Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.118
      1 /*	$NetBSD: pmap.c,v 1.118 2023/12/15 09:33:29 rin Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.118 2023/12/15 09:33:29 rin Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #ifdef _KERNEL_OPT
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 #include "opt_ppcarch.h"
     75 #endif
     76 
     77 #include <sys/param.h>
     78 #include <sys/proc.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 #include <sys/atomic.h>
     84 
     85 #include <uvm/uvm.h>
     86 #include <uvm/uvm_physseg.h>
     87 
     88 #include <machine/powerpc.h>
     89 #include <powerpc/bat.h>
     90 #include <powerpc/pcb.h>
     91 #include <powerpc/psl.h>
     92 #include <powerpc/spr.h>
     93 #include <powerpc/oea/spr.h>
     94 #include <powerpc/oea/sr_601.h>
     95 
     96 #ifdef ALTIVEC
     97 extern int pmap_use_altivec;
     98 #endif
     99 
    100 #ifdef PMAP_MEMLIMIT
    101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    102 #else
    103 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    104 #endif
    105 
    106 extern struct pmap kernel_pmap_;
    107 static unsigned int pmap_pages_stolen;
    108 static u_long pmap_pte_valid;
    109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    110 static u_long pmap_pvo_enter_depth;
    111 static u_long pmap_pvo_remove_depth;
    112 #endif
    113 
    114 #ifndef MSGBUFADDR
    115 extern paddr_t msgbuf_paddr;
    116 #endif
    117 
    118 static struct mem_region *mem, *avail;
    119 static u_int mem_cnt, avail_cnt;
    120 
    121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    122 # define	PMAP_OEA 1
    123 #endif
    124 
    125 #if defined(PMAP_OEA)
    126 #define	_PRIxpte	"lx"
    127 #else
    128 #define	_PRIxpte	PRIx64
    129 #endif
    130 #define	_PRIxpa		"lx"
    131 #define	_PRIxva		"lx"
    132 #define	_PRIsr  	"lx"
    133 
    134 #ifdef PMAP_NEEDS_FIXUP
    135 #if defined(PMAP_OEA)
    136 #define	PMAPNAME(name)	pmap32_##name
    137 #elif defined(PMAP_OEA64)
    138 #define	PMAPNAME(name)	pmap64_##name
    139 #elif defined(PMAP_OEA64_BRIDGE)
    140 #define	PMAPNAME(name)	pmap64bridge_##name
    141 #else
    142 #error unknown variant for pmap
    143 #endif
    144 #endif /* PMAP_NEEDS_FIXUP */
    145 
    146 #ifdef PMAPNAME
    147 #define	STATIC			static
    148 #define pmap_pte_spill		PMAPNAME(pte_spill)
    149 #define pmap_real_memory	PMAPNAME(real_memory)
    150 #define pmap_init		PMAPNAME(init)
    151 #define pmap_virtual_space	PMAPNAME(virtual_space)
    152 #define pmap_create		PMAPNAME(create)
    153 #define pmap_reference		PMAPNAME(reference)
    154 #define pmap_destroy		PMAPNAME(destroy)
    155 #define pmap_copy		PMAPNAME(copy)
    156 #define pmap_update		PMAPNAME(update)
    157 #define pmap_enter		PMAPNAME(enter)
    158 #define pmap_remove		PMAPNAME(remove)
    159 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    160 #define pmap_kremove		PMAPNAME(kremove)
    161 #define pmap_extract		PMAPNAME(extract)
    162 #define pmap_protect		PMAPNAME(protect)
    163 #define pmap_unwire		PMAPNAME(unwire)
    164 #define pmap_page_protect	PMAPNAME(page_protect)
    165 #define	pmap_pv_protect		PMAPNAME(pv_protect)
    166 #define pmap_query_bit		PMAPNAME(query_bit)
    167 #define pmap_clear_bit		PMAPNAME(clear_bit)
    168 
    169 #define pmap_activate		PMAPNAME(activate)
    170 #define pmap_deactivate		PMAPNAME(deactivate)
    171 
    172 #define pmap_pinit		PMAPNAME(pinit)
    173 #define pmap_procwr		PMAPNAME(procwr)
    174 
    175 #define pmap_pool		PMAPNAME(pool)
    176 #define pmap_pvo_pool		PMAPNAME(pvo_pool)
    177 #define pmap_pvo_table		PMAPNAME(pvo_table)
    178 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    179 #define pmap_pte_print		PMAPNAME(pte_print)
    180 #define pmap_pteg_check		PMAPNAME(pteg_check)
    181 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    182 #define pmap_print_pte		PMAPNAME(print_pte)
    183 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    184 #endif
    185 #if defined(DEBUG) || defined(PMAPCHECK)
    186 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    187 #define pmapcheck		PMAPNAME(check)
    188 #endif
    189 #if defined(DEBUG) || defined(PMAPDEBUG)
    190 #define pmapdebug		PMAPNAME(debug)
    191 #endif
    192 #define pmap_steal_memory	PMAPNAME(steal_memory)
    193 #define pmap_bootstrap		PMAPNAME(bootstrap)
    194 #define pmap_bootstrap1		PMAPNAME(bootstrap1)
    195 #define pmap_bootstrap2		PMAPNAME(bootstrap2)
    196 #else
    197 #define	STATIC			/* nothing */
    198 #endif /* PMAPNAME */
    199 
    200 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    201 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    202 STATIC void pmap_init(void);
    203 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    204 STATIC pmap_t pmap_create(void);
    205 STATIC void pmap_reference(pmap_t);
    206 STATIC void pmap_destroy(pmap_t);
    207 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    208 STATIC void pmap_update(pmap_t);
    209 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    210 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    211 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    212 STATIC void pmap_kremove(vaddr_t, vsize_t);
    213 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    214 
    215 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    216 STATIC void pmap_unwire(pmap_t, vaddr_t);
    217 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    218 STATIC void pmap_pv_protect(paddr_t, vm_prot_t);
    219 STATIC bool pmap_query_bit(struct vm_page *, int);
    220 STATIC bool pmap_clear_bit(struct vm_page *, int);
    221 
    222 STATIC void pmap_activate(struct lwp *);
    223 STATIC void pmap_deactivate(struct lwp *);
    224 
    225 STATIC void pmap_pinit(pmap_t pm);
    226 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    227 
    228 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    229 STATIC void pmap_pte_print(volatile struct pte *);
    230 STATIC void pmap_pteg_check(void);
    231 STATIC void pmap_print_mmuregs(void);
    232 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    233 STATIC void pmap_pteg_dist(void);
    234 #endif
    235 #if defined(DEBUG) || defined(PMAPCHECK)
    236 STATIC void pmap_pvo_verify(void);
    237 #endif
    238 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    239 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    240 STATIC void pmap_bootstrap1(paddr_t, paddr_t);
    241 STATIC void pmap_bootstrap2(void);
    242 
    243 #ifdef PMAPNAME
    244 const struct pmap_ops PMAPNAME(ops) = {
    245 	.pmapop_pte_spill = pmap_pte_spill,
    246 	.pmapop_real_memory = pmap_real_memory,
    247 	.pmapop_init = pmap_init,
    248 	.pmapop_virtual_space = pmap_virtual_space,
    249 	.pmapop_create = pmap_create,
    250 	.pmapop_reference = pmap_reference,
    251 	.pmapop_destroy = pmap_destroy,
    252 	.pmapop_copy = pmap_copy,
    253 	.pmapop_update = pmap_update,
    254 	.pmapop_enter = pmap_enter,
    255 	.pmapop_remove = pmap_remove,
    256 	.pmapop_kenter_pa = pmap_kenter_pa,
    257 	.pmapop_kremove = pmap_kremove,
    258 	.pmapop_extract = pmap_extract,
    259 	.pmapop_protect = pmap_protect,
    260 	.pmapop_unwire = pmap_unwire,
    261 	.pmapop_page_protect = pmap_page_protect,
    262 	.pmapop_pv_protect = pmap_pv_protect,
    263 	.pmapop_query_bit = pmap_query_bit,
    264 	.pmapop_clear_bit = pmap_clear_bit,
    265 	.pmapop_activate = pmap_activate,
    266 	.pmapop_deactivate = pmap_deactivate,
    267 	.pmapop_pinit = pmap_pinit,
    268 	.pmapop_procwr = pmap_procwr,
    269 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    270 	.pmapop_pte_print = pmap_pte_print,
    271 	.pmapop_pteg_check = pmap_pteg_check,
    272 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    273 	.pmapop_print_pte = pmap_print_pte,
    274 	.pmapop_pteg_dist = pmap_pteg_dist,
    275 #else
    276 	.pmapop_pte_print = NULL,
    277 	.pmapop_pteg_check = NULL,
    278 	.pmapop_print_mmuregs = NULL,
    279 	.pmapop_print_pte = NULL,
    280 	.pmapop_pteg_dist = NULL,
    281 #endif
    282 #if defined(DEBUG) || defined(PMAPCHECK)
    283 	.pmapop_pvo_verify = pmap_pvo_verify,
    284 #else
    285 	.pmapop_pvo_verify = NULL,
    286 #endif
    287 	.pmapop_steal_memory = pmap_steal_memory,
    288 	.pmapop_bootstrap = pmap_bootstrap,
    289 	.pmapop_bootstrap1 = pmap_bootstrap1,
    290 	.pmapop_bootstrap2 = pmap_bootstrap2,
    291 };
    292 #endif /* !PMAPNAME */
    293 
    294 /*
    295  * The following structure is aligned to 32 bytes
    296  */
    297 struct pvo_entry {
    298 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    299 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    300 	struct pte pvo_pte;			/* Prebuilt PTE */
    301 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    302 	vaddr_t pvo_vaddr;			/* VA of entry */
    303 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    304 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    305 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    306 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    307 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    308 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    309 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    310 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    311 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    312 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    313 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    314 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    315 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    316 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    317 #define	PVO_REMOVE		6		/* PVO has been removed */
    318 #define	PVO_WHERE_MASK		15
    319 #define	PVO_WHERE_SHFT		8
    320 } __attribute__ ((aligned (32)));
    321 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    322 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    323 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    324 #define	PVO_PTEGIDX_CLR(pvo)	\
    325 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    326 #define	PVO_PTEGIDX_SET(pvo,i)	\
    327 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    328 #define	PVO_WHERE(pvo,w)	\
    329 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    330 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    331 
    332 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    333 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    334 
    335 struct pool pmap_pool;		/* pool for pmap structures */
    336 struct pool pmap_pvo_pool;	/* pool for pvo entries */
    337 
    338 /*
    339  * We keep a cache of unmanaged pages to be used for pvo entries for
    340  * unmanaged pages.
    341  */
    342 struct pvo_page {
    343 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    344 };
    345 SIMPLEQ_HEAD(pvop_head, pvo_page);
    346 static struct pvop_head pmap_pvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_pvop_head);
    347 static u_long pmap_pvop_free;
    348 static u_long pmap_pvop_maxfree;
    349 
    350 static void *pmap_pool_alloc(struct pool *, int);
    351 static void pmap_pool_free(struct pool *, void *);
    352 
    353 static struct pool_allocator pmap_pool_allocator = {
    354 	.pa_alloc = pmap_pool_alloc,
    355 	.pa_free = pmap_pool_free,
    356 	.pa_pagesz = 0,
    357 };
    358 
    359 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    360 void pmap_pte_print(volatile struct pte *);
    361 void pmap_pteg_check(void);
    362 void pmap_pteg_dist(void);
    363 void pmap_print_pte(pmap_t, vaddr_t);
    364 void pmap_print_mmuregs(void);
    365 #endif
    366 
    367 #if defined(DEBUG) || defined(PMAPCHECK)
    368 #ifdef PMAPCHECK
    369 int pmapcheck = 1;
    370 #else
    371 int pmapcheck = 0;
    372 #endif
    373 void pmap_pvo_verify(void);
    374 static void pmap_pvo_check(const struct pvo_entry *);
    375 #define	PMAP_PVO_CHECK(pvo)	 		\
    376 	do {					\
    377 		if (pmapcheck)			\
    378 			pmap_pvo_check(pvo);	\
    379 	} while (0)
    380 #else
    381 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    382 #endif
    383 static int pmap_pte_insert(int, struct pte *);
    384 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    385 	vaddr_t, paddr_t, register_t, int);
    386 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    387 static void pmap_pvo_free(struct pvo_entry *);
    388 static void pmap_pvo_free_list(struct pvo_head *);
    389 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    390 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    391 static struct pvo_entry *pmap_pvo_reclaim(void);
    392 static void pvo_set_exec(struct pvo_entry *);
    393 static void pvo_clear_exec(struct pvo_entry *);
    394 
    395 static void tlbia(void);
    396 
    397 static void pmap_release(pmap_t);
    398 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    399 
    400 static uint32_t pmap_pvo_reclaim_nextidx;
    401 #ifdef DEBUG
    402 static int pmap_pvo_reclaim_debugctr;
    403 #endif
    404 
    405 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    406 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    407 
    408 static int pmap_initialized;
    409 
    410 #if defined(DEBUG) || defined(PMAPDEBUG)
    411 #define	PMAPDEBUG_BOOT		0x0001
    412 #define	PMAPDEBUG_PTE		0x0002
    413 #define	PMAPDEBUG_EXEC		0x0008
    414 #define	PMAPDEBUG_PVOENTER	0x0010
    415 #define	PMAPDEBUG_PVOREMOVE	0x0020
    416 #define	PMAPDEBUG_ACTIVATE	0x0100
    417 #define	PMAPDEBUG_CREATE	0x0200
    418 #define	PMAPDEBUG_ENTER		0x1000
    419 #define	PMAPDEBUG_KENTER	0x2000
    420 #define	PMAPDEBUG_KREMOVE	0x4000
    421 #define	PMAPDEBUG_REMOVE	0x8000
    422 
    423 unsigned int pmapdebug = 0;
    424 
    425 # define DPRINTF(x, ...)	printf(x, __VA_ARGS__)
    426 # define DPRINTFN(n, x, ...)	do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
    427 #else
    428 # define DPRINTF(x, ...)	do { } while (0)
    429 # define DPRINTFN(n, x, ...)	do { } while (0)
    430 #endif
    431 
    432 
    433 #ifdef PMAPCOUNTERS
    434 /*
    435  * From pmap_subr.c
    436  */
    437 extern struct evcnt pmap_evcnt_mappings;
    438 extern struct evcnt pmap_evcnt_unmappings;
    439 
    440 extern struct evcnt pmap_evcnt_kernel_mappings;
    441 extern struct evcnt pmap_evcnt_kernel_unmappings;
    442 
    443 extern struct evcnt pmap_evcnt_mappings_replaced;
    444 
    445 extern struct evcnt pmap_evcnt_exec_mappings;
    446 extern struct evcnt pmap_evcnt_exec_cached;
    447 
    448 extern struct evcnt pmap_evcnt_exec_synced;
    449 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    450 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    451 
    452 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    453 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    454 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    455 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    456 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    457 
    458 extern struct evcnt pmap_evcnt_updates;
    459 extern struct evcnt pmap_evcnt_collects;
    460 extern struct evcnt pmap_evcnt_copies;
    461 
    462 extern struct evcnt pmap_evcnt_ptes_spilled;
    463 extern struct evcnt pmap_evcnt_ptes_unspilled;
    464 extern struct evcnt pmap_evcnt_ptes_evicted;
    465 
    466 extern struct evcnt pmap_evcnt_ptes_primary[8];
    467 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    468 extern struct evcnt pmap_evcnt_ptes_removed;
    469 extern struct evcnt pmap_evcnt_ptes_changed;
    470 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    471 extern struct evcnt pmap_evcnt_pvos_failed;
    472 
    473 extern struct evcnt pmap_evcnt_zeroed_pages;
    474 extern struct evcnt pmap_evcnt_copied_pages;
    475 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    476 
    477 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    478 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    479 #else
    480 #define	PMAPCOUNT(ev)	((void) 0)
    481 #define	PMAPCOUNT2(ev)	((void) 0)
    482 #endif
    483 
    484 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va) : "memory")
    485 
    486 /* XXXSL: this needs to be moved to assembler */
    487 #define	TLBIEL(va)	__asm volatile("tlbie %0" :: "r"(va) : "memory")
    488 
    489 #ifdef MD_TLBSYNC
    490 #define TLBSYNC()	MD_TLBSYNC()
    491 #else
    492 #define	TLBSYNC()	__asm volatile("tlbsync" ::: "memory")
    493 #endif
    494 #define	SYNC()		__asm volatile("sync" ::: "memory")
    495 #define	EIEIO()		__asm volatile("eieio" ::: "memory")
    496 #define	DCBST(va)	__asm volatile("dcbst 0,%0" :: "r"(va) : "memory")
    497 #define	MFMSR()		mfmsr()
    498 #define	MTMSR(psl)	mtmsr(psl)
    499 #define	MFPVR()		mfpvr()
    500 #define	MFSRIN(va)	mfsrin(va)
    501 #define	MFTB()		mfrtcltbl()
    502 
    503 #if defined(DDB) && !defined(PMAP_OEA64)
    504 static inline register_t
    505 mfsrin(vaddr_t va)
    506 {
    507 	register_t sr;
    508 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    509 	return sr;
    510 }
    511 #endif	/* DDB && !PMAP_OEA64 */
    512 
    513 #if defined (PMAP_OEA64_BRIDGE)
    514 extern void mfmsr64 (register64_t *result);
    515 #endif /* PMAP_OEA64_BRIDGE */
    516 
    517 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    518 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    519 
    520 static inline register_t
    521 pmap_interrupts_off(void)
    522 {
    523 	register_t msr = MFMSR();
    524 	if (msr & PSL_EE)
    525 		MTMSR(msr & ~PSL_EE);
    526 	return msr;
    527 }
    528 
    529 static void
    530 pmap_interrupts_restore(register_t msr)
    531 {
    532 	if (msr & PSL_EE)
    533 		MTMSR(msr);
    534 }
    535 
    536 static inline u_int32_t
    537 mfrtcltbl(void)
    538 {
    539 #ifdef PPC_OEA601
    540 	if ((MFPVR() >> 16) == MPC601)
    541 		return (mfrtcl() >> 7);
    542 	else
    543 #endif
    544 		return (mftbl());
    545 }
    546 
    547 /*
    548  * These small routines may have to be replaced,
    549  * if/when we support processors other that the 604.
    550  */
    551 
    552 void
    553 tlbia(void)
    554 {
    555 	char *i;
    556 
    557 	SYNC();
    558 #if defined(PMAP_OEA)
    559 	/*
    560 	 * Why not use "tlbia"?  Because not all processors implement it.
    561 	 *
    562 	 * This needs to be a per-CPU callback to do the appropriate thing
    563 	 * for the CPU. XXX
    564 	 */
    565 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    566 		TLBIE(i);
    567 		EIEIO();
    568 		SYNC();
    569 	}
    570 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    571 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    572 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    573 		TLBIEL(i);
    574 		EIEIO();
    575 		SYNC();
    576 	}
    577 #endif
    578 	TLBSYNC();
    579 	SYNC();
    580 }
    581 
    582 static inline register_t
    583 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    584 {
    585 	/*
    586 	 * Rather than searching the STE groups for the VSID or extracting
    587 	 * it from the SR, we know how we generate that from the ESID and
    588 	 * so do that.
    589 	 *
    590 	 * This makes the code the same for OEA and OEA64, and also allows
    591 	 * us to generate a correct-for-that-address-space VSID even if the
    592 	 * pmap contains a different SR value at any given moment (e.g.
    593 	 * kernel pmap on a 601 that is using I/O segments).
    594 	 */
    595 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    596 }
    597 
    598 static inline register_t
    599 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    600 {
    601 	register_t hash;
    602 
    603 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    604 	return hash & pmap_pteg_mask;
    605 }
    606 
    607 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    608 /*
    609  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    610  * The only bit of magic is that the top 4 bits of the address doesn't
    611  * technically exist in the PTE.  But we know we reserved 4 bits of the
    612  * VSID for it so that's how we get it.
    613  */
    614 static vaddr_t
    615 pmap_pte_to_va(volatile const struct pte *pt)
    616 {
    617 	vaddr_t va;
    618 	uintptr_t ptaddr = (uintptr_t) pt;
    619 
    620 	if (pt->pte_hi & PTE_HID)
    621 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    622 
    623 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    624 #if defined(PMAP_OEA)
    625 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    626 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    627 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    628 #endif
    629 	va <<= ADDR_PIDX_SHFT;
    630 
    631 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    632 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    633 
    634 #if defined(PMAP_OEA64)
    635 	/* PPC63 Bits 0-35 */
    636 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    637 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    638 	/* PPC Bits 0-3 */
    639 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    640 #endif
    641 
    642 	return va;
    643 }
    644 #endif
    645 
    646 static inline struct pvo_head *
    647 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    648 {
    649 	struct vm_page *pg;
    650 	struct vm_page_md *md;
    651 	struct pmap_page *pp;
    652 
    653 	pg = PHYS_TO_VM_PAGE(pa);
    654 	if (pg_p != NULL)
    655 		*pg_p = pg;
    656 	if (pg == NULL) {
    657 		if ((pp = pmap_pv_tracked(pa)) != NULL)
    658 			return &pp->pp_pvoh;
    659 		return NULL;
    660 	}
    661 	md = VM_PAGE_TO_MD(pg);
    662 	return &md->mdpg_pvoh;
    663 }
    664 
    665 static inline struct pvo_head *
    666 vm_page_to_pvoh(struct vm_page *pg)
    667 {
    668 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    669 
    670 	return &md->mdpg_pvoh;
    671 }
    672 
    673 static inline void
    674 pmap_pp_attr_clear(struct pmap_page *pp, int ptebit)
    675 {
    676 
    677 	pp->pp_attrs &= ~ptebit;
    678 }
    679 
    680 static inline void
    681 pmap_attr_clear(struct vm_page *pg, int ptebit)
    682 {
    683 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    684 
    685 	pmap_pp_attr_clear(&md->mdpg_pp, ptebit);
    686 }
    687 
    688 static inline int
    689 pmap_pp_attr_fetch(struct pmap_page *pp)
    690 {
    691 
    692 	return pp->pp_attrs;
    693 }
    694 
    695 static inline int
    696 pmap_attr_fetch(struct vm_page *pg)
    697 {
    698 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    699 
    700 	return pmap_pp_attr_fetch(&md->mdpg_pp);
    701 }
    702 
    703 static inline void
    704 pmap_attr_save(struct vm_page *pg, int ptebit)
    705 {
    706 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    707 
    708 	md->mdpg_attrs |= ptebit;
    709 }
    710 
    711 static inline int
    712 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    713 {
    714 	if (pt->pte_hi == pvo_pt->pte_hi
    715 #if 0
    716 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    717 	        ~(PTE_REF|PTE_CHG)) == 0
    718 #endif
    719 	    )
    720 		return 1;
    721 	return 0;
    722 }
    723 
    724 static inline void
    725 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    726 {
    727 	/*
    728 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    729 	 * only gets set when the real pte is set in memory.
    730 	 *
    731 	 * Note: Don't set the valid bit for correct operation of tlb update.
    732 	 */
    733 #if defined(PMAP_OEA)
    734 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    735 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    736 	pt->pte_lo = pte_lo;
    737 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
    738 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    739 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    740 	pt->pte_lo = (u_int64_t) pte_lo;
    741 #endif /* PMAP_OEA */
    742 }
    743 
    744 static inline void
    745 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    746 {
    747 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    748 }
    749 
    750 static inline void
    751 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    752 {
    753 	/*
    754 	 * As shown in Section 7.6.3.2.3
    755 	 */
    756 	pt->pte_lo &= ~ptebit;
    757 	TLBIE(va);
    758 	SYNC();
    759 	EIEIO();
    760 	TLBSYNC();
    761 	SYNC();
    762 #ifdef MULTIPROCESSOR
    763 	DCBST(pt);
    764 #endif
    765 }
    766 
    767 static inline void
    768 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    769 {
    770 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    771 	if (pvo_pt->pte_hi & PTE_VALID)
    772 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    773 #endif
    774 	pvo_pt->pte_hi |= PTE_VALID;
    775 
    776 	/*
    777 	 * Update the PTE as defined in section 7.6.3.1
    778 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    779 	 * have been saved so this routine can restore them (if desired).
    780 	 */
    781 	pt->pte_lo = pvo_pt->pte_lo;
    782 	EIEIO();
    783 	pt->pte_hi = pvo_pt->pte_hi;
    784 	TLBSYNC();
    785 	SYNC();
    786 #ifdef MULTIPROCESSOR
    787 	DCBST(pt);
    788 #endif
    789 	pmap_pte_valid++;
    790 }
    791 
    792 static inline void
    793 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    794 {
    795 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    796 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    797 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    798 	if ((pt->pte_hi & PTE_VALID) == 0)
    799 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    800 #endif
    801 
    802 	pvo_pt->pte_hi &= ~PTE_VALID;
    803 	/*
    804 	 * Force the ref & chg bits back into the PTEs.
    805 	 */
    806 	SYNC();
    807 	/*
    808 	 * Invalidate the pte ... (Section 7.6.3.3)
    809 	 */
    810 	pt->pte_hi &= ~PTE_VALID;
    811 	SYNC();
    812 	TLBIE(va);
    813 	SYNC();
    814 	EIEIO();
    815 	TLBSYNC();
    816 	SYNC();
    817 	/*
    818 	 * Save the ref & chg bits ...
    819 	 */
    820 	pmap_pte_synch(pt, pvo_pt);
    821 	pmap_pte_valid--;
    822 }
    823 
    824 static inline void
    825 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    826 {
    827 	/*
    828 	 * Invalidate the PTE
    829 	 */
    830 	pmap_pte_unset(pt, pvo_pt, va);
    831 	pmap_pte_set(pt, pvo_pt);
    832 }
    833 
    834 /*
    835  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    836  * (either primary or secondary location).
    837  *
    838  * Note: both the destination and source PTEs must not have PTE_VALID set.
    839  */
    840 
    841 static int
    842 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    843 {
    844 	volatile struct pte *pt;
    845 	int i;
    846 
    847 #if defined(DEBUG)
    848 	DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    849 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
    850 #endif
    851 	/*
    852 	 * First try primary hash.
    853 	 */
    854 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    855 		if ((pt->pte_hi & PTE_VALID) == 0) {
    856 			pvo_pt->pte_hi &= ~PTE_HID;
    857 			pmap_pte_set(pt, pvo_pt);
    858 			return i;
    859 		}
    860 	}
    861 
    862 	/*
    863 	 * Now try secondary hash.
    864 	 */
    865 	ptegidx ^= pmap_pteg_mask;
    866 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    867 		if ((pt->pte_hi & PTE_VALID) == 0) {
    868 			pvo_pt->pte_hi |= PTE_HID;
    869 			pmap_pte_set(pt, pvo_pt);
    870 			return i;
    871 		}
    872 	}
    873 	return -1;
    874 }
    875 
    876 /*
    877  * Spill handler.
    878  *
    879  * Tries to spill a page table entry from the overflow area.
    880  * This runs in either real mode (if dealing with a exception spill)
    881  * or virtual mode when dealing with manually spilling one of the
    882  * kernel's pte entries.
    883  */
    884 
    885 int
    886 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool isi_p)
    887 {
    888 	struct pvo_tqhead *spvoh, *vpvoh;
    889 	struct pvo_entry *pvo, *source_pvo, *victim_pvo;
    890 	volatile struct pteg *pteg;
    891 	volatile struct pte *pt;
    892 	register_t msr, vsid, hash;
    893 	int ptegidx, hid, i, j;
    894 	int done = 0;
    895 
    896 	PMAP_LOCK();
    897 	msr = pmap_interrupts_off();
    898 
    899 	/* XXXRO paranoid? */
    900 	if (pm->pm_evictions == 0)
    901 		goto out;
    902 
    903 	ptegidx = va_to_pteg(pm, addr);
    904 
    905 	/*
    906 	 * Find source pvo.
    907 	 */
    908 	spvoh = &pmap_pvo_table[ptegidx];
    909 	source_pvo = NULL;
    910 	TAILQ_FOREACH(pvo, spvoh, pvo_olink) {
    911 		/*
    912 		 * We need to find pvo entry for this address...
    913 		 */
    914 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    915 
    916 		/*
    917 		 * If we haven't found the source and we come to a PVO with
    918 		 * a valid PTE, then we know we can't find it because all
    919 		 * evicted PVOs always are first in the list.
    920 		 */
    921 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) != 0)
    922 			break;
    923 
    924 		if (pm == pvo->pvo_pmap && addr == PVO_VADDR(pvo)) {
    925 			if (isi_p) {
    926 				if (!PVO_EXECUTABLE_P(pvo))
    927 					goto out;
    928 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    929 				int sr __diagused =
    930 				    PVO_VADDR(pvo) >> ADDR_SR_SHFT;
    931 				KASSERT((pm->pm_sr[sr] & SR_NOEXEC) == 0);
    932 #endif
    933 			}
    934 			KASSERT(!PVO_PTEGIDX_ISSET(pvo));
    935 			/* XXXRO where check */
    936 			source_pvo = pvo;
    937 			break;
    938 		}
    939 	}
    940 	if (source_pvo == NULL) {
    941 		PMAPCOUNT(ptes_unspilled);
    942 		goto out;
    943 	}
    944 
    945 	/*
    946 	 * Now we have found the entry to be spilled into the
    947 	 * pteg.  Attempt to insert it into the page table.
    948 	 */
    949 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    950 	if (i >= 0) {
    951 		PVO_PTEGIDX_SET(pvo, i);
    952 		PMAP_PVO_CHECK(pvo);	/* sanity check */
    953 		PVO_WHERE(pvo, SPILL_INSERT);
    954 		pvo->pvo_pmap->pm_evictions--;
    955 		PMAPCOUNT(ptes_spilled);
    956 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID) != 0
    957 		    ? pmap_evcnt_ptes_secondary
    958 		    : pmap_evcnt_ptes_primary)[i]);
    959 
    960 		TAILQ_REMOVE(spvoh, pvo, pvo_olink);
    961 		TAILQ_INSERT_TAIL(spvoh, pvo, pvo_olink);
    962 
    963 		done = 1;
    964 		goto out;
    965 	}
    966 
    967 	/*
    968 	 * Have to substitute some entry. Use the primary hash for this.
    969 	 * Use low bits of timebase as random generator.
    970 	 *
    971 	 * XXX:
    972 	 * Make sure we are not picking a kernel pte for replacement.
    973 	 */
    974 	hid = 0;
    975 	i = MFTB() & 7;
    976 	pteg = &pmap_pteg_table[ptegidx];
    977  retry:
    978 	for (j = 0; j < 8; j++, i = (i + 1) & 7) {
    979 		pt = &pteg->pt[i];
    980 
    981 		if ((pt->pte_hi & PTE_VALID) == 0)
    982 			break;
    983 
    984 		vsid = (pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT;
    985 		hash = VSID_TO_HASH(vsid);
    986 		if (hash < PHYSMAP_VSIDBITS)
    987 			break;
    988 	}
    989 	if (j == 8) {
    990 		if (hid != 0)
    991 			panic("%s: no victim\n", __func__);
    992 		hid = PTE_HID;
    993 		pteg = &pmap_pteg_table[ptegidx ^ pmap_pteg_mask];
    994 		goto retry;
    995 	}
    996 
    997 	/*
    998 	 * We also need the pvo entry of the victim we are replacing
    999 	 * so save the R & C bits of the PTE.
   1000 	 */
   1001 	if ((pt->pte_hi & PTE_HID) == hid)
   1002 		vpvoh = spvoh;
   1003 	else
   1004 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
   1005 	victim_pvo = NULL;
   1006 	TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1007 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1008 
   1009 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1010 			continue;
   1011 
   1012 		if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1013 			victim_pvo = pvo;
   1014 			break;
   1015 		}
   1016 	}
   1017 	if (victim_pvo == NULL) {
   1018 		panic("%s: victim p-pte (%p) has no pvo entry!",
   1019 		    __func__, pt);
   1020 	}
   1021 
   1022 	/*
   1023 	 * The victim should be not be a kernel PVO/PTE entry.
   1024 	 */
   1025 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1026 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1027 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1028 
   1029 	/*
   1030 	 * We are invalidating the TLB entry for the EA for the
   1031 	 * we are replacing even though its valid; If we don't
   1032 	 * we lose any ref/chg bit changes contained in the TLB
   1033 	 * entry.
   1034 	 */
   1035 	if (hid == 0)
   1036 		source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1037 	else
   1038 		source_pvo->pvo_pte.pte_hi |= PTE_HID;
   1039 
   1040 	/*
   1041 	 * To enforce the PVO list ordering constraint that all
   1042 	 * evicted entries should come before all valid entries,
   1043 	 * move the source PVO to the tail of its list and the
   1044 	 * victim PVO to the head of its list (which might not be
   1045 	 * the same list, if the victim was using the secondary hash).
   1046 	 */
   1047 	TAILQ_REMOVE(spvoh, source_pvo, pvo_olink);
   1048 	TAILQ_INSERT_TAIL(spvoh, source_pvo, pvo_olink);
   1049 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1050 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1051 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1052 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1053 	victim_pvo->pvo_pmap->pm_evictions++;
   1054 	source_pvo->pvo_pmap->pm_evictions--;
   1055 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1056 	PVO_WHERE(source_pvo, SPILL_SET);
   1057 
   1058 	PVO_PTEGIDX_CLR(victim_pvo);
   1059 	PVO_PTEGIDX_SET(source_pvo, i);
   1060 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1061 	PMAPCOUNT(ptes_spilled);
   1062 	PMAPCOUNT(ptes_evicted);
   1063 	PMAPCOUNT(ptes_removed);
   1064 
   1065 	PMAP_PVO_CHECK(victim_pvo);
   1066 	PMAP_PVO_CHECK(source_pvo);
   1067 
   1068 	done = 1;
   1069 
   1070  out:
   1071 	pmap_interrupts_restore(msr);
   1072 	PMAP_UNLOCK();
   1073 	return done;
   1074 }
   1075 
   1076 /*
   1077  * Restrict given range to physical memory
   1078  */
   1079 void
   1080 pmap_real_memory(paddr_t *start, psize_t *size)
   1081 {
   1082 	struct mem_region *mp;
   1083 
   1084 	for (mp = mem; mp->size; mp++) {
   1085 		if (*start + *size > mp->start
   1086 		    && *start < mp->start + mp->size) {
   1087 			if (*start < mp->start) {
   1088 				*size -= mp->start - *start;
   1089 				*start = mp->start;
   1090 			}
   1091 			if (*start + *size > mp->start + mp->size)
   1092 				*size = mp->start + mp->size - *start;
   1093 			return;
   1094 		}
   1095 	}
   1096 	*size = 0;
   1097 }
   1098 
   1099 /*
   1100  * Initialize anything else for pmap handling.
   1101  * Called during vm_init().
   1102  */
   1103 void
   1104 pmap_init(void)
   1105 {
   1106 
   1107 	pmap_initialized = 1;
   1108 }
   1109 
   1110 /*
   1111  * How much virtual space does the kernel get?
   1112  */
   1113 void
   1114 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1115 {
   1116 	/*
   1117 	 * For now, reserve one segment (minus some overhead) for kernel
   1118 	 * virtual memory
   1119 	 */
   1120 	*start = VM_MIN_KERNEL_ADDRESS;
   1121 	*end = VM_MAX_KERNEL_ADDRESS;
   1122 }
   1123 
   1124 /*
   1125  * Allocate, initialize, and return a new physical map.
   1126  */
   1127 pmap_t
   1128 pmap_create(void)
   1129 {
   1130 	pmap_t pm;
   1131 
   1132 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1133 	KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
   1134 	memset((void *)pm, 0, sizeof *pm);
   1135 	pmap_pinit(pm);
   1136 
   1137 	DPRINTFN(CREATE, "pmap_create: pm %p:\n"
   1138 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1139 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1140 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1141 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1142 	    pm,
   1143 	    pm->pm_sr[0], pm->pm_sr[1],
   1144 	    pm->pm_sr[2], pm->pm_sr[3],
   1145 	    pm->pm_sr[4], pm->pm_sr[5],
   1146 	    pm->pm_sr[6], pm->pm_sr[7],
   1147 	    pm->pm_sr[8], pm->pm_sr[9],
   1148 	    pm->pm_sr[10], pm->pm_sr[11],
   1149 	    pm->pm_sr[12], pm->pm_sr[13],
   1150 	    pm->pm_sr[14], pm->pm_sr[15]);
   1151 	return pm;
   1152 }
   1153 
   1154 /*
   1155  * Initialize a preallocated and zeroed pmap structure.
   1156  */
   1157 void
   1158 pmap_pinit(pmap_t pm)
   1159 {
   1160 	register_t entropy = MFTB();
   1161 	register_t mask;
   1162 	int i;
   1163 
   1164 	/*
   1165 	 * Allocate some segment registers for this pmap.
   1166 	 */
   1167 	pm->pm_refs = 1;
   1168 	PMAP_LOCK();
   1169 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1170 		static register_t pmap_vsidcontext;
   1171 		register_t hash;
   1172 		unsigned int n;
   1173 
   1174 		/* Create a new value by multiplying by a prime adding in
   1175 		 * entropy from the timebase register.  This is to make the
   1176 		 * VSID more random so that the PT Hash function collides
   1177 		 * less often. (note that the prime causes gcc to do shifts
   1178 		 * instead of a multiply)
   1179 		 */
   1180 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1181 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1182 		if (hash == 0) {		/* 0 is special, avoid it */
   1183 			entropy += 0xbadf00d;
   1184 			continue;
   1185 		}
   1186 		n = hash >> 5;
   1187 		mask = 1L << (hash & (VSID_NBPW-1));
   1188 		hash = pmap_vsidcontext;
   1189 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1190 			/* anything free in this bucket? */
   1191 			if (~pmap_vsid_bitmap[n] == 0) {
   1192 				entropy = hash ^ (hash >> 16);
   1193 				continue;
   1194 			}
   1195 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1196 			mask = 1L << i;
   1197 			hash &= ~(VSID_NBPW-1);
   1198 			hash |= i;
   1199 		}
   1200 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1201 		pmap_vsid_bitmap[n] |= mask;
   1202 		pm->pm_vsid = hash;
   1203 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1204 		for (i = 0; i < 16; i++)
   1205 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1206 			    SR_NOEXEC;
   1207 #endif
   1208 		PMAP_UNLOCK();
   1209 		return;
   1210 	}
   1211 	PMAP_UNLOCK();
   1212 	panic("pmap_pinit: out of segments");
   1213 }
   1214 
   1215 /*
   1216  * Add a reference to the given pmap.
   1217  */
   1218 void
   1219 pmap_reference(pmap_t pm)
   1220 {
   1221 	atomic_inc_uint(&pm->pm_refs);
   1222 }
   1223 
   1224 /*
   1225  * Retire the given pmap from service.
   1226  * Should only be called if the map contains no valid mappings.
   1227  */
   1228 void
   1229 pmap_destroy(pmap_t pm)
   1230 {
   1231 	membar_release();
   1232 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1233 		membar_acquire();
   1234 		pmap_release(pm);
   1235 		pool_put(&pmap_pool, pm);
   1236 	}
   1237 }
   1238 
   1239 /*
   1240  * Release any resources held by the given physical map.
   1241  * Called when a pmap initialized by pmap_pinit is being released.
   1242  */
   1243 void
   1244 pmap_release(pmap_t pm)
   1245 {
   1246 	int idx, mask;
   1247 
   1248 	KASSERT(pm->pm_stats.resident_count == 0);
   1249 	KASSERT(pm->pm_stats.wired_count == 0);
   1250 
   1251 	PMAP_LOCK();
   1252 	if (pm->pm_sr[0] == 0)
   1253 		panic("pmap_release");
   1254 	idx = pm->pm_vsid & (NPMAPS-1);
   1255 	mask = 1 << (idx % VSID_NBPW);
   1256 	idx /= VSID_NBPW;
   1257 
   1258 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1259 	pmap_vsid_bitmap[idx] &= ~mask;
   1260 	PMAP_UNLOCK();
   1261 }
   1262 
   1263 /*
   1264  * Copy the range specified by src_addr/len
   1265  * from the source map to the range dst_addr/len
   1266  * in the destination map.
   1267  *
   1268  * This routine is only advisory and need not do anything.
   1269  */
   1270 void
   1271 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1272 	vsize_t len, vaddr_t src_addr)
   1273 {
   1274 	PMAPCOUNT(copies);
   1275 }
   1276 
   1277 /*
   1278  * Require that all active physical maps contain no
   1279  * incorrect entries NOW.
   1280  */
   1281 void
   1282 pmap_update(struct pmap *pmap)
   1283 {
   1284 	PMAPCOUNT(updates);
   1285 	TLBSYNC();
   1286 }
   1287 
   1288 static inline int
   1289 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1290 {
   1291 	int pteidx;
   1292 	/*
   1293 	 * We can find the actual pte entry without searching by
   1294 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1295 	 * and by noticing the HID bit.
   1296 	 */
   1297 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1298 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1299 		pteidx ^= pmap_pteg_mask * 8;
   1300 	return pteidx;
   1301 }
   1302 
   1303 volatile struct pte *
   1304 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1305 {
   1306 	volatile struct pte *pt;
   1307 
   1308 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1309 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1310 		return NULL;
   1311 #endif
   1312 
   1313 	/*
   1314 	 * If we haven't been supplied the ptegidx, calculate it.
   1315 	 */
   1316 	if (pteidx == -1) {
   1317 		int ptegidx;
   1318 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1319 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1320 	}
   1321 
   1322 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1323 
   1324 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1325 	return pt;
   1326 #else
   1327 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1328 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1329 		    "pvo but no valid pte index", pvo);
   1330 	}
   1331 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1332 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1333 		    "pvo but no valid pte", pvo);
   1334 	}
   1335 
   1336 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1337 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1338 #if defined(DEBUG) || defined(PMAPCHECK)
   1339 			pmap_pte_print(pt);
   1340 #endif
   1341 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1342 			    "pmap_pteg_table %p but invalid in pvo",
   1343 			    pvo, pt);
   1344 		}
   1345 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1346 #if defined(DEBUG) || defined(PMAPCHECK)
   1347 			pmap_pte_print(pt);
   1348 #endif
   1349 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1350 			    "not match pte %p in pmap_pteg_table",
   1351 			    pvo, pt);
   1352 		}
   1353 		return pt;
   1354 	}
   1355 
   1356 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1357 #if defined(DEBUG) || defined(PMAPCHECK)
   1358 		pmap_pte_print(pt);
   1359 #endif
   1360 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1361 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1362 	}
   1363 	return NULL;
   1364 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1365 }
   1366 
   1367 struct pvo_entry *
   1368 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1369 {
   1370 	struct pvo_entry *pvo;
   1371 	int ptegidx;
   1372 
   1373 	va &= ~ADDR_POFF;
   1374 	ptegidx = va_to_pteg(pm, va);
   1375 
   1376 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1377 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1378 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1379 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1380 			    "list %#x (%p)", pvo, ptegidx,
   1381 			     &pmap_pvo_table[ptegidx]);
   1382 #endif
   1383 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1384 			if (pteidx_p)
   1385 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1386 			return pvo;
   1387 		}
   1388 	}
   1389 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1390 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1391 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1392 	return NULL;
   1393 }
   1394 
   1395 #if defined(DEBUG) || defined(PMAPCHECK)
   1396 void
   1397 pmap_pvo_check(const struct pvo_entry *pvo)
   1398 {
   1399 	struct pvo_head *pvo_head;
   1400 	struct pvo_entry *pvo0;
   1401 	volatile struct pte *pt;
   1402 	int failed = 0;
   1403 
   1404 	PMAP_LOCK();
   1405 
   1406 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1407 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1408 
   1409 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1410 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1411 		    pvo, pvo->pvo_pmap);
   1412 		failed = 1;
   1413 	}
   1414 
   1415 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1416 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1417 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1418 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1419 		failed = 1;
   1420 	}
   1421 
   1422 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1423 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1424 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1425 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1426 		failed = 1;
   1427 	}
   1428 
   1429 	if (PVO_MANAGED_P(pvo)) {
   1430 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1431 		LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1432 			if (pvo0 == pvo)
   1433 				break;
   1434 		}
   1435 		if (pvo0 == NULL) {
   1436 			printf("pmap_pvo_check: pvo %p: not present "
   1437 			       "on its vlist head %p\n", pvo, pvo_head);
   1438 			failed = 1;
   1439 		}
   1440 	} else {
   1441 		KASSERT(pvo->pvo_vaddr >= VM_MIN_KERNEL_ADDRESS);
   1442 		if (__predict_false(pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS))
   1443 			failed = 1;
   1444 	}
   1445 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1446 		printf("pmap_pvo_check: pvo %p: not present "
   1447 		    "on its olist head\n", pvo);
   1448 		failed = 1;
   1449 	}
   1450 	pt = pmap_pvo_to_pte(pvo, -1);
   1451 	if (pt == NULL) {
   1452 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1453 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1454 			    "no PTE\n", pvo);
   1455 			failed = 1;
   1456 		}
   1457 	} else {
   1458 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1459 		    (uintptr_t) pt >=
   1460 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1461 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1462 			    "pteg table\n", pvo, pt);
   1463 			failed = 1;
   1464 		}
   1465 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1466 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1467 			    "no PTE\n", pvo);
   1468 			failed = 1;
   1469 		}
   1470 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1471 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1472 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1473 			    pvo->pvo_pte.pte_hi,
   1474 			    pt->pte_hi);
   1475 			failed = 1;
   1476 		}
   1477 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1478 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1479 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1480 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1481 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1482 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1483 			failed = 1;
   1484 		}
   1485 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1486 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1487 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1488 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1489 			failed = 1;
   1490 		}
   1491 		if (failed)
   1492 			pmap_pte_print(pt);
   1493 	}
   1494 	if (failed)
   1495 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1496 		    pvo->pvo_pmap);
   1497 
   1498 	PMAP_UNLOCK();
   1499 }
   1500 #endif /* DEBUG || PMAPCHECK */
   1501 
   1502 /*
   1503  * Search the PVO table looking for a non-wired entry.
   1504  * If we find one, remove it and return it.
   1505  */
   1506 
   1507 struct pvo_entry *
   1508 pmap_pvo_reclaim(void)
   1509 {
   1510 	struct pvo_tqhead *pvoh;
   1511 	struct pvo_entry *pvo;
   1512 	uint32_t idx, endidx;
   1513 
   1514 	endidx = pmap_pvo_reclaim_nextidx;
   1515 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1516 	     idx = (idx + 1) & pmap_pteg_mask) {
   1517 		pvoh = &pmap_pvo_table[idx];
   1518 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1519 			if (!PVO_WIRED_P(pvo)) {
   1520 				pmap_pvo_remove(pvo, -1, NULL);
   1521 				pmap_pvo_reclaim_nextidx = idx;
   1522 				PMAPCOUNT(pvos_reclaimed);
   1523 				return pvo;
   1524 			}
   1525 		}
   1526 	}
   1527 	return NULL;
   1528 }
   1529 
   1530 /*
   1531  * This returns whether this is the first mapping of a page.
   1532  */
   1533 int
   1534 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1535 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1536 {
   1537 	struct pvo_entry *pvo;
   1538 	struct pvo_tqhead *pvoh;
   1539 	register_t msr;
   1540 	int ptegidx;
   1541 	int i;
   1542 	int poolflags = PR_NOWAIT;
   1543 
   1544 	/*
   1545 	 * Compute the PTE Group index.
   1546 	 */
   1547 	va &= ~ADDR_POFF;
   1548 	ptegidx = va_to_pteg(pm, va);
   1549 
   1550 	msr = pmap_interrupts_off();
   1551 
   1552 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1553 	if (pmap_pvo_remove_depth > 0)
   1554 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1555 	if (++pmap_pvo_enter_depth > 1)
   1556 		panic("pmap_pvo_enter: called recursively!");
   1557 #endif
   1558 
   1559 	/*
   1560 	 * Remove any existing mapping for this page.  Reuse the
   1561 	 * pvo entry if there a mapping.
   1562 	 */
   1563 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1564 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1565 #ifdef DEBUG
   1566 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1567 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1568 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1569 			   va < VM_MIN_KERNEL_ADDRESS) {
   1570 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1571 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1572 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1573 				    pvo->pvo_pte.pte_hi,
   1574 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1575 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1576 #ifdef DDBX
   1577 				Debugger();
   1578 #endif
   1579 			}
   1580 #endif
   1581 			PMAPCOUNT(mappings_replaced);
   1582 			pmap_pvo_remove(pvo, -1, NULL);
   1583 			break;
   1584 		}
   1585 	}
   1586 
   1587 	/*
   1588 	 * If we aren't overwriting an mapping, try to allocate
   1589 	 */
   1590 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1591 	--pmap_pvo_enter_depth;
   1592 #endif
   1593 	pmap_interrupts_restore(msr);
   1594 	if (pvo == NULL) {
   1595 		pvo = pool_get(pl, poolflags);
   1596 	}
   1597 	KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
   1598 
   1599 #ifdef DEBUG
   1600 	/*
   1601 	 * Exercise pmap_pvo_reclaim() a little.
   1602 	 */
   1603 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1604 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1605 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1606 		pool_put(pl, pvo);
   1607 		pvo = NULL;
   1608 	}
   1609 #endif
   1610 
   1611 	msr = pmap_interrupts_off();
   1612 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1613 	++pmap_pvo_enter_depth;
   1614 #endif
   1615 	if (pvo == NULL) {
   1616 		pvo = pmap_pvo_reclaim();
   1617 		if (pvo == NULL) {
   1618 			if ((flags & PMAP_CANFAIL) == 0)
   1619 				panic("pmap_pvo_enter: failed");
   1620 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1621 			pmap_pvo_enter_depth--;
   1622 #endif
   1623 			PMAPCOUNT(pvos_failed);
   1624 			pmap_interrupts_restore(msr);
   1625 			return ENOMEM;
   1626 		}
   1627 	}
   1628 
   1629 	pvo->pvo_vaddr = va;
   1630 	pvo->pvo_pmap = pm;
   1631 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1632 	if (flags & VM_PROT_EXECUTE) {
   1633 		PMAPCOUNT(exec_mappings);
   1634 		pvo_set_exec(pvo);
   1635 	}
   1636 	if (flags & PMAP_WIRED)
   1637 		pvo->pvo_vaddr |= PVO_WIRED;
   1638 	if (pvo_head != NULL) {
   1639 		pvo->pvo_vaddr |= PVO_MANAGED;
   1640 		PMAPCOUNT(mappings);
   1641 	} else {
   1642 		PMAPCOUNT(kernel_mappings);
   1643 	}
   1644 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1645 
   1646 	if (pvo_head != NULL)
   1647 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1648 	if (PVO_WIRED_P(pvo))
   1649 		pvo->pvo_pmap->pm_stats.wired_count++;
   1650 	pvo->pvo_pmap->pm_stats.resident_count++;
   1651 #if defined(DEBUG)
   1652 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1653 		DPRINTFN(PVOENTER,
   1654 		    "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1655 		    pvo, pm, va, pa);
   1656 #endif
   1657 
   1658 	/*
   1659 	 * We hope this succeeds but it isn't required.
   1660 	 */
   1661 	pvoh = &pmap_pvo_table[ptegidx];
   1662 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1663 	if (i >= 0) {
   1664 		PVO_PTEGIDX_SET(pvo, i);
   1665 		PVO_WHERE(pvo, ENTER_INSERT);
   1666 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1667 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1668 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1669 
   1670 	} else {
   1671 		/*
   1672 		 * Since we didn't have room for this entry (which makes it
   1673 		 * and evicted entry), place it at the head of the list.
   1674 		 */
   1675 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1676 		PMAPCOUNT(ptes_evicted);
   1677 		pm->pm_evictions++;
   1678 		/*
   1679 		 * If this is a kernel page, make sure it's active.
   1680 		 */
   1681 		if (pm == pmap_kernel()) {
   1682 			i = pmap_pte_spill(pm, va, false);
   1683 			KASSERT(i);
   1684 		}
   1685 	}
   1686 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1687 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1688 	pmap_pvo_enter_depth--;
   1689 #endif
   1690 	pmap_interrupts_restore(msr);
   1691 	return 0;
   1692 }
   1693 
   1694 static void
   1695 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1696 {
   1697 	volatile struct pte *pt;
   1698 	int ptegidx;
   1699 
   1700 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1701 	if (++pmap_pvo_remove_depth > 1)
   1702 		panic("pmap_pvo_remove: called recursively!");
   1703 #endif
   1704 
   1705 	/*
   1706 	 * If we haven't been supplied the ptegidx, calculate it.
   1707 	 */
   1708 	if (pteidx == -1) {
   1709 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1710 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1711 	} else {
   1712 		ptegidx = pteidx >> 3;
   1713 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1714 			ptegidx ^= pmap_pteg_mask;
   1715 	}
   1716 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1717 
   1718 	/*
   1719 	 * If there is an active pte entry, we need to deactivate it
   1720 	 * (and save the ref & chg bits).
   1721 	 */
   1722 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1723 	if (pt != NULL) {
   1724 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1725 		PVO_WHERE(pvo, REMOVE);
   1726 		PVO_PTEGIDX_CLR(pvo);
   1727 		PMAPCOUNT(ptes_removed);
   1728 	} else {
   1729 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1730 		pvo->pvo_pmap->pm_evictions--;
   1731 	}
   1732 
   1733 	/*
   1734 	 * Account for executable mappings.
   1735 	 */
   1736 	if (PVO_EXECUTABLE_P(pvo))
   1737 		pvo_clear_exec(pvo);
   1738 
   1739 	/*
   1740 	 * Update our statistics.
   1741 	 */
   1742 	pvo->pvo_pmap->pm_stats.resident_count--;
   1743 	if (PVO_WIRED_P(pvo))
   1744 		pvo->pvo_pmap->pm_stats.wired_count--;
   1745 
   1746 	/*
   1747 	 * If the page is managed:
   1748 	 * Save the REF/CHG bits into their cache.
   1749 	 * Remove the PVO from the P/V list.
   1750 	 */
   1751 	if (PVO_MANAGED_P(pvo)) {
   1752 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1753 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1754 
   1755 		if (pg != NULL) {
   1756 			/*
   1757 			 * If this page was changed and it is mapped exec,
   1758 			 * invalidate it.
   1759 			 */
   1760 			if ((ptelo & PTE_CHG) &&
   1761 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1762 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1763 				if (LIST_EMPTY(pvoh)) {
   1764 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1765 					    "%#" _PRIxpa ": clear-exec]\n",
   1766 					    VM_PAGE_TO_PHYS(pg));
   1767 					pmap_attr_clear(pg, PTE_EXEC);
   1768 					PMAPCOUNT(exec_uncached_pvo_remove);
   1769 				} else {
   1770 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1771 					    "%#" _PRIxpa ": syncicache]\n",
   1772 					    VM_PAGE_TO_PHYS(pg));
   1773 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1774 					    PAGE_SIZE);
   1775 					PMAPCOUNT(exec_synced_pvo_remove);
   1776 				}
   1777 			}
   1778 
   1779 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1780 		}
   1781 		LIST_REMOVE(pvo, pvo_vlink);
   1782 		PMAPCOUNT(unmappings);
   1783 	} else {
   1784 		PMAPCOUNT(kernel_unmappings);
   1785 	}
   1786 
   1787 	/*
   1788 	 * Remove the PVO from its list and return it to the pool.
   1789 	 */
   1790 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1791 	if (pvol) {
   1792 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1793 	}
   1794 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1795 	pmap_pvo_remove_depth--;
   1796 #endif
   1797 }
   1798 
   1799 void
   1800 pmap_pvo_free(struct pvo_entry *pvo)
   1801 {
   1802 
   1803 	pool_put(&pmap_pvo_pool, pvo);
   1804 }
   1805 
   1806 void
   1807 pmap_pvo_free_list(struct pvo_head *pvol)
   1808 {
   1809 	struct pvo_entry *pvo, *npvo;
   1810 
   1811 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1812 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1813 		LIST_REMOVE(pvo, pvo_vlink);
   1814 		pmap_pvo_free(pvo);
   1815 	}
   1816 }
   1817 
   1818 /*
   1819  * Mark a mapping as executable.
   1820  * If this is the first executable mapping in the segment,
   1821  * clear the noexec flag.
   1822  */
   1823 static void
   1824 pvo_set_exec(struct pvo_entry *pvo)
   1825 {
   1826 	struct pmap *pm = pvo->pvo_pmap;
   1827 
   1828 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1829 		return;
   1830 	}
   1831 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1832 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1833 	{
   1834 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1835 		if (pm->pm_exec[sr]++ == 0) {
   1836 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1837 		}
   1838 	}
   1839 #endif
   1840 }
   1841 
   1842 /*
   1843  * Mark a mapping as non-executable.
   1844  * If this was the last executable mapping in the segment,
   1845  * set the noexec flag.
   1846  */
   1847 static void
   1848 pvo_clear_exec(struct pvo_entry *pvo)
   1849 {
   1850 	struct pmap *pm = pvo->pvo_pmap;
   1851 
   1852 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1853 		return;
   1854 	}
   1855 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1856 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1857 	{
   1858 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1859 		if (--pm->pm_exec[sr] == 0) {
   1860 			pm->pm_sr[sr] |= SR_NOEXEC;
   1861 		}
   1862 	}
   1863 #endif
   1864 }
   1865 
   1866 /*
   1867  * Insert physical page at pa into the given pmap at virtual address va.
   1868  */
   1869 int
   1870 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1871 {
   1872 	struct mem_region *mp;
   1873 	struct pvo_head *pvo_head;
   1874 	struct vm_page *pg;
   1875 	register_t pte_lo;
   1876 	int error;
   1877 	u_int was_exec = 0;
   1878 
   1879 	PMAP_LOCK();
   1880 
   1881 	if (__predict_false(!pmap_initialized)) {
   1882 		pvo_head = NULL;
   1883 		pg = NULL;
   1884 		was_exec = PTE_EXEC;
   1885 
   1886 	} else {
   1887 		pvo_head = pa_to_pvoh(pa, &pg);
   1888 	}
   1889 
   1890 	DPRINTFN(ENTER,
   1891 	    "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1892 	    pm, va, pa, prot, flags);
   1893 
   1894 	/*
   1895 	 * If this is a managed page, and it's the first reference to the
   1896 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1897 	 */
   1898 	if (pg != NULL)
   1899 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1900 
   1901 	DPRINTFN(ENTER, " was_exec=%d", was_exec);
   1902 
   1903 	/*
   1904 	 * Assume the page is cache inhibited and access is guarded unless
   1905 	 * it's in our available memory array.  If it is in the memory array,
   1906 	 * assume it's in memory coherent memory.
   1907 	 */
   1908 	if (flags & PMAP_MD_PREFETCHABLE) {
   1909 		pte_lo = 0;
   1910 	} else
   1911 		pte_lo = PTE_G;
   1912 
   1913 	if ((flags & PMAP_NOCACHE) == 0) {
   1914 		for (mp = mem; mp->size; mp++) {
   1915 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1916 				pte_lo = PTE_M;
   1917 				break;
   1918 			}
   1919 		}
   1920 #ifdef MULTIPROCESSOR
   1921 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   1922 			pte_lo = PTE_M;
   1923 #endif
   1924 	} else {
   1925 		pte_lo |= PTE_I;
   1926 	}
   1927 
   1928 	if (prot & VM_PROT_WRITE)
   1929 		pte_lo |= PTE_BW;
   1930 	else
   1931 		pte_lo |= PTE_BR;
   1932 
   1933 	/*
   1934 	 * If this was in response to a fault, "pre-fault" the PTE's
   1935 	 * changed/referenced bit appropriately.
   1936 	 */
   1937 	if (flags & VM_PROT_WRITE)
   1938 		pte_lo |= PTE_CHG;
   1939 	if (flags & VM_PROT_ALL)
   1940 		pte_lo |= PTE_REF;
   1941 
   1942 	/*
   1943 	 * We need to know if this page can be executable
   1944 	 */
   1945 	flags |= (prot & VM_PROT_EXECUTE);
   1946 
   1947 	/*
   1948 	 * Record mapping for later back-translation and pte spilling.
   1949 	 * This will overwrite any existing mapping.
   1950 	 */
   1951 	error = pmap_pvo_enter(pm, &pmap_pvo_pool, pvo_head, va, pa, pte_lo, flags);
   1952 
   1953 	/*
   1954 	 * Flush the real page from the instruction cache if this page is
   1955 	 * mapped executable and cacheable and has not been flushed since
   1956 	 * the last time it was modified.
   1957 	 */
   1958 	if (error == 0 &&
   1959             (flags & VM_PROT_EXECUTE) &&
   1960             (pte_lo & PTE_I) == 0 &&
   1961 	    was_exec == 0) {
   1962 		DPRINTFN(ENTER, " %s", "syncicache");
   1963 		PMAPCOUNT(exec_synced);
   1964 		pmap_syncicache(pa, PAGE_SIZE);
   1965 		if (pg != NULL) {
   1966 			pmap_attr_save(pg, PTE_EXEC);
   1967 			PMAPCOUNT(exec_cached);
   1968 #if defined(DEBUG) || defined(PMAPDEBUG)
   1969 			if (pmapdebug & PMAPDEBUG_ENTER)
   1970 				printf(" marked-as-exec");
   1971 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1972 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1973 				    VM_PAGE_TO_PHYS(pg));
   1974 #endif
   1975 		}
   1976 	}
   1977 
   1978 	DPRINTFN(ENTER, ": error=%d\n", error);
   1979 
   1980 	PMAP_UNLOCK();
   1981 
   1982 	return error;
   1983 }
   1984 
   1985 void
   1986 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1987 {
   1988 	struct mem_region *mp;
   1989 	register_t pte_lo;
   1990 	int error;
   1991 
   1992 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
   1993 	if (va < VM_MIN_KERNEL_ADDRESS)
   1994 		panic("pmap_kenter_pa: attempt to enter "
   1995 		    "non-kernel address %#" _PRIxva "!", va);
   1996 #endif
   1997 
   1998 	DPRINTFN(KENTER,
   1999 	    "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
   2000 
   2001 	PMAP_LOCK();
   2002 
   2003 	/*
   2004 	 * Assume the page is cache inhibited and access is guarded unless
   2005 	 * it's in our available memory array.  If it is in the memory array,
   2006 	 * assume it's in memory coherent memory.
   2007 	 */
   2008 	pte_lo = PTE_IG;
   2009 	if ((flags & PMAP_NOCACHE) == 0) {
   2010 		for (mp = mem; mp->size; mp++) {
   2011 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2012 				pte_lo = PTE_M;
   2013 				break;
   2014 			}
   2015 		}
   2016 #ifdef MULTIPROCESSOR
   2017 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   2018 			pte_lo = PTE_M;
   2019 #endif
   2020 	}
   2021 
   2022 	if (prot & VM_PROT_WRITE)
   2023 		pte_lo |= PTE_BW;
   2024 	else
   2025 		pte_lo |= PTE_BR;
   2026 
   2027 	/*
   2028 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2029 	 */
   2030 	error = pmap_pvo_enter(pmap_kernel(), &pmap_pvo_pool,
   2031 	    NULL, va, pa, pte_lo, prot|PMAP_WIRED);
   2032 
   2033 	if (error != 0)
   2034 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2035 		      va, pa, error);
   2036 
   2037 	PMAP_UNLOCK();
   2038 }
   2039 
   2040 void
   2041 pmap_kremove(vaddr_t va, vsize_t len)
   2042 {
   2043 	if (va < VM_MIN_KERNEL_ADDRESS)
   2044 		panic("pmap_kremove: attempt to remove "
   2045 		    "non-kernel address %#" _PRIxva "!", va);
   2046 
   2047 	DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
   2048 	pmap_remove(pmap_kernel(), va, va + len);
   2049 }
   2050 
   2051 /*
   2052  * Remove the given range of mapping entries.
   2053  */
   2054 void
   2055 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2056 {
   2057 	struct pvo_head pvol;
   2058 	struct pvo_entry *pvo;
   2059 	register_t msr;
   2060 	int pteidx;
   2061 
   2062 	PMAP_LOCK();
   2063 	LIST_INIT(&pvol);
   2064 	msr = pmap_interrupts_off();
   2065 	for (; va < endva; va += PAGE_SIZE) {
   2066 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2067 		if (pvo != NULL) {
   2068 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2069 		}
   2070 	}
   2071 	pmap_interrupts_restore(msr);
   2072 	pmap_pvo_free_list(&pvol);
   2073 	PMAP_UNLOCK();
   2074 }
   2075 
   2076 #if defined(PMAP_OEA)
   2077 #ifdef PPC_OEA601
   2078 bool
   2079 pmap_extract_ioseg601(vaddr_t va, paddr_t *pap)
   2080 {
   2081 	if ((MFPVR() >> 16) != MPC601)
   2082 		return false;
   2083 
   2084 	const register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2085 
   2086 	if (SR601_VALID_P(sr) && SR601_PA_MATCH_P(sr, va)) {
   2087 		if (pap)
   2088 			*pap = va;
   2089 		return true;
   2090 	}
   2091 	return false;
   2092 }
   2093 
   2094 static bool
   2095 pmap_extract_battable601(vaddr_t va, paddr_t *pap)
   2096 {
   2097 	const register_t batu = battable[va >> 23].batu;
   2098 	const register_t batl = battable[va >> 23].batl;
   2099 
   2100 	if (BAT601_VALID_P(batl) && BAT601_VA_MATCH_P(batu, batl, va)) {
   2101 		const register_t mask =
   2102 		    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2103 		if (pap)
   2104 			*pap = (batl & mask) | (va & ~mask);
   2105 		return true;
   2106 	}
   2107 	return false;
   2108 }
   2109 #endif /* PPC_OEA601 */
   2110 
   2111 bool
   2112 pmap_extract_battable(vaddr_t va, paddr_t *pap)
   2113 {
   2114 #ifdef PPC_OEA601
   2115 	if ((MFPVR() >> 16) == MPC601)
   2116 		return pmap_extract_battable601(va, pap);
   2117 #endif /* PPC_OEA601 */
   2118 
   2119 	if (oeacpufeat & OEACPU_NOBAT)
   2120 		return false;
   2121 
   2122 	const register_t batu = battable[BAT_VA2IDX(va)].batu;
   2123 
   2124 	if (BAT_VALID_P(batu, 0) && BAT_VA_MATCH_P(batu, va)) {
   2125 		const register_t batl = battable[BAT_VA2IDX(va)].batl;
   2126 		const register_t mask =
   2127 		    (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
   2128 		if (pap)
   2129 			*pap = (batl & mask) | (va & ~mask);
   2130 		return true;
   2131 	}
   2132 	return false;
   2133 }
   2134 #endif /* PMAP_OEA */
   2135 
   2136 /*
   2137  * Get the physical page address for the given pmap/virtual address.
   2138  */
   2139 bool
   2140 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2141 {
   2142 	struct pvo_entry *pvo;
   2143 	register_t msr;
   2144 
   2145 	PMAP_LOCK();
   2146 
   2147 	/*
   2148 	 * If this is the kernel pmap, check the battable and I/O
   2149 	 * segments for a hit.  This is done only for regions outside
   2150 	 * VM_MIN_KERNEL_ADDRESS-VM_MAX_KERNEL_ADDRESS.
   2151 	 *
   2152 	 * Be careful when checking VM_MAX_KERNEL_ADDRESS; you don't
   2153 	 * want to wrap around to 0.
   2154 	 */
   2155 	if (pm == pmap_kernel() &&
   2156 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2157 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2158 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2159 #if defined(PMAP_OEA)
   2160 #ifdef PPC_OEA601
   2161 		if (pmap_extract_ioseg601(va, pap)) {
   2162 			PMAP_UNLOCK();
   2163 			return true;
   2164 		}
   2165 #endif /* PPC_OEA601 */
   2166 		if (pmap_extract_battable(va, pap)) {
   2167 			PMAP_UNLOCK();
   2168 			return true;
   2169 		}
   2170 		/*
   2171 		 * We still check the HTAB...
   2172 		 */
   2173 #elif defined(PMAP_OEA64_BRIDGE)
   2174 		if (va < SEGMENT_LENGTH) {
   2175 			if (pap)
   2176 				*pap = va;
   2177 			PMAP_UNLOCK();
   2178 			return true;
   2179 		}
   2180 		/*
   2181 		 * We still check the HTAB...
   2182 		 */
   2183 #elif defined(PMAP_OEA64)
   2184 #error PPC_OEA64 not supported
   2185 #endif /* PPC_OEA */
   2186 	}
   2187 
   2188 	msr = pmap_interrupts_off();
   2189 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2190 	if (pvo != NULL) {
   2191 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2192 		if (pap)
   2193 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2194 			    | (va & ADDR_POFF);
   2195 	}
   2196 	pmap_interrupts_restore(msr);
   2197 	PMAP_UNLOCK();
   2198 	return pvo != NULL;
   2199 }
   2200 
   2201 /*
   2202  * Lower the protection on the specified range of this pmap.
   2203  */
   2204 void
   2205 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2206 {
   2207 	struct pvo_entry *pvo;
   2208 	volatile struct pte *pt;
   2209 	register_t msr;
   2210 	int pteidx;
   2211 
   2212 	/*
   2213 	 * Since this routine only downgrades protection, we should
   2214 	 * always be called with at least one bit not set.
   2215 	 */
   2216 	KASSERT(prot != VM_PROT_ALL);
   2217 
   2218 	/*
   2219 	 * If there is no protection, this is equivalent to
   2220 	 * remove the pmap from the pmap.
   2221 	 */
   2222 	if ((prot & VM_PROT_READ) == 0) {
   2223 		pmap_remove(pm, va, endva);
   2224 		return;
   2225 	}
   2226 
   2227 	PMAP_LOCK();
   2228 
   2229 	msr = pmap_interrupts_off();
   2230 	for (; va < endva; va += PAGE_SIZE) {
   2231 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2232 		if (pvo == NULL)
   2233 			continue;
   2234 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2235 
   2236 		/*
   2237 		 * Revoke executable if asked to do so.
   2238 		 */
   2239 		if ((prot & VM_PROT_EXECUTE) == 0)
   2240 			pvo_clear_exec(pvo);
   2241 
   2242 #if 0
   2243 		/*
   2244 		 * If the page is already read-only, no change
   2245 		 * needs to be made.
   2246 		 */
   2247 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2248 			continue;
   2249 #endif
   2250 		/*
   2251 		 * Grab the PTE pointer before we diddle with
   2252 		 * the cached PTE copy.
   2253 		 */
   2254 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2255 		/*
   2256 		 * Change the protection of the page.
   2257 		 */
   2258 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2259 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2260 
   2261 		/*
   2262 		 * If the PVO is in the page table, update
   2263 		 * that pte at well.
   2264 		 */
   2265 		if (pt != NULL) {
   2266 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2267 			PVO_WHERE(pvo, PMAP_PROTECT);
   2268 			PMAPCOUNT(ptes_changed);
   2269 		}
   2270 
   2271 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2272 	}
   2273 	pmap_interrupts_restore(msr);
   2274 	PMAP_UNLOCK();
   2275 }
   2276 
   2277 void
   2278 pmap_unwire(pmap_t pm, vaddr_t va)
   2279 {
   2280 	struct pvo_entry *pvo;
   2281 	register_t msr;
   2282 
   2283 	PMAP_LOCK();
   2284 	msr = pmap_interrupts_off();
   2285 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2286 	if (pvo != NULL) {
   2287 		if (PVO_WIRED_P(pvo)) {
   2288 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2289 			pm->pm_stats.wired_count--;
   2290 		}
   2291 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2292 	}
   2293 	pmap_interrupts_restore(msr);
   2294 	PMAP_UNLOCK();
   2295 }
   2296 
   2297 static void
   2298 pmap_pp_protect(struct pmap_page *pp, paddr_t pa, vm_prot_t prot)
   2299 {
   2300 	struct pvo_head *pvo_head, pvol;
   2301 	struct pvo_entry *pvo, *next_pvo;
   2302 	volatile struct pte *pt;
   2303 	register_t msr;
   2304 
   2305 	PMAP_LOCK();
   2306 
   2307 	KASSERT(prot != VM_PROT_ALL);
   2308 	LIST_INIT(&pvol);
   2309 	msr = pmap_interrupts_off();
   2310 
   2311 	/*
   2312 	 * When UVM reuses a page, it does a pmap_page_protect with
   2313 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2314 	 * since we know the page will have different contents.
   2315 	 */
   2316 	if ((prot & VM_PROT_READ) == 0) {
   2317 		DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2318 		    pa);
   2319 		if (pmap_pp_attr_fetch(pp) & PTE_EXEC) {
   2320 			PMAPCOUNT(exec_uncached_page_protect);
   2321 			pmap_pp_attr_clear(pp, PTE_EXEC);
   2322 		}
   2323 	}
   2324 
   2325 	pvo_head = &pp->pp_pvoh;
   2326 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2327 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2328 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2329 
   2330 		/*
   2331 		 * Downgrading to no mapping at all, we just remove the entry.
   2332 		 */
   2333 		if ((prot & VM_PROT_READ) == 0) {
   2334 			pmap_pvo_remove(pvo, -1, &pvol);
   2335 			continue;
   2336 		}
   2337 
   2338 		/*
   2339 		 * If EXEC permission is being revoked, just clear the
   2340 		 * flag in the PVO.
   2341 		 */
   2342 		if ((prot & VM_PROT_EXECUTE) == 0)
   2343 			pvo_clear_exec(pvo);
   2344 
   2345 		/*
   2346 		 * If this entry is already RO, don't diddle with the
   2347 		 * page table.
   2348 		 */
   2349 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2350 			PMAP_PVO_CHECK(pvo);
   2351 			continue;
   2352 		}
   2353 
   2354 		/*
   2355 		 * Grab the PTE before the we diddle the bits so
   2356 		 * pvo_to_pte can verify the pte contents are as
   2357 		 * expected.
   2358 		 */
   2359 		pt = pmap_pvo_to_pte(pvo, -1);
   2360 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2361 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2362 		if (pt != NULL) {
   2363 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2364 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2365 			PMAPCOUNT(ptes_changed);
   2366 		}
   2367 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2368 	}
   2369 	pmap_interrupts_restore(msr);
   2370 	pmap_pvo_free_list(&pvol);
   2371 
   2372 	PMAP_UNLOCK();
   2373 }
   2374 
   2375 /*
   2376  * Lower the protection on the specified physical page.
   2377  */
   2378 void
   2379 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2380 {
   2381 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2382 
   2383 	pmap_pp_protect(&md->mdpg_pp, VM_PAGE_TO_PHYS(pg), prot);
   2384 }
   2385 
   2386 /*
   2387  * Lower the protection on the physical page at the specified physical
   2388  * address, which may not be managed and so may not have a struct
   2389  * vm_page.
   2390  */
   2391 void
   2392 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
   2393 {
   2394 	struct pmap_page *pp;
   2395 
   2396 	if ((pp = pmap_pv_tracked(pa)) == NULL)
   2397 		return;
   2398 	pmap_pp_protect(pp, pa, prot);
   2399 }
   2400 
   2401 /*
   2402  * Activate the address space for the specified process.  If the process
   2403  * is the current process, load the new MMU context.
   2404  */
   2405 void
   2406 pmap_activate(struct lwp *l)
   2407 {
   2408 	struct pcb *pcb = lwp_getpcb(l);
   2409 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2410 
   2411 	DPRINTFN(ACTIVATE,
   2412 	    "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
   2413 
   2414 	/*
   2415 	 * XXX Normally performed in cpu_lwp_fork().
   2416 	 */
   2417 	pcb->pcb_pm = pmap;
   2418 
   2419 	/*
   2420 	* In theory, the SR registers need only be valid on return
   2421 	* to user space wait to do them there.
   2422 	*/
   2423 	if (l == curlwp) {
   2424 		/* Store pointer to new current pmap. */
   2425 		curpm = pmap;
   2426 	}
   2427 }
   2428 
   2429 /*
   2430  * Deactivate the specified process's address space.
   2431  */
   2432 void
   2433 pmap_deactivate(struct lwp *l)
   2434 {
   2435 }
   2436 
   2437 bool
   2438 pmap_query_bit(struct vm_page *pg, int ptebit)
   2439 {
   2440 	struct pvo_entry *pvo;
   2441 	volatile struct pte *pt;
   2442 	register_t msr;
   2443 
   2444 	PMAP_LOCK();
   2445 
   2446 	if (pmap_attr_fetch(pg) & ptebit) {
   2447 		PMAP_UNLOCK();
   2448 		return true;
   2449 	}
   2450 
   2451 	msr = pmap_interrupts_off();
   2452 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2453 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2454 		/*
   2455 		 * See if we saved the bit off.  If so cache, it and return
   2456 		 * success.
   2457 		 */
   2458 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2459 			pmap_attr_save(pg, ptebit);
   2460 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2461 			pmap_interrupts_restore(msr);
   2462 			PMAP_UNLOCK();
   2463 			return true;
   2464 		}
   2465 	}
   2466 	/*
   2467 	 * No luck, now go thru the hard part of looking at the ptes
   2468 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2469 	 * to the PTEs.
   2470 	 */
   2471 	SYNC();
   2472 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2473 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2474 		/*
   2475 		 * See if this pvo have a valid PTE.  If so, fetch the
   2476 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2477 		 * ptebit is set, cache, it and return success.
   2478 		 */
   2479 		pt = pmap_pvo_to_pte(pvo, -1);
   2480 		if (pt != NULL) {
   2481 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2482 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2483 				pmap_attr_save(pg, ptebit);
   2484 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2485 				pmap_interrupts_restore(msr);
   2486 				PMAP_UNLOCK();
   2487 				return true;
   2488 			}
   2489 		}
   2490 	}
   2491 	pmap_interrupts_restore(msr);
   2492 	PMAP_UNLOCK();
   2493 	return false;
   2494 }
   2495 
   2496 bool
   2497 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2498 {
   2499 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2500 	struct pvo_entry *pvo;
   2501 	volatile struct pte *pt;
   2502 	register_t msr;
   2503 	int rv = 0;
   2504 
   2505 	PMAP_LOCK();
   2506 	msr = pmap_interrupts_off();
   2507 
   2508 	/*
   2509 	 * Fetch the cache value
   2510 	 */
   2511 	rv |= pmap_attr_fetch(pg);
   2512 
   2513 	/*
   2514 	 * Clear the cached value.
   2515 	 */
   2516 	pmap_attr_clear(pg, ptebit);
   2517 
   2518 	/*
   2519 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2520 	 * can reset the right ones).  Note that since the pvo entries and
   2521 	 * list heads are accessed via BAT0 and are never placed in the
   2522 	 * page table, we don't have to worry about further accesses setting
   2523 	 * the REF/CHG bits.
   2524 	 */
   2525 	SYNC();
   2526 
   2527 	/*
   2528 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2529 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2530 	 */
   2531 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2532 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2533 		pt = pmap_pvo_to_pte(pvo, -1);
   2534 		if (pt != NULL) {
   2535 			/*
   2536 			 * Only sync the PTE if the bit we are looking
   2537 			 * for is not already set.
   2538 			 */
   2539 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2540 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2541 			/*
   2542 			 * If the bit we are looking for was already set,
   2543 			 * clear that bit in the pte.
   2544 			 */
   2545 			if (pvo->pvo_pte.pte_lo & ptebit)
   2546 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2547 		}
   2548 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2549 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2550 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2551 	}
   2552 	pmap_interrupts_restore(msr);
   2553 
   2554 	/*
   2555 	 * If we are clearing the modify bit and this page was marked EXEC
   2556 	 * and the user of the page thinks the page was modified, then we
   2557 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2558 	 * bit if it's not mapped.  The page itself might not have the CHG
   2559 	 * bit set if the modification was done via DMA to the page.
   2560 	 */
   2561 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2562 		if (LIST_EMPTY(pvoh)) {
   2563 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2564 			    VM_PAGE_TO_PHYS(pg));
   2565 			pmap_attr_clear(pg, PTE_EXEC);
   2566 			PMAPCOUNT(exec_uncached_clear_modify);
   2567 		} else {
   2568 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2569 			    VM_PAGE_TO_PHYS(pg));
   2570 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2571 			PMAPCOUNT(exec_synced_clear_modify);
   2572 		}
   2573 	}
   2574 	PMAP_UNLOCK();
   2575 	return (rv & ptebit) != 0;
   2576 }
   2577 
   2578 void
   2579 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2580 {
   2581 	struct pvo_entry *pvo;
   2582 	size_t offset = va & ADDR_POFF;
   2583 	int s;
   2584 
   2585 	PMAP_LOCK();
   2586 	s = splvm();
   2587 	while (len > 0) {
   2588 		size_t seglen = PAGE_SIZE - offset;
   2589 		if (seglen > len)
   2590 			seglen = len;
   2591 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2592 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2593 			pmap_syncicache(
   2594 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2595 			PMAP_PVO_CHECK(pvo);
   2596 		}
   2597 		va += seglen;
   2598 		len -= seglen;
   2599 		offset = 0;
   2600 	}
   2601 	splx(s);
   2602 	PMAP_UNLOCK();
   2603 }
   2604 
   2605 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2606 void
   2607 pmap_pte_print(volatile struct pte *pt)
   2608 {
   2609 	printf("PTE %p: ", pt);
   2610 
   2611 #if defined(PMAP_OEA)
   2612 	/* High word: */
   2613 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2614 #else
   2615 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2616 #endif /* PMAP_OEA */
   2617 
   2618 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2619 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2620 
   2621 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2622 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2623 	    pt->pte_hi & PTE_API);
   2624 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2625 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2626 #else
   2627 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2628 #endif /* PMAP_OEA */
   2629 
   2630 	/* Low word: */
   2631 #if defined (PMAP_OEA)
   2632 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2633 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2634 #else
   2635 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2636 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2637 #endif
   2638 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2639 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2640 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2641 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2642 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2643 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2644 	switch (pt->pte_lo & PTE_PP) {
   2645 	case PTE_BR: printf("br]\n"); break;
   2646 	case PTE_BW: printf("bw]\n"); break;
   2647 	case PTE_SO: printf("so]\n"); break;
   2648 	case PTE_SW: printf("sw]\n"); break;
   2649 	}
   2650 }
   2651 #endif
   2652 
   2653 #if defined(DDB)
   2654 void
   2655 pmap_pteg_check(void)
   2656 {
   2657 	volatile struct pte *pt;
   2658 	int i;
   2659 	int ptegidx;
   2660 	u_int p_valid = 0;
   2661 	u_int s_valid = 0;
   2662 	u_int invalid = 0;
   2663 
   2664 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2665 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2666 			if (pt->pte_hi & PTE_VALID) {
   2667 				if (pt->pte_hi & PTE_HID)
   2668 					s_valid++;
   2669 				else
   2670 				{
   2671 					p_valid++;
   2672 				}
   2673 			} else
   2674 				invalid++;
   2675 		}
   2676 	}
   2677 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2678 		p_valid, p_valid, s_valid, s_valid,
   2679 		invalid, invalid);
   2680 }
   2681 
   2682 void
   2683 pmap_print_mmuregs(void)
   2684 {
   2685 	int i;
   2686 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2687 	u_int cpuvers;
   2688 #endif
   2689 #ifndef PMAP_OEA64
   2690 	vaddr_t addr;
   2691 	register_t soft_sr[16];
   2692 #endif
   2693 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2694 	struct bat soft_ibat[4];
   2695 	struct bat soft_dbat[4];
   2696 #endif
   2697 	paddr_t sdr1;
   2698 
   2699 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2700 	cpuvers = MFPVR() >> 16;
   2701 #endif
   2702 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2703 #ifndef PMAP_OEA64
   2704 	addr = 0;
   2705 	for (i = 0; i < 16; i++) {
   2706 		soft_sr[i] = MFSRIN(addr);
   2707 		addr += (1 << ADDR_SR_SHFT);
   2708 	}
   2709 #endif
   2710 
   2711 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2712 	/* read iBAT (601: uBAT) registers */
   2713 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2714 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2715 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2716 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2717 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2718 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2719 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2720 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2721 
   2722 
   2723 	if (cpuvers != MPC601) {
   2724 		/* read dBAT registers */
   2725 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2726 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2727 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2728 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2729 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2730 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2731 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2732 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2733 	}
   2734 #endif
   2735 
   2736 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2737 #ifndef PMAP_OEA64
   2738 	printf("SR[]:\t");
   2739 	for (i = 0; i < 4; i++)
   2740 		printf("0x%08lx,   ", soft_sr[i]);
   2741 	printf("\n\t");
   2742 	for ( ; i < 8; i++)
   2743 		printf("0x%08lx,   ", soft_sr[i]);
   2744 	printf("\n\t");
   2745 	for ( ; i < 12; i++)
   2746 		printf("0x%08lx,   ", soft_sr[i]);
   2747 	printf("\n\t");
   2748 	for ( ; i < 16; i++)
   2749 		printf("0x%08lx,   ", soft_sr[i]);
   2750 	printf("\n");
   2751 #endif
   2752 
   2753 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2754 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2755 	for (i = 0; i < 4; i++) {
   2756 		printf("0x%08lx 0x%08lx, ",
   2757 			soft_ibat[i].batu, soft_ibat[i].batl);
   2758 		if (i == 1)
   2759 			printf("\n\t");
   2760 	}
   2761 	if (cpuvers != MPC601) {
   2762 		printf("\ndBAT[]:\t");
   2763 		for (i = 0; i < 4; i++) {
   2764 			printf("0x%08lx 0x%08lx, ",
   2765 				soft_dbat[i].batu, soft_dbat[i].batl);
   2766 			if (i == 1)
   2767 				printf("\n\t");
   2768 		}
   2769 	}
   2770 	printf("\n");
   2771 #endif /* PMAP_OEA... */
   2772 }
   2773 
   2774 void
   2775 pmap_print_pte(pmap_t pm, vaddr_t va)
   2776 {
   2777 	struct pvo_entry *pvo;
   2778 	volatile struct pte *pt;
   2779 	int pteidx;
   2780 
   2781 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2782 	if (pvo != NULL) {
   2783 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2784 		if (pt != NULL) {
   2785 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2786 				va, pt,
   2787 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2788 				pt->pte_hi, pt->pte_lo);
   2789 		} else {
   2790 			printf("No valid PTE found\n");
   2791 		}
   2792 	} else {
   2793 		printf("Address not in pmap\n");
   2794 	}
   2795 }
   2796 
   2797 void
   2798 pmap_pteg_dist(void)
   2799 {
   2800 	struct pvo_entry *pvo;
   2801 	int ptegidx;
   2802 	int depth;
   2803 	int max_depth = 0;
   2804 	unsigned int depths[64];
   2805 
   2806 	memset(depths, 0, sizeof(depths));
   2807 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2808 		depth = 0;
   2809 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2810 			depth++;
   2811 		}
   2812 		if (depth > max_depth)
   2813 			max_depth = depth;
   2814 		if (depth > 63)
   2815 			depth = 63;
   2816 		depths[depth]++;
   2817 	}
   2818 
   2819 	for (depth = 0; depth < 64; depth++) {
   2820 		printf("  [%2d]: %8u", depth, depths[depth]);
   2821 		if ((depth & 3) == 3)
   2822 			printf("\n");
   2823 		if (depth == max_depth)
   2824 			break;
   2825 	}
   2826 	if ((depth & 3) != 3)
   2827 		printf("\n");
   2828 	printf("Max depth found was %d\n", max_depth);
   2829 }
   2830 #endif /* DEBUG */
   2831 
   2832 #if defined(PMAPCHECK) || defined(DEBUG)
   2833 void
   2834 pmap_pvo_verify(void)
   2835 {
   2836 	int ptegidx;
   2837 	int s;
   2838 
   2839 	s = splvm();
   2840 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2841 		struct pvo_entry *pvo;
   2842 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2843 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2844 				panic("pmap_pvo_verify: invalid pvo %p "
   2845 				    "on list %#x", pvo, ptegidx);
   2846 			pmap_pvo_check(pvo);
   2847 		}
   2848 	}
   2849 	splx(s);
   2850 }
   2851 #endif /* PMAPCHECK */
   2852 
   2853 void *
   2854 pmap_pool_alloc(struct pool *pp, int flags)
   2855 {
   2856 	struct pvo_page *pvop;
   2857 	struct vm_page *pg;
   2858 
   2859 	if (uvm.page_init_done != true) {
   2860 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2861 	}
   2862 
   2863 	PMAP_LOCK();
   2864 	pvop = SIMPLEQ_FIRST(&pmap_pvop_head);
   2865 	if (pvop != NULL) {
   2866 		pmap_pvop_free--;
   2867 		SIMPLEQ_REMOVE_HEAD(&pmap_pvop_head, pvop_link);
   2868 		PMAP_UNLOCK();
   2869 		return pvop;
   2870 	}
   2871 	PMAP_UNLOCK();
   2872  again:
   2873 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2874 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2875 	if (__predict_false(pg == NULL)) {
   2876 		if (flags & PR_WAITOK) {
   2877 			uvm_wait("plpg");
   2878 			goto again;
   2879 		} else {
   2880 			return (0);
   2881 		}
   2882 	}
   2883 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2884 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2885 }
   2886 
   2887 void
   2888 pmap_pool_free(struct pool *pp, void *va)
   2889 {
   2890 	struct pvo_page *pvop;
   2891 
   2892 	PMAP_LOCK();
   2893 	pvop = va;
   2894 	SIMPLEQ_INSERT_HEAD(&pmap_pvop_head, pvop, pvop_link);
   2895 	pmap_pvop_free++;
   2896 	if (pmap_pvop_free > pmap_pvop_maxfree)
   2897 		pmap_pvop_maxfree = pmap_pvop_free;
   2898 	PMAP_UNLOCK();
   2899 #if 0
   2900 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2901 #endif
   2902 }
   2903 
   2904 /*
   2905  * This routine in bootstraping to steal to-be-managed memory (which will
   2906  * then be unmanaged).  We use it to grab from the first 256MB for our
   2907  * pmap needs and above 256MB for other stuff.
   2908  */
   2909 vaddr_t
   2910 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2911 {
   2912 	vsize_t size;
   2913 	vaddr_t va;
   2914 	paddr_t start, end, pa = 0;
   2915 	int npgs, freelist;
   2916 	uvm_physseg_t bank;
   2917 
   2918 	if (uvm.page_init_done == true)
   2919 		panic("pmap_steal_memory: called _after_ bootstrap");
   2920 
   2921 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2922 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2923 
   2924 	size = round_page(vsize);
   2925 	npgs = atop(size);
   2926 
   2927 	/*
   2928 	 * PA 0 will never be among those given to UVM so we can use it
   2929 	 * to indicate we couldn't steal any memory.
   2930 	 */
   2931 
   2932 	for (bank = uvm_physseg_get_first();
   2933 	     uvm_physseg_valid_p(bank);
   2934 	     bank = uvm_physseg_get_next(bank)) {
   2935 
   2936 		freelist = uvm_physseg_get_free_list(bank);
   2937 		start = uvm_physseg_get_start(bank);
   2938 		end = uvm_physseg_get_end(bank);
   2939 
   2940 		if (freelist == VM_FREELIST_FIRST256 &&
   2941 		    (end - start) >= npgs) {
   2942 			pa = ptoa(start);
   2943 			break;
   2944 		}
   2945 	}
   2946 
   2947 	if (pa == 0)
   2948 		panic("pmap_steal_memory: no approriate memory to steal!");
   2949 
   2950 	uvm_physseg_unplug(start, npgs);
   2951 
   2952 	va = (vaddr_t) pa;
   2953 	memset((void *) va, 0, size);
   2954 	pmap_pages_stolen += npgs;
   2955 #ifdef DEBUG
   2956 	if (pmapdebug && npgs > 1) {
   2957 		u_int cnt = 0;
   2958 	for (bank = uvm_physseg_get_first();
   2959 	     uvm_physseg_valid_p(bank);
   2960 	     bank = uvm_physseg_get_next(bank)) {
   2961 		cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
   2962 		}
   2963 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2964 		    npgs, pmap_pages_stolen, cnt);
   2965 	}
   2966 #endif
   2967 
   2968 	return va;
   2969 }
   2970 
   2971 /*
   2972  * Find a chuck of memory with right size and alignment.
   2973  */
   2974 paddr_t
   2975 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2976 {
   2977 	struct mem_region *mp;
   2978 	paddr_t s, e;
   2979 	int i, j;
   2980 
   2981 	size = round_page(size);
   2982 
   2983 	DPRINTFN(BOOT,
   2984 	    "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2985 	    size, alignment, at_end);
   2986 
   2987 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2988 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2989 		    alignment);
   2990 
   2991 	if (at_end) {
   2992 		if (alignment != PAGE_SIZE)
   2993 			panic("pmap_boot_find_memory: invalid ending "
   2994 			    "alignment %#" _PRIxpa, alignment);
   2995 
   2996 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2997 			s = mp->start + mp->size - size;
   2998 			if (s >= mp->start && mp->size >= size) {
   2999 				DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3000 				DPRINTFN(BOOT,
   3001 				    "pmap_boot_find_memory: b-avail[%d] start "
   3002 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3003 				     mp->start, mp->size);
   3004 				mp->size -= size;
   3005 				DPRINTFN(BOOT,
   3006 				    "pmap_boot_find_memory: a-avail[%d] start "
   3007 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3008 				     mp->start, mp->size);
   3009 				return s;
   3010 			}
   3011 		}
   3012 		panic("pmap_boot_find_memory: no available memory");
   3013 	}
   3014 
   3015 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3016 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3017 		e = s + size;
   3018 
   3019 		/*
   3020 		 * Is the calculated region entirely within the region?
   3021 		 */
   3022 		if (s < mp->start || e > mp->start + mp->size)
   3023 			continue;
   3024 
   3025 		DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3026 		if (s == mp->start) {
   3027 			/*
   3028 			 * If the block starts at the beginning of region,
   3029 			 * adjust the size & start. (the region may now be
   3030 			 * zero in length)
   3031 			 */
   3032 			DPRINTFN(BOOT,
   3033 			    "pmap_boot_find_memory: b-avail[%d] start "
   3034 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3035 			mp->start += size;
   3036 			mp->size -= size;
   3037 			DPRINTFN(BOOT,
   3038 			    "pmap_boot_find_memory: a-avail[%d] start "
   3039 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3040 		} else if (e == mp->start + mp->size) {
   3041 			/*
   3042 			 * If the block starts at the beginning of region,
   3043 			 * adjust only the size.
   3044 			 */
   3045 			DPRINTFN(BOOT,
   3046 			    "pmap_boot_find_memory: b-avail[%d] start "
   3047 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3048 			mp->size -= size;
   3049 			DPRINTFN(BOOT,
   3050 			    "pmap_boot_find_memory: a-avail[%d] start "
   3051 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3052 		} else {
   3053 			/*
   3054 			 * Block is in the middle of the region, so we
   3055 			 * have to split it in two.
   3056 			 */
   3057 			for (j = avail_cnt; j > i + 1; j--) {
   3058 				avail[j] = avail[j-1];
   3059 			}
   3060 			DPRINTFN(BOOT,
   3061 			    "pmap_boot_find_memory: b-avail[%d] start "
   3062 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3063 			mp[1].start = e;
   3064 			mp[1].size = mp[0].start + mp[0].size - e;
   3065 			mp[0].size = s - mp[0].start;
   3066 			avail_cnt++;
   3067 			for (; i < avail_cnt; i++) {
   3068 				DPRINTFN(BOOT,
   3069 				    "pmap_boot_find_memory: a-avail[%d] "
   3070 				    "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3071 				     avail[i].start, avail[i].size);
   3072 			}
   3073 		}
   3074 		KASSERT(s == (uintptr_t) s);
   3075 		return s;
   3076 	}
   3077 	panic("pmap_boot_find_memory: not enough memory for "
   3078 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3079 }
   3080 
   3081 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3082 #if defined (PMAP_OEA64_BRIDGE)
   3083 int
   3084 pmap_setup_segment0_map(int use_large_pages, ...)
   3085 {
   3086     vaddr_t va, va_end;
   3087 
   3088     register_t pte_lo = 0x0;
   3089     int ptegidx = 0;
   3090     struct pte pte;
   3091     va_list ap;
   3092 
   3093     /* Coherent + Supervisor RW, no user access */
   3094     pte_lo = PTE_M;
   3095 
   3096     /* XXXSL
   3097      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3098      * these have to take priority.
   3099      */
   3100     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3101         ptegidx = va_to_pteg(pmap_kernel(), va);
   3102         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3103         (void)pmap_pte_insert(ptegidx, &pte);
   3104     }
   3105 
   3106     va_start(ap, use_large_pages);
   3107     while (1) {
   3108         paddr_t pa;
   3109         size_t size;
   3110 
   3111         va = va_arg(ap, vaddr_t);
   3112 
   3113         if (va == 0)
   3114             break;
   3115 
   3116         pa = va_arg(ap, paddr_t);
   3117         size = va_arg(ap, size_t);
   3118 
   3119         for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
   3120 #if 0
   3121 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3122 #endif
   3123             ptegidx = va_to_pteg(pmap_kernel(), va);
   3124             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3125             (void)pmap_pte_insert(ptegidx, &pte);
   3126         }
   3127     }
   3128     va_end(ap);
   3129 
   3130     TLBSYNC();
   3131     SYNC();
   3132     return (0);
   3133 }
   3134 #endif /* PMAP_OEA64_BRIDGE */
   3135 
   3136 /*
   3137  * Set up the bottom level of the data structures necessary for the kernel
   3138  * to manage memory.  MMU hardware is programmed in pmap_bootstrap2().
   3139  */
   3140 void
   3141 pmap_bootstrap1(paddr_t kernelstart, paddr_t kernelend)
   3142 {
   3143 	struct mem_region *mp, tmp;
   3144 	paddr_t s, e;
   3145 	psize_t size;
   3146 	int i, j;
   3147 
   3148 	/*
   3149 	 * Get memory.
   3150 	 */
   3151 	mem_regions(&mem, &avail);
   3152 #if defined(DEBUG)
   3153 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3154 		printf("pmap_bootstrap: memory configuration:\n");
   3155 		for (mp = mem; mp->size; mp++) {
   3156 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3157 				mp->start, mp->size);
   3158 		}
   3159 		for (mp = avail; mp->size; mp++) {
   3160 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3161 				mp->start, mp->size);
   3162 		}
   3163 	}
   3164 #endif
   3165 
   3166 	/*
   3167 	 * Find out how much physical memory we have and in how many chunks.
   3168 	 */
   3169 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3170 		if (mp->start >= pmap_memlimit)
   3171 			continue;
   3172 		if (mp->start + mp->size > pmap_memlimit) {
   3173 			size = pmap_memlimit - mp->start;
   3174 			physmem += btoc(size);
   3175 		} else {
   3176 			physmem += btoc(mp->size);
   3177 		}
   3178 		mem_cnt++;
   3179 	}
   3180 
   3181 	/*
   3182 	 * Count the number of available entries.
   3183 	 */
   3184 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3185 		avail_cnt++;
   3186 
   3187 	/*
   3188 	 * Page align all regions.
   3189 	 */
   3190 	kernelstart = trunc_page(kernelstart);
   3191 	kernelend = round_page(kernelend);
   3192 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3193 		s = round_page(mp->start);
   3194 		mp->size -= (s - mp->start);
   3195 		mp->size = trunc_page(mp->size);
   3196 		mp->start = s;
   3197 		e = mp->start + mp->size;
   3198 
   3199 		DPRINTFN(BOOT,
   3200 		    "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3201 		    i, mp->start, mp->size);
   3202 
   3203 		/*
   3204 		 * Don't allow the end to run beyond our artificial limit
   3205 		 */
   3206 		if (e > pmap_memlimit)
   3207 			e = pmap_memlimit;
   3208 
   3209 		/*
   3210 		 * Is this region empty or strange?  skip it.
   3211 		 */
   3212 		if (e <= s) {
   3213 			mp->start = 0;
   3214 			mp->size = 0;
   3215 			continue;
   3216 		}
   3217 
   3218 		/*
   3219 		 * Does this overlap the beginning of kernel?
   3220 		 *   Does extend past the end of the kernel?
   3221 		 */
   3222 		else if (s < kernelstart && e > kernelstart) {
   3223 			if (e > kernelend) {
   3224 				avail[avail_cnt].start = kernelend;
   3225 				avail[avail_cnt].size = e - kernelend;
   3226 				avail_cnt++;
   3227 			}
   3228 			mp->size = kernelstart - s;
   3229 		}
   3230 		/*
   3231 		 * Check whether this region overlaps the end of the kernel.
   3232 		 */
   3233 		else if (s < kernelend && e > kernelend) {
   3234 			mp->start = kernelend;
   3235 			mp->size = e - kernelend;
   3236 		}
   3237 		/*
   3238 		 * Look whether this regions is completely inside the kernel.
   3239 		 * Nuke it if it does.
   3240 		 */
   3241 		else if (s >= kernelstart && e <= kernelend) {
   3242 			mp->start = 0;
   3243 			mp->size = 0;
   3244 		}
   3245 		/*
   3246 		 * If the user imposed a memory limit, enforce it.
   3247 		 */
   3248 		else if (s >= pmap_memlimit) {
   3249 			mp->start = -PAGE_SIZE;	/* let's know why */
   3250 			mp->size = 0;
   3251 		}
   3252 		else {
   3253 			mp->start = s;
   3254 			mp->size = e - s;
   3255 		}
   3256 		DPRINTFN(BOOT,
   3257 		    "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3258 		    i, mp->start, mp->size);
   3259 	}
   3260 
   3261 	/*
   3262 	 * Move (and uncount) all the null return to the end.
   3263 	 */
   3264 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3265 		if (mp->size == 0) {
   3266 			tmp = avail[i];
   3267 			avail[i] = avail[--avail_cnt];
   3268 			avail[avail_cnt] = avail[i];
   3269 		}
   3270 	}
   3271 
   3272 	/*
   3273 	 * (Bubble)sort them into ascending order.
   3274 	 */
   3275 	for (i = 0; i < avail_cnt; i++) {
   3276 		for (j = i + 1; j < avail_cnt; j++) {
   3277 			if (avail[i].start > avail[j].start) {
   3278 				tmp = avail[i];
   3279 				avail[i] = avail[j];
   3280 				avail[j] = tmp;
   3281 			}
   3282 		}
   3283 	}
   3284 
   3285 	/*
   3286 	 * Make sure they don't overlap.
   3287 	 */
   3288 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3289 		if (mp[0].start + mp[0].size > mp[1].start) {
   3290 			mp[0].size = mp[1].start - mp[0].start;
   3291 		}
   3292 		DPRINTFN(BOOT,
   3293 		    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3294 		    i, mp->start, mp->size);
   3295 	}
   3296 	DPRINTFN(BOOT,
   3297 	    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3298 	    i, mp->start, mp->size);
   3299 
   3300 #ifdef	PTEGCOUNT
   3301 	pmap_pteg_cnt = PTEGCOUNT;
   3302 #else /* PTEGCOUNT */
   3303 
   3304 	pmap_pteg_cnt = 0x1000;
   3305 
   3306 	while (pmap_pteg_cnt < physmem)
   3307 		pmap_pteg_cnt <<= 1;
   3308 
   3309 	pmap_pteg_cnt >>= 1;
   3310 #endif /* PTEGCOUNT */
   3311 
   3312 #ifdef DEBUG
   3313 	DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
   3314 #endif
   3315 
   3316 	/*
   3317 	 * Find suitably aligned memory for PTEG hash table.
   3318 	 */
   3319 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3320 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3321 
   3322 #ifdef DEBUG
   3323 	DPRINTFN(BOOT,
   3324 		"PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
   3325 #endif
   3326 
   3327 
   3328 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3329 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3330 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3331 		    pmap_pteg_table, size);
   3332 #endif
   3333 
   3334 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3335 		pmap_pteg_cnt * sizeof(struct pteg));
   3336 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3337 
   3338 	/*
   3339 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3340 	 * with pages.  So we just steal them before giving them to UVM.
   3341 	 */
   3342 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3343 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3344 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3345 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3346 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3347 		    pmap_pvo_table, size);
   3348 #endif
   3349 
   3350 	for (i = 0; i < pmap_pteg_cnt; i++)
   3351 		TAILQ_INIT(&pmap_pvo_table[i]);
   3352 
   3353 #ifndef MSGBUFADDR
   3354 	/*
   3355 	 * Allocate msgbuf in high memory.
   3356 	 */
   3357 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3358 #endif
   3359 
   3360 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3361 		paddr_t pfstart = atop(mp->start);
   3362 		paddr_t pfend = atop(mp->start + mp->size);
   3363 		if (mp->size == 0)
   3364 			continue;
   3365 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3366 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3367 				VM_FREELIST_FIRST256);
   3368 		} else if (mp->start >= SEGMENT_LENGTH) {
   3369 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3370 				VM_FREELIST_DEFAULT);
   3371 		} else {
   3372 			pfend = atop(SEGMENT_LENGTH);
   3373 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3374 				VM_FREELIST_FIRST256);
   3375 			pfstart = atop(SEGMENT_LENGTH);
   3376 			pfend = atop(mp->start + mp->size);
   3377 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3378 				VM_FREELIST_DEFAULT);
   3379 		}
   3380 	}
   3381 
   3382 	/*
   3383 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3384 	 */
   3385 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3386 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3387 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3388 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3389 	pmap_vsid_bitmap[0] |= 1;
   3390 
   3391 	/*
   3392 	 * Initialize kernel pmap.
   3393 	 */
   3394 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   3395 	for (i = 0; i < 16; i++) {
   3396  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3397 	}
   3398 	pmap_kernel()->pm_vsid = KERNEL_VSIDBITS;
   3399 
   3400 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3401 #ifdef KERNEL2_SR
   3402 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3403 #endif
   3404 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3405 
   3406 #if defined(PMAP_OEA) && defined(PPC_OEA601)
   3407 	if ((MFPVR() >> 16) == MPC601) {
   3408 		for (i = 0; i < 16; i++) {
   3409 			if (iosrtable[i] & SR601_T) {
   3410 				pmap_kernel()->pm_sr[i] = iosrtable[i];
   3411 			}
   3412 		}
   3413 	}
   3414 #endif /* PMAP_OEA && PPC_OEA601 */
   3415 
   3416 #ifdef ALTIVEC
   3417 	pmap_use_altivec = cpu_altivec;
   3418 #endif
   3419 
   3420 #ifdef DEBUG
   3421 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3422 		u_int cnt;
   3423 		uvm_physseg_t bank;
   3424 		char pbuf[9];
   3425 		for (cnt = 0, bank = uvm_physseg_get_first();
   3426 		     uvm_physseg_valid_p(bank);
   3427 		     bank = uvm_physseg_get_next(bank)) {
   3428 			cnt += uvm_physseg_get_avail_end(bank) -
   3429 			    uvm_physseg_get_avail_start(bank);
   3430 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3431 			    bank,
   3432 			    ptoa(uvm_physseg_get_avail_start(bank)),
   3433 			    ptoa(uvm_physseg_get_avail_end(bank)),
   3434 			    ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
   3435 		}
   3436 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3437 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3438 		    pbuf, cnt);
   3439 	}
   3440 #endif
   3441 
   3442 	pool_init(&pmap_pvo_pool, sizeof(struct pvo_entry),
   3443 	    sizeof(struct pvo_entry), 0, 0, "pmap_pvopl",
   3444 	    &pmap_pool_allocator, IPL_VM);
   3445 
   3446 	pool_setlowat(&pmap_pvo_pool, 1008);
   3447 
   3448 	pool_init(&pmap_pool, sizeof(struct pmap),
   3449 	    sizeof(void *), 0, 0, "pmap_pl", &pool_allocator_nointr,
   3450 	    IPL_NONE);
   3451 
   3452 #if defined(PMAP_NEED_MAPKERNEL)
   3453 	{
   3454 		struct pmap *pm = pmap_kernel();
   3455 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3456 		extern int etext[], kernel_text[];
   3457 		vaddr_t va, va_etext = (paddr_t) etext;
   3458 #endif
   3459 		paddr_t pa, pa_end;
   3460 		register_t sr;
   3461 		struct pte pt;
   3462 		unsigned int ptegidx;
   3463 		int bank;
   3464 
   3465 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3466 		pm->pm_sr[0] = sr;
   3467 
   3468 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3469 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3470 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3471 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3472 				ptegidx = va_to_pteg(pm, pa);
   3473 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3474 				pmap_pte_insert(ptegidx, &pt);
   3475 			}
   3476 		}
   3477 
   3478 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3479 		va = (vaddr_t) kernel_text;
   3480 
   3481 		for (pa = kernelstart; va < va_etext;
   3482 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3483 			ptegidx = va_to_pteg(pm, va);
   3484 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3485 			pmap_pte_insert(ptegidx, &pt);
   3486 		}
   3487 
   3488 		for (; pa < kernelend;
   3489 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3490 			ptegidx = va_to_pteg(pm, va);
   3491 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3492 			pmap_pte_insert(ptegidx, &pt);
   3493 		}
   3494 
   3495 		for (va = 0, pa = 0; va < kernelstart;
   3496 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3497 			ptegidx = va_to_pteg(pm, va);
   3498 			if (va < 0x3000)
   3499 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3500 			else
   3501 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3502 			pmap_pte_insert(ptegidx, &pt);
   3503 		}
   3504 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3505 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3506 			ptegidx = va_to_pteg(pm, va);
   3507 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3508 			pmap_pte_insert(ptegidx, &pt);
   3509 		}
   3510 #endif /* PMAP_NEED_FULL_MAPKERNEL */
   3511 	}
   3512 #endif /* PMAP_NEED_MAPKERNEL */
   3513 }
   3514 
   3515 /*
   3516  * Using the data structures prepared in pmap_bootstrap1(), program
   3517  * the MMU hardware.
   3518  */
   3519 void
   3520 pmap_bootstrap2(void)
   3521 {
   3522 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   3523 	for (int i = 0; i < 16; i++) {
   3524 		__asm volatile("mtsrin %0,%1"
   3525 			:: "r"(pmap_kernel()->pm_sr[i]),
   3526 			   "r"(i << ADDR_SR_SHFT));
   3527 	}
   3528 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3529 
   3530 #if defined(PMAP_OEA)
   3531 	__asm volatile("sync; mtsdr1 %0; isync"
   3532 	    :
   3533 	    : "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10))
   3534 	    : "memory");
   3535 #elif defined(PMAP_OEA64) || defined(PMAP_OEA64_BRIDGE)
   3536 	__asm volatile("sync; mtsdr1 %0; isync"
   3537 	    :
   3538 	    : "r"((uintptr_t)pmap_pteg_table |
   3539 		(32 - __builtin_clz(pmap_pteg_mask >> 11)))
   3540 	    : "memory");
   3541 #endif
   3542 	tlbia();
   3543 
   3544 #if defined(PMAPDEBUG)
   3545 	if (pmapdebug)
   3546 	    pmap_print_mmuregs();
   3547 #endif
   3548 }
   3549 
   3550 /*
   3551  * This is not part of the defined PMAP interface and is specific to the
   3552  * PowerPC architecture.  This is called during initppc, before the system
   3553  * is really initialized.
   3554  */
   3555 void
   3556 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3557 {
   3558 	pmap_bootstrap1(kernelstart, kernelend);
   3559 	pmap_bootstrap2();
   3560 }
   3561