Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.16
      1 /*	$NetBSD: pmap.c,v 1.16 2003/10/27 23:35:41 kleink Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.16 2003/10/27 23:35:41 kleink Exp $");
     71 
     72 #include "opt_altivec.h"
     73 #include "opt_pmap.h"
     74 #include <sys/param.h>
     75 #include <sys/malloc.h>
     76 #include <sys/proc.h>
     77 #include <sys/user.h>
     78 #include <sys/pool.h>
     79 #include <sys/queue.h>
     80 #include <sys/device.h>		/* for evcnt */
     81 #include <sys/systm.h>
     82 
     83 #if __NetBSD_Version__ < 105010000
     84 #include <vm/vm.h>
     85 #include <vm/vm_kern.h>
     86 #define	splvm()		splimp()
     87 #endif
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include <machine/pcb.h>
     92 #include <machine/powerpc.h>
     93 #include <powerpc/spr.h>
     94 #include <powerpc/oea/sr_601.h>
     95 #if __NetBSD_Version__ > 105010000
     96 #include <powerpc/oea/bat.h>
     97 #else
     98 #include <powerpc/bat.h>
     99 #endif
    100 
    101 #if defined(DEBUG) || defined(PMAPCHECK)
    102 #define	STATIC
    103 #else
    104 #define	STATIC	static
    105 #endif
    106 
    107 #ifdef ALTIVEC
    108 int pmap_use_altivec;
    109 #endif
    110 
    111 volatile struct pteg *pmap_pteg_table;
    112 unsigned int pmap_pteg_cnt;
    113 unsigned int pmap_pteg_mask;
    114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115 
    116 struct pmap kernel_pmap_;
    117 unsigned int pmap_pages_stolen;
    118 u_long pmap_pte_valid;
    119 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    120 u_long pmap_pvo_enter_depth;
    121 u_long pmap_pvo_remove_depth;
    122 #endif
    123 
    124 int physmem;
    125 #ifndef MSGBUFADDR
    126 extern paddr_t msgbuf_paddr;
    127 #endif
    128 
    129 static struct mem_region *mem, *avail;
    130 static u_int mem_cnt, avail_cnt;
    131 
    132 #ifdef __HAVE_PMAP_PHYSSEG
    133 /*
    134  * This is a cache of referenced/modified bits.
    135  * Bits herein are shifted by ATTRSHFT.
    136  */
    137 #define	ATTR_SHFT	4
    138 struct pmap_physseg pmap_physseg;
    139 #endif
    140 
    141 /*
    142  * The following structure is exactly 32 bytes long (one cacheline).
    143  */
    144 struct pvo_entry {
    145 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    146 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    147 	struct pte pvo_pte;			/* Prebuilt PTE */
    148 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    149 	vaddr_t pvo_vaddr;			/* VA of entry */
    150 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    151 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    152 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    153 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    154 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    155 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    156 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    157 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    158 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    159 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    160 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    161 #define	PVO_REMOVE		6		/* PVO has been removed */
    162 #define	PVO_WHERE_MASK		15
    163 #define	PVO_WHERE_SHFT		8
    164 };
    165 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    166 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    167 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    168 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    169 #define	PVO_PTEGIDX_CLR(pvo)	\
    170 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    171 #define	PVO_PTEGIDX_SET(pvo,i)	\
    172 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    173 #define	PVO_WHERE(pvo,w)	\
    174 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    175 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    176 
    177 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    178 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    179 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    180 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    181 
    182 struct pool pmap_pool;		/* pool for pmap structures */
    183 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    184 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    185 
    186 /*
    187  * We keep a cache of unmanaged pages to be used for pvo entries for
    188  * unmanaged pages.
    189  */
    190 struct pvo_page {
    191 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    192 };
    193 SIMPLEQ_HEAD(pvop_head, pvo_page);
    194 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    195 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    196 u_long pmap_upvop_free;
    197 u_long pmap_upvop_maxfree;
    198 u_long pmap_mpvop_free;
    199 u_long pmap_mpvop_maxfree;
    200 
    201 STATIC void *pmap_pool_ualloc(struct pool *, int);
    202 STATIC void *pmap_pool_malloc(struct pool *, int);
    203 
    204 STATIC void pmap_pool_ufree(struct pool *, void *);
    205 STATIC void pmap_pool_mfree(struct pool *, void *);
    206 
    207 static struct pool_allocator pmap_pool_mallocator = {
    208 	pmap_pool_malloc, pmap_pool_mfree, 0,
    209 };
    210 
    211 static struct pool_allocator pmap_pool_uallocator = {
    212 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    213 };
    214 
    215 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    216 void pmap_pte_print(volatile struct pte *);
    217 #endif
    218 
    219 #ifdef DDB
    220 void pmap_pteg_check(void);
    221 void pmap_pteg_dist(void);
    222 void pmap_print_pte(pmap_t, vaddr_t);
    223 void pmap_print_mmuregs(void);
    224 #endif
    225 
    226 #if defined(DEBUG) || defined(PMAPCHECK)
    227 #ifdef PMAPCHECK
    228 int pmapcheck = 1;
    229 #else
    230 int pmapcheck = 0;
    231 #endif
    232 void pmap_pvo_verify(void);
    233 STATIC void pmap_pvo_check(const struct pvo_entry *);
    234 #define	PMAP_PVO_CHECK(pvo)	 		\
    235 	do {					\
    236 		if (pmapcheck)			\
    237 			pmap_pvo_check(pvo);	\
    238 	} while (0)
    239 #else
    240 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    241 #endif
    242 STATIC int pmap_pte_insert(int, struct pte *);
    243 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    244 	vaddr_t, paddr_t, register_t, int);
    245 STATIC void pmap_pvo_remove(struct pvo_entry *, int);
    246 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    247 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    248 #define pmap_pvo_reclaim(pm)	NULL
    249 STATIC void pvo_set_exec(struct pvo_entry *);
    250 STATIC void pvo_clear_exec(struct pvo_entry *);
    251 
    252 STATIC void tlbia(void);
    253 
    254 STATIC void pmap_release(pmap_t);
    255 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    256 
    257 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    258 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    259 
    260 static int pmap_initialized;
    261 
    262 #if defined(DEBUG) || defined(PMAPDEBUG)
    263 #define	PMAPDEBUG_BOOT		0x0001
    264 #define	PMAPDEBUG_PTE		0x0002
    265 #define	PMAPDEBUG_EXEC		0x0008
    266 #define	PMAPDEBUG_PVOENTER	0x0010
    267 #define	PMAPDEBUG_PVOREMOVE	0x0020
    268 #define	PMAPDEBUG_ACTIVATE	0x0100
    269 #define	PMAPDEBUG_CREATE	0x0200
    270 #define	PMAPDEBUG_ENTER		0x1000
    271 #define	PMAPDEBUG_KENTER	0x2000
    272 #define	PMAPDEBUG_KREMOVE	0x4000
    273 #define	PMAPDEBUG_REMOVE	0x8000
    274 unsigned int pmapdebug = 0;
    275 # define DPRINTF(x)		printf x
    276 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    277 #else
    278 # define DPRINTF(x)
    279 # define DPRINTFN(n, x)
    280 #endif
    281 
    282 
    283 #ifdef PMAPCOUNTERS
    284 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    285 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    286 
    287 struct evcnt pmap_evcnt_mappings =
    288     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    289 	    "pmap", "pages mapped");
    290 struct evcnt pmap_evcnt_unmappings =
    291     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    292 	    "pmap", "pages unmapped");
    293 
    294 struct evcnt pmap_evcnt_kernel_mappings =
    295     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    296 	    "pmap", "kernel pages mapped");
    297 struct evcnt pmap_evcnt_kernel_unmappings =
    298     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    299 	    "pmap", "kernel pages unmapped");
    300 
    301 struct evcnt pmap_evcnt_mappings_replaced =
    302     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    303 	    "pmap", "page mappings replaced");
    304 
    305 struct evcnt pmap_evcnt_exec_mappings =
    306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    307 	    "pmap", "exec pages mapped");
    308 struct evcnt pmap_evcnt_exec_cached =
    309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    310 	    "pmap", "exec pages cached");
    311 
    312 struct evcnt pmap_evcnt_exec_synced =
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    314 	    "pmap", "exec pages synced");
    315 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    317 	    "pmap", "exec pages synced (CM)");
    318 
    319 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    321 	    "pmap", "exec pages uncached (PP)");
    322 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    323     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    324 	    "pmap", "exec pages uncached (CM)");
    325 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    327 	    "pmap", "exec pages uncached (ZP)");
    328 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    330 	    "pmap", "exec pages uncached (CP)");
    331 
    332 struct evcnt pmap_evcnt_updates =
    333     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    334 	    "pmap", "updates");
    335 struct evcnt pmap_evcnt_collects =
    336     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    337 	    "pmap", "collects");
    338 struct evcnt pmap_evcnt_copies =
    339     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    340 	    "pmap", "copies");
    341 
    342 struct evcnt pmap_evcnt_ptes_spilled =
    343     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    344 	    "pmap", "ptes spilled from overflow");
    345 struct evcnt pmap_evcnt_ptes_unspilled =
    346     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    347 	    "pmap", "ptes not spilled");
    348 struct evcnt pmap_evcnt_ptes_evicted =
    349     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    350 	    "pmap", "ptes evicted");
    351 
    352 struct evcnt pmap_evcnt_ptes_primary[8] = {
    353     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    354 	    "pmap", "ptes added at primary[0]"),
    355     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    356 	    "pmap", "ptes added at primary[1]"),
    357     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    358 	    "pmap", "ptes added at primary[2]"),
    359     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    360 	    "pmap", "ptes added at primary[3]"),
    361 
    362     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    363 	    "pmap", "ptes added at primary[4]"),
    364     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    365 	    "pmap", "ptes added at primary[5]"),
    366     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    367 	    "pmap", "ptes added at primary[6]"),
    368     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    369 	    "pmap", "ptes added at primary[7]"),
    370 };
    371 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373 	    "pmap", "ptes added at secondary[0]"),
    374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    375 	    "pmap", "ptes added at secondary[1]"),
    376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377 	    "pmap", "ptes added at secondary[2]"),
    378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379 	    "pmap", "ptes added at secondary[3]"),
    380 
    381     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    382 	    "pmap", "ptes added at secondary[4]"),
    383     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    384 	    "pmap", "ptes added at secondary[5]"),
    385     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    386 	    "pmap", "ptes added at secondary[6]"),
    387     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    388 	    "pmap", "ptes added at secondary[7]"),
    389 };
    390 struct evcnt pmap_evcnt_ptes_removed =
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes removed");
    393 struct evcnt pmap_evcnt_ptes_changed =
    394     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    395 	    "pmap", "ptes changed");
    396 
    397 /*
    398  * From pmap_subr.c
    399  */
    400 extern struct evcnt pmap_evcnt_zeroed_pages;
    401 extern struct evcnt pmap_evcnt_copied_pages;
    402 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    403 #else
    404 #define	PMAPCOUNT(ev)	((void) 0)
    405 #define	PMAPCOUNT2(ev)	((void) 0)
    406 #endif
    407 
    408 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    409 #define	TLBSYNC()	__asm __volatile("tlbsync")
    410 #define	SYNC()		__asm __volatile("sync")
    411 #define	EIEIO()		__asm __volatile("eieio")
    412 #define	MFMSR()		mfmsr()
    413 #define	MTMSR(psl)	mtmsr(psl)
    414 #define	MFPVR()		mfpvr()
    415 #define	MFSRIN(va)	mfsrin(va)
    416 #define	MFTB()		mfrtcltbl()
    417 
    418 static __inline register_t
    419 mfsrin(vaddr_t va)
    420 {
    421 	register_t sr;
    422 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    423 	return sr;
    424 }
    425 
    426 static __inline register_t
    427 pmap_interrupts_off(void)
    428 {
    429 	register_t msr = MFMSR();
    430 	if (msr & PSL_EE)
    431 		MTMSR(msr & ~PSL_EE);
    432 	return msr;
    433 }
    434 
    435 static void
    436 pmap_interrupts_restore(register_t msr)
    437 {
    438 	if (msr & PSL_EE)
    439 		MTMSR(msr);
    440 }
    441 
    442 static __inline u_int32_t
    443 mfrtcltbl(void)
    444 {
    445 
    446 	if ((MFPVR() >> 16) == MPC601)
    447 		return (mfrtcl() >> 7);
    448 	else
    449 		return (mftbl());
    450 }
    451 
    452 /*
    453  * These small routines may have to be replaced,
    454  * if/when we support processors other that the 604.
    455  */
    456 
    457 void
    458 tlbia(void)
    459 {
    460 	caddr_t i;
    461 
    462 	SYNC();
    463 	/*
    464 	 * Why not use "tlbia"?  Because not all processors implement it.
    465 	 *
    466 	 * This needs to be a per-cpu callback to do the appropriate thing
    467 	 * for the CPU. XXX
    468 	 */
    469 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    470 		TLBIE(i);
    471 		EIEIO();
    472 		SYNC();
    473 	}
    474 	TLBSYNC();
    475 	SYNC();
    476 }
    477 
    478 static __inline register_t
    479 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    480 {
    481 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID);
    482 }
    483 
    484 static __inline register_t
    485 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    486 {
    487 	register_t hash;
    488 
    489 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    490 	return hash & pmap_pteg_mask;
    491 }
    492 
    493 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    494 /*
    495  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    496  * The only bit of magic is that the top 4 bits of the address doesn't
    497  * technically exist in the PTE.  But we know we reserved 4 bits of the
    498  * VSID for it so that's how we get it.
    499  */
    500 static vaddr_t
    501 pmap_pte_to_va(volatile const struct pte *pt)
    502 {
    503 	vaddr_t va;
    504 	uintptr_t ptaddr = (uintptr_t) pt;
    505 
    506 	if (pt->pte_hi & PTE_HID)
    507 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    508 
    509 	/* PPC Bits 10-19 */
    510 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    511 	va <<= ADDR_PIDX_SHFT;
    512 
    513 	/* PPC Bits 4-9 */
    514 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    515 
    516 	/* PPC Bits 0-3 */
    517 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    518 
    519 	return va;
    520 }
    521 #endif
    522 
    523 static __inline struct pvo_head *
    524 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    525 {
    526 #ifdef __HAVE_VM_PAGE_MD
    527 	struct vm_page *pg;
    528 
    529 	pg = PHYS_TO_VM_PAGE(pa);
    530 	if (pg_p != NULL)
    531 		*pg_p = pg;
    532 	if (pg == NULL)
    533 		return &pmap_pvo_unmanaged;
    534 	return &pg->mdpage.mdpg_pvoh;
    535 #endif
    536 #ifdef __HAVE_PMAP_PHYSSEG
    537 	int bank, pg;
    538 
    539 	bank = vm_physseg_find(atop(pa), &pg);
    540 	if (pg_p != NULL)
    541 		*pg_p = pg;
    542 	if (bank == -1)
    543 		return &pmap_pvo_unmanaged;
    544 	return &vm_physmem[bank].pmseg.pvoh[pg];
    545 #endif
    546 }
    547 
    548 static __inline struct pvo_head *
    549 vm_page_to_pvoh(struct vm_page *pg)
    550 {
    551 #ifdef __HAVE_VM_PAGE_MD
    552 	return &pg->mdpage.mdpg_pvoh;
    553 #endif
    554 #ifdef __HAVE_PMAP_PHYSSEG
    555 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    556 #endif
    557 }
    558 
    559 
    560 #ifdef __HAVE_PMAP_PHYSSEG
    561 static __inline char *
    562 pa_to_attr(paddr_t pa)
    563 {
    564 	int bank, pg;
    565 
    566 	bank = vm_physseg_find(atop(pa), &pg);
    567 	if (bank == -1)
    568 		return NULL;
    569 	return &vm_physmem[bank].pmseg.attrs[pg];
    570 }
    571 #endif
    572 
    573 static __inline void
    574 pmap_attr_clear(struct vm_page *pg, int ptebit)
    575 {
    576 #ifdef __HAVE_PMAP_PHYSSEG
    577 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    578 #endif
    579 #ifdef __HAVE_VM_PAGE_MD
    580 	pg->mdpage.mdpg_attrs &= ~ptebit;
    581 #endif
    582 }
    583 
    584 static __inline int
    585 pmap_attr_fetch(struct vm_page *pg)
    586 {
    587 #ifdef __HAVE_PMAP_PHYSSEG
    588 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    589 #endif
    590 #ifdef __HAVE_VM_PAGE_MD
    591 	return pg->mdpage.mdpg_attrs;
    592 #endif
    593 }
    594 
    595 static __inline void
    596 pmap_attr_save(struct vm_page *pg, int ptebit)
    597 {
    598 #ifdef __HAVE_PMAP_PHYSSEG
    599 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    600 #endif
    601 #ifdef __HAVE_VM_PAGE_MD
    602 	pg->mdpage.mdpg_attrs |= ptebit;
    603 #endif
    604 }
    605 
    606 static __inline int
    607 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    608 {
    609 	if (pt->pte_hi == pvo_pt->pte_hi
    610 #if 0
    611 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    612 	        ~(PTE_REF|PTE_CHG)) == 0
    613 #endif
    614 	    )
    615 		return 1;
    616 	return 0;
    617 }
    618 
    619 static __inline void
    620 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    621 {
    622 	/*
    623 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    624 	 * only gets set when the real pte is set in memory.
    625 	 *
    626 	 * Note: Don't set the valid bit for correct operation of tlb update.
    627 	 */
    628 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    629 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    630 	pt->pte_lo = pte_lo;
    631 }
    632 
    633 static __inline void
    634 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    635 {
    636 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    637 }
    638 
    639 static __inline void
    640 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    641 {
    642 	/*
    643 	 * As shown in Section 7.6.3.2.3
    644 	 */
    645 	pt->pte_lo &= ~ptebit;
    646 	TLBIE(va);
    647 	SYNC();
    648 	EIEIO();
    649 	TLBSYNC();
    650 	SYNC();
    651 }
    652 
    653 static __inline void
    654 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    655 {
    656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    657 	if (pvo_pt->pte_hi & PTE_VALID)
    658 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    659 #endif
    660 	pvo_pt->pte_hi |= PTE_VALID;
    661 	/*
    662 	 * Update the PTE as defined in section 7.6.3.1
    663 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    664 	 * have been saved so this routine can restore them (if desired).
    665 	 */
    666 	pt->pte_lo = pvo_pt->pte_lo;
    667 	EIEIO();
    668 	pt->pte_hi = pvo_pt->pte_hi;
    669 	SYNC();
    670 	pmap_pte_valid++;
    671 }
    672 
    673 static __inline void
    674 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    675 {
    676 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    677 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    678 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    679 	if ((pt->pte_hi & PTE_VALID) == 0)
    680 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    681 #endif
    682 
    683 	pvo_pt->pte_hi &= ~PTE_VALID;
    684 	/*
    685 	 * Force the ref & chg bits back into the PTEs.
    686 	 */
    687 	SYNC();
    688 	/*
    689 	 * Invalidate the pte ... (Section 7.6.3.3)
    690 	 */
    691 	pt->pte_hi &= ~PTE_VALID;
    692 	SYNC();
    693 	TLBIE(va);
    694 	SYNC();
    695 	EIEIO();
    696 	TLBSYNC();
    697 	SYNC();
    698 	/*
    699 	 * Save the ref & chg bits ...
    700 	 */
    701 	pmap_pte_synch(pt, pvo_pt);
    702 	pmap_pte_valid--;
    703 }
    704 
    705 static __inline void
    706 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    707 {
    708 	/*
    709 	 * Invalidate the PTE
    710 	 */
    711 	pmap_pte_unset(pt, pvo_pt, va);
    712 	pmap_pte_set(pt, pvo_pt);
    713 }
    714 
    715 /*
    716  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    717  * (either primary or secondary location).
    718  *
    719  * Note: both the destination and source PTEs must not have PTE_VALID set.
    720  */
    721 
    722 STATIC int
    723 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    724 {
    725 	volatile struct pte *pt;
    726 	int i;
    727 
    728 #if defined(DEBUG)
    729 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%lx 0x%lx\n",
    730 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    731 #endif
    732 	/*
    733 	 * First try primary hash.
    734 	 */
    735 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    736 		if ((pt->pte_hi & PTE_VALID) == 0) {
    737 			pvo_pt->pte_hi &= ~PTE_HID;
    738 			pmap_pte_set(pt, pvo_pt);
    739 			return i;
    740 		}
    741 	}
    742 
    743 	/*
    744 	 * Now try secondary hash.
    745 	 */
    746 	ptegidx ^= pmap_pteg_mask;
    747 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    748 		if ((pt->pte_hi & PTE_VALID) == 0) {
    749 			pvo_pt->pte_hi |= PTE_HID;
    750 			pmap_pte_set(pt, pvo_pt);
    751 			return i;
    752 		}
    753 	}
    754 	return -1;
    755 }
    756 
    757 /*
    758  * Spill handler.
    759  *
    760  * Tries to spill a page table entry from the overflow area.
    761  * This runs in either real mode (if dealing with a exception spill)
    762  * or virtual mode when dealing with manually spilling one of the
    763  * kernel's pte entries.  In either case, interrupts are already
    764  * disabled.
    765  */
    766 
    767 int
    768 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    769 {
    770 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    771 	struct pvo_entry *pvo;
    772 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    773 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    774 	int ptegidx, i, j;
    775 	volatile struct pteg *pteg;
    776 	volatile struct pte *pt;
    777 
    778 	ptegidx = va_to_pteg(pm, addr);
    779 
    780 	/*
    781 	 * Have to substitute some entry. Use the primary hash for this.
    782 	 * Use low bits of timebase as random generator.  Make sure we are
    783 	 * not picking a kernel pte for replacement.
    784 	 */
    785 	pteg = &pmap_pteg_table[ptegidx];
    786 	i = MFTB() & 7;
    787 	for (j = 0; j < 8; j++) {
    788 		pt = &pteg->pt[i];
    789 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    790 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    791 				!= KERNEL_VSIDBITS)
    792 			break;
    793 		i = (i + 1) & 7;
    794 	}
    795 	KASSERT(j < 8);
    796 
    797 	source_pvo = NULL;
    798 	victim_pvo = NULL;
    799 	pvoh = &pmap_pvo_table[ptegidx];
    800 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    801 
    802 		/*
    803 		 * We need to find pvo entry for this address...
    804 		 */
    805 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    806 
    807 		/*
    808 		 * If we haven't found the source and we come to a PVO with
    809 		 * a valid PTE, then we know we can't find it because all
    810 		 * evicted PVOs always are first in the list.
    811 		 */
    812 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    813 			break;
    814 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    815 		    addr == PVO_VADDR(pvo)) {
    816 
    817 			/*
    818 			 * Now we have found the entry to be spilled into the
    819 			 * pteg.  Attempt to insert it into the page table.
    820 			 */
    821 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    822 			if (j >= 0) {
    823 				PVO_PTEGIDX_SET(pvo, j);
    824 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    825 				PVO_WHERE(pvo, SPILL_INSERT);
    826 				pvo->pvo_pmap->pm_evictions--;
    827 				PMAPCOUNT(ptes_spilled);
    828 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    829 				    ? pmap_evcnt_ptes_secondary
    830 				    : pmap_evcnt_ptes_primary)[j]);
    831 
    832 				/*
    833 				 * Since we keep the evicted entries at the
    834 				 * from of the PVO list, we need move this
    835 				 * (now resident) PVO after the evicted
    836 				 * entries.
    837 				 */
    838 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    839 
    840 				/*
    841 				 * If we don't have to move (either we were the
    842 				 * last entry or the next entry was valid),
    843 				 * don't change our position.  Otherwise
    844 				 * move ourselves to the tail of the queue.
    845 				 */
    846 				if (next_pvo != NULL &&
    847 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    848 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    849 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    850 				}
    851 				return 1;
    852 			}
    853 			source_pvo = pvo;
    854 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    855 				return 0;
    856 			}
    857 			if (victim_pvo != NULL)
    858 				break;
    859 		}
    860 
    861 		/*
    862 		 * We also need the pvo entry of the victim we are replacing
    863 		 * so save the R & C bits of the PTE.
    864 		 */
    865 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    866 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    867 			vpvoh = pvoh;			/* *1* */
    868 			victim_pvo = pvo;
    869 			if (source_pvo != NULL)
    870 				break;
    871 		}
    872 	}
    873 
    874 	if (source_pvo == NULL) {
    875 		PMAPCOUNT(ptes_unspilled);
    876 		return 0;
    877 	}
    878 
    879 	if (victim_pvo == NULL) {
    880 		if ((pt->pte_hi & PTE_HID) == 0)
    881 			panic("pmap_pte_spill: victim p-pte (%p) has "
    882 			    "no pvo entry!", pt);
    883 
    884 		/*
    885 		 * If this is a secondary PTE, we need to search
    886 		 * its primary pvo bucket for the matching PVO.
    887 		 */
    888 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
    889 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    890 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    891 
    892 			/*
    893 			 * We also need the pvo entry of the victim we are
    894 			 * replacing so save the R & C bits of the PTE.
    895 			 */
    896 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    897 				victim_pvo = pvo;
    898 				break;
    899 			}
    900 		}
    901 		if (victim_pvo == NULL)
    902 			panic("pmap_pte_spill: victim s-pte (%p) has "
    903 			    "no pvo entry!", pt);
    904 	}
    905 
    906 	/*
    907 	 * The victim should be not be a kernel PVO/PTE entry.
    908 	 */
    909 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
    910 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
    911 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
    912 
    913 	/*
    914 	 * We are invalidating the TLB entry for the EA for the
    915 	 * we are replacing even though its valid; If we don't
    916 	 * we lose any ref/chg bit changes contained in the TLB
    917 	 * entry.
    918 	 */
    919 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    920 
    921 	/*
    922 	 * To enforce the PVO list ordering constraint that all
    923 	 * evicted entries should come before all valid entries,
    924 	 * move the source PVO to the tail of its list and the
    925 	 * victim PVO to the head of its list (which might not be
    926 	 * the same list, if the victim was using the secondary hash).
    927 	 */
    928 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    929 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    930 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    931 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    932 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    933 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    934 	victim_pvo->pvo_pmap->pm_evictions++;
    935 	source_pvo->pvo_pmap->pm_evictions--;
    936 	PVO_WHERE(victim_pvo, SPILL_UNSET);
    937 	PVO_WHERE(source_pvo, SPILL_SET);
    938 
    939 	PVO_PTEGIDX_CLR(victim_pvo);
    940 	PVO_PTEGIDX_SET(source_pvo, i);
    941 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    942 	PMAPCOUNT(ptes_spilled);
    943 	PMAPCOUNT(ptes_evicted);
    944 	PMAPCOUNT(ptes_removed);
    945 
    946 	PMAP_PVO_CHECK(victim_pvo);
    947 	PMAP_PVO_CHECK(source_pvo);
    948 	return 1;
    949 }
    950 
    951 /*
    952  * Restrict given range to physical memory
    953  */
    954 void
    955 pmap_real_memory(paddr_t *start, psize_t *size)
    956 {
    957 	struct mem_region *mp;
    958 
    959 	for (mp = mem; mp->size; mp++) {
    960 		if (*start + *size > mp->start
    961 		    && *start < mp->start + mp->size) {
    962 			if (*start < mp->start) {
    963 				*size -= mp->start - *start;
    964 				*start = mp->start;
    965 			}
    966 			if (*start + *size > mp->start + mp->size)
    967 				*size = mp->start + mp->size - *start;
    968 			return;
    969 		}
    970 	}
    971 	*size = 0;
    972 }
    973 
    974 /*
    975  * Initialize anything else for pmap handling.
    976  * Called during vm_init().
    977  */
    978 void
    979 pmap_init(void)
    980 {
    981 #ifdef __HAVE_PMAP_PHYSSEG
    982 	struct pvo_tqhead *pvoh;
    983 	int bank;
    984 	long sz;
    985 	char *attr;
    986 
    987 	pvoh = pmap_physseg.pvoh;
    988 	attr = pmap_physseg.attrs;
    989 	for (bank = 0; bank < vm_nphysseg; bank++) {
    990 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
    991 		vm_physmem[bank].pmseg.pvoh = pvoh;
    992 		vm_physmem[bank].pmseg.attrs = attr;
    993 		for (; sz > 0; sz--, pvoh++, attr++) {
    994 			TAILQ_INIT(pvoh);
    995 			*attr = 0;
    996 		}
    997 	}
    998 #endif
    999 
   1000 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1001 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1002 	    &pmap_pool_mallocator);
   1003 
   1004 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1005 
   1006 	pmap_initialized = 1;
   1007 
   1008 #ifdef PMAPCOUNTERS
   1009 	evcnt_attach_static(&pmap_evcnt_mappings);
   1010 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
   1011 	evcnt_attach_static(&pmap_evcnt_unmappings);
   1012 
   1013 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
   1014 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
   1015 
   1016 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
   1017 	evcnt_attach_static(&pmap_evcnt_exec_cached);
   1018 	evcnt_attach_static(&pmap_evcnt_exec_synced);
   1019 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
   1020 
   1021 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
   1022 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
   1023 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
   1024 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
   1025 
   1026 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
   1027 	evcnt_attach_static(&pmap_evcnt_copied_pages);
   1028 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
   1029 
   1030 	evcnt_attach_static(&pmap_evcnt_updates);
   1031 	evcnt_attach_static(&pmap_evcnt_collects);
   1032 	evcnt_attach_static(&pmap_evcnt_copies);
   1033 
   1034 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
   1035 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1036 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1037 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1038 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1039 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1040 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1041 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1042 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1043 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1044 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1045 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1046 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1047 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1048 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1049 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1050 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1051 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1052 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1053 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1054 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1055 #endif
   1056 }
   1057 
   1058 /*
   1059  * How much virtual space does the kernel get?
   1060  */
   1061 void
   1062 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1063 {
   1064 	/*
   1065 	 * For now, reserve one segment (minus some overhead) for kernel
   1066 	 * virtual memory
   1067 	 */
   1068 	*start = VM_MIN_KERNEL_ADDRESS;
   1069 	*end = VM_MAX_KERNEL_ADDRESS;
   1070 }
   1071 
   1072 /*
   1073  * Allocate, initialize, and return a new physical map.
   1074  */
   1075 pmap_t
   1076 pmap_create(void)
   1077 {
   1078 	pmap_t pm;
   1079 
   1080 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1081 	memset((caddr_t)pm, 0, sizeof *pm);
   1082 	pmap_pinit(pm);
   1083 
   1084 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1085 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n"
   1086 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n", pm,
   1087 	    pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
   1088 	    pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
   1089 	    pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
   1090 	    pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
   1091 	return pm;
   1092 }
   1093 
   1094 /*
   1095  * Initialize a preallocated and zeroed pmap structure.
   1096  */
   1097 void
   1098 pmap_pinit(pmap_t pm)
   1099 {
   1100 	register_t entropy = MFTB();
   1101 	register_t mask;
   1102 	int i;
   1103 
   1104 	/*
   1105 	 * Allocate some segment registers for this pmap.
   1106 	 */
   1107 	pm->pm_refs = 1;
   1108 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1109 		static register_t pmap_vsidcontext;
   1110 		register_t hash;
   1111 		unsigned int n;
   1112 
   1113 		/* Create a new value by multiplying by a prime adding in
   1114 		 * entropy from the timebase register.  This is to make the
   1115 		 * VSID more random so that the PT Hash function collides
   1116 		 * less often. (note that the prime causes gcc to do shifts
   1117 		 * instead of a multiply)
   1118 		 */
   1119 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1120 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1121 		if (hash == 0)			/* 0 is special, avoid it */
   1122 			continue;
   1123 		n = hash >> 5;
   1124 		mask = 1L << (hash & (VSID_NBPW-1));
   1125 		hash = pmap_vsidcontext;
   1126 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1127 			/* anything free in this bucket? */
   1128 			if (~pmap_vsid_bitmap[n] == 0) {
   1129 				entropy = hash >> PTE_VSID_SHFT;
   1130 				continue;
   1131 			}
   1132 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1133 			mask = 1L << i;
   1134 			hash &= ~(VSID_NBPW-1);
   1135 			hash |= i;
   1136 		}
   1137 		/*
   1138 		 * Make sure clear out SR_KEY_LEN bits because we put our
   1139 		 * our data in those bits (to identify the segment).
   1140 		 */
   1141 		hash &= PTE_VSID >> (PTE_VSID_SHFT + SR_KEY_LEN);
   1142 		pmap_vsid_bitmap[n] |= mask;
   1143 		for (i = 0; i < 16; i++)
   1144 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1145 			    SR_NOEXEC;
   1146 		return;
   1147 	}
   1148 	panic("pmap_pinit: out of segments");
   1149 }
   1150 
   1151 /*
   1152  * Add a reference to the given pmap.
   1153  */
   1154 void
   1155 pmap_reference(pmap_t pm)
   1156 {
   1157 	pm->pm_refs++;
   1158 }
   1159 
   1160 /*
   1161  * Retire the given pmap from service.
   1162  * Should only be called if the map contains no valid mappings.
   1163  */
   1164 void
   1165 pmap_destroy(pmap_t pm)
   1166 {
   1167 	if (--pm->pm_refs == 0) {
   1168 		pmap_release(pm);
   1169 		pool_put(&pmap_pool, pm);
   1170 	}
   1171 }
   1172 
   1173 /*
   1174  * Release any resources held by the given physical map.
   1175  * Called when a pmap initialized by pmap_pinit is being released.
   1176  */
   1177 void
   1178 pmap_release(pmap_t pm)
   1179 {
   1180 	int idx, mask;
   1181 
   1182 	if (pm->pm_sr[0] == 0)
   1183 		panic("pmap_release");
   1184 	idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1);
   1185 	mask = 1 << (idx % VSID_NBPW);
   1186 	idx /= VSID_NBPW;
   1187 	pmap_vsid_bitmap[idx] &= ~mask;
   1188 }
   1189 
   1190 /*
   1191  * Copy the range specified by src_addr/len
   1192  * from the source map to the range dst_addr/len
   1193  * in the destination map.
   1194  *
   1195  * This routine is only advisory and need not do anything.
   1196  */
   1197 void
   1198 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1199 	vsize_t len, vaddr_t src_addr)
   1200 {
   1201 	PMAPCOUNT(copies);
   1202 }
   1203 
   1204 /*
   1205  * Require that all active physical maps contain no
   1206  * incorrect entries NOW.
   1207  */
   1208 void
   1209 pmap_update(struct pmap *pmap)
   1210 {
   1211 	PMAPCOUNT(updates);
   1212 	TLBSYNC();
   1213 }
   1214 
   1215 /*
   1216  * Garbage collects the physical map system for
   1217  * pages which are no longer used.
   1218  * Success need not be guaranteed -- that is, there
   1219  * may well be pages which are not referenced, but
   1220  * others may be collected.
   1221  * Called by the pageout daemon when pages are scarce.
   1222  */
   1223 void
   1224 pmap_collect(pmap_t pm)
   1225 {
   1226 	PMAPCOUNT(collects);
   1227 }
   1228 
   1229 static __inline int
   1230 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1231 {
   1232 	int pteidx;
   1233 	/*
   1234 	 * We can find the actual pte entry without searching by
   1235 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1236 	 * and by noticing the HID bit.
   1237 	 */
   1238 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1239 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1240 		pteidx ^= pmap_pteg_mask * 8;
   1241 	return pteidx;
   1242 }
   1243 
   1244 volatile struct pte *
   1245 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1246 {
   1247 	volatile struct pte *pt;
   1248 
   1249 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1250 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1251 		return NULL;
   1252 #endif
   1253 
   1254 	/*
   1255 	 * If we haven't been supplied the ptegidx, calculate it.
   1256 	 */
   1257 	if (pteidx == -1) {
   1258 		int ptegidx;
   1259 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1260 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1261 	}
   1262 
   1263 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1264 
   1265 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1266 	return pt;
   1267 #else
   1268 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1269 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1270 		    "pvo but no valid pte index", pvo);
   1271 	}
   1272 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1273 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1274 		    "pvo but no valid pte", pvo);
   1275 	}
   1276 
   1277 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1278 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1279 #if defined(DEBUG) || defined(PMAPCHECK)
   1280 			pmap_pte_print(pt);
   1281 #endif
   1282 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1283 			    "pmap_pteg_table %p but invalid in pvo",
   1284 			    pvo, pt);
   1285 		}
   1286 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1287 #if defined(DEBUG) || defined(PMAPCHECK)
   1288 			pmap_pte_print(pt);
   1289 #endif
   1290 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1291 			    "not match pte %p in pmap_pteg_table",
   1292 			    pvo, pt);
   1293 		}
   1294 		return pt;
   1295 	}
   1296 
   1297 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1298 #if defined(DEBUG) || defined(PMAPCHECK)
   1299 		pmap_pte_print(pt);
   1300 #endif
   1301 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1302 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1303 	}
   1304 	return NULL;
   1305 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1306 }
   1307 
   1308 struct pvo_entry *
   1309 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1310 {
   1311 	struct pvo_entry *pvo;
   1312 	int ptegidx;
   1313 
   1314 	va &= ~ADDR_POFF;
   1315 	ptegidx = va_to_pteg(pm, va);
   1316 
   1317 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1318 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1319 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1320 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1321 			    "list %#x (%p)", pvo, ptegidx,
   1322 			     &pmap_pvo_table[ptegidx]);
   1323 #endif
   1324 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1325 			if (pteidx_p)
   1326 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1327 			return pvo;
   1328 		}
   1329 	}
   1330 	return NULL;
   1331 }
   1332 
   1333 #if defined(DEBUG) || defined(PMAPCHECK)
   1334 void
   1335 pmap_pvo_check(const struct pvo_entry *pvo)
   1336 {
   1337 	struct pvo_head *pvo_head;
   1338 	struct pvo_entry *pvo0;
   1339 	volatile struct pte *pt;
   1340 	int failed = 0;
   1341 
   1342 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1343 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1344 
   1345 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1346 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1347 		    pvo, pvo->pvo_pmap);
   1348 		failed = 1;
   1349 	}
   1350 
   1351 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1352 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1353 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1354 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1355 		failed = 1;
   1356 	}
   1357 
   1358 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1359 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1360 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1361 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1362 		failed = 1;
   1363 	}
   1364 
   1365 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1366 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1367 	} else {
   1368 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1369 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1370 			    "on kernel unmanaged list\n", pvo);
   1371 			failed = 1;
   1372 		}
   1373 		pvo_head = &pmap_pvo_kunmanaged;
   1374 	}
   1375 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1376 		if (pvo0 == pvo)
   1377 			break;
   1378 	}
   1379 	if (pvo0 == NULL) {
   1380 		printf("pmap_pvo_check: pvo %p: not present "
   1381 		    "on its vlist head %p\n", pvo, pvo_head);
   1382 		failed = 1;
   1383 	}
   1384 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1385 		printf("pmap_pvo_check: pvo %p: not present "
   1386 		    "on its olist head\n", pvo);
   1387 		failed = 1;
   1388 	}
   1389 	pt = pmap_pvo_to_pte(pvo, -1);
   1390 	if (pt == NULL) {
   1391 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1392 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1393 			    "no PTE\n", pvo);
   1394 			failed = 1;
   1395 		}
   1396 	} else {
   1397 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1398 		    (uintptr_t) pt >=
   1399 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1400 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1401 			    "pteg table\n", pvo, pt);
   1402 			failed = 1;
   1403 		}
   1404 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1405 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1406 			    "no PTE\n", pvo);
   1407 			failed = 1;
   1408 		}
   1409 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1410 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1411 			    "%#lx/%#lx\n", pvo, pvo->pvo_pte.pte_hi, pt->pte_hi);
   1412 			failed = 1;
   1413 		}
   1414 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1415 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1416 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1417 			    "%#lx/%#lx\n", pvo,
   1418 			    pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN),
   1419 			    pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN));
   1420 			failed = 1;
   1421 		}
   1422 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1423 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1424 			    " doesn't not match PVO's VA %#lx\n",
   1425 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1426 			failed = 1;
   1427 		}
   1428 		if (failed)
   1429 			pmap_pte_print(pt);
   1430 	}
   1431 	if (failed)
   1432 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1433 		    pvo->pvo_pmap);
   1434 }
   1435 #endif /* DEBUG || PMAPCHECK */
   1436 
   1437 /*
   1438  * This returns whether this is the first mapping of a page.
   1439  */
   1440 int
   1441 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1442 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1443 {
   1444 	struct pvo_entry *pvo;
   1445 	struct pvo_tqhead *pvoh;
   1446 	register_t msr;
   1447 	int ptegidx;
   1448 	int i;
   1449 	int poolflags = PR_NOWAIT;
   1450 
   1451 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1452 	if (pmap_pvo_remove_depth > 0)
   1453 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1454 	if (++pmap_pvo_enter_depth > 1)
   1455 		panic("pmap_pvo_enter: called recursively!");
   1456 #endif
   1457 
   1458 	/*
   1459 	 * Compute the PTE Group index.
   1460 	 */
   1461 	va &= ~ADDR_POFF;
   1462 	ptegidx = va_to_pteg(pm, va);
   1463 
   1464 	msr = pmap_interrupts_off();
   1465 	/*
   1466 	 * Remove any existing mapping for this page.  Reuse the
   1467 	 * pvo entry if there a mapping.
   1468 	 */
   1469 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1470 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1471 #ifdef DEBUG
   1472 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1473 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1474 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1475 			   va < VM_MIN_KERNEL_ADDRESS) {
   1476 				printf("pmap_pvo_enter: pvo %p: dup %#lx/%#lx\n",
   1477 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1478 				printf("pmap_pvo_enter: pte_hi=%#lx sr=%#lx\n",
   1479 				    pvo->pvo_pte.pte_hi,
   1480 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1481 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1482 #ifdef DDBX
   1483 				Debugger();
   1484 #endif
   1485 			}
   1486 #endif
   1487 			PMAPCOUNT(mappings_replaced);
   1488 			pmap_pvo_remove(pvo, -1);
   1489 			break;
   1490 		}
   1491 	}
   1492 
   1493 	/*
   1494 	 * If we aren't overwriting an mapping, try to allocate
   1495 	 */
   1496 	pmap_interrupts_restore(msr);
   1497 	pvo = pool_get(pl, poolflags);
   1498 	msr = pmap_interrupts_off();
   1499 	if (pvo == NULL) {
   1500 		pvo = pmap_pvo_reclaim(pm);
   1501 		if (pvo == NULL) {
   1502 			if ((flags & PMAP_CANFAIL) == 0)
   1503 				panic("pmap_pvo_enter: failed");
   1504 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1505 			pmap_pvo_enter_depth--;
   1506 #endif
   1507 			pmap_interrupts_restore(msr);
   1508 			return ENOMEM;
   1509 		}
   1510 	}
   1511 	pvo->pvo_vaddr = va;
   1512 	pvo->pvo_pmap = pm;
   1513 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1514 	if (flags & VM_PROT_EXECUTE) {
   1515 		PMAPCOUNT(exec_mappings);
   1516 		pvo_set_exec(pvo);
   1517 	}
   1518 	if (flags & PMAP_WIRED)
   1519 		pvo->pvo_vaddr |= PVO_WIRED;
   1520 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1521 		pvo->pvo_vaddr |= PVO_MANAGED;
   1522 		PMAPCOUNT(mappings);
   1523 	} else {
   1524 		PMAPCOUNT(kernel_mappings);
   1525 	}
   1526 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1527 
   1528 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1529 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1530 		pvo->pvo_pmap->pm_stats.wired_count++;
   1531 	pvo->pvo_pmap->pm_stats.resident_count++;
   1532 #if defined(DEBUG)
   1533 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1534 		DPRINTFN(PVOENTER,
   1535 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1536 		    pvo, pm, va, pa));
   1537 #endif
   1538 
   1539 	/*
   1540 	 * We hope this succeeds but it isn't required.
   1541 	 */
   1542 	pvoh = &pmap_pvo_table[ptegidx];
   1543 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1544 	if (i >= 0) {
   1545 		PVO_PTEGIDX_SET(pvo, i);
   1546 		PVO_WHERE(pvo, ENTER_INSERT);
   1547 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1548 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1549 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1550 	} else {
   1551 		/*
   1552 		 * Since we didn't have room for this entry (which makes it
   1553 		 * and evicted entry), place it at the head of the list.
   1554 		 */
   1555 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1556 		PMAPCOUNT(ptes_evicted);
   1557 		pm->pm_evictions++;
   1558 		/*
   1559 		 * If this is a kernel page, make sure it's active.
   1560 		 */
   1561 		if (pm == pmap_kernel()) {
   1562 			i = pmap_pte_spill(pm, va, FALSE);
   1563 			KASSERT(i);
   1564 		}
   1565 	}
   1566 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1567 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1568 	pmap_pvo_enter_depth--;
   1569 #endif
   1570 	pmap_interrupts_restore(msr);
   1571 	return 0;
   1572 }
   1573 
   1574 void
   1575 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
   1576 {
   1577 	volatile struct pte *pt;
   1578 	int ptegidx;
   1579 
   1580 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1581 	if (++pmap_pvo_remove_depth > 1)
   1582 		panic("pmap_pvo_remove: called recursively!");
   1583 #endif
   1584 
   1585 	/*
   1586 	 * If we haven't been supplied the ptegidx, calculate it.
   1587 	 */
   1588 	if (pteidx == -1) {
   1589 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1590 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1591 	} else {
   1592 		ptegidx = pteidx >> 3;
   1593 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1594 			ptegidx ^= pmap_pteg_mask;
   1595 	}
   1596 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1597 
   1598 	/*
   1599 	 * If there is an active pte entry, we need to deactivate it
   1600 	 * (and save the ref & chg bits).
   1601 	 */
   1602 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1603 	if (pt != NULL) {
   1604 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1605 		PVO_WHERE(pvo, REMOVE);
   1606 		PVO_PTEGIDX_CLR(pvo);
   1607 		PMAPCOUNT(ptes_removed);
   1608 	} else {
   1609 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1610 		pvo->pvo_pmap->pm_evictions--;
   1611 	}
   1612 
   1613 	/*
   1614 	 * Account for executable mappings.
   1615 	 */
   1616 	if (PVO_ISEXECUTABLE(pvo))
   1617 		pvo_clear_exec(pvo);
   1618 
   1619 	/*
   1620 	 * Update our statistics.
   1621 	 */
   1622 	pvo->pvo_pmap->pm_stats.resident_count--;
   1623 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1624 		pvo->pvo_pmap->pm_stats.wired_count--;
   1625 
   1626 	/*
   1627 	 * Save the REF/CHG bits into their cache if the page is managed.
   1628 	 */
   1629 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1630 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1631 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1632 
   1633 		if (pg != NULL) {
   1634 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1635 		}
   1636 		PMAPCOUNT(unmappings);
   1637 	} else {
   1638 		PMAPCOUNT(kernel_unmappings);
   1639 	}
   1640 
   1641 	/*
   1642 	 * Remove the PVO from its lists and return it to the pool.
   1643 	 */
   1644 	LIST_REMOVE(pvo, pvo_vlink);
   1645 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1646 	pool_put(pvo->pvo_vaddr & PVO_MANAGED
   1647 	    ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1648 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1649 	pmap_pvo_remove_depth--;
   1650 #endif
   1651 }
   1652 
   1653 /*
   1654  * Mark a mapping as executable.
   1655  * If this is the first executable mapping in the segment,
   1656  * clear the noexec flag.
   1657  */
   1658 STATIC void
   1659 pvo_set_exec(struct pvo_entry *pvo)
   1660 {
   1661 	struct pmap *pm = pvo->pvo_pmap;
   1662 	int sr;
   1663 
   1664 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1665 		return;
   1666 	}
   1667 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1668 	sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1669 	if (pm->pm_exec[sr]++ == 0) {
   1670 		pm->pm_sr[sr] &= ~SR_NOEXEC;
   1671 	}
   1672 }
   1673 
   1674 /*
   1675  * Mark a mapping as non-executable.
   1676  * If this was the last executable mapping in the segment,
   1677  * set the noexec flag.
   1678  */
   1679 STATIC void
   1680 pvo_clear_exec(struct pvo_entry *pvo)
   1681 {
   1682 	struct pmap *pm = pvo->pvo_pmap;
   1683 	int sr;
   1684 
   1685 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1686 		return;
   1687 	}
   1688 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1689 	sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1690 	if (--pm->pm_exec[sr] == 0) {
   1691 		pm->pm_sr[sr] |= SR_NOEXEC;
   1692 	}
   1693 }
   1694 
   1695 /*
   1696  * Insert physical page at pa into the given pmap at virtual address va.
   1697  */
   1698 int
   1699 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1700 {
   1701 	struct mem_region *mp;
   1702 	struct pvo_head *pvo_head;
   1703 	struct vm_page *pg;
   1704 	struct pool *pl;
   1705 	register_t pte_lo;
   1706 	int error;
   1707 	u_int pvo_flags;
   1708 	u_int was_exec = 0;
   1709 
   1710 	if (__predict_false(!pmap_initialized)) {
   1711 		pvo_head = &pmap_pvo_kunmanaged;
   1712 		pl = &pmap_upvo_pool;
   1713 		pvo_flags = 0;
   1714 		pg = NULL;
   1715 		was_exec = PTE_EXEC;
   1716 	} else {
   1717 		pvo_head = pa_to_pvoh(pa, &pg);
   1718 		pl = &pmap_mpvo_pool;
   1719 		pvo_flags = PVO_MANAGED;
   1720 	}
   1721 
   1722 	DPRINTFN(ENTER,
   1723 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1724 	    pm, va, pa, prot, flags));
   1725 
   1726 	/*
   1727 	 * If this is a managed page, and it's the first reference to the
   1728 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1729 	 */
   1730 	if (pg != NULL)
   1731 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1732 
   1733 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1734 
   1735 	/*
   1736 	 * Assume the page is cache inhibited and access is guarded unless
   1737 	 * it's in our available memory array.  If it is in the memory array,
   1738 	 * asssume it's in memory coherent memory.
   1739 	 */
   1740 	pte_lo = PTE_IG;
   1741 	if ((flags & PMAP_NC) == 0) {
   1742 		for (mp = mem; mp->size; mp++) {
   1743 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1744 				pte_lo = PTE_M;
   1745 				break;
   1746 			}
   1747 		}
   1748 	}
   1749 
   1750 	if (prot & VM_PROT_WRITE)
   1751 		pte_lo |= PTE_BW;
   1752 	else
   1753 		pte_lo |= PTE_BR;
   1754 
   1755 	/*
   1756 	 * If this was in response to a fault, "pre-fault" the PTE's
   1757 	 * changed/referenced bit appropriately.
   1758 	 */
   1759 	if (flags & VM_PROT_WRITE)
   1760 		pte_lo |= PTE_CHG;
   1761 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1762 		pte_lo |= PTE_REF;
   1763 
   1764 	/*
   1765 	 * We need to know if this page can be executable
   1766 	 */
   1767 	flags |= (prot & VM_PROT_EXECUTE);
   1768 
   1769 	/*
   1770 	 * Record mapping for later back-translation and pte spilling.
   1771 	 * This will overwrite any existing mapping.
   1772 	 */
   1773 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1774 
   1775 	/*
   1776 	 * Flush the real page from the instruction cache if this page is
   1777 	 * mapped executable and cacheable and has not been flushed since
   1778 	 * the last time it was modified.
   1779 	 */
   1780 	if (error == 0 &&
   1781             (flags & VM_PROT_EXECUTE) &&
   1782             (pte_lo & PTE_I) == 0 &&
   1783 	    was_exec == 0) {
   1784 		DPRINTFN(ENTER, (" syncicache"));
   1785 		PMAPCOUNT(exec_synced);
   1786 		pmap_syncicache(pa, PAGE_SIZE);
   1787 		if (pg != NULL) {
   1788 			pmap_attr_save(pg, PTE_EXEC);
   1789 			PMAPCOUNT(exec_cached);
   1790 #if defined(DEBUG) || defined(PMAPDEBUG)
   1791 			if (pmapdebug & PMAPDEBUG_ENTER)
   1792 				printf(" marked-as-exec");
   1793 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1794 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1795 				    pg->phys_addr);
   1796 
   1797 #endif
   1798 		}
   1799 	}
   1800 
   1801 	DPRINTFN(ENTER, (": error=%d\n", error));
   1802 
   1803 	return error;
   1804 }
   1805 
   1806 void
   1807 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1808 {
   1809 	struct mem_region *mp;
   1810 	register_t pte_lo;
   1811 	int error;
   1812 
   1813 	if (va < VM_MIN_KERNEL_ADDRESS)
   1814 		panic("pmap_kenter_pa: attempt to enter "
   1815 		    "non-kernel address %#lx!", va);
   1816 
   1817 	DPRINTFN(KENTER,
   1818 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1819 
   1820 	/*
   1821 	 * Assume the page is cache inhibited and access is guarded unless
   1822 	 * it's in our available memory array.  If it is in the memory array,
   1823 	 * asssume it's in memory coherent memory.
   1824 	 */
   1825 	pte_lo = PTE_IG;
   1826 	if ((prot & PMAP_NC) == 0) {
   1827 		for (mp = mem; mp->size; mp++) {
   1828 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1829 				pte_lo = PTE_M;
   1830 				break;
   1831 			}
   1832 		}
   1833 	}
   1834 
   1835 	if (prot & VM_PROT_WRITE)
   1836 		pte_lo |= PTE_BW;
   1837 	else
   1838 		pte_lo |= PTE_BR;
   1839 
   1840 	/*
   1841 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1842 	 */
   1843 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1844 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1845 
   1846 	if (error != 0)
   1847 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1848 		      va, pa, error);
   1849 }
   1850 
   1851 void
   1852 pmap_kremove(vaddr_t va, vsize_t len)
   1853 {
   1854 	if (va < VM_MIN_KERNEL_ADDRESS)
   1855 		panic("pmap_kremove: attempt to remove "
   1856 		    "non-kernel address %#lx!", va);
   1857 
   1858 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1859 	pmap_remove(pmap_kernel(), va, va + len);
   1860 }
   1861 
   1862 /*
   1863  * Remove the given range of mapping entries.
   1864  */
   1865 void
   1866 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1867 {
   1868 	struct pvo_entry *pvo;
   1869 	register_t msr;
   1870 	int pteidx;
   1871 
   1872 	msr = pmap_interrupts_off();
   1873 	for (; va < endva; va += PAGE_SIZE) {
   1874 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1875 		if (pvo != NULL) {
   1876 			pmap_pvo_remove(pvo, pteidx);
   1877 		}
   1878 	}
   1879 	pmap_interrupts_restore(msr);
   1880 }
   1881 
   1882 /*
   1883  * Get the physical page address for the given pmap/virtual address.
   1884  */
   1885 boolean_t
   1886 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1887 {
   1888 	struct pvo_entry *pvo;
   1889 	register_t msr;
   1890 
   1891 	/*
   1892 	 * If this is a kernel pmap lookup, also check the battable
   1893 	 * and if we get a hit, translate the VA to a PA using the
   1894 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   1895 	 * that will wrap back to 0.
   1896 	 */
   1897 	if (pm == pmap_kernel() &&
   1898 	    (va < VM_MIN_KERNEL_ADDRESS ||
   1899 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   1900 		register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   1901 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   1902 		if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   1903 			register_t batl = battable[va >> ADDR_SR_SHFT].batl;
   1904 			register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   1905 			*pap = (batl & mask) | (va & ~mask);
   1906 			return TRUE;
   1907 		}
   1908 		return FALSE;
   1909 	}
   1910 
   1911 	msr = pmap_interrupts_off();
   1912 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   1913 	if (pvo != NULL) {
   1914 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1915 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   1916 	}
   1917 	pmap_interrupts_restore(msr);
   1918 	return pvo != NULL;
   1919 }
   1920 
   1921 /*
   1922  * Lower the protection on the specified range of this pmap.
   1923  */
   1924 void
   1925 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   1926 {
   1927 	struct pvo_entry *pvo;
   1928 	volatile struct pte *pt;
   1929 	register_t msr;
   1930 	int pteidx;
   1931 
   1932 	/*
   1933 	 * Since this routine only downgrades protection, we should
   1934 	 * always be called with at least one bit not set.
   1935 	 */
   1936 	KASSERT(prot != VM_PROT_ALL);
   1937 
   1938 	/*
   1939 	 * If there is no protection, this is equivalent to
   1940 	 * remove the pmap from the pmap.
   1941 	 */
   1942 	if ((prot & VM_PROT_READ) == 0) {
   1943 		pmap_remove(pm, va, endva);
   1944 		return;
   1945 	}
   1946 
   1947 	msr = pmap_interrupts_off();
   1948 	for (; va < endva; va += PAGE_SIZE) {
   1949 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1950 		if (pvo == NULL)
   1951 			continue;
   1952 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1953 
   1954 		/*
   1955 		 * Revoke executable if asked to do so.
   1956 		 */
   1957 		if ((prot & VM_PROT_EXECUTE) == 0)
   1958 			pvo_clear_exec(pvo);
   1959 
   1960 #if 0
   1961 		/*
   1962 		 * If the page is already read-only, no change
   1963 		 * needs to be made.
   1964 		 */
   1965 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   1966 			continue;
   1967 #endif
   1968 		/*
   1969 		 * Grab the PTE pointer before we diddle with
   1970 		 * the cached PTE copy.
   1971 		 */
   1972 		pt = pmap_pvo_to_pte(pvo, pteidx);
   1973 		/*
   1974 		 * Change the protection of the page.
   1975 		 */
   1976 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   1977 		pvo->pvo_pte.pte_lo |= PTE_BR;
   1978 
   1979 		/*
   1980 		 * If the PVO is in the page table, update
   1981 		 * that pte at well.
   1982 		 */
   1983 		if (pt != NULL) {
   1984 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1985 			PVO_WHERE(pvo, PMAP_PROTECT);
   1986 			PMAPCOUNT(ptes_changed);
   1987 		}
   1988 
   1989 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1990 	}
   1991 	pmap_interrupts_restore(msr);
   1992 }
   1993 
   1994 void
   1995 pmap_unwire(pmap_t pm, vaddr_t va)
   1996 {
   1997 	struct pvo_entry *pvo;
   1998 	register_t msr;
   1999 
   2000 	msr = pmap_interrupts_off();
   2001 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2002 	if (pvo != NULL) {
   2003 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2004 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2005 			pm->pm_stats.wired_count--;
   2006 		}
   2007 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2008 	}
   2009 	pmap_interrupts_restore(msr);
   2010 }
   2011 
   2012 /*
   2013  * Lower the protection on the specified physical page.
   2014  */
   2015 void
   2016 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2017 {
   2018 	struct pvo_head *pvo_head;
   2019 	struct pvo_entry *pvo, *next_pvo;
   2020 	volatile struct pte *pt;
   2021 	register_t msr;
   2022 
   2023 	KASSERT(prot != VM_PROT_ALL);
   2024 	msr = pmap_interrupts_off();
   2025 
   2026 	/*
   2027 	 * When UVM reuses a page, it does a pmap_page_protect with
   2028 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2029 	 * since we know the page will have different contents.
   2030 	 */
   2031 	if ((prot & VM_PROT_READ) == 0) {
   2032 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2033 		    pg->phys_addr));
   2034 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2035 			PMAPCOUNT(exec_uncached_page_protect);
   2036 			pmap_attr_clear(pg, PTE_EXEC);
   2037 		}
   2038 	}
   2039 
   2040 	pvo_head = vm_page_to_pvoh(pg);
   2041 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2042 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2043 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2044 
   2045 		/*
   2046 		 * Downgrading to no mapping at all, we just remove the entry.
   2047 		 */
   2048 		if ((prot & VM_PROT_READ) == 0) {
   2049 			pmap_pvo_remove(pvo, -1);
   2050 			continue;
   2051 		}
   2052 
   2053 		/*
   2054 		 * If EXEC permission is being revoked, just clear the
   2055 		 * flag in the PVO.
   2056 		 */
   2057 		if ((prot & VM_PROT_EXECUTE) == 0)
   2058 			pvo_clear_exec(pvo);
   2059 
   2060 		/*
   2061 		 * If this entry is already RO, don't diddle with the
   2062 		 * page table.
   2063 		 */
   2064 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2065 			PMAP_PVO_CHECK(pvo);
   2066 			continue;
   2067 		}
   2068 
   2069 		/*
   2070 		 * Grab the PTE before the we diddle the bits so
   2071 		 * pvo_to_pte can verify the pte contents are as
   2072 		 * expected.
   2073 		 */
   2074 		pt = pmap_pvo_to_pte(pvo, -1);
   2075 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2076 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2077 		if (pt != NULL) {
   2078 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2079 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2080 			PMAPCOUNT(ptes_changed);
   2081 		}
   2082 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2083 	}
   2084 	pmap_interrupts_restore(msr);
   2085 }
   2086 
   2087 /*
   2088  * Activate the address space for the specified process.  If the process
   2089  * is the current process, load the new MMU context.
   2090  */
   2091 void
   2092 pmap_activate(struct lwp *l)
   2093 {
   2094 	struct pcb *pcb = &l->l_addr->u_pcb;
   2095 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2096 
   2097 	DPRINTFN(ACTIVATE,
   2098 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2099 
   2100 	/*
   2101 	 * XXX Normally performed in cpu_fork().
   2102 	 */
   2103 	pcb->pcb_pm = pmap;
   2104 }
   2105 
   2106 /*
   2107  * Deactivate the specified process's address space.
   2108  */
   2109 void
   2110 pmap_deactivate(struct lwp *l)
   2111 {
   2112 }
   2113 
   2114 boolean_t
   2115 pmap_query_bit(struct vm_page *pg, int ptebit)
   2116 {
   2117 	struct pvo_entry *pvo;
   2118 	volatile struct pte *pt;
   2119 	register_t msr;
   2120 
   2121 	if (pmap_attr_fetch(pg) & ptebit)
   2122 		return TRUE;
   2123 
   2124 	msr = pmap_interrupts_off();
   2125 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2126 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2127 		/*
   2128 		 * See if we saved the bit off.  If so cache, it and return
   2129 		 * success.
   2130 		 */
   2131 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2132 			pmap_attr_save(pg, ptebit);
   2133 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2134 			pmap_interrupts_restore(msr);
   2135 			return TRUE;
   2136 		}
   2137 	}
   2138 	/*
   2139 	 * No luck, now go thru the hard part of looking at the ptes
   2140 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2141 	 * to the PTEs.
   2142 	 */
   2143 	SYNC();
   2144 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2145 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2146 		/*
   2147 		 * See if this pvo have a valid PTE.  If so, fetch the
   2148 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2149 		 * ptebit is set, cache, it and return success.
   2150 		 */
   2151 		pt = pmap_pvo_to_pte(pvo, -1);
   2152 		if (pt != NULL) {
   2153 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2154 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2155 				pmap_attr_save(pg, ptebit);
   2156 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2157 				pmap_interrupts_restore(msr);
   2158 				return TRUE;
   2159 			}
   2160 		}
   2161 	}
   2162 	pmap_interrupts_restore(msr);
   2163 	return FALSE;
   2164 }
   2165 
   2166 boolean_t
   2167 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2168 {
   2169 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2170 	struct pvo_entry *pvo;
   2171 	volatile struct pte *pt;
   2172 	register_t msr;
   2173 	int rv = 0;
   2174 
   2175 	msr = pmap_interrupts_off();
   2176 
   2177 	/*
   2178 	 * Fetch the cache value
   2179 	 */
   2180 	rv |= pmap_attr_fetch(pg);
   2181 
   2182 	/*
   2183 	 * Clear the cached value.
   2184 	 */
   2185 	pmap_attr_clear(pg, ptebit);
   2186 
   2187 	/*
   2188 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2189 	 * can reset the right ones).  Note that since the pvo entries and
   2190 	 * list heads are accessed via BAT0 and are never placed in the
   2191 	 * page table, we don't have to worry about further accesses setting
   2192 	 * the REF/CHG bits.
   2193 	 */
   2194 	SYNC();
   2195 
   2196 	/*
   2197 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2198 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2199 	 */
   2200 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2201 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2202 		pt = pmap_pvo_to_pte(pvo, -1);
   2203 		if (pt != NULL) {
   2204 			/*
   2205 			 * Only sync the PTE if the bit we are looking
   2206 			 * for is not already set.
   2207 			 */
   2208 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2209 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2210 			/*
   2211 			 * If the bit we are looking for was already set,
   2212 			 * clear that bit in the pte.
   2213 			 */
   2214 			if (pvo->pvo_pte.pte_lo & ptebit)
   2215 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2216 		}
   2217 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2218 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2219 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2220 	}
   2221 	pmap_interrupts_restore(msr);
   2222 
   2223 	/*
   2224 	 * If we are clearing the modify bit and this page was marked EXEC
   2225 	 * and the user of the page thinks the page was modified, then we
   2226 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2227 	 * bit if it's not mapped.  The page itself might not have the CHG
   2228 	 * bit set if the modification was done via DMA to the page.
   2229 	 */
   2230 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2231 		if (LIST_EMPTY(pvoh)) {
   2232 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2233 			    pg->phys_addr));
   2234 			pmap_attr_clear(pg, PTE_EXEC);
   2235 			PMAPCOUNT(exec_uncached_clear_modify);
   2236 		} else {
   2237 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2238 			    pg->phys_addr));
   2239 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2240 			PMAPCOUNT(exec_synced_clear_modify);
   2241 		}
   2242 	}
   2243 	return (rv & ptebit) != 0;
   2244 }
   2245 
   2246 void
   2247 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2248 {
   2249 	struct pvo_entry *pvo;
   2250 	size_t offset = va & ADDR_POFF;
   2251 	int s;
   2252 
   2253 	s = splvm();
   2254 	while (len > 0) {
   2255 		size_t seglen = PAGE_SIZE - offset;
   2256 		if (seglen > len)
   2257 			seglen = len;
   2258 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2259 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2260 			pmap_syncicache(
   2261 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2262 			PMAP_PVO_CHECK(pvo);
   2263 		}
   2264 		va += seglen;
   2265 		len -= seglen;
   2266 		offset = 0;
   2267 	}
   2268 	splx(s);
   2269 }
   2270 
   2271 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2272 void
   2273 pmap_pte_print(volatile struct pte *pt)
   2274 {
   2275 	printf("PTE %p: ", pt);
   2276 	/* High word: */
   2277 	printf("0x%08lx: [", pt->pte_hi);
   2278 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2279 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2280 	printf("0x%06lx 0x%02lx",
   2281 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2282 	    pt->pte_hi & PTE_API);
   2283 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2284 	/* Low word: */
   2285 	printf(" 0x%08lx: [", pt->pte_lo);
   2286 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2287 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2288 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2289 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2290 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2291 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2292 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2293 	switch (pt->pte_lo & PTE_PP) {
   2294 	case PTE_BR: printf("br]\n"); break;
   2295 	case PTE_BW: printf("bw]\n"); break;
   2296 	case PTE_SO: printf("so]\n"); break;
   2297 	case PTE_SW: printf("sw]\n"); break;
   2298 	}
   2299 }
   2300 #endif
   2301 
   2302 #if defined(DDB)
   2303 void
   2304 pmap_pteg_check(void)
   2305 {
   2306 	volatile struct pte *pt;
   2307 	int i;
   2308 	int ptegidx;
   2309 	u_int p_valid = 0;
   2310 	u_int s_valid = 0;
   2311 	u_int invalid = 0;
   2312 
   2313 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2314 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2315 			if (pt->pte_hi & PTE_VALID) {
   2316 				if (pt->pte_hi & PTE_HID)
   2317 					s_valid++;
   2318 				else
   2319 					p_valid++;
   2320 			} else
   2321 				invalid++;
   2322 		}
   2323 	}
   2324 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2325 		p_valid, p_valid, s_valid, s_valid,
   2326 		invalid, invalid);
   2327 }
   2328 
   2329 void
   2330 pmap_print_mmuregs(void)
   2331 {
   2332 	int i;
   2333 	u_int cpuvers;
   2334 	vaddr_t addr;
   2335 	register_t soft_sr[16];
   2336 	struct bat soft_ibat[4];
   2337 	struct bat soft_dbat[4];
   2338 	register_t sdr1;
   2339 
   2340 	cpuvers = MFPVR() >> 16;
   2341 
   2342 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2343 
   2344 	addr = 0;
   2345 	for (i=0; i<16; i++) {
   2346 		soft_sr[i] = MFSRIN(addr);
   2347 		addr += (1 << ADDR_SR_SHFT);
   2348 	}
   2349 
   2350 	/* read iBAT (601: uBAT) registers */
   2351 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2352 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2353 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2354 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2355 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2356 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2357 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2358 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2359 
   2360 
   2361 	if (cpuvers != MPC601) {
   2362 		/* read dBAT registers */
   2363 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2364 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2365 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2366 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2367 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2368 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2369 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2370 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2371 	}
   2372 
   2373 	printf("SDR1:\t%#lx\n", sdr1);
   2374 	printf("SR[]:\t");
   2375 	for (i=0; i<4; i++)
   2376 		printf("0x%08lx,   ", soft_sr[i]);
   2377 	printf("\n\t");
   2378 	for ( ; i<8; i++)
   2379 		printf("0x%08lx,   ", soft_sr[i]);
   2380 	printf("\n\t");
   2381 	for ( ; i<12; i++)
   2382 		printf("0x%08lx,   ", soft_sr[i]);
   2383 	printf("\n\t");
   2384 	for ( ; i<16; i++)
   2385 		printf("0x%08lx,   ", soft_sr[i]);
   2386 	printf("\n");
   2387 
   2388 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2389 	for (i=0; i<4; i++) {
   2390 		printf("0x%08lx 0x%08lx, ",
   2391 			soft_ibat[i].batu, soft_ibat[i].batl);
   2392 		if (i == 1)
   2393 			printf("\n\t");
   2394 	}
   2395 	if (cpuvers != MPC601) {
   2396 		printf("\ndBAT[]:\t");
   2397 		for (i=0; i<4; i++) {
   2398 			printf("0x%08lx 0x%08lx, ",
   2399 				soft_dbat[i].batu, soft_dbat[i].batl);
   2400 			if (i == 1)
   2401 				printf("\n\t");
   2402 		}
   2403 	}
   2404 	printf("\n");
   2405 }
   2406 
   2407 void
   2408 pmap_print_pte(pmap_t pm, vaddr_t va)
   2409 {
   2410 	struct pvo_entry *pvo;
   2411 	volatile struct pte *pt;
   2412 	int pteidx;
   2413 
   2414 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2415 	if (pvo != NULL) {
   2416 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2417 		if (pt != NULL) {
   2418 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2419 				va, pt,
   2420 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2421 				pt->pte_hi, pt->pte_lo);
   2422 		} else {
   2423 			printf("No valid PTE found\n");
   2424 		}
   2425 	} else {
   2426 		printf("Address not in pmap\n");
   2427 	}
   2428 }
   2429 
   2430 void
   2431 pmap_pteg_dist(void)
   2432 {
   2433 	struct pvo_entry *pvo;
   2434 	int ptegidx;
   2435 	int depth;
   2436 	int max_depth = 0;
   2437 	unsigned int depths[64];
   2438 
   2439 	memset(depths, 0, sizeof(depths));
   2440 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2441 		depth = 0;
   2442 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2443 			depth++;
   2444 		}
   2445 		if (depth > max_depth)
   2446 			max_depth = depth;
   2447 		if (depth > 63)
   2448 			depth = 63;
   2449 		depths[depth]++;
   2450 	}
   2451 
   2452 	for (depth = 0; depth < 64; depth++) {
   2453 		printf("  [%2d]: %8u", depth, depths[depth]);
   2454 		if ((depth & 3) == 3)
   2455 			printf("\n");
   2456 		if (depth == max_depth)
   2457 			break;
   2458 	}
   2459 	if ((depth & 3) != 3)
   2460 		printf("\n");
   2461 	printf("Max depth found was %d\n", max_depth);
   2462 }
   2463 #endif /* DEBUG */
   2464 
   2465 #if defined(PMAPCHECK) || defined(DEBUG)
   2466 void
   2467 pmap_pvo_verify(void)
   2468 {
   2469 	int ptegidx;
   2470 	int s;
   2471 
   2472 	s = splvm();
   2473 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2474 		struct pvo_entry *pvo;
   2475 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2476 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2477 				panic("pmap_pvo_verify: invalid pvo %p "
   2478 				    "on list %#x", pvo, ptegidx);
   2479 			pmap_pvo_check(pvo);
   2480 		}
   2481 	}
   2482 	splx(s);
   2483 }
   2484 #endif /* PMAPCHECK */
   2485 
   2486 
   2487 void *
   2488 pmap_pool_ualloc(struct pool *pp, int flags)
   2489 {
   2490 	struct pvo_page *pvop;
   2491 
   2492 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2493 	if (pvop != NULL) {
   2494 		pmap_upvop_free--;
   2495 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2496 		return pvop;
   2497 	}
   2498 	if (uvm.page_init_done != TRUE) {
   2499 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2500 	}
   2501 	return pmap_pool_malloc(pp, flags);
   2502 }
   2503 
   2504 void *
   2505 pmap_pool_malloc(struct pool *pp, int flags)
   2506 {
   2507 	struct pvo_page *pvop;
   2508 	struct vm_page *pg;
   2509 
   2510 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2511 	if (pvop != NULL) {
   2512 		pmap_mpvop_free--;
   2513 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2514 		return pvop;
   2515 	}
   2516  again:
   2517 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2518 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2519 	if (__predict_false(pg == NULL)) {
   2520 		if (flags & PR_WAITOK) {
   2521 			uvm_wait("plpg");
   2522 			goto again;
   2523 		} else {
   2524 			return (0);
   2525 		}
   2526 	}
   2527 	return (void *) VM_PAGE_TO_PHYS(pg);
   2528 }
   2529 
   2530 void
   2531 pmap_pool_ufree(struct pool *pp, void *va)
   2532 {
   2533 	struct pvo_page *pvop;
   2534 #if 0
   2535 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2536 		pmap_pool_mfree(va, size, tag);
   2537 		return;
   2538 	}
   2539 #endif
   2540 	pvop = va;
   2541 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2542 	pmap_upvop_free++;
   2543 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2544 		pmap_upvop_maxfree = pmap_upvop_free;
   2545 }
   2546 
   2547 void
   2548 pmap_pool_mfree(struct pool *pp, void *va)
   2549 {
   2550 	struct pvo_page *pvop;
   2551 
   2552 	pvop = va;
   2553 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2554 	pmap_mpvop_free++;
   2555 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2556 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2557 #if 0
   2558 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2559 #endif
   2560 }
   2561 
   2562 /*
   2563  * This routine in bootstraping to steal to-be-managed memory (which will
   2564  * then be unmanaged).  We use it to grab from the first 256MB for our
   2565  * pmap needs and above 256MB for other stuff.
   2566  */
   2567 vaddr_t
   2568 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2569 {
   2570 	vsize_t size;
   2571 	vaddr_t va;
   2572 	paddr_t pa = 0;
   2573 	int npgs, bank;
   2574 	struct vm_physseg *ps;
   2575 
   2576 	if (uvm.page_init_done == TRUE)
   2577 		panic("pmap_steal_memory: called _after_ bootstrap");
   2578 
   2579 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2580 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2581 
   2582 	size = round_page(vsize);
   2583 	npgs = atop(size);
   2584 
   2585 	/*
   2586 	 * PA 0 will never be among those given to UVM so we can use it
   2587 	 * to indicate we couldn't steal any memory.
   2588 	 */
   2589 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2590 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2591 		    ps->avail_end - ps->avail_start >= npgs) {
   2592 			pa = ptoa(ps->avail_start);
   2593 			break;
   2594 		}
   2595 	}
   2596 
   2597 	if (pa == 0)
   2598 		panic("pmap_steal_memory: no approriate memory to steal!");
   2599 
   2600 	ps->avail_start += npgs;
   2601 	ps->start += npgs;
   2602 
   2603 	/*
   2604 	 * If we've used up all the pages in the segment, remove it and
   2605 	 * compact the list.
   2606 	 */
   2607 	if (ps->avail_start == ps->end) {
   2608 		/*
   2609 		 * If this was the last one, then a very bad thing has occurred
   2610 		 */
   2611 		if (--vm_nphysseg == 0)
   2612 			panic("pmap_steal_memory: out of memory!");
   2613 
   2614 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2615 		for (; bank < vm_nphysseg; bank++, ps++) {
   2616 			ps[0] = ps[1];
   2617 		}
   2618 	}
   2619 
   2620 	va = (vaddr_t) pa;
   2621 	memset((caddr_t) va, 0, size);
   2622 	pmap_pages_stolen += npgs;
   2623 #ifdef DEBUG
   2624 	if (pmapdebug && npgs > 1) {
   2625 		u_int cnt = 0;
   2626 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2627 			cnt += ps->avail_end - ps->avail_start;
   2628 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2629 		    npgs, pmap_pages_stolen, cnt);
   2630 	}
   2631 #endif
   2632 
   2633 	return va;
   2634 }
   2635 
   2636 /*
   2637  * Find a chuck of memory with right size and alignment.
   2638  */
   2639 void *
   2640 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2641 {
   2642 	struct mem_region *mp;
   2643 	paddr_t s, e;
   2644 	int i, j;
   2645 
   2646 	size = round_page(size);
   2647 
   2648 	DPRINTFN(BOOT,
   2649 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2650 	    size, alignment, at_end));
   2651 
   2652 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2653 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2654 		    alignment);
   2655 
   2656 	if (at_end) {
   2657 		if (alignment != PAGE_SIZE)
   2658 			panic("pmap_boot_find_memory: invalid ending "
   2659 			    "alignment %lx", alignment);
   2660 
   2661 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2662 			s = mp->start + mp->size - size;
   2663 			if (s >= mp->start && mp->size >= size) {
   2664 				DPRINTFN(BOOT,(": %lx\n", s));
   2665 				DPRINTFN(BOOT,
   2666 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2667 				     "0x%lx size 0x%lx\n", mp - avail,
   2668 				     mp->start, mp->size));
   2669 				mp->size -= size;
   2670 				DPRINTFN(BOOT,
   2671 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2672 				     "0x%lx size 0x%lx\n", mp - avail,
   2673 				     mp->start, mp->size));
   2674 				return (void *) s;
   2675 			}
   2676 		}
   2677 		panic("pmap_boot_find_memory: no available memory");
   2678 	}
   2679 
   2680 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2681 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2682 		e = s + size;
   2683 
   2684 		/*
   2685 		 * Is the calculated region entirely within the region?
   2686 		 */
   2687 		if (s < mp->start || e > mp->start + mp->size)
   2688 			continue;
   2689 
   2690 		DPRINTFN(BOOT,(": %lx\n", s));
   2691 		if (s == mp->start) {
   2692 			/*
   2693 			 * If the block starts at the beginning of region,
   2694 			 * adjust the size & start. (the region may now be
   2695 			 * zero in length)
   2696 			 */
   2697 			DPRINTFN(BOOT,
   2698 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2699 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2700 			mp->start += size;
   2701 			mp->size -= size;
   2702 			DPRINTFN(BOOT,
   2703 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2704 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2705 		} else if (e == mp->start + mp->size) {
   2706 			/*
   2707 			 * If the block starts at the beginning of region,
   2708 			 * adjust only the size.
   2709 			 */
   2710 			DPRINTFN(BOOT,
   2711 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2712 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2713 			mp->size -= size;
   2714 			DPRINTFN(BOOT,
   2715 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2716 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2717 		} else {
   2718 			/*
   2719 			 * Block is in the middle of the region, so we
   2720 			 * have to split it in two.
   2721 			 */
   2722 			for (j = avail_cnt; j > i + 1; j--) {
   2723 				avail[j] = avail[j-1];
   2724 			}
   2725 			DPRINTFN(BOOT,
   2726 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2727 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2728 			mp[1].start = e;
   2729 			mp[1].size = mp[0].start + mp[0].size - e;
   2730 			mp[0].size = s - mp[0].start;
   2731 			avail_cnt++;
   2732 			for (; i < avail_cnt; i++) {
   2733 				DPRINTFN(BOOT,
   2734 				    ("pmap_boot_find_memory: a-avail[%d] "
   2735 				     "start 0x%lx size 0x%lx\n", i,
   2736 				     avail[i].start, avail[i].size));
   2737 			}
   2738 		}
   2739 		return (void *) s;
   2740 	}
   2741 	panic("pmap_boot_find_memory: not enough memory for "
   2742 	    "%lx/%lx allocation?", size, alignment);
   2743 }
   2744 
   2745 /*
   2746  * This is not part of the defined PMAP interface and is specific to the
   2747  * PowerPC architecture.  This is called during initppc, before the system
   2748  * is really initialized.
   2749  */
   2750 void
   2751 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2752 {
   2753 	struct mem_region *mp, tmp;
   2754 	paddr_t s, e;
   2755 	psize_t size;
   2756 	int i, j;
   2757 
   2758 	/*
   2759 	 * Get memory.
   2760 	 */
   2761 	mem_regions(&mem, &avail);
   2762 #if defined(DEBUG)
   2763 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2764 		printf("pmap_bootstrap: memory configuration:\n");
   2765 		for (mp = mem; mp->size; mp++) {
   2766 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2767 				mp->start, mp->size);
   2768 		}
   2769 		for (mp = avail; mp->size; mp++) {
   2770 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2771 				mp->start, mp->size);
   2772 		}
   2773 	}
   2774 #endif
   2775 
   2776 	/*
   2777 	 * Find out how much physical memory we have and in how many chunks.
   2778 	 */
   2779 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2780 		if (mp->start >= pmap_memlimit)
   2781 			continue;
   2782 		if (mp->start + mp->size > pmap_memlimit) {
   2783 			size = pmap_memlimit - mp->start;
   2784 			physmem += btoc(size);
   2785 		} else {
   2786 			physmem += btoc(mp->size);
   2787 		}
   2788 		mem_cnt++;
   2789 	}
   2790 
   2791 	/*
   2792 	 * Count the number of available entries.
   2793 	 */
   2794 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2795 		avail_cnt++;
   2796 
   2797 	/*
   2798 	 * Page align all regions.
   2799 	 */
   2800 	kernelstart = trunc_page(kernelstart);
   2801 	kernelend = round_page(kernelend);
   2802 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2803 		s = round_page(mp->start);
   2804 		mp->size -= (s - mp->start);
   2805 		mp->size = trunc_page(mp->size);
   2806 		mp->start = s;
   2807 		e = mp->start + mp->size;
   2808 
   2809 		DPRINTFN(BOOT,
   2810 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2811 		    i, mp->start, mp->size));
   2812 
   2813 		/*
   2814 		 * Don't allow the end to run beyond our artificial limit
   2815 		 */
   2816 		if (e > pmap_memlimit)
   2817 			e = pmap_memlimit;
   2818 
   2819 		/*
   2820 		 * Is this region empty or strange?  skip it.
   2821 		 */
   2822 		if (e <= s) {
   2823 			mp->start = 0;
   2824 			mp->size = 0;
   2825 			continue;
   2826 		}
   2827 
   2828 		/*
   2829 		 * Does this overlap the beginning of kernel?
   2830 		 *   Does extend past the end of the kernel?
   2831 		 */
   2832 		else if (s < kernelstart && e > kernelstart) {
   2833 			if (e > kernelend) {
   2834 				avail[avail_cnt].start = kernelend;
   2835 				avail[avail_cnt].size = e - kernelend;
   2836 				avail_cnt++;
   2837 			}
   2838 			mp->size = kernelstart - s;
   2839 		}
   2840 		/*
   2841 		 * Check whether this region overlaps the end of the kernel.
   2842 		 */
   2843 		else if (s < kernelend && e > kernelend) {
   2844 			mp->start = kernelend;
   2845 			mp->size = e - kernelend;
   2846 		}
   2847 		/*
   2848 		 * Look whether this regions is completely inside the kernel.
   2849 		 * Nuke it if it does.
   2850 		 */
   2851 		else if (s >= kernelstart && e <= kernelend) {
   2852 			mp->start = 0;
   2853 			mp->size = 0;
   2854 		}
   2855 		/*
   2856 		 * If the user imposed a memory limit, enforce it.
   2857 		 */
   2858 		else if (s >= pmap_memlimit) {
   2859 			mp->start = -PAGE_SIZE;	/* let's know why */
   2860 			mp->size = 0;
   2861 		}
   2862 		else {
   2863 			mp->start = s;
   2864 			mp->size = e - s;
   2865 		}
   2866 		DPRINTFN(BOOT,
   2867 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   2868 		    i, mp->start, mp->size));
   2869 	}
   2870 
   2871 	/*
   2872 	 * Move (and uncount) all the null return to the end.
   2873 	 */
   2874 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2875 		if (mp->size == 0) {
   2876 			tmp = avail[i];
   2877 			avail[i] = avail[--avail_cnt];
   2878 			avail[avail_cnt] = avail[i];
   2879 		}
   2880 	}
   2881 
   2882 	/*
   2883 	 * (Bubble)sort them into asecnding order.
   2884 	 */
   2885 	for (i = 0; i < avail_cnt; i++) {
   2886 		for (j = i + 1; j < avail_cnt; j++) {
   2887 			if (avail[i].start > avail[j].start) {
   2888 				tmp = avail[i];
   2889 				avail[i] = avail[j];
   2890 				avail[j] = tmp;
   2891 			}
   2892 		}
   2893 	}
   2894 
   2895 	/*
   2896 	 * Make sure they don't overlap.
   2897 	 */
   2898 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   2899 		if (mp[0].start + mp[0].size > mp[1].start) {
   2900 			mp[0].size = mp[1].start - mp[0].start;
   2901 		}
   2902 		DPRINTFN(BOOT,
   2903 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2904 		    i, mp->start, mp->size));
   2905 	}
   2906 	DPRINTFN(BOOT,
   2907 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2908 	    i, mp->start, mp->size));
   2909 
   2910 #ifdef	PTEGCOUNT
   2911 	pmap_pteg_cnt = PTEGCOUNT;
   2912 #else /* PTEGCOUNT */
   2913 	pmap_pteg_cnt = 0x1000;
   2914 
   2915 	while (pmap_pteg_cnt < physmem)
   2916 		pmap_pteg_cnt <<= 1;
   2917 
   2918 	pmap_pteg_cnt >>= 1;
   2919 #endif /* PTEGCOUNT */
   2920 
   2921 	/*
   2922 	 * Find suitably aligned memory for PTEG hash table.
   2923 	 */
   2924 	size = pmap_pteg_cnt * sizeof(struct pteg);
   2925 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   2926 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2927 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   2928 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   2929 		    pmap_pteg_table, size);
   2930 #endif
   2931 
   2932 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   2933 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   2934 
   2935 	/*
   2936 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   2937 	 * with pages.  So we just steal them before giving them to UVM.
   2938 	 */
   2939 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   2940 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   2941 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2942 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   2943 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   2944 		    pmap_pvo_table, size);
   2945 #endif
   2946 
   2947 	for (i = 0; i < pmap_pteg_cnt; i++)
   2948 		TAILQ_INIT(&pmap_pvo_table[i]);
   2949 
   2950 #ifndef MSGBUFADDR
   2951 	/*
   2952 	 * Allocate msgbuf in high memory.
   2953 	 */
   2954 	msgbuf_paddr =
   2955 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   2956 #endif
   2957 
   2958 #ifdef __HAVE_PMAP_PHYSSEG
   2959 	{
   2960 		u_int npgs = 0;
   2961 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   2962 			npgs += btoc(mp->size);
   2963 		size = (sizeof(struct pvo_head) + 1) * npgs;
   2964 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   2965 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   2966 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2967 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   2968 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   2969 			    pmap_physseg.pvoh, size);
   2970 #endif
   2971 	}
   2972 #endif
   2973 
   2974 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   2975 		paddr_t pfstart = atop(mp->start);
   2976 		paddr_t pfend = atop(mp->start + mp->size);
   2977 		if (mp->size == 0)
   2978 			continue;
   2979 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   2980 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2981 				VM_FREELIST_FIRST256);
   2982 		} else if (mp->start >= SEGMENT_LENGTH) {
   2983 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2984 				VM_FREELIST_DEFAULT);
   2985 		} else {
   2986 			pfend = atop(SEGMENT_LENGTH);
   2987 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2988 				VM_FREELIST_FIRST256);
   2989 			pfstart = atop(SEGMENT_LENGTH);
   2990 			pfend = atop(mp->start + mp->size);
   2991 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2992 				VM_FREELIST_DEFAULT);
   2993 		}
   2994 	}
   2995 
   2996 	/*
   2997 	 * Make sure kernel vsid is allocated as well as VSID 0.
   2998 	 */
   2999 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3000 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3001 	pmap_vsid_bitmap[0] |= 1;
   3002 
   3003 	/*
   3004 	 * Initialize kernel pmap and hardware.
   3005 	 */
   3006 	for (i = 0; i < 16; i++) {
   3007 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3008 		__asm __volatile ("mtsrin %0,%1"
   3009 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3010 	}
   3011 
   3012 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3013 	__asm __volatile ("mtsr %0,%1"
   3014 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3015 #ifdef KERNEL2_SR
   3016 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3017 	__asm __volatile ("mtsr %0,%1"
   3018 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3019 #endif
   3020 	for (i = 0; i < 16; i++) {
   3021 		if (iosrtable[i] & SR601_T) {
   3022 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3023 			__asm __volatile ("mtsrin %0,%1"
   3024 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3025 		}
   3026 	}
   3027 
   3028 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3029 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3030 	tlbia();
   3031 
   3032 #ifdef ALTIVEC
   3033 	pmap_use_altivec = cpu_altivec;
   3034 #endif
   3035 
   3036 #ifdef DEBUG
   3037 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3038 		u_int cnt;
   3039 		int bank;
   3040 		char pbuf[9];
   3041 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3042 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3043 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3044 			    bank,
   3045 			    ptoa(vm_physmem[bank].avail_start),
   3046 			    ptoa(vm_physmem[bank].avail_end),
   3047 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3048 		}
   3049 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3050 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3051 		    pbuf, cnt);
   3052 	}
   3053 #endif
   3054 
   3055 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3056 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3057 	    &pmap_pool_uallocator);
   3058 
   3059 	pool_setlowat(&pmap_upvo_pool, 252);
   3060 
   3061 	pool_init(&pmap_pool, sizeof(struct pmap),
   3062 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3063 }
   3064