pmap.c revision 1.21 1 /* $NetBSD: pmap.c,v 1.21 2004/03/17 14:14:02 aymeric Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.21 2004/03/17 14:14:02 aymeric Exp $");
71
72 #include "opt_ppcarch.h"
73 #include "opt_altivec.h"
74 #include "opt_pmap.h"
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83
84 #if __NetBSD_Version__ < 105010000
85 #include <vm/vm.h>
86 #include <vm/vm_kern.h>
87 #define splvm() splimp()
88 #endif
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97
98 #if defined(DEBUG) || defined(PMAPCHECK)
99 #define STATIC
100 #else
101 #define STATIC static
102 #endif
103
104 #ifdef ALTIVEC
105 int pmap_use_altivec;
106 #endif
107
108 volatile struct pteg *pmap_pteg_table;
109 unsigned int pmap_pteg_cnt;
110 unsigned int pmap_pteg_mask;
111 #ifdef PMAP_MEMLIMIT
112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 #else
114 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
115 #endif
116
117 struct pmap kernel_pmap_;
118 unsigned int pmap_pages_stolen;
119 u_long pmap_pte_valid;
120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 u_long pmap_pvo_enter_depth;
122 u_long pmap_pvo_remove_depth;
123 #endif
124
125 int physmem;
126 #ifndef MSGBUFADDR
127 extern paddr_t msgbuf_paddr;
128 #endif
129
130 static struct mem_region *mem, *avail;
131 static u_int mem_cnt, avail_cnt;
132
133 #ifdef __HAVE_PMAP_PHYSSEG
134 /*
135 * This is a cache of referenced/modified bits.
136 * Bits herein are shifted by ATTRSHFT.
137 */
138 #define ATTR_SHFT 4
139 struct pmap_physseg pmap_physseg;
140 #endif
141
142 /*
143 * The following structure is exactly 32 bytes long (one cacheline).
144 */
145 struct pvo_entry {
146 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
147 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
148 struct pte pvo_pte; /* Prebuilt PTE */
149 pmap_t pvo_pmap; /* ptr to owning pmap */
150 vaddr_t pvo_vaddr; /* VA of entry */
151 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
152 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
153 #define PVO_WIRED 0x0010 /* PVO entry is wired */
154 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
155 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
156 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
157 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
158 #define PVO_SPILL_SET 2 /* PVO has been spilled */
159 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
160 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
161 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
162 #define PVO_REMOVE 6 /* PVO has been removed */
163 #define PVO_WHERE_MASK 15
164 #define PVO_WHERE_SHFT 8
165 };
166 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
167 #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 #define PVO_PTEGIDX_CLR(pvo) \
171 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 #define PVO_PTEGIDX_SET(pvo,i) \
173 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 #define PVO_WHERE(pvo,w) \
175 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177
178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
182
183 struct pool pmap_pool; /* pool for pmap structures */
184 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
185 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
186
187 /*
188 * We keep a cache of unmanaged pages to be used for pvo entries for
189 * unmanaged pages.
190 */
191 struct pvo_page {
192 SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 };
194 SIMPLEQ_HEAD(pvop_head, pvo_page);
195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 u_long pmap_upvop_free;
198 u_long pmap_upvop_maxfree;
199 u_long pmap_mpvop_free;
200 u_long pmap_mpvop_maxfree;
201
202 STATIC void *pmap_pool_ualloc(struct pool *, int);
203 STATIC void *pmap_pool_malloc(struct pool *, int);
204
205 STATIC void pmap_pool_ufree(struct pool *, void *);
206 STATIC void pmap_pool_mfree(struct pool *, void *);
207
208 static struct pool_allocator pmap_pool_mallocator = {
209 pmap_pool_malloc, pmap_pool_mfree, 0,
210 };
211
212 static struct pool_allocator pmap_pool_uallocator = {
213 pmap_pool_ualloc, pmap_pool_ufree, 0,
214 };
215
216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 void pmap_pte_print(volatile struct pte *);
218 #endif
219
220 #ifdef DDB
221 void pmap_pteg_check(void);
222 void pmap_pteg_dist(void);
223 void pmap_print_pte(pmap_t, vaddr_t);
224 void pmap_print_mmuregs(void);
225 #endif
226
227 #if defined(DEBUG) || defined(PMAPCHECK)
228 #ifdef PMAPCHECK
229 int pmapcheck = 1;
230 #else
231 int pmapcheck = 0;
232 #endif
233 void pmap_pvo_verify(void);
234 STATIC void pmap_pvo_check(const struct pvo_entry *);
235 #define PMAP_PVO_CHECK(pvo) \
236 do { \
237 if (pmapcheck) \
238 pmap_pvo_check(pvo); \
239 } while (0)
240 #else
241 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
242 #endif
243 STATIC int pmap_pte_insert(int, struct pte *);
244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 vaddr_t, paddr_t, register_t, int);
246 STATIC void pmap_pvo_remove(struct pvo_entry *, int);
247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
249 #define pmap_pvo_reclaim(pm) NULL
250 STATIC void pvo_set_exec(struct pvo_entry *);
251 STATIC void pvo_clear_exec(struct pvo_entry *);
252
253 STATIC void tlbia(void);
254
255 STATIC void pmap_release(pmap_t);
256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
257
258 #define VSID_NBPW (sizeof(uint32_t) * 8)
259 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
260
261 static int pmap_initialized;
262
263 #if defined(DEBUG) || defined(PMAPDEBUG)
264 #define PMAPDEBUG_BOOT 0x0001
265 #define PMAPDEBUG_PTE 0x0002
266 #define PMAPDEBUG_EXEC 0x0008
267 #define PMAPDEBUG_PVOENTER 0x0010
268 #define PMAPDEBUG_PVOREMOVE 0x0020
269 #define PMAPDEBUG_ACTIVATE 0x0100
270 #define PMAPDEBUG_CREATE 0x0200
271 #define PMAPDEBUG_ENTER 0x1000
272 #define PMAPDEBUG_KENTER 0x2000
273 #define PMAPDEBUG_KREMOVE 0x4000
274 #define PMAPDEBUG_REMOVE 0x8000
275 unsigned int pmapdebug = 0;
276 # define DPRINTF(x) printf x
277 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
278 #else
279 # define DPRINTF(x)
280 # define DPRINTFN(n, x)
281 #endif
282
283
284 #ifdef PMAPCOUNTERS
285 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
286 #define PMAPCOUNT2(ev) ((ev).ev_count++)
287
288 struct evcnt pmap_evcnt_mappings =
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
290 "pmap", "pages mapped");
291 struct evcnt pmap_evcnt_unmappings =
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
293 "pmap", "pages unmapped");
294
295 struct evcnt pmap_evcnt_kernel_mappings =
296 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
297 "pmap", "kernel pages mapped");
298 struct evcnt pmap_evcnt_kernel_unmappings =
299 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
300 "pmap", "kernel pages unmapped");
301
302 struct evcnt pmap_evcnt_mappings_replaced =
303 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
304 "pmap", "page mappings replaced");
305
306 struct evcnt pmap_evcnt_exec_mappings =
307 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
308 "pmap", "exec pages mapped");
309 struct evcnt pmap_evcnt_exec_cached =
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
311 "pmap", "exec pages cached");
312
313 struct evcnt pmap_evcnt_exec_synced =
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
315 "pmap", "exec pages synced");
316 struct evcnt pmap_evcnt_exec_synced_clear_modify =
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
318 "pmap", "exec pages synced (CM)");
319
320 struct evcnt pmap_evcnt_exec_uncached_page_protect =
321 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
322 "pmap", "exec pages uncached (PP)");
323 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
324 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
325 "pmap", "exec pages uncached (CM)");
326 struct evcnt pmap_evcnt_exec_uncached_zero_page =
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
328 "pmap", "exec pages uncached (ZP)");
329 struct evcnt pmap_evcnt_exec_uncached_copy_page =
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
331 "pmap", "exec pages uncached (CP)");
332
333 struct evcnt pmap_evcnt_updates =
334 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
335 "pmap", "updates");
336 struct evcnt pmap_evcnt_collects =
337 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
338 "pmap", "collects");
339 struct evcnt pmap_evcnt_copies =
340 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
341 "pmap", "copies");
342
343 struct evcnt pmap_evcnt_ptes_spilled =
344 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
345 "pmap", "ptes spilled from overflow");
346 struct evcnt pmap_evcnt_ptes_unspilled =
347 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
348 "pmap", "ptes not spilled");
349 struct evcnt pmap_evcnt_ptes_evicted =
350 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
351 "pmap", "ptes evicted");
352
353 struct evcnt pmap_evcnt_ptes_primary[8] = {
354 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 "pmap", "ptes added at primary[0]"),
356 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 "pmap", "ptes added at primary[1]"),
358 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
359 "pmap", "ptes added at primary[2]"),
360 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
361 "pmap", "ptes added at primary[3]"),
362
363 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 "pmap", "ptes added at primary[4]"),
365 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 "pmap", "ptes added at primary[5]"),
367 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
368 "pmap", "ptes added at primary[6]"),
369 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
370 "pmap", "ptes added at primary[7]"),
371 };
372 struct evcnt pmap_evcnt_ptes_secondary[8] = {
373 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
374 "pmap", "ptes added at secondary[0]"),
375 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
376 "pmap", "ptes added at secondary[1]"),
377 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
378 "pmap", "ptes added at secondary[2]"),
379 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
380 "pmap", "ptes added at secondary[3]"),
381
382 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 "pmap", "ptes added at secondary[4]"),
384 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 "pmap", "ptes added at secondary[5]"),
386 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
387 "pmap", "ptes added at secondary[6]"),
388 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
389 "pmap", "ptes added at secondary[7]"),
390 };
391 struct evcnt pmap_evcnt_ptes_removed =
392 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
393 "pmap", "ptes removed");
394 struct evcnt pmap_evcnt_ptes_changed =
395 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 "pmap", "ptes changed");
397
398 /*
399 * From pmap_subr.c
400 */
401 extern struct evcnt pmap_evcnt_zeroed_pages;
402 extern struct evcnt pmap_evcnt_copied_pages;
403 extern struct evcnt pmap_evcnt_idlezeroed_pages;
404 #else
405 #define PMAPCOUNT(ev) ((void) 0)
406 #define PMAPCOUNT2(ev) ((void) 0)
407 #endif
408
409 #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
410 #define TLBSYNC() __asm __volatile("tlbsync")
411 #define SYNC() __asm __volatile("sync")
412 #define EIEIO() __asm __volatile("eieio")
413 #define MFMSR() mfmsr()
414 #define MTMSR(psl) mtmsr(psl)
415 #define MFPVR() mfpvr()
416 #define MFSRIN(va) mfsrin(va)
417 #define MFTB() mfrtcltbl()
418
419 #ifndef PPC_OEA64
420 static __inline register_t
421 mfsrin(vaddr_t va)
422 {
423 register_t sr;
424 __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
425 return sr;
426 }
427 #endif /* PPC_OEA64 */
428
429 static __inline register_t
430 pmap_interrupts_off(void)
431 {
432 register_t msr = MFMSR();
433 if (msr & PSL_EE)
434 MTMSR(msr & ~PSL_EE);
435 return msr;
436 }
437
438 static void
439 pmap_interrupts_restore(register_t msr)
440 {
441 if (msr & PSL_EE)
442 MTMSR(msr);
443 }
444
445 static __inline u_int32_t
446 mfrtcltbl(void)
447 {
448
449 if ((MFPVR() >> 16) == MPC601)
450 return (mfrtcl() >> 7);
451 else
452 return (mftbl());
453 }
454
455 /*
456 * These small routines may have to be replaced,
457 * if/when we support processors other that the 604.
458 */
459
460 void
461 tlbia(void)
462 {
463 caddr_t i;
464
465 SYNC();
466 /*
467 * Why not use "tlbia"? Because not all processors implement it.
468 *
469 * This needs to be a per-CPU callback to do the appropriate thing
470 * for the CPU. XXX
471 */
472 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
473 TLBIE(i);
474 EIEIO();
475 SYNC();
476 }
477 TLBSYNC();
478 SYNC();
479 }
480
481 static __inline register_t
482 va_to_vsid(const struct pmap *pm, vaddr_t addr)
483 {
484 #ifdef PPC_OEA64
485 #if 0
486 const struct ste *ste;
487 register_t hash;
488 int i;
489
490 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
491
492 /*
493 * Try the primary group first
494 */
495 ste = pm->pm_stes[hash].stes;
496 for (i = 0; i < 8; i++, ste++) {
497 if (ste->ste_hi & STE_V) &&
498 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
499 return ste;
500 }
501
502 /*
503 * Then the secondary group.
504 */
505 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
506 for (i = 0; i < 8; i++, ste++) {
507 if (ste->ste_hi & STE_V) &&
508 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
509 return addr;
510 }
511
512 return NULL;
513 #else
514 /*
515 * Rather than searching the STE groups for the VSID, we know
516 * how we generate that from the ESID and so do that.
517 */
518 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
519 #endif
520 #else
521 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
522 #endif
523 }
524
525 static __inline register_t
526 va_to_pteg(const struct pmap *pm, vaddr_t addr)
527 {
528 register_t hash;
529
530 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
531 return hash & pmap_pteg_mask;
532 }
533
534 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
535 /*
536 * Given a PTE in the page table, calculate the VADDR that hashes to it.
537 * The only bit of magic is that the top 4 bits of the address doesn't
538 * technically exist in the PTE. But we know we reserved 4 bits of the
539 * VSID for it so that's how we get it.
540 */
541 static vaddr_t
542 pmap_pte_to_va(volatile const struct pte *pt)
543 {
544 vaddr_t va;
545 uintptr_t ptaddr = (uintptr_t) pt;
546
547 if (pt->pte_hi & PTE_HID)
548 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
549
550 /* PPC Bits 10-19 PPC64 Bits 42-51 */
551 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
552 va <<= ADDR_PIDX_SHFT;
553
554 /* PPC Bits 4-9 PPC64 Bits 36-41 */
555 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
556
557 #ifdef PPC_OEA64
558 /* PPC63 Bits 0-35 */
559 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
560 #endif
561 #ifdef PPC_OEA
562 /* PPC Bits 0-3 */
563 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
564 #endif
565
566 return va;
567 }
568 #endif
569
570 static __inline struct pvo_head *
571 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
572 {
573 #ifdef __HAVE_VM_PAGE_MD
574 struct vm_page *pg;
575
576 pg = PHYS_TO_VM_PAGE(pa);
577 if (pg_p != NULL)
578 *pg_p = pg;
579 if (pg == NULL)
580 return &pmap_pvo_unmanaged;
581 return &pg->mdpage.mdpg_pvoh;
582 #endif
583 #ifdef __HAVE_PMAP_PHYSSEG
584 int bank, pg;
585
586 bank = vm_physseg_find(atop(pa), &pg);
587 if (pg_p != NULL)
588 *pg_p = pg;
589 if (bank == -1)
590 return &pmap_pvo_unmanaged;
591 return &vm_physmem[bank].pmseg.pvoh[pg];
592 #endif
593 }
594
595 static __inline struct pvo_head *
596 vm_page_to_pvoh(struct vm_page *pg)
597 {
598 #ifdef __HAVE_VM_PAGE_MD
599 return &pg->mdpage.mdpg_pvoh;
600 #endif
601 #ifdef __HAVE_PMAP_PHYSSEG
602 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
603 #endif
604 }
605
606
607 #ifdef __HAVE_PMAP_PHYSSEG
608 static __inline char *
609 pa_to_attr(paddr_t pa)
610 {
611 int bank, pg;
612
613 bank = vm_physseg_find(atop(pa), &pg);
614 if (bank == -1)
615 return NULL;
616 return &vm_physmem[bank].pmseg.attrs[pg];
617 }
618 #endif
619
620 static __inline void
621 pmap_attr_clear(struct vm_page *pg, int ptebit)
622 {
623 #ifdef __HAVE_PMAP_PHYSSEG
624 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
625 #endif
626 #ifdef __HAVE_VM_PAGE_MD
627 pg->mdpage.mdpg_attrs &= ~ptebit;
628 #endif
629 }
630
631 static __inline int
632 pmap_attr_fetch(struct vm_page *pg)
633 {
634 #ifdef __HAVE_PMAP_PHYSSEG
635 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
636 #endif
637 #ifdef __HAVE_VM_PAGE_MD
638 return pg->mdpage.mdpg_attrs;
639 #endif
640 }
641
642 static __inline void
643 pmap_attr_save(struct vm_page *pg, int ptebit)
644 {
645 #ifdef __HAVE_PMAP_PHYSSEG
646 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
647 #endif
648 #ifdef __HAVE_VM_PAGE_MD
649 pg->mdpage.mdpg_attrs |= ptebit;
650 #endif
651 }
652
653 static __inline int
654 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
655 {
656 if (pt->pte_hi == pvo_pt->pte_hi
657 #if 0
658 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
659 ~(PTE_REF|PTE_CHG)) == 0
660 #endif
661 )
662 return 1;
663 return 0;
664 }
665
666 static __inline void
667 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
668 {
669 /*
670 * Construct the PTE. Default to IMB initially. Valid bit
671 * only gets set when the real pte is set in memory.
672 *
673 * Note: Don't set the valid bit for correct operation of tlb update.
674 */
675 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
676 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
677 pt->pte_lo = pte_lo;
678 }
679
680 static __inline void
681 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
682 {
683 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
684 }
685
686 static __inline void
687 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
688 {
689 /*
690 * As shown in Section 7.6.3.2.3
691 */
692 pt->pte_lo &= ~ptebit;
693 TLBIE(va);
694 SYNC();
695 EIEIO();
696 TLBSYNC();
697 SYNC();
698 }
699
700 static __inline void
701 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
702 {
703 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
704 if (pvo_pt->pte_hi & PTE_VALID)
705 panic("pte_set: setting an already valid pte %p", pvo_pt);
706 #endif
707 pvo_pt->pte_hi |= PTE_VALID;
708 /*
709 * Update the PTE as defined in section 7.6.3.1
710 * Note that the REF/CHG bits are from pvo_pt and thus should
711 * have been saved so this routine can restore them (if desired).
712 */
713 pt->pte_lo = pvo_pt->pte_lo;
714 EIEIO();
715 pt->pte_hi = pvo_pt->pte_hi;
716 SYNC();
717 pmap_pte_valid++;
718 }
719
720 static __inline void
721 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
722 {
723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
724 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
725 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
726 if ((pt->pte_hi & PTE_VALID) == 0)
727 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
728 #endif
729
730 pvo_pt->pte_hi &= ~PTE_VALID;
731 /*
732 * Force the ref & chg bits back into the PTEs.
733 */
734 SYNC();
735 /*
736 * Invalidate the pte ... (Section 7.6.3.3)
737 */
738 pt->pte_hi &= ~PTE_VALID;
739 SYNC();
740 TLBIE(va);
741 SYNC();
742 EIEIO();
743 TLBSYNC();
744 SYNC();
745 /*
746 * Save the ref & chg bits ...
747 */
748 pmap_pte_synch(pt, pvo_pt);
749 pmap_pte_valid--;
750 }
751
752 static __inline void
753 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
754 {
755 /*
756 * Invalidate the PTE
757 */
758 pmap_pte_unset(pt, pvo_pt, va);
759 pmap_pte_set(pt, pvo_pt);
760 }
761
762 /*
763 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
764 * (either primary or secondary location).
765 *
766 * Note: both the destination and source PTEs must not have PTE_VALID set.
767 */
768
769 STATIC int
770 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
771 {
772 volatile struct pte *pt;
773 int i;
774
775 #if defined(DEBUG)
776 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
777 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
778 #endif
779 /*
780 * First try primary hash.
781 */
782 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
783 if ((pt->pte_hi & PTE_VALID) == 0) {
784 pvo_pt->pte_hi &= ~PTE_HID;
785 pmap_pte_set(pt, pvo_pt);
786 return i;
787 }
788 }
789
790 /*
791 * Now try secondary hash.
792 */
793 ptegidx ^= pmap_pteg_mask;
794 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
795 if ((pt->pte_hi & PTE_VALID) == 0) {
796 pvo_pt->pte_hi |= PTE_HID;
797 pmap_pte_set(pt, pvo_pt);
798 return i;
799 }
800 }
801 return -1;
802 }
803
804 /*
805 * Spill handler.
806 *
807 * Tries to spill a page table entry from the overflow area.
808 * This runs in either real mode (if dealing with a exception spill)
809 * or virtual mode when dealing with manually spilling one of the
810 * kernel's pte entries. In either case, interrupts are already
811 * disabled.
812 */
813
814 int
815 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
816 {
817 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
818 struct pvo_entry *pvo;
819 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
820 struct pvo_tqhead *pvoh, *vpvoh = NULL;
821 int ptegidx, i, j;
822 volatile struct pteg *pteg;
823 volatile struct pte *pt;
824
825 ptegidx = va_to_pteg(pm, addr);
826
827 /*
828 * Have to substitute some entry. Use the primary hash for this.
829 * Use low bits of timebase as random generator. Make sure we are
830 * not picking a kernel pte for replacement.
831 */
832 pteg = &pmap_pteg_table[ptegidx];
833 i = MFTB() & 7;
834 for (j = 0; j < 8; j++) {
835 pt = &pteg->pt[i];
836 if ((pt->pte_hi & PTE_VALID) == 0 ||
837 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
838 != KERNEL_VSIDBITS)
839 break;
840 i = (i + 1) & 7;
841 }
842 KASSERT(j < 8);
843
844 source_pvo = NULL;
845 victim_pvo = NULL;
846 pvoh = &pmap_pvo_table[ptegidx];
847 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
848
849 /*
850 * We need to find pvo entry for this address...
851 */
852 PMAP_PVO_CHECK(pvo); /* sanity check */
853
854 /*
855 * If we haven't found the source and we come to a PVO with
856 * a valid PTE, then we know we can't find it because all
857 * evicted PVOs always are first in the list.
858 */
859 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
860 break;
861 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
862 addr == PVO_VADDR(pvo)) {
863
864 /*
865 * Now we have found the entry to be spilled into the
866 * pteg. Attempt to insert it into the page table.
867 */
868 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
869 if (j >= 0) {
870 PVO_PTEGIDX_SET(pvo, j);
871 PMAP_PVO_CHECK(pvo); /* sanity check */
872 PVO_WHERE(pvo, SPILL_INSERT);
873 pvo->pvo_pmap->pm_evictions--;
874 PMAPCOUNT(ptes_spilled);
875 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
876 ? pmap_evcnt_ptes_secondary
877 : pmap_evcnt_ptes_primary)[j]);
878
879 /*
880 * Since we keep the evicted entries at the
881 * from of the PVO list, we need move this
882 * (now resident) PVO after the evicted
883 * entries.
884 */
885 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
886
887 /*
888 * If we don't have to move (either we were the
889 * last entry or the next entry was valid),
890 * don't change our position. Otherwise
891 * move ourselves to the tail of the queue.
892 */
893 if (next_pvo != NULL &&
894 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
895 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
896 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
897 }
898 return 1;
899 }
900 source_pvo = pvo;
901 if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
902 return 0;
903 }
904 if (victim_pvo != NULL)
905 break;
906 }
907
908 /*
909 * We also need the pvo entry of the victim we are replacing
910 * so save the R & C bits of the PTE.
911 */
912 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
913 pmap_pte_compare(pt, &pvo->pvo_pte)) {
914 vpvoh = pvoh; /* *1* */
915 victim_pvo = pvo;
916 if (source_pvo != NULL)
917 break;
918 }
919 }
920
921 if (source_pvo == NULL) {
922 PMAPCOUNT(ptes_unspilled);
923 return 0;
924 }
925
926 if (victim_pvo == NULL) {
927 if ((pt->pte_hi & PTE_HID) == 0)
928 panic("pmap_pte_spill: victim p-pte (%p) has "
929 "no pvo entry!", pt);
930
931 /*
932 * If this is a secondary PTE, we need to search
933 * its primary pvo bucket for the matching PVO.
934 */
935 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
936 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
937 PMAP_PVO_CHECK(pvo); /* sanity check */
938
939 /*
940 * We also need the pvo entry of the victim we are
941 * replacing so save the R & C bits of the PTE.
942 */
943 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
944 victim_pvo = pvo;
945 break;
946 }
947 }
948 if (victim_pvo == NULL)
949 panic("pmap_pte_spill: victim s-pte (%p) has "
950 "no pvo entry!", pt);
951 }
952
953 /*
954 * The victim should be not be a kernel PVO/PTE entry.
955 */
956 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
957 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
958 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
959
960 /*
961 * We are invalidating the TLB entry for the EA for the
962 * we are replacing even though its valid; If we don't
963 * we lose any ref/chg bit changes contained in the TLB
964 * entry.
965 */
966 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
967
968 /*
969 * To enforce the PVO list ordering constraint that all
970 * evicted entries should come before all valid entries,
971 * move the source PVO to the tail of its list and the
972 * victim PVO to the head of its list (which might not be
973 * the same list, if the victim was using the secondary hash).
974 */
975 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
976 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
977 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
978 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
979 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
980 pmap_pte_set(pt, &source_pvo->pvo_pte);
981 victim_pvo->pvo_pmap->pm_evictions++;
982 source_pvo->pvo_pmap->pm_evictions--;
983 PVO_WHERE(victim_pvo, SPILL_UNSET);
984 PVO_WHERE(source_pvo, SPILL_SET);
985
986 PVO_PTEGIDX_CLR(victim_pvo);
987 PVO_PTEGIDX_SET(source_pvo, i);
988 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
989 PMAPCOUNT(ptes_spilled);
990 PMAPCOUNT(ptes_evicted);
991 PMAPCOUNT(ptes_removed);
992
993 PMAP_PVO_CHECK(victim_pvo);
994 PMAP_PVO_CHECK(source_pvo);
995 return 1;
996 }
997
998 /*
999 * Restrict given range to physical memory
1000 */
1001 void
1002 pmap_real_memory(paddr_t *start, psize_t *size)
1003 {
1004 struct mem_region *mp;
1005
1006 for (mp = mem; mp->size; mp++) {
1007 if (*start + *size > mp->start
1008 && *start < mp->start + mp->size) {
1009 if (*start < mp->start) {
1010 *size -= mp->start - *start;
1011 *start = mp->start;
1012 }
1013 if (*start + *size > mp->start + mp->size)
1014 *size = mp->start + mp->size - *start;
1015 return;
1016 }
1017 }
1018 *size = 0;
1019 }
1020
1021 /*
1022 * Initialize anything else for pmap handling.
1023 * Called during vm_init().
1024 */
1025 void
1026 pmap_init(void)
1027 {
1028 #ifdef __HAVE_PMAP_PHYSSEG
1029 struct pvo_tqhead *pvoh;
1030 int bank;
1031 long sz;
1032 char *attr;
1033
1034 pvoh = pmap_physseg.pvoh;
1035 attr = pmap_physseg.attrs;
1036 for (bank = 0; bank < vm_nphysseg; bank++) {
1037 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1038 vm_physmem[bank].pmseg.pvoh = pvoh;
1039 vm_physmem[bank].pmseg.attrs = attr;
1040 for (; sz > 0; sz--, pvoh++, attr++) {
1041 TAILQ_INIT(pvoh);
1042 *attr = 0;
1043 }
1044 }
1045 #endif
1046
1047 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1048 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1049 &pmap_pool_mallocator);
1050
1051 pool_setlowat(&pmap_mpvo_pool, 1008);
1052
1053 pmap_initialized = 1;
1054
1055 #ifdef PMAPCOUNTERS
1056 evcnt_attach_static(&pmap_evcnt_mappings);
1057 evcnt_attach_static(&pmap_evcnt_mappings_replaced);
1058 evcnt_attach_static(&pmap_evcnt_unmappings);
1059
1060 evcnt_attach_static(&pmap_evcnt_kernel_mappings);
1061 evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
1062
1063 evcnt_attach_static(&pmap_evcnt_exec_mappings);
1064 evcnt_attach_static(&pmap_evcnt_exec_cached);
1065 evcnt_attach_static(&pmap_evcnt_exec_synced);
1066 evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
1067
1068 evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
1069 evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
1070 evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
1071 evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
1072
1073 evcnt_attach_static(&pmap_evcnt_zeroed_pages);
1074 evcnt_attach_static(&pmap_evcnt_copied_pages);
1075 evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
1076
1077 evcnt_attach_static(&pmap_evcnt_updates);
1078 evcnt_attach_static(&pmap_evcnt_collects);
1079 evcnt_attach_static(&pmap_evcnt_copies);
1080
1081 evcnt_attach_static(&pmap_evcnt_ptes_spilled);
1082 evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
1083 evcnt_attach_static(&pmap_evcnt_ptes_evicted);
1084 evcnt_attach_static(&pmap_evcnt_ptes_removed);
1085 evcnt_attach_static(&pmap_evcnt_ptes_changed);
1086 evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
1087 evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
1088 evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
1089 evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
1090 evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
1091 evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
1092 evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
1093 evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
1094 evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
1095 evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
1096 evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
1097 evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
1098 evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
1099 evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
1100 evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
1101 evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
1102 #endif
1103 }
1104
1105 /*
1106 * How much virtual space does the kernel get?
1107 */
1108 void
1109 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1110 {
1111 /*
1112 * For now, reserve one segment (minus some overhead) for kernel
1113 * virtual memory
1114 */
1115 *start = VM_MIN_KERNEL_ADDRESS;
1116 *end = VM_MAX_KERNEL_ADDRESS;
1117 }
1118
1119 /*
1120 * Allocate, initialize, and return a new physical map.
1121 */
1122 pmap_t
1123 pmap_create(void)
1124 {
1125 pmap_t pm;
1126
1127 pm = pool_get(&pmap_pool, PR_WAITOK);
1128 memset((caddr_t)pm, 0, sizeof *pm);
1129 pmap_pinit(pm);
1130
1131 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1132 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1133 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1134 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1135 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1136 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1137 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1138 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1139 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1140 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1141 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1142 return pm;
1143 }
1144
1145 /*
1146 * Initialize a preallocated and zeroed pmap structure.
1147 */
1148 void
1149 pmap_pinit(pmap_t pm)
1150 {
1151 register_t entropy = MFTB();
1152 register_t mask;
1153 int i;
1154
1155 /*
1156 * Allocate some segment registers for this pmap.
1157 */
1158 pm->pm_refs = 1;
1159 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1160 static register_t pmap_vsidcontext;
1161 register_t hash;
1162 unsigned int n;
1163
1164 /* Create a new value by multiplying by a prime adding in
1165 * entropy from the timebase register. This is to make the
1166 * VSID more random so that the PT Hash function collides
1167 * less often. (note that the prime causes gcc to do shifts
1168 * instead of a multiply)
1169 */
1170 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1171 hash = pmap_vsidcontext & (NPMAPS - 1);
1172 if (hash == 0) /* 0 is special, avoid it */
1173 continue;
1174 n = hash >> 5;
1175 mask = 1L << (hash & (VSID_NBPW-1));
1176 hash = pmap_vsidcontext;
1177 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1178 /* anything free in this bucket? */
1179 if (~pmap_vsid_bitmap[n] == 0) {
1180 entropy = hash >> PTE_VSID_SHFT;
1181 continue;
1182 }
1183 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1184 mask = 1L << i;
1185 hash &= ~(VSID_NBPW-1);
1186 hash |= i;
1187 }
1188 hash &= PTE_VSID >> PTE_VSID_SHFT;
1189 pmap_vsid_bitmap[n] |= mask;
1190 pm->pm_vsid = hash;
1191 #ifndef PPC_OEA64
1192 for (i = 0; i < 16; i++)
1193 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1194 SR_NOEXEC;
1195 #endif
1196 return;
1197 }
1198 panic("pmap_pinit: out of segments");
1199 }
1200
1201 /*
1202 * Add a reference to the given pmap.
1203 */
1204 void
1205 pmap_reference(pmap_t pm)
1206 {
1207 pm->pm_refs++;
1208 }
1209
1210 /*
1211 * Retire the given pmap from service.
1212 * Should only be called if the map contains no valid mappings.
1213 */
1214 void
1215 pmap_destroy(pmap_t pm)
1216 {
1217 if (--pm->pm_refs == 0) {
1218 pmap_release(pm);
1219 pool_put(&pmap_pool, pm);
1220 }
1221 }
1222
1223 /*
1224 * Release any resources held by the given physical map.
1225 * Called when a pmap initialized by pmap_pinit is being released.
1226 */
1227 void
1228 pmap_release(pmap_t pm)
1229 {
1230 int idx, mask;
1231
1232 if (pm->pm_sr[0] == 0)
1233 panic("pmap_release");
1234 idx = VSID_TO_HASH(pm->pm_vsid) & (NPMAPS-1);
1235 mask = 1 << (idx % VSID_NBPW);
1236 idx /= VSID_NBPW;
1237 pmap_vsid_bitmap[idx] &= ~mask;
1238 }
1239
1240 /*
1241 * Copy the range specified by src_addr/len
1242 * from the source map to the range dst_addr/len
1243 * in the destination map.
1244 *
1245 * This routine is only advisory and need not do anything.
1246 */
1247 void
1248 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1249 vsize_t len, vaddr_t src_addr)
1250 {
1251 PMAPCOUNT(copies);
1252 }
1253
1254 /*
1255 * Require that all active physical maps contain no
1256 * incorrect entries NOW.
1257 */
1258 void
1259 pmap_update(struct pmap *pmap)
1260 {
1261 PMAPCOUNT(updates);
1262 TLBSYNC();
1263 }
1264
1265 /*
1266 * Garbage collects the physical map system for
1267 * pages which are no longer used.
1268 * Success need not be guaranteed -- that is, there
1269 * may well be pages which are not referenced, but
1270 * others may be collected.
1271 * Called by the pageout daemon when pages are scarce.
1272 */
1273 void
1274 pmap_collect(pmap_t pm)
1275 {
1276 PMAPCOUNT(collects);
1277 }
1278
1279 static __inline int
1280 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1281 {
1282 int pteidx;
1283 /*
1284 * We can find the actual pte entry without searching by
1285 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1286 * and by noticing the HID bit.
1287 */
1288 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1289 if (pvo->pvo_pte.pte_hi & PTE_HID)
1290 pteidx ^= pmap_pteg_mask * 8;
1291 return pteidx;
1292 }
1293
1294 volatile struct pte *
1295 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1296 {
1297 volatile struct pte *pt;
1298
1299 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1300 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1301 return NULL;
1302 #endif
1303
1304 /*
1305 * If we haven't been supplied the ptegidx, calculate it.
1306 */
1307 if (pteidx == -1) {
1308 int ptegidx;
1309 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1310 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1311 }
1312
1313 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1314
1315 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1316 return pt;
1317 #else
1318 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1319 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1320 "pvo but no valid pte index", pvo);
1321 }
1322 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1323 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1324 "pvo but no valid pte", pvo);
1325 }
1326
1327 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1328 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1329 #if defined(DEBUG) || defined(PMAPCHECK)
1330 pmap_pte_print(pt);
1331 #endif
1332 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1333 "pmap_pteg_table %p but invalid in pvo",
1334 pvo, pt);
1335 }
1336 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1337 #if defined(DEBUG) || defined(PMAPCHECK)
1338 pmap_pte_print(pt);
1339 #endif
1340 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1341 "not match pte %p in pmap_pteg_table",
1342 pvo, pt);
1343 }
1344 return pt;
1345 }
1346
1347 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1348 #if defined(DEBUG) || defined(PMAPCHECK)
1349 pmap_pte_print(pt);
1350 #endif
1351 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1352 "pmap_pteg_table but valid in pvo", pvo, pt);
1353 }
1354 return NULL;
1355 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1356 }
1357
1358 struct pvo_entry *
1359 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1360 {
1361 struct pvo_entry *pvo;
1362 int ptegidx;
1363
1364 va &= ~ADDR_POFF;
1365 ptegidx = va_to_pteg(pm, va);
1366
1367 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1368 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1369 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1370 panic("pmap_pvo_find_va: invalid pvo %p on "
1371 "list %#x (%p)", pvo, ptegidx,
1372 &pmap_pvo_table[ptegidx]);
1373 #endif
1374 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1375 if (pteidx_p)
1376 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1377 return pvo;
1378 }
1379 }
1380 return NULL;
1381 }
1382
1383 #if defined(DEBUG) || defined(PMAPCHECK)
1384 void
1385 pmap_pvo_check(const struct pvo_entry *pvo)
1386 {
1387 struct pvo_head *pvo_head;
1388 struct pvo_entry *pvo0;
1389 volatile struct pte *pt;
1390 int failed = 0;
1391
1392 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1393 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1394
1395 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1396 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1397 pvo, pvo->pvo_pmap);
1398 failed = 1;
1399 }
1400
1401 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1402 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1403 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1404 pvo, TAILQ_NEXT(pvo, pvo_olink));
1405 failed = 1;
1406 }
1407
1408 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1409 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1410 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1411 pvo, LIST_NEXT(pvo, pvo_vlink));
1412 failed = 1;
1413 }
1414
1415 if (pvo->pvo_vaddr & PVO_MANAGED) {
1416 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1417 } else {
1418 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1419 printf("pmap_pvo_check: pvo %p: non kernel address "
1420 "on kernel unmanaged list\n", pvo);
1421 failed = 1;
1422 }
1423 pvo_head = &pmap_pvo_kunmanaged;
1424 }
1425 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1426 if (pvo0 == pvo)
1427 break;
1428 }
1429 if (pvo0 == NULL) {
1430 printf("pmap_pvo_check: pvo %p: not present "
1431 "on its vlist head %p\n", pvo, pvo_head);
1432 failed = 1;
1433 }
1434 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1435 printf("pmap_pvo_check: pvo %p: not present "
1436 "on its olist head\n", pvo);
1437 failed = 1;
1438 }
1439 pt = pmap_pvo_to_pte(pvo, -1);
1440 if (pt == NULL) {
1441 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1442 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1443 "no PTE\n", pvo);
1444 failed = 1;
1445 }
1446 } else {
1447 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1448 (uintptr_t) pt >=
1449 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1450 printf("pmap_pvo_check: pvo %p: pte %p not in "
1451 "pteg table\n", pvo, pt);
1452 failed = 1;
1453 }
1454 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1455 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1456 "no PTE\n", pvo);
1457 failed = 1;
1458 }
1459 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1460 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1461 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1462 failed = 1;
1463 }
1464 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1465 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1466 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1467 "%#x/%#x\n", pvo,
1468 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1469 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1470 failed = 1;
1471 }
1472 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1473 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1474 " doesn't not match PVO's VA %#lx\n",
1475 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1476 failed = 1;
1477 }
1478 if (failed)
1479 pmap_pte_print(pt);
1480 }
1481 if (failed)
1482 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1483 pvo->pvo_pmap);
1484 }
1485 #endif /* DEBUG || PMAPCHECK */
1486
1487 /*
1488 * This returns whether this is the first mapping of a page.
1489 */
1490 int
1491 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1492 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1493 {
1494 struct pvo_entry *pvo;
1495 struct pvo_tqhead *pvoh;
1496 register_t msr;
1497 int ptegidx;
1498 int i;
1499 int poolflags = PR_NOWAIT;
1500
1501 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1502 if (pmap_pvo_remove_depth > 0)
1503 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1504 if (++pmap_pvo_enter_depth > 1)
1505 panic("pmap_pvo_enter: called recursively!");
1506 #endif
1507
1508 /*
1509 * Compute the PTE Group index.
1510 */
1511 va &= ~ADDR_POFF;
1512 ptegidx = va_to_pteg(pm, va);
1513
1514 msr = pmap_interrupts_off();
1515 /*
1516 * Remove any existing mapping for this page. Reuse the
1517 * pvo entry if there a mapping.
1518 */
1519 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1520 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1521 #ifdef DEBUG
1522 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1523 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1524 ~(PTE_REF|PTE_CHG)) == 0 &&
1525 va < VM_MIN_KERNEL_ADDRESS) {
1526 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1527 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1528 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1529 (unsigned int) pvo->pvo_pte.pte_hi,
1530 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1531 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1532 #ifdef DDBX
1533 Debugger();
1534 #endif
1535 }
1536 #endif
1537 PMAPCOUNT(mappings_replaced);
1538 pmap_pvo_remove(pvo, -1);
1539 break;
1540 }
1541 }
1542
1543 /*
1544 * If we aren't overwriting an mapping, try to allocate
1545 */
1546 pmap_interrupts_restore(msr);
1547 pvo = pool_get(pl, poolflags);
1548 msr = pmap_interrupts_off();
1549 if (pvo == NULL) {
1550 pvo = pmap_pvo_reclaim(pm);
1551 if (pvo == NULL) {
1552 if ((flags & PMAP_CANFAIL) == 0)
1553 panic("pmap_pvo_enter: failed");
1554 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1555 pmap_pvo_enter_depth--;
1556 #endif
1557 pmap_interrupts_restore(msr);
1558 return ENOMEM;
1559 }
1560 }
1561 pvo->pvo_vaddr = va;
1562 pvo->pvo_pmap = pm;
1563 pvo->pvo_vaddr &= ~ADDR_POFF;
1564 if (flags & VM_PROT_EXECUTE) {
1565 PMAPCOUNT(exec_mappings);
1566 pvo_set_exec(pvo);
1567 }
1568 if (flags & PMAP_WIRED)
1569 pvo->pvo_vaddr |= PVO_WIRED;
1570 if (pvo_head != &pmap_pvo_kunmanaged) {
1571 pvo->pvo_vaddr |= PVO_MANAGED;
1572 PMAPCOUNT(mappings);
1573 } else {
1574 PMAPCOUNT(kernel_mappings);
1575 }
1576 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1577
1578 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1579 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1580 pvo->pvo_pmap->pm_stats.wired_count++;
1581 pvo->pvo_pmap->pm_stats.resident_count++;
1582 #if defined(DEBUG)
1583 if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1584 DPRINTFN(PVOENTER,
1585 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1586 pvo, pm, va, pa));
1587 #endif
1588
1589 /*
1590 * We hope this succeeds but it isn't required.
1591 */
1592 pvoh = &pmap_pvo_table[ptegidx];
1593 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1594 if (i >= 0) {
1595 PVO_PTEGIDX_SET(pvo, i);
1596 PVO_WHERE(pvo, ENTER_INSERT);
1597 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1598 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1599 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1600 } else {
1601 /*
1602 * Since we didn't have room for this entry (which makes it
1603 * and evicted entry), place it at the head of the list.
1604 */
1605 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1606 PMAPCOUNT(ptes_evicted);
1607 pm->pm_evictions++;
1608 /*
1609 * If this is a kernel page, make sure it's active.
1610 */
1611 if (pm == pmap_kernel()) {
1612 i = pmap_pte_spill(pm, va, FALSE);
1613 KASSERT(i);
1614 }
1615 }
1616 PMAP_PVO_CHECK(pvo); /* sanity check */
1617 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1618 pmap_pvo_enter_depth--;
1619 #endif
1620 pmap_interrupts_restore(msr);
1621 return 0;
1622 }
1623
1624 void
1625 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1626 {
1627 volatile struct pte *pt;
1628 int ptegidx;
1629
1630 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1631 if (++pmap_pvo_remove_depth > 1)
1632 panic("pmap_pvo_remove: called recursively!");
1633 #endif
1634
1635 /*
1636 * If we haven't been supplied the ptegidx, calculate it.
1637 */
1638 if (pteidx == -1) {
1639 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1640 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1641 } else {
1642 ptegidx = pteidx >> 3;
1643 if (pvo->pvo_pte.pte_hi & PTE_HID)
1644 ptegidx ^= pmap_pteg_mask;
1645 }
1646 PMAP_PVO_CHECK(pvo); /* sanity check */
1647
1648 /*
1649 * If there is an active pte entry, we need to deactivate it
1650 * (and save the ref & chg bits).
1651 */
1652 pt = pmap_pvo_to_pte(pvo, pteidx);
1653 if (pt != NULL) {
1654 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1655 PVO_WHERE(pvo, REMOVE);
1656 PVO_PTEGIDX_CLR(pvo);
1657 PMAPCOUNT(ptes_removed);
1658 } else {
1659 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1660 pvo->pvo_pmap->pm_evictions--;
1661 }
1662
1663 /*
1664 * Account for executable mappings.
1665 */
1666 if (PVO_ISEXECUTABLE(pvo))
1667 pvo_clear_exec(pvo);
1668
1669 /*
1670 * Update our statistics.
1671 */
1672 pvo->pvo_pmap->pm_stats.resident_count--;
1673 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1674 pvo->pvo_pmap->pm_stats.wired_count--;
1675
1676 /*
1677 * Save the REF/CHG bits into their cache if the page is managed.
1678 */
1679 if (pvo->pvo_vaddr & PVO_MANAGED) {
1680 register_t ptelo = pvo->pvo_pte.pte_lo;
1681 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1682
1683 if (pg != NULL) {
1684 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1685 }
1686 PMAPCOUNT(unmappings);
1687 } else {
1688 PMAPCOUNT(kernel_unmappings);
1689 }
1690
1691 /*
1692 * Remove the PVO from its lists and return it to the pool.
1693 */
1694 LIST_REMOVE(pvo, pvo_vlink);
1695 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1696 pool_put(pvo->pvo_vaddr & PVO_MANAGED
1697 ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1698 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1699 pmap_pvo_remove_depth--;
1700 #endif
1701 }
1702
1703 /*
1704 * Mark a mapping as executable.
1705 * If this is the first executable mapping in the segment,
1706 * clear the noexec flag.
1707 */
1708 STATIC void
1709 pvo_set_exec(struct pvo_entry *pvo)
1710 {
1711 struct pmap *pm = pvo->pvo_pmap;
1712
1713 if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1714 return;
1715 }
1716 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1717 #ifdef PPC_OEA
1718 {
1719 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1720 if (pm->pm_exec[sr]++ == 0) {
1721 pm->pm_sr[sr] &= ~SR_NOEXEC;
1722 }
1723 }
1724 #endif
1725 }
1726
1727 /*
1728 * Mark a mapping as non-executable.
1729 * If this was the last executable mapping in the segment,
1730 * set the noexec flag.
1731 */
1732 STATIC void
1733 pvo_clear_exec(struct pvo_entry *pvo)
1734 {
1735 struct pmap *pm = pvo->pvo_pmap;
1736
1737 if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1738 return;
1739 }
1740 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1741 #ifdef PPC_OEA
1742 {
1743 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1744 if (--pm->pm_exec[sr] == 0) {
1745 pm->pm_sr[sr] |= SR_NOEXEC;
1746 }
1747 }
1748 #endif
1749 }
1750
1751 /*
1752 * Insert physical page at pa into the given pmap at virtual address va.
1753 */
1754 int
1755 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1756 {
1757 struct mem_region *mp;
1758 struct pvo_head *pvo_head;
1759 struct vm_page *pg;
1760 struct pool *pl;
1761 register_t pte_lo;
1762 int error;
1763 u_int pvo_flags;
1764 u_int was_exec = 0;
1765
1766 if (__predict_false(!pmap_initialized)) {
1767 pvo_head = &pmap_pvo_kunmanaged;
1768 pl = &pmap_upvo_pool;
1769 pvo_flags = 0;
1770 pg = NULL;
1771 was_exec = PTE_EXEC;
1772 } else {
1773 pvo_head = pa_to_pvoh(pa, &pg);
1774 pl = &pmap_mpvo_pool;
1775 pvo_flags = PVO_MANAGED;
1776 }
1777
1778 DPRINTFN(ENTER,
1779 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1780 pm, va, pa, prot, flags));
1781
1782 /*
1783 * If this is a managed page, and it's the first reference to the
1784 * page clear the execness of the page. Otherwise fetch the execness.
1785 */
1786 if (pg != NULL)
1787 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1788
1789 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1790
1791 /*
1792 * Assume the page is cache inhibited and access is guarded unless
1793 * it's in our available memory array. If it is in the memory array,
1794 * asssume it's in memory coherent memory.
1795 */
1796 pte_lo = PTE_IG;
1797 if ((flags & PMAP_NC) == 0) {
1798 for (mp = mem; mp->size; mp++) {
1799 if (pa >= mp->start && pa < mp->start + mp->size) {
1800 pte_lo = PTE_M;
1801 break;
1802 }
1803 }
1804 }
1805
1806 if (prot & VM_PROT_WRITE)
1807 pte_lo |= PTE_BW;
1808 else
1809 pte_lo |= PTE_BR;
1810
1811 /*
1812 * If this was in response to a fault, "pre-fault" the PTE's
1813 * changed/referenced bit appropriately.
1814 */
1815 if (flags & VM_PROT_WRITE)
1816 pte_lo |= PTE_CHG;
1817 if (flags & (VM_PROT_READ|VM_PROT_WRITE))
1818 pte_lo |= PTE_REF;
1819
1820 /*
1821 * We need to know if this page can be executable
1822 */
1823 flags |= (prot & VM_PROT_EXECUTE);
1824
1825 /*
1826 * Record mapping for later back-translation and pte spilling.
1827 * This will overwrite any existing mapping.
1828 */
1829 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1830
1831 /*
1832 * Flush the real page from the instruction cache if this page is
1833 * mapped executable and cacheable and has not been flushed since
1834 * the last time it was modified.
1835 */
1836 if (error == 0 &&
1837 (flags & VM_PROT_EXECUTE) &&
1838 (pte_lo & PTE_I) == 0 &&
1839 was_exec == 0) {
1840 DPRINTFN(ENTER, (" syncicache"));
1841 PMAPCOUNT(exec_synced);
1842 pmap_syncicache(pa, PAGE_SIZE);
1843 if (pg != NULL) {
1844 pmap_attr_save(pg, PTE_EXEC);
1845 PMAPCOUNT(exec_cached);
1846 #if defined(DEBUG) || defined(PMAPDEBUG)
1847 if (pmapdebug & PMAPDEBUG_ENTER)
1848 printf(" marked-as-exec");
1849 else if (pmapdebug & PMAPDEBUG_EXEC)
1850 printf("[pmap_enter: %#lx: marked-as-exec]\n",
1851 pg->phys_addr);
1852
1853 #endif
1854 }
1855 }
1856
1857 DPRINTFN(ENTER, (": error=%d\n", error));
1858
1859 return error;
1860 }
1861
1862 void
1863 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1864 {
1865 struct mem_region *mp;
1866 register_t pte_lo;
1867 int error;
1868
1869 if (va < VM_MIN_KERNEL_ADDRESS)
1870 panic("pmap_kenter_pa: attempt to enter "
1871 "non-kernel address %#lx!", va);
1872
1873 DPRINTFN(KENTER,
1874 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1875
1876 /*
1877 * Assume the page is cache inhibited and access is guarded unless
1878 * it's in our available memory array. If it is in the memory array,
1879 * asssume it's in memory coherent memory.
1880 */
1881 pte_lo = PTE_IG;
1882 if ((prot & PMAP_NC) == 0) {
1883 for (mp = mem; mp->size; mp++) {
1884 if (pa >= mp->start && pa < mp->start + mp->size) {
1885 pte_lo = PTE_M;
1886 break;
1887 }
1888 }
1889 }
1890
1891 if (prot & VM_PROT_WRITE)
1892 pte_lo |= PTE_BW;
1893 else
1894 pte_lo |= PTE_BR;
1895
1896 /*
1897 * We don't care about REF/CHG on PVOs on the unmanaged list.
1898 */
1899 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1900 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1901
1902 if (error != 0)
1903 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1904 va, pa, error);
1905 }
1906
1907 void
1908 pmap_kremove(vaddr_t va, vsize_t len)
1909 {
1910 if (va < VM_MIN_KERNEL_ADDRESS)
1911 panic("pmap_kremove: attempt to remove "
1912 "non-kernel address %#lx!", va);
1913
1914 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1915 pmap_remove(pmap_kernel(), va, va + len);
1916 }
1917
1918 /*
1919 * Remove the given range of mapping entries.
1920 */
1921 void
1922 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1923 {
1924 struct pvo_entry *pvo;
1925 register_t msr;
1926 int pteidx;
1927
1928 msr = pmap_interrupts_off();
1929 for (; va < endva; va += PAGE_SIZE) {
1930 pvo = pmap_pvo_find_va(pm, va, &pteidx);
1931 if (pvo != NULL) {
1932 pmap_pvo_remove(pvo, pteidx);
1933 }
1934 }
1935 pmap_interrupts_restore(msr);
1936 }
1937
1938 /*
1939 * Get the physical page address for the given pmap/virtual address.
1940 */
1941 boolean_t
1942 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
1943 {
1944 struct pvo_entry *pvo;
1945 register_t msr;
1946
1947 /*
1948 * If this is a kernel pmap lookup, also check the battable
1949 * and if we get a hit, translate the VA to a PA using the
1950 * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
1951 * that will wrap back to 0.
1952 */
1953 if (pm == pmap_kernel() &&
1954 (va < VM_MIN_KERNEL_ADDRESS ||
1955 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
1956 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
1957 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
1958 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
1959 register_t batl = battable[va >> ADDR_SR_SHFT].batl;
1960 register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
1961 *pap = (batl & mask) | (va & ~mask);
1962 return TRUE;
1963 }
1964 return FALSE;
1965 }
1966
1967 msr = pmap_interrupts_off();
1968 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1969 if (pvo != NULL) {
1970 PMAP_PVO_CHECK(pvo); /* sanity check */
1971 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1972 }
1973 pmap_interrupts_restore(msr);
1974 return pvo != NULL;
1975 }
1976
1977 /*
1978 * Lower the protection on the specified range of this pmap.
1979 */
1980 void
1981 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
1982 {
1983 struct pvo_entry *pvo;
1984 volatile struct pte *pt;
1985 register_t msr;
1986 int pteidx;
1987
1988 /*
1989 * Since this routine only downgrades protection, we should
1990 * always be called with at least one bit not set.
1991 */
1992 KASSERT(prot != VM_PROT_ALL);
1993
1994 /*
1995 * If there is no protection, this is equivalent to
1996 * remove the pmap from the pmap.
1997 */
1998 if ((prot & VM_PROT_READ) == 0) {
1999 pmap_remove(pm, va, endva);
2000 return;
2001 }
2002
2003 msr = pmap_interrupts_off();
2004 for (; va < endva; va += PAGE_SIZE) {
2005 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2006 if (pvo == NULL)
2007 continue;
2008 PMAP_PVO_CHECK(pvo); /* sanity check */
2009
2010 /*
2011 * Revoke executable if asked to do so.
2012 */
2013 if ((prot & VM_PROT_EXECUTE) == 0)
2014 pvo_clear_exec(pvo);
2015
2016 #if 0
2017 /*
2018 * If the page is already read-only, no change
2019 * needs to be made.
2020 */
2021 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2022 continue;
2023 #endif
2024 /*
2025 * Grab the PTE pointer before we diddle with
2026 * the cached PTE copy.
2027 */
2028 pt = pmap_pvo_to_pte(pvo, pteidx);
2029 /*
2030 * Change the protection of the page.
2031 */
2032 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2033 pvo->pvo_pte.pte_lo |= PTE_BR;
2034
2035 /*
2036 * If the PVO is in the page table, update
2037 * that pte at well.
2038 */
2039 if (pt != NULL) {
2040 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2041 PVO_WHERE(pvo, PMAP_PROTECT);
2042 PMAPCOUNT(ptes_changed);
2043 }
2044
2045 PMAP_PVO_CHECK(pvo); /* sanity check */
2046 }
2047 pmap_interrupts_restore(msr);
2048 }
2049
2050 void
2051 pmap_unwire(pmap_t pm, vaddr_t va)
2052 {
2053 struct pvo_entry *pvo;
2054 register_t msr;
2055
2056 msr = pmap_interrupts_off();
2057 pvo = pmap_pvo_find_va(pm, va, NULL);
2058 if (pvo != NULL) {
2059 if (pvo->pvo_vaddr & PVO_WIRED) {
2060 pvo->pvo_vaddr &= ~PVO_WIRED;
2061 pm->pm_stats.wired_count--;
2062 }
2063 PMAP_PVO_CHECK(pvo); /* sanity check */
2064 }
2065 pmap_interrupts_restore(msr);
2066 }
2067
2068 /*
2069 * Lower the protection on the specified physical page.
2070 */
2071 void
2072 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2073 {
2074 struct pvo_head *pvo_head;
2075 struct pvo_entry *pvo, *next_pvo;
2076 volatile struct pte *pt;
2077 register_t msr;
2078
2079 KASSERT(prot != VM_PROT_ALL);
2080 msr = pmap_interrupts_off();
2081
2082 /*
2083 * When UVM reuses a page, it does a pmap_page_protect with
2084 * VM_PROT_NONE. At that point, we can clear the exec flag
2085 * since we know the page will have different contents.
2086 */
2087 if ((prot & VM_PROT_READ) == 0) {
2088 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2089 pg->phys_addr));
2090 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2091 PMAPCOUNT(exec_uncached_page_protect);
2092 pmap_attr_clear(pg, PTE_EXEC);
2093 }
2094 }
2095
2096 pvo_head = vm_page_to_pvoh(pg);
2097 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2098 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2099 PMAP_PVO_CHECK(pvo); /* sanity check */
2100
2101 /*
2102 * Downgrading to no mapping at all, we just remove the entry.
2103 */
2104 if ((prot & VM_PROT_READ) == 0) {
2105 pmap_pvo_remove(pvo, -1);
2106 continue;
2107 }
2108
2109 /*
2110 * If EXEC permission is being revoked, just clear the
2111 * flag in the PVO.
2112 */
2113 if ((prot & VM_PROT_EXECUTE) == 0)
2114 pvo_clear_exec(pvo);
2115
2116 /*
2117 * If this entry is already RO, don't diddle with the
2118 * page table.
2119 */
2120 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2121 PMAP_PVO_CHECK(pvo);
2122 continue;
2123 }
2124
2125 /*
2126 * Grab the PTE before the we diddle the bits so
2127 * pvo_to_pte can verify the pte contents are as
2128 * expected.
2129 */
2130 pt = pmap_pvo_to_pte(pvo, -1);
2131 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2132 pvo->pvo_pte.pte_lo |= PTE_BR;
2133 if (pt != NULL) {
2134 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2135 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2136 PMAPCOUNT(ptes_changed);
2137 }
2138 PMAP_PVO_CHECK(pvo); /* sanity check */
2139 }
2140 pmap_interrupts_restore(msr);
2141 }
2142
2143 /*
2144 * Activate the address space for the specified process. If the process
2145 * is the current process, load the new MMU context.
2146 */
2147 void
2148 pmap_activate(struct lwp *l)
2149 {
2150 struct pcb *pcb = &l->l_addr->u_pcb;
2151 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2152
2153 DPRINTFN(ACTIVATE,
2154 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2155
2156 /*
2157 * XXX Normally performed in cpu_fork().
2158 */
2159 pcb->pcb_pm = pmap;
2160
2161 /*
2162 * In theory, the SR registers need only be valid on return
2163 * to user space wait to do them there.
2164 */
2165 if (l == curlwp) {
2166 /* Store pointer to new current pmap. */
2167 curpm = pmap;
2168 }
2169 }
2170
2171 /*
2172 * Deactivate the specified process's address space.
2173 */
2174 void
2175 pmap_deactivate(struct lwp *l)
2176 {
2177 }
2178
2179 boolean_t
2180 pmap_query_bit(struct vm_page *pg, int ptebit)
2181 {
2182 struct pvo_entry *pvo;
2183 volatile struct pte *pt;
2184 register_t msr;
2185
2186 if (pmap_attr_fetch(pg) & ptebit)
2187 return TRUE;
2188
2189 msr = pmap_interrupts_off();
2190 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2191 PMAP_PVO_CHECK(pvo); /* sanity check */
2192 /*
2193 * See if we saved the bit off. If so cache, it and return
2194 * success.
2195 */
2196 if (pvo->pvo_pte.pte_lo & ptebit) {
2197 pmap_attr_save(pg, ptebit);
2198 PMAP_PVO_CHECK(pvo); /* sanity check */
2199 pmap_interrupts_restore(msr);
2200 return TRUE;
2201 }
2202 }
2203 /*
2204 * No luck, now go thru the hard part of looking at the ptes
2205 * themselves. Sync so any pending REF/CHG bits are flushed
2206 * to the PTEs.
2207 */
2208 SYNC();
2209 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2210 PMAP_PVO_CHECK(pvo); /* sanity check */
2211 /*
2212 * See if this pvo have a valid PTE. If so, fetch the
2213 * REF/CHG bits from the valid PTE. If the appropriate
2214 * ptebit is set, cache, it and return success.
2215 */
2216 pt = pmap_pvo_to_pte(pvo, -1);
2217 if (pt != NULL) {
2218 pmap_pte_synch(pt, &pvo->pvo_pte);
2219 if (pvo->pvo_pte.pte_lo & ptebit) {
2220 pmap_attr_save(pg, ptebit);
2221 PMAP_PVO_CHECK(pvo); /* sanity check */
2222 pmap_interrupts_restore(msr);
2223 return TRUE;
2224 }
2225 }
2226 }
2227 pmap_interrupts_restore(msr);
2228 return FALSE;
2229 }
2230
2231 boolean_t
2232 pmap_clear_bit(struct vm_page *pg, int ptebit)
2233 {
2234 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2235 struct pvo_entry *pvo;
2236 volatile struct pte *pt;
2237 register_t msr;
2238 int rv = 0;
2239
2240 msr = pmap_interrupts_off();
2241
2242 /*
2243 * Fetch the cache value
2244 */
2245 rv |= pmap_attr_fetch(pg);
2246
2247 /*
2248 * Clear the cached value.
2249 */
2250 pmap_attr_clear(pg, ptebit);
2251
2252 /*
2253 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2254 * can reset the right ones). Note that since the pvo entries and
2255 * list heads are accessed via BAT0 and are never placed in the
2256 * page table, we don't have to worry about further accesses setting
2257 * the REF/CHG bits.
2258 */
2259 SYNC();
2260
2261 /*
2262 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2263 * valid PTE. If so, clear the ptebit from the valid PTE.
2264 */
2265 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2266 PMAP_PVO_CHECK(pvo); /* sanity check */
2267 pt = pmap_pvo_to_pte(pvo, -1);
2268 if (pt != NULL) {
2269 /*
2270 * Only sync the PTE if the bit we are looking
2271 * for is not already set.
2272 */
2273 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2274 pmap_pte_synch(pt, &pvo->pvo_pte);
2275 /*
2276 * If the bit we are looking for was already set,
2277 * clear that bit in the pte.
2278 */
2279 if (pvo->pvo_pte.pte_lo & ptebit)
2280 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2281 }
2282 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2283 pvo->pvo_pte.pte_lo &= ~ptebit;
2284 PMAP_PVO_CHECK(pvo); /* sanity check */
2285 }
2286 pmap_interrupts_restore(msr);
2287
2288 /*
2289 * If we are clearing the modify bit and this page was marked EXEC
2290 * and the user of the page thinks the page was modified, then we
2291 * need to clean it from the icache if it's mapped or clear the EXEC
2292 * bit if it's not mapped. The page itself might not have the CHG
2293 * bit set if the modification was done via DMA to the page.
2294 */
2295 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2296 if (LIST_EMPTY(pvoh)) {
2297 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2298 pg->phys_addr));
2299 pmap_attr_clear(pg, PTE_EXEC);
2300 PMAPCOUNT(exec_uncached_clear_modify);
2301 } else {
2302 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2303 pg->phys_addr));
2304 pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2305 PMAPCOUNT(exec_synced_clear_modify);
2306 }
2307 }
2308 return (rv & ptebit) != 0;
2309 }
2310
2311 void
2312 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2313 {
2314 struct pvo_entry *pvo;
2315 size_t offset = va & ADDR_POFF;
2316 int s;
2317
2318 s = splvm();
2319 while (len > 0) {
2320 size_t seglen = PAGE_SIZE - offset;
2321 if (seglen > len)
2322 seglen = len;
2323 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2324 if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2325 pmap_syncicache(
2326 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2327 PMAP_PVO_CHECK(pvo);
2328 }
2329 va += seglen;
2330 len -= seglen;
2331 offset = 0;
2332 }
2333 splx(s);
2334 }
2335
2336 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2337 void
2338 pmap_pte_print(volatile struct pte *pt)
2339 {
2340 printf("PTE %p: ", pt);
2341 /* High word: */
2342 printf("0x%08lx: [", pt->pte_hi);
2343 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2344 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2345 printf("0x%06lx 0x%02lx",
2346 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2347 pt->pte_hi & PTE_API);
2348 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2349 /* Low word: */
2350 printf(" 0x%08lx: [", pt->pte_lo);
2351 printf("0x%05lx... ", pt->pte_lo >> 12);
2352 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2353 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2354 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2355 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2356 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2357 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2358 switch (pt->pte_lo & PTE_PP) {
2359 case PTE_BR: printf("br]\n"); break;
2360 case PTE_BW: printf("bw]\n"); break;
2361 case PTE_SO: printf("so]\n"); break;
2362 case PTE_SW: printf("sw]\n"); break;
2363 }
2364 }
2365 #endif
2366
2367 #if defined(DDB)
2368 void
2369 pmap_pteg_check(void)
2370 {
2371 volatile struct pte *pt;
2372 int i;
2373 int ptegidx;
2374 u_int p_valid = 0;
2375 u_int s_valid = 0;
2376 u_int invalid = 0;
2377
2378 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2379 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2380 if (pt->pte_hi & PTE_VALID) {
2381 if (pt->pte_hi & PTE_HID)
2382 s_valid++;
2383 else
2384 p_valid++;
2385 } else
2386 invalid++;
2387 }
2388 }
2389 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2390 p_valid, p_valid, s_valid, s_valid,
2391 invalid, invalid);
2392 }
2393
2394 void
2395 pmap_print_mmuregs(void)
2396 {
2397 int i;
2398 u_int cpuvers;
2399 #ifndef PPC_OEA64
2400 vaddr_t addr;
2401 register_t soft_sr[16];
2402 #endif
2403 struct bat soft_ibat[4];
2404 struct bat soft_dbat[4];
2405 register_t sdr1;
2406
2407 cpuvers = MFPVR() >> 16;
2408
2409 __asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2410 #ifndef PPC_OEA64
2411 addr = 0;
2412 for (i=0; i<16; i++) {
2413 soft_sr[i] = MFSRIN(addr);
2414 addr += (1 << ADDR_SR_SHFT);
2415 }
2416 #endif
2417
2418 /* read iBAT (601: uBAT) registers */
2419 __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2420 __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2421 __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2422 __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2423 __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2424 __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2425 __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2426 __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2427
2428
2429 if (cpuvers != MPC601) {
2430 /* read dBAT registers */
2431 __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2432 __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2433 __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2434 __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2435 __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2436 __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2437 __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2438 __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2439 }
2440
2441 printf("SDR1:\t0x%lx\n", (long) sdr1);
2442 #ifndef PPC_OEA64
2443 printf("SR[]:\t");
2444 for (i=0; i<4; i++)
2445 printf("0x%08lx, ", soft_sr[i]);
2446 printf("\n\t");
2447 for ( ; i<8; i++)
2448 printf("0x%08lx, ", soft_sr[i]);
2449 printf("\n\t");
2450 for ( ; i<12; i++)
2451 printf("0x%08lx, ", soft_sr[i]);
2452 printf("\n\t");
2453 for ( ; i<16; i++)
2454 printf("0x%08lx, ", soft_sr[i]);
2455 printf("\n");
2456 #endif
2457
2458 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2459 for (i=0; i<4; i++) {
2460 printf("0x%08lx 0x%08lx, ",
2461 soft_ibat[i].batu, soft_ibat[i].batl);
2462 if (i == 1)
2463 printf("\n\t");
2464 }
2465 if (cpuvers != MPC601) {
2466 printf("\ndBAT[]:\t");
2467 for (i=0; i<4; i++) {
2468 printf("0x%08lx 0x%08lx, ",
2469 soft_dbat[i].batu, soft_dbat[i].batl);
2470 if (i == 1)
2471 printf("\n\t");
2472 }
2473 }
2474 printf("\n");
2475 }
2476
2477 void
2478 pmap_print_pte(pmap_t pm, vaddr_t va)
2479 {
2480 struct pvo_entry *pvo;
2481 volatile struct pte *pt;
2482 int pteidx;
2483
2484 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2485 if (pvo != NULL) {
2486 pt = pmap_pvo_to_pte(pvo, pteidx);
2487 if (pt != NULL) {
2488 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2489 va, pt,
2490 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2491 pt->pte_hi, pt->pte_lo);
2492 } else {
2493 printf("No valid PTE found\n");
2494 }
2495 } else {
2496 printf("Address not in pmap\n");
2497 }
2498 }
2499
2500 void
2501 pmap_pteg_dist(void)
2502 {
2503 struct pvo_entry *pvo;
2504 int ptegidx;
2505 int depth;
2506 int max_depth = 0;
2507 unsigned int depths[64];
2508
2509 memset(depths, 0, sizeof(depths));
2510 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2511 depth = 0;
2512 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2513 depth++;
2514 }
2515 if (depth > max_depth)
2516 max_depth = depth;
2517 if (depth > 63)
2518 depth = 63;
2519 depths[depth]++;
2520 }
2521
2522 for (depth = 0; depth < 64; depth++) {
2523 printf(" [%2d]: %8u", depth, depths[depth]);
2524 if ((depth & 3) == 3)
2525 printf("\n");
2526 if (depth == max_depth)
2527 break;
2528 }
2529 if ((depth & 3) != 3)
2530 printf("\n");
2531 printf("Max depth found was %d\n", max_depth);
2532 }
2533 #endif /* DEBUG */
2534
2535 #if defined(PMAPCHECK) || defined(DEBUG)
2536 void
2537 pmap_pvo_verify(void)
2538 {
2539 int ptegidx;
2540 int s;
2541
2542 s = splvm();
2543 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2544 struct pvo_entry *pvo;
2545 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2546 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2547 panic("pmap_pvo_verify: invalid pvo %p "
2548 "on list %#x", pvo, ptegidx);
2549 pmap_pvo_check(pvo);
2550 }
2551 }
2552 splx(s);
2553 }
2554 #endif /* PMAPCHECK */
2555
2556
2557 void *
2558 pmap_pool_ualloc(struct pool *pp, int flags)
2559 {
2560 struct pvo_page *pvop;
2561
2562 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2563 if (pvop != NULL) {
2564 pmap_upvop_free--;
2565 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2566 return pvop;
2567 }
2568 if (uvm.page_init_done != TRUE) {
2569 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2570 }
2571 return pmap_pool_malloc(pp, flags);
2572 }
2573
2574 void *
2575 pmap_pool_malloc(struct pool *pp, int flags)
2576 {
2577 struct pvo_page *pvop;
2578 struct vm_page *pg;
2579
2580 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2581 if (pvop != NULL) {
2582 pmap_mpvop_free--;
2583 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2584 return pvop;
2585 }
2586 again:
2587 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2588 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2589 if (__predict_false(pg == NULL)) {
2590 if (flags & PR_WAITOK) {
2591 uvm_wait("plpg");
2592 goto again;
2593 } else {
2594 return (0);
2595 }
2596 }
2597 return (void *) VM_PAGE_TO_PHYS(pg);
2598 }
2599
2600 void
2601 pmap_pool_ufree(struct pool *pp, void *va)
2602 {
2603 struct pvo_page *pvop;
2604 #if 0
2605 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2606 pmap_pool_mfree(va, size, tag);
2607 return;
2608 }
2609 #endif
2610 pvop = va;
2611 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2612 pmap_upvop_free++;
2613 if (pmap_upvop_free > pmap_upvop_maxfree)
2614 pmap_upvop_maxfree = pmap_upvop_free;
2615 }
2616
2617 void
2618 pmap_pool_mfree(struct pool *pp, void *va)
2619 {
2620 struct pvo_page *pvop;
2621
2622 pvop = va;
2623 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2624 pmap_mpvop_free++;
2625 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2626 pmap_mpvop_maxfree = pmap_mpvop_free;
2627 #if 0
2628 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2629 #endif
2630 }
2631
2632 /*
2633 * This routine in bootstraping to steal to-be-managed memory (which will
2634 * then be unmanaged). We use it to grab from the first 256MB for our
2635 * pmap needs and above 256MB for other stuff.
2636 */
2637 vaddr_t
2638 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2639 {
2640 vsize_t size;
2641 vaddr_t va;
2642 paddr_t pa = 0;
2643 int npgs, bank;
2644 struct vm_physseg *ps;
2645
2646 if (uvm.page_init_done == TRUE)
2647 panic("pmap_steal_memory: called _after_ bootstrap");
2648
2649 *vstartp = VM_MIN_KERNEL_ADDRESS;
2650 *vendp = VM_MAX_KERNEL_ADDRESS;
2651
2652 size = round_page(vsize);
2653 npgs = atop(size);
2654
2655 /*
2656 * PA 0 will never be among those given to UVM so we can use it
2657 * to indicate we couldn't steal any memory.
2658 */
2659 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2660 if (ps->free_list == VM_FREELIST_FIRST256 &&
2661 ps->avail_end - ps->avail_start >= npgs) {
2662 pa = ptoa(ps->avail_start);
2663 break;
2664 }
2665 }
2666
2667 if (pa == 0)
2668 panic("pmap_steal_memory: no approriate memory to steal!");
2669
2670 ps->avail_start += npgs;
2671 ps->start += npgs;
2672
2673 /*
2674 * If we've used up all the pages in the segment, remove it and
2675 * compact the list.
2676 */
2677 if (ps->avail_start == ps->end) {
2678 /*
2679 * If this was the last one, then a very bad thing has occurred
2680 */
2681 if (--vm_nphysseg == 0)
2682 panic("pmap_steal_memory: out of memory!");
2683
2684 printf("pmap_steal_memory: consumed bank %d\n", bank);
2685 for (; bank < vm_nphysseg; bank++, ps++) {
2686 ps[0] = ps[1];
2687 }
2688 }
2689
2690 va = (vaddr_t) pa;
2691 memset((caddr_t) va, 0, size);
2692 pmap_pages_stolen += npgs;
2693 #ifdef DEBUG
2694 if (pmapdebug && npgs > 1) {
2695 u_int cnt = 0;
2696 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2697 cnt += ps->avail_end - ps->avail_start;
2698 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2699 npgs, pmap_pages_stolen, cnt);
2700 }
2701 #endif
2702
2703 return va;
2704 }
2705
2706 /*
2707 * Find a chuck of memory with right size and alignment.
2708 */
2709 void *
2710 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2711 {
2712 struct mem_region *mp;
2713 paddr_t s, e;
2714 int i, j;
2715
2716 size = round_page(size);
2717
2718 DPRINTFN(BOOT,
2719 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2720 size, alignment, at_end));
2721
2722 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2723 panic("pmap_boot_find_memory: invalid alignment %lx",
2724 alignment);
2725
2726 if (at_end) {
2727 if (alignment != PAGE_SIZE)
2728 panic("pmap_boot_find_memory: invalid ending "
2729 "alignment %lx", alignment);
2730
2731 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2732 s = mp->start + mp->size - size;
2733 if (s >= mp->start && mp->size >= size) {
2734 DPRINTFN(BOOT,(": %lx\n", s));
2735 DPRINTFN(BOOT,
2736 ("pmap_boot_find_memory: b-avail[%d] start "
2737 "0x%lx size 0x%lx\n", mp - avail,
2738 mp->start, mp->size));
2739 mp->size -= size;
2740 DPRINTFN(BOOT,
2741 ("pmap_boot_find_memory: a-avail[%d] start "
2742 "0x%lx size 0x%lx\n", mp - avail,
2743 mp->start, mp->size));
2744 return (void *) s;
2745 }
2746 }
2747 panic("pmap_boot_find_memory: no available memory");
2748 }
2749
2750 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2751 s = (mp->start + alignment - 1) & ~(alignment-1);
2752 e = s + size;
2753
2754 /*
2755 * Is the calculated region entirely within the region?
2756 */
2757 if (s < mp->start || e > mp->start + mp->size)
2758 continue;
2759
2760 DPRINTFN(BOOT,(": %lx\n", s));
2761 if (s == mp->start) {
2762 /*
2763 * If the block starts at the beginning of region,
2764 * adjust the size & start. (the region may now be
2765 * zero in length)
2766 */
2767 DPRINTFN(BOOT,
2768 ("pmap_boot_find_memory: b-avail[%d] start "
2769 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2770 mp->start += size;
2771 mp->size -= size;
2772 DPRINTFN(BOOT,
2773 ("pmap_boot_find_memory: a-avail[%d] start "
2774 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2775 } else if (e == mp->start + mp->size) {
2776 /*
2777 * If the block starts at the beginning of region,
2778 * adjust only the size.
2779 */
2780 DPRINTFN(BOOT,
2781 ("pmap_boot_find_memory: b-avail[%d] start "
2782 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2783 mp->size -= size;
2784 DPRINTFN(BOOT,
2785 ("pmap_boot_find_memory: a-avail[%d] start "
2786 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2787 } else {
2788 /*
2789 * Block is in the middle of the region, so we
2790 * have to split it in two.
2791 */
2792 for (j = avail_cnt; j > i + 1; j--) {
2793 avail[j] = avail[j-1];
2794 }
2795 DPRINTFN(BOOT,
2796 ("pmap_boot_find_memory: b-avail[%d] start "
2797 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2798 mp[1].start = e;
2799 mp[1].size = mp[0].start + mp[0].size - e;
2800 mp[0].size = s - mp[0].start;
2801 avail_cnt++;
2802 for (; i < avail_cnt; i++) {
2803 DPRINTFN(BOOT,
2804 ("pmap_boot_find_memory: a-avail[%d] "
2805 "start 0x%lx size 0x%lx\n", i,
2806 avail[i].start, avail[i].size));
2807 }
2808 }
2809 return (void *) s;
2810 }
2811 panic("pmap_boot_find_memory: not enough memory for "
2812 "%lx/%lx allocation?", size, alignment);
2813 }
2814
2815 /*
2816 * This is not part of the defined PMAP interface and is specific to the
2817 * PowerPC architecture. This is called during initppc, before the system
2818 * is really initialized.
2819 */
2820 void
2821 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2822 {
2823 struct mem_region *mp, tmp;
2824 paddr_t s, e;
2825 psize_t size;
2826 int i, j;
2827
2828 /*
2829 * Get memory.
2830 */
2831 mem_regions(&mem, &avail);
2832 #if defined(DEBUG)
2833 if (pmapdebug & PMAPDEBUG_BOOT) {
2834 printf("pmap_bootstrap: memory configuration:\n");
2835 for (mp = mem; mp->size; mp++) {
2836 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2837 mp->start, mp->size);
2838 }
2839 for (mp = avail; mp->size; mp++) {
2840 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2841 mp->start, mp->size);
2842 }
2843 }
2844 #endif
2845
2846 /*
2847 * Find out how much physical memory we have and in how many chunks.
2848 */
2849 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2850 if (mp->start >= pmap_memlimit)
2851 continue;
2852 if (mp->start + mp->size > pmap_memlimit) {
2853 size = pmap_memlimit - mp->start;
2854 physmem += btoc(size);
2855 } else {
2856 physmem += btoc(mp->size);
2857 }
2858 mem_cnt++;
2859 }
2860
2861 /*
2862 * Count the number of available entries.
2863 */
2864 for (avail_cnt = 0, mp = avail; mp->size; mp++)
2865 avail_cnt++;
2866
2867 /*
2868 * Page align all regions.
2869 */
2870 kernelstart = trunc_page(kernelstart);
2871 kernelend = round_page(kernelend);
2872 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2873 s = round_page(mp->start);
2874 mp->size -= (s - mp->start);
2875 mp->size = trunc_page(mp->size);
2876 mp->start = s;
2877 e = mp->start + mp->size;
2878
2879 DPRINTFN(BOOT,
2880 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2881 i, mp->start, mp->size));
2882
2883 /*
2884 * Don't allow the end to run beyond our artificial limit
2885 */
2886 if (e > pmap_memlimit)
2887 e = pmap_memlimit;
2888
2889 /*
2890 * Is this region empty or strange? skip it.
2891 */
2892 if (e <= s) {
2893 mp->start = 0;
2894 mp->size = 0;
2895 continue;
2896 }
2897
2898 /*
2899 * Does this overlap the beginning of kernel?
2900 * Does extend past the end of the kernel?
2901 */
2902 else if (s < kernelstart && e > kernelstart) {
2903 if (e > kernelend) {
2904 avail[avail_cnt].start = kernelend;
2905 avail[avail_cnt].size = e - kernelend;
2906 avail_cnt++;
2907 }
2908 mp->size = kernelstart - s;
2909 }
2910 /*
2911 * Check whether this region overlaps the end of the kernel.
2912 */
2913 else if (s < kernelend && e > kernelend) {
2914 mp->start = kernelend;
2915 mp->size = e - kernelend;
2916 }
2917 /*
2918 * Look whether this regions is completely inside the kernel.
2919 * Nuke it if it does.
2920 */
2921 else if (s >= kernelstart && e <= kernelend) {
2922 mp->start = 0;
2923 mp->size = 0;
2924 }
2925 /*
2926 * If the user imposed a memory limit, enforce it.
2927 */
2928 else if (s >= pmap_memlimit) {
2929 mp->start = -PAGE_SIZE; /* let's know why */
2930 mp->size = 0;
2931 }
2932 else {
2933 mp->start = s;
2934 mp->size = e - s;
2935 }
2936 DPRINTFN(BOOT,
2937 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
2938 i, mp->start, mp->size));
2939 }
2940
2941 /*
2942 * Move (and uncount) all the null return to the end.
2943 */
2944 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2945 if (mp->size == 0) {
2946 tmp = avail[i];
2947 avail[i] = avail[--avail_cnt];
2948 avail[avail_cnt] = avail[i];
2949 }
2950 }
2951
2952 /*
2953 * (Bubble)sort them into asecnding order.
2954 */
2955 for (i = 0; i < avail_cnt; i++) {
2956 for (j = i + 1; j < avail_cnt; j++) {
2957 if (avail[i].start > avail[j].start) {
2958 tmp = avail[i];
2959 avail[i] = avail[j];
2960 avail[j] = tmp;
2961 }
2962 }
2963 }
2964
2965 /*
2966 * Make sure they don't overlap.
2967 */
2968 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
2969 if (mp[0].start + mp[0].size > mp[1].start) {
2970 mp[0].size = mp[1].start - mp[0].start;
2971 }
2972 DPRINTFN(BOOT,
2973 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2974 i, mp->start, mp->size));
2975 }
2976 DPRINTFN(BOOT,
2977 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2978 i, mp->start, mp->size));
2979
2980 #ifdef PTEGCOUNT
2981 pmap_pteg_cnt = PTEGCOUNT;
2982 #else /* PTEGCOUNT */
2983 pmap_pteg_cnt = 0x1000;
2984
2985 while (pmap_pteg_cnt < physmem)
2986 pmap_pteg_cnt <<= 1;
2987
2988 pmap_pteg_cnt >>= 1;
2989 #endif /* PTEGCOUNT */
2990
2991 /*
2992 * Find suitably aligned memory for PTEG hash table.
2993 */
2994 size = pmap_pteg_cnt * sizeof(struct pteg);
2995 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
2996 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2997 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
2998 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
2999 pmap_pteg_table, size);
3000 #endif
3001
3002 memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
3003 pmap_pteg_mask = pmap_pteg_cnt - 1;
3004
3005 /*
3006 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3007 * with pages. So we just steal them before giving them to UVM.
3008 */
3009 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3010 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3011 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3012 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3013 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3014 pmap_pvo_table, size);
3015 #endif
3016
3017 for (i = 0; i < pmap_pteg_cnt; i++)
3018 TAILQ_INIT(&pmap_pvo_table[i]);
3019
3020 #ifndef MSGBUFADDR
3021 /*
3022 * Allocate msgbuf in high memory.
3023 */
3024 msgbuf_paddr =
3025 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3026 #endif
3027
3028 #ifdef __HAVE_PMAP_PHYSSEG
3029 {
3030 u_int npgs = 0;
3031 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3032 npgs += btoc(mp->size);
3033 size = (sizeof(struct pvo_head) + 1) * npgs;
3034 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3035 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3036 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3037 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3038 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3039 pmap_physseg.pvoh, size);
3040 #endif
3041 }
3042 #endif
3043
3044 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3045 paddr_t pfstart = atop(mp->start);
3046 paddr_t pfend = atop(mp->start + mp->size);
3047 if (mp->size == 0)
3048 continue;
3049 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3050 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3051 VM_FREELIST_FIRST256);
3052 } else if (mp->start >= SEGMENT_LENGTH) {
3053 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3054 VM_FREELIST_DEFAULT);
3055 } else {
3056 pfend = atop(SEGMENT_LENGTH);
3057 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3058 VM_FREELIST_FIRST256);
3059 pfstart = atop(SEGMENT_LENGTH);
3060 pfend = atop(mp->start + mp->size);
3061 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3062 VM_FREELIST_DEFAULT);
3063 }
3064 }
3065
3066 /*
3067 * Make sure kernel vsid is allocated as well as VSID 0.
3068 */
3069 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3070 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3071 pmap_vsid_bitmap[0] |= 1;
3072
3073 /*
3074 * Initialize kernel pmap and hardware.
3075 */
3076 #ifndef PPC_OEA64
3077 for (i = 0; i < 16; i++) {
3078 pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3079 __asm __volatile ("mtsrin %0,%1"
3080 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3081 }
3082
3083 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3084 __asm __volatile ("mtsr %0,%1"
3085 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3086 #ifdef KERNEL2_SR
3087 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3088 __asm __volatile ("mtsr %0,%1"
3089 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3090 #endif
3091 for (i = 0; i < 16; i++) {
3092 if (iosrtable[i] & SR601_T) {
3093 pmap_kernel()->pm_sr[i] = iosrtable[i];
3094 __asm __volatile ("mtsrin %0,%1"
3095 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3096 }
3097 }
3098 #endif /* !PPC_OEA64 */
3099
3100 __asm __volatile ("sync; mtsdr1 %0; isync"
3101 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3102 tlbia();
3103
3104 #ifdef ALTIVEC
3105 pmap_use_altivec = cpu_altivec;
3106 #endif
3107
3108 #ifdef DEBUG
3109 if (pmapdebug & PMAPDEBUG_BOOT) {
3110 u_int cnt;
3111 int bank;
3112 char pbuf[9];
3113 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3114 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3115 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3116 bank,
3117 ptoa(vm_physmem[bank].avail_start),
3118 ptoa(vm_physmem[bank].avail_end),
3119 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3120 }
3121 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3122 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3123 pbuf, cnt);
3124 }
3125 #endif
3126
3127 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3128 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3129 &pmap_pool_uallocator);
3130
3131 pool_setlowat(&pmap_upvo_pool, 252);
3132
3133 pool_init(&pmap_pool, sizeof(struct pmap),
3134 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3135 }
3136