pmap.c revision 1.114 1 /* $NetBSD: pmap.c,v 1.114 2022/05/09 11:39:44 rin Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.114 2022/05/09 11:39:44 rin Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #ifdef _KERNEL_OPT
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74 #include "opt_ppcarch.h"
75 #endif
76
77 #include <sys/param.h>
78 #include <sys/proc.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83 #include <sys/atomic.h>
84
85 #include <uvm/uvm.h>
86 #include <uvm/uvm_physseg.h>
87
88 #include <machine/powerpc.h>
89 #include <powerpc/bat.h>
90 #include <powerpc/pcb.h>
91 #include <powerpc/psl.h>
92 #include <powerpc/spr.h>
93 #include <powerpc/oea/spr.h>
94 #include <powerpc/oea/sr_601.h>
95
96 #ifdef ALTIVEC
97 extern int pmap_use_altivec;
98 #endif
99
100 #ifdef PMAP_MEMLIMIT
101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
102 #else
103 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
104 #endif
105
106 extern struct pmap kernel_pmap_;
107 static unsigned int pmap_pages_stolen;
108 static u_long pmap_pte_valid;
109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
110 static u_long pmap_pvo_enter_depth;
111 static u_long pmap_pvo_remove_depth;
112 #endif
113
114 #ifndef MSGBUFADDR
115 extern paddr_t msgbuf_paddr;
116 #endif
117
118 static struct mem_region *mem, *avail;
119 static u_int mem_cnt, avail_cnt;
120
121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
122 # define PMAP_OEA 1
123 #endif
124
125 #if defined(PMAP_OEA)
126 #define _PRIxpte "lx"
127 #else
128 #define _PRIxpte PRIx64
129 #endif
130 #define _PRIxpa "lx"
131 #define _PRIxva "lx"
132 #define _PRIsr "lx"
133
134 #ifdef PMAP_NEEDS_FIXUP
135 #if defined(PMAP_OEA)
136 #define PMAPNAME(name) pmap32_##name
137 #elif defined(PMAP_OEA64)
138 #define PMAPNAME(name) pmap64_##name
139 #elif defined(PMAP_OEA64_BRIDGE)
140 #define PMAPNAME(name) pmap64bridge_##name
141 #else
142 #error unknown variant for pmap
143 #endif
144 #endif /* PMAP_NEEDS_FIXUP */
145
146 #ifdef PMAPNAME
147 #define STATIC static
148 #define pmap_pte_spill PMAPNAME(pte_spill)
149 #define pmap_real_memory PMAPNAME(real_memory)
150 #define pmap_init PMAPNAME(init)
151 #define pmap_virtual_space PMAPNAME(virtual_space)
152 #define pmap_create PMAPNAME(create)
153 #define pmap_reference PMAPNAME(reference)
154 #define pmap_destroy PMAPNAME(destroy)
155 #define pmap_copy PMAPNAME(copy)
156 #define pmap_update PMAPNAME(update)
157 #define pmap_enter PMAPNAME(enter)
158 #define pmap_remove PMAPNAME(remove)
159 #define pmap_kenter_pa PMAPNAME(kenter_pa)
160 #define pmap_kremove PMAPNAME(kremove)
161 #define pmap_extract PMAPNAME(extract)
162 #define pmap_protect PMAPNAME(protect)
163 #define pmap_unwire PMAPNAME(unwire)
164 #define pmap_page_protect PMAPNAME(page_protect)
165 #define pmap_pv_protect PMAPNAME(pv_protect)
166 #define pmap_query_bit PMAPNAME(query_bit)
167 #define pmap_clear_bit PMAPNAME(clear_bit)
168
169 #define pmap_activate PMAPNAME(activate)
170 #define pmap_deactivate PMAPNAME(deactivate)
171
172 #define pmap_pinit PMAPNAME(pinit)
173 #define pmap_procwr PMAPNAME(procwr)
174
175 #define pmap_pool PMAPNAME(pool)
176 #define pmap_pvo_pool PMAPNAME(pvo_pool)
177 #define pmap_pvo_table PMAPNAME(pvo_table)
178 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
179 #define pmap_pte_print PMAPNAME(pte_print)
180 #define pmap_pteg_check PMAPNAME(pteg_check)
181 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
182 #define pmap_print_pte PMAPNAME(print_pte)
183 #define pmap_pteg_dist PMAPNAME(pteg_dist)
184 #endif
185 #if defined(DEBUG) || defined(PMAPCHECK)
186 #define pmap_pvo_verify PMAPNAME(pvo_verify)
187 #define pmapcheck PMAPNAME(check)
188 #endif
189 #if defined(DEBUG) || defined(PMAPDEBUG)
190 #define pmapdebug PMAPNAME(debug)
191 #endif
192 #define pmap_steal_memory PMAPNAME(steal_memory)
193 #define pmap_bootstrap PMAPNAME(bootstrap)
194 #define pmap_bootstrap1 PMAPNAME(bootstrap1)
195 #define pmap_bootstrap2 PMAPNAME(bootstrap2)
196 #else
197 #define STATIC /* nothing */
198 #endif /* PMAPNAME */
199
200 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
201 STATIC void pmap_real_memory(paddr_t *, psize_t *);
202 STATIC void pmap_init(void);
203 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
204 STATIC pmap_t pmap_create(void);
205 STATIC void pmap_reference(pmap_t);
206 STATIC void pmap_destroy(pmap_t);
207 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
208 STATIC void pmap_update(pmap_t);
209 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
210 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
211 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
212 STATIC void pmap_kremove(vaddr_t, vsize_t);
213 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
214
215 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
216 STATIC void pmap_unwire(pmap_t, vaddr_t);
217 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
218 STATIC void pmap_pv_protect(paddr_t, vm_prot_t);
219 STATIC bool pmap_query_bit(struct vm_page *, int);
220 STATIC bool pmap_clear_bit(struct vm_page *, int);
221
222 STATIC void pmap_activate(struct lwp *);
223 STATIC void pmap_deactivate(struct lwp *);
224
225 STATIC void pmap_pinit(pmap_t pm);
226 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
227
228 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
229 STATIC void pmap_pte_print(volatile struct pte *);
230 STATIC void pmap_pteg_check(void);
231 STATIC void pmap_print_mmuregs(void);
232 STATIC void pmap_print_pte(pmap_t, vaddr_t);
233 STATIC void pmap_pteg_dist(void);
234 #endif
235 #if defined(DEBUG) || defined(PMAPCHECK)
236 STATIC void pmap_pvo_verify(void);
237 #endif
238 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
239 STATIC void pmap_bootstrap(paddr_t, paddr_t);
240 STATIC void pmap_bootstrap1(paddr_t, paddr_t);
241 STATIC void pmap_bootstrap2(void);
242
243 #ifdef PMAPNAME
244 const struct pmap_ops PMAPNAME(ops) = {
245 .pmapop_pte_spill = pmap_pte_spill,
246 .pmapop_real_memory = pmap_real_memory,
247 .pmapop_init = pmap_init,
248 .pmapop_virtual_space = pmap_virtual_space,
249 .pmapop_create = pmap_create,
250 .pmapop_reference = pmap_reference,
251 .pmapop_destroy = pmap_destroy,
252 .pmapop_copy = pmap_copy,
253 .pmapop_update = pmap_update,
254 .pmapop_enter = pmap_enter,
255 .pmapop_remove = pmap_remove,
256 .pmapop_kenter_pa = pmap_kenter_pa,
257 .pmapop_kremove = pmap_kremove,
258 .pmapop_extract = pmap_extract,
259 .pmapop_protect = pmap_protect,
260 .pmapop_unwire = pmap_unwire,
261 .pmapop_page_protect = pmap_page_protect,
262 .pmapop_pv_protect = pmap_pv_protect,
263 .pmapop_query_bit = pmap_query_bit,
264 .pmapop_clear_bit = pmap_clear_bit,
265 .pmapop_activate = pmap_activate,
266 .pmapop_deactivate = pmap_deactivate,
267 .pmapop_pinit = pmap_pinit,
268 .pmapop_procwr = pmap_procwr,
269 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
270 .pmapop_pte_print = pmap_pte_print,
271 .pmapop_pteg_check = pmap_pteg_check,
272 .pmapop_print_mmuregs = pmap_print_mmuregs,
273 .pmapop_print_pte = pmap_print_pte,
274 .pmapop_pteg_dist = pmap_pteg_dist,
275 #else
276 .pmapop_pte_print = NULL,
277 .pmapop_pteg_check = NULL,
278 .pmapop_print_mmuregs = NULL,
279 .pmapop_print_pte = NULL,
280 .pmapop_pteg_dist = NULL,
281 #endif
282 #if defined(DEBUG) || defined(PMAPCHECK)
283 .pmapop_pvo_verify = pmap_pvo_verify,
284 #else
285 .pmapop_pvo_verify = NULL,
286 #endif
287 .pmapop_steal_memory = pmap_steal_memory,
288 .pmapop_bootstrap = pmap_bootstrap,
289 .pmapop_bootstrap1 = pmap_bootstrap1,
290 .pmapop_bootstrap2 = pmap_bootstrap2,
291 };
292 #endif /* !PMAPNAME */
293
294 /*
295 * The following structure is aligned to 32 bytes
296 */
297 struct pvo_entry {
298 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
299 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
300 struct pte pvo_pte; /* Prebuilt PTE */
301 pmap_t pvo_pmap; /* ptr to owning pmap */
302 vaddr_t pvo_vaddr; /* VA of entry */
303 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
304 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
305 #define PVO_WIRED 0x0010 /* PVO entry is wired */
306 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
307 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
308 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
309 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
310 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
311 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
312 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
313 #define PVO_SPILL_SET 2 /* PVO has been spilled */
314 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
315 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
316 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
317 #define PVO_REMOVE 6 /* PVO has been removed */
318 #define PVO_WHERE_MASK 15
319 #define PVO_WHERE_SHFT 8
320 } __attribute__ ((aligned (32)));
321 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
322 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
323 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
324 #define PVO_PTEGIDX_CLR(pvo) \
325 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
326 #define PVO_PTEGIDX_SET(pvo,i) \
327 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
328 #define PVO_WHERE(pvo,w) \
329 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
330 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
331
332 TAILQ_HEAD(pvo_tqhead, pvo_entry);
333 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
334
335 struct pool pmap_pool; /* pool for pmap structures */
336 struct pool pmap_pvo_pool; /* pool for pvo entries */
337
338 /*
339 * We keep a cache of unmanaged pages to be used for pvo entries for
340 * unmanaged pages.
341 */
342 struct pvo_page {
343 SIMPLEQ_ENTRY(pvo_page) pvop_link;
344 };
345 SIMPLEQ_HEAD(pvop_head, pvo_page);
346 static struct pvop_head pmap_pvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_pvop_head);
347 static u_long pmap_pvop_free;
348 static u_long pmap_pvop_maxfree;
349
350 static void *pmap_pool_alloc(struct pool *, int);
351 static void pmap_pool_free(struct pool *, void *);
352
353 static struct pool_allocator pmap_pool_allocator = {
354 .pa_alloc = pmap_pool_alloc,
355 .pa_free = pmap_pool_free,
356 .pa_pagesz = 0,
357 };
358
359 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
360 void pmap_pte_print(volatile struct pte *);
361 void pmap_pteg_check(void);
362 void pmap_pteg_dist(void);
363 void pmap_print_pte(pmap_t, vaddr_t);
364 void pmap_print_mmuregs(void);
365 #endif
366
367 #if defined(DEBUG) || defined(PMAPCHECK)
368 #ifdef PMAPCHECK
369 int pmapcheck = 1;
370 #else
371 int pmapcheck = 0;
372 #endif
373 void pmap_pvo_verify(void);
374 static void pmap_pvo_check(const struct pvo_entry *);
375 #define PMAP_PVO_CHECK(pvo) \
376 do { \
377 if (pmapcheck) \
378 pmap_pvo_check(pvo); \
379 } while (0)
380 #else
381 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
382 #endif
383 static int pmap_pte_insert(int, struct pte *);
384 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
385 vaddr_t, paddr_t, register_t, int);
386 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
387 static void pmap_pvo_free(struct pvo_entry *);
388 static void pmap_pvo_free_list(struct pvo_head *);
389 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
390 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
391 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
392 static void pvo_set_exec(struct pvo_entry *);
393 static void pvo_clear_exec(struct pvo_entry *);
394
395 static void tlbia(void);
396
397 static void pmap_release(pmap_t);
398 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
399
400 static uint32_t pmap_pvo_reclaim_nextidx;
401 #ifdef DEBUG
402 static int pmap_pvo_reclaim_debugctr;
403 #endif
404
405 #define VSID_NBPW (sizeof(uint32_t) * 8)
406 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
407
408 static int pmap_initialized;
409
410 #if defined(DEBUG) || defined(PMAPDEBUG)
411 #define PMAPDEBUG_BOOT 0x0001
412 #define PMAPDEBUG_PTE 0x0002
413 #define PMAPDEBUG_EXEC 0x0008
414 #define PMAPDEBUG_PVOENTER 0x0010
415 #define PMAPDEBUG_PVOREMOVE 0x0020
416 #define PMAPDEBUG_ACTIVATE 0x0100
417 #define PMAPDEBUG_CREATE 0x0200
418 #define PMAPDEBUG_ENTER 0x1000
419 #define PMAPDEBUG_KENTER 0x2000
420 #define PMAPDEBUG_KREMOVE 0x4000
421 #define PMAPDEBUG_REMOVE 0x8000
422
423 unsigned int pmapdebug = 0;
424
425 # define DPRINTF(x, ...) printf(x, __VA_ARGS__)
426 # define DPRINTFN(n, x, ...) do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
427 #else
428 # define DPRINTF(x, ...) do { } while (0)
429 # define DPRINTFN(n, x, ...) do { } while (0)
430 #endif
431
432
433 #ifdef PMAPCOUNTERS
434 /*
435 * From pmap_subr.c
436 */
437 extern struct evcnt pmap_evcnt_mappings;
438 extern struct evcnt pmap_evcnt_unmappings;
439
440 extern struct evcnt pmap_evcnt_kernel_mappings;
441 extern struct evcnt pmap_evcnt_kernel_unmappings;
442
443 extern struct evcnt pmap_evcnt_mappings_replaced;
444
445 extern struct evcnt pmap_evcnt_exec_mappings;
446 extern struct evcnt pmap_evcnt_exec_cached;
447
448 extern struct evcnt pmap_evcnt_exec_synced;
449 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
450 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
451
452 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
453 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
454 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
455 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
456 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
457
458 extern struct evcnt pmap_evcnt_updates;
459 extern struct evcnt pmap_evcnt_collects;
460 extern struct evcnt pmap_evcnt_copies;
461
462 extern struct evcnt pmap_evcnt_ptes_spilled;
463 extern struct evcnt pmap_evcnt_ptes_unspilled;
464 extern struct evcnt pmap_evcnt_ptes_evicted;
465
466 extern struct evcnt pmap_evcnt_ptes_primary[8];
467 extern struct evcnt pmap_evcnt_ptes_secondary[8];
468 extern struct evcnt pmap_evcnt_ptes_removed;
469 extern struct evcnt pmap_evcnt_ptes_changed;
470 extern struct evcnt pmap_evcnt_pvos_reclaimed;
471 extern struct evcnt pmap_evcnt_pvos_failed;
472
473 extern struct evcnt pmap_evcnt_zeroed_pages;
474 extern struct evcnt pmap_evcnt_copied_pages;
475 extern struct evcnt pmap_evcnt_idlezeroed_pages;
476
477 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
478 #define PMAPCOUNT2(ev) ((ev).ev_count++)
479 #else
480 #define PMAPCOUNT(ev) ((void) 0)
481 #define PMAPCOUNT2(ev) ((void) 0)
482 #endif
483
484 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va) : "memory")
485
486 /* XXXSL: this needs to be moved to assembler */
487 #define TLBIEL(va) __asm volatile("tlbie %0" :: "r"(va) : "memory")
488
489 #ifdef MD_TLBSYNC
490 #define TLBSYNC() MD_TLBSYNC()
491 #else
492 #define TLBSYNC() __asm volatile("tlbsync" ::: "memory")
493 #endif
494 #define SYNC() __asm volatile("sync" ::: "memory")
495 #define EIEIO() __asm volatile("eieio" ::: "memory")
496 #define DCBST(va) __asm volatile("dcbst 0,%0" :: "r"(va) : "memory")
497 #define MFMSR() mfmsr()
498 #define MTMSR(psl) mtmsr(psl)
499 #define MFPVR() mfpvr()
500 #define MFSRIN(va) mfsrin(va)
501 #define MFTB() mfrtcltbl()
502
503 #if defined(DDB) && !defined(PMAP_OEA64)
504 static inline register_t
505 mfsrin(vaddr_t va)
506 {
507 register_t sr;
508 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
509 return sr;
510 }
511 #endif /* DDB && !PMAP_OEA64 */
512
513 #if defined (PMAP_OEA64_BRIDGE)
514 extern void mfmsr64 (register64_t *result);
515 #endif /* PMAP_OEA64_BRIDGE */
516
517 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
518 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
519
520 static inline register_t
521 pmap_interrupts_off(void)
522 {
523 register_t msr = MFMSR();
524 if (msr & PSL_EE)
525 MTMSR(msr & ~PSL_EE);
526 return msr;
527 }
528
529 static void
530 pmap_interrupts_restore(register_t msr)
531 {
532 if (msr & PSL_EE)
533 MTMSR(msr);
534 }
535
536 static inline u_int32_t
537 mfrtcltbl(void)
538 {
539 #ifdef PPC_OEA601
540 if ((MFPVR() >> 16) == MPC601)
541 return (mfrtcl() >> 7);
542 else
543 #endif
544 return (mftbl());
545 }
546
547 /*
548 * These small routines may have to be replaced,
549 * if/when we support processors other that the 604.
550 */
551
552 void
553 tlbia(void)
554 {
555 char *i;
556
557 SYNC();
558 #if defined(PMAP_OEA)
559 /*
560 * Why not use "tlbia"? Because not all processors implement it.
561 *
562 * This needs to be a per-CPU callback to do the appropriate thing
563 * for the CPU. XXX
564 */
565 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
566 TLBIE(i);
567 EIEIO();
568 SYNC();
569 }
570 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
571 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
572 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
573 TLBIEL(i);
574 EIEIO();
575 SYNC();
576 }
577 #endif
578 TLBSYNC();
579 SYNC();
580 }
581
582 static inline register_t
583 va_to_vsid(const struct pmap *pm, vaddr_t addr)
584 {
585 /*
586 * Rather than searching the STE groups for the VSID or extracting
587 * it from the SR, we know how we generate that from the ESID and
588 * so do that.
589 *
590 * This makes the code the same for OEA and OEA64, and also allows
591 * us to generate a correct-for-that-address-space VSID even if the
592 * pmap contains a different SR value at any given moment (e.g.
593 * kernel pmap on a 601 that is using I/O segments).
594 */
595 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
596 }
597
598 static inline register_t
599 va_to_pteg(const struct pmap *pm, vaddr_t addr)
600 {
601 register_t hash;
602
603 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
604 return hash & pmap_pteg_mask;
605 }
606
607 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
608 /*
609 * Given a PTE in the page table, calculate the VADDR that hashes to it.
610 * The only bit of magic is that the top 4 bits of the address doesn't
611 * technically exist in the PTE. But we know we reserved 4 bits of the
612 * VSID for it so that's how we get it.
613 */
614 static vaddr_t
615 pmap_pte_to_va(volatile const struct pte *pt)
616 {
617 vaddr_t va;
618 uintptr_t ptaddr = (uintptr_t) pt;
619
620 if (pt->pte_hi & PTE_HID)
621 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
622
623 /* PPC Bits 10-19 PPC64 Bits 42-51 */
624 #if defined(PMAP_OEA)
625 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
626 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
627 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
628 #endif
629 va <<= ADDR_PIDX_SHFT;
630
631 /* PPC Bits 4-9 PPC64 Bits 36-41 */
632 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
633
634 #if defined(PMAP_OEA64)
635 /* PPC63 Bits 0-35 */
636 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
637 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
638 /* PPC Bits 0-3 */
639 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
640 #endif
641
642 return va;
643 }
644 #endif
645
646 static inline struct pvo_head *
647 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
648 {
649 struct vm_page *pg;
650 struct vm_page_md *md;
651 struct pmap_page *pp;
652
653 pg = PHYS_TO_VM_PAGE(pa);
654 if (pg_p != NULL)
655 *pg_p = pg;
656 if (pg == NULL) {
657 if ((pp = pmap_pv_tracked(pa)) != NULL)
658 return &pp->pp_pvoh;
659 return NULL;
660 }
661 md = VM_PAGE_TO_MD(pg);
662 return &md->mdpg_pvoh;
663 }
664
665 static inline struct pvo_head *
666 vm_page_to_pvoh(struct vm_page *pg)
667 {
668 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
669
670 return &md->mdpg_pvoh;
671 }
672
673 static inline void
674 pmap_pp_attr_clear(struct pmap_page *pp, int ptebit)
675 {
676
677 pp->pp_attrs &= ~ptebit;
678 }
679
680 static inline void
681 pmap_attr_clear(struct vm_page *pg, int ptebit)
682 {
683 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
684
685 pmap_pp_attr_clear(&md->mdpg_pp, ptebit);
686 }
687
688 static inline int
689 pmap_pp_attr_fetch(struct pmap_page *pp)
690 {
691
692 return pp->pp_attrs;
693 }
694
695 static inline int
696 pmap_attr_fetch(struct vm_page *pg)
697 {
698 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
699
700 return pmap_pp_attr_fetch(&md->mdpg_pp);
701 }
702
703 static inline void
704 pmap_attr_save(struct vm_page *pg, int ptebit)
705 {
706 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
707
708 md->mdpg_attrs |= ptebit;
709 }
710
711 static inline int
712 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
713 {
714 if (pt->pte_hi == pvo_pt->pte_hi
715 #if 0
716 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
717 ~(PTE_REF|PTE_CHG)) == 0
718 #endif
719 )
720 return 1;
721 return 0;
722 }
723
724 static inline void
725 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
726 {
727 /*
728 * Construct the PTE. Default to IMB initially. Valid bit
729 * only gets set when the real pte is set in memory.
730 *
731 * Note: Don't set the valid bit for correct operation of tlb update.
732 */
733 #if defined(PMAP_OEA)
734 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
735 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
736 pt->pte_lo = pte_lo;
737 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
738 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
739 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
740 pt->pte_lo = (u_int64_t) pte_lo;
741 #endif /* PMAP_OEA */
742 }
743
744 static inline void
745 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
746 {
747 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
748 }
749
750 static inline void
751 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
752 {
753 /*
754 * As shown in Section 7.6.3.2.3
755 */
756 pt->pte_lo &= ~ptebit;
757 TLBIE(va);
758 SYNC();
759 EIEIO();
760 TLBSYNC();
761 SYNC();
762 #ifdef MULTIPROCESSOR
763 DCBST(pt);
764 #endif
765 }
766
767 static inline void
768 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
769 {
770 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
771 if (pvo_pt->pte_hi & PTE_VALID)
772 panic("pte_set: setting an already valid pte %p", pvo_pt);
773 #endif
774 pvo_pt->pte_hi |= PTE_VALID;
775
776 /*
777 * Update the PTE as defined in section 7.6.3.1
778 * Note that the REF/CHG bits are from pvo_pt and thus should
779 * have been saved so this routine can restore them (if desired).
780 */
781 pt->pte_lo = pvo_pt->pte_lo;
782 EIEIO();
783 pt->pte_hi = pvo_pt->pte_hi;
784 TLBSYNC();
785 SYNC();
786 #ifdef MULTIPROCESSOR
787 DCBST(pt);
788 #endif
789 pmap_pte_valid++;
790 }
791
792 static inline void
793 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
794 {
795 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
796 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
797 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
798 if ((pt->pte_hi & PTE_VALID) == 0)
799 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
800 #endif
801
802 pvo_pt->pte_hi &= ~PTE_VALID;
803 /*
804 * Force the ref & chg bits back into the PTEs.
805 */
806 SYNC();
807 /*
808 * Invalidate the pte ... (Section 7.6.3.3)
809 */
810 pt->pte_hi &= ~PTE_VALID;
811 SYNC();
812 TLBIE(va);
813 SYNC();
814 EIEIO();
815 TLBSYNC();
816 SYNC();
817 /*
818 * Save the ref & chg bits ...
819 */
820 pmap_pte_synch(pt, pvo_pt);
821 pmap_pte_valid--;
822 }
823
824 static inline void
825 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
826 {
827 /*
828 * Invalidate the PTE
829 */
830 pmap_pte_unset(pt, pvo_pt, va);
831 pmap_pte_set(pt, pvo_pt);
832 }
833
834 /*
835 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
836 * (either primary or secondary location).
837 *
838 * Note: both the destination and source PTEs must not have PTE_VALID set.
839 */
840
841 static int
842 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
843 {
844 volatile struct pte *pt;
845 int i;
846
847 #if defined(DEBUG)
848 DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
849 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
850 #endif
851 /*
852 * First try primary hash.
853 */
854 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
855 if ((pt->pte_hi & PTE_VALID) == 0) {
856 pvo_pt->pte_hi &= ~PTE_HID;
857 pmap_pte_set(pt, pvo_pt);
858 return i;
859 }
860 }
861
862 /*
863 * Now try secondary hash.
864 */
865 ptegidx ^= pmap_pteg_mask;
866 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
867 if ((pt->pte_hi & PTE_VALID) == 0) {
868 pvo_pt->pte_hi |= PTE_HID;
869 pmap_pte_set(pt, pvo_pt);
870 return i;
871 }
872 }
873 return -1;
874 }
875
876 /*
877 * Spill handler.
878 *
879 * Tries to spill a page table entry from the overflow area.
880 * This runs in either real mode (if dealing with a exception spill)
881 * or virtual mode when dealing with manually spilling one of the
882 * kernel's pte entries. In either case, interrupts are already
883 * disabled.
884 */
885
886 int
887 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
888 {
889 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
890 struct pvo_entry *pvo;
891 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
892 struct pvo_tqhead *pvoh, *vpvoh = NULL;
893 int ptegidx, i, j;
894 volatile struct pteg *pteg;
895 volatile struct pte *pt;
896
897 PMAP_LOCK();
898
899 ptegidx = va_to_pteg(pm, addr);
900
901 /*
902 * Have to substitute some entry. Use the primary hash for this.
903 * Use low bits of timebase as random generator. Make sure we are
904 * not picking a kernel pte for replacement.
905 */
906 pteg = &pmap_pteg_table[ptegidx];
907 i = MFTB() & 7;
908 for (j = 0; j < 8; j++) {
909 pt = &pteg->pt[i];
910 if ((pt->pte_hi & PTE_VALID) == 0)
911 break;
912 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
913 < PHYSMAP_VSIDBITS)
914 break;
915 i = (i + 1) & 7;
916 }
917 KASSERT(j < 8);
918
919 source_pvo = NULL;
920 victim_pvo = NULL;
921 pvoh = &pmap_pvo_table[ptegidx];
922 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
923
924 /*
925 * We need to find pvo entry for this address...
926 */
927 PMAP_PVO_CHECK(pvo); /* sanity check */
928
929 /*
930 * If we haven't found the source and we come to a PVO with
931 * a valid PTE, then we know we can't find it because all
932 * evicted PVOs always are first in the list.
933 */
934 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
935 break;
936 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
937 addr == PVO_VADDR(pvo)) {
938
939 /*
940 * Now we have found the entry to be spilled into the
941 * pteg. Attempt to insert it into the page table.
942 */
943 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
944 if (j >= 0) {
945 PVO_PTEGIDX_SET(pvo, j);
946 PMAP_PVO_CHECK(pvo); /* sanity check */
947 PVO_WHERE(pvo, SPILL_INSERT);
948 pvo->pvo_pmap->pm_evictions--;
949 PMAPCOUNT(ptes_spilled);
950 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
951 ? pmap_evcnt_ptes_secondary
952 : pmap_evcnt_ptes_primary)[j]);
953
954 /*
955 * Since we keep the evicted entries at the
956 * from of the PVO list, we need move this
957 * (now resident) PVO after the evicted
958 * entries.
959 */
960 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
961
962 /*
963 * If we don't have to move (either we were the
964 * last entry or the next entry was valid),
965 * don't change our position. Otherwise
966 * move ourselves to the tail of the queue.
967 */
968 if (next_pvo != NULL &&
969 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
970 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
971 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
972 }
973 PMAP_UNLOCK();
974 return 1;
975 }
976 source_pvo = pvo;
977 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
978 PMAP_UNLOCK();
979 return 0;
980 }
981 if (victim_pvo != NULL)
982 break;
983 }
984
985 /*
986 * We also need the pvo entry of the victim we are replacing
987 * so save the R & C bits of the PTE.
988 */
989 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
990 pmap_pte_compare(pt, &pvo->pvo_pte)) {
991 vpvoh = pvoh; /* *1* */
992 victim_pvo = pvo;
993 if (source_pvo != NULL)
994 break;
995 }
996 }
997
998 if (source_pvo == NULL) {
999 PMAPCOUNT(ptes_unspilled);
1000 PMAP_UNLOCK();
1001 return 0;
1002 }
1003
1004 if (victim_pvo == NULL) {
1005 if ((pt->pte_hi & PTE_HID) == 0)
1006 panic("pmap_pte_spill: victim p-pte (%p) has "
1007 "no pvo entry!", pt);
1008
1009 /*
1010 * If this is a secondary PTE, we need to search
1011 * its primary pvo bucket for the matching PVO.
1012 */
1013 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1014 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1015 PMAP_PVO_CHECK(pvo); /* sanity check */
1016
1017 /*
1018 * We also need the pvo entry of the victim we are
1019 * replacing so save the R & C bits of the PTE.
1020 */
1021 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1022 victim_pvo = pvo;
1023 break;
1024 }
1025 }
1026 if (victim_pvo == NULL)
1027 panic("pmap_pte_spill: victim s-pte (%p) has "
1028 "no pvo entry!", pt);
1029 }
1030
1031 /*
1032 * The victim should be not be a kernel PVO/PTE entry.
1033 */
1034 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1035 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1036 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1037
1038 /*
1039 * We are invalidating the TLB entry for the EA for the
1040 * we are replacing even though its valid; If we don't
1041 * we lose any ref/chg bit changes contained in the TLB
1042 * entry.
1043 */
1044 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1045
1046 /*
1047 * To enforce the PVO list ordering constraint that all
1048 * evicted entries should come before all valid entries,
1049 * move the source PVO to the tail of its list and the
1050 * victim PVO to the head of its list (which might not be
1051 * the same list, if the victim was using the secondary hash).
1052 */
1053 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1054 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1055 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1056 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1057 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1058 pmap_pte_set(pt, &source_pvo->pvo_pte);
1059 victim_pvo->pvo_pmap->pm_evictions++;
1060 source_pvo->pvo_pmap->pm_evictions--;
1061 PVO_WHERE(victim_pvo, SPILL_UNSET);
1062 PVO_WHERE(source_pvo, SPILL_SET);
1063
1064 PVO_PTEGIDX_CLR(victim_pvo);
1065 PVO_PTEGIDX_SET(source_pvo, i);
1066 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1067 PMAPCOUNT(ptes_spilled);
1068 PMAPCOUNT(ptes_evicted);
1069 PMAPCOUNT(ptes_removed);
1070
1071 PMAP_PVO_CHECK(victim_pvo);
1072 PMAP_PVO_CHECK(source_pvo);
1073
1074 PMAP_UNLOCK();
1075 return 1;
1076 }
1077
1078 /*
1079 * Restrict given range to physical memory
1080 */
1081 void
1082 pmap_real_memory(paddr_t *start, psize_t *size)
1083 {
1084 struct mem_region *mp;
1085
1086 for (mp = mem; mp->size; mp++) {
1087 if (*start + *size > mp->start
1088 && *start < mp->start + mp->size) {
1089 if (*start < mp->start) {
1090 *size -= mp->start - *start;
1091 *start = mp->start;
1092 }
1093 if (*start + *size > mp->start + mp->size)
1094 *size = mp->start + mp->size - *start;
1095 return;
1096 }
1097 }
1098 *size = 0;
1099 }
1100
1101 /*
1102 * Initialize anything else for pmap handling.
1103 * Called during vm_init().
1104 */
1105 void
1106 pmap_init(void)
1107 {
1108
1109 pmap_initialized = 1;
1110 }
1111
1112 /*
1113 * How much virtual space does the kernel get?
1114 */
1115 void
1116 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1117 {
1118 /*
1119 * For now, reserve one segment (minus some overhead) for kernel
1120 * virtual memory
1121 */
1122 *start = VM_MIN_KERNEL_ADDRESS;
1123 *end = VM_MAX_KERNEL_ADDRESS;
1124 }
1125
1126 /*
1127 * Allocate, initialize, and return a new physical map.
1128 */
1129 pmap_t
1130 pmap_create(void)
1131 {
1132 pmap_t pm;
1133
1134 pm = pool_get(&pmap_pool, PR_WAITOK);
1135 KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1136 memset((void *)pm, 0, sizeof *pm);
1137 pmap_pinit(pm);
1138
1139 DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1140 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1141 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1142 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1143 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1144 pm,
1145 pm->pm_sr[0], pm->pm_sr[1],
1146 pm->pm_sr[2], pm->pm_sr[3],
1147 pm->pm_sr[4], pm->pm_sr[5],
1148 pm->pm_sr[6], pm->pm_sr[7],
1149 pm->pm_sr[8], pm->pm_sr[9],
1150 pm->pm_sr[10], pm->pm_sr[11],
1151 pm->pm_sr[12], pm->pm_sr[13],
1152 pm->pm_sr[14], pm->pm_sr[15]);
1153 return pm;
1154 }
1155
1156 /*
1157 * Initialize a preallocated and zeroed pmap structure.
1158 */
1159 void
1160 pmap_pinit(pmap_t pm)
1161 {
1162 register_t entropy = MFTB();
1163 register_t mask;
1164 int i;
1165
1166 /*
1167 * Allocate some segment registers for this pmap.
1168 */
1169 pm->pm_refs = 1;
1170 PMAP_LOCK();
1171 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1172 static register_t pmap_vsidcontext;
1173 register_t hash;
1174 unsigned int n;
1175
1176 /* Create a new value by multiplying by a prime adding in
1177 * entropy from the timebase register. This is to make the
1178 * VSID more random so that the PT Hash function collides
1179 * less often. (note that the prime causes gcc to do shifts
1180 * instead of a multiply)
1181 */
1182 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1183 hash = pmap_vsidcontext & (NPMAPS - 1);
1184 if (hash == 0) { /* 0 is special, avoid it */
1185 entropy += 0xbadf00d;
1186 continue;
1187 }
1188 n = hash >> 5;
1189 mask = 1L << (hash & (VSID_NBPW-1));
1190 hash = pmap_vsidcontext;
1191 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1192 /* anything free in this bucket? */
1193 if (~pmap_vsid_bitmap[n] == 0) {
1194 entropy = hash ^ (hash >> 16);
1195 continue;
1196 }
1197 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1198 mask = 1L << i;
1199 hash &= ~(VSID_NBPW-1);
1200 hash |= i;
1201 }
1202 hash &= PTE_VSID >> PTE_VSID_SHFT;
1203 pmap_vsid_bitmap[n] |= mask;
1204 pm->pm_vsid = hash;
1205 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1206 for (i = 0; i < 16; i++)
1207 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1208 SR_NOEXEC;
1209 #endif
1210 PMAP_UNLOCK();
1211 return;
1212 }
1213 PMAP_UNLOCK();
1214 panic("pmap_pinit: out of segments");
1215 }
1216
1217 /*
1218 * Add a reference to the given pmap.
1219 */
1220 void
1221 pmap_reference(pmap_t pm)
1222 {
1223 atomic_inc_uint(&pm->pm_refs);
1224 }
1225
1226 /*
1227 * Retire the given pmap from service.
1228 * Should only be called if the map contains no valid mappings.
1229 */
1230 void
1231 pmap_destroy(pmap_t pm)
1232 {
1233 membar_release();
1234 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1235 membar_acquire();
1236 pmap_release(pm);
1237 pool_put(&pmap_pool, pm);
1238 }
1239 }
1240
1241 /*
1242 * Release any resources held by the given physical map.
1243 * Called when a pmap initialized by pmap_pinit is being released.
1244 */
1245 void
1246 pmap_release(pmap_t pm)
1247 {
1248 int idx, mask;
1249
1250 KASSERT(pm->pm_stats.resident_count == 0);
1251 KASSERT(pm->pm_stats.wired_count == 0);
1252
1253 PMAP_LOCK();
1254 if (pm->pm_sr[0] == 0)
1255 panic("pmap_release");
1256 idx = pm->pm_vsid & (NPMAPS-1);
1257 mask = 1 << (idx % VSID_NBPW);
1258 idx /= VSID_NBPW;
1259
1260 KASSERT(pmap_vsid_bitmap[idx] & mask);
1261 pmap_vsid_bitmap[idx] &= ~mask;
1262 PMAP_UNLOCK();
1263 }
1264
1265 /*
1266 * Copy the range specified by src_addr/len
1267 * from the source map to the range dst_addr/len
1268 * in the destination map.
1269 *
1270 * This routine is only advisory and need not do anything.
1271 */
1272 void
1273 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1274 vsize_t len, vaddr_t src_addr)
1275 {
1276 PMAPCOUNT(copies);
1277 }
1278
1279 /*
1280 * Require that all active physical maps contain no
1281 * incorrect entries NOW.
1282 */
1283 void
1284 pmap_update(struct pmap *pmap)
1285 {
1286 PMAPCOUNT(updates);
1287 TLBSYNC();
1288 }
1289
1290 static inline int
1291 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1292 {
1293 int pteidx;
1294 /*
1295 * We can find the actual pte entry without searching by
1296 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1297 * and by noticing the HID bit.
1298 */
1299 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1300 if (pvo->pvo_pte.pte_hi & PTE_HID)
1301 pteidx ^= pmap_pteg_mask * 8;
1302 return pteidx;
1303 }
1304
1305 volatile struct pte *
1306 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1307 {
1308 volatile struct pte *pt;
1309
1310 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1311 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1312 return NULL;
1313 #endif
1314
1315 /*
1316 * If we haven't been supplied the ptegidx, calculate it.
1317 */
1318 if (pteidx == -1) {
1319 int ptegidx;
1320 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1321 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1322 }
1323
1324 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1325
1326 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1327 return pt;
1328 #else
1329 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1330 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1331 "pvo but no valid pte index", pvo);
1332 }
1333 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1334 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1335 "pvo but no valid pte", pvo);
1336 }
1337
1338 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1339 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1340 #if defined(DEBUG) || defined(PMAPCHECK)
1341 pmap_pte_print(pt);
1342 #endif
1343 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1344 "pmap_pteg_table %p but invalid in pvo",
1345 pvo, pt);
1346 }
1347 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1348 #if defined(DEBUG) || defined(PMAPCHECK)
1349 pmap_pte_print(pt);
1350 #endif
1351 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1352 "not match pte %p in pmap_pteg_table",
1353 pvo, pt);
1354 }
1355 return pt;
1356 }
1357
1358 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1359 #if defined(DEBUG) || defined(PMAPCHECK)
1360 pmap_pte_print(pt);
1361 #endif
1362 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1363 "pmap_pteg_table but valid in pvo", pvo, pt);
1364 }
1365 return NULL;
1366 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1367 }
1368
1369 struct pvo_entry *
1370 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1371 {
1372 struct pvo_entry *pvo;
1373 int ptegidx;
1374
1375 va &= ~ADDR_POFF;
1376 ptegidx = va_to_pteg(pm, va);
1377
1378 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1379 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1380 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1381 panic("pmap_pvo_find_va: invalid pvo %p on "
1382 "list %#x (%p)", pvo, ptegidx,
1383 &pmap_pvo_table[ptegidx]);
1384 #endif
1385 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1386 if (pteidx_p)
1387 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1388 return pvo;
1389 }
1390 }
1391 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1392 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1393 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1394 return NULL;
1395 }
1396
1397 #if defined(DEBUG) || defined(PMAPCHECK)
1398 void
1399 pmap_pvo_check(const struct pvo_entry *pvo)
1400 {
1401 struct pvo_head *pvo_head;
1402 struct pvo_entry *pvo0;
1403 volatile struct pte *pt;
1404 int failed = 0;
1405
1406 PMAP_LOCK();
1407
1408 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1409 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1410
1411 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1412 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1413 pvo, pvo->pvo_pmap);
1414 failed = 1;
1415 }
1416
1417 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1418 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1419 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1420 pvo, TAILQ_NEXT(pvo, pvo_olink));
1421 failed = 1;
1422 }
1423
1424 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1425 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1426 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1427 pvo, LIST_NEXT(pvo, pvo_vlink));
1428 failed = 1;
1429 }
1430
1431 if (PVO_MANAGED_P(pvo)) {
1432 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1433 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1434 if (pvo0 == pvo)
1435 break;
1436 }
1437 if (pvo0 == NULL) {
1438 printf("pmap_pvo_check: pvo %p: not present "
1439 "on its vlist head %p\n", pvo, pvo_head);
1440 failed = 1;
1441 }
1442 } else {
1443 KASSERT(pvo->pvo_vaddr >= VM_MIN_KERNEL_ADDRESS);
1444 if (__predict_false(pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS))
1445 failed = 1;
1446 }
1447 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1448 printf("pmap_pvo_check: pvo %p: not present "
1449 "on its olist head\n", pvo);
1450 failed = 1;
1451 }
1452 pt = pmap_pvo_to_pte(pvo, -1);
1453 if (pt == NULL) {
1454 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1455 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1456 "no PTE\n", pvo);
1457 failed = 1;
1458 }
1459 } else {
1460 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1461 (uintptr_t) pt >=
1462 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1463 printf("pmap_pvo_check: pvo %p: pte %p not in "
1464 "pteg table\n", pvo, pt);
1465 failed = 1;
1466 }
1467 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1468 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1469 "no PTE\n", pvo);
1470 failed = 1;
1471 }
1472 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1473 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1474 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1475 pvo->pvo_pte.pte_hi,
1476 pt->pte_hi);
1477 failed = 1;
1478 }
1479 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1480 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1481 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1482 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1483 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1484 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1485 failed = 1;
1486 }
1487 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1488 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1489 " doesn't not match PVO's VA %#" _PRIxva "\n",
1490 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1491 failed = 1;
1492 }
1493 if (failed)
1494 pmap_pte_print(pt);
1495 }
1496 if (failed)
1497 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1498 pvo->pvo_pmap);
1499
1500 PMAP_UNLOCK();
1501 }
1502 #endif /* DEBUG || PMAPCHECK */
1503
1504 /*
1505 * Search the PVO table looking for a non-wired entry.
1506 * If we find one, remove it and return it.
1507 */
1508
1509 struct pvo_entry *
1510 pmap_pvo_reclaim(struct pmap *pm)
1511 {
1512 struct pvo_tqhead *pvoh;
1513 struct pvo_entry *pvo;
1514 uint32_t idx, endidx;
1515
1516 endidx = pmap_pvo_reclaim_nextidx;
1517 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1518 idx = (idx + 1) & pmap_pteg_mask) {
1519 pvoh = &pmap_pvo_table[idx];
1520 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1521 if (!PVO_WIRED_P(pvo)) {
1522 pmap_pvo_remove(pvo, -1, NULL);
1523 pmap_pvo_reclaim_nextidx = idx;
1524 PMAPCOUNT(pvos_reclaimed);
1525 return pvo;
1526 }
1527 }
1528 }
1529 return NULL;
1530 }
1531
1532 /*
1533 * This returns whether this is the first mapping of a page.
1534 */
1535 int
1536 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1537 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1538 {
1539 struct pvo_entry *pvo;
1540 struct pvo_tqhead *pvoh;
1541 register_t msr;
1542 int ptegidx;
1543 int i;
1544 int poolflags = PR_NOWAIT;
1545
1546 /*
1547 * Compute the PTE Group index.
1548 */
1549 va &= ~ADDR_POFF;
1550 ptegidx = va_to_pteg(pm, va);
1551
1552 msr = pmap_interrupts_off();
1553
1554 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1555 if (pmap_pvo_remove_depth > 0)
1556 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1557 if (++pmap_pvo_enter_depth > 1)
1558 panic("pmap_pvo_enter: called recursively!");
1559 #endif
1560
1561 /*
1562 * Remove any existing mapping for this page. Reuse the
1563 * pvo entry if there a mapping.
1564 */
1565 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1566 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1567 #ifdef DEBUG
1568 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1569 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1570 ~(PTE_REF|PTE_CHG)) == 0 &&
1571 va < VM_MIN_KERNEL_ADDRESS) {
1572 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1573 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1574 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1575 pvo->pvo_pte.pte_hi,
1576 pm->pm_sr[va >> ADDR_SR_SHFT]);
1577 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1578 #ifdef DDBX
1579 Debugger();
1580 #endif
1581 }
1582 #endif
1583 PMAPCOUNT(mappings_replaced);
1584 pmap_pvo_remove(pvo, -1, NULL);
1585 break;
1586 }
1587 }
1588
1589 /*
1590 * If we aren't overwriting an mapping, try to allocate
1591 */
1592 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1593 --pmap_pvo_enter_depth;
1594 #endif
1595 pmap_interrupts_restore(msr);
1596 if (pvo == NULL) {
1597 pvo = pool_get(pl, poolflags);
1598 }
1599 KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1600
1601 #ifdef DEBUG
1602 /*
1603 * Exercise pmap_pvo_reclaim() a little.
1604 */
1605 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1606 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1607 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1608 pool_put(pl, pvo);
1609 pvo = NULL;
1610 }
1611 #endif
1612
1613 msr = pmap_interrupts_off();
1614 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1615 ++pmap_pvo_enter_depth;
1616 #endif
1617 if (pvo == NULL) {
1618 pvo = pmap_pvo_reclaim(pm);
1619 if (pvo == NULL) {
1620 if ((flags & PMAP_CANFAIL) == 0)
1621 panic("pmap_pvo_enter: failed");
1622 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1623 pmap_pvo_enter_depth--;
1624 #endif
1625 PMAPCOUNT(pvos_failed);
1626 pmap_interrupts_restore(msr);
1627 return ENOMEM;
1628 }
1629 }
1630
1631 pvo->pvo_vaddr = va;
1632 pvo->pvo_pmap = pm;
1633 pvo->pvo_vaddr &= ~ADDR_POFF;
1634 if (flags & VM_PROT_EXECUTE) {
1635 PMAPCOUNT(exec_mappings);
1636 pvo_set_exec(pvo);
1637 }
1638 if (flags & PMAP_WIRED)
1639 pvo->pvo_vaddr |= PVO_WIRED;
1640 if (pvo_head != NULL) {
1641 pvo->pvo_vaddr |= PVO_MANAGED;
1642 PMAPCOUNT(mappings);
1643 } else {
1644 PMAPCOUNT(kernel_mappings);
1645 }
1646 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1647
1648 if (pvo_head != NULL)
1649 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1650 if (PVO_WIRED_P(pvo))
1651 pvo->pvo_pmap->pm_stats.wired_count++;
1652 pvo->pvo_pmap->pm_stats.resident_count++;
1653 #if defined(DEBUG)
1654 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1655 DPRINTFN(PVOENTER,
1656 "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1657 pvo, pm, va, pa);
1658 #endif
1659
1660 /*
1661 * We hope this succeeds but it isn't required.
1662 */
1663 pvoh = &pmap_pvo_table[ptegidx];
1664 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1665 if (i >= 0) {
1666 PVO_PTEGIDX_SET(pvo, i);
1667 PVO_WHERE(pvo, ENTER_INSERT);
1668 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1669 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1670 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1671
1672 } else {
1673 /*
1674 * Since we didn't have room for this entry (which makes it
1675 * and evicted entry), place it at the head of the list.
1676 */
1677 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1678 PMAPCOUNT(ptes_evicted);
1679 pm->pm_evictions++;
1680 /*
1681 * If this is a kernel page, make sure it's active.
1682 */
1683 if (pm == pmap_kernel()) {
1684 i = pmap_pte_spill(pm, va, false);
1685 KASSERT(i);
1686 }
1687 }
1688 PMAP_PVO_CHECK(pvo); /* sanity check */
1689 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1690 pmap_pvo_enter_depth--;
1691 #endif
1692 pmap_interrupts_restore(msr);
1693 return 0;
1694 }
1695
1696 static void
1697 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1698 {
1699 volatile struct pte *pt;
1700 int ptegidx;
1701
1702 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1703 if (++pmap_pvo_remove_depth > 1)
1704 panic("pmap_pvo_remove: called recursively!");
1705 #endif
1706
1707 /*
1708 * If we haven't been supplied the ptegidx, calculate it.
1709 */
1710 if (pteidx == -1) {
1711 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1712 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1713 } else {
1714 ptegidx = pteidx >> 3;
1715 if (pvo->pvo_pte.pte_hi & PTE_HID)
1716 ptegidx ^= pmap_pteg_mask;
1717 }
1718 PMAP_PVO_CHECK(pvo); /* sanity check */
1719
1720 /*
1721 * If there is an active pte entry, we need to deactivate it
1722 * (and save the ref & chg bits).
1723 */
1724 pt = pmap_pvo_to_pte(pvo, pteidx);
1725 if (pt != NULL) {
1726 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1727 PVO_WHERE(pvo, REMOVE);
1728 PVO_PTEGIDX_CLR(pvo);
1729 PMAPCOUNT(ptes_removed);
1730 } else {
1731 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1732 pvo->pvo_pmap->pm_evictions--;
1733 }
1734
1735 /*
1736 * Account for executable mappings.
1737 */
1738 if (PVO_EXECUTABLE_P(pvo))
1739 pvo_clear_exec(pvo);
1740
1741 /*
1742 * Update our statistics.
1743 */
1744 pvo->pvo_pmap->pm_stats.resident_count--;
1745 if (PVO_WIRED_P(pvo))
1746 pvo->pvo_pmap->pm_stats.wired_count--;
1747
1748 /*
1749 * If the page is managed:
1750 * Save the REF/CHG bits into their cache.
1751 * Remove the PVO from the P/V list.
1752 */
1753 if (PVO_MANAGED_P(pvo)) {
1754 register_t ptelo = pvo->pvo_pte.pte_lo;
1755 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1756
1757 if (pg != NULL) {
1758 /*
1759 * If this page was changed and it is mapped exec,
1760 * invalidate it.
1761 */
1762 if ((ptelo & PTE_CHG) &&
1763 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1764 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1765 if (LIST_EMPTY(pvoh)) {
1766 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1767 "%#" _PRIxpa ": clear-exec]\n",
1768 VM_PAGE_TO_PHYS(pg));
1769 pmap_attr_clear(pg, PTE_EXEC);
1770 PMAPCOUNT(exec_uncached_pvo_remove);
1771 } else {
1772 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1773 "%#" _PRIxpa ": syncicache]\n",
1774 VM_PAGE_TO_PHYS(pg));
1775 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1776 PAGE_SIZE);
1777 PMAPCOUNT(exec_synced_pvo_remove);
1778 }
1779 }
1780
1781 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1782 }
1783 LIST_REMOVE(pvo, pvo_vlink);
1784 PMAPCOUNT(unmappings);
1785 } else {
1786 PMAPCOUNT(kernel_unmappings);
1787 }
1788
1789 /*
1790 * Remove the PVO from its list and return it to the pool.
1791 */
1792 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1793 if (pvol) {
1794 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1795 }
1796 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1797 pmap_pvo_remove_depth--;
1798 #endif
1799 }
1800
1801 void
1802 pmap_pvo_free(struct pvo_entry *pvo)
1803 {
1804
1805 pool_put(&pmap_pvo_pool, pvo);
1806 }
1807
1808 void
1809 pmap_pvo_free_list(struct pvo_head *pvol)
1810 {
1811 struct pvo_entry *pvo, *npvo;
1812
1813 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1814 npvo = LIST_NEXT(pvo, pvo_vlink);
1815 LIST_REMOVE(pvo, pvo_vlink);
1816 pmap_pvo_free(pvo);
1817 }
1818 }
1819
1820 /*
1821 * Mark a mapping as executable.
1822 * If this is the first executable mapping in the segment,
1823 * clear the noexec flag.
1824 */
1825 static void
1826 pvo_set_exec(struct pvo_entry *pvo)
1827 {
1828 struct pmap *pm = pvo->pvo_pmap;
1829
1830 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1831 return;
1832 }
1833 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1834 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1835 {
1836 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1837 if (pm->pm_exec[sr]++ == 0) {
1838 pm->pm_sr[sr] &= ~SR_NOEXEC;
1839 }
1840 }
1841 #endif
1842 }
1843
1844 /*
1845 * Mark a mapping as non-executable.
1846 * If this was the last executable mapping in the segment,
1847 * set the noexec flag.
1848 */
1849 static void
1850 pvo_clear_exec(struct pvo_entry *pvo)
1851 {
1852 struct pmap *pm = pvo->pvo_pmap;
1853
1854 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1855 return;
1856 }
1857 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1858 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1859 {
1860 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1861 if (--pm->pm_exec[sr] == 0) {
1862 pm->pm_sr[sr] |= SR_NOEXEC;
1863 }
1864 }
1865 #endif
1866 }
1867
1868 /*
1869 * Insert physical page at pa into the given pmap at virtual address va.
1870 */
1871 int
1872 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1873 {
1874 struct mem_region *mp;
1875 struct pvo_head *pvo_head;
1876 struct vm_page *pg;
1877 register_t pte_lo;
1878 int error;
1879 u_int was_exec = 0;
1880
1881 PMAP_LOCK();
1882
1883 if (__predict_false(!pmap_initialized)) {
1884 pvo_head = NULL;
1885 pg = NULL;
1886 was_exec = PTE_EXEC;
1887
1888 } else {
1889 pvo_head = pa_to_pvoh(pa, &pg);
1890 }
1891
1892 DPRINTFN(ENTER,
1893 "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1894 pm, va, pa, prot, flags);
1895
1896 /*
1897 * If this is a managed page, and it's the first reference to the
1898 * page clear the execness of the page. Otherwise fetch the execness.
1899 */
1900 if (pg != NULL)
1901 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1902
1903 DPRINTFN(ENTER, " was_exec=%d", was_exec);
1904
1905 /*
1906 * Assume the page is cache inhibited and access is guarded unless
1907 * it's in our available memory array. If it is in the memory array,
1908 * asssume it's in memory coherent memory.
1909 */
1910 if (flags & PMAP_MD_PREFETCHABLE) {
1911 pte_lo = 0;
1912 } else
1913 pte_lo = PTE_G;
1914
1915 if ((flags & PMAP_NOCACHE) == 0) {
1916 for (mp = mem; mp->size; mp++) {
1917 if (pa >= mp->start && pa < mp->start + mp->size) {
1918 pte_lo = PTE_M;
1919 break;
1920 }
1921 }
1922 #ifdef MULTIPROCESSOR
1923 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
1924 pte_lo = PTE_M;
1925 #endif
1926 } else {
1927 pte_lo |= PTE_I;
1928 }
1929
1930 if (prot & VM_PROT_WRITE)
1931 pte_lo |= PTE_BW;
1932 else
1933 pte_lo |= PTE_BR;
1934
1935 /*
1936 * If this was in response to a fault, "pre-fault" the PTE's
1937 * changed/referenced bit appropriately.
1938 */
1939 if (flags & VM_PROT_WRITE)
1940 pte_lo |= PTE_CHG;
1941 if (flags & VM_PROT_ALL)
1942 pte_lo |= PTE_REF;
1943
1944 /*
1945 * We need to know if this page can be executable
1946 */
1947 flags |= (prot & VM_PROT_EXECUTE);
1948
1949 /*
1950 * Record mapping for later back-translation and pte spilling.
1951 * This will overwrite any existing mapping.
1952 */
1953 error = pmap_pvo_enter(pm, &pmap_pvo_pool, pvo_head, va, pa, pte_lo, flags);
1954
1955 /*
1956 * Flush the real page from the instruction cache if this page is
1957 * mapped executable and cacheable and has not been flushed since
1958 * the last time it was modified.
1959 */
1960 if (error == 0 &&
1961 (flags & VM_PROT_EXECUTE) &&
1962 (pte_lo & PTE_I) == 0 &&
1963 was_exec == 0) {
1964 DPRINTFN(ENTER, " %s", "syncicache");
1965 PMAPCOUNT(exec_synced);
1966 pmap_syncicache(pa, PAGE_SIZE);
1967 if (pg != NULL) {
1968 pmap_attr_save(pg, PTE_EXEC);
1969 PMAPCOUNT(exec_cached);
1970 #if defined(DEBUG) || defined(PMAPDEBUG)
1971 if (pmapdebug & PMAPDEBUG_ENTER)
1972 printf(" marked-as-exec");
1973 else if (pmapdebug & PMAPDEBUG_EXEC)
1974 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1975 VM_PAGE_TO_PHYS(pg));
1976 #endif
1977 }
1978 }
1979
1980 DPRINTFN(ENTER, ": error=%d\n", error);
1981
1982 PMAP_UNLOCK();
1983
1984 return error;
1985 }
1986
1987 void
1988 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1989 {
1990 struct mem_region *mp;
1991 register_t pte_lo;
1992 int error;
1993
1994 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
1995 if (va < VM_MIN_KERNEL_ADDRESS)
1996 panic("pmap_kenter_pa: attempt to enter "
1997 "non-kernel address %#" _PRIxva "!", va);
1998 #endif
1999
2000 DPRINTFN(KENTER,
2001 "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2002
2003 PMAP_LOCK();
2004
2005 /*
2006 * Assume the page is cache inhibited and access is guarded unless
2007 * it's in our available memory array. If it is in the memory array,
2008 * asssume it's in memory coherent memory.
2009 */
2010 pte_lo = PTE_IG;
2011 if ((flags & PMAP_NOCACHE) == 0) {
2012 for (mp = mem; mp->size; mp++) {
2013 if (pa >= mp->start && pa < mp->start + mp->size) {
2014 pte_lo = PTE_M;
2015 break;
2016 }
2017 }
2018 #ifdef MULTIPROCESSOR
2019 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
2020 pte_lo = PTE_M;
2021 #endif
2022 }
2023
2024 if (prot & VM_PROT_WRITE)
2025 pte_lo |= PTE_BW;
2026 else
2027 pte_lo |= PTE_BR;
2028
2029 /*
2030 * We don't care about REF/CHG on PVOs on the unmanaged list.
2031 */
2032 error = pmap_pvo_enter(pmap_kernel(), &pmap_pvo_pool,
2033 NULL, va, pa, pte_lo, prot|PMAP_WIRED);
2034
2035 if (error != 0)
2036 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2037 va, pa, error);
2038
2039 PMAP_UNLOCK();
2040 }
2041
2042 void
2043 pmap_kremove(vaddr_t va, vsize_t len)
2044 {
2045 if (va < VM_MIN_KERNEL_ADDRESS)
2046 panic("pmap_kremove: attempt to remove "
2047 "non-kernel address %#" _PRIxva "!", va);
2048
2049 DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2050 pmap_remove(pmap_kernel(), va, va + len);
2051 }
2052
2053 /*
2054 * Remove the given range of mapping entries.
2055 */
2056 void
2057 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2058 {
2059 struct pvo_head pvol;
2060 struct pvo_entry *pvo;
2061 register_t msr;
2062 int pteidx;
2063
2064 PMAP_LOCK();
2065 LIST_INIT(&pvol);
2066 msr = pmap_interrupts_off();
2067 for (; va < endva; va += PAGE_SIZE) {
2068 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2069 if (pvo != NULL) {
2070 pmap_pvo_remove(pvo, pteidx, &pvol);
2071 }
2072 }
2073 pmap_interrupts_restore(msr);
2074 pmap_pvo_free_list(&pvol);
2075 PMAP_UNLOCK();
2076 }
2077
2078 #if defined(PMAP_OEA)
2079 #ifdef PPC_OEA601
2080 bool
2081 pmap_extract_ioseg601(vaddr_t va, paddr_t *pap)
2082 {
2083 if ((MFPVR() >> 16) != MPC601)
2084 return false;
2085
2086 const register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2087
2088 if (SR601_VALID_P(sr) && SR601_PA_MATCH_P(sr, va)) {
2089 if (pap)
2090 *pap = va;
2091 return true;
2092 }
2093 return false;
2094 }
2095
2096 static bool
2097 pmap_extract_battable601(vaddr_t va, paddr_t *pap)
2098 {
2099 const register_t batu = battable[va >> 23].batu;
2100 const register_t batl = battable[va >> 23].batl;
2101
2102 if (BAT601_VALID_P(batl) && BAT601_VA_MATCH_P(batu, batl, va)) {
2103 const register_t mask =
2104 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2105 if (pap)
2106 *pap = (batl & mask) | (va & ~mask);
2107 return true;
2108 }
2109 return false;
2110 }
2111 #endif /* PPC_OEA601 */
2112
2113 bool
2114 pmap_extract_battable(vaddr_t va, paddr_t *pap)
2115 {
2116 #ifdef PPC_OEA601
2117 if ((MFPVR() >> 16) == MPC601)
2118 return pmap_extract_battable601(va, pap);
2119 #endif /* PPC_OEA601 */
2120
2121 if (oeacpufeat & OEACPU_NOBAT)
2122 return false;
2123
2124 const register_t batu = battable[BAT_VA2IDX(va)].batu;
2125
2126 if (BAT_VALID_P(batu, 0) && BAT_VA_MATCH_P(batu, va)) {
2127 const register_t batl = battable[BAT_VA2IDX(va)].batl;
2128 const register_t mask =
2129 (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2130 if (pap)
2131 *pap = (batl & mask) | (va & ~mask);
2132 return true;
2133 }
2134 return false;
2135 }
2136 #endif /* PMAP_OEA */
2137
2138 /*
2139 * Get the physical page address for the given pmap/virtual address.
2140 */
2141 bool
2142 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2143 {
2144 struct pvo_entry *pvo;
2145 register_t msr;
2146
2147 PMAP_LOCK();
2148
2149 /*
2150 * If this is the kernel pmap, check the battable and I/O
2151 * segments for a hit. This is done only for regions outside
2152 * VM_MIN_KERNEL_ADDRESS-VM_MAX_KERNEL_ADDRESS.
2153 *
2154 * Be careful when checking VM_MAX_KERNEL_ADDRESS; you don't
2155 * want to wrap around to 0.
2156 */
2157 if (pm == pmap_kernel() &&
2158 (va < VM_MIN_KERNEL_ADDRESS ||
2159 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2160 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2161 #if defined(PMAP_OEA)
2162 #ifdef PPC_OEA601
2163 if (pmap_extract_ioseg601(va, pap)) {
2164 PMAP_UNLOCK();
2165 return true;
2166 }
2167 #endif /* PPC_OEA601 */
2168 if (pmap_extract_battable(va, pap)) {
2169 PMAP_UNLOCK();
2170 return true;
2171 }
2172 /*
2173 * We still check the HTAB...
2174 */
2175 #elif defined(PMAP_OEA64_BRIDGE)
2176 if (va < SEGMENT_LENGTH) {
2177 if (pap)
2178 *pap = va;
2179 PMAP_UNLOCK();
2180 return true;
2181 }
2182 /*
2183 * We still check the HTAB...
2184 */
2185 #elif defined(PMAP_OEA64)
2186 #error PPC_OEA64 not supported
2187 #endif /* PPC_OEA */
2188 }
2189
2190 msr = pmap_interrupts_off();
2191 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2192 if (pvo != NULL) {
2193 PMAP_PVO_CHECK(pvo); /* sanity check */
2194 if (pap)
2195 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2196 | (va & ADDR_POFF);
2197 }
2198 pmap_interrupts_restore(msr);
2199 PMAP_UNLOCK();
2200 return pvo != NULL;
2201 }
2202
2203 /*
2204 * Lower the protection on the specified range of this pmap.
2205 */
2206 void
2207 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2208 {
2209 struct pvo_entry *pvo;
2210 volatile struct pte *pt;
2211 register_t msr;
2212 int pteidx;
2213
2214 /*
2215 * Since this routine only downgrades protection, we should
2216 * always be called with at least one bit not set.
2217 */
2218 KASSERT(prot != VM_PROT_ALL);
2219
2220 /*
2221 * If there is no protection, this is equivalent to
2222 * remove the pmap from the pmap.
2223 */
2224 if ((prot & VM_PROT_READ) == 0) {
2225 pmap_remove(pm, va, endva);
2226 return;
2227 }
2228
2229 PMAP_LOCK();
2230
2231 msr = pmap_interrupts_off();
2232 for (; va < endva; va += PAGE_SIZE) {
2233 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2234 if (pvo == NULL)
2235 continue;
2236 PMAP_PVO_CHECK(pvo); /* sanity check */
2237
2238 /*
2239 * Revoke executable if asked to do so.
2240 */
2241 if ((prot & VM_PROT_EXECUTE) == 0)
2242 pvo_clear_exec(pvo);
2243
2244 #if 0
2245 /*
2246 * If the page is already read-only, no change
2247 * needs to be made.
2248 */
2249 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2250 continue;
2251 #endif
2252 /*
2253 * Grab the PTE pointer before we diddle with
2254 * the cached PTE copy.
2255 */
2256 pt = pmap_pvo_to_pte(pvo, pteidx);
2257 /*
2258 * Change the protection of the page.
2259 */
2260 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2261 pvo->pvo_pte.pte_lo |= PTE_BR;
2262
2263 /*
2264 * If the PVO is in the page table, update
2265 * that pte at well.
2266 */
2267 if (pt != NULL) {
2268 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2269 PVO_WHERE(pvo, PMAP_PROTECT);
2270 PMAPCOUNT(ptes_changed);
2271 }
2272
2273 PMAP_PVO_CHECK(pvo); /* sanity check */
2274 }
2275 pmap_interrupts_restore(msr);
2276 PMAP_UNLOCK();
2277 }
2278
2279 void
2280 pmap_unwire(pmap_t pm, vaddr_t va)
2281 {
2282 struct pvo_entry *pvo;
2283 register_t msr;
2284
2285 PMAP_LOCK();
2286 msr = pmap_interrupts_off();
2287 pvo = pmap_pvo_find_va(pm, va, NULL);
2288 if (pvo != NULL) {
2289 if (PVO_WIRED_P(pvo)) {
2290 pvo->pvo_vaddr &= ~PVO_WIRED;
2291 pm->pm_stats.wired_count--;
2292 }
2293 PMAP_PVO_CHECK(pvo); /* sanity check */
2294 }
2295 pmap_interrupts_restore(msr);
2296 PMAP_UNLOCK();
2297 }
2298
2299 static void
2300 pmap_pp_protect(struct pmap_page *pp, paddr_t pa, vm_prot_t prot)
2301 {
2302 struct pvo_head *pvo_head, pvol;
2303 struct pvo_entry *pvo, *next_pvo;
2304 volatile struct pte *pt;
2305 register_t msr;
2306
2307 PMAP_LOCK();
2308
2309 KASSERT(prot != VM_PROT_ALL);
2310 LIST_INIT(&pvol);
2311 msr = pmap_interrupts_off();
2312
2313 /*
2314 * When UVM reuses a page, it does a pmap_page_protect with
2315 * VM_PROT_NONE. At that point, we can clear the exec flag
2316 * since we know the page will have different contents.
2317 */
2318 if ((prot & VM_PROT_READ) == 0) {
2319 DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2320 pa);
2321 if (pmap_pp_attr_fetch(pp) & PTE_EXEC) {
2322 PMAPCOUNT(exec_uncached_page_protect);
2323 pmap_pp_attr_clear(pp, PTE_EXEC);
2324 }
2325 }
2326
2327 pvo_head = &pp->pp_pvoh;
2328 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2329 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2330 PMAP_PVO_CHECK(pvo); /* sanity check */
2331
2332 /*
2333 * Downgrading to no mapping at all, we just remove the entry.
2334 */
2335 if ((prot & VM_PROT_READ) == 0) {
2336 pmap_pvo_remove(pvo, -1, &pvol);
2337 continue;
2338 }
2339
2340 /*
2341 * If EXEC permission is being revoked, just clear the
2342 * flag in the PVO.
2343 */
2344 if ((prot & VM_PROT_EXECUTE) == 0)
2345 pvo_clear_exec(pvo);
2346
2347 /*
2348 * If this entry is already RO, don't diddle with the
2349 * page table.
2350 */
2351 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2352 PMAP_PVO_CHECK(pvo);
2353 continue;
2354 }
2355
2356 /*
2357 * Grab the PTE before the we diddle the bits so
2358 * pvo_to_pte can verify the pte contents are as
2359 * expected.
2360 */
2361 pt = pmap_pvo_to_pte(pvo, -1);
2362 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2363 pvo->pvo_pte.pte_lo |= PTE_BR;
2364 if (pt != NULL) {
2365 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2366 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2367 PMAPCOUNT(ptes_changed);
2368 }
2369 PMAP_PVO_CHECK(pvo); /* sanity check */
2370 }
2371 pmap_interrupts_restore(msr);
2372 pmap_pvo_free_list(&pvol);
2373
2374 PMAP_UNLOCK();
2375 }
2376
2377 /*
2378 * Lower the protection on the specified physical page.
2379 */
2380 void
2381 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2382 {
2383 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2384
2385 pmap_pp_protect(&md->mdpg_pp, VM_PAGE_TO_PHYS(pg), prot);
2386 }
2387
2388 /*
2389 * Lower the protection on the physical page at the specified physical
2390 * address, which may not be managed and so may not have a struct
2391 * vm_page.
2392 */
2393 void
2394 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
2395 {
2396 struct pmap_page *pp;
2397
2398 if ((pp = pmap_pv_tracked(pa)) == NULL)
2399 return;
2400 pmap_pp_protect(pp, pa, prot);
2401 }
2402
2403 /*
2404 * Activate the address space for the specified process. If the process
2405 * is the current process, load the new MMU context.
2406 */
2407 void
2408 pmap_activate(struct lwp *l)
2409 {
2410 struct pcb *pcb = lwp_getpcb(l);
2411 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2412
2413 DPRINTFN(ACTIVATE,
2414 "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2415
2416 /*
2417 * XXX Normally performed in cpu_lwp_fork().
2418 */
2419 pcb->pcb_pm = pmap;
2420
2421 /*
2422 * In theory, the SR registers need only be valid on return
2423 * to user space wait to do them there.
2424 */
2425 if (l == curlwp) {
2426 /* Store pointer to new current pmap. */
2427 curpm = pmap;
2428 }
2429 }
2430
2431 /*
2432 * Deactivate the specified process's address space.
2433 */
2434 void
2435 pmap_deactivate(struct lwp *l)
2436 {
2437 }
2438
2439 bool
2440 pmap_query_bit(struct vm_page *pg, int ptebit)
2441 {
2442 struct pvo_entry *pvo;
2443 volatile struct pte *pt;
2444 register_t msr;
2445
2446 PMAP_LOCK();
2447
2448 if (pmap_attr_fetch(pg) & ptebit) {
2449 PMAP_UNLOCK();
2450 return true;
2451 }
2452
2453 msr = pmap_interrupts_off();
2454 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2455 PMAP_PVO_CHECK(pvo); /* sanity check */
2456 /*
2457 * See if we saved the bit off. If so cache, it and return
2458 * success.
2459 */
2460 if (pvo->pvo_pte.pte_lo & ptebit) {
2461 pmap_attr_save(pg, ptebit);
2462 PMAP_PVO_CHECK(pvo); /* sanity check */
2463 pmap_interrupts_restore(msr);
2464 PMAP_UNLOCK();
2465 return true;
2466 }
2467 }
2468 /*
2469 * No luck, now go thru the hard part of looking at the ptes
2470 * themselves. Sync so any pending REF/CHG bits are flushed
2471 * to the PTEs.
2472 */
2473 SYNC();
2474 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2475 PMAP_PVO_CHECK(pvo); /* sanity check */
2476 /*
2477 * See if this pvo have a valid PTE. If so, fetch the
2478 * REF/CHG bits from the valid PTE. If the appropriate
2479 * ptebit is set, cache, it and return success.
2480 */
2481 pt = pmap_pvo_to_pte(pvo, -1);
2482 if (pt != NULL) {
2483 pmap_pte_synch(pt, &pvo->pvo_pte);
2484 if (pvo->pvo_pte.pte_lo & ptebit) {
2485 pmap_attr_save(pg, ptebit);
2486 PMAP_PVO_CHECK(pvo); /* sanity check */
2487 pmap_interrupts_restore(msr);
2488 PMAP_UNLOCK();
2489 return true;
2490 }
2491 }
2492 }
2493 pmap_interrupts_restore(msr);
2494 PMAP_UNLOCK();
2495 return false;
2496 }
2497
2498 bool
2499 pmap_clear_bit(struct vm_page *pg, int ptebit)
2500 {
2501 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2502 struct pvo_entry *pvo;
2503 volatile struct pte *pt;
2504 register_t msr;
2505 int rv = 0;
2506
2507 PMAP_LOCK();
2508 msr = pmap_interrupts_off();
2509
2510 /*
2511 * Fetch the cache value
2512 */
2513 rv |= pmap_attr_fetch(pg);
2514
2515 /*
2516 * Clear the cached value.
2517 */
2518 pmap_attr_clear(pg, ptebit);
2519
2520 /*
2521 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2522 * can reset the right ones). Note that since the pvo entries and
2523 * list heads are accessed via BAT0 and are never placed in the
2524 * page table, we don't have to worry about further accesses setting
2525 * the REF/CHG bits.
2526 */
2527 SYNC();
2528
2529 /*
2530 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2531 * valid PTE. If so, clear the ptebit from the valid PTE.
2532 */
2533 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2534 PMAP_PVO_CHECK(pvo); /* sanity check */
2535 pt = pmap_pvo_to_pte(pvo, -1);
2536 if (pt != NULL) {
2537 /*
2538 * Only sync the PTE if the bit we are looking
2539 * for is not already set.
2540 */
2541 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2542 pmap_pte_synch(pt, &pvo->pvo_pte);
2543 /*
2544 * If the bit we are looking for was already set,
2545 * clear that bit in the pte.
2546 */
2547 if (pvo->pvo_pte.pte_lo & ptebit)
2548 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2549 }
2550 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2551 pvo->pvo_pte.pte_lo &= ~ptebit;
2552 PMAP_PVO_CHECK(pvo); /* sanity check */
2553 }
2554 pmap_interrupts_restore(msr);
2555
2556 /*
2557 * If we are clearing the modify bit and this page was marked EXEC
2558 * and the user of the page thinks the page was modified, then we
2559 * need to clean it from the icache if it's mapped or clear the EXEC
2560 * bit if it's not mapped. The page itself might not have the CHG
2561 * bit set if the modification was done via DMA to the page.
2562 */
2563 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2564 if (LIST_EMPTY(pvoh)) {
2565 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2566 VM_PAGE_TO_PHYS(pg));
2567 pmap_attr_clear(pg, PTE_EXEC);
2568 PMAPCOUNT(exec_uncached_clear_modify);
2569 } else {
2570 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2571 VM_PAGE_TO_PHYS(pg));
2572 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2573 PMAPCOUNT(exec_synced_clear_modify);
2574 }
2575 }
2576 PMAP_UNLOCK();
2577 return (rv & ptebit) != 0;
2578 }
2579
2580 void
2581 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2582 {
2583 struct pvo_entry *pvo;
2584 size_t offset = va & ADDR_POFF;
2585 int s;
2586
2587 PMAP_LOCK();
2588 s = splvm();
2589 while (len > 0) {
2590 size_t seglen = PAGE_SIZE - offset;
2591 if (seglen > len)
2592 seglen = len;
2593 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2594 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2595 pmap_syncicache(
2596 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2597 PMAP_PVO_CHECK(pvo);
2598 }
2599 va += seglen;
2600 len -= seglen;
2601 offset = 0;
2602 }
2603 splx(s);
2604 PMAP_UNLOCK();
2605 }
2606
2607 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2608 void
2609 pmap_pte_print(volatile struct pte *pt)
2610 {
2611 printf("PTE %p: ", pt);
2612
2613 #if defined(PMAP_OEA)
2614 /* High word: */
2615 printf("%#" _PRIxpte ": [", pt->pte_hi);
2616 #else
2617 printf("%#" _PRIxpte ": [", pt->pte_hi);
2618 #endif /* PMAP_OEA */
2619
2620 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2621 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2622
2623 printf("%#" _PRIxpte " %#" _PRIxpte "",
2624 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2625 pt->pte_hi & PTE_API);
2626 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2627 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2628 #else
2629 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2630 #endif /* PMAP_OEA */
2631
2632 /* Low word: */
2633 #if defined (PMAP_OEA)
2634 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2635 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2636 #else
2637 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2638 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2639 #endif
2640 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2641 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2642 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2643 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2644 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2645 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2646 switch (pt->pte_lo & PTE_PP) {
2647 case PTE_BR: printf("br]\n"); break;
2648 case PTE_BW: printf("bw]\n"); break;
2649 case PTE_SO: printf("so]\n"); break;
2650 case PTE_SW: printf("sw]\n"); break;
2651 }
2652 }
2653 #endif
2654
2655 #if defined(DDB)
2656 void
2657 pmap_pteg_check(void)
2658 {
2659 volatile struct pte *pt;
2660 int i;
2661 int ptegidx;
2662 u_int p_valid = 0;
2663 u_int s_valid = 0;
2664 u_int invalid = 0;
2665
2666 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2667 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2668 if (pt->pte_hi & PTE_VALID) {
2669 if (pt->pte_hi & PTE_HID)
2670 s_valid++;
2671 else
2672 {
2673 p_valid++;
2674 }
2675 } else
2676 invalid++;
2677 }
2678 }
2679 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2680 p_valid, p_valid, s_valid, s_valid,
2681 invalid, invalid);
2682 }
2683
2684 void
2685 pmap_print_mmuregs(void)
2686 {
2687 int i;
2688 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2689 u_int cpuvers;
2690 #endif
2691 #ifndef PMAP_OEA64
2692 vaddr_t addr;
2693 register_t soft_sr[16];
2694 #endif
2695 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2696 struct bat soft_ibat[4];
2697 struct bat soft_dbat[4];
2698 #endif
2699 paddr_t sdr1;
2700
2701 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2702 cpuvers = MFPVR() >> 16;
2703 #endif
2704 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2705 #ifndef PMAP_OEA64
2706 addr = 0;
2707 for (i = 0; i < 16; i++) {
2708 soft_sr[i] = MFSRIN(addr);
2709 addr += (1 << ADDR_SR_SHFT);
2710 }
2711 #endif
2712
2713 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2714 /* read iBAT (601: uBAT) registers */
2715 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2716 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2717 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2718 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2719 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2720 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2721 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2722 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2723
2724
2725 if (cpuvers != MPC601) {
2726 /* read dBAT registers */
2727 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2728 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2729 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2730 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2731 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2732 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2733 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2734 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2735 }
2736 #endif
2737
2738 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2739 #ifndef PMAP_OEA64
2740 printf("SR[]:\t");
2741 for (i = 0; i < 4; i++)
2742 printf("0x%08lx, ", soft_sr[i]);
2743 printf("\n\t");
2744 for ( ; i < 8; i++)
2745 printf("0x%08lx, ", soft_sr[i]);
2746 printf("\n\t");
2747 for ( ; i < 12; i++)
2748 printf("0x%08lx, ", soft_sr[i]);
2749 printf("\n\t");
2750 for ( ; i < 16; i++)
2751 printf("0x%08lx, ", soft_sr[i]);
2752 printf("\n");
2753 #endif
2754
2755 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2756 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2757 for (i = 0; i < 4; i++) {
2758 printf("0x%08lx 0x%08lx, ",
2759 soft_ibat[i].batu, soft_ibat[i].batl);
2760 if (i == 1)
2761 printf("\n\t");
2762 }
2763 if (cpuvers != MPC601) {
2764 printf("\ndBAT[]:\t");
2765 for (i = 0; i < 4; i++) {
2766 printf("0x%08lx 0x%08lx, ",
2767 soft_dbat[i].batu, soft_dbat[i].batl);
2768 if (i == 1)
2769 printf("\n\t");
2770 }
2771 }
2772 printf("\n");
2773 #endif /* PMAP_OEA... */
2774 }
2775
2776 void
2777 pmap_print_pte(pmap_t pm, vaddr_t va)
2778 {
2779 struct pvo_entry *pvo;
2780 volatile struct pte *pt;
2781 int pteidx;
2782
2783 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2784 if (pvo != NULL) {
2785 pt = pmap_pvo_to_pte(pvo, pteidx);
2786 if (pt != NULL) {
2787 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2788 va, pt,
2789 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2790 pt->pte_hi, pt->pte_lo);
2791 } else {
2792 printf("No valid PTE found\n");
2793 }
2794 } else {
2795 printf("Address not in pmap\n");
2796 }
2797 }
2798
2799 void
2800 pmap_pteg_dist(void)
2801 {
2802 struct pvo_entry *pvo;
2803 int ptegidx;
2804 int depth;
2805 int max_depth = 0;
2806 unsigned int depths[64];
2807
2808 memset(depths, 0, sizeof(depths));
2809 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2810 depth = 0;
2811 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2812 depth++;
2813 }
2814 if (depth > max_depth)
2815 max_depth = depth;
2816 if (depth > 63)
2817 depth = 63;
2818 depths[depth]++;
2819 }
2820
2821 for (depth = 0; depth < 64; depth++) {
2822 printf(" [%2d]: %8u", depth, depths[depth]);
2823 if ((depth & 3) == 3)
2824 printf("\n");
2825 if (depth == max_depth)
2826 break;
2827 }
2828 if ((depth & 3) != 3)
2829 printf("\n");
2830 printf("Max depth found was %d\n", max_depth);
2831 }
2832 #endif /* DEBUG */
2833
2834 #if defined(PMAPCHECK) || defined(DEBUG)
2835 void
2836 pmap_pvo_verify(void)
2837 {
2838 int ptegidx;
2839 int s;
2840
2841 s = splvm();
2842 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2843 struct pvo_entry *pvo;
2844 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2845 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2846 panic("pmap_pvo_verify: invalid pvo %p "
2847 "on list %#x", pvo, ptegidx);
2848 pmap_pvo_check(pvo);
2849 }
2850 }
2851 splx(s);
2852 }
2853 #endif /* PMAPCHECK */
2854
2855 void *
2856 pmap_pool_alloc(struct pool *pp, int flags)
2857 {
2858 struct pvo_page *pvop;
2859 struct vm_page *pg;
2860
2861 if (uvm.page_init_done != true) {
2862 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2863 }
2864
2865 PMAP_LOCK();
2866 pvop = SIMPLEQ_FIRST(&pmap_pvop_head);
2867 if (pvop != NULL) {
2868 pmap_pvop_free--;
2869 SIMPLEQ_REMOVE_HEAD(&pmap_pvop_head, pvop_link);
2870 PMAP_UNLOCK();
2871 return pvop;
2872 }
2873 PMAP_UNLOCK();
2874 again:
2875 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2876 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2877 if (__predict_false(pg == NULL)) {
2878 if (flags & PR_WAITOK) {
2879 uvm_wait("plpg");
2880 goto again;
2881 } else {
2882 return (0);
2883 }
2884 }
2885 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2886 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2887 }
2888
2889 void
2890 pmap_pool_free(struct pool *pp, void *va)
2891 {
2892 struct pvo_page *pvop;
2893
2894 PMAP_LOCK();
2895 pvop = va;
2896 SIMPLEQ_INSERT_HEAD(&pmap_pvop_head, pvop, pvop_link);
2897 pmap_pvop_free++;
2898 if (pmap_pvop_free > pmap_pvop_maxfree)
2899 pmap_pvop_maxfree = pmap_pvop_free;
2900 PMAP_UNLOCK();
2901 #if 0
2902 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2903 #endif
2904 }
2905
2906 /*
2907 * This routine in bootstraping to steal to-be-managed memory (which will
2908 * then be unmanaged). We use it to grab from the first 256MB for our
2909 * pmap needs and above 256MB for other stuff.
2910 */
2911 vaddr_t
2912 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2913 {
2914 vsize_t size;
2915 vaddr_t va;
2916 paddr_t start, end, pa = 0;
2917 int npgs, freelist;
2918 uvm_physseg_t bank;
2919
2920 if (uvm.page_init_done == true)
2921 panic("pmap_steal_memory: called _after_ bootstrap");
2922
2923 *vstartp = VM_MIN_KERNEL_ADDRESS;
2924 *vendp = VM_MAX_KERNEL_ADDRESS;
2925
2926 size = round_page(vsize);
2927 npgs = atop(size);
2928
2929 /*
2930 * PA 0 will never be among those given to UVM so we can use it
2931 * to indicate we couldn't steal any memory.
2932 */
2933
2934 for (bank = uvm_physseg_get_first();
2935 uvm_physseg_valid_p(bank);
2936 bank = uvm_physseg_get_next(bank)) {
2937
2938 freelist = uvm_physseg_get_free_list(bank);
2939 start = uvm_physseg_get_start(bank);
2940 end = uvm_physseg_get_end(bank);
2941
2942 if (freelist == VM_FREELIST_FIRST256 &&
2943 (end - start) >= npgs) {
2944 pa = ptoa(start);
2945 break;
2946 }
2947 }
2948
2949 if (pa == 0)
2950 panic("pmap_steal_memory: no approriate memory to steal!");
2951
2952 uvm_physseg_unplug(start, npgs);
2953
2954 va = (vaddr_t) pa;
2955 memset((void *) va, 0, size);
2956 pmap_pages_stolen += npgs;
2957 #ifdef DEBUG
2958 if (pmapdebug && npgs > 1) {
2959 u_int cnt = 0;
2960 for (bank = uvm_physseg_get_first();
2961 uvm_physseg_valid_p(bank);
2962 bank = uvm_physseg_get_next(bank)) {
2963 cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
2964 }
2965 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2966 npgs, pmap_pages_stolen, cnt);
2967 }
2968 #endif
2969
2970 return va;
2971 }
2972
2973 /*
2974 * Find a chuck of memory with right size and alignment.
2975 */
2976 paddr_t
2977 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2978 {
2979 struct mem_region *mp;
2980 paddr_t s, e;
2981 int i, j;
2982
2983 size = round_page(size);
2984
2985 DPRINTFN(BOOT,
2986 "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2987 size, alignment, at_end);
2988
2989 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2990 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2991 alignment);
2992
2993 if (at_end) {
2994 if (alignment != PAGE_SIZE)
2995 panic("pmap_boot_find_memory: invalid ending "
2996 "alignment %#" _PRIxpa, alignment);
2997
2998 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2999 s = mp->start + mp->size - size;
3000 if (s >= mp->start && mp->size >= size) {
3001 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3002 DPRINTFN(BOOT,
3003 "pmap_boot_find_memory: b-avail[%d] start "
3004 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3005 mp->start, mp->size);
3006 mp->size -= size;
3007 DPRINTFN(BOOT,
3008 "pmap_boot_find_memory: a-avail[%d] start "
3009 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3010 mp->start, mp->size);
3011 return s;
3012 }
3013 }
3014 panic("pmap_boot_find_memory: no available memory");
3015 }
3016
3017 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3018 s = (mp->start + alignment - 1) & ~(alignment-1);
3019 e = s + size;
3020
3021 /*
3022 * Is the calculated region entirely within the region?
3023 */
3024 if (s < mp->start || e > mp->start + mp->size)
3025 continue;
3026
3027 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3028 if (s == mp->start) {
3029 /*
3030 * If the block starts at the beginning of region,
3031 * adjust the size & start. (the region may now be
3032 * zero in length)
3033 */
3034 DPRINTFN(BOOT,
3035 "pmap_boot_find_memory: b-avail[%d] start "
3036 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3037 mp->start += size;
3038 mp->size -= size;
3039 DPRINTFN(BOOT,
3040 "pmap_boot_find_memory: a-avail[%d] start "
3041 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3042 } else if (e == mp->start + mp->size) {
3043 /*
3044 * If the block starts at the beginning of region,
3045 * adjust only the size.
3046 */
3047 DPRINTFN(BOOT,
3048 "pmap_boot_find_memory: b-avail[%d] start "
3049 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3050 mp->size -= size;
3051 DPRINTFN(BOOT,
3052 "pmap_boot_find_memory: a-avail[%d] start "
3053 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3054 } else {
3055 /*
3056 * Block is in the middle of the region, so we
3057 * have to split it in two.
3058 */
3059 for (j = avail_cnt; j > i + 1; j--) {
3060 avail[j] = avail[j-1];
3061 }
3062 DPRINTFN(BOOT,
3063 "pmap_boot_find_memory: b-avail[%d] start "
3064 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3065 mp[1].start = e;
3066 mp[1].size = mp[0].start + mp[0].size - e;
3067 mp[0].size = s - mp[0].start;
3068 avail_cnt++;
3069 for (; i < avail_cnt; i++) {
3070 DPRINTFN(BOOT,
3071 "pmap_boot_find_memory: a-avail[%d] "
3072 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3073 avail[i].start, avail[i].size);
3074 }
3075 }
3076 KASSERT(s == (uintptr_t) s);
3077 return s;
3078 }
3079 panic("pmap_boot_find_memory: not enough memory for "
3080 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3081 }
3082
3083 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3084 #if defined (PMAP_OEA64_BRIDGE)
3085 int
3086 pmap_setup_segment0_map(int use_large_pages, ...)
3087 {
3088 vaddr_t va, va_end;
3089
3090 register_t pte_lo = 0x0;
3091 int ptegidx = 0;
3092 struct pte pte;
3093 va_list ap;
3094
3095 /* Coherent + Supervisor RW, no user access */
3096 pte_lo = PTE_M;
3097
3098 /* XXXSL
3099 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3100 * these have to take priority.
3101 */
3102 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3103 ptegidx = va_to_pteg(pmap_kernel(), va);
3104 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3105 (void)pmap_pte_insert(ptegidx, &pte);
3106 }
3107
3108 va_start(ap, use_large_pages);
3109 while (1) {
3110 paddr_t pa;
3111 size_t size;
3112
3113 va = va_arg(ap, vaddr_t);
3114
3115 if (va == 0)
3116 break;
3117
3118 pa = va_arg(ap, paddr_t);
3119 size = va_arg(ap, size_t);
3120
3121 for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
3122 #if 0
3123 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3124 #endif
3125 ptegidx = va_to_pteg(pmap_kernel(), va);
3126 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3127 (void)pmap_pte_insert(ptegidx, &pte);
3128 }
3129 }
3130 va_end(ap);
3131
3132 TLBSYNC();
3133 SYNC();
3134 return (0);
3135 }
3136 #endif /* PMAP_OEA64_BRIDGE */
3137
3138 /*
3139 * Set up the bottom level of the data structures necessary for the kernel
3140 * to manage memory. MMU hardware is programmed in pmap_bootstrap2().
3141 */
3142 void
3143 pmap_bootstrap1(paddr_t kernelstart, paddr_t kernelend)
3144 {
3145 struct mem_region *mp, tmp;
3146 paddr_t s, e;
3147 psize_t size;
3148 int i, j;
3149
3150 /*
3151 * Get memory.
3152 */
3153 mem_regions(&mem, &avail);
3154 #if defined(DEBUG)
3155 if (pmapdebug & PMAPDEBUG_BOOT) {
3156 printf("pmap_bootstrap: memory configuration:\n");
3157 for (mp = mem; mp->size; mp++) {
3158 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3159 mp->start, mp->size);
3160 }
3161 for (mp = avail; mp->size; mp++) {
3162 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3163 mp->start, mp->size);
3164 }
3165 }
3166 #endif
3167
3168 /*
3169 * Find out how much physical memory we have and in how many chunks.
3170 */
3171 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3172 if (mp->start >= pmap_memlimit)
3173 continue;
3174 if (mp->start + mp->size > pmap_memlimit) {
3175 size = pmap_memlimit - mp->start;
3176 physmem += btoc(size);
3177 } else {
3178 physmem += btoc(mp->size);
3179 }
3180 mem_cnt++;
3181 }
3182
3183 /*
3184 * Count the number of available entries.
3185 */
3186 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3187 avail_cnt++;
3188
3189 /*
3190 * Page align all regions.
3191 */
3192 kernelstart = trunc_page(kernelstart);
3193 kernelend = round_page(kernelend);
3194 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3195 s = round_page(mp->start);
3196 mp->size -= (s - mp->start);
3197 mp->size = trunc_page(mp->size);
3198 mp->start = s;
3199 e = mp->start + mp->size;
3200
3201 DPRINTFN(BOOT,
3202 "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3203 i, mp->start, mp->size);
3204
3205 /*
3206 * Don't allow the end to run beyond our artificial limit
3207 */
3208 if (e > pmap_memlimit)
3209 e = pmap_memlimit;
3210
3211 /*
3212 * Is this region empty or strange? skip it.
3213 */
3214 if (e <= s) {
3215 mp->start = 0;
3216 mp->size = 0;
3217 continue;
3218 }
3219
3220 /*
3221 * Does this overlap the beginning of kernel?
3222 * Does extend past the end of the kernel?
3223 */
3224 else if (s < kernelstart && e > kernelstart) {
3225 if (e > kernelend) {
3226 avail[avail_cnt].start = kernelend;
3227 avail[avail_cnt].size = e - kernelend;
3228 avail_cnt++;
3229 }
3230 mp->size = kernelstart - s;
3231 }
3232 /*
3233 * Check whether this region overlaps the end of the kernel.
3234 */
3235 else if (s < kernelend && e > kernelend) {
3236 mp->start = kernelend;
3237 mp->size = e - kernelend;
3238 }
3239 /*
3240 * Look whether this regions is completely inside the kernel.
3241 * Nuke it if it does.
3242 */
3243 else if (s >= kernelstart && e <= kernelend) {
3244 mp->start = 0;
3245 mp->size = 0;
3246 }
3247 /*
3248 * If the user imposed a memory limit, enforce it.
3249 */
3250 else if (s >= pmap_memlimit) {
3251 mp->start = -PAGE_SIZE; /* let's know why */
3252 mp->size = 0;
3253 }
3254 else {
3255 mp->start = s;
3256 mp->size = e - s;
3257 }
3258 DPRINTFN(BOOT,
3259 "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3260 i, mp->start, mp->size);
3261 }
3262
3263 /*
3264 * Move (and uncount) all the null return to the end.
3265 */
3266 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3267 if (mp->size == 0) {
3268 tmp = avail[i];
3269 avail[i] = avail[--avail_cnt];
3270 avail[avail_cnt] = avail[i];
3271 }
3272 }
3273
3274 /*
3275 * (Bubble)sort them into ascending order.
3276 */
3277 for (i = 0; i < avail_cnt; i++) {
3278 for (j = i + 1; j < avail_cnt; j++) {
3279 if (avail[i].start > avail[j].start) {
3280 tmp = avail[i];
3281 avail[i] = avail[j];
3282 avail[j] = tmp;
3283 }
3284 }
3285 }
3286
3287 /*
3288 * Make sure they don't overlap.
3289 */
3290 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3291 if (mp[0].start + mp[0].size > mp[1].start) {
3292 mp[0].size = mp[1].start - mp[0].start;
3293 }
3294 DPRINTFN(BOOT,
3295 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3296 i, mp->start, mp->size);
3297 }
3298 DPRINTFN(BOOT,
3299 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3300 i, mp->start, mp->size);
3301
3302 #ifdef PTEGCOUNT
3303 pmap_pteg_cnt = PTEGCOUNT;
3304 #else /* PTEGCOUNT */
3305
3306 pmap_pteg_cnt = 0x1000;
3307
3308 while (pmap_pteg_cnt < physmem)
3309 pmap_pteg_cnt <<= 1;
3310
3311 pmap_pteg_cnt >>= 1;
3312 #endif /* PTEGCOUNT */
3313
3314 #ifdef DEBUG
3315 DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3316 #endif
3317
3318 /*
3319 * Find suitably aligned memory for PTEG hash table.
3320 */
3321 size = pmap_pteg_cnt * sizeof(struct pteg);
3322 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3323
3324 #ifdef DEBUG
3325 DPRINTFN(BOOT,
3326 "PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3327 #endif
3328
3329
3330 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3331 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3332 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3333 pmap_pteg_table, size);
3334 #endif
3335
3336 memset(__UNVOLATILE(pmap_pteg_table), 0,
3337 pmap_pteg_cnt * sizeof(struct pteg));
3338 pmap_pteg_mask = pmap_pteg_cnt - 1;
3339
3340 /*
3341 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3342 * with pages. So we just steal them before giving them to UVM.
3343 */
3344 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3345 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3346 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3347 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3348 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3349 pmap_pvo_table, size);
3350 #endif
3351
3352 for (i = 0; i < pmap_pteg_cnt; i++)
3353 TAILQ_INIT(&pmap_pvo_table[i]);
3354
3355 #ifndef MSGBUFADDR
3356 /*
3357 * Allocate msgbuf in high memory.
3358 */
3359 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3360 #endif
3361
3362 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3363 paddr_t pfstart = atop(mp->start);
3364 paddr_t pfend = atop(mp->start + mp->size);
3365 if (mp->size == 0)
3366 continue;
3367 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3368 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3369 VM_FREELIST_FIRST256);
3370 } else if (mp->start >= SEGMENT_LENGTH) {
3371 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3372 VM_FREELIST_DEFAULT);
3373 } else {
3374 pfend = atop(SEGMENT_LENGTH);
3375 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3376 VM_FREELIST_FIRST256);
3377 pfstart = atop(SEGMENT_LENGTH);
3378 pfend = atop(mp->start + mp->size);
3379 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3380 VM_FREELIST_DEFAULT);
3381 }
3382 }
3383
3384 /*
3385 * Make sure kernel vsid is allocated as well as VSID 0.
3386 */
3387 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3388 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3389 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3390 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3391 pmap_vsid_bitmap[0] |= 1;
3392
3393 /*
3394 * Initialize kernel pmap.
3395 */
3396 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
3397 for (i = 0; i < 16; i++) {
3398 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3399 }
3400 pmap_kernel()->pm_vsid = KERNEL_VSIDBITS;
3401
3402 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3403 #ifdef KERNEL2_SR
3404 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3405 #endif
3406 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3407
3408 #if defined(PMAP_OEA) && defined(PPC_OEA601)
3409 if ((MFPVR() >> 16) == MPC601) {
3410 for (i = 0; i < 16; i++) {
3411 if (iosrtable[i] & SR601_T) {
3412 pmap_kernel()->pm_sr[i] = iosrtable[i];
3413 }
3414 }
3415 }
3416 #endif /* PMAP_OEA && PPC_OEA601 */
3417
3418 #ifdef ALTIVEC
3419 pmap_use_altivec = cpu_altivec;
3420 #endif
3421
3422 #ifdef DEBUG
3423 if (pmapdebug & PMAPDEBUG_BOOT) {
3424 u_int cnt;
3425 uvm_physseg_t bank;
3426 char pbuf[9];
3427 for (cnt = 0, bank = uvm_physseg_get_first();
3428 uvm_physseg_valid_p(bank);
3429 bank = uvm_physseg_get_next(bank)) {
3430 cnt += uvm_physseg_get_avail_end(bank) -
3431 uvm_physseg_get_avail_start(bank);
3432 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3433 bank,
3434 ptoa(uvm_physseg_get_avail_start(bank)),
3435 ptoa(uvm_physseg_get_avail_end(bank)),
3436 ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
3437 }
3438 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3439 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3440 pbuf, cnt);
3441 }
3442 #endif
3443
3444 pool_init(&pmap_pvo_pool, sizeof(struct pvo_entry),
3445 sizeof(struct pvo_entry), 0, 0, "pmap_pvopl",
3446 &pmap_pool_allocator, IPL_VM);
3447
3448 pool_setlowat(&pmap_pvo_pool, 1008);
3449
3450 pool_init(&pmap_pool, sizeof(struct pmap),
3451 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_allocator,
3452 IPL_NONE);
3453
3454 #if defined(PMAP_NEED_MAPKERNEL)
3455 {
3456 struct pmap *pm = pmap_kernel();
3457 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3458 extern int etext[], kernel_text[];
3459 vaddr_t va, va_etext = (paddr_t) etext;
3460 #endif
3461 paddr_t pa, pa_end;
3462 register_t sr;
3463 struct pte pt;
3464 unsigned int ptegidx;
3465 int bank;
3466
3467 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3468 pm->pm_sr[0] = sr;
3469
3470 for (bank = 0; bank < vm_nphysseg; bank++) {
3471 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3472 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3473 for (; pa < pa_end; pa += PAGE_SIZE) {
3474 ptegidx = va_to_pteg(pm, pa);
3475 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3476 pmap_pte_insert(ptegidx, &pt);
3477 }
3478 }
3479
3480 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3481 va = (vaddr_t) kernel_text;
3482
3483 for (pa = kernelstart; va < va_etext;
3484 pa += PAGE_SIZE, va += PAGE_SIZE) {
3485 ptegidx = va_to_pteg(pm, va);
3486 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3487 pmap_pte_insert(ptegidx, &pt);
3488 }
3489
3490 for (; pa < kernelend;
3491 pa += PAGE_SIZE, va += PAGE_SIZE) {
3492 ptegidx = va_to_pteg(pm, va);
3493 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3494 pmap_pte_insert(ptegidx, &pt);
3495 }
3496
3497 for (va = 0, pa = 0; va < kernelstart;
3498 pa += PAGE_SIZE, va += PAGE_SIZE) {
3499 ptegidx = va_to_pteg(pm, va);
3500 if (va < 0x3000)
3501 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3502 else
3503 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3504 pmap_pte_insert(ptegidx, &pt);
3505 }
3506 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3507 pa += PAGE_SIZE, va += PAGE_SIZE) {
3508 ptegidx = va_to_pteg(pm, va);
3509 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3510 pmap_pte_insert(ptegidx, &pt);
3511 }
3512 #endif /* PMAP_NEED_FULL_MAPKERNEL */
3513 }
3514 #endif /* PMAP_NEED_MAPKERNEL */
3515 }
3516
3517 /*
3518 * Using the data structures prepared in pmap_bootstrap1(), program
3519 * the MMU hardware.
3520 */
3521 void
3522 pmap_bootstrap2(void)
3523 {
3524 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
3525 for (int i = 0; i < 16; i++) {
3526 __asm volatile("mtsrin %0,%1"
3527 :: "r"(pmap_kernel()->pm_sr[i]),
3528 "r"(i << ADDR_SR_SHFT));
3529 }
3530 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3531
3532 #if defined(PMAP_OEA)
3533 __asm volatile("sync; mtsdr1 %0; isync"
3534 :
3535 : "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10))
3536 : "memory");
3537 #elif defined(PMAP_OEA64) || defined(PMAP_OEA64_BRIDGE)
3538 __asm volatile("sync; mtsdr1 %0; isync"
3539 :
3540 : "r"((uintptr_t)pmap_pteg_table |
3541 (32 - __builtin_clz(pmap_pteg_mask >> 11)))
3542 : "memory");
3543 #endif
3544 tlbia();
3545
3546 #if defined(PMAPDEBUG)
3547 if (pmapdebug)
3548 pmap_print_mmuregs();
3549 #endif
3550 }
3551
3552 /*
3553 * This is not part of the defined PMAP interface and is specific to the
3554 * PowerPC architecture. This is called during initppc, before the system
3555 * is really initialized.
3556 */
3557 void
3558 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3559 {
3560 pmap_bootstrap1(kernelstart, kernelend);
3561 pmap_bootstrap2();
3562 }
3563