Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.14
      1 /*	$NetBSD: pmap.c,v 1.14 2003/08/24 17:52:35 chs Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.14 2003/08/24 17:52:35 chs Exp $");
     71 
     72 #include "opt_altivec.h"
     73 #include "opt_pmap.h"
     74 #include <sys/param.h>
     75 #include <sys/malloc.h>
     76 #include <sys/proc.h>
     77 #include <sys/user.h>
     78 #include <sys/pool.h>
     79 #include <sys/queue.h>
     80 #include <sys/device.h>		/* for evcnt */
     81 #include <sys/systm.h>
     82 
     83 #if __NetBSD_Version__ < 105010000
     84 #include <vm/vm.h>
     85 #include <vm/vm_kern.h>
     86 #define	splvm()		splimp()
     87 #endif
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include <machine/pcb.h>
     92 #include <machine/powerpc.h>
     93 #include <powerpc/spr.h>
     94 #include <powerpc/oea/sr_601.h>
     95 #if __NetBSD_Version__ > 105010000
     96 #include <powerpc/oea/bat.h>
     97 #else
     98 #include <powerpc/bat.h>
     99 #endif
    100 
    101 #if defined(DEBUG) || defined(PMAPCHECK)
    102 #define	STATIC
    103 #else
    104 #define	STATIC	static
    105 #endif
    106 
    107 #ifdef ALTIVEC
    108 int pmap_use_altivec;
    109 #endif
    110 
    111 volatile struct pteg *pmap_pteg_table;
    112 unsigned int pmap_pteg_cnt;
    113 unsigned int pmap_pteg_mask;
    114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115 
    116 struct pmap kernel_pmap_;
    117 unsigned int pmap_pages_stolen;
    118 u_long pmap_pte_valid;
    119 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    120 u_long pmap_pvo_enter_depth;
    121 u_long pmap_pvo_remove_depth;
    122 #endif
    123 
    124 int physmem;
    125 #ifndef MSGBUFADDR
    126 extern paddr_t msgbuf_paddr;
    127 #endif
    128 
    129 static struct mem_region *mem, *avail;
    130 static u_int mem_cnt, avail_cnt;
    131 
    132 #ifdef __HAVE_PMAP_PHYSSEG
    133 /*
    134  * This is a cache of referenced/modified bits.
    135  * Bits herein are shifted by ATTRSHFT.
    136  */
    137 #define	ATTR_SHFT	4
    138 struct pmap_physseg pmap_physseg;
    139 #endif
    140 
    141 /*
    142  * The following structure is exactly 32 bytes long (one cacheline).
    143  */
    144 struct pvo_entry {
    145 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    146 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    147 	struct pte pvo_pte;			/* Prebuilt PTE */
    148 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    149 	vaddr_t pvo_vaddr;			/* VA of entry */
    150 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    151 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    152 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    153 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    154 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    155 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    156 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    157 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    158 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    159 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    160 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    161 #define	PVO_REMOVE		6		/* PVO has been removed */
    162 #define	PVO_WHERE_MASK		15
    163 #define	PVO_WHERE_SHFT		8
    164 };
    165 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    166 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    167 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    168 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    169 #define	PVO_PTEGIDX_CLR(pvo)	\
    170 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    171 #define	PVO_PTEGIDX_SET(pvo,i)	\
    172 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    173 #define	PVO_WHERE(pvo,w)	\
    174 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    175 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    176 
    177 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    178 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    179 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    180 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    181 
    182 struct pool pmap_pool;		/* pool for pmap structures */
    183 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    184 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    185 
    186 /*
    187  * We keep a cache of unmanaged pages to be used for pvo entries for
    188  * unmanaged pages.
    189  */
    190 struct pvo_page {
    191 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    192 };
    193 SIMPLEQ_HEAD(pvop_head, pvo_page);
    194 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    195 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    196 u_long pmap_upvop_free;
    197 u_long pmap_upvop_maxfree;
    198 u_long pmap_mpvop_free;
    199 u_long pmap_mpvop_maxfree;
    200 
    201 STATIC void *pmap_pool_ualloc(struct pool *, int);
    202 STATIC void *pmap_pool_malloc(struct pool *, int);
    203 
    204 STATIC void pmap_pool_ufree(struct pool *, void *);
    205 STATIC void pmap_pool_mfree(struct pool *, void *);
    206 
    207 static struct pool_allocator pmap_pool_mallocator = {
    208 	pmap_pool_malloc, pmap_pool_mfree, 0,
    209 };
    210 
    211 static struct pool_allocator pmap_pool_uallocator = {
    212 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    213 };
    214 
    215 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    216 void pmap_pte_print(volatile struct pte *);
    217 #endif
    218 
    219 #ifdef DDB
    220 void pmap_pteg_check(void);
    221 void pmap_pteg_dist(void);
    222 void pmap_print_pte(pmap_t, vaddr_t);
    223 void pmap_print_mmuregs(void);
    224 #endif
    225 
    226 #if defined(DEBUG) || defined(PMAPCHECK)
    227 #ifdef PMAPCHECK
    228 int pmapcheck = 1;
    229 #else
    230 int pmapcheck = 0;
    231 #endif
    232 void pmap_pvo_verify(void);
    233 STATIC void pmap_pvo_check(const struct pvo_entry *);
    234 #define	PMAP_PVO_CHECK(pvo)	 		\
    235 	do {					\
    236 		if (pmapcheck)			\
    237 			pmap_pvo_check(pvo);	\
    238 	} while (0)
    239 #else
    240 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    241 #endif
    242 STATIC int pmap_pte_insert(int, struct pte *);
    243 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    244 	vaddr_t, paddr_t, register_t, int);
    245 STATIC void pmap_pvo_remove(struct pvo_entry *, int);
    246 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    247 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    248 #define pmap_pvo_reclaim(pm)	NULL
    249 STATIC void pvo_set_exec(struct pvo_entry *);
    250 STATIC void pvo_clear_exec(struct pvo_entry *);
    251 
    252 STATIC void tlbia(void);
    253 
    254 STATIC void pmap_release(pmap_t);
    255 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    256 
    257 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    258 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    259 
    260 static int pmap_initialized;
    261 
    262 #if defined(DEBUG) || defined(PMAPDEBUG)
    263 #define	PMAPDEBUG_BOOT		0x0001
    264 #define	PMAPDEBUG_PTE		0x0002
    265 #define	PMAPDEBUG_EXEC		0x0008
    266 #define	PMAPDEBUG_PVOENTER	0x0010
    267 #define	PMAPDEBUG_PVOREMOVE	0x0020
    268 #define	PMAPDEBUG_ACTIVATE	0x0100
    269 #define	PMAPDEBUG_CREATE	0x0200
    270 #define	PMAPDEBUG_ENTER		0x1000
    271 #define	PMAPDEBUG_KENTER	0x2000
    272 #define	PMAPDEBUG_KREMOVE	0x4000
    273 #define	PMAPDEBUG_REMOVE	0x8000
    274 unsigned int pmapdebug = 0;
    275 # define DPRINTF(x)		printf x
    276 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    277 #else
    278 # define DPRINTF(x)
    279 # define DPRINTFN(n, x)
    280 #endif
    281 
    282 
    283 #ifdef PMAPCOUNTERS
    284 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    285 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    286 
    287 struct evcnt pmap_evcnt_mappings =
    288     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    289 	    "pmap", "pages mapped");
    290 struct evcnt pmap_evcnt_unmappings =
    291     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    292 	    "pmap", "pages unmapped");
    293 
    294 struct evcnt pmap_evcnt_kernel_mappings =
    295     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    296 	    "pmap", "kernel pages mapped");
    297 struct evcnt pmap_evcnt_kernel_unmappings =
    298     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    299 	    "pmap", "kernel pages unmapped");
    300 
    301 struct evcnt pmap_evcnt_mappings_replaced =
    302     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    303 	    "pmap", "page mappings replaced");
    304 
    305 struct evcnt pmap_evcnt_exec_mappings =
    306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    307 	    "pmap", "exec pages mapped");
    308 struct evcnt pmap_evcnt_exec_cached =
    309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    310 	    "pmap", "exec pages cached");
    311 
    312 struct evcnt pmap_evcnt_exec_synced =
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    314 	    "pmap", "exec pages synced");
    315 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    317 	    "pmap", "exec pages synced (CM)");
    318 
    319 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    321 	    "pmap", "exec pages uncached (PP)");
    322 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    323     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    324 	    "pmap", "exec pages uncached (CM)");
    325 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    327 	    "pmap", "exec pages uncached (ZP)");
    328 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    330 	    "pmap", "exec pages uncached (CP)");
    331 
    332 struct evcnt pmap_evcnt_updates =
    333     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    334 	    "pmap", "updates");
    335 struct evcnt pmap_evcnt_collects =
    336     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    337 	    "pmap", "collects");
    338 struct evcnt pmap_evcnt_copies =
    339     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    340 	    "pmap", "copies");
    341 
    342 struct evcnt pmap_evcnt_ptes_spilled =
    343     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    344 	    "pmap", "ptes spilled from overflow");
    345 struct evcnt pmap_evcnt_ptes_unspilled =
    346     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    347 	    "pmap", "ptes not spilled");
    348 struct evcnt pmap_evcnt_ptes_evicted =
    349     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    350 	    "pmap", "ptes evicted");
    351 
    352 struct evcnt pmap_evcnt_ptes_primary[8] = {
    353     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    354 	    "pmap", "ptes added at primary[0]"),
    355     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    356 	    "pmap", "ptes added at primary[1]"),
    357     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    358 	    "pmap", "ptes added at primary[2]"),
    359     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    360 	    "pmap", "ptes added at primary[3]"),
    361 
    362     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    363 	    "pmap", "ptes added at primary[4]"),
    364     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    365 	    "pmap", "ptes added at primary[5]"),
    366     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    367 	    "pmap", "ptes added at primary[6]"),
    368     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    369 	    "pmap", "ptes added at primary[7]"),
    370 };
    371 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373 	    "pmap", "ptes added at secondary[0]"),
    374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    375 	    "pmap", "ptes added at secondary[1]"),
    376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377 	    "pmap", "ptes added at secondary[2]"),
    378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379 	    "pmap", "ptes added at secondary[3]"),
    380 
    381     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    382 	    "pmap", "ptes added at secondary[4]"),
    383     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    384 	    "pmap", "ptes added at secondary[5]"),
    385     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    386 	    "pmap", "ptes added at secondary[6]"),
    387     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    388 	    "pmap", "ptes added at secondary[7]"),
    389 };
    390 struct evcnt pmap_evcnt_ptes_removed =
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes removed");
    393 struct evcnt pmap_evcnt_ptes_changed =
    394     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    395 	    "pmap", "ptes changed");
    396 
    397 /*
    398  * From pmap_subr.c
    399  */
    400 extern struct evcnt pmap_evcnt_zeroed_pages;
    401 extern struct evcnt pmap_evcnt_copied_pages;
    402 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    403 #else
    404 #define	PMAPCOUNT(ev)	((void) 0)
    405 #define	PMAPCOUNT2(ev)	((void) 0)
    406 #endif
    407 
    408 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    409 #define	TLBSYNC()	__asm __volatile("tlbsync")
    410 #define	SYNC()		__asm __volatile("sync")
    411 #define	EIEIO()		__asm __volatile("eieio")
    412 #define	MFMSR()		mfmsr()
    413 #define	MTMSR(psl)	mtmsr(psl)
    414 #define	MFPVR()		mfpvr()
    415 #define	MFSRIN(va)	mfsrin(va)
    416 #define	MFTB()		mfrtcltbl()
    417 
    418 static __inline register_t
    419 mfsrin(vaddr_t va)
    420 {
    421 	register_t sr;
    422 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    423 	return sr;
    424 }
    425 
    426 static __inline register_t
    427 pmap_interrupts_off(void)
    428 {
    429 	register_t msr = MFMSR();
    430 	if (msr & PSL_EE)
    431 		MTMSR(msr & ~PSL_EE);
    432 	return msr;
    433 }
    434 
    435 static void
    436 pmap_interrupts_restore(register_t msr)
    437 {
    438 	if (msr & PSL_EE)
    439 		MTMSR(msr);
    440 }
    441 
    442 static __inline u_int32_t
    443 mfrtcltbl(void)
    444 {
    445 
    446 	if ((MFPVR() >> 16) == MPC601)
    447 		return (mfrtcl() >> 7);
    448 	else
    449 		return (mftbl());
    450 }
    451 
    452 /*
    453  * These small routines may have to be replaced,
    454  * if/when we support processors other that the 604.
    455  */
    456 
    457 void
    458 tlbia(void)
    459 {
    460 	caddr_t i;
    461 
    462 	SYNC();
    463 	/*
    464 	 * Why not use "tlbia"?  Because not all processors implement it.
    465 	 *
    466 	 * This needs to be a per-cpu callback to do the appropriate thing
    467 	 * for the CPU. XXX
    468 	 */
    469 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    470 		TLBIE(i);
    471 		EIEIO();
    472 		SYNC();
    473 	}
    474 	TLBSYNC();
    475 	SYNC();
    476 }
    477 
    478 static __inline register_t
    479 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    480 {
    481 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID);
    482 }
    483 
    484 static __inline register_t
    485 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    486 {
    487 	register_t hash;
    488 
    489 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    490 	return hash & pmap_pteg_mask;
    491 }
    492 
    493 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    494 /*
    495  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    496  * The only bit of magic is that the top 4 bits of the address doesn't
    497  * technically exist in the PTE.  But we know we reserved 4 bits of the
    498  * VSID for it so that's how we get it.
    499  */
    500 static vaddr_t
    501 pmap_pte_to_va(volatile const struct pte *pt)
    502 {
    503 	vaddr_t va;
    504 	uintptr_t ptaddr = (uintptr_t) pt;
    505 
    506 	if (pt->pte_hi & PTE_HID)
    507 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    508 
    509 	/* PPC Bits 10-19 */
    510 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    511 	va <<= ADDR_PIDX_SHFT;
    512 
    513 	/* PPC Bits 4-9 */
    514 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    515 
    516 	/* PPC Bits 0-3 */
    517 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    518 
    519 	return va;
    520 }
    521 #endif
    522 
    523 static __inline struct pvo_head *
    524 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    525 {
    526 #ifdef __HAVE_VM_PAGE_MD
    527 	struct vm_page *pg;
    528 
    529 	pg = PHYS_TO_VM_PAGE(pa);
    530 	if (pg_p != NULL)
    531 		*pg_p = pg;
    532 	if (pg == NULL)
    533 		return &pmap_pvo_unmanaged;
    534 	return &pg->mdpage.mdpg_pvoh;
    535 #endif
    536 #ifdef __HAVE_PMAP_PHYSSEG
    537 	int bank, pg;
    538 
    539 	bank = vm_physseg_find(atop(pa), &pg);
    540 	if (pg_p != NULL)
    541 		*pg_p = pg;
    542 	if (bank == -1)
    543 		return &pmap_pvo_unmanaged;
    544 	return &vm_physmem[bank].pmseg.pvoh[pg];
    545 #endif
    546 }
    547 
    548 static __inline struct pvo_head *
    549 vm_page_to_pvoh(struct vm_page *pg)
    550 {
    551 #ifdef __HAVE_VM_PAGE_MD
    552 	return &pg->mdpage.mdpg_pvoh;
    553 #endif
    554 #ifdef __HAVE_PMAP_PHYSSEG
    555 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    556 #endif
    557 }
    558 
    559 
    560 #ifdef __HAVE_PMAP_PHYSSEG
    561 static __inline char *
    562 pa_to_attr(paddr_t pa)
    563 {
    564 	int bank, pg;
    565 
    566 	bank = vm_physseg_find(atop(pa), &pg);
    567 	if (bank == -1)
    568 		return NULL;
    569 	return &vm_physmem[bank].pmseg.attrs[pg];
    570 }
    571 #endif
    572 
    573 static __inline void
    574 pmap_attr_clear(struct vm_page *pg, int ptebit)
    575 {
    576 #ifdef __HAVE_PMAP_PHYSSEG
    577 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    578 #endif
    579 #ifdef __HAVE_VM_PAGE_MD
    580 	pg->mdpage.mdpg_attrs &= ~ptebit;
    581 #endif
    582 }
    583 
    584 static __inline int
    585 pmap_attr_fetch(struct vm_page *pg)
    586 {
    587 #ifdef __HAVE_PMAP_PHYSSEG
    588 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    589 #endif
    590 #ifdef __HAVE_VM_PAGE_MD
    591 	return pg->mdpage.mdpg_attrs;
    592 #endif
    593 }
    594 
    595 static __inline void
    596 pmap_attr_save(struct vm_page *pg, int ptebit)
    597 {
    598 #ifdef __HAVE_PMAP_PHYSSEG
    599 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    600 #endif
    601 #ifdef __HAVE_VM_PAGE_MD
    602 	pg->mdpage.mdpg_attrs |= ptebit;
    603 #endif
    604 }
    605 
    606 static __inline int
    607 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    608 {
    609 	if (pt->pte_hi == pvo_pt->pte_hi
    610 #if 0
    611 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    612 	        ~(PTE_REF|PTE_CHG)) == 0
    613 #endif
    614 	    )
    615 		return 1;
    616 	return 0;
    617 }
    618 
    619 static __inline void
    620 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    621 {
    622 	/*
    623 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    624 	 * only gets set when the real pte is set in memory.
    625 	 *
    626 	 * Note: Don't set the valid bit for correct operation of tlb update.
    627 	 */
    628 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    629 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    630 	pt->pte_lo = pte_lo;
    631 }
    632 
    633 static __inline void
    634 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    635 {
    636 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    637 }
    638 
    639 static __inline void
    640 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    641 {
    642 	/*
    643 	 * As shown in Section 7.6.3.2.3
    644 	 */
    645 	pt->pte_lo &= ~ptebit;
    646 	TLBIE(va);
    647 	SYNC();
    648 	EIEIO();
    649 	TLBSYNC();
    650 	SYNC();
    651 }
    652 
    653 static __inline void
    654 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    655 {
    656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    657 	if (pvo_pt->pte_hi & PTE_VALID)
    658 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    659 #endif
    660 	pvo_pt->pte_hi |= PTE_VALID;
    661 	/*
    662 	 * Update the PTE as defined in section 7.6.3.1
    663 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    664 	 * have been saved so this routine can restore them (if desired).
    665 	 */
    666 	pt->pte_lo = pvo_pt->pte_lo;
    667 	EIEIO();
    668 	pt->pte_hi = pvo_pt->pte_hi;
    669 	SYNC();
    670 	pmap_pte_valid++;
    671 }
    672 
    673 static __inline void
    674 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    675 {
    676 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    677 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    678 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    679 	if ((pt->pte_hi & PTE_VALID) == 0)
    680 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    681 #endif
    682 
    683 	pvo_pt->pte_hi &= ~PTE_VALID;
    684 	/*
    685 	 * Force the ref & chg bits back into the PTEs.
    686 	 */
    687 	SYNC();
    688 	/*
    689 	 * Invalidate the pte ... (Section 7.6.3.3)
    690 	 */
    691 	pt->pte_hi &= ~PTE_VALID;
    692 	SYNC();
    693 	TLBIE(va);
    694 	SYNC();
    695 	EIEIO();
    696 	TLBSYNC();
    697 	SYNC();
    698 	/*
    699 	 * Save the ref & chg bits ...
    700 	 */
    701 	pmap_pte_synch(pt, pvo_pt);
    702 	pmap_pte_valid--;
    703 }
    704 
    705 static __inline void
    706 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    707 {
    708 	/*
    709 	 * Invalidate the PTE
    710 	 */
    711 	pmap_pte_unset(pt, pvo_pt, va);
    712 	pmap_pte_set(pt, pvo_pt);
    713 }
    714 
    715 /*
    716  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    717  * (either primary or secondary location).
    718  *
    719  * Note: both the destination and source PTEs must not have PTE_VALID set.
    720  */
    721 
    722 STATIC int
    723 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    724 {
    725 	volatile struct pte *pt;
    726 	int i;
    727 
    728 #if defined(DEBUG)
    729 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%lx 0x%lx\n",
    730 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    731 #endif
    732 	/*
    733 	 * First try primary hash.
    734 	 */
    735 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    736 		if ((pt->pte_hi & PTE_VALID) == 0) {
    737 			pvo_pt->pte_hi &= ~PTE_HID;
    738 			pmap_pte_set(pt, pvo_pt);
    739 			return i;
    740 		}
    741 	}
    742 
    743 	/*
    744 	 * Now try secondary hash.
    745 	 */
    746 	ptegidx ^= pmap_pteg_mask;
    747 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    748 		if ((pt->pte_hi & PTE_VALID) == 0) {
    749 			pvo_pt->pte_hi |= PTE_HID;
    750 			pmap_pte_set(pt, pvo_pt);
    751 			return i;
    752 		}
    753 	}
    754 	return -1;
    755 }
    756 
    757 /*
    758  * Spill handler.
    759  *
    760  * Tries to spill a page table entry from the overflow area.
    761  * This runs in either real mode (if dealing with a exception spill)
    762  * or virtual mode when dealing with manually spilling one of the
    763  * kernel's pte entries.  In either case, interrupts are already
    764  * disabled.
    765  */
    766 
    767 int
    768 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    769 {
    770 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    771 	struct pvo_entry *pvo;
    772 	struct pvo_tqhead *pvoh, *vpvoh;
    773 	int ptegidx, i, j;
    774 	volatile struct pteg *pteg;
    775 	volatile struct pte *pt;
    776 
    777 	ptegidx = va_to_pteg(pm, addr);
    778 
    779 	/*
    780 	 * Have to substitute some entry. Use the primary hash for this.
    781 	 * Use low bits of timebase as random generator.  Make sure we are
    782 	 * not picking a kernel pte for replacement.
    783 	 */
    784 	pteg = &pmap_pteg_table[ptegidx];
    785 	i = MFTB() & 7;
    786 	for (j = 0; j < 8; j++) {
    787 		pt = &pteg->pt[i];
    788 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    789 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    790 				!= KERNEL_VSIDBITS)
    791 			break;
    792 		i = (i + 1) & 7;
    793 	}
    794 	KASSERT(j < 8);
    795 
    796 	source_pvo = NULL;
    797 	victim_pvo = NULL;
    798 	pvoh = &pmap_pvo_table[ptegidx];
    799 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    800 
    801 		/*
    802 		 * We need to find pvo entry for this address...
    803 		 */
    804 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    805 
    806 		/*
    807 		 * If we haven't found the source and we come to a PVO with
    808 		 * a valid PTE, then we know we can't find it because all
    809 		 * evicted PVOs always are first in the list.
    810 		 */
    811 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    812 			break;
    813 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    814 		    addr == PVO_VADDR(pvo)) {
    815 
    816 			/*
    817 			 * Now we have found the entry to be spilled into the
    818 			 * pteg.  Attempt to insert it into the page table.
    819 			 */
    820 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    821 			if (j >= 0) {
    822 				PVO_PTEGIDX_SET(pvo, j);
    823 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    824 				PVO_WHERE(pvo, SPILL_INSERT);
    825 				pvo->pvo_pmap->pm_evictions--;
    826 				PMAPCOUNT(ptes_spilled);
    827 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    828 				    ? pmap_evcnt_ptes_secondary
    829 				    : pmap_evcnt_ptes_primary)[j]);
    830 
    831 				/*
    832 				 * Since we keep the evicted entries at the
    833 				 * from of the PVO list, we need move this
    834 				 * (now resident) PVO after the evicted
    835 				 * entries.
    836 				 */
    837 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    838 
    839 				/*
    840 				 * If we don't have to move (either we were the
    841 				 * last entry or the next entry was valid),
    842 				 * don't change our position.  Otherwise
    843 				 * move ourselves to the tail of the queue.
    844 				 */
    845 				if (next_pvo != NULL &&
    846 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    847 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    848 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    849 				}
    850 				return 1;
    851 			}
    852 			source_pvo = pvo;
    853 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    854 				return 0;
    855 			}
    856 			if (victim_pvo != NULL)
    857 				break;
    858 		}
    859 
    860 		/*
    861 		 * We also need the pvo entry of the victim we are replacing
    862 		 * so save the R & C bits of the PTE.
    863 		 */
    864 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    865 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    866 			vpvoh = pvoh;
    867 			victim_pvo = pvo;
    868 			if (source_pvo != NULL)
    869 				break;
    870 		}
    871 	}
    872 
    873 	if (source_pvo == NULL) {
    874 		PMAPCOUNT(ptes_unspilled);
    875 		return 0;
    876 	}
    877 
    878 	if (victim_pvo == NULL) {
    879 		if ((pt->pte_hi & PTE_HID) == 0)
    880 			panic("pmap_pte_spill: victim p-pte (%p) has "
    881 			    "no pvo entry!", pt);
    882 
    883 		/*
    884 		 * If this is a secondary PTE, we need to search
    885 		 * its primary pvo bucket for the matching PVO.
    886 		 */
    887 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
    888 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    889 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    890 
    891 			/*
    892 			 * We also need the pvo entry of the victim we are
    893 			 * replacing so save the R & C bits of the PTE.
    894 			 */
    895 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    896 				victim_pvo = pvo;
    897 				break;
    898 			}
    899 		}
    900 		if (victim_pvo == NULL)
    901 			panic("pmap_pte_spill: victim s-pte (%p) has "
    902 			    "no pvo entry!", pt);
    903 	}
    904 
    905 	/*
    906 	 * The victim should be not be a kernel PVO/PTE entry.
    907 	 */
    908 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
    909 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
    910 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
    911 
    912 	/*
    913 	 * We are invalidating the TLB entry for the EA for the
    914 	 * we are replacing even though its valid; If we don't
    915 	 * we lose any ref/chg bit changes contained in the TLB
    916 	 * entry.
    917 	 */
    918 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    919 
    920 	/*
    921 	 * To enforce the PVO list ordering constraint that all
    922 	 * evicted entries should come before all valid entries,
    923 	 * move the source PVO to the tail of its list and the
    924 	 * victim PVO to the head of its list (which might not be
    925 	 * the same list, if the victim was using the secondary hash).
    926 	 */
    927 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    928 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    929 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    930 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    931 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    932 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    933 	victim_pvo->pvo_pmap->pm_evictions++;
    934 	source_pvo->pvo_pmap->pm_evictions--;
    935 	PVO_WHERE(victim_pvo, SPILL_UNSET);
    936 	PVO_WHERE(source_pvo, SPILL_SET);
    937 
    938 	PVO_PTEGIDX_CLR(victim_pvo);
    939 	PVO_PTEGIDX_SET(source_pvo, i);
    940 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    941 	PMAPCOUNT(ptes_spilled);
    942 	PMAPCOUNT(ptes_evicted);
    943 	PMAPCOUNT(ptes_removed);
    944 
    945 	PMAP_PVO_CHECK(victim_pvo);
    946 	PMAP_PVO_CHECK(source_pvo);
    947 	return 1;
    948 }
    949 
    950 /*
    951  * Restrict given range to physical memory
    952  */
    953 void
    954 pmap_real_memory(paddr_t *start, psize_t *size)
    955 {
    956 	struct mem_region *mp;
    957 
    958 	for (mp = mem; mp->size; mp++) {
    959 		if (*start + *size > mp->start
    960 		    && *start < mp->start + mp->size) {
    961 			if (*start < mp->start) {
    962 				*size -= mp->start - *start;
    963 				*start = mp->start;
    964 			}
    965 			if (*start + *size > mp->start + mp->size)
    966 				*size = mp->start + mp->size - *start;
    967 			return;
    968 		}
    969 	}
    970 	*size = 0;
    971 }
    972 
    973 /*
    974  * Initialize anything else for pmap handling.
    975  * Called during vm_init().
    976  */
    977 void
    978 pmap_init(void)
    979 {
    980 #ifdef __HAVE_PMAP_PHYSSEG
    981 	struct pvo_tqhead *pvoh;
    982 	int bank;
    983 	long sz;
    984 	char *attr;
    985 
    986 	pvoh = pmap_physseg.pvoh;
    987 	attr = pmap_physseg.attrs;
    988 	for (bank = 0; bank < vm_nphysseg; bank++) {
    989 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
    990 		vm_physmem[bank].pmseg.pvoh = pvoh;
    991 		vm_physmem[bank].pmseg.attrs = attr;
    992 		for (; sz > 0; sz--, pvoh++, attr++) {
    993 			TAILQ_INIT(pvoh);
    994 			*attr = 0;
    995 		}
    996 	}
    997 #endif
    998 
    999 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1000 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1001 	    &pmap_pool_mallocator);
   1002 
   1003 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1004 
   1005 	pmap_initialized = 1;
   1006 
   1007 #ifdef PMAPCOUNTERS
   1008 	evcnt_attach_static(&pmap_evcnt_mappings);
   1009 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
   1010 	evcnt_attach_static(&pmap_evcnt_unmappings);
   1011 
   1012 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
   1013 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
   1014 
   1015 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
   1016 	evcnt_attach_static(&pmap_evcnt_exec_cached);
   1017 	evcnt_attach_static(&pmap_evcnt_exec_synced);
   1018 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
   1019 
   1020 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
   1021 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
   1022 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
   1023 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
   1024 
   1025 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
   1026 	evcnt_attach_static(&pmap_evcnt_copied_pages);
   1027 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
   1028 
   1029 	evcnt_attach_static(&pmap_evcnt_updates);
   1030 	evcnt_attach_static(&pmap_evcnt_collects);
   1031 	evcnt_attach_static(&pmap_evcnt_copies);
   1032 
   1033 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
   1034 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1035 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1036 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1037 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1038 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1039 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1040 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1041 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1042 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1043 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1044 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1045 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1046 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1047 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1048 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1049 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1050 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1051 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1052 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1053 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1054 #endif
   1055 }
   1056 
   1057 /*
   1058  * How much virtual space does the kernel get?
   1059  */
   1060 void
   1061 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1062 {
   1063 	/*
   1064 	 * For now, reserve one segment (minus some overhead) for kernel
   1065 	 * virtual memory
   1066 	 */
   1067 	*start = VM_MIN_KERNEL_ADDRESS;
   1068 	*end = VM_MAX_KERNEL_ADDRESS;
   1069 }
   1070 
   1071 /*
   1072  * Allocate, initialize, and return a new physical map.
   1073  */
   1074 pmap_t
   1075 pmap_create(void)
   1076 {
   1077 	pmap_t pm;
   1078 
   1079 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1080 	memset((caddr_t)pm, 0, sizeof *pm);
   1081 	pmap_pinit(pm);
   1082 
   1083 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1084 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n"
   1085 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n", pm,
   1086 	    pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
   1087 	    pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
   1088 	    pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
   1089 	    pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
   1090 	return pm;
   1091 }
   1092 
   1093 /*
   1094  * Initialize a preallocated and zeroed pmap structure.
   1095  */
   1096 void
   1097 pmap_pinit(pmap_t pm)
   1098 {
   1099 	register_t entropy = MFTB();
   1100 	register_t mask;
   1101 	int i;
   1102 
   1103 	/*
   1104 	 * Allocate some segment registers for this pmap.
   1105 	 */
   1106 	pm->pm_refs = 1;
   1107 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1108 		static register_t pmap_vsidcontext;
   1109 		register_t hash;
   1110 		unsigned int n;
   1111 
   1112 		/* Create a new value by multiplying by a prime adding in
   1113 		 * entropy from the timebase register.  This is to make the
   1114 		 * VSID more random so that the PT Hash function collides
   1115 		 * less often. (note that the prime causes gcc to do shifts
   1116 		 * instead of a multiply)
   1117 		 */
   1118 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1119 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1120 		if (hash == 0)			/* 0 is special, avoid it */
   1121 			continue;
   1122 		n = hash >> 5;
   1123 		mask = 1L << (hash & (VSID_NBPW-1));
   1124 		hash = pmap_vsidcontext;
   1125 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1126 			/* anything free in this bucket? */
   1127 			if (~pmap_vsid_bitmap[n] == 0) {
   1128 				entropy = hash >> PTE_VSID_SHFT;
   1129 				continue;
   1130 			}
   1131 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1132 			mask = 1L << i;
   1133 			hash &= ~(VSID_NBPW-1);
   1134 			hash |= i;
   1135 		}
   1136 		/*
   1137 		 * Make sure clear out SR_KEY_LEN bits because we put our
   1138 		 * our data in those bits (to identify the segment).
   1139 		 */
   1140 		hash &= PTE_VSID >> (PTE_VSID_SHFT + SR_KEY_LEN);
   1141 		pmap_vsid_bitmap[n] |= mask;
   1142 		for (i = 0; i < 16; i++)
   1143 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1144 			    SR_NOEXEC;
   1145 		return;
   1146 	}
   1147 	panic("pmap_pinit: out of segments");
   1148 }
   1149 
   1150 /*
   1151  * Add a reference to the given pmap.
   1152  */
   1153 void
   1154 pmap_reference(pmap_t pm)
   1155 {
   1156 	pm->pm_refs++;
   1157 }
   1158 
   1159 /*
   1160  * Retire the given pmap from service.
   1161  * Should only be called if the map contains no valid mappings.
   1162  */
   1163 void
   1164 pmap_destroy(pmap_t pm)
   1165 {
   1166 	if (--pm->pm_refs == 0) {
   1167 		pmap_release(pm);
   1168 		pool_put(&pmap_pool, pm);
   1169 	}
   1170 }
   1171 
   1172 /*
   1173  * Release any resources held by the given physical map.
   1174  * Called when a pmap initialized by pmap_pinit is being released.
   1175  */
   1176 void
   1177 pmap_release(pmap_t pm)
   1178 {
   1179 	int idx, mask;
   1180 
   1181 	if (pm->pm_sr[0] == 0)
   1182 		panic("pmap_release");
   1183 	idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1);
   1184 	mask = 1 << (idx % VSID_NBPW);
   1185 	idx /= VSID_NBPW;
   1186 	pmap_vsid_bitmap[idx] &= ~mask;
   1187 }
   1188 
   1189 /*
   1190  * Copy the range specified by src_addr/len
   1191  * from the source map to the range dst_addr/len
   1192  * in the destination map.
   1193  *
   1194  * This routine is only advisory and need not do anything.
   1195  */
   1196 void
   1197 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1198 	vsize_t len, vaddr_t src_addr)
   1199 {
   1200 	PMAPCOUNT(copies);
   1201 }
   1202 
   1203 /*
   1204  * Require that all active physical maps contain no
   1205  * incorrect entries NOW.
   1206  */
   1207 void
   1208 pmap_update(struct pmap *pmap)
   1209 {
   1210 	PMAPCOUNT(updates);
   1211 	TLBSYNC();
   1212 }
   1213 
   1214 /*
   1215  * Garbage collects the physical map system for
   1216  * pages which are no longer used.
   1217  * Success need not be guaranteed -- that is, there
   1218  * may well be pages which are not referenced, but
   1219  * others may be collected.
   1220  * Called by the pageout daemon when pages are scarce.
   1221  */
   1222 void
   1223 pmap_collect(pmap_t pm)
   1224 {
   1225 	PMAPCOUNT(collects);
   1226 }
   1227 
   1228 static __inline int
   1229 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1230 {
   1231 	int pteidx;
   1232 	/*
   1233 	 * We can find the actual pte entry without searching by
   1234 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1235 	 * and by noticing the HID bit.
   1236 	 */
   1237 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1238 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1239 		pteidx ^= pmap_pteg_mask * 8;
   1240 	return pteidx;
   1241 }
   1242 
   1243 volatile struct pte *
   1244 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1245 {
   1246 	volatile struct pte *pt;
   1247 
   1248 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1249 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1250 		return NULL;
   1251 #endif
   1252 
   1253 	/*
   1254 	 * If we haven't been supplied the ptegidx, calculate it.
   1255 	 */
   1256 	if (pteidx == -1) {
   1257 		int ptegidx;
   1258 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1259 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1260 	}
   1261 
   1262 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1263 
   1264 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1265 	return pt;
   1266 #else
   1267 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1268 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1269 		    "pvo but no valid pte index", pvo);
   1270 	}
   1271 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1272 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1273 		    "pvo but no valid pte", pvo);
   1274 	}
   1275 
   1276 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1277 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1278 #if defined(DEBUG) || defined(PMAPCHECK)
   1279 			pmap_pte_print(pt);
   1280 #endif
   1281 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1282 			    "pmap_pteg_table %p but invalid in pvo",
   1283 			    pvo, pt);
   1284 		}
   1285 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1286 #if defined(DEBUG) || defined(PMAPCHECK)
   1287 			pmap_pte_print(pt);
   1288 #endif
   1289 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1290 			    "not match pte %p in pmap_pteg_table",
   1291 			    pvo, pt);
   1292 		}
   1293 		return pt;
   1294 	}
   1295 
   1296 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1297 #if defined(DEBUG) || defined(PMAPCHECK)
   1298 		pmap_pte_print(pt);
   1299 #endif
   1300 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1301 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1302 	}
   1303 	return NULL;
   1304 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1305 }
   1306 
   1307 struct pvo_entry *
   1308 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1309 {
   1310 	struct pvo_entry *pvo;
   1311 	int ptegidx;
   1312 
   1313 	va &= ~ADDR_POFF;
   1314 	ptegidx = va_to_pteg(pm, va);
   1315 
   1316 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1317 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1318 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1319 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1320 			    "list %#x (%p)", pvo, ptegidx,
   1321 			     &pmap_pvo_table[ptegidx]);
   1322 #endif
   1323 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1324 			if (pteidx_p)
   1325 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1326 			return pvo;
   1327 		}
   1328 	}
   1329 	return NULL;
   1330 }
   1331 
   1332 #if defined(DEBUG) || defined(PMAPCHECK)
   1333 void
   1334 pmap_pvo_check(const struct pvo_entry *pvo)
   1335 {
   1336 	struct pvo_head *pvo_head;
   1337 	struct pvo_entry *pvo0;
   1338 	volatile struct pte *pt;
   1339 	int failed = 0;
   1340 
   1341 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1342 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1343 
   1344 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1345 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1346 		    pvo, pvo->pvo_pmap);
   1347 		failed = 1;
   1348 	}
   1349 
   1350 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1351 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1352 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1353 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1354 		failed = 1;
   1355 	}
   1356 
   1357 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1358 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1359 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1360 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1361 		failed = 1;
   1362 	}
   1363 
   1364 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1365 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1366 	} else {
   1367 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1368 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1369 			    "on kernel unmanaged list\n", pvo);
   1370 			failed = 1;
   1371 		}
   1372 		pvo_head = &pmap_pvo_kunmanaged;
   1373 	}
   1374 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1375 		if (pvo0 == pvo)
   1376 			break;
   1377 	}
   1378 	if (pvo0 == NULL) {
   1379 		printf("pmap_pvo_check: pvo %p: not present "
   1380 		    "on its vlist head %p\n", pvo, pvo_head);
   1381 		failed = 1;
   1382 	}
   1383 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1384 		printf("pmap_pvo_check: pvo %p: not present "
   1385 		    "on its olist head\n", pvo);
   1386 		failed = 1;
   1387 	}
   1388 	pt = pmap_pvo_to_pte(pvo, -1);
   1389 	if (pt == NULL) {
   1390 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1391 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1392 			    "no PTE\n", pvo);
   1393 			failed = 1;
   1394 		}
   1395 	} else {
   1396 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1397 		    (uintptr_t) pt >=
   1398 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1399 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1400 			    "pteg table\n", pvo, pt);
   1401 			failed = 1;
   1402 		}
   1403 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1404 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1405 			    "no PTE\n", pvo);
   1406 			failed = 1;
   1407 		}
   1408 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1409 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1410 			    "%#lx/%#lx\n", pvo, pvo->pvo_pte.pte_hi, pt->pte_hi);
   1411 			failed = 1;
   1412 		}
   1413 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1414 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1415 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1416 			    "%#lx/%#lx\n", pvo,
   1417 			    pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN),
   1418 			    pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN));
   1419 			failed = 1;
   1420 		}
   1421 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1422 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1423 			    " doesn't not match PVO's VA %#lx\n",
   1424 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1425 			failed = 1;
   1426 		}
   1427 		if (failed)
   1428 			pmap_pte_print(pt);
   1429 	}
   1430 	if (failed)
   1431 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1432 		    pvo->pvo_pmap);
   1433 }
   1434 #endif /* DEBUG || PMAPCHECK */
   1435 
   1436 /*
   1437  * This returns whether this is the first mapping of a page.
   1438  */
   1439 int
   1440 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1441 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1442 {
   1443 	struct pvo_entry *pvo;
   1444 	struct pvo_tqhead *pvoh;
   1445 	register_t msr;
   1446 	int ptegidx;
   1447 	int i;
   1448 	int poolflags = PR_NOWAIT;
   1449 
   1450 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1451 	if (pmap_pvo_remove_depth > 0)
   1452 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1453 	if (++pmap_pvo_enter_depth > 1)
   1454 		panic("pmap_pvo_enter: called recursively!");
   1455 #endif
   1456 
   1457 	/*
   1458 	 * Compute the PTE Group index.
   1459 	 */
   1460 	va &= ~ADDR_POFF;
   1461 	ptegidx = va_to_pteg(pm, va);
   1462 
   1463 	msr = pmap_interrupts_off();
   1464 	/*
   1465 	 * Remove any existing mapping for this page.  Reuse the
   1466 	 * pvo entry if there a mapping.
   1467 	 */
   1468 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1469 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1470 #ifdef DEBUG
   1471 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1472 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1473 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1474 			   va < VM_MIN_KERNEL_ADDRESS) {
   1475 				printf("pmap_pvo_enter: pvo %p: dup %#lx/%#lx\n",
   1476 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1477 				printf("pmap_pvo_enter: pte_hi=%#lx sr=%#lx\n",
   1478 				    pvo->pvo_pte.pte_hi,
   1479 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1480 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1481 #ifdef DDBX
   1482 				Debugger();
   1483 #endif
   1484 			}
   1485 #endif
   1486 			PMAPCOUNT(mappings_replaced);
   1487 			pmap_pvo_remove(pvo, -1);
   1488 			break;
   1489 		}
   1490 	}
   1491 
   1492 	/*
   1493 	 * If we aren't overwriting an mapping, try to allocate
   1494 	 */
   1495 	pmap_interrupts_restore(msr);
   1496 	pvo = pool_get(pl, poolflags);
   1497 	msr = pmap_interrupts_off();
   1498 	if (pvo == NULL) {
   1499 		pvo = pmap_pvo_reclaim(pm);
   1500 		if (pvo == NULL) {
   1501 			if ((flags & PMAP_CANFAIL) == 0)
   1502 				panic("pmap_pvo_enter: failed");
   1503 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1504 			pmap_pvo_enter_depth--;
   1505 #endif
   1506 			pmap_interrupts_restore(msr);
   1507 			return ENOMEM;
   1508 		}
   1509 	}
   1510 	pvo->pvo_vaddr = va;
   1511 	pvo->pvo_pmap = pm;
   1512 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1513 	if (flags & VM_PROT_EXECUTE) {
   1514 		PMAPCOUNT(exec_mappings);
   1515 		pvo_set_exec(pvo);
   1516 	}
   1517 	if (flags & PMAP_WIRED)
   1518 		pvo->pvo_vaddr |= PVO_WIRED;
   1519 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1520 		pvo->pvo_vaddr |= PVO_MANAGED;
   1521 		PMAPCOUNT(mappings);
   1522 	} else {
   1523 		PMAPCOUNT(kernel_mappings);
   1524 	}
   1525 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1526 
   1527 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1528 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1529 		pvo->pvo_pmap->pm_stats.wired_count++;
   1530 	pvo->pvo_pmap->pm_stats.resident_count++;
   1531 #if defined(DEBUG)
   1532 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1533 		DPRINTFN(PVOENTER,
   1534 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1535 		    pvo, pm, va, pa));
   1536 #endif
   1537 
   1538 	/*
   1539 	 * We hope this succeeds but it isn't required.
   1540 	 */
   1541 	pvoh = &pmap_pvo_table[ptegidx];
   1542 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1543 	if (i >= 0) {
   1544 		PVO_PTEGIDX_SET(pvo, i);
   1545 		PVO_WHERE(pvo, ENTER_INSERT);
   1546 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1547 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1548 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1549 	} else {
   1550 		/*
   1551 		 * Since we didn't have room for this entry (which makes it
   1552 		 * and evicted entry), place it at the head of the list.
   1553 		 */
   1554 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1555 		PMAPCOUNT(ptes_evicted);
   1556 		pm->pm_evictions++;
   1557 		/*
   1558 		 * If this is a kernel page, make sure it's active.
   1559 		 */
   1560 		if (pm == pmap_kernel()) {
   1561 			i = pmap_pte_spill(pm, va, FALSE);
   1562 			KASSERT(i);
   1563 		}
   1564 	}
   1565 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1566 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1567 	pmap_pvo_enter_depth--;
   1568 #endif
   1569 	pmap_interrupts_restore(msr);
   1570 	return 0;
   1571 }
   1572 
   1573 void
   1574 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
   1575 {
   1576 	volatile struct pte *pt;
   1577 	int ptegidx;
   1578 
   1579 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1580 	if (++pmap_pvo_remove_depth > 1)
   1581 		panic("pmap_pvo_remove: called recursively!");
   1582 #endif
   1583 
   1584 	/*
   1585 	 * If we haven't been supplied the ptegidx, calculate it.
   1586 	 */
   1587 	if (pteidx == -1) {
   1588 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1589 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1590 	} else {
   1591 		ptegidx = pteidx >> 3;
   1592 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1593 			ptegidx ^= pmap_pteg_mask;
   1594 	}
   1595 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1596 
   1597 	/*
   1598 	 * If there is an active pte entry, we need to deactivate it
   1599 	 * (and save the ref & chg bits).
   1600 	 */
   1601 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1602 	if (pt != NULL) {
   1603 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1604 		PVO_WHERE(pvo, REMOVE);
   1605 		PVO_PTEGIDX_CLR(pvo);
   1606 		PMAPCOUNT(ptes_removed);
   1607 	} else {
   1608 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1609 		pvo->pvo_pmap->pm_evictions--;
   1610 	}
   1611 
   1612 	/*
   1613 	 * Account for executable mappings.
   1614 	 */
   1615 	if (PVO_ISEXECUTABLE(pvo))
   1616 		pvo_clear_exec(pvo);
   1617 
   1618 	/*
   1619 	 * Update our statistics.
   1620 	 */
   1621 	pvo->pvo_pmap->pm_stats.resident_count--;
   1622 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1623 		pvo->pvo_pmap->pm_stats.wired_count--;
   1624 
   1625 	/*
   1626 	 * Save the REF/CHG bits into their cache if the page is managed.
   1627 	 */
   1628 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1629 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1630 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1631 
   1632 		if (pg != NULL) {
   1633 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1634 		}
   1635 		PMAPCOUNT(unmappings);
   1636 	} else {
   1637 		PMAPCOUNT(kernel_unmappings);
   1638 	}
   1639 
   1640 	/*
   1641 	 * Remove the PVO from its lists and return it to the pool.
   1642 	 */
   1643 	LIST_REMOVE(pvo, pvo_vlink);
   1644 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1645 	pool_put(pvo->pvo_vaddr & PVO_MANAGED
   1646 	    ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1647 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1648 	pmap_pvo_remove_depth--;
   1649 #endif
   1650 }
   1651 
   1652 /*
   1653  * Mark a mapping as executable.
   1654  * If this is the first executable mapping in the segment,
   1655  * clear the noexec flag.
   1656  */
   1657 STATIC void
   1658 pvo_set_exec(struct pvo_entry *pvo)
   1659 {
   1660 	struct pmap *pm = pvo->pvo_pmap;
   1661 	int sr;
   1662 
   1663 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1664 		return;
   1665 	}
   1666 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1667 	sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1668 	if (pm->pm_exec[sr]++ == 0) {
   1669 		pm->pm_sr[sr] &= ~SR_NOEXEC;
   1670 	}
   1671 }
   1672 
   1673 /*
   1674  * Mark a mapping as non-executable.
   1675  * If this was the last executable mapping in the segment,
   1676  * set the noexec flag.
   1677  */
   1678 STATIC void
   1679 pvo_clear_exec(struct pvo_entry *pvo)
   1680 {
   1681 	struct pmap *pm = pvo->pvo_pmap;
   1682 	int sr;
   1683 
   1684 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1685 		return;
   1686 	}
   1687 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1688 	sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1689 	if (--pm->pm_exec[sr] == 0) {
   1690 		pm->pm_sr[sr] |= SR_NOEXEC;
   1691 	}
   1692 }
   1693 
   1694 /*
   1695  * Insert physical page at pa into the given pmap at virtual address va.
   1696  */
   1697 int
   1698 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1699 {
   1700 	struct mem_region *mp;
   1701 	struct pvo_head *pvo_head;
   1702 	struct vm_page *pg;
   1703 	struct pool *pl;
   1704 	register_t pte_lo;
   1705 	int error;
   1706 	u_int pvo_flags;
   1707 	u_int was_exec = 0;
   1708 
   1709 	if (__predict_false(!pmap_initialized)) {
   1710 		pvo_head = &pmap_pvo_kunmanaged;
   1711 		pl = &pmap_upvo_pool;
   1712 		pvo_flags = 0;
   1713 		pg = NULL;
   1714 		was_exec = PTE_EXEC;
   1715 	} else {
   1716 		pvo_head = pa_to_pvoh(pa, &pg);
   1717 		pl = &pmap_mpvo_pool;
   1718 		pvo_flags = PVO_MANAGED;
   1719 	}
   1720 
   1721 	DPRINTFN(ENTER,
   1722 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1723 	    pm, va, pa, prot, flags));
   1724 
   1725 	/*
   1726 	 * If this is a managed page, and it's the first reference to the
   1727 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1728 	 */
   1729 	if (pg != NULL)
   1730 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1731 
   1732 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1733 
   1734 	/*
   1735 	 * Assume the page is cache inhibited and access is guarded unless
   1736 	 * it's in our available memory array.  If it is in the memory array,
   1737 	 * asssume it's in memory coherent memory.
   1738 	 */
   1739 	pte_lo = PTE_IG;
   1740 	if ((flags & PMAP_NC) == 0) {
   1741 		for (mp = mem; mp->size; mp++) {
   1742 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1743 				pte_lo = PTE_M;
   1744 				break;
   1745 			}
   1746 		}
   1747 	}
   1748 
   1749 	if (prot & VM_PROT_WRITE)
   1750 		pte_lo |= PTE_BW;
   1751 	else
   1752 		pte_lo |= PTE_BR;
   1753 
   1754 	/*
   1755 	 * If this was in response to a fault, "pre-fault" the PTE's
   1756 	 * changed/referenced bit appropriately.
   1757 	 */
   1758 	if (flags & VM_PROT_WRITE)
   1759 		pte_lo |= PTE_CHG;
   1760 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1761 		pte_lo |= PTE_REF;
   1762 
   1763 	/*
   1764 	 * We need to know if this page can be executable
   1765 	 */
   1766 	flags |= (prot & VM_PROT_EXECUTE);
   1767 
   1768 	/*
   1769 	 * Record mapping for later back-translation and pte spilling.
   1770 	 * This will overwrite any existing mapping.
   1771 	 */
   1772 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1773 
   1774 	/*
   1775 	 * Flush the real page from the instruction cache if this page is
   1776 	 * mapped executable and cacheable and has not been flushed since
   1777 	 * the last time it was modified.
   1778 	 */
   1779 	if (error == 0 &&
   1780             (flags & VM_PROT_EXECUTE) &&
   1781             (pte_lo & PTE_I) == 0 &&
   1782 	    was_exec == 0) {
   1783 		DPRINTFN(ENTER, (" syncicache"));
   1784 		PMAPCOUNT(exec_synced);
   1785 		pmap_syncicache(pa, PAGE_SIZE);
   1786 		if (pg != NULL) {
   1787 			pmap_attr_save(pg, PTE_EXEC);
   1788 			PMAPCOUNT(exec_cached);
   1789 #if defined(DEBUG) || defined(PMAPDEBUG)
   1790 			if (pmapdebug & PMAPDEBUG_ENTER)
   1791 				printf(" marked-as-exec");
   1792 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1793 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1794 				    pg->phys_addr);
   1795 
   1796 #endif
   1797 		}
   1798 	}
   1799 
   1800 	DPRINTFN(ENTER, (": error=%d\n", error));
   1801 
   1802 	return error;
   1803 }
   1804 
   1805 void
   1806 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1807 {
   1808 	struct mem_region *mp;
   1809 	register_t pte_lo;
   1810 	int error;
   1811 
   1812 	if (va < VM_MIN_KERNEL_ADDRESS)
   1813 		panic("pmap_kenter_pa: attempt to enter "
   1814 		    "non-kernel address %#lx!", va);
   1815 
   1816 	DPRINTFN(KENTER,
   1817 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1818 
   1819 	/*
   1820 	 * Assume the page is cache inhibited and access is guarded unless
   1821 	 * it's in our available memory array.  If it is in the memory array,
   1822 	 * asssume it's in memory coherent memory.
   1823 	 */
   1824 	pte_lo = PTE_IG;
   1825 	if ((prot & PMAP_NC) == 0) {
   1826 		for (mp = mem; mp->size; mp++) {
   1827 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1828 				pte_lo = PTE_M;
   1829 				break;
   1830 			}
   1831 		}
   1832 	}
   1833 
   1834 	if (prot & VM_PROT_WRITE)
   1835 		pte_lo |= PTE_BW;
   1836 	else
   1837 		pte_lo |= PTE_BR;
   1838 
   1839 	/*
   1840 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1841 	 */
   1842 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1843 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1844 
   1845 	if (error != 0)
   1846 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1847 		      va, pa, error);
   1848 }
   1849 
   1850 void
   1851 pmap_kremove(vaddr_t va, vsize_t len)
   1852 {
   1853 	if (va < VM_MIN_KERNEL_ADDRESS)
   1854 		panic("pmap_kremove: attempt to remove "
   1855 		    "non-kernel address %#lx!", va);
   1856 
   1857 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1858 	pmap_remove(pmap_kernel(), va, va + len);
   1859 }
   1860 
   1861 /*
   1862  * Remove the given range of mapping entries.
   1863  */
   1864 void
   1865 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1866 {
   1867 	struct pvo_entry *pvo;
   1868 	register_t msr;
   1869 	int pteidx;
   1870 
   1871 	msr = pmap_interrupts_off();
   1872 	for (; va < endva; va += PAGE_SIZE) {
   1873 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1874 		if (pvo != NULL) {
   1875 			pmap_pvo_remove(pvo, pteidx);
   1876 		}
   1877 	}
   1878 	pmap_interrupts_restore(msr);
   1879 }
   1880 
   1881 /*
   1882  * Get the physical page address for the given pmap/virtual address.
   1883  */
   1884 boolean_t
   1885 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1886 {
   1887 	struct pvo_entry *pvo;
   1888 	register_t msr;
   1889 
   1890 	/*
   1891 	 * If this is a kernel pmap lookup, also check the battable
   1892 	 * and if we get a hit, translate the VA to a PA using the
   1893 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   1894 	 * that will wrap back to 0.
   1895 	 */
   1896 	if (pm == pmap_kernel() &&
   1897 	    (va < VM_MIN_KERNEL_ADDRESS ||
   1898 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   1899 		register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   1900 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   1901 		if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   1902 			register_t batl = battable[va >> ADDR_SR_SHFT].batl;
   1903 			register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   1904 			*pap = (batl & mask) | (va & ~mask);
   1905 			return TRUE;
   1906 		}
   1907 		return FALSE;
   1908 	}
   1909 
   1910 	msr = pmap_interrupts_off();
   1911 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   1912 	if (pvo != NULL) {
   1913 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1914 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   1915 	}
   1916 	pmap_interrupts_restore(msr);
   1917 	return pvo != NULL;
   1918 }
   1919 
   1920 /*
   1921  * Lower the protection on the specified range of this pmap.
   1922  */
   1923 void
   1924 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   1925 {
   1926 	struct pvo_entry *pvo;
   1927 	volatile struct pte *pt;
   1928 	register_t msr;
   1929 	int pteidx;
   1930 
   1931 	/*
   1932 	 * Since this routine only downgrades protection, we should
   1933 	 * always be called with at least one bit not set.
   1934 	 */
   1935 	KASSERT(prot != VM_PROT_ALL);
   1936 
   1937 	/*
   1938 	 * If there is no protection, this is equivalent to
   1939 	 * remove the pmap from the pmap.
   1940 	 */
   1941 	if ((prot & VM_PROT_READ) == 0) {
   1942 		pmap_remove(pm, va, endva);
   1943 		return;
   1944 	}
   1945 
   1946 	msr = pmap_interrupts_off();
   1947 	for (; va < endva; va += PAGE_SIZE) {
   1948 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1949 		if (pvo == NULL)
   1950 			continue;
   1951 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1952 
   1953 		/*
   1954 		 * Revoke executable if asked to do so.
   1955 		 */
   1956 		if ((prot & VM_PROT_EXECUTE) == 0)
   1957 			pvo_clear_exec(pvo);
   1958 
   1959 #if 0
   1960 		/*
   1961 		 * If the page is already read-only, no change
   1962 		 * needs to be made.
   1963 		 */
   1964 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   1965 			continue;
   1966 #endif
   1967 		/*
   1968 		 * Grab the PTE pointer before we diddle with
   1969 		 * the cached PTE copy.
   1970 		 */
   1971 		pt = pmap_pvo_to_pte(pvo, pteidx);
   1972 		/*
   1973 		 * Change the protection of the page.
   1974 		 */
   1975 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   1976 		pvo->pvo_pte.pte_lo |= PTE_BR;
   1977 
   1978 		/*
   1979 		 * If the PVO is in the page table, update
   1980 		 * that pte at well.
   1981 		 */
   1982 		if (pt != NULL) {
   1983 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1984 			PVO_WHERE(pvo, PMAP_PROTECT);
   1985 			PMAPCOUNT(ptes_changed);
   1986 		}
   1987 
   1988 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1989 	}
   1990 	pmap_interrupts_restore(msr);
   1991 }
   1992 
   1993 void
   1994 pmap_unwire(pmap_t pm, vaddr_t va)
   1995 {
   1996 	struct pvo_entry *pvo;
   1997 	register_t msr;
   1998 
   1999 	msr = pmap_interrupts_off();
   2000 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2001 	if (pvo != NULL) {
   2002 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2003 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2004 			pm->pm_stats.wired_count--;
   2005 		}
   2006 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2007 	}
   2008 	pmap_interrupts_restore(msr);
   2009 }
   2010 
   2011 /*
   2012  * Lower the protection on the specified physical page.
   2013  */
   2014 void
   2015 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2016 {
   2017 	struct pvo_head *pvo_head;
   2018 	struct pvo_entry *pvo, *next_pvo;
   2019 	volatile struct pte *pt;
   2020 	register_t msr;
   2021 
   2022 	KASSERT(prot != VM_PROT_ALL);
   2023 	msr = pmap_interrupts_off();
   2024 
   2025 	/*
   2026 	 * When UVM reuses a page, it does a pmap_page_protect with
   2027 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2028 	 * since we know the page will have different contents.
   2029 	 */
   2030 	if ((prot & VM_PROT_READ) == 0) {
   2031 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2032 		    pg->phys_addr));
   2033 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2034 			PMAPCOUNT(exec_uncached_page_protect);
   2035 			pmap_attr_clear(pg, PTE_EXEC);
   2036 		}
   2037 	}
   2038 
   2039 	pvo_head = vm_page_to_pvoh(pg);
   2040 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2041 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2042 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2043 
   2044 		/*
   2045 		 * Downgrading to no mapping at all, we just remove the entry.
   2046 		 */
   2047 		if ((prot & VM_PROT_READ) == 0) {
   2048 			pmap_pvo_remove(pvo, -1);
   2049 			continue;
   2050 		}
   2051 
   2052 		/*
   2053 		 * If EXEC permission is being revoked, just clear the
   2054 		 * flag in the PVO.
   2055 		 */
   2056 		if ((prot & VM_PROT_EXECUTE) == 0)
   2057 			pvo_clear_exec(pvo);
   2058 
   2059 		/*
   2060 		 * If this entry is already RO, don't diddle with the
   2061 		 * page table.
   2062 		 */
   2063 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2064 			PMAP_PVO_CHECK(pvo);
   2065 			continue;
   2066 		}
   2067 
   2068 		/*
   2069 		 * Grab the PTE before the we diddle the bits so
   2070 		 * pvo_to_pte can verify the pte contents are as
   2071 		 * expected.
   2072 		 */
   2073 		pt = pmap_pvo_to_pte(pvo, -1);
   2074 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2075 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2076 		if (pt != NULL) {
   2077 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2078 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2079 			PMAPCOUNT(ptes_changed);
   2080 		}
   2081 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2082 	}
   2083 	pmap_interrupts_restore(msr);
   2084 }
   2085 
   2086 /*
   2087  * Activate the address space for the specified process.  If the process
   2088  * is the current process, load the new MMU context.
   2089  */
   2090 void
   2091 pmap_activate(struct lwp *l)
   2092 {
   2093 	struct pcb *pcb = &l->l_addr->u_pcb;
   2094 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2095 
   2096 	DPRINTFN(ACTIVATE,
   2097 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2098 
   2099 	/*
   2100 	 * XXX Normally performed in cpu_fork().
   2101 	 */
   2102 	pcb->pcb_pm = pmap;
   2103 }
   2104 
   2105 /*
   2106  * Deactivate the specified process's address space.
   2107  */
   2108 void
   2109 pmap_deactivate(struct lwp *l)
   2110 {
   2111 }
   2112 
   2113 boolean_t
   2114 pmap_query_bit(struct vm_page *pg, int ptebit)
   2115 {
   2116 	struct pvo_entry *pvo;
   2117 	volatile struct pte *pt;
   2118 	register_t msr;
   2119 
   2120 	if (pmap_attr_fetch(pg) & ptebit)
   2121 		return TRUE;
   2122 
   2123 	msr = pmap_interrupts_off();
   2124 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2125 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2126 		/*
   2127 		 * See if we saved the bit off.  If so cache, it and return
   2128 		 * success.
   2129 		 */
   2130 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2131 			pmap_attr_save(pg, ptebit);
   2132 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2133 			pmap_interrupts_restore(msr);
   2134 			return TRUE;
   2135 		}
   2136 	}
   2137 	/*
   2138 	 * No luck, now go thru the hard part of looking at the ptes
   2139 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2140 	 * to the PTEs.
   2141 	 */
   2142 	SYNC();
   2143 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2144 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2145 		/*
   2146 		 * See if this pvo have a valid PTE.  If so, fetch the
   2147 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2148 		 * ptebit is set, cache, it and return success.
   2149 		 */
   2150 		pt = pmap_pvo_to_pte(pvo, -1);
   2151 		if (pt != NULL) {
   2152 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2153 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2154 				pmap_attr_save(pg, ptebit);
   2155 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2156 				pmap_interrupts_restore(msr);
   2157 				return TRUE;
   2158 			}
   2159 		}
   2160 	}
   2161 	pmap_interrupts_restore(msr);
   2162 	return FALSE;
   2163 }
   2164 
   2165 boolean_t
   2166 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2167 {
   2168 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2169 	struct pvo_entry *pvo;
   2170 	volatile struct pte *pt;
   2171 	register_t msr;
   2172 	int rv = 0;
   2173 
   2174 	msr = pmap_interrupts_off();
   2175 
   2176 	/*
   2177 	 * Fetch the cache value
   2178 	 */
   2179 	rv |= pmap_attr_fetch(pg);
   2180 
   2181 	/*
   2182 	 * Clear the cached value.
   2183 	 */
   2184 	pmap_attr_clear(pg, ptebit);
   2185 
   2186 	/*
   2187 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2188 	 * can reset the right ones).  Note that since the pvo entries and
   2189 	 * list heads are accessed via BAT0 and are never placed in the
   2190 	 * page table, we don't have to worry about further accesses setting
   2191 	 * the REF/CHG bits.
   2192 	 */
   2193 	SYNC();
   2194 
   2195 	/*
   2196 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2197 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2198 	 */
   2199 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2200 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2201 		pt = pmap_pvo_to_pte(pvo, -1);
   2202 		if (pt != NULL) {
   2203 			/*
   2204 			 * Only sync the PTE if the bit we are looking
   2205 			 * for is not already set.
   2206 			 */
   2207 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2208 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2209 			/*
   2210 			 * If the bit we are looking for was already set,
   2211 			 * clear that bit in the pte.
   2212 			 */
   2213 			if (pvo->pvo_pte.pte_lo & ptebit)
   2214 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2215 		}
   2216 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2217 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2218 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2219 	}
   2220 	pmap_interrupts_restore(msr);
   2221 
   2222 	/*
   2223 	 * If we are clearing the modify bit and this page was marked EXEC
   2224 	 * and the user of the page thinks the page was modified, then we
   2225 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2226 	 * bit if it's not mapped.  The page itself might not have the CHG
   2227 	 * bit set if the modification was done via DMA to the page.
   2228 	 */
   2229 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2230 		if (LIST_EMPTY(pvoh)) {
   2231 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2232 			    pg->phys_addr));
   2233 			pmap_attr_clear(pg, PTE_EXEC);
   2234 			PMAPCOUNT(exec_uncached_clear_modify);
   2235 		} else {
   2236 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2237 			    pg->phys_addr));
   2238 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2239 			PMAPCOUNT(exec_synced_clear_modify);
   2240 		}
   2241 	}
   2242 	return (rv & ptebit) != 0;
   2243 }
   2244 
   2245 void
   2246 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2247 {
   2248 	struct pvo_entry *pvo;
   2249 	size_t offset = va & ADDR_POFF;
   2250 	int s;
   2251 
   2252 	s = splvm();
   2253 	while (len > 0) {
   2254 		size_t seglen = PAGE_SIZE - offset;
   2255 		if (seglen > len)
   2256 			seglen = len;
   2257 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2258 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2259 			pmap_syncicache(
   2260 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2261 			PMAP_PVO_CHECK(pvo);
   2262 		}
   2263 		va += seglen;
   2264 		len -= seglen;
   2265 		offset = 0;
   2266 	}
   2267 	splx(s);
   2268 }
   2269 
   2270 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2271 void
   2272 pmap_pte_print(volatile struct pte *pt)
   2273 {
   2274 	printf("PTE %p: ", pt);
   2275 	/* High word: */
   2276 	printf("0x%08lx: [", pt->pte_hi);
   2277 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2278 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2279 	printf("0x%06lx 0x%02lx",
   2280 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2281 	    pt->pte_hi & PTE_API);
   2282 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2283 	/* Low word: */
   2284 	printf(" 0x%08lx: [", pt->pte_lo);
   2285 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2286 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2287 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2288 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2289 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2290 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2291 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2292 	switch (pt->pte_lo & PTE_PP) {
   2293 	case PTE_BR: printf("br]\n"); break;
   2294 	case PTE_BW: printf("bw]\n"); break;
   2295 	case PTE_SO: printf("so]\n"); break;
   2296 	case PTE_SW: printf("sw]\n"); break;
   2297 	}
   2298 }
   2299 #endif
   2300 
   2301 #if defined(DDB)
   2302 void
   2303 pmap_pteg_check(void)
   2304 {
   2305 	volatile struct pte *pt;
   2306 	int i;
   2307 	int ptegidx;
   2308 	u_int p_valid = 0;
   2309 	u_int s_valid = 0;
   2310 	u_int invalid = 0;
   2311 
   2312 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2313 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2314 			if (pt->pte_hi & PTE_VALID) {
   2315 				if (pt->pte_hi & PTE_HID)
   2316 					s_valid++;
   2317 				else
   2318 					p_valid++;
   2319 			} else
   2320 				invalid++;
   2321 		}
   2322 	}
   2323 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2324 		p_valid, p_valid, s_valid, s_valid,
   2325 		invalid, invalid);
   2326 }
   2327 
   2328 void
   2329 pmap_print_mmuregs(void)
   2330 {
   2331 	int i;
   2332 	u_int cpuvers;
   2333 	vaddr_t addr;
   2334 	register_t soft_sr[16];
   2335 	struct bat soft_ibat[4];
   2336 	struct bat soft_dbat[4];
   2337 	register_t sdr1;
   2338 
   2339 	cpuvers = MFPVR() >> 16;
   2340 
   2341 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2342 	for (i=0; i<16; i++) {
   2343 		soft_sr[i] = MFSRIN(addr);
   2344 		addr += (1 << ADDR_SR_SHFT);
   2345 	}
   2346 
   2347 	/* read iBAT (601: uBAT) registers */
   2348 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2349 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2350 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2351 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2352 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2353 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2354 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2355 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2356 
   2357 
   2358 	if (cpuvers != MPC601) {
   2359 		/* read dBAT registers */
   2360 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2361 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2362 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2363 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2364 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2365 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2366 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2367 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2368 	}
   2369 
   2370 	printf("SDR1:\t%#lx\n", sdr1);
   2371 	printf("SR[]:\t");
   2372 	addr = 0;
   2373 	for (i=0; i<4; i++)
   2374 		printf("0x%08lx,   ", soft_sr[i]);
   2375 	printf("\n\t");
   2376 	for ( ; i<8; i++)
   2377 		printf("0x%08lx,   ", soft_sr[i]);
   2378 	printf("\n\t");
   2379 	for ( ; i<12; i++)
   2380 		printf("0x%08lx,   ", soft_sr[i]);
   2381 	printf("\n\t");
   2382 	for ( ; i<16; i++)
   2383 		printf("0x%08lx,   ", soft_sr[i]);
   2384 	printf("\n");
   2385 
   2386 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2387 	for (i=0; i<4; i++) {
   2388 		printf("0x%08lx 0x%08lx, ",
   2389 			soft_ibat[i].batu, soft_ibat[i].batl);
   2390 		if (i == 1)
   2391 			printf("\n\t");
   2392 	}
   2393 	if (cpuvers != MPC601) {
   2394 		printf("\ndBAT[]:\t");
   2395 		for (i=0; i<4; i++) {
   2396 			printf("0x%08lx 0x%08lx, ",
   2397 				soft_dbat[i].batu, soft_dbat[i].batl);
   2398 			if (i == 1)
   2399 				printf("\n\t");
   2400 		}
   2401 	}
   2402 	printf("\n");
   2403 }
   2404 
   2405 void
   2406 pmap_print_pte(pmap_t pm, vaddr_t va)
   2407 {
   2408 	struct pvo_entry *pvo;
   2409 	volatile struct pte *pt;
   2410 	int pteidx;
   2411 
   2412 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2413 	if (pvo != NULL) {
   2414 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2415 		if (pt != NULL) {
   2416 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2417 				va, pt,
   2418 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2419 				pt->pte_hi, pt->pte_lo);
   2420 		} else {
   2421 			printf("No valid PTE found\n");
   2422 		}
   2423 	} else {
   2424 		printf("Address not in pmap\n");
   2425 	}
   2426 }
   2427 
   2428 void
   2429 pmap_pteg_dist(void)
   2430 {
   2431 	struct pvo_entry *pvo;
   2432 	int ptegidx;
   2433 	int depth;
   2434 	int max_depth = 0;
   2435 	unsigned int depths[64];
   2436 
   2437 	memset(depths, 0, sizeof(depths));
   2438 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2439 		depth = 0;
   2440 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2441 			depth++;
   2442 		}
   2443 		if (depth > max_depth)
   2444 			max_depth = depth;
   2445 		if (depth > 63)
   2446 			depth = 63;
   2447 		depths[depth]++;
   2448 	}
   2449 
   2450 	for (depth = 0; depth < 64; depth++) {
   2451 		printf("  [%2d]: %8u", depth, depths[depth]);
   2452 		if ((depth & 3) == 3)
   2453 			printf("\n");
   2454 		if (depth == max_depth)
   2455 			break;
   2456 	}
   2457 	if ((depth & 3) != 3)
   2458 		printf("\n");
   2459 	printf("Max depth found was %d\n", max_depth);
   2460 }
   2461 #endif /* DEBUG */
   2462 
   2463 #if defined(PMAPCHECK) || defined(DEBUG)
   2464 void
   2465 pmap_pvo_verify(void)
   2466 {
   2467 	int ptegidx;
   2468 	int s;
   2469 
   2470 	s = splvm();
   2471 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2472 		struct pvo_entry *pvo;
   2473 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2474 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2475 				panic("pmap_pvo_verify: invalid pvo %p "
   2476 				    "on list %#x", pvo, ptegidx);
   2477 			pmap_pvo_check(pvo);
   2478 		}
   2479 	}
   2480 	splx(s);
   2481 }
   2482 #endif /* PMAPCHECK */
   2483 
   2484 
   2485 void *
   2486 pmap_pool_ualloc(struct pool *pp, int flags)
   2487 {
   2488 	struct pvo_page *pvop;
   2489 
   2490 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2491 	if (pvop != NULL) {
   2492 		pmap_upvop_free--;
   2493 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2494 		return pvop;
   2495 	}
   2496 	if (uvm.page_init_done != TRUE) {
   2497 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2498 	}
   2499 	return pmap_pool_malloc(pp, flags);
   2500 }
   2501 
   2502 void *
   2503 pmap_pool_malloc(struct pool *pp, int flags)
   2504 {
   2505 	struct pvo_page *pvop;
   2506 	struct vm_page *pg;
   2507 
   2508 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2509 	if (pvop != NULL) {
   2510 		pmap_mpvop_free--;
   2511 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2512 		return pvop;
   2513 	}
   2514  again:
   2515 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2516 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2517 	if (__predict_false(pg == NULL)) {
   2518 		if (flags & PR_WAITOK) {
   2519 			uvm_wait("plpg");
   2520 			goto again;
   2521 		} else {
   2522 			return (0);
   2523 		}
   2524 	}
   2525 	return (void *) VM_PAGE_TO_PHYS(pg);
   2526 }
   2527 
   2528 void
   2529 pmap_pool_ufree(struct pool *pp, void *va)
   2530 {
   2531 	struct pvo_page *pvop;
   2532 #if 0
   2533 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2534 		pmap_pool_mfree(va, size, tag);
   2535 		return;
   2536 	}
   2537 #endif
   2538 	pvop = va;
   2539 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2540 	pmap_upvop_free++;
   2541 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2542 		pmap_upvop_maxfree = pmap_upvop_free;
   2543 }
   2544 
   2545 void
   2546 pmap_pool_mfree(struct pool *pp, void *va)
   2547 {
   2548 	struct pvo_page *pvop;
   2549 
   2550 	pvop = va;
   2551 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2552 	pmap_mpvop_free++;
   2553 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2554 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2555 #if 0
   2556 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2557 #endif
   2558 }
   2559 
   2560 /*
   2561  * This routine in bootstraping to steal to-be-managed memory (which will
   2562  * then be unmanaged).  We use it to grab from the first 256MB for our
   2563  * pmap needs and above 256MB for other stuff.
   2564  */
   2565 vaddr_t
   2566 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2567 {
   2568 	vsize_t size;
   2569 	vaddr_t va;
   2570 	paddr_t pa = 0;
   2571 	int npgs, bank;
   2572 	struct vm_physseg *ps;
   2573 
   2574 	if (uvm.page_init_done == TRUE)
   2575 		panic("pmap_steal_memory: called _after_ bootstrap");
   2576 
   2577 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2578 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2579 
   2580 	size = round_page(vsize);
   2581 	npgs = atop(size);
   2582 
   2583 	/*
   2584 	 * PA 0 will never be among those given to UVM so we can use it
   2585 	 * to indicate we couldn't steal any memory.
   2586 	 */
   2587 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2588 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2589 		    ps->avail_end - ps->avail_start >= npgs) {
   2590 			pa = ptoa(ps->avail_start);
   2591 			break;
   2592 		}
   2593 	}
   2594 
   2595 	if (pa == 0)
   2596 		panic("pmap_steal_memory: no approriate memory to steal!");
   2597 
   2598 	ps->avail_start += npgs;
   2599 	ps->start += npgs;
   2600 
   2601 	/*
   2602 	 * If we've used up all the pages in the segment, remove it and
   2603 	 * compact the list.
   2604 	 */
   2605 	if (ps->avail_start == ps->end) {
   2606 		/*
   2607 		 * If this was the last one, then a very bad thing has occurred
   2608 		 */
   2609 		if (--vm_nphysseg == 0)
   2610 			panic("pmap_steal_memory: out of memory!");
   2611 
   2612 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2613 		for (; bank < vm_nphysseg; bank++, ps++) {
   2614 			ps[0] = ps[1];
   2615 		}
   2616 	}
   2617 
   2618 	va = (vaddr_t) pa;
   2619 	memset((caddr_t) va, 0, size);
   2620 	pmap_pages_stolen += npgs;
   2621 #ifdef DEBUG
   2622 	if (pmapdebug && npgs > 1) {
   2623 		u_int cnt = 0;
   2624 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2625 			cnt += ps->avail_end - ps->avail_start;
   2626 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2627 		    npgs, pmap_pages_stolen, cnt);
   2628 	}
   2629 #endif
   2630 
   2631 	return va;
   2632 }
   2633 
   2634 /*
   2635  * Find a chuck of memory with right size and alignment.
   2636  */
   2637 void *
   2638 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2639 {
   2640 	struct mem_region *mp;
   2641 	paddr_t s, e;
   2642 	int i, j;
   2643 
   2644 	size = round_page(size);
   2645 
   2646 	DPRINTFN(BOOT,
   2647 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2648 	    size, alignment, at_end));
   2649 
   2650 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2651 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2652 		    alignment);
   2653 
   2654 	if (at_end) {
   2655 		if (alignment != PAGE_SIZE)
   2656 			panic("pmap_boot_find_memory: invalid ending "
   2657 			    "alignment %lx", alignment);
   2658 
   2659 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2660 			s = mp->start + mp->size - size;
   2661 			if (s >= mp->start && mp->size >= size) {
   2662 				DPRINTFN(BOOT,(": %lx\n", s));
   2663 				DPRINTFN(BOOT,
   2664 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2665 				     "0x%lx size 0x%lx\n", mp - avail,
   2666 				     mp->start, mp->size));
   2667 				mp->size -= size;
   2668 				DPRINTFN(BOOT,
   2669 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2670 				     "0x%lx size 0x%lx\n", mp - avail,
   2671 				     mp->start, mp->size));
   2672 				return (void *) s;
   2673 			}
   2674 		}
   2675 		panic("pmap_boot_find_memory: no available memory");
   2676 	}
   2677 
   2678 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2679 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2680 		e = s + size;
   2681 
   2682 		/*
   2683 		 * Is the calculated region entirely within the region?
   2684 		 */
   2685 		if (s < mp->start || e > mp->start + mp->size)
   2686 			continue;
   2687 
   2688 		DPRINTFN(BOOT,(": %lx\n", s));
   2689 		if (s == mp->start) {
   2690 			/*
   2691 			 * If the block starts at the beginning of region,
   2692 			 * adjust the size & start. (the region may now be
   2693 			 * zero in length)
   2694 			 */
   2695 			DPRINTFN(BOOT,
   2696 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2697 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2698 			mp->start += size;
   2699 			mp->size -= size;
   2700 			DPRINTFN(BOOT,
   2701 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2702 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2703 		} else if (e == mp->start + mp->size) {
   2704 			/*
   2705 			 * If the block starts at the beginning of region,
   2706 			 * adjust only the size.
   2707 			 */
   2708 			DPRINTFN(BOOT,
   2709 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2710 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2711 			mp->size -= size;
   2712 			DPRINTFN(BOOT,
   2713 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2714 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2715 		} else {
   2716 			/*
   2717 			 * Block is in the middle of the region, so we
   2718 			 * have to split it in two.
   2719 			 */
   2720 			for (j = avail_cnt; j > i + 1; j--) {
   2721 				avail[j] = avail[j-1];
   2722 			}
   2723 			DPRINTFN(BOOT,
   2724 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2725 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2726 			mp[1].start = e;
   2727 			mp[1].size = mp[0].start + mp[0].size - e;
   2728 			mp[0].size = s - mp[0].start;
   2729 			avail_cnt++;
   2730 			for (; i < avail_cnt; i++) {
   2731 				DPRINTFN(BOOT,
   2732 				    ("pmap_boot_find_memory: a-avail[%d] "
   2733 				     "start 0x%lx size 0x%lx\n", i,
   2734 				     avail[i].start, avail[i].size));
   2735 			}
   2736 		}
   2737 		return (void *) s;
   2738 	}
   2739 	panic("pmap_boot_find_memory: not enough memory for "
   2740 	    "%lx/%lx allocation?", size, alignment);
   2741 }
   2742 
   2743 /*
   2744  * This is not part of the defined PMAP interface and is specific to the
   2745  * PowerPC architecture.  This is called during initppc, before the system
   2746  * is really initialized.
   2747  */
   2748 void
   2749 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2750 {
   2751 	struct mem_region *mp, tmp;
   2752 	paddr_t s, e;
   2753 	psize_t size;
   2754 	int i, j;
   2755 
   2756 	/*
   2757 	 * Get memory.
   2758 	 */
   2759 	mem_regions(&mem, &avail);
   2760 #if defined(DEBUG)
   2761 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2762 		printf("pmap_bootstrap: memory configuration:\n");
   2763 		for (mp = mem; mp->size; mp++) {
   2764 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2765 				mp->start, mp->size);
   2766 		}
   2767 		for (mp = avail; mp->size; mp++) {
   2768 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2769 				mp->start, mp->size);
   2770 		}
   2771 	}
   2772 #endif
   2773 
   2774 	/*
   2775 	 * Find out how much physical memory we have and in how many chunks.
   2776 	 */
   2777 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2778 		if (mp->start >= pmap_memlimit)
   2779 			continue;
   2780 		if (mp->start + mp->size > pmap_memlimit) {
   2781 			size = pmap_memlimit - mp->start;
   2782 			physmem += btoc(size);
   2783 		} else {
   2784 			physmem += btoc(mp->size);
   2785 		}
   2786 		mem_cnt++;
   2787 	}
   2788 
   2789 	/*
   2790 	 * Count the number of available entries.
   2791 	 */
   2792 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2793 		avail_cnt++;
   2794 
   2795 	/*
   2796 	 * Page align all regions.
   2797 	 */
   2798 	kernelstart = trunc_page(kernelstart);
   2799 	kernelend = round_page(kernelend);
   2800 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2801 		s = round_page(mp->start);
   2802 		mp->size -= (s - mp->start);
   2803 		mp->size = trunc_page(mp->size);
   2804 		mp->start = s;
   2805 		e = mp->start + mp->size;
   2806 
   2807 		DPRINTFN(BOOT,
   2808 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2809 		    i, mp->start, mp->size));
   2810 
   2811 		/*
   2812 		 * Don't allow the end to run beyond our artificial limit
   2813 		 */
   2814 		if (e > pmap_memlimit)
   2815 			e = pmap_memlimit;
   2816 
   2817 		/*
   2818 		 * Is this region empty or strange?  skip it.
   2819 		 */
   2820 		if (e <= s) {
   2821 			mp->start = 0;
   2822 			mp->size = 0;
   2823 			continue;
   2824 		}
   2825 
   2826 		/*
   2827 		 * Does this overlap the beginning of kernel?
   2828 		 *   Does extend past the end of the kernel?
   2829 		 */
   2830 		else if (s < kernelstart && e > kernelstart) {
   2831 			if (e > kernelend) {
   2832 				avail[avail_cnt].start = kernelend;
   2833 				avail[avail_cnt].size = e - kernelend;
   2834 				avail_cnt++;
   2835 			}
   2836 			mp->size = kernelstart - s;
   2837 		}
   2838 		/*
   2839 		 * Check whether this region overlaps the end of the kernel.
   2840 		 */
   2841 		else if (s < kernelend && e > kernelend) {
   2842 			mp->start = kernelend;
   2843 			mp->size = e - kernelend;
   2844 		}
   2845 		/*
   2846 		 * Look whether this regions is completely inside the kernel.
   2847 		 * Nuke it if it does.
   2848 		 */
   2849 		else if (s >= kernelstart && e <= kernelend) {
   2850 			mp->start = 0;
   2851 			mp->size = 0;
   2852 		}
   2853 		/*
   2854 		 * If the user imposed a memory limit, enforce it.
   2855 		 */
   2856 		else if (s >= pmap_memlimit) {
   2857 			mp->start = -PAGE_SIZE;	/* let's know why */
   2858 			mp->size = 0;
   2859 		}
   2860 		else {
   2861 			mp->start = s;
   2862 			mp->size = e - s;
   2863 		}
   2864 		DPRINTFN(BOOT,
   2865 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   2866 		    i, mp->start, mp->size));
   2867 	}
   2868 
   2869 	/*
   2870 	 * Move (and uncount) all the null return to the end.
   2871 	 */
   2872 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2873 		if (mp->size == 0) {
   2874 			tmp = avail[i];
   2875 			avail[i] = avail[--avail_cnt];
   2876 			avail[avail_cnt] = avail[i];
   2877 		}
   2878 	}
   2879 
   2880 	/*
   2881 	 * (Bubble)sort them into asecnding order.
   2882 	 */
   2883 	for (i = 0; i < avail_cnt; i++) {
   2884 		for (j = i + 1; j < avail_cnt; j++) {
   2885 			if (avail[i].start > avail[j].start) {
   2886 				tmp = avail[i];
   2887 				avail[i] = avail[j];
   2888 				avail[j] = tmp;
   2889 			}
   2890 		}
   2891 	}
   2892 
   2893 	/*
   2894 	 * Make sure they don't overlap.
   2895 	 */
   2896 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   2897 		if (mp[0].start + mp[0].size > mp[1].start) {
   2898 			mp[0].size = mp[1].start - mp[0].start;
   2899 		}
   2900 		DPRINTFN(BOOT,
   2901 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2902 		    i, mp->start, mp->size));
   2903 	}
   2904 	DPRINTFN(BOOT,
   2905 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2906 	    i, mp->start, mp->size));
   2907 
   2908 #ifdef	PTEGCOUNT
   2909 	pmap_pteg_cnt = PTEGCOUNT;
   2910 #else /* PTEGCOUNT */
   2911 	pmap_pteg_cnt = 0x1000;
   2912 
   2913 	while (pmap_pteg_cnt < physmem)
   2914 		pmap_pteg_cnt <<= 1;
   2915 
   2916 	pmap_pteg_cnt >>= 1;
   2917 #endif /* PTEGCOUNT */
   2918 
   2919 	/*
   2920 	 * Find suitably aligned memory for PTEG hash table.
   2921 	 */
   2922 	size = pmap_pteg_cnt * sizeof(struct pteg);
   2923 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   2924 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2925 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   2926 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   2927 		    pmap_pteg_table, size);
   2928 #endif
   2929 
   2930 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   2931 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   2932 
   2933 	/*
   2934 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   2935 	 * with pages.  So we just steal them before giving them to UVM.
   2936 	 */
   2937 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   2938 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   2939 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2940 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   2941 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   2942 		    pmap_pvo_table, size);
   2943 #endif
   2944 
   2945 	for (i = 0; i < pmap_pteg_cnt; i++)
   2946 		TAILQ_INIT(&pmap_pvo_table[i]);
   2947 
   2948 #ifndef MSGBUFADDR
   2949 	/*
   2950 	 * Allocate msgbuf in high memory.
   2951 	 */
   2952 	msgbuf_paddr =
   2953 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   2954 #endif
   2955 
   2956 #ifdef __HAVE_PMAP_PHYSSEG
   2957 	{
   2958 		u_int npgs = 0;
   2959 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   2960 			npgs += btoc(mp->size);
   2961 		size = (sizeof(struct pvo_head) + 1) * npgs;
   2962 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   2963 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   2964 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2965 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   2966 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   2967 			    pmap_physseg.pvoh, size);
   2968 #endif
   2969 	}
   2970 #endif
   2971 
   2972 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   2973 		paddr_t pfstart = atop(mp->start);
   2974 		paddr_t pfend = atop(mp->start + mp->size);
   2975 		if (mp->size == 0)
   2976 			continue;
   2977 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   2978 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2979 				VM_FREELIST_FIRST256);
   2980 		} else if (mp->start >= SEGMENT_LENGTH) {
   2981 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2982 				VM_FREELIST_DEFAULT);
   2983 		} else {
   2984 			pfend = atop(SEGMENT_LENGTH);
   2985 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2986 				VM_FREELIST_FIRST256);
   2987 			pfstart = atop(SEGMENT_LENGTH);
   2988 			pfend = atop(mp->start + mp->size);
   2989 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2990 				VM_FREELIST_DEFAULT);
   2991 		}
   2992 	}
   2993 
   2994 	/*
   2995 	 * Make sure kernel vsid is allocated as well as VSID 0.
   2996 	 */
   2997 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   2998 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   2999 	pmap_vsid_bitmap[0] |= 1;
   3000 
   3001 	/*
   3002 	 * Initialize kernel pmap and hardware.
   3003 	 */
   3004 	for (i = 0; i < 16; i++) {
   3005 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3006 		__asm __volatile ("mtsrin %0,%1"
   3007 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3008 	}
   3009 
   3010 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3011 	__asm __volatile ("mtsr %0,%1"
   3012 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3013 #ifdef KERNEL2_SR
   3014 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3015 	__asm __volatile ("mtsr %0,%1"
   3016 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3017 #endif
   3018 	for (i = 0; i < 16; i++) {
   3019 		if (iosrtable[i] & SR601_T) {
   3020 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3021 			__asm __volatile ("mtsrin %0,%1"
   3022 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3023 		}
   3024 	}
   3025 
   3026 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3027 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3028 	tlbia();
   3029 
   3030 #ifdef ALTIVEC
   3031 	pmap_use_altivec = cpu_altivec;
   3032 #endif
   3033 
   3034 #ifdef DEBUG
   3035 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3036 		u_int cnt;
   3037 		int bank;
   3038 		char pbuf[9];
   3039 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3040 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3041 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3042 			    bank,
   3043 			    ptoa(vm_physmem[bank].avail_start),
   3044 			    ptoa(vm_physmem[bank].avail_end),
   3045 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3046 		}
   3047 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3048 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3049 		    pbuf, cnt);
   3050 	}
   3051 #endif
   3052 
   3053 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3054 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3055 	    &pmap_pool_uallocator);
   3056 
   3057 	pool_setlowat(&pmap_upvo_pool, 252);
   3058 
   3059 	pool_init(&pmap_pool, sizeof(struct pmap),
   3060 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3061 }
   3062