pmap.c revision 1.118 1 /* $NetBSD: pmap.c,v 1.118 2023/12/15 09:33:29 rin Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.118 2023/12/15 09:33:29 rin Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #ifdef _KERNEL_OPT
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74 #include "opt_ppcarch.h"
75 #endif
76
77 #include <sys/param.h>
78 #include <sys/proc.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83 #include <sys/atomic.h>
84
85 #include <uvm/uvm.h>
86 #include <uvm/uvm_physseg.h>
87
88 #include <machine/powerpc.h>
89 #include <powerpc/bat.h>
90 #include <powerpc/pcb.h>
91 #include <powerpc/psl.h>
92 #include <powerpc/spr.h>
93 #include <powerpc/oea/spr.h>
94 #include <powerpc/oea/sr_601.h>
95
96 #ifdef ALTIVEC
97 extern int pmap_use_altivec;
98 #endif
99
100 #ifdef PMAP_MEMLIMIT
101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
102 #else
103 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
104 #endif
105
106 extern struct pmap kernel_pmap_;
107 static unsigned int pmap_pages_stolen;
108 static u_long pmap_pte_valid;
109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
110 static u_long pmap_pvo_enter_depth;
111 static u_long pmap_pvo_remove_depth;
112 #endif
113
114 #ifndef MSGBUFADDR
115 extern paddr_t msgbuf_paddr;
116 #endif
117
118 static struct mem_region *mem, *avail;
119 static u_int mem_cnt, avail_cnt;
120
121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
122 # define PMAP_OEA 1
123 #endif
124
125 #if defined(PMAP_OEA)
126 #define _PRIxpte "lx"
127 #else
128 #define _PRIxpte PRIx64
129 #endif
130 #define _PRIxpa "lx"
131 #define _PRIxva "lx"
132 #define _PRIsr "lx"
133
134 #ifdef PMAP_NEEDS_FIXUP
135 #if defined(PMAP_OEA)
136 #define PMAPNAME(name) pmap32_##name
137 #elif defined(PMAP_OEA64)
138 #define PMAPNAME(name) pmap64_##name
139 #elif defined(PMAP_OEA64_BRIDGE)
140 #define PMAPNAME(name) pmap64bridge_##name
141 #else
142 #error unknown variant for pmap
143 #endif
144 #endif /* PMAP_NEEDS_FIXUP */
145
146 #ifdef PMAPNAME
147 #define STATIC static
148 #define pmap_pte_spill PMAPNAME(pte_spill)
149 #define pmap_real_memory PMAPNAME(real_memory)
150 #define pmap_init PMAPNAME(init)
151 #define pmap_virtual_space PMAPNAME(virtual_space)
152 #define pmap_create PMAPNAME(create)
153 #define pmap_reference PMAPNAME(reference)
154 #define pmap_destroy PMAPNAME(destroy)
155 #define pmap_copy PMAPNAME(copy)
156 #define pmap_update PMAPNAME(update)
157 #define pmap_enter PMAPNAME(enter)
158 #define pmap_remove PMAPNAME(remove)
159 #define pmap_kenter_pa PMAPNAME(kenter_pa)
160 #define pmap_kremove PMAPNAME(kremove)
161 #define pmap_extract PMAPNAME(extract)
162 #define pmap_protect PMAPNAME(protect)
163 #define pmap_unwire PMAPNAME(unwire)
164 #define pmap_page_protect PMAPNAME(page_protect)
165 #define pmap_pv_protect PMAPNAME(pv_protect)
166 #define pmap_query_bit PMAPNAME(query_bit)
167 #define pmap_clear_bit PMAPNAME(clear_bit)
168
169 #define pmap_activate PMAPNAME(activate)
170 #define pmap_deactivate PMAPNAME(deactivate)
171
172 #define pmap_pinit PMAPNAME(pinit)
173 #define pmap_procwr PMAPNAME(procwr)
174
175 #define pmap_pool PMAPNAME(pool)
176 #define pmap_pvo_pool PMAPNAME(pvo_pool)
177 #define pmap_pvo_table PMAPNAME(pvo_table)
178 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
179 #define pmap_pte_print PMAPNAME(pte_print)
180 #define pmap_pteg_check PMAPNAME(pteg_check)
181 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
182 #define pmap_print_pte PMAPNAME(print_pte)
183 #define pmap_pteg_dist PMAPNAME(pteg_dist)
184 #endif
185 #if defined(DEBUG) || defined(PMAPCHECK)
186 #define pmap_pvo_verify PMAPNAME(pvo_verify)
187 #define pmapcheck PMAPNAME(check)
188 #endif
189 #if defined(DEBUG) || defined(PMAPDEBUG)
190 #define pmapdebug PMAPNAME(debug)
191 #endif
192 #define pmap_steal_memory PMAPNAME(steal_memory)
193 #define pmap_bootstrap PMAPNAME(bootstrap)
194 #define pmap_bootstrap1 PMAPNAME(bootstrap1)
195 #define pmap_bootstrap2 PMAPNAME(bootstrap2)
196 #else
197 #define STATIC /* nothing */
198 #endif /* PMAPNAME */
199
200 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
201 STATIC void pmap_real_memory(paddr_t *, psize_t *);
202 STATIC void pmap_init(void);
203 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
204 STATIC pmap_t pmap_create(void);
205 STATIC void pmap_reference(pmap_t);
206 STATIC void pmap_destroy(pmap_t);
207 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
208 STATIC void pmap_update(pmap_t);
209 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
210 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
211 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
212 STATIC void pmap_kremove(vaddr_t, vsize_t);
213 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
214
215 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
216 STATIC void pmap_unwire(pmap_t, vaddr_t);
217 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
218 STATIC void pmap_pv_protect(paddr_t, vm_prot_t);
219 STATIC bool pmap_query_bit(struct vm_page *, int);
220 STATIC bool pmap_clear_bit(struct vm_page *, int);
221
222 STATIC void pmap_activate(struct lwp *);
223 STATIC void pmap_deactivate(struct lwp *);
224
225 STATIC void pmap_pinit(pmap_t pm);
226 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
227
228 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
229 STATIC void pmap_pte_print(volatile struct pte *);
230 STATIC void pmap_pteg_check(void);
231 STATIC void pmap_print_mmuregs(void);
232 STATIC void pmap_print_pte(pmap_t, vaddr_t);
233 STATIC void pmap_pteg_dist(void);
234 #endif
235 #if defined(DEBUG) || defined(PMAPCHECK)
236 STATIC void pmap_pvo_verify(void);
237 #endif
238 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
239 STATIC void pmap_bootstrap(paddr_t, paddr_t);
240 STATIC void pmap_bootstrap1(paddr_t, paddr_t);
241 STATIC void pmap_bootstrap2(void);
242
243 #ifdef PMAPNAME
244 const struct pmap_ops PMAPNAME(ops) = {
245 .pmapop_pte_spill = pmap_pte_spill,
246 .pmapop_real_memory = pmap_real_memory,
247 .pmapop_init = pmap_init,
248 .pmapop_virtual_space = pmap_virtual_space,
249 .pmapop_create = pmap_create,
250 .pmapop_reference = pmap_reference,
251 .pmapop_destroy = pmap_destroy,
252 .pmapop_copy = pmap_copy,
253 .pmapop_update = pmap_update,
254 .pmapop_enter = pmap_enter,
255 .pmapop_remove = pmap_remove,
256 .pmapop_kenter_pa = pmap_kenter_pa,
257 .pmapop_kremove = pmap_kremove,
258 .pmapop_extract = pmap_extract,
259 .pmapop_protect = pmap_protect,
260 .pmapop_unwire = pmap_unwire,
261 .pmapop_page_protect = pmap_page_protect,
262 .pmapop_pv_protect = pmap_pv_protect,
263 .pmapop_query_bit = pmap_query_bit,
264 .pmapop_clear_bit = pmap_clear_bit,
265 .pmapop_activate = pmap_activate,
266 .pmapop_deactivate = pmap_deactivate,
267 .pmapop_pinit = pmap_pinit,
268 .pmapop_procwr = pmap_procwr,
269 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
270 .pmapop_pte_print = pmap_pte_print,
271 .pmapop_pteg_check = pmap_pteg_check,
272 .pmapop_print_mmuregs = pmap_print_mmuregs,
273 .pmapop_print_pte = pmap_print_pte,
274 .pmapop_pteg_dist = pmap_pteg_dist,
275 #else
276 .pmapop_pte_print = NULL,
277 .pmapop_pteg_check = NULL,
278 .pmapop_print_mmuregs = NULL,
279 .pmapop_print_pte = NULL,
280 .pmapop_pteg_dist = NULL,
281 #endif
282 #if defined(DEBUG) || defined(PMAPCHECK)
283 .pmapop_pvo_verify = pmap_pvo_verify,
284 #else
285 .pmapop_pvo_verify = NULL,
286 #endif
287 .pmapop_steal_memory = pmap_steal_memory,
288 .pmapop_bootstrap = pmap_bootstrap,
289 .pmapop_bootstrap1 = pmap_bootstrap1,
290 .pmapop_bootstrap2 = pmap_bootstrap2,
291 };
292 #endif /* !PMAPNAME */
293
294 /*
295 * The following structure is aligned to 32 bytes
296 */
297 struct pvo_entry {
298 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
299 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
300 struct pte pvo_pte; /* Prebuilt PTE */
301 pmap_t pvo_pmap; /* ptr to owning pmap */
302 vaddr_t pvo_vaddr; /* VA of entry */
303 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
304 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
305 #define PVO_WIRED 0x0010 /* PVO entry is wired */
306 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
307 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
308 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
309 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
310 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
311 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
312 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
313 #define PVO_SPILL_SET 2 /* PVO has been spilled */
314 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
315 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
316 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
317 #define PVO_REMOVE 6 /* PVO has been removed */
318 #define PVO_WHERE_MASK 15
319 #define PVO_WHERE_SHFT 8
320 } __attribute__ ((aligned (32)));
321 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
322 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
323 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
324 #define PVO_PTEGIDX_CLR(pvo) \
325 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
326 #define PVO_PTEGIDX_SET(pvo,i) \
327 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
328 #define PVO_WHERE(pvo,w) \
329 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
330 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
331
332 TAILQ_HEAD(pvo_tqhead, pvo_entry);
333 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
334
335 struct pool pmap_pool; /* pool for pmap structures */
336 struct pool pmap_pvo_pool; /* pool for pvo entries */
337
338 /*
339 * We keep a cache of unmanaged pages to be used for pvo entries for
340 * unmanaged pages.
341 */
342 struct pvo_page {
343 SIMPLEQ_ENTRY(pvo_page) pvop_link;
344 };
345 SIMPLEQ_HEAD(pvop_head, pvo_page);
346 static struct pvop_head pmap_pvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_pvop_head);
347 static u_long pmap_pvop_free;
348 static u_long pmap_pvop_maxfree;
349
350 static void *pmap_pool_alloc(struct pool *, int);
351 static void pmap_pool_free(struct pool *, void *);
352
353 static struct pool_allocator pmap_pool_allocator = {
354 .pa_alloc = pmap_pool_alloc,
355 .pa_free = pmap_pool_free,
356 .pa_pagesz = 0,
357 };
358
359 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
360 void pmap_pte_print(volatile struct pte *);
361 void pmap_pteg_check(void);
362 void pmap_pteg_dist(void);
363 void pmap_print_pte(pmap_t, vaddr_t);
364 void pmap_print_mmuregs(void);
365 #endif
366
367 #if defined(DEBUG) || defined(PMAPCHECK)
368 #ifdef PMAPCHECK
369 int pmapcheck = 1;
370 #else
371 int pmapcheck = 0;
372 #endif
373 void pmap_pvo_verify(void);
374 static void pmap_pvo_check(const struct pvo_entry *);
375 #define PMAP_PVO_CHECK(pvo) \
376 do { \
377 if (pmapcheck) \
378 pmap_pvo_check(pvo); \
379 } while (0)
380 #else
381 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
382 #endif
383 static int pmap_pte_insert(int, struct pte *);
384 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
385 vaddr_t, paddr_t, register_t, int);
386 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
387 static void pmap_pvo_free(struct pvo_entry *);
388 static void pmap_pvo_free_list(struct pvo_head *);
389 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
390 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
391 static struct pvo_entry *pmap_pvo_reclaim(void);
392 static void pvo_set_exec(struct pvo_entry *);
393 static void pvo_clear_exec(struct pvo_entry *);
394
395 static void tlbia(void);
396
397 static void pmap_release(pmap_t);
398 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
399
400 static uint32_t pmap_pvo_reclaim_nextidx;
401 #ifdef DEBUG
402 static int pmap_pvo_reclaim_debugctr;
403 #endif
404
405 #define VSID_NBPW (sizeof(uint32_t) * 8)
406 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
407
408 static int pmap_initialized;
409
410 #if defined(DEBUG) || defined(PMAPDEBUG)
411 #define PMAPDEBUG_BOOT 0x0001
412 #define PMAPDEBUG_PTE 0x0002
413 #define PMAPDEBUG_EXEC 0x0008
414 #define PMAPDEBUG_PVOENTER 0x0010
415 #define PMAPDEBUG_PVOREMOVE 0x0020
416 #define PMAPDEBUG_ACTIVATE 0x0100
417 #define PMAPDEBUG_CREATE 0x0200
418 #define PMAPDEBUG_ENTER 0x1000
419 #define PMAPDEBUG_KENTER 0x2000
420 #define PMAPDEBUG_KREMOVE 0x4000
421 #define PMAPDEBUG_REMOVE 0x8000
422
423 unsigned int pmapdebug = 0;
424
425 # define DPRINTF(x, ...) printf(x, __VA_ARGS__)
426 # define DPRINTFN(n, x, ...) do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
427 #else
428 # define DPRINTF(x, ...) do { } while (0)
429 # define DPRINTFN(n, x, ...) do { } while (0)
430 #endif
431
432
433 #ifdef PMAPCOUNTERS
434 /*
435 * From pmap_subr.c
436 */
437 extern struct evcnt pmap_evcnt_mappings;
438 extern struct evcnt pmap_evcnt_unmappings;
439
440 extern struct evcnt pmap_evcnt_kernel_mappings;
441 extern struct evcnt pmap_evcnt_kernel_unmappings;
442
443 extern struct evcnt pmap_evcnt_mappings_replaced;
444
445 extern struct evcnt pmap_evcnt_exec_mappings;
446 extern struct evcnt pmap_evcnt_exec_cached;
447
448 extern struct evcnt pmap_evcnt_exec_synced;
449 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
450 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
451
452 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
453 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
454 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
455 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
456 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
457
458 extern struct evcnt pmap_evcnt_updates;
459 extern struct evcnt pmap_evcnt_collects;
460 extern struct evcnt pmap_evcnt_copies;
461
462 extern struct evcnt pmap_evcnt_ptes_spilled;
463 extern struct evcnt pmap_evcnt_ptes_unspilled;
464 extern struct evcnt pmap_evcnt_ptes_evicted;
465
466 extern struct evcnt pmap_evcnt_ptes_primary[8];
467 extern struct evcnt pmap_evcnt_ptes_secondary[8];
468 extern struct evcnt pmap_evcnt_ptes_removed;
469 extern struct evcnt pmap_evcnt_ptes_changed;
470 extern struct evcnt pmap_evcnt_pvos_reclaimed;
471 extern struct evcnt pmap_evcnt_pvos_failed;
472
473 extern struct evcnt pmap_evcnt_zeroed_pages;
474 extern struct evcnt pmap_evcnt_copied_pages;
475 extern struct evcnt pmap_evcnt_idlezeroed_pages;
476
477 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
478 #define PMAPCOUNT2(ev) ((ev).ev_count++)
479 #else
480 #define PMAPCOUNT(ev) ((void) 0)
481 #define PMAPCOUNT2(ev) ((void) 0)
482 #endif
483
484 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va) : "memory")
485
486 /* XXXSL: this needs to be moved to assembler */
487 #define TLBIEL(va) __asm volatile("tlbie %0" :: "r"(va) : "memory")
488
489 #ifdef MD_TLBSYNC
490 #define TLBSYNC() MD_TLBSYNC()
491 #else
492 #define TLBSYNC() __asm volatile("tlbsync" ::: "memory")
493 #endif
494 #define SYNC() __asm volatile("sync" ::: "memory")
495 #define EIEIO() __asm volatile("eieio" ::: "memory")
496 #define DCBST(va) __asm volatile("dcbst 0,%0" :: "r"(va) : "memory")
497 #define MFMSR() mfmsr()
498 #define MTMSR(psl) mtmsr(psl)
499 #define MFPVR() mfpvr()
500 #define MFSRIN(va) mfsrin(va)
501 #define MFTB() mfrtcltbl()
502
503 #if defined(DDB) && !defined(PMAP_OEA64)
504 static inline register_t
505 mfsrin(vaddr_t va)
506 {
507 register_t sr;
508 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
509 return sr;
510 }
511 #endif /* DDB && !PMAP_OEA64 */
512
513 #if defined (PMAP_OEA64_BRIDGE)
514 extern void mfmsr64 (register64_t *result);
515 #endif /* PMAP_OEA64_BRIDGE */
516
517 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
518 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
519
520 static inline register_t
521 pmap_interrupts_off(void)
522 {
523 register_t msr = MFMSR();
524 if (msr & PSL_EE)
525 MTMSR(msr & ~PSL_EE);
526 return msr;
527 }
528
529 static void
530 pmap_interrupts_restore(register_t msr)
531 {
532 if (msr & PSL_EE)
533 MTMSR(msr);
534 }
535
536 static inline u_int32_t
537 mfrtcltbl(void)
538 {
539 #ifdef PPC_OEA601
540 if ((MFPVR() >> 16) == MPC601)
541 return (mfrtcl() >> 7);
542 else
543 #endif
544 return (mftbl());
545 }
546
547 /*
548 * These small routines may have to be replaced,
549 * if/when we support processors other that the 604.
550 */
551
552 void
553 tlbia(void)
554 {
555 char *i;
556
557 SYNC();
558 #if defined(PMAP_OEA)
559 /*
560 * Why not use "tlbia"? Because not all processors implement it.
561 *
562 * This needs to be a per-CPU callback to do the appropriate thing
563 * for the CPU. XXX
564 */
565 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
566 TLBIE(i);
567 EIEIO();
568 SYNC();
569 }
570 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
571 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
572 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
573 TLBIEL(i);
574 EIEIO();
575 SYNC();
576 }
577 #endif
578 TLBSYNC();
579 SYNC();
580 }
581
582 static inline register_t
583 va_to_vsid(const struct pmap *pm, vaddr_t addr)
584 {
585 /*
586 * Rather than searching the STE groups for the VSID or extracting
587 * it from the SR, we know how we generate that from the ESID and
588 * so do that.
589 *
590 * This makes the code the same for OEA and OEA64, and also allows
591 * us to generate a correct-for-that-address-space VSID even if the
592 * pmap contains a different SR value at any given moment (e.g.
593 * kernel pmap on a 601 that is using I/O segments).
594 */
595 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
596 }
597
598 static inline register_t
599 va_to_pteg(const struct pmap *pm, vaddr_t addr)
600 {
601 register_t hash;
602
603 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
604 return hash & pmap_pteg_mask;
605 }
606
607 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
608 /*
609 * Given a PTE in the page table, calculate the VADDR that hashes to it.
610 * The only bit of magic is that the top 4 bits of the address doesn't
611 * technically exist in the PTE. But we know we reserved 4 bits of the
612 * VSID for it so that's how we get it.
613 */
614 static vaddr_t
615 pmap_pte_to_va(volatile const struct pte *pt)
616 {
617 vaddr_t va;
618 uintptr_t ptaddr = (uintptr_t) pt;
619
620 if (pt->pte_hi & PTE_HID)
621 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
622
623 /* PPC Bits 10-19 PPC64 Bits 42-51 */
624 #if defined(PMAP_OEA)
625 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
626 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
627 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
628 #endif
629 va <<= ADDR_PIDX_SHFT;
630
631 /* PPC Bits 4-9 PPC64 Bits 36-41 */
632 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
633
634 #if defined(PMAP_OEA64)
635 /* PPC63 Bits 0-35 */
636 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
637 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
638 /* PPC Bits 0-3 */
639 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
640 #endif
641
642 return va;
643 }
644 #endif
645
646 static inline struct pvo_head *
647 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
648 {
649 struct vm_page *pg;
650 struct vm_page_md *md;
651 struct pmap_page *pp;
652
653 pg = PHYS_TO_VM_PAGE(pa);
654 if (pg_p != NULL)
655 *pg_p = pg;
656 if (pg == NULL) {
657 if ((pp = pmap_pv_tracked(pa)) != NULL)
658 return &pp->pp_pvoh;
659 return NULL;
660 }
661 md = VM_PAGE_TO_MD(pg);
662 return &md->mdpg_pvoh;
663 }
664
665 static inline struct pvo_head *
666 vm_page_to_pvoh(struct vm_page *pg)
667 {
668 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
669
670 return &md->mdpg_pvoh;
671 }
672
673 static inline void
674 pmap_pp_attr_clear(struct pmap_page *pp, int ptebit)
675 {
676
677 pp->pp_attrs &= ~ptebit;
678 }
679
680 static inline void
681 pmap_attr_clear(struct vm_page *pg, int ptebit)
682 {
683 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
684
685 pmap_pp_attr_clear(&md->mdpg_pp, ptebit);
686 }
687
688 static inline int
689 pmap_pp_attr_fetch(struct pmap_page *pp)
690 {
691
692 return pp->pp_attrs;
693 }
694
695 static inline int
696 pmap_attr_fetch(struct vm_page *pg)
697 {
698 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
699
700 return pmap_pp_attr_fetch(&md->mdpg_pp);
701 }
702
703 static inline void
704 pmap_attr_save(struct vm_page *pg, int ptebit)
705 {
706 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
707
708 md->mdpg_attrs |= ptebit;
709 }
710
711 static inline int
712 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
713 {
714 if (pt->pte_hi == pvo_pt->pte_hi
715 #if 0
716 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
717 ~(PTE_REF|PTE_CHG)) == 0
718 #endif
719 )
720 return 1;
721 return 0;
722 }
723
724 static inline void
725 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
726 {
727 /*
728 * Construct the PTE. Default to IMB initially. Valid bit
729 * only gets set when the real pte is set in memory.
730 *
731 * Note: Don't set the valid bit for correct operation of tlb update.
732 */
733 #if defined(PMAP_OEA)
734 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
735 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
736 pt->pte_lo = pte_lo;
737 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
738 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
739 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
740 pt->pte_lo = (u_int64_t) pte_lo;
741 #endif /* PMAP_OEA */
742 }
743
744 static inline void
745 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
746 {
747 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
748 }
749
750 static inline void
751 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
752 {
753 /*
754 * As shown in Section 7.6.3.2.3
755 */
756 pt->pte_lo &= ~ptebit;
757 TLBIE(va);
758 SYNC();
759 EIEIO();
760 TLBSYNC();
761 SYNC();
762 #ifdef MULTIPROCESSOR
763 DCBST(pt);
764 #endif
765 }
766
767 static inline void
768 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
769 {
770 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
771 if (pvo_pt->pte_hi & PTE_VALID)
772 panic("pte_set: setting an already valid pte %p", pvo_pt);
773 #endif
774 pvo_pt->pte_hi |= PTE_VALID;
775
776 /*
777 * Update the PTE as defined in section 7.6.3.1
778 * Note that the REF/CHG bits are from pvo_pt and thus should
779 * have been saved so this routine can restore them (if desired).
780 */
781 pt->pte_lo = pvo_pt->pte_lo;
782 EIEIO();
783 pt->pte_hi = pvo_pt->pte_hi;
784 TLBSYNC();
785 SYNC();
786 #ifdef MULTIPROCESSOR
787 DCBST(pt);
788 #endif
789 pmap_pte_valid++;
790 }
791
792 static inline void
793 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
794 {
795 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
796 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
797 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
798 if ((pt->pte_hi & PTE_VALID) == 0)
799 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
800 #endif
801
802 pvo_pt->pte_hi &= ~PTE_VALID;
803 /*
804 * Force the ref & chg bits back into the PTEs.
805 */
806 SYNC();
807 /*
808 * Invalidate the pte ... (Section 7.6.3.3)
809 */
810 pt->pte_hi &= ~PTE_VALID;
811 SYNC();
812 TLBIE(va);
813 SYNC();
814 EIEIO();
815 TLBSYNC();
816 SYNC();
817 /*
818 * Save the ref & chg bits ...
819 */
820 pmap_pte_synch(pt, pvo_pt);
821 pmap_pte_valid--;
822 }
823
824 static inline void
825 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
826 {
827 /*
828 * Invalidate the PTE
829 */
830 pmap_pte_unset(pt, pvo_pt, va);
831 pmap_pte_set(pt, pvo_pt);
832 }
833
834 /*
835 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
836 * (either primary or secondary location).
837 *
838 * Note: both the destination and source PTEs must not have PTE_VALID set.
839 */
840
841 static int
842 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
843 {
844 volatile struct pte *pt;
845 int i;
846
847 #if defined(DEBUG)
848 DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
849 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
850 #endif
851 /*
852 * First try primary hash.
853 */
854 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
855 if ((pt->pte_hi & PTE_VALID) == 0) {
856 pvo_pt->pte_hi &= ~PTE_HID;
857 pmap_pte_set(pt, pvo_pt);
858 return i;
859 }
860 }
861
862 /*
863 * Now try secondary hash.
864 */
865 ptegidx ^= pmap_pteg_mask;
866 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
867 if ((pt->pte_hi & PTE_VALID) == 0) {
868 pvo_pt->pte_hi |= PTE_HID;
869 pmap_pte_set(pt, pvo_pt);
870 return i;
871 }
872 }
873 return -1;
874 }
875
876 /*
877 * Spill handler.
878 *
879 * Tries to spill a page table entry from the overflow area.
880 * This runs in either real mode (if dealing with a exception spill)
881 * or virtual mode when dealing with manually spilling one of the
882 * kernel's pte entries.
883 */
884
885 int
886 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool isi_p)
887 {
888 struct pvo_tqhead *spvoh, *vpvoh;
889 struct pvo_entry *pvo, *source_pvo, *victim_pvo;
890 volatile struct pteg *pteg;
891 volatile struct pte *pt;
892 register_t msr, vsid, hash;
893 int ptegidx, hid, i, j;
894 int done = 0;
895
896 PMAP_LOCK();
897 msr = pmap_interrupts_off();
898
899 /* XXXRO paranoid? */
900 if (pm->pm_evictions == 0)
901 goto out;
902
903 ptegidx = va_to_pteg(pm, addr);
904
905 /*
906 * Find source pvo.
907 */
908 spvoh = &pmap_pvo_table[ptegidx];
909 source_pvo = NULL;
910 TAILQ_FOREACH(pvo, spvoh, pvo_olink) {
911 /*
912 * We need to find pvo entry for this address...
913 */
914 PMAP_PVO_CHECK(pvo); /* sanity check */
915
916 /*
917 * If we haven't found the source and we come to a PVO with
918 * a valid PTE, then we know we can't find it because all
919 * evicted PVOs always are first in the list.
920 */
921 if ((pvo->pvo_pte.pte_hi & PTE_VALID) != 0)
922 break;
923
924 if (pm == pvo->pvo_pmap && addr == PVO_VADDR(pvo)) {
925 if (isi_p) {
926 if (!PVO_EXECUTABLE_P(pvo))
927 goto out;
928 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
929 int sr __diagused =
930 PVO_VADDR(pvo) >> ADDR_SR_SHFT;
931 KASSERT((pm->pm_sr[sr] & SR_NOEXEC) == 0);
932 #endif
933 }
934 KASSERT(!PVO_PTEGIDX_ISSET(pvo));
935 /* XXXRO where check */
936 source_pvo = pvo;
937 break;
938 }
939 }
940 if (source_pvo == NULL) {
941 PMAPCOUNT(ptes_unspilled);
942 goto out;
943 }
944
945 /*
946 * Now we have found the entry to be spilled into the
947 * pteg. Attempt to insert it into the page table.
948 */
949 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
950 if (i >= 0) {
951 PVO_PTEGIDX_SET(pvo, i);
952 PMAP_PVO_CHECK(pvo); /* sanity check */
953 PVO_WHERE(pvo, SPILL_INSERT);
954 pvo->pvo_pmap->pm_evictions--;
955 PMAPCOUNT(ptes_spilled);
956 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID) != 0
957 ? pmap_evcnt_ptes_secondary
958 : pmap_evcnt_ptes_primary)[i]);
959
960 TAILQ_REMOVE(spvoh, pvo, pvo_olink);
961 TAILQ_INSERT_TAIL(spvoh, pvo, pvo_olink);
962
963 done = 1;
964 goto out;
965 }
966
967 /*
968 * Have to substitute some entry. Use the primary hash for this.
969 * Use low bits of timebase as random generator.
970 *
971 * XXX:
972 * Make sure we are not picking a kernel pte for replacement.
973 */
974 hid = 0;
975 i = MFTB() & 7;
976 pteg = &pmap_pteg_table[ptegidx];
977 retry:
978 for (j = 0; j < 8; j++, i = (i + 1) & 7) {
979 pt = &pteg->pt[i];
980
981 if ((pt->pte_hi & PTE_VALID) == 0)
982 break;
983
984 vsid = (pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT;
985 hash = VSID_TO_HASH(vsid);
986 if (hash < PHYSMAP_VSIDBITS)
987 break;
988 }
989 if (j == 8) {
990 if (hid != 0)
991 panic("%s: no victim\n", __func__);
992 hid = PTE_HID;
993 pteg = &pmap_pteg_table[ptegidx ^ pmap_pteg_mask];
994 goto retry;
995 }
996
997 /*
998 * We also need the pvo entry of the victim we are replacing
999 * so save the R & C bits of the PTE.
1000 */
1001 if ((pt->pte_hi & PTE_HID) == hid)
1002 vpvoh = spvoh;
1003 else
1004 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
1005 victim_pvo = NULL;
1006 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1007 PMAP_PVO_CHECK(pvo); /* sanity check */
1008
1009 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1010 continue;
1011
1012 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1013 victim_pvo = pvo;
1014 break;
1015 }
1016 }
1017 if (victim_pvo == NULL) {
1018 panic("%s: victim p-pte (%p) has no pvo entry!",
1019 __func__, pt);
1020 }
1021
1022 /*
1023 * The victim should be not be a kernel PVO/PTE entry.
1024 */
1025 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1026 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1027 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1028
1029 /*
1030 * We are invalidating the TLB entry for the EA for the
1031 * we are replacing even though its valid; If we don't
1032 * we lose any ref/chg bit changes contained in the TLB
1033 * entry.
1034 */
1035 if (hid == 0)
1036 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1037 else
1038 source_pvo->pvo_pte.pte_hi |= PTE_HID;
1039
1040 /*
1041 * To enforce the PVO list ordering constraint that all
1042 * evicted entries should come before all valid entries,
1043 * move the source PVO to the tail of its list and the
1044 * victim PVO to the head of its list (which might not be
1045 * the same list, if the victim was using the secondary hash).
1046 */
1047 TAILQ_REMOVE(spvoh, source_pvo, pvo_olink);
1048 TAILQ_INSERT_TAIL(spvoh, source_pvo, pvo_olink);
1049 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1050 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1051 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1052 pmap_pte_set(pt, &source_pvo->pvo_pte);
1053 victim_pvo->pvo_pmap->pm_evictions++;
1054 source_pvo->pvo_pmap->pm_evictions--;
1055 PVO_WHERE(victim_pvo, SPILL_UNSET);
1056 PVO_WHERE(source_pvo, SPILL_SET);
1057
1058 PVO_PTEGIDX_CLR(victim_pvo);
1059 PVO_PTEGIDX_SET(source_pvo, i);
1060 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1061 PMAPCOUNT(ptes_spilled);
1062 PMAPCOUNT(ptes_evicted);
1063 PMAPCOUNT(ptes_removed);
1064
1065 PMAP_PVO_CHECK(victim_pvo);
1066 PMAP_PVO_CHECK(source_pvo);
1067
1068 done = 1;
1069
1070 out:
1071 pmap_interrupts_restore(msr);
1072 PMAP_UNLOCK();
1073 return done;
1074 }
1075
1076 /*
1077 * Restrict given range to physical memory
1078 */
1079 void
1080 pmap_real_memory(paddr_t *start, psize_t *size)
1081 {
1082 struct mem_region *mp;
1083
1084 for (mp = mem; mp->size; mp++) {
1085 if (*start + *size > mp->start
1086 && *start < mp->start + mp->size) {
1087 if (*start < mp->start) {
1088 *size -= mp->start - *start;
1089 *start = mp->start;
1090 }
1091 if (*start + *size > mp->start + mp->size)
1092 *size = mp->start + mp->size - *start;
1093 return;
1094 }
1095 }
1096 *size = 0;
1097 }
1098
1099 /*
1100 * Initialize anything else for pmap handling.
1101 * Called during vm_init().
1102 */
1103 void
1104 pmap_init(void)
1105 {
1106
1107 pmap_initialized = 1;
1108 }
1109
1110 /*
1111 * How much virtual space does the kernel get?
1112 */
1113 void
1114 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1115 {
1116 /*
1117 * For now, reserve one segment (minus some overhead) for kernel
1118 * virtual memory
1119 */
1120 *start = VM_MIN_KERNEL_ADDRESS;
1121 *end = VM_MAX_KERNEL_ADDRESS;
1122 }
1123
1124 /*
1125 * Allocate, initialize, and return a new physical map.
1126 */
1127 pmap_t
1128 pmap_create(void)
1129 {
1130 pmap_t pm;
1131
1132 pm = pool_get(&pmap_pool, PR_WAITOK);
1133 KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1134 memset((void *)pm, 0, sizeof *pm);
1135 pmap_pinit(pm);
1136
1137 DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1138 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1139 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1140 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1141 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1142 pm,
1143 pm->pm_sr[0], pm->pm_sr[1],
1144 pm->pm_sr[2], pm->pm_sr[3],
1145 pm->pm_sr[4], pm->pm_sr[5],
1146 pm->pm_sr[6], pm->pm_sr[7],
1147 pm->pm_sr[8], pm->pm_sr[9],
1148 pm->pm_sr[10], pm->pm_sr[11],
1149 pm->pm_sr[12], pm->pm_sr[13],
1150 pm->pm_sr[14], pm->pm_sr[15]);
1151 return pm;
1152 }
1153
1154 /*
1155 * Initialize a preallocated and zeroed pmap structure.
1156 */
1157 void
1158 pmap_pinit(pmap_t pm)
1159 {
1160 register_t entropy = MFTB();
1161 register_t mask;
1162 int i;
1163
1164 /*
1165 * Allocate some segment registers for this pmap.
1166 */
1167 pm->pm_refs = 1;
1168 PMAP_LOCK();
1169 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1170 static register_t pmap_vsidcontext;
1171 register_t hash;
1172 unsigned int n;
1173
1174 /* Create a new value by multiplying by a prime adding in
1175 * entropy from the timebase register. This is to make the
1176 * VSID more random so that the PT Hash function collides
1177 * less often. (note that the prime causes gcc to do shifts
1178 * instead of a multiply)
1179 */
1180 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1181 hash = pmap_vsidcontext & (NPMAPS - 1);
1182 if (hash == 0) { /* 0 is special, avoid it */
1183 entropy += 0xbadf00d;
1184 continue;
1185 }
1186 n = hash >> 5;
1187 mask = 1L << (hash & (VSID_NBPW-1));
1188 hash = pmap_vsidcontext;
1189 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1190 /* anything free in this bucket? */
1191 if (~pmap_vsid_bitmap[n] == 0) {
1192 entropy = hash ^ (hash >> 16);
1193 continue;
1194 }
1195 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1196 mask = 1L << i;
1197 hash &= ~(VSID_NBPW-1);
1198 hash |= i;
1199 }
1200 hash &= PTE_VSID >> PTE_VSID_SHFT;
1201 pmap_vsid_bitmap[n] |= mask;
1202 pm->pm_vsid = hash;
1203 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1204 for (i = 0; i < 16; i++)
1205 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1206 SR_NOEXEC;
1207 #endif
1208 PMAP_UNLOCK();
1209 return;
1210 }
1211 PMAP_UNLOCK();
1212 panic("pmap_pinit: out of segments");
1213 }
1214
1215 /*
1216 * Add a reference to the given pmap.
1217 */
1218 void
1219 pmap_reference(pmap_t pm)
1220 {
1221 atomic_inc_uint(&pm->pm_refs);
1222 }
1223
1224 /*
1225 * Retire the given pmap from service.
1226 * Should only be called if the map contains no valid mappings.
1227 */
1228 void
1229 pmap_destroy(pmap_t pm)
1230 {
1231 membar_release();
1232 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1233 membar_acquire();
1234 pmap_release(pm);
1235 pool_put(&pmap_pool, pm);
1236 }
1237 }
1238
1239 /*
1240 * Release any resources held by the given physical map.
1241 * Called when a pmap initialized by pmap_pinit is being released.
1242 */
1243 void
1244 pmap_release(pmap_t pm)
1245 {
1246 int idx, mask;
1247
1248 KASSERT(pm->pm_stats.resident_count == 0);
1249 KASSERT(pm->pm_stats.wired_count == 0);
1250
1251 PMAP_LOCK();
1252 if (pm->pm_sr[0] == 0)
1253 panic("pmap_release");
1254 idx = pm->pm_vsid & (NPMAPS-1);
1255 mask = 1 << (idx % VSID_NBPW);
1256 idx /= VSID_NBPW;
1257
1258 KASSERT(pmap_vsid_bitmap[idx] & mask);
1259 pmap_vsid_bitmap[idx] &= ~mask;
1260 PMAP_UNLOCK();
1261 }
1262
1263 /*
1264 * Copy the range specified by src_addr/len
1265 * from the source map to the range dst_addr/len
1266 * in the destination map.
1267 *
1268 * This routine is only advisory and need not do anything.
1269 */
1270 void
1271 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1272 vsize_t len, vaddr_t src_addr)
1273 {
1274 PMAPCOUNT(copies);
1275 }
1276
1277 /*
1278 * Require that all active physical maps contain no
1279 * incorrect entries NOW.
1280 */
1281 void
1282 pmap_update(struct pmap *pmap)
1283 {
1284 PMAPCOUNT(updates);
1285 TLBSYNC();
1286 }
1287
1288 static inline int
1289 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1290 {
1291 int pteidx;
1292 /*
1293 * We can find the actual pte entry without searching by
1294 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1295 * and by noticing the HID bit.
1296 */
1297 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1298 if (pvo->pvo_pte.pte_hi & PTE_HID)
1299 pteidx ^= pmap_pteg_mask * 8;
1300 return pteidx;
1301 }
1302
1303 volatile struct pte *
1304 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1305 {
1306 volatile struct pte *pt;
1307
1308 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1309 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1310 return NULL;
1311 #endif
1312
1313 /*
1314 * If we haven't been supplied the ptegidx, calculate it.
1315 */
1316 if (pteidx == -1) {
1317 int ptegidx;
1318 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1319 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1320 }
1321
1322 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1323
1324 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1325 return pt;
1326 #else
1327 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1328 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1329 "pvo but no valid pte index", pvo);
1330 }
1331 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1332 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1333 "pvo but no valid pte", pvo);
1334 }
1335
1336 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1337 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1338 #if defined(DEBUG) || defined(PMAPCHECK)
1339 pmap_pte_print(pt);
1340 #endif
1341 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1342 "pmap_pteg_table %p but invalid in pvo",
1343 pvo, pt);
1344 }
1345 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1346 #if defined(DEBUG) || defined(PMAPCHECK)
1347 pmap_pte_print(pt);
1348 #endif
1349 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1350 "not match pte %p in pmap_pteg_table",
1351 pvo, pt);
1352 }
1353 return pt;
1354 }
1355
1356 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1357 #if defined(DEBUG) || defined(PMAPCHECK)
1358 pmap_pte_print(pt);
1359 #endif
1360 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1361 "pmap_pteg_table but valid in pvo", pvo, pt);
1362 }
1363 return NULL;
1364 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1365 }
1366
1367 struct pvo_entry *
1368 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1369 {
1370 struct pvo_entry *pvo;
1371 int ptegidx;
1372
1373 va &= ~ADDR_POFF;
1374 ptegidx = va_to_pteg(pm, va);
1375
1376 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1377 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1378 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1379 panic("pmap_pvo_find_va: invalid pvo %p on "
1380 "list %#x (%p)", pvo, ptegidx,
1381 &pmap_pvo_table[ptegidx]);
1382 #endif
1383 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1384 if (pteidx_p)
1385 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1386 return pvo;
1387 }
1388 }
1389 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1390 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1391 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1392 return NULL;
1393 }
1394
1395 #if defined(DEBUG) || defined(PMAPCHECK)
1396 void
1397 pmap_pvo_check(const struct pvo_entry *pvo)
1398 {
1399 struct pvo_head *pvo_head;
1400 struct pvo_entry *pvo0;
1401 volatile struct pte *pt;
1402 int failed = 0;
1403
1404 PMAP_LOCK();
1405
1406 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1407 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1408
1409 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1410 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1411 pvo, pvo->pvo_pmap);
1412 failed = 1;
1413 }
1414
1415 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1416 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1417 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1418 pvo, TAILQ_NEXT(pvo, pvo_olink));
1419 failed = 1;
1420 }
1421
1422 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1423 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1424 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1425 pvo, LIST_NEXT(pvo, pvo_vlink));
1426 failed = 1;
1427 }
1428
1429 if (PVO_MANAGED_P(pvo)) {
1430 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1431 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1432 if (pvo0 == pvo)
1433 break;
1434 }
1435 if (pvo0 == NULL) {
1436 printf("pmap_pvo_check: pvo %p: not present "
1437 "on its vlist head %p\n", pvo, pvo_head);
1438 failed = 1;
1439 }
1440 } else {
1441 KASSERT(pvo->pvo_vaddr >= VM_MIN_KERNEL_ADDRESS);
1442 if (__predict_false(pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS))
1443 failed = 1;
1444 }
1445 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1446 printf("pmap_pvo_check: pvo %p: not present "
1447 "on its olist head\n", pvo);
1448 failed = 1;
1449 }
1450 pt = pmap_pvo_to_pte(pvo, -1);
1451 if (pt == NULL) {
1452 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1453 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1454 "no PTE\n", pvo);
1455 failed = 1;
1456 }
1457 } else {
1458 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1459 (uintptr_t) pt >=
1460 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1461 printf("pmap_pvo_check: pvo %p: pte %p not in "
1462 "pteg table\n", pvo, pt);
1463 failed = 1;
1464 }
1465 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1466 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1467 "no PTE\n", pvo);
1468 failed = 1;
1469 }
1470 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1471 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1472 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1473 pvo->pvo_pte.pte_hi,
1474 pt->pte_hi);
1475 failed = 1;
1476 }
1477 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1478 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1479 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1480 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1481 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1482 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1483 failed = 1;
1484 }
1485 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1486 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1487 " doesn't not match PVO's VA %#" _PRIxva "\n",
1488 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1489 failed = 1;
1490 }
1491 if (failed)
1492 pmap_pte_print(pt);
1493 }
1494 if (failed)
1495 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1496 pvo->pvo_pmap);
1497
1498 PMAP_UNLOCK();
1499 }
1500 #endif /* DEBUG || PMAPCHECK */
1501
1502 /*
1503 * Search the PVO table looking for a non-wired entry.
1504 * If we find one, remove it and return it.
1505 */
1506
1507 struct pvo_entry *
1508 pmap_pvo_reclaim(void)
1509 {
1510 struct pvo_tqhead *pvoh;
1511 struct pvo_entry *pvo;
1512 uint32_t idx, endidx;
1513
1514 endidx = pmap_pvo_reclaim_nextidx;
1515 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1516 idx = (idx + 1) & pmap_pteg_mask) {
1517 pvoh = &pmap_pvo_table[idx];
1518 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1519 if (!PVO_WIRED_P(pvo)) {
1520 pmap_pvo_remove(pvo, -1, NULL);
1521 pmap_pvo_reclaim_nextidx = idx;
1522 PMAPCOUNT(pvos_reclaimed);
1523 return pvo;
1524 }
1525 }
1526 }
1527 return NULL;
1528 }
1529
1530 /*
1531 * This returns whether this is the first mapping of a page.
1532 */
1533 int
1534 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1535 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1536 {
1537 struct pvo_entry *pvo;
1538 struct pvo_tqhead *pvoh;
1539 register_t msr;
1540 int ptegidx;
1541 int i;
1542 int poolflags = PR_NOWAIT;
1543
1544 /*
1545 * Compute the PTE Group index.
1546 */
1547 va &= ~ADDR_POFF;
1548 ptegidx = va_to_pteg(pm, va);
1549
1550 msr = pmap_interrupts_off();
1551
1552 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1553 if (pmap_pvo_remove_depth > 0)
1554 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1555 if (++pmap_pvo_enter_depth > 1)
1556 panic("pmap_pvo_enter: called recursively!");
1557 #endif
1558
1559 /*
1560 * Remove any existing mapping for this page. Reuse the
1561 * pvo entry if there a mapping.
1562 */
1563 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1564 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1565 #ifdef DEBUG
1566 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1567 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1568 ~(PTE_REF|PTE_CHG)) == 0 &&
1569 va < VM_MIN_KERNEL_ADDRESS) {
1570 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1571 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1572 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1573 pvo->pvo_pte.pte_hi,
1574 pm->pm_sr[va >> ADDR_SR_SHFT]);
1575 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1576 #ifdef DDBX
1577 Debugger();
1578 #endif
1579 }
1580 #endif
1581 PMAPCOUNT(mappings_replaced);
1582 pmap_pvo_remove(pvo, -1, NULL);
1583 break;
1584 }
1585 }
1586
1587 /*
1588 * If we aren't overwriting an mapping, try to allocate
1589 */
1590 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1591 --pmap_pvo_enter_depth;
1592 #endif
1593 pmap_interrupts_restore(msr);
1594 if (pvo == NULL) {
1595 pvo = pool_get(pl, poolflags);
1596 }
1597 KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1598
1599 #ifdef DEBUG
1600 /*
1601 * Exercise pmap_pvo_reclaim() a little.
1602 */
1603 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1604 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1605 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1606 pool_put(pl, pvo);
1607 pvo = NULL;
1608 }
1609 #endif
1610
1611 msr = pmap_interrupts_off();
1612 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1613 ++pmap_pvo_enter_depth;
1614 #endif
1615 if (pvo == NULL) {
1616 pvo = pmap_pvo_reclaim();
1617 if (pvo == NULL) {
1618 if ((flags & PMAP_CANFAIL) == 0)
1619 panic("pmap_pvo_enter: failed");
1620 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1621 pmap_pvo_enter_depth--;
1622 #endif
1623 PMAPCOUNT(pvos_failed);
1624 pmap_interrupts_restore(msr);
1625 return ENOMEM;
1626 }
1627 }
1628
1629 pvo->pvo_vaddr = va;
1630 pvo->pvo_pmap = pm;
1631 pvo->pvo_vaddr &= ~ADDR_POFF;
1632 if (flags & VM_PROT_EXECUTE) {
1633 PMAPCOUNT(exec_mappings);
1634 pvo_set_exec(pvo);
1635 }
1636 if (flags & PMAP_WIRED)
1637 pvo->pvo_vaddr |= PVO_WIRED;
1638 if (pvo_head != NULL) {
1639 pvo->pvo_vaddr |= PVO_MANAGED;
1640 PMAPCOUNT(mappings);
1641 } else {
1642 PMAPCOUNT(kernel_mappings);
1643 }
1644 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1645
1646 if (pvo_head != NULL)
1647 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1648 if (PVO_WIRED_P(pvo))
1649 pvo->pvo_pmap->pm_stats.wired_count++;
1650 pvo->pvo_pmap->pm_stats.resident_count++;
1651 #if defined(DEBUG)
1652 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1653 DPRINTFN(PVOENTER,
1654 "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1655 pvo, pm, va, pa);
1656 #endif
1657
1658 /*
1659 * We hope this succeeds but it isn't required.
1660 */
1661 pvoh = &pmap_pvo_table[ptegidx];
1662 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1663 if (i >= 0) {
1664 PVO_PTEGIDX_SET(pvo, i);
1665 PVO_WHERE(pvo, ENTER_INSERT);
1666 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1667 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1668 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1669
1670 } else {
1671 /*
1672 * Since we didn't have room for this entry (which makes it
1673 * and evicted entry), place it at the head of the list.
1674 */
1675 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1676 PMAPCOUNT(ptes_evicted);
1677 pm->pm_evictions++;
1678 /*
1679 * If this is a kernel page, make sure it's active.
1680 */
1681 if (pm == pmap_kernel()) {
1682 i = pmap_pte_spill(pm, va, false);
1683 KASSERT(i);
1684 }
1685 }
1686 PMAP_PVO_CHECK(pvo); /* sanity check */
1687 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1688 pmap_pvo_enter_depth--;
1689 #endif
1690 pmap_interrupts_restore(msr);
1691 return 0;
1692 }
1693
1694 static void
1695 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1696 {
1697 volatile struct pte *pt;
1698 int ptegidx;
1699
1700 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1701 if (++pmap_pvo_remove_depth > 1)
1702 panic("pmap_pvo_remove: called recursively!");
1703 #endif
1704
1705 /*
1706 * If we haven't been supplied the ptegidx, calculate it.
1707 */
1708 if (pteidx == -1) {
1709 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1710 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1711 } else {
1712 ptegidx = pteidx >> 3;
1713 if (pvo->pvo_pte.pte_hi & PTE_HID)
1714 ptegidx ^= pmap_pteg_mask;
1715 }
1716 PMAP_PVO_CHECK(pvo); /* sanity check */
1717
1718 /*
1719 * If there is an active pte entry, we need to deactivate it
1720 * (and save the ref & chg bits).
1721 */
1722 pt = pmap_pvo_to_pte(pvo, pteidx);
1723 if (pt != NULL) {
1724 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1725 PVO_WHERE(pvo, REMOVE);
1726 PVO_PTEGIDX_CLR(pvo);
1727 PMAPCOUNT(ptes_removed);
1728 } else {
1729 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1730 pvo->pvo_pmap->pm_evictions--;
1731 }
1732
1733 /*
1734 * Account for executable mappings.
1735 */
1736 if (PVO_EXECUTABLE_P(pvo))
1737 pvo_clear_exec(pvo);
1738
1739 /*
1740 * Update our statistics.
1741 */
1742 pvo->pvo_pmap->pm_stats.resident_count--;
1743 if (PVO_WIRED_P(pvo))
1744 pvo->pvo_pmap->pm_stats.wired_count--;
1745
1746 /*
1747 * If the page is managed:
1748 * Save the REF/CHG bits into their cache.
1749 * Remove the PVO from the P/V list.
1750 */
1751 if (PVO_MANAGED_P(pvo)) {
1752 register_t ptelo = pvo->pvo_pte.pte_lo;
1753 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1754
1755 if (pg != NULL) {
1756 /*
1757 * If this page was changed and it is mapped exec,
1758 * invalidate it.
1759 */
1760 if ((ptelo & PTE_CHG) &&
1761 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1762 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1763 if (LIST_EMPTY(pvoh)) {
1764 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1765 "%#" _PRIxpa ": clear-exec]\n",
1766 VM_PAGE_TO_PHYS(pg));
1767 pmap_attr_clear(pg, PTE_EXEC);
1768 PMAPCOUNT(exec_uncached_pvo_remove);
1769 } else {
1770 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1771 "%#" _PRIxpa ": syncicache]\n",
1772 VM_PAGE_TO_PHYS(pg));
1773 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1774 PAGE_SIZE);
1775 PMAPCOUNT(exec_synced_pvo_remove);
1776 }
1777 }
1778
1779 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1780 }
1781 LIST_REMOVE(pvo, pvo_vlink);
1782 PMAPCOUNT(unmappings);
1783 } else {
1784 PMAPCOUNT(kernel_unmappings);
1785 }
1786
1787 /*
1788 * Remove the PVO from its list and return it to the pool.
1789 */
1790 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1791 if (pvol) {
1792 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1793 }
1794 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1795 pmap_pvo_remove_depth--;
1796 #endif
1797 }
1798
1799 void
1800 pmap_pvo_free(struct pvo_entry *pvo)
1801 {
1802
1803 pool_put(&pmap_pvo_pool, pvo);
1804 }
1805
1806 void
1807 pmap_pvo_free_list(struct pvo_head *pvol)
1808 {
1809 struct pvo_entry *pvo, *npvo;
1810
1811 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1812 npvo = LIST_NEXT(pvo, pvo_vlink);
1813 LIST_REMOVE(pvo, pvo_vlink);
1814 pmap_pvo_free(pvo);
1815 }
1816 }
1817
1818 /*
1819 * Mark a mapping as executable.
1820 * If this is the first executable mapping in the segment,
1821 * clear the noexec flag.
1822 */
1823 static void
1824 pvo_set_exec(struct pvo_entry *pvo)
1825 {
1826 struct pmap *pm = pvo->pvo_pmap;
1827
1828 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1829 return;
1830 }
1831 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1832 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1833 {
1834 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1835 if (pm->pm_exec[sr]++ == 0) {
1836 pm->pm_sr[sr] &= ~SR_NOEXEC;
1837 }
1838 }
1839 #endif
1840 }
1841
1842 /*
1843 * Mark a mapping as non-executable.
1844 * If this was the last executable mapping in the segment,
1845 * set the noexec flag.
1846 */
1847 static void
1848 pvo_clear_exec(struct pvo_entry *pvo)
1849 {
1850 struct pmap *pm = pvo->pvo_pmap;
1851
1852 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1853 return;
1854 }
1855 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1856 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1857 {
1858 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1859 if (--pm->pm_exec[sr] == 0) {
1860 pm->pm_sr[sr] |= SR_NOEXEC;
1861 }
1862 }
1863 #endif
1864 }
1865
1866 /*
1867 * Insert physical page at pa into the given pmap at virtual address va.
1868 */
1869 int
1870 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1871 {
1872 struct mem_region *mp;
1873 struct pvo_head *pvo_head;
1874 struct vm_page *pg;
1875 register_t pte_lo;
1876 int error;
1877 u_int was_exec = 0;
1878
1879 PMAP_LOCK();
1880
1881 if (__predict_false(!pmap_initialized)) {
1882 pvo_head = NULL;
1883 pg = NULL;
1884 was_exec = PTE_EXEC;
1885
1886 } else {
1887 pvo_head = pa_to_pvoh(pa, &pg);
1888 }
1889
1890 DPRINTFN(ENTER,
1891 "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1892 pm, va, pa, prot, flags);
1893
1894 /*
1895 * If this is a managed page, and it's the first reference to the
1896 * page clear the execness of the page. Otherwise fetch the execness.
1897 */
1898 if (pg != NULL)
1899 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1900
1901 DPRINTFN(ENTER, " was_exec=%d", was_exec);
1902
1903 /*
1904 * Assume the page is cache inhibited and access is guarded unless
1905 * it's in our available memory array. If it is in the memory array,
1906 * assume it's in memory coherent memory.
1907 */
1908 if (flags & PMAP_MD_PREFETCHABLE) {
1909 pte_lo = 0;
1910 } else
1911 pte_lo = PTE_G;
1912
1913 if ((flags & PMAP_NOCACHE) == 0) {
1914 for (mp = mem; mp->size; mp++) {
1915 if (pa >= mp->start && pa < mp->start + mp->size) {
1916 pte_lo = PTE_M;
1917 break;
1918 }
1919 }
1920 #ifdef MULTIPROCESSOR
1921 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
1922 pte_lo = PTE_M;
1923 #endif
1924 } else {
1925 pte_lo |= PTE_I;
1926 }
1927
1928 if (prot & VM_PROT_WRITE)
1929 pte_lo |= PTE_BW;
1930 else
1931 pte_lo |= PTE_BR;
1932
1933 /*
1934 * If this was in response to a fault, "pre-fault" the PTE's
1935 * changed/referenced bit appropriately.
1936 */
1937 if (flags & VM_PROT_WRITE)
1938 pte_lo |= PTE_CHG;
1939 if (flags & VM_PROT_ALL)
1940 pte_lo |= PTE_REF;
1941
1942 /*
1943 * We need to know if this page can be executable
1944 */
1945 flags |= (prot & VM_PROT_EXECUTE);
1946
1947 /*
1948 * Record mapping for later back-translation and pte spilling.
1949 * This will overwrite any existing mapping.
1950 */
1951 error = pmap_pvo_enter(pm, &pmap_pvo_pool, pvo_head, va, pa, pte_lo, flags);
1952
1953 /*
1954 * Flush the real page from the instruction cache if this page is
1955 * mapped executable and cacheable and has not been flushed since
1956 * the last time it was modified.
1957 */
1958 if (error == 0 &&
1959 (flags & VM_PROT_EXECUTE) &&
1960 (pte_lo & PTE_I) == 0 &&
1961 was_exec == 0) {
1962 DPRINTFN(ENTER, " %s", "syncicache");
1963 PMAPCOUNT(exec_synced);
1964 pmap_syncicache(pa, PAGE_SIZE);
1965 if (pg != NULL) {
1966 pmap_attr_save(pg, PTE_EXEC);
1967 PMAPCOUNT(exec_cached);
1968 #if defined(DEBUG) || defined(PMAPDEBUG)
1969 if (pmapdebug & PMAPDEBUG_ENTER)
1970 printf(" marked-as-exec");
1971 else if (pmapdebug & PMAPDEBUG_EXEC)
1972 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1973 VM_PAGE_TO_PHYS(pg));
1974 #endif
1975 }
1976 }
1977
1978 DPRINTFN(ENTER, ": error=%d\n", error);
1979
1980 PMAP_UNLOCK();
1981
1982 return error;
1983 }
1984
1985 void
1986 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1987 {
1988 struct mem_region *mp;
1989 register_t pte_lo;
1990 int error;
1991
1992 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
1993 if (va < VM_MIN_KERNEL_ADDRESS)
1994 panic("pmap_kenter_pa: attempt to enter "
1995 "non-kernel address %#" _PRIxva "!", va);
1996 #endif
1997
1998 DPRINTFN(KENTER,
1999 "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2000
2001 PMAP_LOCK();
2002
2003 /*
2004 * Assume the page is cache inhibited and access is guarded unless
2005 * it's in our available memory array. If it is in the memory array,
2006 * assume it's in memory coherent memory.
2007 */
2008 pte_lo = PTE_IG;
2009 if ((flags & PMAP_NOCACHE) == 0) {
2010 for (mp = mem; mp->size; mp++) {
2011 if (pa >= mp->start && pa < mp->start + mp->size) {
2012 pte_lo = PTE_M;
2013 break;
2014 }
2015 }
2016 #ifdef MULTIPROCESSOR
2017 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
2018 pte_lo = PTE_M;
2019 #endif
2020 }
2021
2022 if (prot & VM_PROT_WRITE)
2023 pte_lo |= PTE_BW;
2024 else
2025 pte_lo |= PTE_BR;
2026
2027 /*
2028 * We don't care about REF/CHG on PVOs on the unmanaged list.
2029 */
2030 error = pmap_pvo_enter(pmap_kernel(), &pmap_pvo_pool,
2031 NULL, va, pa, pte_lo, prot|PMAP_WIRED);
2032
2033 if (error != 0)
2034 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2035 va, pa, error);
2036
2037 PMAP_UNLOCK();
2038 }
2039
2040 void
2041 pmap_kremove(vaddr_t va, vsize_t len)
2042 {
2043 if (va < VM_MIN_KERNEL_ADDRESS)
2044 panic("pmap_kremove: attempt to remove "
2045 "non-kernel address %#" _PRIxva "!", va);
2046
2047 DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2048 pmap_remove(pmap_kernel(), va, va + len);
2049 }
2050
2051 /*
2052 * Remove the given range of mapping entries.
2053 */
2054 void
2055 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2056 {
2057 struct pvo_head pvol;
2058 struct pvo_entry *pvo;
2059 register_t msr;
2060 int pteidx;
2061
2062 PMAP_LOCK();
2063 LIST_INIT(&pvol);
2064 msr = pmap_interrupts_off();
2065 for (; va < endva; va += PAGE_SIZE) {
2066 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2067 if (pvo != NULL) {
2068 pmap_pvo_remove(pvo, pteidx, &pvol);
2069 }
2070 }
2071 pmap_interrupts_restore(msr);
2072 pmap_pvo_free_list(&pvol);
2073 PMAP_UNLOCK();
2074 }
2075
2076 #if defined(PMAP_OEA)
2077 #ifdef PPC_OEA601
2078 bool
2079 pmap_extract_ioseg601(vaddr_t va, paddr_t *pap)
2080 {
2081 if ((MFPVR() >> 16) != MPC601)
2082 return false;
2083
2084 const register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2085
2086 if (SR601_VALID_P(sr) && SR601_PA_MATCH_P(sr, va)) {
2087 if (pap)
2088 *pap = va;
2089 return true;
2090 }
2091 return false;
2092 }
2093
2094 static bool
2095 pmap_extract_battable601(vaddr_t va, paddr_t *pap)
2096 {
2097 const register_t batu = battable[va >> 23].batu;
2098 const register_t batl = battable[va >> 23].batl;
2099
2100 if (BAT601_VALID_P(batl) && BAT601_VA_MATCH_P(batu, batl, va)) {
2101 const register_t mask =
2102 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2103 if (pap)
2104 *pap = (batl & mask) | (va & ~mask);
2105 return true;
2106 }
2107 return false;
2108 }
2109 #endif /* PPC_OEA601 */
2110
2111 bool
2112 pmap_extract_battable(vaddr_t va, paddr_t *pap)
2113 {
2114 #ifdef PPC_OEA601
2115 if ((MFPVR() >> 16) == MPC601)
2116 return pmap_extract_battable601(va, pap);
2117 #endif /* PPC_OEA601 */
2118
2119 if (oeacpufeat & OEACPU_NOBAT)
2120 return false;
2121
2122 const register_t batu = battable[BAT_VA2IDX(va)].batu;
2123
2124 if (BAT_VALID_P(batu, 0) && BAT_VA_MATCH_P(batu, va)) {
2125 const register_t batl = battable[BAT_VA2IDX(va)].batl;
2126 const register_t mask =
2127 (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2128 if (pap)
2129 *pap = (batl & mask) | (va & ~mask);
2130 return true;
2131 }
2132 return false;
2133 }
2134 #endif /* PMAP_OEA */
2135
2136 /*
2137 * Get the physical page address for the given pmap/virtual address.
2138 */
2139 bool
2140 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2141 {
2142 struct pvo_entry *pvo;
2143 register_t msr;
2144
2145 PMAP_LOCK();
2146
2147 /*
2148 * If this is the kernel pmap, check the battable and I/O
2149 * segments for a hit. This is done only for regions outside
2150 * VM_MIN_KERNEL_ADDRESS-VM_MAX_KERNEL_ADDRESS.
2151 *
2152 * Be careful when checking VM_MAX_KERNEL_ADDRESS; you don't
2153 * want to wrap around to 0.
2154 */
2155 if (pm == pmap_kernel() &&
2156 (va < VM_MIN_KERNEL_ADDRESS ||
2157 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2158 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2159 #if defined(PMAP_OEA)
2160 #ifdef PPC_OEA601
2161 if (pmap_extract_ioseg601(va, pap)) {
2162 PMAP_UNLOCK();
2163 return true;
2164 }
2165 #endif /* PPC_OEA601 */
2166 if (pmap_extract_battable(va, pap)) {
2167 PMAP_UNLOCK();
2168 return true;
2169 }
2170 /*
2171 * We still check the HTAB...
2172 */
2173 #elif defined(PMAP_OEA64_BRIDGE)
2174 if (va < SEGMENT_LENGTH) {
2175 if (pap)
2176 *pap = va;
2177 PMAP_UNLOCK();
2178 return true;
2179 }
2180 /*
2181 * We still check the HTAB...
2182 */
2183 #elif defined(PMAP_OEA64)
2184 #error PPC_OEA64 not supported
2185 #endif /* PPC_OEA */
2186 }
2187
2188 msr = pmap_interrupts_off();
2189 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2190 if (pvo != NULL) {
2191 PMAP_PVO_CHECK(pvo); /* sanity check */
2192 if (pap)
2193 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2194 | (va & ADDR_POFF);
2195 }
2196 pmap_interrupts_restore(msr);
2197 PMAP_UNLOCK();
2198 return pvo != NULL;
2199 }
2200
2201 /*
2202 * Lower the protection on the specified range of this pmap.
2203 */
2204 void
2205 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2206 {
2207 struct pvo_entry *pvo;
2208 volatile struct pte *pt;
2209 register_t msr;
2210 int pteidx;
2211
2212 /*
2213 * Since this routine only downgrades protection, we should
2214 * always be called with at least one bit not set.
2215 */
2216 KASSERT(prot != VM_PROT_ALL);
2217
2218 /*
2219 * If there is no protection, this is equivalent to
2220 * remove the pmap from the pmap.
2221 */
2222 if ((prot & VM_PROT_READ) == 0) {
2223 pmap_remove(pm, va, endva);
2224 return;
2225 }
2226
2227 PMAP_LOCK();
2228
2229 msr = pmap_interrupts_off();
2230 for (; va < endva; va += PAGE_SIZE) {
2231 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2232 if (pvo == NULL)
2233 continue;
2234 PMAP_PVO_CHECK(pvo); /* sanity check */
2235
2236 /*
2237 * Revoke executable if asked to do so.
2238 */
2239 if ((prot & VM_PROT_EXECUTE) == 0)
2240 pvo_clear_exec(pvo);
2241
2242 #if 0
2243 /*
2244 * If the page is already read-only, no change
2245 * needs to be made.
2246 */
2247 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2248 continue;
2249 #endif
2250 /*
2251 * Grab the PTE pointer before we diddle with
2252 * the cached PTE copy.
2253 */
2254 pt = pmap_pvo_to_pte(pvo, pteidx);
2255 /*
2256 * Change the protection of the page.
2257 */
2258 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2259 pvo->pvo_pte.pte_lo |= PTE_BR;
2260
2261 /*
2262 * If the PVO is in the page table, update
2263 * that pte at well.
2264 */
2265 if (pt != NULL) {
2266 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2267 PVO_WHERE(pvo, PMAP_PROTECT);
2268 PMAPCOUNT(ptes_changed);
2269 }
2270
2271 PMAP_PVO_CHECK(pvo); /* sanity check */
2272 }
2273 pmap_interrupts_restore(msr);
2274 PMAP_UNLOCK();
2275 }
2276
2277 void
2278 pmap_unwire(pmap_t pm, vaddr_t va)
2279 {
2280 struct pvo_entry *pvo;
2281 register_t msr;
2282
2283 PMAP_LOCK();
2284 msr = pmap_interrupts_off();
2285 pvo = pmap_pvo_find_va(pm, va, NULL);
2286 if (pvo != NULL) {
2287 if (PVO_WIRED_P(pvo)) {
2288 pvo->pvo_vaddr &= ~PVO_WIRED;
2289 pm->pm_stats.wired_count--;
2290 }
2291 PMAP_PVO_CHECK(pvo); /* sanity check */
2292 }
2293 pmap_interrupts_restore(msr);
2294 PMAP_UNLOCK();
2295 }
2296
2297 static void
2298 pmap_pp_protect(struct pmap_page *pp, paddr_t pa, vm_prot_t prot)
2299 {
2300 struct pvo_head *pvo_head, pvol;
2301 struct pvo_entry *pvo, *next_pvo;
2302 volatile struct pte *pt;
2303 register_t msr;
2304
2305 PMAP_LOCK();
2306
2307 KASSERT(prot != VM_PROT_ALL);
2308 LIST_INIT(&pvol);
2309 msr = pmap_interrupts_off();
2310
2311 /*
2312 * When UVM reuses a page, it does a pmap_page_protect with
2313 * VM_PROT_NONE. At that point, we can clear the exec flag
2314 * since we know the page will have different contents.
2315 */
2316 if ((prot & VM_PROT_READ) == 0) {
2317 DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2318 pa);
2319 if (pmap_pp_attr_fetch(pp) & PTE_EXEC) {
2320 PMAPCOUNT(exec_uncached_page_protect);
2321 pmap_pp_attr_clear(pp, PTE_EXEC);
2322 }
2323 }
2324
2325 pvo_head = &pp->pp_pvoh;
2326 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2327 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2328 PMAP_PVO_CHECK(pvo); /* sanity check */
2329
2330 /*
2331 * Downgrading to no mapping at all, we just remove the entry.
2332 */
2333 if ((prot & VM_PROT_READ) == 0) {
2334 pmap_pvo_remove(pvo, -1, &pvol);
2335 continue;
2336 }
2337
2338 /*
2339 * If EXEC permission is being revoked, just clear the
2340 * flag in the PVO.
2341 */
2342 if ((prot & VM_PROT_EXECUTE) == 0)
2343 pvo_clear_exec(pvo);
2344
2345 /*
2346 * If this entry is already RO, don't diddle with the
2347 * page table.
2348 */
2349 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2350 PMAP_PVO_CHECK(pvo);
2351 continue;
2352 }
2353
2354 /*
2355 * Grab the PTE before the we diddle the bits so
2356 * pvo_to_pte can verify the pte contents are as
2357 * expected.
2358 */
2359 pt = pmap_pvo_to_pte(pvo, -1);
2360 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2361 pvo->pvo_pte.pte_lo |= PTE_BR;
2362 if (pt != NULL) {
2363 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2364 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2365 PMAPCOUNT(ptes_changed);
2366 }
2367 PMAP_PVO_CHECK(pvo); /* sanity check */
2368 }
2369 pmap_interrupts_restore(msr);
2370 pmap_pvo_free_list(&pvol);
2371
2372 PMAP_UNLOCK();
2373 }
2374
2375 /*
2376 * Lower the protection on the specified physical page.
2377 */
2378 void
2379 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2380 {
2381 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2382
2383 pmap_pp_protect(&md->mdpg_pp, VM_PAGE_TO_PHYS(pg), prot);
2384 }
2385
2386 /*
2387 * Lower the protection on the physical page at the specified physical
2388 * address, which may not be managed and so may not have a struct
2389 * vm_page.
2390 */
2391 void
2392 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
2393 {
2394 struct pmap_page *pp;
2395
2396 if ((pp = pmap_pv_tracked(pa)) == NULL)
2397 return;
2398 pmap_pp_protect(pp, pa, prot);
2399 }
2400
2401 /*
2402 * Activate the address space for the specified process. If the process
2403 * is the current process, load the new MMU context.
2404 */
2405 void
2406 pmap_activate(struct lwp *l)
2407 {
2408 struct pcb *pcb = lwp_getpcb(l);
2409 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2410
2411 DPRINTFN(ACTIVATE,
2412 "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2413
2414 /*
2415 * XXX Normally performed in cpu_lwp_fork().
2416 */
2417 pcb->pcb_pm = pmap;
2418
2419 /*
2420 * In theory, the SR registers need only be valid on return
2421 * to user space wait to do them there.
2422 */
2423 if (l == curlwp) {
2424 /* Store pointer to new current pmap. */
2425 curpm = pmap;
2426 }
2427 }
2428
2429 /*
2430 * Deactivate the specified process's address space.
2431 */
2432 void
2433 pmap_deactivate(struct lwp *l)
2434 {
2435 }
2436
2437 bool
2438 pmap_query_bit(struct vm_page *pg, int ptebit)
2439 {
2440 struct pvo_entry *pvo;
2441 volatile struct pte *pt;
2442 register_t msr;
2443
2444 PMAP_LOCK();
2445
2446 if (pmap_attr_fetch(pg) & ptebit) {
2447 PMAP_UNLOCK();
2448 return true;
2449 }
2450
2451 msr = pmap_interrupts_off();
2452 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2453 PMAP_PVO_CHECK(pvo); /* sanity check */
2454 /*
2455 * See if we saved the bit off. If so cache, it and return
2456 * success.
2457 */
2458 if (pvo->pvo_pte.pte_lo & ptebit) {
2459 pmap_attr_save(pg, ptebit);
2460 PMAP_PVO_CHECK(pvo); /* sanity check */
2461 pmap_interrupts_restore(msr);
2462 PMAP_UNLOCK();
2463 return true;
2464 }
2465 }
2466 /*
2467 * No luck, now go thru the hard part of looking at the ptes
2468 * themselves. Sync so any pending REF/CHG bits are flushed
2469 * to the PTEs.
2470 */
2471 SYNC();
2472 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2473 PMAP_PVO_CHECK(pvo); /* sanity check */
2474 /*
2475 * See if this pvo have a valid PTE. If so, fetch the
2476 * REF/CHG bits from the valid PTE. If the appropriate
2477 * ptebit is set, cache, it and return success.
2478 */
2479 pt = pmap_pvo_to_pte(pvo, -1);
2480 if (pt != NULL) {
2481 pmap_pte_synch(pt, &pvo->pvo_pte);
2482 if (pvo->pvo_pte.pte_lo & ptebit) {
2483 pmap_attr_save(pg, ptebit);
2484 PMAP_PVO_CHECK(pvo); /* sanity check */
2485 pmap_interrupts_restore(msr);
2486 PMAP_UNLOCK();
2487 return true;
2488 }
2489 }
2490 }
2491 pmap_interrupts_restore(msr);
2492 PMAP_UNLOCK();
2493 return false;
2494 }
2495
2496 bool
2497 pmap_clear_bit(struct vm_page *pg, int ptebit)
2498 {
2499 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2500 struct pvo_entry *pvo;
2501 volatile struct pte *pt;
2502 register_t msr;
2503 int rv = 0;
2504
2505 PMAP_LOCK();
2506 msr = pmap_interrupts_off();
2507
2508 /*
2509 * Fetch the cache value
2510 */
2511 rv |= pmap_attr_fetch(pg);
2512
2513 /*
2514 * Clear the cached value.
2515 */
2516 pmap_attr_clear(pg, ptebit);
2517
2518 /*
2519 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2520 * can reset the right ones). Note that since the pvo entries and
2521 * list heads are accessed via BAT0 and are never placed in the
2522 * page table, we don't have to worry about further accesses setting
2523 * the REF/CHG bits.
2524 */
2525 SYNC();
2526
2527 /*
2528 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2529 * valid PTE. If so, clear the ptebit from the valid PTE.
2530 */
2531 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2532 PMAP_PVO_CHECK(pvo); /* sanity check */
2533 pt = pmap_pvo_to_pte(pvo, -1);
2534 if (pt != NULL) {
2535 /*
2536 * Only sync the PTE if the bit we are looking
2537 * for is not already set.
2538 */
2539 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2540 pmap_pte_synch(pt, &pvo->pvo_pte);
2541 /*
2542 * If the bit we are looking for was already set,
2543 * clear that bit in the pte.
2544 */
2545 if (pvo->pvo_pte.pte_lo & ptebit)
2546 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2547 }
2548 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2549 pvo->pvo_pte.pte_lo &= ~ptebit;
2550 PMAP_PVO_CHECK(pvo); /* sanity check */
2551 }
2552 pmap_interrupts_restore(msr);
2553
2554 /*
2555 * If we are clearing the modify bit and this page was marked EXEC
2556 * and the user of the page thinks the page was modified, then we
2557 * need to clean it from the icache if it's mapped or clear the EXEC
2558 * bit if it's not mapped. The page itself might not have the CHG
2559 * bit set if the modification was done via DMA to the page.
2560 */
2561 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2562 if (LIST_EMPTY(pvoh)) {
2563 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2564 VM_PAGE_TO_PHYS(pg));
2565 pmap_attr_clear(pg, PTE_EXEC);
2566 PMAPCOUNT(exec_uncached_clear_modify);
2567 } else {
2568 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2569 VM_PAGE_TO_PHYS(pg));
2570 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2571 PMAPCOUNT(exec_synced_clear_modify);
2572 }
2573 }
2574 PMAP_UNLOCK();
2575 return (rv & ptebit) != 0;
2576 }
2577
2578 void
2579 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2580 {
2581 struct pvo_entry *pvo;
2582 size_t offset = va & ADDR_POFF;
2583 int s;
2584
2585 PMAP_LOCK();
2586 s = splvm();
2587 while (len > 0) {
2588 size_t seglen = PAGE_SIZE - offset;
2589 if (seglen > len)
2590 seglen = len;
2591 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2592 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2593 pmap_syncicache(
2594 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2595 PMAP_PVO_CHECK(pvo);
2596 }
2597 va += seglen;
2598 len -= seglen;
2599 offset = 0;
2600 }
2601 splx(s);
2602 PMAP_UNLOCK();
2603 }
2604
2605 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2606 void
2607 pmap_pte_print(volatile struct pte *pt)
2608 {
2609 printf("PTE %p: ", pt);
2610
2611 #if defined(PMAP_OEA)
2612 /* High word: */
2613 printf("%#" _PRIxpte ": [", pt->pte_hi);
2614 #else
2615 printf("%#" _PRIxpte ": [", pt->pte_hi);
2616 #endif /* PMAP_OEA */
2617
2618 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2619 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2620
2621 printf("%#" _PRIxpte " %#" _PRIxpte "",
2622 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2623 pt->pte_hi & PTE_API);
2624 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2625 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2626 #else
2627 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2628 #endif /* PMAP_OEA */
2629
2630 /* Low word: */
2631 #if defined (PMAP_OEA)
2632 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2633 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2634 #else
2635 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2636 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2637 #endif
2638 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2639 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2640 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2641 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2642 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2643 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2644 switch (pt->pte_lo & PTE_PP) {
2645 case PTE_BR: printf("br]\n"); break;
2646 case PTE_BW: printf("bw]\n"); break;
2647 case PTE_SO: printf("so]\n"); break;
2648 case PTE_SW: printf("sw]\n"); break;
2649 }
2650 }
2651 #endif
2652
2653 #if defined(DDB)
2654 void
2655 pmap_pteg_check(void)
2656 {
2657 volatile struct pte *pt;
2658 int i;
2659 int ptegidx;
2660 u_int p_valid = 0;
2661 u_int s_valid = 0;
2662 u_int invalid = 0;
2663
2664 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2665 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2666 if (pt->pte_hi & PTE_VALID) {
2667 if (pt->pte_hi & PTE_HID)
2668 s_valid++;
2669 else
2670 {
2671 p_valid++;
2672 }
2673 } else
2674 invalid++;
2675 }
2676 }
2677 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2678 p_valid, p_valid, s_valid, s_valid,
2679 invalid, invalid);
2680 }
2681
2682 void
2683 pmap_print_mmuregs(void)
2684 {
2685 int i;
2686 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2687 u_int cpuvers;
2688 #endif
2689 #ifndef PMAP_OEA64
2690 vaddr_t addr;
2691 register_t soft_sr[16];
2692 #endif
2693 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2694 struct bat soft_ibat[4];
2695 struct bat soft_dbat[4];
2696 #endif
2697 paddr_t sdr1;
2698
2699 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2700 cpuvers = MFPVR() >> 16;
2701 #endif
2702 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2703 #ifndef PMAP_OEA64
2704 addr = 0;
2705 for (i = 0; i < 16; i++) {
2706 soft_sr[i] = MFSRIN(addr);
2707 addr += (1 << ADDR_SR_SHFT);
2708 }
2709 #endif
2710
2711 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2712 /* read iBAT (601: uBAT) registers */
2713 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2714 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2715 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2716 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2717 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2718 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2719 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2720 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2721
2722
2723 if (cpuvers != MPC601) {
2724 /* read dBAT registers */
2725 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2726 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2727 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2728 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2729 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2730 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2731 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2732 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2733 }
2734 #endif
2735
2736 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2737 #ifndef PMAP_OEA64
2738 printf("SR[]:\t");
2739 for (i = 0; i < 4; i++)
2740 printf("0x%08lx, ", soft_sr[i]);
2741 printf("\n\t");
2742 for ( ; i < 8; i++)
2743 printf("0x%08lx, ", soft_sr[i]);
2744 printf("\n\t");
2745 for ( ; i < 12; i++)
2746 printf("0x%08lx, ", soft_sr[i]);
2747 printf("\n\t");
2748 for ( ; i < 16; i++)
2749 printf("0x%08lx, ", soft_sr[i]);
2750 printf("\n");
2751 #endif
2752
2753 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2754 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2755 for (i = 0; i < 4; i++) {
2756 printf("0x%08lx 0x%08lx, ",
2757 soft_ibat[i].batu, soft_ibat[i].batl);
2758 if (i == 1)
2759 printf("\n\t");
2760 }
2761 if (cpuvers != MPC601) {
2762 printf("\ndBAT[]:\t");
2763 for (i = 0; i < 4; i++) {
2764 printf("0x%08lx 0x%08lx, ",
2765 soft_dbat[i].batu, soft_dbat[i].batl);
2766 if (i == 1)
2767 printf("\n\t");
2768 }
2769 }
2770 printf("\n");
2771 #endif /* PMAP_OEA... */
2772 }
2773
2774 void
2775 pmap_print_pte(pmap_t pm, vaddr_t va)
2776 {
2777 struct pvo_entry *pvo;
2778 volatile struct pte *pt;
2779 int pteidx;
2780
2781 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2782 if (pvo != NULL) {
2783 pt = pmap_pvo_to_pte(pvo, pteidx);
2784 if (pt != NULL) {
2785 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2786 va, pt,
2787 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2788 pt->pte_hi, pt->pte_lo);
2789 } else {
2790 printf("No valid PTE found\n");
2791 }
2792 } else {
2793 printf("Address not in pmap\n");
2794 }
2795 }
2796
2797 void
2798 pmap_pteg_dist(void)
2799 {
2800 struct pvo_entry *pvo;
2801 int ptegidx;
2802 int depth;
2803 int max_depth = 0;
2804 unsigned int depths[64];
2805
2806 memset(depths, 0, sizeof(depths));
2807 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2808 depth = 0;
2809 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2810 depth++;
2811 }
2812 if (depth > max_depth)
2813 max_depth = depth;
2814 if (depth > 63)
2815 depth = 63;
2816 depths[depth]++;
2817 }
2818
2819 for (depth = 0; depth < 64; depth++) {
2820 printf(" [%2d]: %8u", depth, depths[depth]);
2821 if ((depth & 3) == 3)
2822 printf("\n");
2823 if (depth == max_depth)
2824 break;
2825 }
2826 if ((depth & 3) != 3)
2827 printf("\n");
2828 printf("Max depth found was %d\n", max_depth);
2829 }
2830 #endif /* DEBUG */
2831
2832 #if defined(PMAPCHECK) || defined(DEBUG)
2833 void
2834 pmap_pvo_verify(void)
2835 {
2836 int ptegidx;
2837 int s;
2838
2839 s = splvm();
2840 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2841 struct pvo_entry *pvo;
2842 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2843 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2844 panic("pmap_pvo_verify: invalid pvo %p "
2845 "on list %#x", pvo, ptegidx);
2846 pmap_pvo_check(pvo);
2847 }
2848 }
2849 splx(s);
2850 }
2851 #endif /* PMAPCHECK */
2852
2853 void *
2854 pmap_pool_alloc(struct pool *pp, int flags)
2855 {
2856 struct pvo_page *pvop;
2857 struct vm_page *pg;
2858
2859 if (uvm.page_init_done != true) {
2860 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2861 }
2862
2863 PMAP_LOCK();
2864 pvop = SIMPLEQ_FIRST(&pmap_pvop_head);
2865 if (pvop != NULL) {
2866 pmap_pvop_free--;
2867 SIMPLEQ_REMOVE_HEAD(&pmap_pvop_head, pvop_link);
2868 PMAP_UNLOCK();
2869 return pvop;
2870 }
2871 PMAP_UNLOCK();
2872 again:
2873 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2874 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2875 if (__predict_false(pg == NULL)) {
2876 if (flags & PR_WAITOK) {
2877 uvm_wait("plpg");
2878 goto again;
2879 } else {
2880 return (0);
2881 }
2882 }
2883 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2884 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2885 }
2886
2887 void
2888 pmap_pool_free(struct pool *pp, void *va)
2889 {
2890 struct pvo_page *pvop;
2891
2892 PMAP_LOCK();
2893 pvop = va;
2894 SIMPLEQ_INSERT_HEAD(&pmap_pvop_head, pvop, pvop_link);
2895 pmap_pvop_free++;
2896 if (pmap_pvop_free > pmap_pvop_maxfree)
2897 pmap_pvop_maxfree = pmap_pvop_free;
2898 PMAP_UNLOCK();
2899 #if 0
2900 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2901 #endif
2902 }
2903
2904 /*
2905 * This routine in bootstraping to steal to-be-managed memory (which will
2906 * then be unmanaged). We use it to grab from the first 256MB for our
2907 * pmap needs and above 256MB for other stuff.
2908 */
2909 vaddr_t
2910 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2911 {
2912 vsize_t size;
2913 vaddr_t va;
2914 paddr_t start, end, pa = 0;
2915 int npgs, freelist;
2916 uvm_physseg_t bank;
2917
2918 if (uvm.page_init_done == true)
2919 panic("pmap_steal_memory: called _after_ bootstrap");
2920
2921 *vstartp = VM_MIN_KERNEL_ADDRESS;
2922 *vendp = VM_MAX_KERNEL_ADDRESS;
2923
2924 size = round_page(vsize);
2925 npgs = atop(size);
2926
2927 /*
2928 * PA 0 will never be among those given to UVM so we can use it
2929 * to indicate we couldn't steal any memory.
2930 */
2931
2932 for (bank = uvm_physseg_get_first();
2933 uvm_physseg_valid_p(bank);
2934 bank = uvm_physseg_get_next(bank)) {
2935
2936 freelist = uvm_physseg_get_free_list(bank);
2937 start = uvm_physseg_get_start(bank);
2938 end = uvm_physseg_get_end(bank);
2939
2940 if (freelist == VM_FREELIST_FIRST256 &&
2941 (end - start) >= npgs) {
2942 pa = ptoa(start);
2943 break;
2944 }
2945 }
2946
2947 if (pa == 0)
2948 panic("pmap_steal_memory: no approriate memory to steal!");
2949
2950 uvm_physseg_unplug(start, npgs);
2951
2952 va = (vaddr_t) pa;
2953 memset((void *) va, 0, size);
2954 pmap_pages_stolen += npgs;
2955 #ifdef DEBUG
2956 if (pmapdebug && npgs > 1) {
2957 u_int cnt = 0;
2958 for (bank = uvm_physseg_get_first();
2959 uvm_physseg_valid_p(bank);
2960 bank = uvm_physseg_get_next(bank)) {
2961 cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
2962 }
2963 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2964 npgs, pmap_pages_stolen, cnt);
2965 }
2966 #endif
2967
2968 return va;
2969 }
2970
2971 /*
2972 * Find a chuck of memory with right size and alignment.
2973 */
2974 paddr_t
2975 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2976 {
2977 struct mem_region *mp;
2978 paddr_t s, e;
2979 int i, j;
2980
2981 size = round_page(size);
2982
2983 DPRINTFN(BOOT,
2984 "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2985 size, alignment, at_end);
2986
2987 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2988 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2989 alignment);
2990
2991 if (at_end) {
2992 if (alignment != PAGE_SIZE)
2993 panic("pmap_boot_find_memory: invalid ending "
2994 "alignment %#" _PRIxpa, alignment);
2995
2996 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2997 s = mp->start + mp->size - size;
2998 if (s >= mp->start && mp->size >= size) {
2999 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3000 DPRINTFN(BOOT,
3001 "pmap_boot_find_memory: b-avail[%d] start "
3002 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3003 mp->start, mp->size);
3004 mp->size -= size;
3005 DPRINTFN(BOOT,
3006 "pmap_boot_find_memory: a-avail[%d] start "
3007 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3008 mp->start, mp->size);
3009 return s;
3010 }
3011 }
3012 panic("pmap_boot_find_memory: no available memory");
3013 }
3014
3015 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3016 s = (mp->start + alignment - 1) & ~(alignment-1);
3017 e = s + size;
3018
3019 /*
3020 * Is the calculated region entirely within the region?
3021 */
3022 if (s < mp->start || e > mp->start + mp->size)
3023 continue;
3024
3025 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3026 if (s == mp->start) {
3027 /*
3028 * If the block starts at the beginning of region,
3029 * adjust the size & start. (the region may now be
3030 * zero in length)
3031 */
3032 DPRINTFN(BOOT,
3033 "pmap_boot_find_memory: b-avail[%d] start "
3034 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3035 mp->start += size;
3036 mp->size -= size;
3037 DPRINTFN(BOOT,
3038 "pmap_boot_find_memory: a-avail[%d] start "
3039 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3040 } else if (e == mp->start + mp->size) {
3041 /*
3042 * If the block starts at the beginning of region,
3043 * adjust only the size.
3044 */
3045 DPRINTFN(BOOT,
3046 "pmap_boot_find_memory: b-avail[%d] start "
3047 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3048 mp->size -= size;
3049 DPRINTFN(BOOT,
3050 "pmap_boot_find_memory: a-avail[%d] start "
3051 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3052 } else {
3053 /*
3054 * Block is in the middle of the region, so we
3055 * have to split it in two.
3056 */
3057 for (j = avail_cnt; j > i + 1; j--) {
3058 avail[j] = avail[j-1];
3059 }
3060 DPRINTFN(BOOT,
3061 "pmap_boot_find_memory: b-avail[%d] start "
3062 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3063 mp[1].start = e;
3064 mp[1].size = mp[0].start + mp[0].size - e;
3065 mp[0].size = s - mp[0].start;
3066 avail_cnt++;
3067 for (; i < avail_cnt; i++) {
3068 DPRINTFN(BOOT,
3069 "pmap_boot_find_memory: a-avail[%d] "
3070 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3071 avail[i].start, avail[i].size);
3072 }
3073 }
3074 KASSERT(s == (uintptr_t) s);
3075 return s;
3076 }
3077 panic("pmap_boot_find_memory: not enough memory for "
3078 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3079 }
3080
3081 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3082 #if defined (PMAP_OEA64_BRIDGE)
3083 int
3084 pmap_setup_segment0_map(int use_large_pages, ...)
3085 {
3086 vaddr_t va, va_end;
3087
3088 register_t pte_lo = 0x0;
3089 int ptegidx = 0;
3090 struct pte pte;
3091 va_list ap;
3092
3093 /* Coherent + Supervisor RW, no user access */
3094 pte_lo = PTE_M;
3095
3096 /* XXXSL
3097 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3098 * these have to take priority.
3099 */
3100 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3101 ptegidx = va_to_pteg(pmap_kernel(), va);
3102 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3103 (void)pmap_pte_insert(ptegidx, &pte);
3104 }
3105
3106 va_start(ap, use_large_pages);
3107 while (1) {
3108 paddr_t pa;
3109 size_t size;
3110
3111 va = va_arg(ap, vaddr_t);
3112
3113 if (va == 0)
3114 break;
3115
3116 pa = va_arg(ap, paddr_t);
3117 size = va_arg(ap, size_t);
3118
3119 for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
3120 #if 0
3121 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3122 #endif
3123 ptegidx = va_to_pteg(pmap_kernel(), va);
3124 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3125 (void)pmap_pte_insert(ptegidx, &pte);
3126 }
3127 }
3128 va_end(ap);
3129
3130 TLBSYNC();
3131 SYNC();
3132 return (0);
3133 }
3134 #endif /* PMAP_OEA64_BRIDGE */
3135
3136 /*
3137 * Set up the bottom level of the data structures necessary for the kernel
3138 * to manage memory. MMU hardware is programmed in pmap_bootstrap2().
3139 */
3140 void
3141 pmap_bootstrap1(paddr_t kernelstart, paddr_t kernelend)
3142 {
3143 struct mem_region *mp, tmp;
3144 paddr_t s, e;
3145 psize_t size;
3146 int i, j;
3147
3148 /*
3149 * Get memory.
3150 */
3151 mem_regions(&mem, &avail);
3152 #if defined(DEBUG)
3153 if (pmapdebug & PMAPDEBUG_BOOT) {
3154 printf("pmap_bootstrap: memory configuration:\n");
3155 for (mp = mem; mp->size; mp++) {
3156 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3157 mp->start, mp->size);
3158 }
3159 for (mp = avail; mp->size; mp++) {
3160 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3161 mp->start, mp->size);
3162 }
3163 }
3164 #endif
3165
3166 /*
3167 * Find out how much physical memory we have and in how many chunks.
3168 */
3169 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3170 if (mp->start >= pmap_memlimit)
3171 continue;
3172 if (mp->start + mp->size > pmap_memlimit) {
3173 size = pmap_memlimit - mp->start;
3174 physmem += btoc(size);
3175 } else {
3176 physmem += btoc(mp->size);
3177 }
3178 mem_cnt++;
3179 }
3180
3181 /*
3182 * Count the number of available entries.
3183 */
3184 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3185 avail_cnt++;
3186
3187 /*
3188 * Page align all regions.
3189 */
3190 kernelstart = trunc_page(kernelstart);
3191 kernelend = round_page(kernelend);
3192 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3193 s = round_page(mp->start);
3194 mp->size -= (s - mp->start);
3195 mp->size = trunc_page(mp->size);
3196 mp->start = s;
3197 e = mp->start + mp->size;
3198
3199 DPRINTFN(BOOT,
3200 "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3201 i, mp->start, mp->size);
3202
3203 /*
3204 * Don't allow the end to run beyond our artificial limit
3205 */
3206 if (e > pmap_memlimit)
3207 e = pmap_memlimit;
3208
3209 /*
3210 * Is this region empty or strange? skip it.
3211 */
3212 if (e <= s) {
3213 mp->start = 0;
3214 mp->size = 0;
3215 continue;
3216 }
3217
3218 /*
3219 * Does this overlap the beginning of kernel?
3220 * Does extend past the end of the kernel?
3221 */
3222 else if (s < kernelstart && e > kernelstart) {
3223 if (e > kernelend) {
3224 avail[avail_cnt].start = kernelend;
3225 avail[avail_cnt].size = e - kernelend;
3226 avail_cnt++;
3227 }
3228 mp->size = kernelstart - s;
3229 }
3230 /*
3231 * Check whether this region overlaps the end of the kernel.
3232 */
3233 else if (s < kernelend && e > kernelend) {
3234 mp->start = kernelend;
3235 mp->size = e - kernelend;
3236 }
3237 /*
3238 * Look whether this regions is completely inside the kernel.
3239 * Nuke it if it does.
3240 */
3241 else if (s >= kernelstart && e <= kernelend) {
3242 mp->start = 0;
3243 mp->size = 0;
3244 }
3245 /*
3246 * If the user imposed a memory limit, enforce it.
3247 */
3248 else if (s >= pmap_memlimit) {
3249 mp->start = -PAGE_SIZE; /* let's know why */
3250 mp->size = 0;
3251 }
3252 else {
3253 mp->start = s;
3254 mp->size = e - s;
3255 }
3256 DPRINTFN(BOOT,
3257 "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3258 i, mp->start, mp->size);
3259 }
3260
3261 /*
3262 * Move (and uncount) all the null return to the end.
3263 */
3264 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3265 if (mp->size == 0) {
3266 tmp = avail[i];
3267 avail[i] = avail[--avail_cnt];
3268 avail[avail_cnt] = avail[i];
3269 }
3270 }
3271
3272 /*
3273 * (Bubble)sort them into ascending order.
3274 */
3275 for (i = 0; i < avail_cnt; i++) {
3276 for (j = i + 1; j < avail_cnt; j++) {
3277 if (avail[i].start > avail[j].start) {
3278 tmp = avail[i];
3279 avail[i] = avail[j];
3280 avail[j] = tmp;
3281 }
3282 }
3283 }
3284
3285 /*
3286 * Make sure they don't overlap.
3287 */
3288 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3289 if (mp[0].start + mp[0].size > mp[1].start) {
3290 mp[0].size = mp[1].start - mp[0].start;
3291 }
3292 DPRINTFN(BOOT,
3293 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3294 i, mp->start, mp->size);
3295 }
3296 DPRINTFN(BOOT,
3297 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3298 i, mp->start, mp->size);
3299
3300 #ifdef PTEGCOUNT
3301 pmap_pteg_cnt = PTEGCOUNT;
3302 #else /* PTEGCOUNT */
3303
3304 pmap_pteg_cnt = 0x1000;
3305
3306 while (pmap_pteg_cnt < physmem)
3307 pmap_pteg_cnt <<= 1;
3308
3309 pmap_pteg_cnt >>= 1;
3310 #endif /* PTEGCOUNT */
3311
3312 #ifdef DEBUG
3313 DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3314 #endif
3315
3316 /*
3317 * Find suitably aligned memory for PTEG hash table.
3318 */
3319 size = pmap_pteg_cnt * sizeof(struct pteg);
3320 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3321
3322 #ifdef DEBUG
3323 DPRINTFN(BOOT,
3324 "PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3325 #endif
3326
3327
3328 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3329 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3330 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3331 pmap_pteg_table, size);
3332 #endif
3333
3334 memset(__UNVOLATILE(pmap_pteg_table), 0,
3335 pmap_pteg_cnt * sizeof(struct pteg));
3336 pmap_pteg_mask = pmap_pteg_cnt - 1;
3337
3338 /*
3339 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3340 * with pages. So we just steal them before giving them to UVM.
3341 */
3342 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3343 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3344 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3345 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3346 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3347 pmap_pvo_table, size);
3348 #endif
3349
3350 for (i = 0; i < pmap_pteg_cnt; i++)
3351 TAILQ_INIT(&pmap_pvo_table[i]);
3352
3353 #ifndef MSGBUFADDR
3354 /*
3355 * Allocate msgbuf in high memory.
3356 */
3357 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3358 #endif
3359
3360 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3361 paddr_t pfstart = atop(mp->start);
3362 paddr_t pfend = atop(mp->start + mp->size);
3363 if (mp->size == 0)
3364 continue;
3365 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3366 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3367 VM_FREELIST_FIRST256);
3368 } else if (mp->start >= SEGMENT_LENGTH) {
3369 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3370 VM_FREELIST_DEFAULT);
3371 } else {
3372 pfend = atop(SEGMENT_LENGTH);
3373 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3374 VM_FREELIST_FIRST256);
3375 pfstart = atop(SEGMENT_LENGTH);
3376 pfend = atop(mp->start + mp->size);
3377 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3378 VM_FREELIST_DEFAULT);
3379 }
3380 }
3381
3382 /*
3383 * Make sure kernel vsid is allocated as well as VSID 0.
3384 */
3385 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3386 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3387 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3388 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3389 pmap_vsid_bitmap[0] |= 1;
3390
3391 /*
3392 * Initialize kernel pmap.
3393 */
3394 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
3395 for (i = 0; i < 16; i++) {
3396 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3397 }
3398 pmap_kernel()->pm_vsid = KERNEL_VSIDBITS;
3399
3400 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3401 #ifdef KERNEL2_SR
3402 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3403 #endif
3404 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3405
3406 #if defined(PMAP_OEA) && defined(PPC_OEA601)
3407 if ((MFPVR() >> 16) == MPC601) {
3408 for (i = 0; i < 16; i++) {
3409 if (iosrtable[i] & SR601_T) {
3410 pmap_kernel()->pm_sr[i] = iosrtable[i];
3411 }
3412 }
3413 }
3414 #endif /* PMAP_OEA && PPC_OEA601 */
3415
3416 #ifdef ALTIVEC
3417 pmap_use_altivec = cpu_altivec;
3418 #endif
3419
3420 #ifdef DEBUG
3421 if (pmapdebug & PMAPDEBUG_BOOT) {
3422 u_int cnt;
3423 uvm_physseg_t bank;
3424 char pbuf[9];
3425 for (cnt = 0, bank = uvm_physseg_get_first();
3426 uvm_physseg_valid_p(bank);
3427 bank = uvm_physseg_get_next(bank)) {
3428 cnt += uvm_physseg_get_avail_end(bank) -
3429 uvm_physseg_get_avail_start(bank);
3430 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3431 bank,
3432 ptoa(uvm_physseg_get_avail_start(bank)),
3433 ptoa(uvm_physseg_get_avail_end(bank)),
3434 ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
3435 }
3436 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3437 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3438 pbuf, cnt);
3439 }
3440 #endif
3441
3442 pool_init(&pmap_pvo_pool, sizeof(struct pvo_entry),
3443 sizeof(struct pvo_entry), 0, 0, "pmap_pvopl",
3444 &pmap_pool_allocator, IPL_VM);
3445
3446 pool_setlowat(&pmap_pvo_pool, 1008);
3447
3448 pool_init(&pmap_pool, sizeof(struct pmap),
3449 sizeof(void *), 0, 0, "pmap_pl", &pool_allocator_nointr,
3450 IPL_NONE);
3451
3452 #if defined(PMAP_NEED_MAPKERNEL)
3453 {
3454 struct pmap *pm = pmap_kernel();
3455 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3456 extern int etext[], kernel_text[];
3457 vaddr_t va, va_etext = (paddr_t) etext;
3458 #endif
3459 paddr_t pa, pa_end;
3460 register_t sr;
3461 struct pte pt;
3462 unsigned int ptegidx;
3463 int bank;
3464
3465 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3466 pm->pm_sr[0] = sr;
3467
3468 for (bank = 0; bank < vm_nphysseg; bank++) {
3469 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3470 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3471 for (; pa < pa_end; pa += PAGE_SIZE) {
3472 ptegidx = va_to_pteg(pm, pa);
3473 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3474 pmap_pte_insert(ptegidx, &pt);
3475 }
3476 }
3477
3478 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3479 va = (vaddr_t) kernel_text;
3480
3481 for (pa = kernelstart; va < va_etext;
3482 pa += PAGE_SIZE, va += PAGE_SIZE) {
3483 ptegidx = va_to_pteg(pm, va);
3484 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3485 pmap_pte_insert(ptegidx, &pt);
3486 }
3487
3488 for (; pa < kernelend;
3489 pa += PAGE_SIZE, va += PAGE_SIZE) {
3490 ptegidx = va_to_pteg(pm, va);
3491 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3492 pmap_pte_insert(ptegidx, &pt);
3493 }
3494
3495 for (va = 0, pa = 0; va < kernelstart;
3496 pa += PAGE_SIZE, va += PAGE_SIZE) {
3497 ptegidx = va_to_pteg(pm, va);
3498 if (va < 0x3000)
3499 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3500 else
3501 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3502 pmap_pte_insert(ptegidx, &pt);
3503 }
3504 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3505 pa += PAGE_SIZE, va += PAGE_SIZE) {
3506 ptegidx = va_to_pteg(pm, va);
3507 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3508 pmap_pte_insert(ptegidx, &pt);
3509 }
3510 #endif /* PMAP_NEED_FULL_MAPKERNEL */
3511 }
3512 #endif /* PMAP_NEED_MAPKERNEL */
3513 }
3514
3515 /*
3516 * Using the data structures prepared in pmap_bootstrap1(), program
3517 * the MMU hardware.
3518 */
3519 void
3520 pmap_bootstrap2(void)
3521 {
3522 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
3523 for (int i = 0; i < 16; i++) {
3524 __asm volatile("mtsrin %0,%1"
3525 :: "r"(pmap_kernel()->pm_sr[i]),
3526 "r"(i << ADDR_SR_SHFT));
3527 }
3528 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3529
3530 #if defined(PMAP_OEA)
3531 __asm volatile("sync; mtsdr1 %0; isync"
3532 :
3533 : "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10))
3534 : "memory");
3535 #elif defined(PMAP_OEA64) || defined(PMAP_OEA64_BRIDGE)
3536 __asm volatile("sync; mtsdr1 %0; isync"
3537 :
3538 : "r"((uintptr_t)pmap_pteg_table |
3539 (32 - __builtin_clz(pmap_pteg_mask >> 11)))
3540 : "memory");
3541 #endif
3542 tlbia();
3543
3544 #if defined(PMAPDEBUG)
3545 if (pmapdebug)
3546 pmap_print_mmuregs();
3547 #endif
3548 }
3549
3550 /*
3551 * This is not part of the defined PMAP interface and is specific to the
3552 * PowerPC architecture. This is called during initppc, before the system
3553 * is really initialized.
3554 */
3555 void
3556 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3557 {
3558 pmap_bootstrap1(kernelstart, kernelend);
3559 pmap_bootstrap2();
3560 }
3561