++) {
   2697 		soft_sr[i] = MFSRIN(addr);
   2698 		addr += (1 << ADDR_SR_SHFT);
   2699 	}
   2700 #endif
   2701 
   2702 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2703 	/* read iBAT (601: uBAT) registers */
   2704 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2705 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2706 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2707 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2708 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2709 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2710 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2711 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2712 
   2713 
   2714 	if (cpuvers != MPC601) {
   2715 		/* read dBAT registers */
   2716 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2717 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2718 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2719 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2720 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2721 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2722 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2723 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2724 	}
   2725 #endif
   2726 
   2727 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2728 #ifndef PMAP_OEA64
   2729 	printf("SR[]:\t");
   2730 	for (i = 0; i < 4; i++)
   2731 		printf("0x%08lx,   ", soft_sr[i]);
   2732 	printf("\n\t");
   2733 	for ( ; i < 8; i++)
   2734 		printf("0x%08lx,   ", soft_sr[i]);
   2735 	printf("\n\t");
   2736 	for ( ; i < 12; i++)
   2737 		printf("0x%08lx,   ", soft_sr[i]);
   2738 	printf("\n\t");
   2739 	for ( ; i < 16; i++)
   2740 		printf("0x%08lx,   ", soft_sr[i]);
   2741 	printf("\n");
   2742 #endif
   2743 
   2744 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2745 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2746 	for (i = 0; i < 4; i++) {
   2747 		printf("0x%08lx 0x%08lx, ",
   2748 			soft_ibat[i].batu, soft_ibat[i].batl);
   2749 		if (i == 1)
   2750 			printf("\n\t");
   2751 	}
   2752 	if (cpuvers != MPC601) {
   2753 		printf("\ndBAT[]:\t");
   2754 		for (i = 0; i < 4; i++) {
   2755 			printf("0x%08lx 0x%08lx, ",
   2756 				soft_dbat[i].batu, soft_dbat[i].batl);
   2757 			if (i == 1)
   2758 				printf("\n\t");
   2759 		}
   2760 	}
   2761 	printf("\n");
   2762 #endif /* PMAP_OEA... */
   2763 }
   2764 
   2765 void
   2766 pmap_print_pte(pmap_t pm, vaddr_t va)
   2767 {
   2768 	struct pvo_entry *pvo;
   2769 	volatile struct pte *pt;
   2770 	int pteidx;
   2771 
   2772 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2773 	if (pvo != NULL) {
   2774 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2775 		if (pt != NULL) {
   2776 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2777 				va, pt,
   2778 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2779 				pt->pte_hi, pt->pte_lo);
   2780 		} else {
   2781 			printf("No valid PTE found\n");
   2782 		}
   2783 	} else {
   2784 		printf("Address not in pmap\n");
   2785 	}
   2786 }
   2787 
   2788 void
   2789 pmap_pteg_dist(void)
   2790 {
   2791 	struct pvo_entry *pvo;
   2792 	int ptegidx;
   2793 	int depth;
   2794 	int max_depth = 0;
   2795 	unsigned int depths[64];
   2796 
   2797 	memset(depths, 0, sizeof(depths));
   2798 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2799 		depth = 0;
   2800 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2801 			depth++;
   2802 		}
   2803 		if (depth > max_depth)
   2804 			max_depth = depth;
   2805 		if (depth > 63)
   2806 			depth = 63;
   2807 		depths[depth]++;
   2808 	}
   2809 
   2810 	for (depth = 0; depth < 64; depth++) {
   2811 		printf("  [%2d]: %8u", depth, depths[depth]);
   2812 		if ((depth & 3) == 3)
   2813 			printf("\n");
   2814 		if (depth == max_depth)
   2815 			break;
   2816 	}
   2817 	if ((depth & 3) != 3)
   2818 		printf("\n");
   2819 	printf("Max depth found was %d\n", max_depth);
   2820 }
   2821 #endif /* DEBUG */
   2822 
   2823 #if defined(PMAPCHECK) || defined(DEBUG)
   2824 void
   2825 pmap_pvo_verify(void)
   2826 {
   2827 	int ptegidx;
   2828 	int s;
   2829 
   2830 	s = splvm();
   2831 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2832 		struct pvo_entry *pvo;
   2833 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2834 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2835 				panic("pmap_pvo_verify: invalid pvo %p "
   2836 				    "on list %#x", pvo, ptegidx);
   2837 			pmap_pvo_check(pvo);
   2838 		}
   2839 	}
   2840 	splx(s);
   2841 }
   2842 #endif /* PMAPCHECK */
   2843 
   2844 
   2845 void *
   2846 pmap_pool_ualloc(struct pool *pp, int flags)
   2847 {
   2848 	struct pvo_page *pvop;
   2849 
   2850 	if (uvm.page_init_done != true) {
   2851 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2852 	}
   2853 
   2854 	PMAP_LOCK();
   2855 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2856 	if (pvop != NULL) {
   2857 		pmap_upvop_free--;
   2858 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2859 		PMAP_UNLOCK();
   2860 		return pvop;
   2861 	}
   2862 	PMAP_UNLOCK();
   2863 	return pmap_pool_malloc(pp, flags);
   2864 }
   2865 
   2866 void *
   2867 pmap_pool_malloc(struct pool *pp, int flags)
   2868 {
   2869 	struct pvo_page *pvop;
   2870 	struct vm_page *pg;
   2871 
   2872 	PMAP_LOCK();
   2873 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2874 	if (pvop != NULL) {
   2875 		pmap_mpvop_free--;
   2876 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2877 		PMAP_UNLOCK();
   2878 		return pvop;
   2879 	}
   2880 	PMAP_UNLOCK();
   2881  again:
   2882 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2883 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2884 	if (__predict_false(pg == NULL)) {
   2885 		if (flags & PR_WAITOK) {
   2886 			uvm_wait("plpg");
   2887 			goto again;
   2888 		} else {
   2889 			return (0);
   2890 		}
   2891 	}
   2892 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2893 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2894 }
   2895 
   2896 void
   2897 pmap_pool_ufree(struct pool *pp, void *va)
   2898 {
   2899 	struct pvo_page *pvop;
   2900 #if 0
   2901 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2902 		pmap_pool_mfree(va, size, tag);
   2903 		return;
   2904 	}
   2905 #endif
   2906 	PMAP_LOCK();
   2907 	pvop = va;
   2908 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2909 	pmap_upvop_free++;
   2910 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2911 		pmap_upvop_maxfree = pmap_upvop_free;
   2912 	PMAP_UNLOCK();
   2913 }
   2914 
   2915 void
   2916 pmap_pool_mfree(struct pool *pp, void *va)
   2917 {
   2918 	struct pvo_page *pvop;
   2919 
   2920 	PMAP_LOCK();
   2921 	pvop = va;
   2922 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2923 	pmap_mpvop_free++;
   2924 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2925 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2926 	PMAP_UNLOCK();
   2927 #if 0
   2928 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2929 #endif
   2930 }
   2931 
   2932 /*
   2933  * This routine in bootstraping to steal to-be-managed memory (which will
   2934  * then be unmanaged).  We use it to grab from the first 256MB for our
   2935  * pmap needs and above 256MB for other stuff.
   2936  */
   2937 vaddr_t
   2938 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2939 {
   2940 	vsize_t size;
   2941 	vaddr_t va;
   2942 	paddr_t start, end, pa = 0;
   2943 	int npgs, freelist;
   2944 	uvm_physseg_t bank;
   2945 
   2946 	if (uvm.page_init_done == true)
   2947 		panic("pmap_steal_memory: called _after_ bootstrap");
   2948 
   2949 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2950 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2951 
   2952 	size = round_page(vsize);
   2953 	npgs = atop(size);
   2954 
   2955 	/*
   2956 	 * PA 0 will never be among those given to UVM so we can use it
   2957 	 * to indicate we couldn't steal any memory.
   2958 	 */
   2959 
   2960 	for (bank = uvm_physseg_get_first();
   2961 	     uvm_physseg_valid_p(bank);
   2962 	     bank = uvm_physseg_get_next(bank)) {
   2963 
   2964 		freelist = uvm_physseg_get_free_list(bank);
   2965 		start = uvm_physseg_get_start(bank);
   2966 		end = uvm_physseg_get_end(bank);
   2967 
   2968 		if (freelist == VM_FREELIST_FIRST256 &&
   2969 		    (end - start) >= npgs) {
   2970 			pa = ptoa(start);
   2971 			break;
   2972 		}
   2973 	}
   2974 
   2975 	if (pa == 0)
   2976 		panic("pmap_steal_memory: no approriate memory to steal!");
   2977 
   2978 	uvm_physseg_unplug(start, npgs);
   2979 
   2980 	va = (vaddr_t) pa;
   2981 	memset((void *) va, 0, size);
   2982 	pmap_pages_stolen += npgs;
   2983 #ifdef DEBUG
   2984 	if (pmapdebug && npgs > 1) {
   2985 		u_int cnt = 0;
   2986 	for (bank = uvm_physseg_get_first();
   2987 	     uvm_physseg_valid_p(bank);
   2988 	     bank = uvm_physseg_get_next(bank)) {
   2989 		cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
   2990 		}
   2991 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2992 		    npgs, pmap_pages_stolen, cnt);
   2993 	}
   2994 #endif
   2995 
   2996 	return va;
   2997 }
   2998 
   2999 /*
   3000  * Find a chuck of memory with right size and alignment.
   3001  */
   3002 paddr_t
   3003 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   3004 {
   3005 	struct mem_region *mp;
   3006 	paddr_t s, e;
   3007 	int i, j;
   3008 
   3009 	size = round_page(size);
   3010 
   3011 	DPRINTFN(BOOT,
   3012 	    "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   3013 	    size, alignment, at_end);
   3014 
   3015 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   3016 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   3017 		    alignment);
   3018 
   3019 	if (at_end) {
   3020 		if (alignment != PAGE_SIZE)
   3021 			panic("pmap_boot_find_memory: invalid ending "
   3022 			    "alignment %#" _PRIxpa, alignment);
   3023 
   3024 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3025 			s = mp->start + mp->size - size;
   3026 			if (s >= mp->start && mp->size >= size) {
   3027 				DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3028 				DPRINTFN(BOOT,
   3029 				    "pmap_boot_find_memory: b-avail[%d] start "
   3030 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3031 				     mp->start, mp->size);
   3032 				mp->size -= size;
   3033 				DPRINTFN(BOOT,
   3034 				    "pmap_boot_find_memory: a-avail[%d] start "
   3035 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3036 				     mp->start, mp->size);
   3037 				return s;
   3038 			}
   3039 		}
   3040 		panic("pmap_boot_find_memory: no available memory");
   3041 	}
   3042 
   3043 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3044 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3045 		e = s + size;
   3046 
   3047 		/*
   3048 		 * Is the calculated region entirely within the region?
   3049 		 */
   3050 		if (s < mp->start || e > mp->start + mp->size)
   3051 			continue;
   3052 
   3053 		DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3054 		if (s == mp->start) {
   3055 			/*
   3056 			 * If the block starts at the beginning of region,
   3057 			 * adjust the size & start. (the region may now be
   3058 			 * zero in length)
   3059 			 */
   3060 			DPRINTFN(BOOT,
   3061 			    "pmap_boot_find_memory: b-avail[%d] start "
   3062 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3063 			mp->start += size;
   3064 			mp->size -= size;
   3065 			DPRINTFN(BOOT,
   3066 			    "pmap_boot_find_memory: a-avail[%d] start "
   3067 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3068 		} else if (e == mp->start + mp->size) {
   3069 			/*
   3070 			 * If the block starts at the beginning of region,
   3071 			 * adjust only the size.
   3072 			 */
   3073 			DPRINTFN(BOOT,
   3074 			    "pmap_boot_find_memory: b-avail[%d] start "
   3075 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3076 			mp->size -= size;
   3077 			DPRINTFN(BOOT,
   3078 			    "pmap_boot_find_memory: a-avail[%d] start "
   3079 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3080 		} else {
   3081 			/*
   3082 			 * Block is in the middle of the region, so we
   3083 			 * have to split it in two.
   3084 			 */
   3085 			for (j = avail_cnt; j > i + 1; j--) {
   3086 				avail[j] = avail[j-1];
   3087 			}
   3088 			DPRINTFN(BOOT,
   3089 			    "pmap_boot_find_memory: b-avail[%d] start "
   3090 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3091 			mp[1].start = e;
   3092 			mp[1].size = mp[0].start + mp[0].size - e;
   3093 			mp[0].size = s - mp[0].start;
   3094 			avail_cnt++;
   3095 			for (; i < avail_cnt; i++) {
   3096 				DPRINTFN(BOOT,
   3097 				    "pmap_boot_find_memory: a-avail[%d] "
   3098 				    "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3099 				     avail[i].start, avail[i].size);
   3100 			}
   3101 		}
   3102 		KASSERT(s == (uintptr_t) s);
   3103 		return s;
   3104 	}
   3105 	panic("pmap_boot_find_memory: not enough memory for "
   3106 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3107 }
   3108 
   3109 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3110 #if defined (PMAP_OEA64_BRIDGE)
   3111 int
   3112 pmap_setup_segment0_map(int use_large_pages, ...)
   3113 {
   3114     vaddr_t va, va_end;
   3115 
   3116     register_t pte_lo = 0x0;
   3117     int ptegidx = 0;
   3118     struct pte pte;
   3119     va_list ap;
   3120 
   3121     /* Coherent + Supervisor RW, no user access */
   3122     pte_lo = PTE_M;
   3123 
   3124     /* XXXSL
   3125      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3126      * these have to take priority.
   3127      */
   3128     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3129         ptegidx = va_to_pteg(pmap_kernel(), va);
   3130         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3131         (void)pmap_pte_insert(ptegidx, &pte);
   3132     }
   3133 
   3134     va_start(ap, use_large_pages);
   3135     while (1) {
   3136         paddr_t pa;
   3137         size_t size;
   3138 
   3139         va = va_arg(ap, vaddr_t);
   3140 
   3141         if (va == 0)
   3142             break;
   3143 
   3144         pa = va_arg(ap, paddr_t);
   3145         size = va_arg(ap, size_t);
   3146 
   3147         for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
   3148 #if 0
   3149 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3150 #endif
   3151             ptegidx = va_to_pteg(pmap_kernel(), va);
   3152             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3153             (void)pmap_pte_insert(ptegidx, &pte);
   3154         }
   3155     }
   3156     va_end(ap);
   3157 
   3158     TLBSYNC();
   3159     SYNC();
   3160     return (0);
   3161 }
   3162 #endif /* PMAP_OEA64_BRIDGE */
   3163 
   3164 /*
   3165  * Set up the bottom level of the data structures necessary for the kernel
   3166  * to manage memory.  MMU hardware is programmed in pmap_bootstrap2().
   3167  */
   3168 void
   3169 pmap_bootstrap1(paddr_t kernelstart, paddr_t kernelend)
   3170 {
   3171 	struct mem_region *mp, tmp;
   3172 	paddr_t s, e;
   3173 	psize_t size;
   3174 	int i, j;
   3175 
   3176 	/*
   3177 	 * Get memory.
   3178 	 */
   3179 	mem_regions(&mem, &avail);
   3180 #if defined(DEBUG)
   3181 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3182 		printf("pmap_bootstrap: memory configuration:\n");
   3183 		for (mp = mem; mp->size; mp++) {
   3184 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3185 				mp->start, mp->size);
   3186 		}
   3187 		for (mp = avail; mp->size; mp++) {
   3188 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3189 				mp->start, mp->size);
   3190 		}
   3191 	}
   3192 #endif
   3193 
   3194 	/*
   3195 	 * Find out how much physical memory we have and in how many chunks.
   3196 	 */
   3197 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3198 		if (mp->start >= pmap_memlimit)
   3199 			continue;
   3200 		if (mp->start + mp->size > pmap_memlimit) {
   3201 			size = pmap_memlimit - mp->start;
   3202 			physmem += btoc(size);
   3203 		} else {
   3204 			physmem += btoc(mp->size);
   3205 		}
   3206 		mem_cnt++;
   3207 	}
   3208 
   3209 	/*
   3210 	 * Count the number of available entries.
   3211 	 */
   3212 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3213 		avail_cnt++;
   3214 
   3215 	/*
   3216 	 * Page align all regions.
   3217 	 */
   3218 	kernelstart = trunc_page(kernelstart);
   3219 	kernelend = round_page(kernelend);
   3220 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3221 		s = round_page(mp->start);
   3222 		mp->size -= (s - mp->start);
   3223 		mp->size = trunc_page(mp->size);
   3224 		mp->start = s;
   3225 		e = mp->start + mp->size;
   3226 
   3227 		DPRINTFN(BOOT,
   3228 		    "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3229 		    i, mp->start, mp->size);
   3230 
   3231 		/*
   3232 		 * Don't allow the end to run beyond our artificial limit
   3233 		 */
   3234 		if (e > pmap_memlimit)
   3235 			e = pmap_memlimit;
   3236 
   3237 		/*
   3238 		 * Is this region empty or strange?  skip it.
   3239 		 */
   3240 		if (e <= s) {
   3241 			mp->start = 0;
   3242 			mp->size = 0;
   3243 			continue;
   3244 		}
   3245 
   3246 		/*
   3247 		 * Does this overlap the beginning of kernel?
   3248 		 *   Does extend past the end of the kernel?
   3249 		 */
   3250 		else if (s < kernelstart && e > kernelstart) {
   3251 			if (e > kernelend) {
   3252 				avail[avail_cnt].start = kernelend;
   3253 				avail[avail_cnt].size = e - kernelend;
   3254 				avail_cnt++;
   3255 			}
   3256 			mp->size = kernelstart - s;
   3257 		}
   3258 		/*
   3259 		 * Check whether this region overlaps the end of the kernel.
   3260 		 */
   3261 		else if (s < kernelend && e > kernelend) {
   3262 			mp->start = kernelend;
   3263 			mp->size = e - kernelend;
   3264 		}
   3265 		/*
   3266 		 * Look whether this regions is completely inside the kernel.
   3267 		 * Nuke it if it does.
   3268 		 */
   3269 		else if (s >= kernelstart && e <= kernelend) {
   3270 			mp->start = 0;
   3271 			mp->size = 0;
   3272 		}
   3273 		/*
   3274 		 * If the user imposed a memory limit, enforce it.
   3275 		 */
   3276 		else if (s >= pmap_memlimit) {
   3277 			mp->start = -PAGE_SIZE;	/* let's know why */
   3278 			mp->size = 0;
   3279 		}
   3280 		else {
   3281 			mp->start = s;
   3282 			mp->size = e - s;
   3283 		}
   3284 		DPRINTFN(BOOT,
   3285 		    "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3286 		    i, mp->start, mp->size);
   3287 	}
   3288 
   3289 	/*
   3290 	 * Move (and uncount) all the null return to the end.
   3291 	 */
   3292 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3293 		if (mp->size == 0) {
   3294 			tmp = avail[i];
   3295 			avail[i] = avail[--avail_cnt];
   3296 			avail[avail_cnt] = avail[i];
   3297 		}
   3298 	}
   3299 
   3300 	/*
   3301 	 * (Bubble)sort them into ascending order.
   3302 	 */
   3303 	for (i = 0; i < avail_cnt; i++) {
   3304 		for (j = i + 1; j < avail_cnt; j++) {
   3305 			if (avail[i].start > avail[j].start) {
   3306 				tmp = avail[i];
   3307 				avail[i] = avail[j];
   3308 				avail[j] = tmp;
   3309 			}
   3310 		}
   3311 	}
   3312 
   3313 	/*
   3314 	 * Make sure they don't overlap.
   3315 	 */
   3316 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3317 		if (mp[0].start + mp[0].size > mp[1].start) {
   3318 			mp[0].size = mp[1].start - mp[0].start;
   3319 		}
   3320 		DPRINTFN(BOOT,
   3321 		    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3322 		    i, mp->start, mp->size);
   3323 	}
   3324 	DPRINTFN(BOOT,
   3325 	    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3326 	    i, mp->start, mp->size);
   3327 
   3328 #ifdef	PTEGCOUNT
   3329 	pmap_pteg_cnt = PTEGCOUNT;
   3330 #else /* PTEGCOUNT */
   3331 
   3332 	pmap_pteg_cnt = 0x1000;
   3333 
   3334 	while (pmap_pteg_cnt < physmem)
   3335 		pmap_pteg_cnt <<= 1;
   3336 
   3337 	pmap_pteg_cnt >>= 1;
   3338 #endif /* PTEGCOUNT */
   3339 
   3340 #ifdef DEBUG
   3341 	DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
   3342 #endif
   3343 
   3344 	/*
   3345 	 * Find suitably aligned memory for PTEG hash table.
   3346 	 */
   3347 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3348 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3349 
   3350 #ifdef DEBUG
   3351 	DPRINTFN(BOOT,
   3352 		"PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
   3353 #endif
   3354 
   3355 
   3356 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3357 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3358 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3359 		    pmap_pteg_table, size);
   3360 #endif
   3361 
   3362 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3363 		pmap_pteg_cnt * sizeof(struct pteg));
   3364 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3365 
   3366 	/*
   3367 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3368 	 * with pages.  So we just steal them before giving them to UVM.
   3369 	 */
   3370 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3371 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3372 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3373 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3374 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3375 		    pmap_pvo_table, size);
   3376 #endif
   3377 
   3378 	for (i = 0; i < pmap_pteg_cnt; i++)
   3379 		TAILQ_INIT(&pmap_pvo_table[i]);
   3380 
   3381 #ifndef MSGBUFADDR
   3382 	/*
   3383 	 * Allocate msgbuf in high memory.
   3384 	 */
   3385 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3386 #endif
   3387 
   3388 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3389 		paddr_t pfstart = atop(mp->start);
   3390 		paddr_t pfend = atop(mp->start + mp->size);
   3391 		if (mp->size == 0)
   3392 			continue;
   3393 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3394 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3395 				VM_FREELIST_FIRST256);
   3396 		} else if (mp->start >= SEGMENT_LENGTH) {
   3397 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3398 				VM_FREELIST_DEFAULT);
   3399 		} else {
   3400 			pfend = atop(SEGMENT_LENGTH);
   3401 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3402 				VM_FREELIST_FIRST256);
   3403 			pfstart = atop(SEGMENT_LENGTH);
   3404 			pfend = atop(mp->start + mp->size);
   3405 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3406 				VM_FREELIST_DEFAULT);
   3407 		}
   3408 	}
   3409 
   3410 	/*
   3411 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3412 	 */
   3413 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3414 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3415 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3416 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3417 	pmap_vsid_bitmap[0] |= 1;
   3418 
   3419 	/*
   3420 	 * Initialize kernel pmap.
   3421 	 */
   3422 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   3423 	for (i = 0; i < 16; i++) {
   3424  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3425 	}
   3426 	pmap_kernel()->pm_vsid = KERNEL_VSIDBITS;
   3427 
   3428 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3429 #ifdef KERNEL2_SR
   3430 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3431 #endif
   3432 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3433 
   3434 #if defined(PMAP_OEA) && defined(PPC_OEA601)
   3435 	if ((MFPVR() >> 16) == MPC601) {
   3436 		for (i = 0; i < 16; i++) {
   3437 			if (iosrtable[i] & SR601_T) {
   3438 				pmap_kernel()->pm_sr[i] = iosrtable[i];
   3439 			}
   3440 		}
   3441 	}
   3442 #endif /* PMAP_OEA && PPC_OEA601 */
   3443 
   3444 #ifdef ALTIVEC
   3445 	pmap_use_altivec = cpu_altivec;
   3446 #endif
   3447 
   3448 #ifdef DEBUG
   3449 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3450 		u_int cnt;
   3451 		uvm_physseg_t bank;
   3452 		char pbuf[9];
   3453 		for (cnt = 0, bank = uvm_physseg_get_first();
   3454 		     uvm_physseg_valid_p(bank);
   3455 		     bank = uvm_physseg_get_next(bank)) {
   3456 			cnt += uvm_physseg_get_avail_end(bank) -
   3457 			    uvm_physseg_get_avail_start(bank);
   3458 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3459 			    bank,
   3460 			    ptoa(uvm_physseg_get_avail_start(bank)),
   3461 			    ptoa(uvm_physseg_get_avail_end(bank)),
   3462 			    ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
   3463 		}
   3464 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3465 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3466 		    pbuf, cnt);
   3467 	}
   3468 #endif
   3469 
   3470 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3471 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3472 	    &pmap_pool_uallocator, IPL_VM);
   3473 
   3474 	pool_setlowat(&pmap_upvo_pool, 252);
   3475 
   3476 	pool_init(&pmap_pool, sizeof(struct pmap),
   3477 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3478 	    IPL_NONE);
   3479 
   3480 #if defined(PMAP_NEED_MAPKERNEL)
   3481 	{
   3482 		struct pmap *pm = pmap_kernel();
   3483 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3484 		extern int etext[], kernel_text[];
   3485 		vaddr_t va, va_etext = (paddr_t) etext;
   3486 #endif
   3487 		paddr_t pa, pa_end;
   3488 		register_t sr;
   3489 		struct pte pt;
   3490 		unsigned int ptegidx;
   3491 		int bank;
   3492 
   3493 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3494 		pm->pm_sr[0] = sr;
   3495 
   3496 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3497 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3498 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3499 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3500 				ptegidx = va_to_pteg(pm, pa);
   3501 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3502 				pmap_pte_insert(ptegidx, &pt);
   3503 			}
   3504 		}
   3505 
   3506 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3507 		va = (vaddr_t) kernel_text;
   3508 
   3509 		for (pa = kernelstart; va < va_etext;
   3510 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3511 			ptegidx = va_to_pteg(pm, va);
   3512 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3513 			pmap_pte_insert(ptegidx, &pt);
   3514 		}
   3515 
   3516 		for (; pa < kernelend;
   3517 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3518 			ptegidx = va_to_pteg(pm, va);
   3519 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3520 			pmap_pte_insert(ptegidx, &pt);
   3521 		}
   3522 
   3523 		for (va = 0, pa = 0; va < kernelstart;
   3524 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3525 			ptegidx = va_to_pteg(pm, va);
   3526 			if (va < 0x3000)
   3527 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3528 			else
   3529 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3530 			pmap_pte_insert(ptegidx, &pt);
   3531 		}
   3532 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3533 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3534 			ptegidx = va_to_pteg(pm, va);
   3535 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3536 			pmap_pte_insert(ptegidx, &pt);
   3537 		}
   3538 #endif /* PMAP_NEED_FULL_MAPKERNEL */
   3539 	}
   3540 #endif /* PMAP_NEED_MAPKERNEL */
   3541 }
   3542 
   3543 /*
   3544  * Using the data structures prepared in pmap_bootstrap1(), program
   3545  * the MMU hardware.
   3546  */
   3547 void
   3548 pmap_bootstrap2(void)
   3549 {
   3550 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   3551 	for (int i = 0; i < 16; i++) {
   3552 		__asm volatile("mtsrin %0,%1"
   3553 			:: "r"(pmap_kernel()->pm_sr[i]),
   3554 			   "r"(i << ADDR_SR_SHFT));
   3555 	}
   3556 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3557 
   3558 #if defined(PMAP_OEA)
   3559 	 __asm volatile("sync; mtsdr1 %0; isync"
   3560 		:: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3561 #elif defined(PMAP_OEA64) || defined(PMAP_OEA64_BRIDGE)
   3562 	__asm __volatile("sync; mtsdr1 %0; isync"
   3563 		:: "r"((uintptr_t)pmap_pteg_table |
   3564 		       (32 - __builtin_clz(pmap_pteg_mask >> 11))));
   3565 #endif
   3566 	tlbia();
   3567 
   3568 #if defined(PMAPDEBUG)
   3569 	if (pmapdebug)
   3570 	    pmap_print_mmuregs();
   3571 #endif
   3572 }
   3573 
   3574 /*
   3575  * This is not part of the defined PMAP interface and is specific to the
   3576  * PowerPC architecture.  This is called during initppc, before the system
   3577  * is really initialized.
   3578  */
   3579 void
   3580 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3581 {
   3582 	pmap_bootstrap1(kernelstart, kernelend);
   3583 	pmap_bootstrap2();
   3584 }
   3585