Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.19
      1 /*	$NetBSD: pmap.c,v 1.19 2003/12/27 13:35:52 mjl Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.19 2003/12/27 13:35:52 mjl Exp $");
     71 
     72 #include "opt_ppcarch.h"
     73 #include "opt_altivec.h"
     74 #include "opt_pmap.h"
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/user.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 
     84 #if __NetBSD_Version__ < 105010000
     85 #include <vm/vm.h>
     86 #include <vm/vm_kern.h>
     87 #define	splvm()		splimp()
     88 #endif
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/pcb.h>
     93 #include <machine/powerpc.h>
     94 #include <powerpc/spr.h>
     95 #include <powerpc/oea/sr_601.h>
     96 #include <powerpc/bat.h>
     97 
     98 #if defined(DEBUG) || defined(PMAPCHECK)
     99 #define	STATIC
    100 #else
    101 #define	STATIC	static
    102 #endif
    103 
    104 #ifdef ALTIVEC
    105 int pmap_use_altivec;
    106 #endif
    107 
    108 volatile struct pteg *pmap_pteg_table;
    109 unsigned int pmap_pteg_cnt;
    110 unsigned int pmap_pteg_mask;
    111 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    112 
    113 struct pmap kernel_pmap_;
    114 unsigned int pmap_pages_stolen;
    115 u_long pmap_pte_valid;
    116 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    117 u_long pmap_pvo_enter_depth;
    118 u_long pmap_pvo_remove_depth;
    119 #endif
    120 
    121 int physmem;
    122 #ifndef MSGBUFADDR
    123 extern paddr_t msgbuf_paddr;
    124 #endif
    125 
    126 static struct mem_region *mem, *avail;
    127 static u_int mem_cnt, avail_cnt;
    128 
    129 #ifdef __HAVE_PMAP_PHYSSEG
    130 /*
    131  * This is a cache of referenced/modified bits.
    132  * Bits herein are shifted by ATTRSHFT.
    133  */
    134 #define	ATTR_SHFT	4
    135 struct pmap_physseg pmap_physseg;
    136 #endif
    137 
    138 /*
    139  * The following structure is exactly 32 bytes long (one cacheline).
    140  */
    141 struct pvo_entry {
    142 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    143 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    144 	struct pte pvo_pte;			/* Prebuilt PTE */
    145 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    146 	vaddr_t pvo_vaddr;			/* VA of entry */
    147 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    148 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    149 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    150 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    151 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    152 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    153 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    154 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    155 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    156 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    157 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    158 #define	PVO_REMOVE		6		/* PVO has been removed */
    159 #define	PVO_WHERE_MASK		15
    160 #define	PVO_WHERE_SHFT		8
    161 };
    162 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    163 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    164 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    165 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    166 #define	PVO_PTEGIDX_CLR(pvo)	\
    167 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    168 #define	PVO_PTEGIDX_SET(pvo,i)	\
    169 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    170 #define	PVO_WHERE(pvo,w)	\
    171 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    172 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    173 
    174 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    175 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    176 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    177 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    178 
    179 struct pool pmap_pool;		/* pool for pmap structures */
    180 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    181 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    182 
    183 /*
    184  * We keep a cache of unmanaged pages to be used for pvo entries for
    185  * unmanaged pages.
    186  */
    187 struct pvo_page {
    188 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    189 };
    190 SIMPLEQ_HEAD(pvop_head, pvo_page);
    191 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    192 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    193 u_long pmap_upvop_free;
    194 u_long pmap_upvop_maxfree;
    195 u_long pmap_mpvop_free;
    196 u_long pmap_mpvop_maxfree;
    197 
    198 STATIC void *pmap_pool_ualloc(struct pool *, int);
    199 STATIC void *pmap_pool_malloc(struct pool *, int);
    200 
    201 STATIC void pmap_pool_ufree(struct pool *, void *);
    202 STATIC void pmap_pool_mfree(struct pool *, void *);
    203 
    204 static struct pool_allocator pmap_pool_mallocator = {
    205 	pmap_pool_malloc, pmap_pool_mfree, 0,
    206 };
    207 
    208 static struct pool_allocator pmap_pool_uallocator = {
    209 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    210 };
    211 
    212 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    213 void pmap_pte_print(volatile struct pte *);
    214 #endif
    215 
    216 #ifdef DDB
    217 void pmap_pteg_check(void);
    218 void pmap_pteg_dist(void);
    219 void pmap_print_pte(pmap_t, vaddr_t);
    220 void pmap_print_mmuregs(void);
    221 #endif
    222 
    223 #if defined(DEBUG) || defined(PMAPCHECK)
    224 #ifdef PMAPCHECK
    225 int pmapcheck = 1;
    226 #else
    227 int pmapcheck = 0;
    228 #endif
    229 void pmap_pvo_verify(void);
    230 STATIC void pmap_pvo_check(const struct pvo_entry *);
    231 #define	PMAP_PVO_CHECK(pvo)	 		\
    232 	do {					\
    233 		if (pmapcheck)			\
    234 			pmap_pvo_check(pvo);	\
    235 	} while (0)
    236 #else
    237 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    238 #endif
    239 STATIC int pmap_pte_insert(int, struct pte *);
    240 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    241 	vaddr_t, paddr_t, register_t, int);
    242 STATIC void pmap_pvo_remove(struct pvo_entry *, int);
    243 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    244 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    245 #define pmap_pvo_reclaim(pm)	NULL
    246 STATIC void pvo_set_exec(struct pvo_entry *);
    247 STATIC void pvo_clear_exec(struct pvo_entry *);
    248 
    249 STATIC void tlbia(void);
    250 
    251 STATIC void pmap_release(pmap_t);
    252 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    253 
    254 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    255 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    256 
    257 static int pmap_initialized;
    258 
    259 #if defined(DEBUG) || defined(PMAPDEBUG)
    260 #define	PMAPDEBUG_BOOT		0x0001
    261 #define	PMAPDEBUG_PTE		0x0002
    262 #define	PMAPDEBUG_EXEC		0x0008
    263 #define	PMAPDEBUG_PVOENTER	0x0010
    264 #define	PMAPDEBUG_PVOREMOVE	0x0020
    265 #define	PMAPDEBUG_ACTIVATE	0x0100
    266 #define	PMAPDEBUG_CREATE	0x0200
    267 #define	PMAPDEBUG_ENTER		0x1000
    268 #define	PMAPDEBUG_KENTER	0x2000
    269 #define	PMAPDEBUG_KREMOVE	0x4000
    270 #define	PMAPDEBUG_REMOVE	0x8000
    271 unsigned int pmapdebug = 0;
    272 # define DPRINTF(x)		printf x
    273 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    274 #else
    275 # define DPRINTF(x)
    276 # define DPRINTFN(n, x)
    277 #endif
    278 
    279 
    280 #ifdef PMAPCOUNTERS
    281 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    282 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    283 
    284 struct evcnt pmap_evcnt_mappings =
    285     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    286 	    "pmap", "pages mapped");
    287 struct evcnt pmap_evcnt_unmappings =
    288     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    289 	    "pmap", "pages unmapped");
    290 
    291 struct evcnt pmap_evcnt_kernel_mappings =
    292     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    293 	    "pmap", "kernel pages mapped");
    294 struct evcnt pmap_evcnt_kernel_unmappings =
    295     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    296 	    "pmap", "kernel pages unmapped");
    297 
    298 struct evcnt pmap_evcnt_mappings_replaced =
    299     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    300 	    "pmap", "page mappings replaced");
    301 
    302 struct evcnt pmap_evcnt_exec_mappings =
    303     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    304 	    "pmap", "exec pages mapped");
    305 struct evcnt pmap_evcnt_exec_cached =
    306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    307 	    "pmap", "exec pages cached");
    308 
    309 struct evcnt pmap_evcnt_exec_synced =
    310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    311 	    "pmap", "exec pages synced");
    312 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    314 	    "pmap", "exec pages synced (CM)");
    315 
    316 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    318 	    "pmap", "exec pages uncached (PP)");
    319 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    321 	    "pmap", "exec pages uncached (CM)");
    322 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    323     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    324 	    "pmap", "exec pages uncached (ZP)");
    325 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    327 	    "pmap", "exec pages uncached (CP)");
    328 
    329 struct evcnt pmap_evcnt_updates =
    330     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    331 	    "pmap", "updates");
    332 struct evcnt pmap_evcnt_collects =
    333     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    334 	    "pmap", "collects");
    335 struct evcnt pmap_evcnt_copies =
    336     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    337 	    "pmap", "copies");
    338 
    339 struct evcnt pmap_evcnt_ptes_spilled =
    340     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    341 	    "pmap", "ptes spilled from overflow");
    342 struct evcnt pmap_evcnt_ptes_unspilled =
    343     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    344 	    "pmap", "ptes not spilled");
    345 struct evcnt pmap_evcnt_ptes_evicted =
    346     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    347 	    "pmap", "ptes evicted");
    348 
    349 struct evcnt pmap_evcnt_ptes_primary[8] = {
    350     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    351 	    "pmap", "ptes added at primary[0]"),
    352     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    353 	    "pmap", "ptes added at primary[1]"),
    354     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    355 	    "pmap", "ptes added at primary[2]"),
    356     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    357 	    "pmap", "ptes added at primary[3]"),
    358 
    359     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    360 	    "pmap", "ptes added at primary[4]"),
    361     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    362 	    "pmap", "ptes added at primary[5]"),
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "ptes added at primary[6]"),
    365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366 	    "pmap", "ptes added at primary[7]"),
    367 };
    368 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    369     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    370 	    "pmap", "ptes added at secondary[0]"),
    371     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    372 	    "pmap", "ptes added at secondary[1]"),
    373     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    374 	    "pmap", "ptes added at secondary[2]"),
    375     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    376 	    "pmap", "ptes added at secondary[3]"),
    377 
    378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379 	    "pmap", "ptes added at secondary[4]"),
    380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    381 	    "pmap", "ptes added at secondary[5]"),
    382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    383 	    "pmap", "ptes added at secondary[6]"),
    384     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    385 	    "pmap", "ptes added at secondary[7]"),
    386 };
    387 struct evcnt pmap_evcnt_ptes_removed =
    388     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    389 	    "pmap", "ptes removed");
    390 struct evcnt pmap_evcnt_ptes_changed =
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes changed");
    393 
    394 /*
    395  * From pmap_subr.c
    396  */
    397 extern struct evcnt pmap_evcnt_zeroed_pages;
    398 extern struct evcnt pmap_evcnt_copied_pages;
    399 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    400 #else
    401 #define	PMAPCOUNT(ev)	((void) 0)
    402 #define	PMAPCOUNT2(ev)	((void) 0)
    403 #endif
    404 
    405 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    406 #define	TLBSYNC()	__asm __volatile("tlbsync")
    407 #define	SYNC()		__asm __volatile("sync")
    408 #define	EIEIO()		__asm __volatile("eieio")
    409 #define	MFMSR()		mfmsr()
    410 #define	MTMSR(psl)	mtmsr(psl)
    411 #define	MFPVR()		mfpvr()
    412 #define	MFSRIN(va)	mfsrin(va)
    413 #define	MFTB()		mfrtcltbl()
    414 
    415 #ifndef PPC_OEA64
    416 static __inline register_t
    417 mfsrin(vaddr_t va)
    418 {
    419 	register_t sr;
    420 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    421 	return sr;
    422 }
    423 #endif	/* PPC_OEA64 */
    424 
    425 static __inline register_t
    426 pmap_interrupts_off(void)
    427 {
    428 	register_t msr = MFMSR();
    429 	if (msr & PSL_EE)
    430 		MTMSR(msr & ~PSL_EE);
    431 	return msr;
    432 }
    433 
    434 static void
    435 pmap_interrupts_restore(register_t msr)
    436 {
    437 	if (msr & PSL_EE)
    438 		MTMSR(msr);
    439 }
    440 
    441 static __inline u_int32_t
    442 mfrtcltbl(void)
    443 {
    444 
    445 	if ((MFPVR() >> 16) == MPC601)
    446 		return (mfrtcl() >> 7);
    447 	else
    448 		return (mftbl());
    449 }
    450 
    451 /*
    452  * These small routines may have to be replaced,
    453  * if/when we support processors other that the 604.
    454  */
    455 
    456 void
    457 tlbia(void)
    458 {
    459 	caddr_t i;
    460 
    461 	SYNC();
    462 	/*
    463 	 * Why not use "tlbia"?  Because not all processors implement it.
    464 	 *
    465 	 * This needs to be a per-cpu callback to do the appropriate thing
    466 	 * for the CPU. XXX
    467 	 */
    468 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    469 		TLBIE(i);
    470 		EIEIO();
    471 		SYNC();
    472 	}
    473 	TLBSYNC();
    474 	SYNC();
    475 }
    476 
    477 static __inline register_t
    478 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    479 {
    480 #ifdef PPC_OEA64
    481 #if 0
    482 	const struct ste *ste;
    483 	register_t hash;
    484 	int i;
    485 
    486 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    487 
    488 	/*
    489 	 * Try the primary group first
    490 	 */
    491 	ste = pm->pm_stes[hash].stes;
    492 	for (i = 0; i < 8; i++, ste++) {
    493 		if (ste->ste_hi & STE_V) &&
    494 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    495 			return ste;
    496 	}
    497 
    498 	/*
    499 	 * Then the secondary group.
    500 	 */
    501 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    502 	for (i = 0; i < 8; i++, ste++) {
    503 		if (ste->ste_hi & STE_V) &&
    504 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    505 			return addr;
    506 	}
    507 
    508 	return NULL;
    509 #else
    510 	/*
    511 	 * Rather than searching the STE groups for the VSID, we know
    512 	 * how we generate that from the ESID and so do that.
    513 	 */
    514 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    515 #endif
    516 #else
    517 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    518 #endif
    519 }
    520 
    521 static __inline register_t
    522 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    523 {
    524 	register_t hash;
    525 
    526 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    527 	return hash & pmap_pteg_mask;
    528 }
    529 
    530 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    531 /*
    532  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    533  * The only bit of magic is that the top 4 bits of the address doesn't
    534  * technically exist in the PTE.  But we know we reserved 4 bits of the
    535  * VSID for it so that's how we get it.
    536  */
    537 static vaddr_t
    538 pmap_pte_to_va(volatile const struct pte *pt)
    539 {
    540 	vaddr_t va;
    541 	uintptr_t ptaddr = (uintptr_t) pt;
    542 
    543 	if (pt->pte_hi & PTE_HID)
    544 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    545 
    546 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    547 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    548 	va <<= ADDR_PIDX_SHFT;
    549 
    550 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    551 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    552 
    553 #ifdef PPC_OEA64
    554 	/* PPC63 Bits 0-35 */
    555 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    556 #endif
    557 #ifdef PPC_OEA
    558 	/* PPC Bits 0-3 */
    559 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    560 #endif
    561 
    562 	return va;
    563 }
    564 #endif
    565 
    566 static __inline struct pvo_head *
    567 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    568 {
    569 #ifdef __HAVE_VM_PAGE_MD
    570 	struct vm_page *pg;
    571 
    572 	pg = PHYS_TO_VM_PAGE(pa);
    573 	if (pg_p != NULL)
    574 		*pg_p = pg;
    575 	if (pg == NULL)
    576 		return &pmap_pvo_unmanaged;
    577 	return &pg->mdpage.mdpg_pvoh;
    578 #endif
    579 #ifdef __HAVE_PMAP_PHYSSEG
    580 	int bank, pg;
    581 
    582 	bank = vm_physseg_find(atop(pa), &pg);
    583 	if (pg_p != NULL)
    584 		*pg_p = pg;
    585 	if (bank == -1)
    586 		return &pmap_pvo_unmanaged;
    587 	return &vm_physmem[bank].pmseg.pvoh[pg];
    588 #endif
    589 }
    590 
    591 static __inline struct pvo_head *
    592 vm_page_to_pvoh(struct vm_page *pg)
    593 {
    594 #ifdef __HAVE_VM_PAGE_MD
    595 	return &pg->mdpage.mdpg_pvoh;
    596 #endif
    597 #ifdef __HAVE_PMAP_PHYSSEG
    598 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    599 #endif
    600 }
    601 
    602 
    603 #ifdef __HAVE_PMAP_PHYSSEG
    604 static __inline char *
    605 pa_to_attr(paddr_t pa)
    606 {
    607 	int bank, pg;
    608 
    609 	bank = vm_physseg_find(atop(pa), &pg);
    610 	if (bank == -1)
    611 		return NULL;
    612 	return &vm_physmem[bank].pmseg.attrs[pg];
    613 }
    614 #endif
    615 
    616 static __inline void
    617 pmap_attr_clear(struct vm_page *pg, int ptebit)
    618 {
    619 #ifdef __HAVE_PMAP_PHYSSEG
    620 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    621 #endif
    622 #ifdef __HAVE_VM_PAGE_MD
    623 	pg->mdpage.mdpg_attrs &= ~ptebit;
    624 #endif
    625 }
    626 
    627 static __inline int
    628 pmap_attr_fetch(struct vm_page *pg)
    629 {
    630 #ifdef __HAVE_PMAP_PHYSSEG
    631 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    632 #endif
    633 #ifdef __HAVE_VM_PAGE_MD
    634 	return pg->mdpage.mdpg_attrs;
    635 #endif
    636 }
    637 
    638 static __inline void
    639 pmap_attr_save(struct vm_page *pg, int ptebit)
    640 {
    641 #ifdef __HAVE_PMAP_PHYSSEG
    642 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    643 #endif
    644 #ifdef __HAVE_VM_PAGE_MD
    645 	pg->mdpage.mdpg_attrs |= ptebit;
    646 #endif
    647 }
    648 
    649 static __inline int
    650 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    651 {
    652 	if (pt->pte_hi == pvo_pt->pte_hi
    653 #if 0
    654 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    655 	        ~(PTE_REF|PTE_CHG)) == 0
    656 #endif
    657 	    )
    658 		return 1;
    659 	return 0;
    660 }
    661 
    662 static __inline void
    663 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    664 {
    665 	/*
    666 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    667 	 * only gets set when the real pte is set in memory.
    668 	 *
    669 	 * Note: Don't set the valid bit for correct operation of tlb update.
    670 	 */
    671 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    672 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    673 	pt->pte_lo = pte_lo;
    674 }
    675 
    676 static __inline void
    677 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    678 {
    679 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    680 }
    681 
    682 static __inline void
    683 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    684 {
    685 	/*
    686 	 * As shown in Section 7.6.3.2.3
    687 	 */
    688 	pt->pte_lo &= ~ptebit;
    689 	TLBIE(va);
    690 	SYNC();
    691 	EIEIO();
    692 	TLBSYNC();
    693 	SYNC();
    694 }
    695 
    696 static __inline void
    697 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    698 {
    699 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    700 	if (pvo_pt->pte_hi & PTE_VALID)
    701 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    702 #endif
    703 	pvo_pt->pte_hi |= PTE_VALID;
    704 	/*
    705 	 * Update the PTE as defined in section 7.6.3.1
    706 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    707 	 * have been saved so this routine can restore them (if desired).
    708 	 */
    709 	pt->pte_lo = pvo_pt->pte_lo;
    710 	EIEIO();
    711 	pt->pte_hi = pvo_pt->pte_hi;
    712 	SYNC();
    713 	pmap_pte_valid++;
    714 }
    715 
    716 static __inline void
    717 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    718 {
    719 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    720 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    721 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    722 	if ((pt->pte_hi & PTE_VALID) == 0)
    723 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    724 #endif
    725 
    726 	pvo_pt->pte_hi &= ~PTE_VALID;
    727 	/*
    728 	 * Force the ref & chg bits back into the PTEs.
    729 	 */
    730 	SYNC();
    731 	/*
    732 	 * Invalidate the pte ... (Section 7.6.3.3)
    733 	 */
    734 	pt->pte_hi &= ~PTE_VALID;
    735 	SYNC();
    736 	TLBIE(va);
    737 	SYNC();
    738 	EIEIO();
    739 	TLBSYNC();
    740 	SYNC();
    741 	/*
    742 	 * Save the ref & chg bits ...
    743 	 */
    744 	pmap_pte_synch(pt, pvo_pt);
    745 	pmap_pte_valid--;
    746 }
    747 
    748 static __inline void
    749 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    750 {
    751 	/*
    752 	 * Invalidate the PTE
    753 	 */
    754 	pmap_pte_unset(pt, pvo_pt, va);
    755 	pmap_pte_set(pt, pvo_pt);
    756 }
    757 
    758 /*
    759  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    760  * (either primary or secondary location).
    761  *
    762  * Note: both the destination and source PTEs must not have PTE_VALID set.
    763  */
    764 
    765 STATIC int
    766 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    767 {
    768 	volatile struct pte *pt;
    769 	int i;
    770 
    771 #if defined(DEBUG)
    772 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    773 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    774 #endif
    775 	/*
    776 	 * First try primary hash.
    777 	 */
    778 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    779 		if ((pt->pte_hi & PTE_VALID) == 0) {
    780 			pvo_pt->pte_hi &= ~PTE_HID;
    781 			pmap_pte_set(pt, pvo_pt);
    782 			return i;
    783 		}
    784 	}
    785 
    786 	/*
    787 	 * Now try secondary hash.
    788 	 */
    789 	ptegidx ^= pmap_pteg_mask;
    790 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    791 		if ((pt->pte_hi & PTE_VALID) == 0) {
    792 			pvo_pt->pte_hi |= PTE_HID;
    793 			pmap_pte_set(pt, pvo_pt);
    794 			return i;
    795 		}
    796 	}
    797 	return -1;
    798 }
    799 
    800 /*
    801  * Spill handler.
    802  *
    803  * Tries to spill a page table entry from the overflow area.
    804  * This runs in either real mode (if dealing with a exception spill)
    805  * or virtual mode when dealing with manually spilling one of the
    806  * kernel's pte entries.  In either case, interrupts are already
    807  * disabled.
    808  */
    809 
    810 int
    811 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    812 {
    813 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    814 	struct pvo_entry *pvo;
    815 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    816 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    817 	int ptegidx, i, j;
    818 	volatile struct pteg *pteg;
    819 	volatile struct pte *pt;
    820 
    821 	ptegidx = va_to_pteg(pm, addr);
    822 
    823 	/*
    824 	 * Have to substitute some entry. Use the primary hash for this.
    825 	 * Use low bits of timebase as random generator.  Make sure we are
    826 	 * not picking a kernel pte for replacement.
    827 	 */
    828 	pteg = &pmap_pteg_table[ptegidx];
    829 	i = MFTB() & 7;
    830 	for (j = 0; j < 8; j++) {
    831 		pt = &pteg->pt[i];
    832 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    833 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    834 				!= KERNEL_VSIDBITS)
    835 			break;
    836 		i = (i + 1) & 7;
    837 	}
    838 	KASSERT(j < 8);
    839 
    840 	source_pvo = NULL;
    841 	victim_pvo = NULL;
    842 	pvoh = &pmap_pvo_table[ptegidx];
    843 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    844 
    845 		/*
    846 		 * We need to find pvo entry for this address...
    847 		 */
    848 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    849 
    850 		/*
    851 		 * If we haven't found the source and we come to a PVO with
    852 		 * a valid PTE, then we know we can't find it because all
    853 		 * evicted PVOs always are first in the list.
    854 		 */
    855 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    856 			break;
    857 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    858 		    addr == PVO_VADDR(pvo)) {
    859 
    860 			/*
    861 			 * Now we have found the entry to be spilled into the
    862 			 * pteg.  Attempt to insert it into the page table.
    863 			 */
    864 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    865 			if (j >= 0) {
    866 				PVO_PTEGIDX_SET(pvo, j);
    867 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    868 				PVO_WHERE(pvo, SPILL_INSERT);
    869 				pvo->pvo_pmap->pm_evictions--;
    870 				PMAPCOUNT(ptes_spilled);
    871 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    872 				    ? pmap_evcnt_ptes_secondary
    873 				    : pmap_evcnt_ptes_primary)[j]);
    874 
    875 				/*
    876 				 * Since we keep the evicted entries at the
    877 				 * from of the PVO list, we need move this
    878 				 * (now resident) PVO after the evicted
    879 				 * entries.
    880 				 */
    881 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    882 
    883 				/*
    884 				 * If we don't have to move (either we were the
    885 				 * last entry or the next entry was valid),
    886 				 * don't change our position.  Otherwise
    887 				 * move ourselves to the tail of the queue.
    888 				 */
    889 				if (next_pvo != NULL &&
    890 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    891 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    892 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    893 				}
    894 				return 1;
    895 			}
    896 			source_pvo = pvo;
    897 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    898 				return 0;
    899 			}
    900 			if (victim_pvo != NULL)
    901 				break;
    902 		}
    903 
    904 		/*
    905 		 * We also need the pvo entry of the victim we are replacing
    906 		 * so save the R & C bits of the PTE.
    907 		 */
    908 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    909 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    910 			vpvoh = pvoh;			/* *1* */
    911 			victim_pvo = pvo;
    912 			if (source_pvo != NULL)
    913 				break;
    914 		}
    915 	}
    916 
    917 	if (source_pvo == NULL) {
    918 		PMAPCOUNT(ptes_unspilled);
    919 		return 0;
    920 	}
    921 
    922 	if (victim_pvo == NULL) {
    923 		if ((pt->pte_hi & PTE_HID) == 0)
    924 			panic("pmap_pte_spill: victim p-pte (%p) has "
    925 			    "no pvo entry!", pt);
    926 
    927 		/*
    928 		 * If this is a secondary PTE, we need to search
    929 		 * its primary pvo bucket for the matching PVO.
    930 		 */
    931 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
    932 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    933 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    934 
    935 			/*
    936 			 * We also need the pvo entry of the victim we are
    937 			 * replacing so save the R & C bits of the PTE.
    938 			 */
    939 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    940 				victim_pvo = pvo;
    941 				break;
    942 			}
    943 		}
    944 		if (victim_pvo == NULL)
    945 			panic("pmap_pte_spill: victim s-pte (%p) has "
    946 			    "no pvo entry!", pt);
    947 	}
    948 
    949 	/*
    950 	 * The victim should be not be a kernel PVO/PTE entry.
    951 	 */
    952 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
    953 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
    954 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
    955 
    956 	/*
    957 	 * We are invalidating the TLB entry for the EA for the
    958 	 * we are replacing even though its valid; If we don't
    959 	 * we lose any ref/chg bit changes contained in the TLB
    960 	 * entry.
    961 	 */
    962 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    963 
    964 	/*
    965 	 * To enforce the PVO list ordering constraint that all
    966 	 * evicted entries should come before all valid entries,
    967 	 * move the source PVO to the tail of its list and the
    968 	 * victim PVO to the head of its list (which might not be
    969 	 * the same list, if the victim was using the secondary hash).
    970 	 */
    971 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    972 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    973 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    974 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    975 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    976 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    977 	victim_pvo->pvo_pmap->pm_evictions++;
    978 	source_pvo->pvo_pmap->pm_evictions--;
    979 	PVO_WHERE(victim_pvo, SPILL_UNSET);
    980 	PVO_WHERE(source_pvo, SPILL_SET);
    981 
    982 	PVO_PTEGIDX_CLR(victim_pvo);
    983 	PVO_PTEGIDX_SET(source_pvo, i);
    984 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    985 	PMAPCOUNT(ptes_spilled);
    986 	PMAPCOUNT(ptes_evicted);
    987 	PMAPCOUNT(ptes_removed);
    988 
    989 	PMAP_PVO_CHECK(victim_pvo);
    990 	PMAP_PVO_CHECK(source_pvo);
    991 	return 1;
    992 }
    993 
    994 /*
    995  * Restrict given range to physical memory
    996  */
    997 void
    998 pmap_real_memory(paddr_t *start, psize_t *size)
    999 {
   1000 	struct mem_region *mp;
   1001 
   1002 	for (mp = mem; mp->size; mp++) {
   1003 		if (*start + *size > mp->start
   1004 		    && *start < mp->start + mp->size) {
   1005 			if (*start < mp->start) {
   1006 				*size -= mp->start - *start;
   1007 				*start = mp->start;
   1008 			}
   1009 			if (*start + *size > mp->start + mp->size)
   1010 				*size = mp->start + mp->size - *start;
   1011 			return;
   1012 		}
   1013 	}
   1014 	*size = 0;
   1015 }
   1016 
   1017 /*
   1018  * Initialize anything else for pmap handling.
   1019  * Called during vm_init().
   1020  */
   1021 void
   1022 pmap_init(void)
   1023 {
   1024 #ifdef __HAVE_PMAP_PHYSSEG
   1025 	struct pvo_tqhead *pvoh;
   1026 	int bank;
   1027 	long sz;
   1028 	char *attr;
   1029 
   1030 	pvoh = pmap_physseg.pvoh;
   1031 	attr = pmap_physseg.attrs;
   1032 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1033 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1034 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1035 		vm_physmem[bank].pmseg.attrs = attr;
   1036 		for (; sz > 0; sz--, pvoh++, attr++) {
   1037 			TAILQ_INIT(pvoh);
   1038 			*attr = 0;
   1039 		}
   1040 	}
   1041 #endif
   1042 
   1043 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1044 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1045 	    &pmap_pool_mallocator);
   1046 
   1047 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1048 
   1049 	pmap_initialized = 1;
   1050 
   1051 #ifdef PMAPCOUNTERS
   1052 	evcnt_attach_static(&pmap_evcnt_mappings);
   1053 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
   1054 	evcnt_attach_static(&pmap_evcnt_unmappings);
   1055 
   1056 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
   1057 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
   1058 
   1059 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
   1060 	evcnt_attach_static(&pmap_evcnt_exec_cached);
   1061 	evcnt_attach_static(&pmap_evcnt_exec_synced);
   1062 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
   1063 
   1064 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
   1065 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
   1066 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
   1067 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
   1068 
   1069 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
   1070 	evcnt_attach_static(&pmap_evcnt_copied_pages);
   1071 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
   1072 
   1073 	evcnt_attach_static(&pmap_evcnt_updates);
   1074 	evcnt_attach_static(&pmap_evcnt_collects);
   1075 	evcnt_attach_static(&pmap_evcnt_copies);
   1076 
   1077 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
   1078 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1079 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1080 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1081 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1082 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1083 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1084 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1085 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1086 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1087 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1088 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1089 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1090 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1091 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1092 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1093 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1094 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1095 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1096 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1097 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1098 #endif
   1099 }
   1100 
   1101 /*
   1102  * How much virtual space does the kernel get?
   1103  */
   1104 void
   1105 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1106 {
   1107 	/*
   1108 	 * For now, reserve one segment (minus some overhead) for kernel
   1109 	 * virtual memory
   1110 	 */
   1111 	*start = VM_MIN_KERNEL_ADDRESS;
   1112 	*end = VM_MAX_KERNEL_ADDRESS;
   1113 }
   1114 
   1115 /*
   1116  * Allocate, initialize, and return a new physical map.
   1117  */
   1118 pmap_t
   1119 pmap_create(void)
   1120 {
   1121 	pmap_t pm;
   1122 
   1123 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1124 	memset((caddr_t)pm, 0, sizeof *pm);
   1125 	pmap_pinit(pm);
   1126 
   1127 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1128 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1129 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1130 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1131 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1132 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1133 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1134 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1135 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1136 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1137 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1138 	return pm;
   1139 }
   1140 
   1141 /*
   1142  * Initialize a preallocated and zeroed pmap structure.
   1143  */
   1144 void
   1145 pmap_pinit(pmap_t pm)
   1146 {
   1147 	register_t entropy = MFTB();
   1148 	register_t mask;
   1149 	int i;
   1150 
   1151 	/*
   1152 	 * Allocate some segment registers for this pmap.
   1153 	 */
   1154 	pm->pm_refs = 1;
   1155 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1156 		static register_t pmap_vsidcontext;
   1157 		register_t hash;
   1158 		unsigned int n;
   1159 
   1160 		/* Create a new value by multiplying by a prime adding in
   1161 		 * entropy from the timebase register.  This is to make the
   1162 		 * VSID more random so that the PT Hash function collides
   1163 		 * less often. (note that the prime causes gcc to do shifts
   1164 		 * instead of a multiply)
   1165 		 */
   1166 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1167 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1168 		if (hash == 0)			/* 0 is special, avoid it */
   1169 			continue;
   1170 		n = hash >> 5;
   1171 		mask = 1L << (hash & (VSID_NBPW-1));
   1172 		hash = pmap_vsidcontext;
   1173 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1174 			/* anything free in this bucket? */
   1175 			if (~pmap_vsid_bitmap[n] == 0) {
   1176 				entropy = hash >> PTE_VSID_SHFT;
   1177 				continue;
   1178 			}
   1179 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1180 			mask = 1L << i;
   1181 			hash &= ~(VSID_NBPW-1);
   1182 			hash |= i;
   1183 		}
   1184 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1185 		pmap_vsid_bitmap[n] |= mask;
   1186 		pm->pm_vsid = hash;
   1187 #ifndef PPC_OEA64
   1188 		for (i = 0; i < 16; i++)
   1189 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1190 			    SR_NOEXEC;
   1191 #endif
   1192 		return;
   1193 	}
   1194 	panic("pmap_pinit: out of segments");
   1195 }
   1196 
   1197 /*
   1198  * Add a reference to the given pmap.
   1199  */
   1200 void
   1201 pmap_reference(pmap_t pm)
   1202 {
   1203 	pm->pm_refs++;
   1204 }
   1205 
   1206 /*
   1207  * Retire the given pmap from service.
   1208  * Should only be called if the map contains no valid mappings.
   1209  */
   1210 void
   1211 pmap_destroy(pmap_t pm)
   1212 {
   1213 	if (--pm->pm_refs == 0) {
   1214 		pmap_release(pm);
   1215 		pool_put(&pmap_pool, pm);
   1216 	}
   1217 }
   1218 
   1219 /*
   1220  * Release any resources held by the given physical map.
   1221  * Called when a pmap initialized by pmap_pinit is being released.
   1222  */
   1223 void
   1224 pmap_release(pmap_t pm)
   1225 {
   1226 	int idx, mask;
   1227 
   1228 	if (pm->pm_sr[0] == 0)
   1229 		panic("pmap_release");
   1230 	idx = VSID_TO_HASH(pm->pm_vsid) & (NPMAPS-1);
   1231 	mask = 1 << (idx % VSID_NBPW);
   1232 	idx /= VSID_NBPW;
   1233 	pmap_vsid_bitmap[idx] &= ~mask;
   1234 }
   1235 
   1236 /*
   1237  * Copy the range specified by src_addr/len
   1238  * from the source map to the range dst_addr/len
   1239  * in the destination map.
   1240  *
   1241  * This routine is only advisory and need not do anything.
   1242  */
   1243 void
   1244 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1245 	vsize_t len, vaddr_t src_addr)
   1246 {
   1247 	PMAPCOUNT(copies);
   1248 }
   1249 
   1250 /*
   1251  * Require that all active physical maps contain no
   1252  * incorrect entries NOW.
   1253  */
   1254 void
   1255 pmap_update(struct pmap *pmap)
   1256 {
   1257 	PMAPCOUNT(updates);
   1258 	TLBSYNC();
   1259 }
   1260 
   1261 /*
   1262  * Garbage collects the physical map system for
   1263  * pages which are no longer used.
   1264  * Success need not be guaranteed -- that is, there
   1265  * may well be pages which are not referenced, but
   1266  * others may be collected.
   1267  * Called by the pageout daemon when pages are scarce.
   1268  */
   1269 void
   1270 pmap_collect(pmap_t pm)
   1271 {
   1272 	PMAPCOUNT(collects);
   1273 }
   1274 
   1275 static __inline int
   1276 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1277 {
   1278 	int pteidx;
   1279 	/*
   1280 	 * We can find the actual pte entry without searching by
   1281 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1282 	 * and by noticing the HID bit.
   1283 	 */
   1284 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1285 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1286 		pteidx ^= pmap_pteg_mask * 8;
   1287 	return pteidx;
   1288 }
   1289 
   1290 volatile struct pte *
   1291 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1292 {
   1293 	volatile struct pte *pt;
   1294 
   1295 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1296 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1297 		return NULL;
   1298 #endif
   1299 
   1300 	/*
   1301 	 * If we haven't been supplied the ptegidx, calculate it.
   1302 	 */
   1303 	if (pteidx == -1) {
   1304 		int ptegidx;
   1305 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1306 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1307 	}
   1308 
   1309 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1310 
   1311 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1312 	return pt;
   1313 #else
   1314 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1315 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1316 		    "pvo but no valid pte index", pvo);
   1317 	}
   1318 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1319 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1320 		    "pvo but no valid pte", pvo);
   1321 	}
   1322 
   1323 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1324 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1325 #if defined(DEBUG) || defined(PMAPCHECK)
   1326 			pmap_pte_print(pt);
   1327 #endif
   1328 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1329 			    "pmap_pteg_table %p but invalid in pvo",
   1330 			    pvo, pt);
   1331 		}
   1332 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1333 #if defined(DEBUG) || defined(PMAPCHECK)
   1334 			pmap_pte_print(pt);
   1335 #endif
   1336 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1337 			    "not match pte %p in pmap_pteg_table",
   1338 			    pvo, pt);
   1339 		}
   1340 		return pt;
   1341 	}
   1342 
   1343 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1344 #if defined(DEBUG) || defined(PMAPCHECK)
   1345 		pmap_pte_print(pt);
   1346 #endif
   1347 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1348 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1349 	}
   1350 	return NULL;
   1351 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1352 }
   1353 
   1354 struct pvo_entry *
   1355 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1356 {
   1357 	struct pvo_entry *pvo;
   1358 	int ptegidx;
   1359 
   1360 	va &= ~ADDR_POFF;
   1361 	ptegidx = va_to_pteg(pm, va);
   1362 
   1363 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1364 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1365 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1366 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1367 			    "list %#x (%p)", pvo, ptegidx,
   1368 			     &pmap_pvo_table[ptegidx]);
   1369 #endif
   1370 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1371 			if (pteidx_p)
   1372 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1373 			return pvo;
   1374 		}
   1375 	}
   1376 	return NULL;
   1377 }
   1378 
   1379 #if defined(DEBUG) || defined(PMAPCHECK)
   1380 void
   1381 pmap_pvo_check(const struct pvo_entry *pvo)
   1382 {
   1383 	struct pvo_head *pvo_head;
   1384 	struct pvo_entry *pvo0;
   1385 	volatile struct pte *pt;
   1386 	int failed = 0;
   1387 
   1388 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1389 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1390 
   1391 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1392 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1393 		    pvo, pvo->pvo_pmap);
   1394 		failed = 1;
   1395 	}
   1396 
   1397 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1398 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1399 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1400 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1401 		failed = 1;
   1402 	}
   1403 
   1404 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1405 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1406 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1407 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1408 		failed = 1;
   1409 	}
   1410 
   1411 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1412 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1413 	} else {
   1414 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1415 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1416 			    "on kernel unmanaged list\n", pvo);
   1417 			failed = 1;
   1418 		}
   1419 		pvo_head = &pmap_pvo_kunmanaged;
   1420 	}
   1421 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1422 		if (pvo0 == pvo)
   1423 			break;
   1424 	}
   1425 	if (pvo0 == NULL) {
   1426 		printf("pmap_pvo_check: pvo %p: not present "
   1427 		    "on its vlist head %p\n", pvo, pvo_head);
   1428 		failed = 1;
   1429 	}
   1430 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1431 		printf("pmap_pvo_check: pvo %p: not present "
   1432 		    "on its olist head\n", pvo);
   1433 		failed = 1;
   1434 	}
   1435 	pt = pmap_pvo_to_pte(pvo, -1);
   1436 	if (pt == NULL) {
   1437 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1438 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1439 			    "no PTE\n", pvo);
   1440 			failed = 1;
   1441 		}
   1442 	} else {
   1443 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1444 		    (uintptr_t) pt >=
   1445 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1446 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1447 			    "pteg table\n", pvo, pt);
   1448 			failed = 1;
   1449 		}
   1450 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1451 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1452 			    "no PTE\n", pvo);
   1453 			failed = 1;
   1454 		}
   1455 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1456 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1457 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1458 			failed = 1;
   1459 		}
   1460 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1461 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1462 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1463 			    "%#x/%#x\n", pvo,
   1464 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1465 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1466 			failed = 1;
   1467 		}
   1468 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1469 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1470 			    " doesn't not match PVO's VA %#lx\n",
   1471 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1472 			failed = 1;
   1473 		}
   1474 		if (failed)
   1475 			pmap_pte_print(pt);
   1476 	}
   1477 	if (failed)
   1478 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1479 		    pvo->pvo_pmap);
   1480 }
   1481 #endif /* DEBUG || PMAPCHECK */
   1482 
   1483 /*
   1484  * This returns whether this is the first mapping of a page.
   1485  */
   1486 int
   1487 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1488 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1489 {
   1490 	struct pvo_entry *pvo;
   1491 	struct pvo_tqhead *pvoh;
   1492 	register_t msr;
   1493 	int ptegidx;
   1494 	int i;
   1495 	int poolflags = PR_NOWAIT;
   1496 
   1497 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1498 	if (pmap_pvo_remove_depth > 0)
   1499 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1500 	if (++pmap_pvo_enter_depth > 1)
   1501 		panic("pmap_pvo_enter: called recursively!");
   1502 #endif
   1503 
   1504 	/*
   1505 	 * Compute the PTE Group index.
   1506 	 */
   1507 	va &= ~ADDR_POFF;
   1508 	ptegidx = va_to_pteg(pm, va);
   1509 
   1510 	msr = pmap_interrupts_off();
   1511 	/*
   1512 	 * Remove any existing mapping for this page.  Reuse the
   1513 	 * pvo entry if there a mapping.
   1514 	 */
   1515 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1516 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1517 #ifdef DEBUG
   1518 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1519 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1520 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1521 			   va < VM_MIN_KERNEL_ADDRESS) {
   1522 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1523 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1524 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1525 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1526 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1527 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1528 #ifdef DDBX
   1529 				Debugger();
   1530 #endif
   1531 			}
   1532 #endif
   1533 			PMAPCOUNT(mappings_replaced);
   1534 			pmap_pvo_remove(pvo, -1);
   1535 			break;
   1536 		}
   1537 	}
   1538 
   1539 	/*
   1540 	 * If we aren't overwriting an mapping, try to allocate
   1541 	 */
   1542 	pmap_interrupts_restore(msr);
   1543 	pvo = pool_get(pl, poolflags);
   1544 	msr = pmap_interrupts_off();
   1545 	if (pvo == NULL) {
   1546 		pvo = pmap_pvo_reclaim(pm);
   1547 		if (pvo == NULL) {
   1548 			if ((flags & PMAP_CANFAIL) == 0)
   1549 				panic("pmap_pvo_enter: failed");
   1550 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1551 			pmap_pvo_enter_depth--;
   1552 #endif
   1553 			pmap_interrupts_restore(msr);
   1554 			return ENOMEM;
   1555 		}
   1556 	}
   1557 	pvo->pvo_vaddr = va;
   1558 	pvo->pvo_pmap = pm;
   1559 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1560 	if (flags & VM_PROT_EXECUTE) {
   1561 		PMAPCOUNT(exec_mappings);
   1562 		pvo_set_exec(pvo);
   1563 	}
   1564 	if (flags & PMAP_WIRED)
   1565 		pvo->pvo_vaddr |= PVO_WIRED;
   1566 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1567 		pvo->pvo_vaddr |= PVO_MANAGED;
   1568 		PMAPCOUNT(mappings);
   1569 	} else {
   1570 		PMAPCOUNT(kernel_mappings);
   1571 	}
   1572 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1573 
   1574 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1575 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1576 		pvo->pvo_pmap->pm_stats.wired_count++;
   1577 	pvo->pvo_pmap->pm_stats.resident_count++;
   1578 #if defined(DEBUG)
   1579 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1580 		DPRINTFN(PVOENTER,
   1581 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1582 		    pvo, pm, va, pa));
   1583 #endif
   1584 
   1585 	/*
   1586 	 * We hope this succeeds but it isn't required.
   1587 	 */
   1588 	pvoh = &pmap_pvo_table[ptegidx];
   1589 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1590 	if (i >= 0) {
   1591 		PVO_PTEGIDX_SET(pvo, i);
   1592 		PVO_WHERE(pvo, ENTER_INSERT);
   1593 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1594 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1595 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1596 	} else {
   1597 		/*
   1598 		 * Since we didn't have room for this entry (which makes it
   1599 		 * and evicted entry), place it at the head of the list.
   1600 		 */
   1601 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1602 		PMAPCOUNT(ptes_evicted);
   1603 		pm->pm_evictions++;
   1604 		/*
   1605 		 * If this is a kernel page, make sure it's active.
   1606 		 */
   1607 		if (pm == pmap_kernel()) {
   1608 			i = pmap_pte_spill(pm, va, FALSE);
   1609 			KASSERT(i);
   1610 		}
   1611 	}
   1612 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1613 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1614 	pmap_pvo_enter_depth--;
   1615 #endif
   1616 	pmap_interrupts_restore(msr);
   1617 	return 0;
   1618 }
   1619 
   1620 void
   1621 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
   1622 {
   1623 	volatile struct pte *pt;
   1624 	int ptegidx;
   1625 
   1626 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1627 	if (++pmap_pvo_remove_depth > 1)
   1628 		panic("pmap_pvo_remove: called recursively!");
   1629 #endif
   1630 
   1631 	/*
   1632 	 * If we haven't been supplied the ptegidx, calculate it.
   1633 	 */
   1634 	if (pteidx == -1) {
   1635 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1636 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1637 	} else {
   1638 		ptegidx = pteidx >> 3;
   1639 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1640 			ptegidx ^= pmap_pteg_mask;
   1641 	}
   1642 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1643 
   1644 	/*
   1645 	 * If there is an active pte entry, we need to deactivate it
   1646 	 * (and save the ref & chg bits).
   1647 	 */
   1648 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1649 	if (pt != NULL) {
   1650 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1651 		PVO_WHERE(pvo, REMOVE);
   1652 		PVO_PTEGIDX_CLR(pvo);
   1653 		PMAPCOUNT(ptes_removed);
   1654 	} else {
   1655 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1656 		pvo->pvo_pmap->pm_evictions--;
   1657 	}
   1658 
   1659 	/*
   1660 	 * Account for executable mappings.
   1661 	 */
   1662 	if (PVO_ISEXECUTABLE(pvo))
   1663 		pvo_clear_exec(pvo);
   1664 
   1665 	/*
   1666 	 * Update our statistics.
   1667 	 */
   1668 	pvo->pvo_pmap->pm_stats.resident_count--;
   1669 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1670 		pvo->pvo_pmap->pm_stats.wired_count--;
   1671 
   1672 	/*
   1673 	 * Save the REF/CHG bits into their cache if the page is managed.
   1674 	 */
   1675 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1676 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1677 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1678 
   1679 		if (pg != NULL) {
   1680 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1681 		}
   1682 		PMAPCOUNT(unmappings);
   1683 	} else {
   1684 		PMAPCOUNT(kernel_unmappings);
   1685 	}
   1686 
   1687 	/*
   1688 	 * Remove the PVO from its lists and return it to the pool.
   1689 	 */
   1690 	LIST_REMOVE(pvo, pvo_vlink);
   1691 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1692 	pool_put(pvo->pvo_vaddr & PVO_MANAGED
   1693 	    ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1694 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1695 	pmap_pvo_remove_depth--;
   1696 #endif
   1697 }
   1698 
   1699 /*
   1700  * Mark a mapping as executable.
   1701  * If this is the first executable mapping in the segment,
   1702  * clear the noexec flag.
   1703  */
   1704 STATIC void
   1705 pvo_set_exec(struct pvo_entry *pvo)
   1706 {
   1707 	struct pmap *pm = pvo->pvo_pmap;
   1708 
   1709 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1710 		return;
   1711 	}
   1712 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1713 #ifdef PPC_OEA
   1714 	{
   1715 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1716 		if (pm->pm_exec[sr]++ == 0) {
   1717 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1718 		}
   1719 	}
   1720 #endif
   1721 }
   1722 
   1723 /*
   1724  * Mark a mapping as non-executable.
   1725  * If this was the last executable mapping in the segment,
   1726  * set the noexec flag.
   1727  */
   1728 STATIC void
   1729 pvo_clear_exec(struct pvo_entry *pvo)
   1730 {
   1731 	struct pmap *pm = pvo->pvo_pmap;
   1732 
   1733 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1734 		return;
   1735 	}
   1736 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1737 #ifdef PPC_OEA
   1738 	{
   1739 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1740 		if (--pm->pm_exec[sr] == 0) {
   1741 			pm->pm_sr[sr] |= SR_NOEXEC;
   1742 		}
   1743 	}
   1744 #endif
   1745 }
   1746 
   1747 /*
   1748  * Insert physical page at pa into the given pmap at virtual address va.
   1749  */
   1750 int
   1751 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1752 {
   1753 	struct mem_region *mp;
   1754 	struct pvo_head *pvo_head;
   1755 	struct vm_page *pg;
   1756 	struct pool *pl;
   1757 	register_t pte_lo;
   1758 	int error;
   1759 	u_int pvo_flags;
   1760 	u_int was_exec = 0;
   1761 
   1762 	if (__predict_false(!pmap_initialized)) {
   1763 		pvo_head = &pmap_pvo_kunmanaged;
   1764 		pl = &pmap_upvo_pool;
   1765 		pvo_flags = 0;
   1766 		pg = NULL;
   1767 		was_exec = PTE_EXEC;
   1768 	} else {
   1769 		pvo_head = pa_to_pvoh(pa, &pg);
   1770 		pl = &pmap_mpvo_pool;
   1771 		pvo_flags = PVO_MANAGED;
   1772 	}
   1773 
   1774 	DPRINTFN(ENTER,
   1775 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1776 	    pm, va, pa, prot, flags));
   1777 
   1778 	/*
   1779 	 * If this is a managed page, and it's the first reference to the
   1780 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1781 	 */
   1782 	if (pg != NULL)
   1783 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1784 
   1785 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1786 
   1787 	/*
   1788 	 * Assume the page is cache inhibited and access is guarded unless
   1789 	 * it's in our available memory array.  If it is in the memory array,
   1790 	 * asssume it's in memory coherent memory.
   1791 	 */
   1792 	pte_lo = PTE_IG;
   1793 	if ((flags & PMAP_NC) == 0) {
   1794 		for (mp = mem; mp->size; mp++) {
   1795 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1796 				pte_lo = PTE_M;
   1797 				break;
   1798 			}
   1799 		}
   1800 	}
   1801 
   1802 	if (prot & VM_PROT_WRITE)
   1803 		pte_lo |= PTE_BW;
   1804 	else
   1805 		pte_lo |= PTE_BR;
   1806 
   1807 	/*
   1808 	 * If this was in response to a fault, "pre-fault" the PTE's
   1809 	 * changed/referenced bit appropriately.
   1810 	 */
   1811 	if (flags & VM_PROT_WRITE)
   1812 		pte_lo |= PTE_CHG;
   1813 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1814 		pte_lo |= PTE_REF;
   1815 
   1816 	/*
   1817 	 * We need to know if this page can be executable
   1818 	 */
   1819 	flags |= (prot & VM_PROT_EXECUTE);
   1820 
   1821 	/*
   1822 	 * Record mapping for later back-translation and pte spilling.
   1823 	 * This will overwrite any existing mapping.
   1824 	 */
   1825 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1826 
   1827 	/*
   1828 	 * Flush the real page from the instruction cache if this page is
   1829 	 * mapped executable and cacheable and has not been flushed since
   1830 	 * the last time it was modified.
   1831 	 */
   1832 	if (error == 0 &&
   1833             (flags & VM_PROT_EXECUTE) &&
   1834             (pte_lo & PTE_I) == 0 &&
   1835 	    was_exec == 0) {
   1836 		DPRINTFN(ENTER, (" syncicache"));
   1837 		PMAPCOUNT(exec_synced);
   1838 		pmap_syncicache(pa, PAGE_SIZE);
   1839 		if (pg != NULL) {
   1840 			pmap_attr_save(pg, PTE_EXEC);
   1841 			PMAPCOUNT(exec_cached);
   1842 #if defined(DEBUG) || defined(PMAPDEBUG)
   1843 			if (pmapdebug & PMAPDEBUG_ENTER)
   1844 				printf(" marked-as-exec");
   1845 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1846 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1847 				    pg->phys_addr);
   1848 
   1849 #endif
   1850 		}
   1851 	}
   1852 
   1853 	DPRINTFN(ENTER, (": error=%d\n", error));
   1854 
   1855 	return error;
   1856 }
   1857 
   1858 void
   1859 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1860 {
   1861 	struct mem_region *mp;
   1862 	register_t pte_lo;
   1863 	int error;
   1864 
   1865 	if (va < VM_MIN_KERNEL_ADDRESS)
   1866 		panic("pmap_kenter_pa: attempt to enter "
   1867 		    "non-kernel address %#lx!", va);
   1868 
   1869 	DPRINTFN(KENTER,
   1870 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1871 
   1872 	/*
   1873 	 * Assume the page is cache inhibited and access is guarded unless
   1874 	 * it's in our available memory array.  If it is in the memory array,
   1875 	 * asssume it's in memory coherent memory.
   1876 	 */
   1877 	pte_lo = PTE_IG;
   1878 	if ((prot & PMAP_NC) == 0) {
   1879 		for (mp = mem; mp->size; mp++) {
   1880 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1881 				pte_lo = PTE_M;
   1882 				break;
   1883 			}
   1884 		}
   1885 	}
   1886 
   1887 	if (prot & VM_PROT_WRITE)
   1888 		pte_lo |= PTE_BW;
   1889 	else
   1890 		pte_lo |= PTE_BR;
   1891 
   1892 	/*
   1893 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1894 	 */
   1895 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1896 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1897 
   1898 	if (error != 0)
   1899 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1900 		      va, pa, error);
   1901 }
   1902 
   1903 void
   1904 pmap_kremove(vaddr_t va, vsize_t len)
   1905 {
   1906 	if (va < VM_MIN_KERNEL_ADDRESS)
   1907 		panic("pmap_kremove: attempt to remove "
   1908 		    "non-kernel address %#lx!", va);
   1909 
   1910 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1911 	pmap_remove(pmap_kernel(), va, va + len);
   1912 }
   1913 
   1914 /*
   1915  * Remove the given range of mapping entries.
   1916  */
   1917 void
   1918 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1919 {
   1920 	struct pvo_entry *pvo;
   1921 	register_t msr;
   1922 	int pteidx;
   1923 
   1924 	msr = pmap_interrupts_off();
   1925 	for (; va < endva; va += PAGE_SIZE) {
   1926 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1927 		if (pvo != NULL) {
   1928 			pmap_pvo_remove(pvo, pteidx);
   1929 		}
   1930 	}
   1931 	pmap_interrupts_restore(msr);
   1932 }
   1933 
   1934 /*
   1935  * Get the physical page address for the given pmap/virtual address.
   1936  */
   1937 boolean_t
   1938 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1939 {
   1940 	struct pvo_entry *pvo;
   1941 	register_t msr;
   1942 
   1943 	/*
   1944 	 * If this is a kernel pmap lookup, also check the battable
   1945 	 * and if we get a hit, translate the VA to a PA using the
   1946 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   1947 	 * that will wrap back to 0.
   1948 	 */
   1949 	if (pm == pmap_kernel() &&
   1950 	    (va < VM_MIN_KERNEL_ADDRESS ||
   1951 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   1952 		register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   1953 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   1954 		if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   1955 			register_t batl = battable[va >> ADDR_SR_SHFT].batl;
   1956 			register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   1957 			*pap = (batl & mask) | (va & ~mask);
   1958 			return TRUE;
   1959 		}
   1960 		return FALSE;
   1961 	}
   1962 
   1963 	msr = pmap_interrupts_off();
   1964 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   1965 	if (pvo != NULL) {
   1966 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1967 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   1968 	}
   1969 	pmap_interrupts_restore(msr);
   1970 	return pvo != NULL;
   1971 }
   1972 
   1973 /*
   1974  * Lower the protection on the specified range of this pmap.
   1975  */
   1976 void
   1977 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   1978 {
   1979 	struct pvo_entry *pvo;
   1980 	volatile struct pte *pt;
   1981 	register_t msr;
   1982 	int pteidx;
   1983 
   1984 	/*
   1985 	 * Since this routine only downgrades protection, we should
   1986 	 * always be called with at least one bit not set.
   1987 	 */
   1988 	KASSERT(prot != VM_PROT_ALL);
   1989 
   1990 	/*
   1991 	 * If there is no protection, this is equivalent to
   1992 	 * remove the pmap from the pmap.
   1993 	 */
   1994 	if ((prot & VM_PROT_READ) == 0) {
   1995 		pmap_remove(pm, va, endva);
   1996 		return;
   1997 	}
   1998 
   1999 	msr = pmap_interrupts_off();
   2000 	for (; va < endva; va += PAGE_SIZE) {
   2001 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2002 		if (pvo == NULL)
   2003 			continue;
   2004 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2005 
   2006 		/*
   2007 		 * Revoke executable if asked to do so.
   2008 		 */
   2009 		if ((prot & VM_PROT_EXECUTE) == 0)
   2010 			pvo_clear_exec(pvo);
   2011 
   2012 #if 0
   2013 		/*
   2014 		 * If the page is already read-only, no change
   2015 		 * needs to be made.
   2016 		 */
   2017 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2018 			continue;
   2019 #endif
   2020 		/*
   2021 		 * Grab the PTE pointer before we diddle with
   2022 		 * the cached PTE copy.
   2023 		 */
   2024 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2025 		/*
   2026 		 * Change the protection of the page.
   2027 		 */
   2028 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2029 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2030 
   2031 		/*
   2032 		 * If the PVO is in the page table, update
   2033 		 * that pte at well.
   2034 		 */
   2035 		if (pt != NULL) {
   2036 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2037 			PVO_WHERE(pvo, PMAP_PROTECT);
   2038 			PMAPCOUNT(ptes_changed);
   2039 		}
   2040 
   2041 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2042 	}
   2043 	pmap_interrupts_restore(msr);
   2044 }
   2045 
   2046 void
   2047 pmap_unwire(pmap_t pm, vaddr_t va)
   2048 {
   2049 	struct pvo_entry *pvo;
   2050 	register_t msr;
   2051 
   2052 	msr = pmap_interrupts_off();
   2053 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2054 	if (pvo != NULL) {
   2055 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2056 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2057 			pm->pm_stats.wired_count--;
   2058 		}
   2059 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2060 	}
   2061 	pmap_interrupts_restore(msr);
   2062 }
   2063 
   2064 /*
   2065  * Lower the protection on the specified physical page.
   2066  */
   2067 void
   2068 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2069 {
   2070 	struct pvo_head *pvo_head;
   2071 	struct pvo_entry *pvo, *next_pvo;
   2072 	volatile struct pte *pt;
   2073 	register_t msr;
   2074 
   2075 	KASSERT(prot != VM_PROT_ALL);
   2076 	msr = pmap_interrupts_off();
   2077 
   2078 	/*
   2079 	 * When UVM reuses a page, it does a pmap_page_protect with
   2080 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2081 	 * since we know the page will have different contents.
   2082 	 */
   2083 	if ((prot & VM_PROT_READ) == 0) {
   2084 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2085 		    pg->phys_addr));
   2086 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2087 			PMAPCOUNT(exec_uncached_page_protect);
   2088 			pmap_attr_clear(pg, PTE_EXEC);
   2089 		}
   2090 	}
   2091 
   2092 	pvo_head = vm_page_to_pvoh(pg);
   2093 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2094 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2095 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2096 
   2097 		/*
   2098 		 * Downgrading to no mapping at all, we just remove the entry.
   2099 		 */
   2100 		if ((prot & VM_PROT_READ) == 0) {
   2101 			pmap_pvo_remove(pvo, -1);
   2102 			continue;
   2103 		}
   2104 
   2105 		/*
   2106 		 * If EXEC permission is being revoked, just clear the
   2107 		 * flag in the PVO.
   2108 		 */
   2109 		if ((prot & VM_PROT_EXECUTE) == 0)
   2110 			pvo_clear_exec(pvo);
   2111 
   2112 		/*
   2113 		 * If this entry is already RO, don't diddle with the
   2114 		 * page table.
   2115 		 */
   2116 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2117 			PMAP_PVO_CHECK(pvo);
   2118 			continue;
   2119 		}
   2120 
   2121 		/*
   2122 		 * Grab the PTE before the we diddle the bits so
   2123 		 * pvo_to_pte can verify the pte contents are as
   2124 		 * expected.
   2125 		 */
   2126 		pt = pmap_pvo_to_pte(pvo, -1);
   2127 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2128 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2129 		if (pt != NULL) {
   2130 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2131 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2132 			PMAPCOUNT(ptes_changed);
   2133 		}
   2134 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2135 	}
   2136 	pmap_interrupts_restore(msr);
   2137 }
   2138 
   2139 /*
   2140  * Activate the address space for the specified process.  If the process
   2141  * is the current process, load the new MMU context.
   2142  */
   2143 void
   2144 pmap_activate(struct lwp *l)
   2145 {
   2146 	struct pcb *pcb = &l->l_addr->u_pcb;
   2147 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2148 
   2149 	DPRINTFN(ACTIVATE,
   2150 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2151 
   2152 	/*
   2153 	 * XXX Normally performed in cpu_fork().
   2154 	 */
   2155 	pcb->pcb_pm = pmap;
   2156 
   2157 	/*
   2158 	* In theory, the SR registers need only be valid on return
   2159 	* to user space wait to do them there.
   2160 	*/
   2161 	if (l == curlwp) {
   2162 		/* Store pointer to new current pmap. */
   2163 		curpm = pmap;
   2164 	}
   2165 }
   2166 
   2167 /*
   2168  * Deactivate the specified process's address space.
   2169  */
   2170 void
   2171 pmap_deactivate(struct lwp *l)
   2172 {
   2173 }
   2174 
   2175 boolean_t
   2176 pmap_query_bit(struct vm_page *pg, int ptebit)
   2177 {
   2178 	struct pvo_entry *pvo;
   2179 	volatile struct pte *pt;
   2180 	register_t msr;
   2181 
   2182 	if (pmap_attr_fetch(pg) & ptebit)
   2183 		return TRUE;
   2184 
   2185 	msr = pmap_interrupts_off();
   2186 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2187 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2188 		/*
   2189 		 * See if we saved the bit off.  If so cache, it and return
   2190 		 * success.
   2191 		 */
   2192 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2193 			pmap_attr_save(pg, ptebit);
   2194 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2195 			pmap_interrupts_restore(msr);
   2196 			return TRUE;
   2197 		}
   2198 	}
   2199 	/*
   2200 	 * No luck, now go thru the hard part of looking at the ptes
   2201 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2202 	 * to the PTEs.
   2203 	 */
   2204 	SYNC();
   2205 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2206 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2207 		/*
   2208 		 * See if this pvo have a valid PTE.  If so, fetch the
   2209 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2210 		 * ptebit is set, cache, it and return success.
   2211 		 */
   2212 		pt = pmap_pvo_to_pte(pvo, -1);
   2213 		if (pt != NULL) {
   2214 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2215 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2216 				pmap_attr_save(pg, ptebit);
   2217 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2218 				pmap_interrupts_restore(msr);
   2219 				return TRUE;
   2220 			}
   2221 		}
   2222 	}
   2223 	pmap_interrupts_restore(msr);
   2224 	return FALSE;
   2225 }
   2226 
   2227 boolean_t
   2228 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2229 {
   2230 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2231 	struct pvo_entry *pvo;
   2232 	volatile struct pte *pt;
   2233 	register_t msr;
   2234 	int rv = 0;
   2235 
   2236 	msr = pmap_interrupts_off();
   2237 
   2238 	/*
   2239 	 * Fetch the cache value
   2240 	 */
   2241 	rv |= pmap_attr_fetch(pg);
   2242 
   2243 	/*
   2244 	 * Clear the cached value.
   2245 	 */
   2246 	pmap_attr_clear(pg, ptebit);
   2247 
   2248 	/*
   2249 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2250 	 * can reset the right ones).  Note that since the pvo entries and
   2251 	 * list heads are accessed via BAT0 and are never placed in the
   2252 	 * page table, we don't have to worry about further accesses setting
   2253 	 * the REF/CHG bits.
   2254 	 */
   2255 	SYNC();
   2256 
   2257 	/*
   2258 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2259 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2260 	 */
   2261 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2262 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2263 		pt = pmap_pvo_to_pte(pvo, -1);
   2264 		if (pt != NULL) {
   2265 			/*
   2266 			 * Only sync the PTE if the bit we are looking
   2267 			 * for is not already set.
   2268 			 */
   2269 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2270 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2271 			/*
   2272 			 * If the bit we are looking for was already set,
   2273 			 * clear that bit in the pte.
   2274 			 */
   2275 			if (pvo->pvo_pte.pte_lo & ptebit)
   2276 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2277 		}
   2278 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2279 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2280 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2281 	}
   2282 	pmap_interrupts_restore(msr);
   2283 
   2284 	/*
   2285 	 * If we are clearing the modify bit and this page was marked EXEC
   2286 	 * and the user of the page thinks the page was modified, then we
   2287 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2288 	 * bit if it's not mapped.  The page itself might not have the CHG
   2289 	 * bit set if the modification was done via DMA to the page.
   2290 	 */
   2291 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2292 		if (LIST_EMPTY(pvoh)) {
   2293 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2294 			    pg->phys_addr));
   2295 			pmap_attr_clear(pg, PTE_EXEC);
   2296 			PMAPCOUNT(exec_uncached_clear_modify);
   2297 		} else {
   2298 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2299 			    pg->phys_addr));
   2300 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2301 			PMAPCOUNT(exec_synced_clear_modify);
   2302 		}
   2303 	}
   2304 	return (rv & ptebit) != 0;
   2305 }
   2306 
   2307 void
   2308 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2309 {
   2310 	struct pvo_entry *pvo;
   2311 	size_t offset = va & ADDR_POFF;
   2312 	int s;
   2313 
   2314 	s = splvm();
   2315 	while (len > 0) {
   2316 		size_t seglen = PAGE_SIZE - offset;
   2317 		if (seglen > len)
   2318 			seglen = len;
   2319 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2320 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2321 			pmap_syncicache(
   2322 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2323 			PMAP_PVO_CHECK(pvo);
   2324 		}
   2325 		va += seglen;
   2326 		len -= seglen;
   2327 		offset = 0;
   2328 	}
   2329 	splx(s);
   2330 }
   2331 
   2332 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2333 void
   2334 pmap_pte_print(volatile struct pte *pt)
   2335 {
   2336 	printf("PTE %p: ", pt);
   2337 	/* High word: */
   2338 	printf("0x%08lx: [", pt->pte_hi);
   2339 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2340 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2341 	printf("0x%06lx 0x%02lx",
   2342 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2343 	    pt->pte_hi & PTE_API);
   2344 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2345 	/* Low word: */
   2346 	printf(" 0x%08lx: [", pt->pte_lo);
   2347 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2348 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2349 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2350 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2351 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2352 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2353 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2354 	switch (pt->pte_lo & PTE_PP) {
   2355 	case PTE_BR: printf("br]\n"); break;
   2356 	case PTE_BW: printf("bw]\n"); break;
   2357 	case PTE_SO: printf("so]\n"); break;
   2358 	case PTE_SW: printf("sw]\n"); break;
   2359 	}
   2360 }
   2361 #endif
   2362 
   2363 #if defined(DDB)
   2364 void
   2365 pmap_pteg_check(void)
   2366 {
   2367 	volatile struct pte *pt;
   2368 	int i;
   2369 	int ptegidx;
   2370 	u_int p_valid = 0;
   2371 	u_int s_valid = 0;
   2372 	u_int invalid = 0;
   2373 
   2374 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2375 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2376 			if (pt->pte_hi & PTE_VALID) {
   2377 				if (pt->pte_hi & PTE_HID)
   2378 					s_valid++;
   2379 				else
   2380 					p_valid++;
   2381 			} else
   2382 				invalid++;
   2383 		}
   2384 	}
   2385 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2386 		p_valid, p_valid, s_valid, s_valid,
   2387 		invalid, invalid);
   2388 }
   2389 
   2390 void
   2391 pmap_print_mmuregs(void)
   2392 {
   2393 	int i;
   2394 	u_int cpuvers;
   2395 #ifndef PPC_OEA64
   2396 	vaddr_t addr;
   2397 	register_t soft_sr[16];
   2398 #endif
   2399 	struct bat soft_ibat[4];
   2400 	struct bat soft_dbat[4];
   2401 	register_t sdr1;
   2402 
   2403 	cpuvers = MFPVR() >> 16;
   2404 
   2405 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2406 #ifndef PPC_OEA64
   2407 	addr = 0;
   2408 	for (i=0; i<16; i++) {
   2409 		soft_sr[i] = MFSRIN(addr);
   2410 		addr += (1 << ADDR_SR_SHFT);
   2411 	}
   2412 #endif
   2413 
   2414 	/* read iBAT (601: uBAT) registers */
   2415 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2416 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2417 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2418 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2419 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2420 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2421 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2422 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2423 
   2424 
   2425 	if (cpuvers != MPC601) {
   2426 		/* read dBAT registers */
   2427 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2428 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2429 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2430 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2431 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2432 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2433 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2434 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2435 	}
   2436 
   2437 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2438 #ifndef PPC_OEA64
   2439 	printf("SR[]:\t");
   2440 	for (i=0; i<4; i++)
   2441 		printf("0x%08lx,   ", soft_sr[i]);
   2442 	printf("\n\t");
   2443 	for ( ; i<8; i++)
   2444 		printf("0x%08lx,   ", soft_sr[i]);
   2445 	printf("\n\t");
   2446 	for ( ; i<12; i++)
   2447 		printf("0x%08lx,   ", soft_sr[i]);
   2448 	printf("\n\t");
   2449 	for ( ; i<16; i++)
   2450 		printf("0x%08lx,   ", soft_sr[i]);
   2451 	printf("\n");
   2452 #endif
   2453 
   2454 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2455 	for (i=0; i<4; i++) {
   2456 		printf("0x%08lx 0x%08lx, ",
   2457 			soft_ibat[i].batu, soft_ibat[i].batl);
   2458 		if (i == 1)
   2459 			printf("\n\t");
   2460 	}
   2461 	if (cpuvers != MPC601) {
   2462 		printf("\ndBAT[]:\t");
   2463 		for (i=0; i<4; i++) {
   2464 			printf("0x%08lx 0x%08lx, ",
   2465 				soft_dbat[i].batu, soft_dbat[i].batl);
   2466 			if (i == 1)
   2467 				printf("\n\t");
   2468 		}
   2469 	}
   2470 	printf("\n");
   2471 }
   2472 
   2473 void
   2474 pmap_print_pte(pmap_t pm, vaddr_t va)
   2475 {
   2476 	struct pvo_entry *pvo;
   2477 	volatile struct pte *pt;
   2478 	int pteidx;
   2479 
   2480 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2481 	if (pvo != NULL) {
   2482 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2483 		if (pt != NULL) {
   2484 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2485 				va, pt,
   2486 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2487 				pt->pte_hi, pt->pte_lo);
   2488 		} else {
   2489 			printf("No valid PTE found\n");
   2490 		}
   2491 	} else {
   2492 		printf("Address not in pmap\n");
   2493 	}
   2494 }
   2495 
   2496 void
   2497 pmap_pteg_dist(void)
   2498 {
   2499 	struct pvo_entry *pvo;
   2500 	int ptegidx;
   2501 	int depth;
   2502 	int max_depth = 0;
   2503 	unsigned int depths[64];
   2504 
   2505 	memset(depths, 0, sizeof(depths));
   2506 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2507 		depth = 0;
   2508 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2509 			depth++;
   2510 		}
   2511 		if (depth > max_depth)
   2512 			max_depth = depth;
   2513 		if (depth > 63)
   2514 			depth = 63;
   2515 		depths[depth]++;
   2516 	}
   2517 
   2518 	for (depth = 0; depth < 64; depth++) {
   2519 		printf("  [%2d]: %8u", depth, depths[depth]);
   2520 		if ((depth & 3) == 3)
   2521 			printf("\n");
   2522 		if (depth == max_depth)
   2523 			break;
   2524 	}
   2525 	if ((depth & 3) != 3)
   2526 		printf("\n");
   2527 	printf("Max depth found was %d\n", max_depth);
   2528 }
   2529 #endif /* DEBUG */
   2530 
   2531 #if defined(PMAPCHECK) || defined(DEBUG)
   2532 void
   2533 pmap_pvo_verify(void)
   2534 {
   2535 	int ptegidx;
   2536 	int s;
   2537 
   2538 	s = splvm();
   2539 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2540 		struct pvo_entry *pvo;
   2541 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2542 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2543 				panic("pmap_pvo_verify: invalid pvo %p "
   2544 				    "on list %#x", pvo, ptegidx);
   2545 			pmap_pvo_check(pvo);
   2546 		}
   2547 	}
   2548 	splx(s);
   2549 }
   2550 #endif /* PMAPCHECK */
   2551 
   2552 
   2553 void *
   2554 pmap_pool_ualloc(struct pool *pp, int flags)
   2555 {
   2556 	struct pvo_page *pvop;
   2557 
   2558 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2559 	if (pvop != NULL) {
   2560 		pmap_upvop_free--;
   2561 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2562 		return pvop;
   2563 	}
   2564 	if (uvm.page_init_done != TRUE) {
   2565 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2566 	}
   2567 	return pmap_pool_malloc(pp, flags);
   2568 }
   2569 
   2570 void *
   2571 pmap_pool_malloc(struct pool *pp, int flags)
   2572 {
   2573 	struct pvo_page *pvop;
   2574 	struct vm_page *pg;
   2575 
   2576 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2577 	if (pvop != NULL) {
   2578 		pmap_mpvop_free--;
   2579 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2580 		return pvop;
   2581 	}
   2582  again:
   2583 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2584 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2585 	if (__predict_false(pg == NULL)) {
   2586 		if (flags & PR_WAITOK) {
   2587 			uvm_wait("plpg");
   2588 			goto again;
   2589 		} else {
   2590 			return (0);
   2591 		}
   2592 	}
   2593 	return (void *) VM_PAGE_TO_PHYS(pg);
   2594 }
   2595 
   2596 void
   2597 pmap_pool_ufree(struct pool *pp, void *va)
   2598 {
   2599 	struct pvo_page *pvop;
   2600 #if 0
   2601 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2602 		pmap_pool_mfree(va, size, tag);
   2603 		return;
   2604 	}
   2605 #endif
   2606 	pvop = va;
   2607 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2608 	pmap_upvop_free++;
   2609 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2610 		pmap_upvop_maxfree = pmap_upvop_free;
   2611 }
   2612 
   2613 void
   2614 pmap_pool_mfree(struct pool *pp, void *va)
   2615 {
   2616 	struct pvo_page *pvop;
   2617 
   2618 	pvop = va;
   2619 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2620 	pmap_mpvop_free++;
   2621 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2622 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2623 #if 0
   2624 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2625 #endif
   2626 }
   2627 
   2628 /*
   2629  * This routine in bootstraping to steal to-be-managed memory (which will
   2630  * then be unmanaged).  We use it to grab from the first 256MB for our
   2631  * pmap needs and above 256MB for other stuff.
   2632  */
   2633 vaddr_t
   2634 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2635 {
   2636 	vsize_t size;
   2637 	vaddr_t va;
   2638 	paddr_t pa = 0;
   2639 	int npgs, bank;
   2640 	struct vm_physseg *ps;
   2641 
   2642 	if (uvm.page_init_done == TRUE)
   2643 		panic("pmap_steal_memory: called _after_ bootstrap");
   2644 
   2645 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2646 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2647 
   2648 	size = round_page(vsize);
   2649 	npgs = atop(size);
   2650 
   2651 	/*
   2652 	 * PA 0 will never be among those given to UVM so we can use it
   2653 	 * to indicate we couldn't steal any memory.
   2654 	 */
   2655 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2656 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2657 		    ps->avail_end - ps->avail_start >= npgs) {
   2658 			pa = ptoa(ps->avail_start);
   2659 			break;
   2660 		}
   2661 	}
   2662 
   2663 	if (pa == 0)
   2664 		panic("pmap_steal_memory: no approriate memory to steal!");
   2665 
   2666 	ps->avail_start += npgs;
   2667 	ps->start += npgs;
   2668 
   2669 	/*
   2670 	 * If we've used up all the pages in the segment, remove it and
   2671 	 * compact the list.
   2672 	 */
   2673 	if (ps->avail_start == ps->end) {
   2674 		/*
   2675 		 * If this was the last one, then a very bad thing has occurred
   2676 		 */
   2677 		if (--vm_nphysseg == 0)
   2678 			panic("pmap_steal_memory: out of memory!");
   2679 
   2680 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2681 		for (; bank < vm_nphysseg; bank++, ps++) {
   2682 			ps[0] = ps[1];
   2683 		}
   2684 	}
   2685 
   2686 	va = (vaddr_t) pa;
   2687 	memset((caddr_t) va, 0, size);
   2688 	pmap_pages_stolen += npgs;
   2689 #ifdef DEBUG
   2690 	if (pmapdebug && npgs > 1) {
   2691 		u_int cnt = 0;
   2692 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2693 			cnt += ps->avail_end - ps->avail_start;
   2694 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2695 		    npgs, pmap_pages_stolen, cnt);
   2696 	}
   2697 #endif
   2698 
   2699 	return va;
   2700 }
   2701 
   2702 /*
   2703  * Find a chuck of memory with right size and alignment.
   2704  */
   2705 void *
   2706 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2707 {
   2708 	struct mem_region *mp;
   2709 	paddr_t s, e;
   2710 	int i, j;
   2711 
   2712 	size = round_page(size);
   2713 
   2714 	DPRINTFN(BOOT,
   2715 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2716 	    size, alignment, at_end));
   2717 
   2718 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2719 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2720 		    alignment);
   2721 
   2722 	if (at_end) {
   2723 		if (alignment != PAGE_SIZE)
   2724 			panic("pmap_boot_find_memory: invalid ending "
   2725 			    "alignment %lx", alignment);
   2726 
   2727 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2728 			s = mp->start + mp->size - size;
   2729 			if (s >= mp->start && mp->size >= size) {
   2730 				DPRINTFN(BOOT,(": %lx\n", s));
   2731 				DPRINTFN(BOOT,
   2732 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2733 				     "0x%lx size 0x%lx\n", mp - avail,
   2734 				     mp->start, mp->size));
   2735 				mp->size -= size;
   2736 				DPRINTFN(BOOT,
   2737 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2738 				     "0x%lx size 0x%lx\n", mp - avail,
   2739 				     mp->start, mp->size));
   2740 				return (void *) s;
   2741 			}
   2742 		}
   2743 		panic("pmap_boot_find_memory: no available memory");
   2744 	}
   2745 
   2746 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2747 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2748 		e = s + size;
   2749 
   2750 		/*
   2751 		 * Is the calculated region entirely within the region?
   2752 		 */
   2753 		if (s < mp->start || e > mp->start + mp->size)
   2754 			continue;
   2755 
   2756 		DPRINTFN(BOOT,(": %lx\n", s));
   2757 		if (s == mp->start) {
   2758 			/*
   2759 			 * If the block starts at the beginning of region,
   2760 			 * adjust the size & start. (the region may now be
   2761 			 * zero in length)
   2762 			 */
   2763 			DPRINTFN(BOOT,
   2764 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2765 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2766 			mp->start += size;
   2767 			mp->size -= size;
   2768 			DPRINTFN(BOOT,
   2769 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2770 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2771 		} else if (e == mp->start + mp->size) {
   2772 			/*
   2773 			 * If the block starts at the beginning of region,
   2774 			 * adjust only the size.
   2775 			 */
   2776 			DPRINTFN(BOOT,
   2777 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2778 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2779 			mp->size -= size;
   2780 			DPRINTFN(BOOT,
   2781 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2782 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2783 		} else {
   2784 			/*
   2785 			 * Block is in the middle of the region, so we
   2786 			 * have to split it in two.
   2787 			 */
   2788 			for (j = avail_cnt; j > i + 1; j--) {
   2789 				avail[j] = avail[j-1];
   2790 			}
   2791 			DPRINTFN(BOOT,
   2792 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2793 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2794 			mp[1].start = e;
   2795 			mp[1].size = mp[0].start + mp[0].size - e;
   2796 			mp[0].size = s - mp[0].start;
   2797 			avail_cnt++;
   2798 			for (; i < avail_cnt; i++) {
   2799 				DPRINTFN(BOOT,
   2800 				    ("pmap_boot_find_memory: a-avail[%d] "
   2801 				     "start 0x%lx size 0x%lx\n", i,
   2802 				     avail[i].start, avail[i].size));
   2803 			}
   2804 		}
   2805 		return (void *) s;
   2806 	}
   2807 	panic("pmap_boot_find_memory: not enough memory for "
   2808 	    "%lx/%lx allocation?", size, alignment);
   2809 }
   2810 
   2811 /*
   2812  * This is not part of the defined PMAP interface and is specific to the
   2813  * PowerPC architecture.  This is called during initppc, before the system
   2814  * is really initialized.
   2815  */
   2816 void
   2817 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2818 {
   2819 	struct mem_region *mp, tmp;
   2820 	paddr_t s, e;
   2821 	psize_t size;
   2822 	int i, j;
   2823 
   2824 	/*
   2825 	 * Get memory.
   2826 	 */
   2827 	mem_regions(&mem, &avail);
   2828 #if defined(DEBUG)
   2829 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2830 		printf("pmap_bootstrap: memory configuration:\n");
   2831 		for (mp = mem; mp->size; mp++) {
   2832 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2833 				mp->start, mp->size);
   2834 		}
   2835 		for (mp = avail; mp->size; mp++) {
   2836 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2837 				mp->start, mp->size);
   2838 		}
   2839 	}
   2840 #endif
   2841 
   2842 	/*
   2843 	 * Find out how much physical memory we have and in how many chunks.
   2844 	 */
   2845 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2846 		if (mp->start >= pmap_memlimit)
   2847 			continue;
   2848 		if (mp->start + mp->size > pmap_memlimit) {
   2849 			size = pmap_memlimit - mp->start;
   2850 			physmem += btoc(size);
   2851 		} else {
   2852 			physmem += btoc(mp->size);
   2853 		}
   2854 		mem_cnt++;
   2855 	}
   2856 
   2857 	/*
   2858 	 * Count the number of available entries.
   2859 	 */
   2860 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2861 		avail_cnt++;
   2862 
   2863 	/*
   2864 	 * Page align all regions.
   2865 	 */
   2866 	kernelstart = trunc_page(kernelstart);
   2867 	kernelend = round_page(kernelend);
   2868 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2869 		s = round_page(mp->start);
   2870 		mp->size -= (s - mp->start);
   2871 		mp->size = trunc_page(mp->size);
   2872 		mp->start = s;
   2873 		e = mp->start + mp->size;
   2874 
   2875 		DPRINTFN(BOOT,
   2876 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2877 		    i, mp->start, mp->size));
   2878 
   2879 		/*
   2880 		 * Don't allow the end to run beyond our artificial limit
   2881 		 */
   2882 		if (e > pmap_memlimit)
   2883 			e = pmap_memlimit;
   2884 
   2885 		/*
   2886 		 * Is this region empty or strange?  skip it.
   2887 		 */
   2888 		if (e <= s) {
   2889 			mp->start = 0;
   2890 			mp->size = 0;
   2891 			continue;
   2892 		}
   2893 
   2894 		/*
   2895 		 * Does this overlap the beginning of kernel?
   2896 		 *   Does extend past the end of the kernel?
   2897 		 */
   2898 		else if (s < kernelstart && e > kernelstart) {
   2899 			if (e > kernelend) {
   2900 				avail[avail_cnt].start = kernelend;
   2901 				avail[avail_cnt].size = e - kernelend;
   2902 				avail_cnt++;
   2903 			}
   2904 			mp->size = kernelstart - s;
   2905 		}
   2906 		/*
   2907 		 * Check whether this region overlaps the end of the kernel.
   2908 		 */
   2909 		else if (s < kernelend && e > kernelend) {
   2910 			mp->start = kernelend;
   2911 			mp->size = e - kernelend;
   2912 		}
   2913 		/*
   2914 		 * Look whether this regions is completely inside the kernel.
   2915 		 * Nuke it if it does.
   2916 		 */
   2917 		else if (s >= kernelstart && e <= kernelend) {
   2918 			mp->start = 0;
   2919 			mp->size = 0;
   2920 		}
   2921 		/*
   2922 		 * If the user imposed a memory limit, enforce it.
   2923 		 */
   2924 		else if (s >= pmap_memlimit) {
   2925 			mp->start = -PAGE_SIZE;	/* let's know why */
   2926 			mp->size = 0;
   2927 		}
   2928 		else {
   2929 			mp->start = s;
   2930 			mp->size = e - s;
   2931 		}
   2932 		DPRINTFN(BOOT,
   2933 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   2934 		    i, mp->start, mp->size));
   2935 	}
   2936 
   2937 	/*
   2938 	 * Move (and uncount) all the null return to the end.
   2939 	 */
   2940 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2941 		if (mp->size == 0) {
   2942 			tmp = avail[i];
   2943 			avail[i] = avail[--avail_cnt];
   2944 			avail[avail_cnt] = avail[i];
   2945 		}
   2946 	}
   2947 
   2948 	/*
   2949 	 * (Bubble)sort them into asecnding order.
   2950 	 */
   2951 	for (i = 0; i < avail_cnt; i++) {
   2952 		for (j = i + 1; j < avail_cnt; j++) {
   2953 			if (avail[i].start > avail[j].start) {
   2954 				tmp = avail[i];
   2955 				avail[i] = avail[j];
   2956 				avail[j] = tmp;
   2957 			}
   2958 		}
   2959 	}
   2960 
   2961 	/*
   2962 	 * Make sure they don't overlap.
   2963 	 */
   2964 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   2965 		if (mp[0].start + mp[0].size > mp[1].start) {
   2966 			mp[0].size = mp[1].start - mp[0].start;
   2967 		}
   2968 		DPRINTFN(BOOT,
   2969 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2970 		    i, mp->start, mp->size));
   2971 	}
   2972 	DPRINTFN(BOOT,
   2973 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2974 	    i, mp->start, mp->size));
   2975 
   2976 #ifdef	PTEGCOUNT
   2977 	pmap_pteg_cnt = PTEGCOUNT;
   2978 #else /* PTEGCOUNT */
   2979 	pmap_pteg_cnt = 0x1000;
   2980 
   2981 	while (pmap_pteg_cnt < physmem)
   2982 		pmap_pteg_cnt <<= 1;
   2983 
   2984 	pmap_pteg_cnt >>= 1;
   2985 #endif /* PTEGCOUNT */
   2986 
   2987 	/*
   2988 	 * Find suitably aligned memory for PTEG hash table.
   2989 	 */
   2990 	size = pmap_pteg_cnt * sizeof(struct pteg);
   2991 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   2992 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2993 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   2994 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   2995 		    pmap_pteg_table, size);
   2996 #endif
   2997 
   2998 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   2999 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3000 
   3001 	/*
   3002 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3003 	 * with pages.  So we just steal them before giving them to UVM.
   3004 	 */
   3005 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3006 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3007 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3008 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3009 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3010 		    pmap_pvo_table, size);
   3011 #endif
   3012 
   3013 	for (i = 0; i < pmap_pteg_cnt; i++)
   3014 		TAILQ_INIT(&pmap_pvo_table[i]);
   3015 
   3016 #ifndef MSGBUFADDR
   3017 	/*
   3018 	 * Allocate msgbuf in high memory.
   3019 	 */
   3020 	msgbuf_paddr =
   3021 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3022 #endif
   3023 
   3024 #ifdef __HAVE_PMAP_PHYSSEG
   3025 	{
   3026 		u_int npgs = 0;
   3027 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3028 			npgs += btoc(mp->size);
   3029 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3030 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3031 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3032 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3033 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3034 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3035 			    pmap_physseg.pvoh, size);
   3036 #endif
   3037 	}
   3038 #endif
   3039 
   3040 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3041 		paddr_t pfstart = atop(mp->start);
   3042 		paddr_t pfend = atop(mp->start + mp->size);
   3043 		if (mp->size == 0)
   3044 			continue;
   3045 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3046 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3047 				VM_FREELIST_FIRST256);
   3048 		} else if (mp->start >= SEGMENT_LENGTH) {
   3049 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3050 				VM_FREELIST_DEFAULT);
   3051 		} else {
   3052 			pfend = atop(SEGMENT_LENGTH);
   3053 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3054 				VM_FREELIST_FIRST256);
   3055 			pfstart = atop(SEGMENT_LENGTH);
   3056 			pfend = atop(mp->start + mp->size);
   3057 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3058 				VM_FREELIST_DEFAULT);
   3059 		}
   3060 	}
   3061 
   3062 	/*
   3063 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3064 	 */
   3065 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3066 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3067 	pmap_vsid_bitmap[0] |= 1;
   3068 
   3069 	/*
   3070 	 * Initialize kernel pmap and hardware.
   3071 	 */
   3072 #ifndef PPC_OEA64
   3073 	for (i = 0; i < 16; i++) {
   3074 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3075 		__asm __volatile ("mtsrin %0,%1"
   3076 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3077 	}
   3078 
   3079 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3080 	__asm __volatile ("mtsr %0,%1"
   3081 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3082 #ifdef KERNEL2_SR
   3083 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3084 	__asm __volatile ("mtsr %0,%1"
   3085 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3086 #endif
   3087 	for (i = 0; i < 16; i++) {
   3088 		if (iosrtable[i] & SR601_T) {
   3089 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3090 			__asm __volatile ("mtsrin %0,%1"
   3091 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3092 		}
   3093 	}
   3094 #endif /* !PPC_OEA64 */
   3095 
   3096 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3097 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3098 	tlbia();
   3099 
   3100 #ifdef ALTIVEC
   3101 	pmap_use_altivec = cpu_altivec;
   3102 #endif
   3103 
   3104 #ifdef DEBUG
   3105 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3106 		u_int cnt;
   3107 		int bank;
   3108 		char pbuf[9];
   3109 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3110 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3111 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3112 			    bank,
   3113 			    ptoa(vm_physmem[bank].avail_start),
   3114 			    ptoa(vm_physmem[bank].avail_end),
   3115 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3116 		}
   3117 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3118 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3119 		    pbuf, cnt);
   3120 	}
   3121 #endif
   3122 
   3123 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3124 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3125 	    &pmap_pool_uallocator);
   3126 
   3127 	pool_setlowat(&pmap_upvo_pool, 252);
   3128 
   3129 	pool_init(&pmap_pool, sizeof(struct pmap),
   3130 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3131 }
   3132