Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.22
      1 /*	$NetBSD: pmap.c,v 1.22 2004/03/21 10:25:59 aymeric Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.22 2004/03/21 10:25:59 aymeric Exp $");
     71 
     72 #include "opt_ppcarch.h"
     73 #include "opt_altivec.h"
     74 #include "opt_pmap.h"
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/user.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 
     84 #if __NetBSD_Version__ < 105010000
     85 #include <vm/vm.h>
     86 #include <vm/vm_kern.h>
     87 #define	splvm()		splimp()
     88 #endif
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/pcb.h>
     93 #include <machine/powerpc.h>
     94 #include <powerpc/spr.h>
     95 #include <powerpc/oea/sr_601.h>
     96 #include <powerpc/bat.h>
     97 
     98 #if defined(DEBUG) || defined(PMAPCHECK)
     99 #define	STATIC
    100 #else
    101 #define	STATIC	static
    102 #endif
    103 
    104 #ifdef ALTIVEC
    105 int pmap_use_altivec;
    106 #endif
    107 
    108 volatile struct pteg *pmap_pteg_table;
    109 unsigned int pmap_pteg_cnt;
    110 unsigned int pmap_pteg_mask;
    111 #ifdef PMAP_MEMLIMIT
    112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    113 #else
    114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115 #endif
    116 
    117 struct pmap kernel_pmap_;
    118 unsigned int pmap_pages_stolen;
    119 u_long pmap_pte_valid;
    120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    121 u_long pmap_pvo_enter_depth;
    122 u_long pmap_pvo_remove_depth;
    123 #endif
    124 
    125 int physmem;
    126 #ifndef MSGBUFADDR
    127 extern paddr_t msgbuf_paddr;
    128 #endif
    129 
    130 static struct mem_region *mem, *avail;
    131 static u_int mem_cnt, avail_cnt;
    132 
    133 #ifdef __HAVE_PMAP_PHYSSEG
    134 /*
    135  * This is a cache of referenced/modified bits.
    136  * Bits herein are shifted by ATTRSHFT.
    137  */
    138 #define	ATTR_SHFT	4
    139 struct pmap_physseg pmap_physseg;
    140 #endif
    141 
    142 /*
    143  * The following structure is exactly 32 bytes long (one cacheline).
    144  */
    145 struct pvo_entry {
    146 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    147 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    148 	struct pte pvo_pte;			/* Prebuilt PTE */
    149 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    150 	vaddr_t pvo_vaddr;			/* VA of entry */
    151 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    152 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    153 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    154 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    155 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    156 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    157 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    158 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    159 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    160 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    161 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    162 #define	PVO_REMOVE		6		/* PVO has been removed */
    163 #define	PVO_WHERE_MASK		15
    164 #define	PVO_WHERE_SHFT		8
    165 };
    166 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    167 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    168 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    169 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    170 #define	PVO_PTEGIDX_CLR(pvo)	\
    171 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    172 #define	PVO_PTEGIDX_SET(pvo,i)	\
    173 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    174 #define	PVO_WHERE(pvo,w)	\
    175 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    176 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    177 
    178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    179 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    182 
    183 struct pool pmap_pool;		/* pool for pmap structures */
    184 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    185 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    186 
    187 /*
    188  * We keep a cache of unmanaged pages to be used for pvo entries for
    189  * unmanaged pages.
    190  */
    191 struct pvo_page {
    192 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    193 };
    194 SIMPLEQ_HEAD(pvop_head, pvo_page);
    195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    197 u_long pmap_upvop_free;
    198 u_long pmap_upvop_maxfree;
    199 u_long pmap_mpvop_free;
    200 u_long pmap_mpvop_maxfree;
    201 
    202 STATIC void *pmap_pool_ualloc(struct pool *, int);
    203 STATIC void *pmap_pool_malloc(struct pool *, int);
    204 
    205 STATIC void pmap_pool_ufree(struct pool *, void *);
    206 STATIC void pmap_pool_mfree(struct pool *, void *);
    207 
    208 static struct pool_allocator pmap_pool_mallocator = {
    209 	pmap_pool_malloc, pmap_pool_mfree, 0,
    210 };
    211 
    212 static struct pool_allocator pmap_pool_uallocator = {
    213 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    214 };
    215 
    216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    217 void pmap_pte_print(volatile struct pte *);
    218 #endif
    219 
    220 #ifdef DDB
    221 void pmap_pteg_check(void);
    222 void pmap_pteg_dist(void);
    223 void pmap_print_pte(pmap_t, vaddr_t);
    224 void pmap_print_mmuregs(void);
    225 #endif
    226 
    227 #if defined(DEBUG) || defined(PMAPCHECK)
    228 #ifdef PMAPCHECK
    229 int pmapcheck = 1;
    230 #else
    231 int pmapcheck = 0;
    232 #endif
    233 void pmap_pvo_verify(void);
    234 STATIC void pmap_pvo_check(const struct pvo_entry *);
    235 #define	PMAP_PVO_CHECK(pvo)	 		\
    236 	do {					\
    237 		if (pmapcheck)			\
    238 			pmap_pvo_check(pvo);	\
    239 	} while (0)
    240 #else
    241 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    242 #endif
    243 STATIC int pmap_pte_insert(int, struct pte *);
    244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    245 	vaddr_t, paddr_t, register_t, int);
    246 STATIC void pmap_pvo_remove(struct pvo_entry *, int);
    247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    249 #define pmap_pvo_reclaim(pm)	NULL
    250 STATIC void pvo_set_exec(struct pvo_entry *);
    251 STATIC void pvo_clear_exec(struct pvo_entry *);
    252 
    253 STATIC void tlbia(void);
    254 
    255 STATIC void pmap_release(pmap_t);
    256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    257 
    258 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    259 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    260 
    261 static int pmap_initialized;
    262 
    263 #if defined(DEBUG) || defined(PMAPDEBUG)
    264 #define	PMAPDEBUG_BOOT		0x0001
    265 #define	PMAPDEBUG_PTE		0x0002
    266 #define	PMAPDEBUG_EXEC		0x0008
    267 #define	PMAPDEBUG_PVOENTER	0x0010
    268 #define	PMAPDEBUG_PVOREMOVE	0x0020
    269 #define	PMAPDEBUG_ACTIVATE	0x0100
    270 #define	PMAPDEBUG_CREATE	0x0200
    271 #define	PMAPDEBUG_ENTER		0x1000
    272 #define	PMAPDEBUG_KENTER	0x2000
    273 #define	PMAPDEBUG_KREMOVE	0x4000
    274 #define	PMAPDEBUG_REMOVE	0x8000
    275 unsigned int pmapdebug = 0;
    276 # define DPRINTF(x)		printf x
    277 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    278 #else
    279 # define DPRINTF(x)
    280 # define DPRINTFN(n, x)
    281 #endif
    282 
    283 
    284 #ifdef PMAPCOUNTERS
    285 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    286 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    287 
    288 struct evcnt pmap_evcnt_mappings =
    289     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    290 	    "pmap", "pages mapped");
    291 struct evcnt pmap_evcnt_unmappings =
    292     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    293 	    "pmap", "pages unmapped");
    294 
    295 struct evcnt pmap_evcnt_kernel_mappings =
    296     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    297 	    "pmap", "kernel pages mapped");
    298 struct evcnt pmap_evcnt_kernel_unmappings =
    299     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    300 	    "pmap", "kernel pages unmapped");
    301 
    302 struct evcnt pmap_evcnt_mappings_replaced =
    303     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    304 	    "pmap", "page mappings replaced");
    305 
    306 struct evcnt pmap_evcnt_exec_mappings =
    307     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    308 	    "pmap", "exec pages mapped");
    309 struct evcnt pmap_evcnt_exec_cached =
    310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    311 	    "pmap", "exec pages cached");
    312 
    313 struct evcnt pmap_evcnt_exec_synced =
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    315 	    "pmap", "exec pages synced");
    316 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    318 	    "pmap", "exec pages synced (CM)");
    319 
    320 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    322 	    "pmap", "exec pages uncached (PP)");
    323 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    324     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    325 	    "pmap", "exec pages uncached (CM)");
    326 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    327     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    328 	    "pmap", "exec pages uncached (ZP)");
    329 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    330     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    331 	    "pmap", "exec pages uncached (CP)");
    332 
    333 struct evcnt pmap_evcnt_updates =
    334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    335 	    "pmap", "updates");
    336 struct evcnt pmap_evcnt_collects =
    337     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    338 	    "pmap", "collects");
    339 struct evcnt pmap_evcnt_copies =
    340     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    341 	    "pmap", "copies");
    342 
    343 struct evcnt pmap_evcnt_ptes_spilled =
    344     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    345 	    "pmap", "ptes spilled from overflow");
    346 struct evcnt pmap_evcnt_ptes_unspilled =
    347     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    348 	    "pmap", "ptes not spilled");
    349 struct evcnt pmap_evcnt_ptes_evicted =
    350     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    351 	    "pmap", "ptes evicted");
    352 
    353 struct evcnt pmap_evcnt_ptes_primary[8] = {
    354     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    355 	    "pmap", "ptes added at primary[0]"),
    356     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    357 	    "pmap", "ptes added at primary[1]"),
    358     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    359 	    "pmap", "ptes added at primary[2]"),
    360     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    361 	    "pmap", "ptes added at primary[3]"),
    362 
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "ptes added at primary[4]"),
    365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366 	    "pmap", "ptes added at primary[5]"),
    367     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    368 	    "pmap", "ptes added at primary[6]"),
    369     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    370 	    "pmap", "ptes added at primary[7]"),
    371 };
    372 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    373     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    374 	    "pmap", "ptes added at secondary[0]"),
    375     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    376 	    "pmap", "ptes added at secondary[1]"),
    377     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    378 	    "pmap", "ptes added at secondary[2]"),
    379     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    380 	    "pmap", "ptes added at secondary[3]"),
    381 
    382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    383 	    "pmap", "ptes added at secondary[4]"),
    384     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    385 	    "pmap", "ptes added at secondary[5]"),
    386     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    387 	    "pmap", "ptes added at secondary[6]"),
    388     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    389 	    "pmap", "ptes added at secondary[7]"),
    390 };
    391 struct evcnt pmap_evcnt_ptes_removed =
    392     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    393 	    "pmap", "ptes removed");
    394 struct evcnt pmap_evcnt_ptes_changed =
    395     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    396 	    "pmap", "ptes changed");
    397 
    398 /*
    399  * From pmap_subr.c
    400  */
    401 extern struct evcnt pmap_evcnt_zeroed_pages;
    402 extern struct evcnt pmap_evcnt_copied_pages;
    403 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    404 #else
    405 #define	PMAPCOUNT(ev)	((void) 0)
    406 #define	PMAPCOUNT2(ev)	((void) 0)
    407 #endif
    408 
    409 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    410 #define	TLBSYNC()	__asm __volatile("tlbsync")
    411 #define	SYNC()		__asm __volatile("sync")
    412 #define	EIEIO()		__asm __volatile("eieio")
    413 #define	MFMSR()		mfmsr()
    414 #define	MTMSR(psl)	mtmsr(psl)
    415 #define	MFPVR()		mfpvr()
    416 #define	MFSRIN(va)	mfsrin(va)
    417 #define	MFTB()		mfrtcltbl()
    418 
    419 #ifndef PPC_OEA64
    420 static __inline register_t
    421 mfsrin(vaddr_t va)
    422 {
    423 	register_t sr;
    424 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    425 	return sr;
    426 }
    427 #endif	/* PPC_OEA64 */
    428 
    429 static __inline register_t
    430 pmap_interrupts_off(void)
    431 {
    432 	register_t msr = MFMSR();
    433 	if (msr & PSL_EE)
    434 		MTMSR(msr & ~PSL_EE);
    435 	return msr;
    436 }
    437 
    438 static void
    439 pmap_interrupts_restore(register_t msr)
    440 {
    441 	if (msr & PSL_EE)
    442 		MTMSR(msr);
    443 }
    444 
    445 static __inline u_int32_t
    446 mfrtcltbl(void)
    447 {
    448 
    449 	if ((MFPVR() >> 16) == MPC601)
    450 		return (mfrtcl() >> 7);
    451 	else
    452 		return (mftbl());
    453 }
    454 
    455 /*
    456  * These small routines may have to be replaced,
    457  * if/when we support processors other that the 604.
    458  */
    459 
    460 void
    461 tlbia(void)
    462 {
    463 	caddr_t i;
    464 
    465 	SYNC();
    466 	/*
    467 	 * Why not use "tlbia"?  Because not all processors implement it.
    468 	 *
    469 	 * This needs to be a per-CPU callback to do the appropriate thing
    470 	 * for the CPU. XXX
    471 	 */
    472 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    473 		TLBIE(i);
    474 		EIEIO();
    475 		SYNC();
    476 	}
    477 	TLBSYNC();
    478 	SYNC();
    479 }
    480 
    481 static __inline register_t
    482 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    483 {
    484 #ifdef PPC_OEA64
    485 #if 0
    486 	const struct ste *ste;
    487 	register_t hash;
    488 	int i;
    489 
    490 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    491 
    492 	/*
    493 	 * Try the primary group first
    494 	 */
    495 	ste = pm->pm_stes[hash].stes;
    496 	for (i = 0; i < 8; i++, ste++) {
    497 		if (ste->ste_hi & STE_V) &&
    498 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    499 			return ste;
    500 	}
    501 
    502 	/*
    503 	 * Then the secondary group.
    504 	 */
    505 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    506 	for (i = 0; i < 8; i++, ste++) {
    507 		if (ste->ste_hi & STE_V) &&
    508 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    509 			return addr;
    510 	}
    511 
    512 	return NULL;
    513 #else
    514 	/*
    515 	 * Rather than searching the STE groups for the VSID, we know
    516 	 * how we generate that from the ESID and so do that.
    517 	 */
    518 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    519 #endif
    520 #else
    521 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    522 #endif
    523 }
    524 
    525 static __inline register_t
    526 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    527 {
    528 	register_t hash;
    529 
    530 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    531 	return hash & pmap_pteg_mask;
    532 }
    533 
    534 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    535 /*
    536  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    537  * The only bit of magic is that the top 4 bits of the address doesn't
    538  * technically exist in the PTE.  But we know we reserved 4 bits of the
    539  * VSID for it so that's how we get it.
    540  */
    541 static vaddr_t
    542 pmap_pte_to_va(volatile const struct pte *pt)
    543 {
    544 	vaddr_t va;
    545 	uintptr_t ptaddr = (uintptr_t) pt;
    546 
    547 	if (pt->pte_hi & PTE_HID)
    548 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    549 
    550 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    551 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    552 	va <<= ADDR_PIDX_SHFT;
    553 
    554 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    555 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    556 
    557 #ifdef PPC_OEA64
    558 	/* PPC63 Bits 0-35 */
    559 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    560 #endif
    561 #ifdef PPC_OEA
    562 	/* PPC Bits 0-3 */
    563 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    564 #endif
    565 
    566 	return va;
    567 }
    568 #endif
    569 
    570 static __inline struct pvo_head *
    571 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    572 {
    573 #ifdef __HAVE_VM_PAGE_MD
    574 	struct vm_page *pg;
    575 
    576 	pg = PHYS_TO_VM_PAGE(pa);
    577 	if (pg_p != NULL)
    578 		*pg_p = pg;
    579 	if (pg == NULL)
    580 		return &pmap_pvo_unmanaged;
    581 	return &pg->mdpage.mdpg_pvoh;
    582 #endif
    583 #ifdef __HAVE_PMAP_PHYSSEG
    584 	int bank, pg;
    585 
    586 	bank = vm_physseg_find(atop(pa), &pg);
    587 	if (pg_p != NULL)
    588 		*pg_p = pg;
    589 	if (bank == -1)
    590 		return &pmap_pvo_unmanaged;
    591 	return &vm_physmem[bank].pmseg.pvoh[pg];
    592 #endif
    593 }
    594 
    595 static __inline struct pvo_head *
    596 vm_page_to_pvoh(struct vm_page *pg)
    597 {
    598 #ifdef __HAVE_VM_PAGE_MD
    599 	return &pg->mdpage.mdpg_pvoh;
    600 #endif
    601 #ifdef __HAVE_PMAP_PHYSSEG
    602 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    603 #endif
    604 }
    605 
    606 
    607 #ifdef __HAVE_PMAP_PHYSSEG
    608 static __inline char *
    609 pa_to_attr(paddr_t pa)
    610 {
    611 	int bank, pg;
    612 
    613 	bank = vm_physseg_find(atop(pa), &pg);
    614 	if (bank == -1)
    615 		return NULL;
    616 	return &vm_physmem[bank].pmseg.attrs[pg];
    617 }
    618 #endif
    619 
    620 static __inline void
    621 pmap_attr_clear(struct vm_page *pg, int ptebit)
    622 {
    623 #ifdef __HAVE_PMAP_PHYSSEG
    624 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    625 #endif
    626 #ifdef __HAVE_VM_PAGE_MD
    627 	pg->mdpage.mdpg_attrs &= ~ptebit;
    628 #endif
    629 }
    630 
    631 static __inline int
    632 pmap_attr_fetch(struct vm_page *pg)
    633 {
    634 #ifdef __HAVE_PMAP_PHYSSEG
    635 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    636 #endif
    637 #ifdef __HAVE_VM_PAGE_MD
    638 	return pg->mdpage.mdpg_attrs;
    639 #endif
    640 }
    641 
    642 static __inline void
    643 pmap_attr_save(struct vm_page *pg, int ptebit)
    644 {
    645 #ifdef __HAVE_PMAP_PHYSSEG
    646 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    647 #endif
    648 #ifdef __HAVE_VM_PAGE_MD
    649 	pg->mdpage.mdpg_attrs |= ptebit;
    650 #endif
    651 }
    652 
    653 static __inline int
    654 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    655 {
    656 	if (pt->pte_hi == pvo_pt->pte_hi
    657 #if 0
    658 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    659 	        ~(PTE_REF|PTE_CHG)) == 0
    660 #endif
    661 	    )
    662 		return 1;
    663 	return 0;
    664 }
    665 
    666 static __inline void
    667 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    668 {
    669 	/*
    670 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    671 	 * only gets set when the real pte is set in memory.
    672 	 *
    673 	 * Note: Don't set the valid bit for correct operation of tlb update.
    674 	 */
    675 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    676 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    677 	pt->pte_lo = pte_lo;
    678 }
    679 
    680 static __inline void
    681 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    682 {
    683 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    684 }
    685 
    686 static __inline void
    687 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    688 {
    689 	/*
    690 	 * As shown in Section 7.6.3.2.3
    691 	 */
    692 	pt->pte_lo &= ~ptebit;
    693 	TLBIE(va);
    694 	SYNC();
    695 	EIEIO();
    696 	TLBSYNC();
    697 	SYNC();
    698 }
    699 
    700 static __inline void
    701 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    702 {
    703 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    704 	if (pvo_pt->pte_hi & PTE_VALID)
    705 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    706 #endif
    707 	pvo_pt->pte_hi |= PTE_VALID;
    708 	/*
    709 	 * Update the PTE as defined in section 7.6.3.1
    710 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    711 	 * have been saved so this routine can restore them (if desired).
    712 	 */
    713 	pt->pte_lo = pvo_pt->pte_lo;
    714 	EIEIO();
    715 	pt->pte_hi = pvo_pt->pte_hi;
    716 	SYNC();
    717 	pmap_pte_valid++;
    718 }
    719 
    720 static __inline void
    721 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    722 {
    723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    724 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    725 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    726 	if ((pt->pte_hi & PTE_VALID) == 0)
    727 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    728 #endif
    729 
    730 	pvo_pt->pte_hi &= ~PTE_VALID;
    731 	/*
    732 	 * Force the ref & chg bits back into the PTEs.
    733 	 */
    734 	SYNC();
    735 	/*
    736 	 * Invalidate the pte ... (Section 7.6.3.3)
    737 	 */
    738 	pt->pte_hi &= ~PTE_VALID;
    739 	SYNC();
    740 	TLBIE(va);
    741 	SYNC();
    742 	EIEIO();
    743 	TLBSYNC();
    744 	SYNC();
    745 	/*
    746 	 * Save the ref & chg bits ...
    747 	 */
    748 	pmap_pte_synch(pt, pvo_pt);
    749 	pmap_pte_valid--;
    750 }
    751 
    752 static __inline void
    753 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    754 {
    755 	/*
    756 	 * Invalidate the PTE
    757 	 */
    758 	pmap_pte_unset(pt, pvo_pt, va);
    759 	pmap_pte_set(pt, pvo_pt);
    760 }
    761 
    762 /*
    763  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    764  * (either primary or secondary location).
    765  *
    766  * Note: both the destination and source PTEs must not have PTE_VALID set.
    767  */
    768 
    769 STATIC int
    770 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    771 {
    772 	volatile struct pte *pt;
    773 	int i;
    774 
    775 #if defined(DEBUG)
    776 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    777 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    778 #endif
    779 	/*
    780 	 * First try primary hash.
    781 	 */
    782 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    783 		if ((pt->pte_hi & PTE_VALID) == 0) {
    784 			pvo_pt->pte_hi &= ~PTE_HID;
    785 			pmap_pte_set(pt, pvo_pt);
    786 			return i;
    787 		}
    788 	}
    789 
    790 	/*
    791 	 * Now try secondary hash.
    792 	 */
    793 	ptegidx ^= pmap_pteg_mask;
    794 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    795 		if ((pt->pte_hi & PTE_VALID) == 0) {
    796 			pvo_pt->pte_hi |= PTE_HID;
    797 			pmap_pte_set(pt, pvo_pt);
    798 			return i;
    799 		}
    800 	}
    801 	return -1;
    802 }
    803 
    804 /*
    805  * Spill handler.
    806  *
    807  * Tries to spill a page table entry from the overflow area.
    808  * This runs in either real mode (if dealing with a exception spill)
    809  * or virtual mode when dealing with manually spilling one of the
    810  * kernel's pte entries.  In either case, interrupts are already
    811  * disabled.
    812  */
    813 
    814 int
    815 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    816 {
    817 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    818 	struct pvo_entry *pvo;
    819 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    820 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    821 	int ptegidx, i, j;
    822 	volatile struct pteg *pteg;
    823 	volatile struct pte *pt;
    824 
    825 	ptegidx = va_to_pteg(pm, addr);
    826 
    827 	/*
    828 	 * Have to substitute some entry. Use the primary hash for this.
    829 	 * Use low bits of timebase as random generator.  Make sure we are
    830 	 * not picking a kernel pte for replacement.
    831 	 */
    832 	pteg = &pmap_pteg_table[ptegidx];
    833 	i = MFTB() & 7;
    834 	for (j = 0; j < 8; j++) {
    835 		pt = &pteg->pt[i];
    836 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    837 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    838 				!= KERNEL_VSIDBITS)
    839 			break;
    840 		i = (i + 1) & 7;
    841 	}
    842 	KASSERT(j < 8);
    843 
    844 	source_pvo = NULL;
    845 	victim_pvo = NULL;
    846 	pvoh = &pmap_pvo_table[ptegidx];
    847 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    848 
    849 		/*
    850 		 * We need to find pvo entry for this address...
    851 		 */
    852 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    853 
    854 		/*
    855 		 * If we haven't found the source and we come to a PVO with
    856 		 * a valid PTE, then we know we can't find it because all
    857 		 * evicted PVOs always are first in the list.
    858 		 */
    859 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    860 			break;
    861 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    862 		    addr == PVO_VADDR(pvo)) {
    863 
    864 			/*
    865 			 * Now we have found the entry to be spilled into the
    866 			 * pteg.  Attempt to insert it into the page table.
    867 			 */
    868 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    869 			if (j >= 0) {
    870 				PVO_PTEGIDX_SET(pvo, j);
    871 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    872 				PVO_WHERE(pvo, SPILL_INSERT);
    873 				pvo->pvo_pmap->pm_evictions--;
    874 				PMAPCOUNT(ptes_spilled);
    875 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    876 				    ? pmap_evcnt_ptes_secondary
    877 				    : pmap_evcnt_ptes_primary)[j]);
    878 
    879 				/*
    880 				 * Since we keep the evicted entries at the
    881 				 * from of the PVO list, we need move this
    882 				 * (now resident) PVO after the evicted
    883 				 * entries.
    884 				 */
    885 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    886 
    887 				/*
    888 				 * If we don't have to move (either we were the
    889 				 * last entry or the next entry was valid),
    890 				 * don't change our position.  Otherwise
    891 				 * move ourselves to the tail of the queue.
    892 				 */
    893 				if (next_pvo != NULL &&
    894 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    895 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    896 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    897 				}
    898 				return 1;
    899 			}
    900 			source_pvo = pvo;
    901 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    902 				return 0;
    903 			}
    904 			if (victim_pvo != NULL)
    905 				break;
    906 		}
    907 
    908 		/*
    909 		 * We also need the pvo entry of the victim we are replacing
    910 		 * so save the R & C bits of the PTE.
    911 		 */
    912 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    913 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    914 			vpvoh = pvoh;			/* *1* */
    915 			victim_pvo = pvo;
    916 			if (source_pvo != NULL)
    917 				break;
    918 		}
    919 	}
    920 
    921 	if (source_pvo == NULL) {
    922 		PMAPCOUNT(ptes_unspilled);
    923 		return 0;
    924 	}
    925 
    926 	if (victim_pvo == NULL) {
    927 		if ((pt->pte_hi & PTE_HID) == 0)
    928 			panic("pmap_pte_spill: victim p-pte (%p) has "
    929 			    "no pvo entry!", pt);
    930 
    931 		/*
    932 		 * If this is a secondary PTE, we need to search
    933 		 * its primary pvo bucket for the matching PVO.
    934 		 */
    935 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
    936 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    937 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    938 
    939 			/*
    940 			 * We also need the pvo entry of the victim we are
    941 			 * replacing so save the R & C bits of the PTE.
    942 			 */
    943 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    944 				victim_pvo = pvo;
    945 				break;
    946 			}
    947 		}
    948 		if (victim_pvo == NULL)
    949 			panic("pmap_pte_spill: victim s-pte (%p) has "
    950 			    "no pvo entry!", pt);
    951 	}
    952 
    953 	/*
    954 	 * The victim should be not be a kernel PVO/PTE entry.
    955 	 */
    956 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
    957 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
    958 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
    959 
    960 	/*
    961 	 * We are invalidating the TLB entry for the EA for the
    962 	 * we are replacing even though its valid; If we don't
    963 	 * we lose any ref/chg bit changes contained in the TLB
    964 	 * entry.
    965 	 */
    966 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    967 
    968 	/*
    969 	 * To enforce the PVO list ordering constraint that all
    970 	 * evicted entries should come before all valid entries,
    971 	 * move the source PVO to the tail of its list and the
    972 	 * victim PVO to the head of its list (which might not be
    973 	 * the same list, if the victim was using the secondary hash).
    974 	 */
    975 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    976 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    977 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    978 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    979 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    980 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    981 	victim_pvo->pvo_pmap->pm_evictions++;
    982 	source_pvo->pvo_pmap->pm_evictions--;
    983 	PVO_WHERE(victim_pvo, SPILL_UNSET);
    984 	PVO_WHERE(source_pvo, SPILL_SET);
    985 
    986 	PVO_PTEGIDX_CLR(victim_pvo);
    987 	PVO_PTEGIDX_SET(source_pvo, i);
    988 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    989 	PMAPCOUNT(ptes_spilled);
    990 	PMAPCOUNT(ptes_evicted);
    991 	PMAPCOUNT(ptes_removed);
    992 
    993 	PMAP_PVO_CHECK(victim_pvo);
    994 	PMAP_PVO_CHECK(source_pvo);
    995 	return 1;
    996 }
    997 
    998 /*
    999  * Restrict given range to physical memory
   1000  */
   1001 void
   1002 pmap_real_memory(paddr_t *start, psize_t *size)
   1003 {
   1004 	struct mem_region *mp;
   1005 
   1006 	for (mp = mem; mp->size; mp++) {
   1007 		if (*start + *size > mp->start
   1008 		    && *start < mp->start + mp->size) {
   1009 			if (*start < mp->start) {
   1010 				*size -= mp->start - *start;
   1011 				*start = mp->start;
   1012 			}
   1013 			if (*start + *size > mp->start + mp->size)
   1014 				*size = mp->start + mp->size - *start;
   1015 			return;
   1016 		}
   1017 	}
   1018 	*size = 0;
   1019 }
   1020 
   1021 /*
   1022  * Initialize anything else for pmap handling.
   1023  * Called during vm_init().
   1024  */
   1025 void
   1026 pmap_init(void)
   1027 {
   1028 #ifdef __HAVE_PMAP_PHYSSEG
   1029 	struct pvo_tqhead *pvoh;
   1030 	int bank;
   1031 	long sz;
   1032 	char *attr;
   1033 
   1034 	pvoh = pmap_physseg.pvoh;
   1035 	attr = pmap_physseg.attrs;
   1036 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1037 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1038 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1039 		vm_physmem[bank].pmseg.attrs = attr;
   1040 		for (; sz > 0; sz--, pvoh++, attr++) {
   1041 			TAILQ_INIT(pvoh);
   1042 			*attr = 0;
   1043 		}
   1044 	}
   1045 #endif
   1046 
   1047 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1048 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1049 	    &pmap_pool_mallocator);
   1050 
   1051 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1052 
   1053 	pmap_initialized = 1;
   1054 
   1055 #ifdef PMAPCOUNTERS
   1056 	evcnt_attach_static(&pmap_evcnt_mappings);
   1057 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
   1058 	evcnt_attach_static(&pmap_evcnt_unmappings);
   1059 
   1060 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
   1061 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
   1062 
   1063 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
   1064 	evcnt_attach_static(&pmap_evcnt_exec_cached);
   1065 	evcnt_attach_static(&pmap_evcnt_exec_synced);
   1066 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
   1067 
   1068 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
   1069 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
   1070 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
   1071 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
   1072 
   1073 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
   1074 	evcnt_attach_static(&pmap_evcnt_copied_pages);
   1075 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
   1076 
   1077 	evcnt_attach_static(&pmap_evcnt_updates);
   1078 	evcnt_attach_static(&pmap_evcnt_collects);
   1079 	evcnt_attach_static(&pmap_evcnt_copies);
   1080 
   1081 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
   1082 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1083 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1084 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1085 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1086 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1087 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1088 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1089 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1090 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1091 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1092 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1093 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1094 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1095 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1096 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1097 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1098 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1099 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1100 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1101 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1102 #endif
   1103 }
   1104 
   1105 /*
   1106  * How much virtual space does the kernel get?
   1107  */
   1108 void
   1109 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1110 {
   1111 	/*
   1112 	 * For now, reserve one segment (minus some overhead) for kernel
   1113 	 * virtual memory
   1114 	 */
   1115 	*start = VM_MIN_KERNEL_ADDRESS;
   1116 	*end = VM_MAX_KERNEL_ADDRESS;
   1117 }
   1118 
   1119 /*
   1120  * Allocate, initialize, and return a new physical map.
   1121  */
   1122 pmap_t
   1123 pmap_create(void)
   1124 {
   1125 	pmap_t pm;
   1126 
   1127 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1128 	memset((caddr_t)pm, 0, sizeof *pm);
   1129 	pmap_pinit(pm);
   1130 
   1131 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1132 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1133 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1134 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1135 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1136 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1137 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1138 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1139 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1140 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1141 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1142 	return pm;
   1143 }
   1144 
   1145 /*
   1146  * Initialize a preallocated and zeroed pmap structure.
   1147  */
   1148 void
   1149 pmap_pinit(pmap_t pm)
   1150 {
   1151 	register_t entropy = MFTB();
   1152 	register_t mask;
   1153 	int i;
   1154 
   1155 	/*
   1156 	 * Allocate some segment registers for this pmap.
   1157 	 */
   1158 	pm->pm_refs = 1;
   1159 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1160 		static register_t pmap_vsidcontext;
   1161 		register_t hash;
   1162 		unsigned int n;
   1163 
   1164 		/* Create a new value by multiplying by a prime adding in
   1165 		 * entropy from the timebase register.  This is to make the
   1166 		 * VSID more random so that the PT Hash function collides
   1167 		 * less often. (note that the prime causes gcc to do shifts
   1168 		 * instead of a multiply)
   1169 		 */
   1170 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1171 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1172 		if (hash == 0)			/* 0 is special, avoid it */
   1173 			continue;
   1174 		n = hash >> 5;
   1175 		mask = 1L << (hash & (VSID_NBPW-1));
   1176 		hash = pmap_vsidcontext;
   1177 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1178 			/* anything free in this bucket? */
   1179 			if (~pmap_vsid_bitmap[n] == 0) {
   1180 				entropy = hash >> PTE_VSID_SHFT;
   1181 				continue;
   1182 			}
   1183 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1184 			mask = 1L << i;
   1185 			hash &= ~(VSID_NBPW-1);
   1186 			hash |= i;
   1187 		}
   1188 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1189 		pmap_vsid_bitmap[n] |= mask;
   1190 		pm->pm_vsid = hash;
   1191 #ifndef PPC_OEA64
   1192 		for (i = 0; i < 16; i++)
   1193 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1194 			    SR_NOEXEC;
   1195 #endif
   1196 		return;
   1197 	}
   1198 	panic("pmap_pinit: out of segments");
   1199 }
   1200 
   1201 /*
   1202  * Add a reference to the given pmap.
   1203  */
   1204 void
   1205 pmap_reference(pmap_t pm)
   1206 {
   1207 	pm->pm_refs++;
   1208 }
   1209 
   1210 /*
   1211  * Retire the given pmap from service.
   1212  * Should only be called if the map contains no valid mappings.
   1213  */
   1214 void
   1215 pmap_destroy(pmap_t pm)
   1216 {
   1217 	if (--pm->pm_refs == 0) {
   1218 		pmap_release(pm);
   1219 		pool_put(&pmap_pool, pm);
   1220 	}
   1221 }
   1222 
   1223 /*
   1224  * Release any resources held by the given physical map.
   1225  * Called when a pmap initialized by pmap_pinit is being released.
   1226  */
   1227 void
   1228 pmap_release(pmap_t pm)
   1229 {
   1230 	int idx, mask;
   1231 
   1232 	if (pm->pm_sr[0] == 0)
   1233 		panic("pmap_release");
   1234 	idx = pm->pm_vsid & (NPMAPS-1);
   1235 	mask = 1 << (idx % VSID_NBPW);
   1236 	idx /= VSID_NBPW;
   1237 
   1238 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1239 	pmap_vsid_bitmap[idx] &= ~mask;
   1240 }
   1241 
   1242 /*
   1243  * Copy the range specified by src_addr/len
   1244  * from the source map to the range dst_addr/len
   1245  * in the destination map.
   1246  *
   1247  * This routine is only advisory and need not do anything.
   1248  */
   1249 void
   1250 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1251 	vsize_t len, vaddr_t src_addr)
   1252 {
   1253 	PMAPCOUNT(copies);
   1254 }
   1255 
   1256 /*
   1257  * Require that all active physical maps contain no
   1258  * incorrect entries NOW.
   1259  */
   1260 void
   1261 pmap_update(struct pmap *pmap)
   1262 {
   1263 	PMAPCOUNT(updates);
   1264 	TLBSYNC();
   1265 }
   1266 
   1267 /*
   1268  * Garbage collects the physical map system for
   1269  * pages which are no longer used.
   1270  * Success need not be guaranteed -- that is, there
   1271  * may well be pages which are not referenced, but
   1272  * others may be collected.
   1273  * Called by the pageout daemon when pages are scarce.
   1274  */
   1275 void
   1276 pmap_collect(pmap_t pm)
   1277 {
   1278 	PMAPCOUNT(collects);
   1279 }
   1280 
   1281 static __inline int
   1282 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1283 {
   1284 	int pteidx;
   1285 	/*
   1286 	 * We can find the actual pte entry without searching by
   1287 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1288 	 * and by noticing the HID bit.
   1289 	 */
   1290 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1291 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1292 		pteidx ^= pmap_pteg_mask * 8;
   1293 	return pteidx;
   1294 }
   1295 
   1296 volatile struct pte *
   1297 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1298 {
   1299 	volatile struct pte *pt;
   1300 
   1301 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1302 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1303 		return NULL;
   1304 #endif
   1305 
   1306 	/*
   1307 	 * If we haven't been supplied the ptegidx, calculate it.
   1308 	 */
   1309 	if (pteidx == -1) {
   1310 		int ptegidx;
   1311 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1312 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1313 	}
   1314 
   1315 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1316 
   1317 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1318 	return pt;
   1319 #else
   1320 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1321 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1322 		    "pvo but no valid pte index", pvo);
   1323 	}
   1324 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1325 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1326 		    "pvo but no valid pte", pvo);
   1327 	}
   1328 
   1329 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1330 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1331 #if defined(DEBUG) || defined(PMAPCHECK)
   1332 			pmap_pte_print(pt);
   1333 #endif
   1334 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1335 			    "pmap_pteg_table %p but invalid in pvo",
   1336 			    pvo, pt);
   1337 		}
   1338 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1339 #if defined(DEBUG) || defined(PMAPCHECK)
   1340 			pmap_pte_print(pt);
   1341 #endif
   1342 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1343 			    "not match pte %p in pmap_pteg_table",
   1344 			    pvo, pt);
   1345 		}
   1346 		return pt;
   1347 	}
   1348 
   1349 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1350 #if defined(DEBUG) || defined(PMAPCHECK)
   1351 		pmap_pte_print(pt);
   1352 #endif
   1353 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1354 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1355 	}
   1356 	return NULL;
   1357 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1358 }
   1359 
   1360 struct pvo_entry *
   1361 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1362 {
   1363 	struct pvo_entry *pvo;
   1364 	int ptegidx;
   1365 
   1366 	va &= ~ADDR_POFF;
   1367 	ptegidx = va_to_pteg(pm, va);
   1368 
   1369 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1370 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1371 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1372 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1373 			    "list %#x (%p)", pvo, ptegidx,
   1374 			     &pmap_pvo_table[ptegidx]);
   1375 #endif
   1376 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1377 			if (pteidx_p)
   1378 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1379 			return pvo;
   1380 		}
   1381 	}
   1382 	return NULL;
   1383 }
   1384 
   1385 #if defined(DEBUG) || defined(PMAPCHECK)
   1386 void
   1387 pmap_pvo_check(const struct pvo_entry *pvo)
   1388 {
   1389 	struct pvo_head *pvo_head;
   1390 	struct pvo_entry *pvo0;
   1391 	volatile struct pte *pt;
   1392 	int failed = 0;
   1393 
   1394 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1395 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1396 
   1397 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1398 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1399 		    pvo, pvo->pvo_pmap);
   1400 		failed = 1;
   1401 	}
   1402 
   1403 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1404 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1405 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1406 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1407 		failed = 1;
   1408 	}
   1409 
   1410 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1411 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1412 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1413 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1414 		failed = 1;
   1415 	}
   1416 
   1417 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1418 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1419 	} else {
   1420 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1421 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1422 			    "on kernel unmanaged list\n", pvo);
   1423 			failed = 1;
   1424 		}
   1425 		pvo_head = &pmap_pvo_kunmanaged;
   1426 	}
   1427 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1428 		if (pvo0 == pvo)
   1429 			break;
   1430 	}
   1431 	if (pvo0 == NULL) {
   1432 		printf("pmap_pvo_check: pvo %p: not present "
   1433 		    "on its vlist head %p\n", pvo, pvo_head);
   1434 		failed = 1;
   1435 	}
   1436 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1437 		printf("pmap_pvo_check: pvo %p: not present "
   1438 		    "on its olist head\n", pvo);
   1439 		failed = 1;
   1440 	}
   1441 	pt = pmap_pvo_to_pte(pvo, -1);
   1442 	if (pt == NULL) {
   1443 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1444 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1445 			    "no PTE\n", pvo);
   1446 			failed = 1;
   1447 		}
   1448 	} else {
   1449 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1450 		    (uintptr_t) pt >=
   1451 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1452 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1453 			    "pteg table\n", pvo, pt);
   1454 			failed = 1;
   1455 		}
   1456 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1457 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1458 			    "no PTE\n", pvo);
   1459 			failed = 1;
   1460 		}
   1461 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1462 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1463 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1464 			failed = 1;
   1465 		}
   1466 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1467 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1468 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1469 			    "%#x/%#x\n", pvo,
   1470 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1471 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1472 			failed = 1;
   1473 		}
   1474 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1475 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1476 			    " doesn't not match PVO's VA %#lx\n",
   1477 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1478 			failed = 1;
   1479 		}
   1480 		if (failed)
   1481 			pmap_pte_print(pt);
   1482 	}
   1483 	if (failed)
   1484 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1485 		    pvo->pvo_pmap);
   1486 }
   1487 #endif /* DEBUG || PMAPCHECK */
   1488 
   1489 /*
   1490  * This returns whether this is the first mapping of a page.
   1491  */
   1492 int
   1493 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1494 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1495 {
   1496 	struct pvo_entry *pvo;
   1497 	struct pvo_tqhead *pvoh;
   1498 	register_t msr;
   1499 	int ptegidx;
   1500 	int i;
   1501 	int poolflags = PR_NOWAIT;
   1502 
   1503 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1504 	if (pmap_pvo_remove_depth > 0)
   1505 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1506 	if (++pmap_pvo_enter_depth > 1)
   1507 		panic("pmap_pvo_enter: called recursively!");
   1508 #endif
   1509 
   1510 	/*
   1511 	 * Compute the PTE Group index.
   1512 	 */
   1513 	va &= ~ADDR_POFF;
   1514 	ptegidx = va_to_pteg(pm, va);
   1515 
   1516 	msr = pmap_interrupts_off();
   1517 	/*
   1518 	 * Remove any existing mapping for this page.  Reuse the
   1519 	 * pvo entry if there a mapping.
   1520 	 */
   1521 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1522 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1523 #ifdef DEBUG
   1524 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1525 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1526 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1527 			   va < VM_MIN_KERNEL_ADDRESS) {
   1528 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1529 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1530 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1531 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1532 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1533 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1534 #ifdef DDBX
   1535 				Debugger();
   1536 #endif
   1537 			}
   1538 #endif
   1539 			PMAPCOUNT(mappings_replaced);
   1540 			pmap_pvo_remove(pvo, -1);
   1541 			break;
   1542 		}
   1543 	}
   1544 
   1545 	/*
   1546 	 * If we aren't overwriting an mapping, try to allocate
   1547 	 */
   1548 	pmap_interrupts_restore(msr);
   1549 	pvo = pool_get(pl, poolflags);
   1550 	msr = pmap_interrupts_off();
   1551 	if (pvo == NULL) {
   1552 		pvo = pmap_pvo_reclaim(pm);
   1553 		if (pvo == NULL) {
   1554 			if ((flags & PMAP_CANFAIL) == 0)
   1555 				panic("pmap_pvo_enter: failed");
   1556 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1557 			pmap_pvo_enter_depth--;
   1558 #endif
   1559 			pmap_interrupts_restore(msr);
   1560 			return ENOMEM;
   1561 		}
   1562 	}
   1563 	pvo->pvo_vaddr = va;
   1564 	pvo->pvo_pmap = pm;
   1565 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1566 	if (flags & VM_PROT_EXECUTE) {
   1567 		PMAPCOUNT(exec_mappings);
   1568 		pvo_set_exec(pvo);
   1569 	}
   1570 	if (flags & PMAP_WIRED)
   1571 		pvo->pvo_vaddr |= PVO_WIRED;
   1572 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1573 		pvo->pvo_vaddr |= PVO_MANAGED;
   1574 		PMAPCOUNT(mappings);
   1575 	} else {
   1576 		PMAPCOUNT(kernel_mappings);
   1577 	}
   1578 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1579 
   1580 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1581 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1582 		pvo->pvo_pmap->pm_stats.wired_count++;
   1583 	pvo->pvo_pmap->pm_stats.resident_count++;
   1584 #if defined(DEBUG)
   1585 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1586 		DPRINTFN(PVOENTER,
   1587 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1588 		    pvo, pm, va, pa));
   1589 #endif
   1590 
   1591 	/*
   1592 	 * We hope this succeeds but it isn't required.
   1593 	 */
   1594 	pvoh = &pmap_pvo_table[ptegidx];
   1595 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1596 	if (i >= 0) {
   1597 		PVO_PTEGIDX_SET(pvo, i);
   1598 		PVO_WHERE(pvo, ENTER_INSERT);
   1599 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1600 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1601 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1602 	} else {
   1603 		/*
   1604 		 * Since we didn't have room for this entry (which makes it
   1605 		 * and evicted entry), place it at the head of the list.
   1606 		 */
   1607 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1608 		PMAPCOUNT(ptes_evicted);
   1609 		pm->pm_evictions++;
   1610 		/*
   1611 		 * If this is a kernel page, make sure it's active.
   1612 		 */
   1613 		if (pm == pmap_kernel()) {
   1614 			i = pmap_pte_spill(pm, va, FALSE);
   1615 			KASSERT(i);
   1616 		}
   1617 	}
   1618 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1619 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1620 	pmap_pvo_enter_depth--;
   1621 #endif
   1622 	pmap_interrupts_restore(msr);
   1623 	return 0;
   1624 }
   1625 
   1626 void
   1627 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
   1628 {
   1629 	volatile struct pte *pt;
   1630 	int ptegidx;
   1631 
   1632 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1633 	if (++pmap_pvo_remove_depth > 1)
   1634 		panic("pmap_pvo_remove: called recursively!");
   1635 #endif
   1636 
   1637 	/*
   1638 	 * If we haven't been supplied the ptegidx, calculate it.
   1639 	 */
   1640 	if (pteidx == -1) {
   1641 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1642 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1643 	} else {
   1644 		ptegidx = pteidx >> 3;
   1645 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1646 			ptegidx ^= pmap_pteg_mask;
   1647 	}
   1648 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1649 
   1650 	/*
   1651 	 * If there is an active pte entry, we need to deactivate it
   1652 	 * (and save the ref & chg bits).
   1653 	 */
   1654 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1655 	if (pt != NULL) {
   1656 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1657 		PVO_WHERE(pvo, REMOVE);
   1658 		PVO_PTEGIDX_CLR(pvo);
   1659 		PMAPCOUNT(ptes_removed);
   1660 	} else {
   1661 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1662 		pvo->pvo_pmap->pm_evictions--;
   1663 	}
   1664 
   1665 	/*
   1666 	 * Account for executable mappings.
   1667 	 */
   1668 	if (PVO_ISEXECUTABLE(pvo))
   1669 		pvo_clear_exec(pvo);
   1670 
   1671 	/*
   1672 	 * Update our statistics.
   1673 	 */
   1674 	pvo->pvo_pmap->pm_stats.resident_count--;
   1675 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1676 		pvo->pvo_pmap->pm_stats.wired_count--;
   1677 
   1678 	/*
   1679 	 * Save the REF/CHG bits into their cache if the page is managed.
   1680 	 */
   1681 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1682 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1683 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1684 
   1685 		if (pg != NULL) {
   1686 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1687 		}
   1688 		PMAPCOUNT(unmappings);
   1689 	} else {
   1690 		PMAPCOUNT(kernel_unmappings);
   1691 	}
   1692 
   1693 	/*
   1694 	 * Remove the PVO from its lists and return it to the pool.
   1695 	 */
   1696 	LIST_REMOVE(pvo, pvo_vlink);
   1697 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1698 	pool_put(pvo->pvo_vaddr & PVO_MANAGED
   1699 	    ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1700 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1701 	pmap_pvo_remove_depth--;
   1702 #endif
   1703 }
   1704 
   1705 /*
   1706  * Mark a mapping as executable.
   1707  * If this is the first executable mapping in the segment,
   1708  * clear the noexec flag.
   1709  */
   1710 STATIC void
   1711 pvo_set_exec(struct pvo_entry *pvo)
   1712 {
   1713 	struct pmap *pm = pvo->pvo_pmap;
   1714 
   1715 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1716 		return;
   1717 	}
   1718 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1719 #ifdef PPC_OEA
   1720 	{
   1721 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1722 		if (pm->pm_exec[sr]++ == 0) {
   1723 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1724 		}
   1725 	}
   1726 #endif
   1727 }
   1728 
   1729 /*
   1730  * Mark a mapping as non-executable.
   1731  * If this was the last executable mapping in the segment,
   1732  * set the noexec flag.
   1733  */
   1734 STATIC void
   1735 pvo_clear_exec(struct pvo_entry *pvo)
   1736 {
   1737 	struct pmap *pm = pvo->pvo_pmap;
   1738 
   1739 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1740 		return;
   1741 	}
   1742 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1743 #ifdef PPC_OEA
   1744 	{
   1745 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1746 		if (--pm->pm_exec[sr] == 0) {
   1747 			pm->pm_sr[sr] |= SR_NOEXEC;
   1748 		}
   1749 	}
   1750 #endif
   1751 }
   1752 
   1753 /*
   1754  * Insert physical page at pa into the given pmap at virtual address va.
   1755  */
   1756 int
   1757 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1758 {
   1759 	struct mem_region *mp;
   1760 	struct pvo_head *pvo_head;
   1761 	struct vm_page *pg;
   1762 	struct pool *pl;
   1763 	register_t pte_lo;
   1764 	int error;
   1765 	u_int pvo_flags;
   1766 	u_int was_exec = 0;
   1767 
   1768 	if (__predict_false(!pmap_initialized)) {
   1769 		pvo_head = &pmap_pvo_kunmanaged;
   1770 		pl = &pmap_upvo_pool;
   1771 		pvo_flags = 0;
   1772 		pg = NULL;
   1773 		was_exec = PTE_EXEC;
   1774 	} else {
   1775 		pvo_head = pa_to_pvoh(pa, &pg);
   1776 		pl = &pmap_mpvo_pool;
   1777 		pvo_flags = PVO_MANAGED;
   1778 	}
   1779 
   1780 	DPRINTFN(ENTER,
   1781 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1782 	    pm, va, pa, prot, flags));
   1783 
   1784 	/*
   1785 	 * If this is a managed page, and it's the first reference to the
   1786 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1787 	 */
   1788 	if (pg != NULL)
   1789 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1790 
   1791 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1792 
   1793 	/*
   1794 	 * Assume the page is cache inhibited and access is guarded unless
   1795 	 * it's in our available memory array.  If it is in the memory array,
   1796 	 * asssume it's in memory coherent memory.
   1797 	 */
   1798 	pte_lo = PTE_IG;
   1799 	if ((flags & PMAP_NC) == 0) {
   1800 		for (mp = mem; mp->size; mp++) {
   1801 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1802 				pte_lo = PTE_M;
   1803 				break;
   1804 			}
   1805 		}
   1806 	}
   1807 
   1808 	if (prot & VM_PROT_WRITE)
   1809 		pte_lo |= PTE_BW;
   1810 	else
   1811 		pte_lo |= PTE_BR;
   1812 
   1813 	/*
   1814 	 * If this was in response to a fault, "pre-fault" the PTE's
   1815 	 * changed/referenced bit appropriately.
   1816 	 */
   1817 	if (flags & VM_PROT_WRITE)
   1818 		pte_lo |= PTE_CHG;
   1819 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1820 		pte_lo |= PTE_REF;
   1821 
   1822 	/*
   1823 	 * We need to know if this page can be executable
   1824 	 */
   1825 	flags |= (prot & VM_PROT_EXECUTE);
   1826 
   1827 	/*
   1828 	 * Record mapping for later back-translation and pte spilling.
   1829 	 * This will overwrite any existing mapping.
   1830 	 */
   1831 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1832 
   1833 	/*
   1834 	 * Flush the real page from the instruction cache if this page is
   1835 	 * mapped executable and cacheable and has not been flushed since
   1836 	 * the last time it was modified.
   1837 	 */
   1838 	if (error == 0 &&
   1839             (flags & VM_PROT_EXECUTE) &&
   1840             (pte_lo & PTE_I) == 0 &&
   1841 	    was_exec == 0) {
   1842 		DPRINTFN(ENTER, (" syncicache"));
   1843 		PMAPCOUNT(exec_synced);
   1844 		pmap_syncicache(pa, PAGE_SIZE);
   1845 		if (pg != NULL) {
   1846 			pmap_attr_save(pg, PTE_EXEC);
   1847 			PMAPCOUNT(exec_cached);
   1848 #if defined(DEBUG) || defined(PMAPDEBUG)
   1849 			if (pmapdebug & PMAPDEBUG_ENTER)
   1850 				printf(" marked-as-exec");
   1851 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1852 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1853 				    pg->phys_addr);
   1854 
   1855 #endif
   1856 		}
   1857 	}
   1858 
   1859 	DPRINTFN(ENTER, (": error=%d\n", error));
   1860 
   1861 	return error;
   1862 }
   1863 
   1864 void
   1865 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1866 {
   1867 	struct mem_region *mp;
   1868 	register_t pte_lo;
   1869 	int error;
   1870 
   1871 	if (va < VM_MIN_KERNEL_ADDRESS)
   1872 		panic("pmap_kenter_pa: attempt to enter "
   1873 		    "non-kernel address %#lx!", va);
   1874 
   1875 	DPRINTFN(KENTER,
   1876 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1877 
   1878 	/*
   1879 	 * Assume the page is cache inhibited and access is guarded unless
   1880 	 * it's in our available memory array.  If it is in the memory array,
   1881 	 * asssume it's in memory coherent memory.
   1882 	 */
   1883 	pte_lo = PTE_IG;
   1884 	if ((prot & PMAP_NC) == 0) {
   1885 		for (mp = mem; mp->size; mp++) {
   1886 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1887 				pte_lo = PTE_M;
   1888 				break;
   1889 			}
   1890 		}
   1891 	}
   1892 
   1893 	if (prot & VM_PROT_WRITE)
   1894 		pte_lo |= PTE_BW;
   1895 	else
   1896 		pte_lo |= PTE_BR;
   1897 
   1898 	/*
   1899 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1900 	 */
   1901 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1902 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1903 
   1904 	if (error != 0)
   1905 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1906 		      va, pa, error);
   1907 }
   1908 
   1909 void
   1910 pmap_kremove(vaddr_t va, vsize_t len)
   1911 {
   1912 	if (va < VM_MIN_KERNEL_ADDRESS)
   1913 		panic("pmap_kremove: attempt to remove "
   1914 		    "non-kernel address %#lx!", va);
   1915 
   1916 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1917 	pmap_remove(pmap_kernel(), va, va + len);
   1918 }
   1919 
   1920 /*
   1921  * Remove the given range of mapping entries.
   1922  */
   1923 void
   1924 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1925 {
   1926 	struct pvo_entry *pvo;
   1927 	register_t msr;
   1928 	int pteidx;
   1929 
   1930 	msr = pmap_interrupts_off();
   1931 	for (; va < endva; va += PAGE_SIZE) {
   1932 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1933 		if (pvo != NULL) {
   1934 			pmap_pvo_remove(pvo, pteidx);
   1935 		}
   1936 	}
   1937 	pmap_interrupts_restore(msr);
   1938 }
   1939 
   1940 /*
   1941  * Get the physical page address for the given pmap/virtual address.
   1942  */
   1943 boolean_t
   1944 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1945 {
   1946 	struct pvo_entry *pvo;
   1947 	register_t msr;
   1948 
   1949 	/*
   1950 	 * If this is a kernel pmap lookup, also check the battable
   1951 	 * and if we get a hit, translate the VA to a PA using the
   1952 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   1953 	 * that will wrap back to 0.
   1954 	 */
   1955 	if (pm == pmap_kernel() &&
   1956 	    (va < VM_MIN_KERNEL_ADDRESS ||
   1957 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   1958 		register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   1959 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   1960 		if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   1961 			register_t batl = battable[va >> ADDR_SR_SHFT].batl;
   1962 			register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   1963 			*pap = (batl & mask) | (va & ~mask);
   1964 			return TRUE;
   1965 		}
   1966 		return FALSE;
   1967 	}
   1968 
   1969 	msr = pmap_interrupts_off();
   1970 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   1971 	if (pvo != NULL) {
   1972 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1973 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   1974 	}
   1975 	pmap_interrupts_restore(msr);
   1976 	return pvo != NULL;
   1977 }
   1978 
   1979 /*
   1980  * Lower the protection on the specified range of this pmap.
   1981  */
   1982 void
   1983 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   1984 {
   1985 	struct pvo_entry *pvo;
   1986 	volatile struct pte *pt;
   1987 	register_t msr;
   1988 	int pteidx;
   1989 
   1990 	/*
   1991 	 * Since this routine only downgrades protection, we should
   1992 	 * always be called with at least one bit not set.
   1993 	 */
   1994 	KASSERT(prot != VM_PROT_ALL);
   1995 
   1996 	/*
   1997 	 * If there is no protection, this is equivalent to
   1998 	 * remove the pmap from the pmap.
   1999 	 */
   2000 	if ((prot & VM_PROT_READ) == 0) {
   2001 		pmap_remove(pm, va, endva);
   2002 		return;
   2003 	}
   2004 
   2005 	msr = pmap_interrupts_off();
   2006 	for (; va < endva; va += PAGE_SIZE) {
   2007 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2008 		if (pvo == NULL)
   2009 			continue;
   2010 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2011 
   2012 		/*
   2013 		 * Revoke executable if asked to do so.
   2014 		 */
   2015 		if ((prot & VM_PROT_EXECUTE) == 0)
   2016 			pvo_clear_exec(pvo);
   2017 
   2018 #if 0
   2019 		/*
   2020 		 * If the page is already read-only, no change
   2021 		 * needs to be made.
   2022 		 */
   2023 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2024 			continue;
   2025 #endif
   2026 		/*
   2027 		 * Grab the PTE pointer before we diddle with
   2028 		 * the cached PTE copy.
   2029 		 */
   2030 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2031 		/*
   2032 		 * Change the protection of the page.
   2033 		 */
   2034 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2035 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2036 
   2037 		/*
   2038 		 * If the PVO is in the page table, update
   2039 		 * that pte at well.
   2040 		 */
   2041 		if (pt != NULL) {
   2042 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2043 			PVO_WHERE(pvo, PMAP_PROTECT);
   2044 			PMAPCOUNT(ptes_changed);
   2045 		}
   2046 
   2047 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2048 	}
   2049 	pmap_interrupts_restore(msr);
   2050 }
   2051 
   2052 void
   2053 pmap_unwire(pmap_t pm, vaddr_t va)
   2054 {
   2055 	struct pvo_entry *pvo;
   2056 	register_t msr;
   2057 
   2058 	msr = pmap_interrupts_off();
   2059 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2060 	if (pvo != NULL) {
   2061 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2062 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2063 			pm->pm_stats.wired_count--;
   2064 		}
   2065 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2066 	}
   2067 	pmap_interrupts_restore(msr);
   2068 }
   2069 
   2070 /*
   2071  * Lower the protection on the specified physical page.
   2072  */
   2073 void
   2074 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2075 {
   2076 	struct pvo_head *pvo_head;
   2077 	struct pvo_entry *pvo, *next_pvo;
   2078 	volatile struct pte *pt;
   2079 	register_t msr;
   2080 
   2081 	KASSERT(prot != VM_PROT_ALL);
   2082 	msr = pmap_interrupts_off();
   2083 
   2084 	/*
   2085 	 * When UVM reuses a page, it does a pmap_page_protect with
   2086 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2087 	 * since we know the page will have different contents.
   2088 	 */
   2089 	if ((prot & VM_PROT_READ) == 0) {
   2090 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2091 		    pg->phys_addr));
   2092 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2093 			PMAPCOUNT(exec_uncached_page_protect);
   2094 			pmap_attr_clear(pg, PTE_EXEC);
   2095 		}
   2096 	}
   2097 
   2098 	pvo_head = vm_page_to_pvoh(pg);
   2099 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2100 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2101 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2102 
   2103 		/*
   2104 		 * Downgrading to no mapping at all, we just remove the entry.
   2105 		 */
   2106 		if ((prot & VM_PROT_READ) == 0) {
   2107 			pmap_pvo_remove(pvo, -1);
   2108 			continue;
   2109 		}
   2110 
   2111 		/*
   2112 		 * If EXEC permission is being revoked, just clear the
   2113 		 * flag in the PVO.
   2114 		 */
   2115 		if ((prot & VM_PROT_EXECUTE) == 0)
   2116 			pvo_clear_exec(pvo);
   2117 
   2118 		/*
   2119 		 * If this entry is already RO, don't diddle with the
   2120 		 * page table.
   2121 		 */
   2122 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2123 			PMAP_PVO_CHECK(pvo);
   2124 			continue;
   2125 		}
   2126 
   2127 		/*
   2128 		 * Grab the PTE before the we diddle the bits so
   2129 		 * pvo_to_pte can verify the pte contents are as
   2130 		 * expected.
   2131 		 */
   2132 		pt = pmap_pvo_to_pte(pvo, -1);
   2133 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2134 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2135 		if (pt != NULL) {
   2136 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2137 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2138 			PMAPCOUNT(ptes_changed);
   2139 		}
   2140 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2141 	}
   2142 	pmap_interrupts_restore(msr);
   2143 }
   2144 
   2145 /*
   2146  * Activate the address space for the specified process.  If the process
   2147  * is the current process, load the new MMU context.
   2148  */
   2149 void
   2150 pmap_activate(struct lwp *l)
   2151 {
   2152 	struct pcb *pcb = &l->l_addr->u_pcb;
   2153 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2154 
   2155 	DPRINTFN(ACTIVATE,
   2156 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2157 
   2158 	/*
   2159 	 * XXX Normally performed in cpu_fork().
   2160 	 */
   2161 	pcb->pcb_pm = pmap;
   2162 
   2163 	/*
   2164 	* In theory, the SR registers need only be valid on return
   2165 	* to user space wait to do them there.
   2166 	*/
   2167 	if (l == curlwp) {
   2168 		/* Store pointer to new current pmap. */
   2169 		curpm = pmap;
   2170 	}
   2171 }
   2172 
   2173 /*
   2174  * Deactivate the specified process's address space.
   2175  */
   2176 void
   2177 pmap_deactivate(struct lwp *l)
   2178 {
   2179 }
   2180 
   2181 boolean_t
   2182 pmap_query_bit(struct vm_page *pg, int ptebit)
   2183 {
   2184 	struct pvo_entry *pvo;
   2185 	volatile struct pte *pt;
   2186 	register_t msr;
   2187 
   2188 	if (pmap_attr_fetch(pg) & ptebit)
   2189 		return TRUE;
   2190 
   2191 	msr = pmap_interrupts_off();
   2192 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2193 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2194 		/*
   2195 		 * See if we saved the bit off.  If so cache, it and return
   2196 		 * success.
   2197 		 */
   2198 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2199 			pmap_attr_save(pg, ptebit);
   2200 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2201 			pmap_interrupts_restore(msr);
   2202 			return TRUE;
   2203 		}
   2204 	}
   2205 	/*
   2206 	 * No luck, now go thru the hard part of looking at the ptes
   2207 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2208 	 * to the PTEs.
   2209 	 */
   2210 	SYNC();
   2211 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2212 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2213 		/*
   2214 		 * See if this pvo have a valid PTE.  If so, fetch the
   2215 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2216 		 * ptebit is set, cache, it and return success.
   2217 		 */
   2218 		pt = pmap_pvo_to_pte(pvo, -1);
   2219 		if (pt != NULL) {
   2220 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2221 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2222 				pmap_attr_save(pg, ptebit);
   2223 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2224 				pmap_interrupts_restore(msr);
   2225 				return TRUE;
   2226 			}
   2227 		}
   2228 	}
   2229 	pmap_interrupts_restore(msr);
   2230 	return FALSE;
   2231 }
   2232 
   2233 boolean_t
   2234 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2235 {
   2236 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2237 	struct pvo_entry *pvo;
   2238 	volatile struct pte *pt;
   2239 	register_t msr;
   2240 	int rv = 0;
   2241 
   2242 	msr = pmap_interrupts_off();
   2243 
   2244 	/*
   2245 	 * Fetch the cache value
   2246 	 */
   2247 	rv |= pmap_attr_fetch(pg);
   2248 
   2249 	/*
   2250 	 * Clear the cached value.
   2251 	 */
   2252 	pmap_attr_clear(pg, ptebit);
   2253 
   2254 	/*
   2255 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2256 	 * can reset the right ones).  Note that since the pvo entries and
   2257 	 * list heads are accessed via BAT0 and are never placed in the
   2258 	 * page table, we don't have to worry about further accesses setting
   2259 	 * the REF/CHG bits.
   2260 	 */
   2261 	SYNC();
   2262 
   2263 	/*
   2264 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2265 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2266 	 */
   2267 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2268 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2269 		pt = pmap_pvo_to_pte(pvo, -1);
   2270 		if (pt != NULL) {
   2271 			/*
   2272 			 * Only sync the PTE if the bit we are looking
   2273 			 * for is not already set.
   2274 			 */
   2275 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2276 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2277 			/*
   2278 			 * If the bit we are looking for was already set,
   2279 			 * clear that bit in the pte.
   2280 			 */
   2281 			if (pvo->pvo_pte.pte_lo & ptebit)
   2282 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2283 		}
   2284 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2285 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2286 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2287 	}
   2288 	pmap_interrupts_restore(msr);
   2289 
   2290 	/*
   2291 	 * If we are clearing the modify bit and this page was marked EXEC
   2292 	 * and the user of the page thinks the page was modified, then we
   2293 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2294 	 * bit if it's not mapped.  The page itself might not have the CHG
   2295 	 * bit set if the modification was done via DMA to the page.
   2296 	 */
   2297 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2298 		if (LIST_EMPTY(pvoh)) {
   2299 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2300 			    pg->phys_addr));
   2301 			pmap_attr_clear(pg, PTE_EXEC);
   2302 			PMAPCOUNT(exec_uncached_clear_modify);
   2303 		} else {
   2304 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2305 			    pg->phys_addr));
   2306 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2307 			PMAPCOUNT(exec_synced_clear_modify);
   2308 		}
   2309 	}
   2310 	return (rv & ptebit) != 0;
   2311 }
   2312 
   2313 void
   2314 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2315 {
   2316 	struct pvo_entry *pvo;
   2317 	size_t offset = va & ADDR_POFF;
   2318 	int s;
   2319 
   2320 	s = splvm();
   2321 	while (len > 0) {
   2322 		size_t seglen = PAGE_SIZE - offset;
   2323 		if (seglen > len)
   2324 			seglen = len;
   2325 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2326 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2327 			pmap_syncicache(
   2328 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2329 			PMAP_PVO_CHECK(pvo);
   2330 		}
   2331 		va += seglen;
   2332 		len -= seglen;
   2333 		offset = 0;
   2334 	}
   2335 	splx(s);
   2336 }
   2337 
   2338 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2339 void
   2340 pmap_pte_print(volatile struct pte *pt)
   2341 {
   2342 	printf("PTE %p: ", pt);
   2343 	/* High word: */
   2344 	printf("0x%08lx: [", pt->pte_hi);
   2345 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2346 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2347 	printf("0x%06lx 0x%02lx",
   2348 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2349 	    pt->pte_hi & PTE_API);
   2350 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2351 	/* Low word: */
   2352 	printf(" 0x%08lx: [", pt->pte_lo);
   2353 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2354 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2355 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2356 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2357 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2358 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2359 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2360 	switch (pt->pte_lo & PTE_PP) {
   2361 	case PTE_BR: printf("br]\n"); break;
   2362 	case PTE_BW: printf("bw]\n"); break;
   2363 	case PTE_SO: printf("so]\n"); break;
   2364 	case PTE_SW: printf("sw]\n"); break;
   2365 	}
   2366 }
   2367 #endif
   2368 
   2369 #if defined(DDB)
   2370 void
   2371 pmap_pteg_check(void)
   2372 {
   2373 	volatile struct pte *pt;
   2374 	int i;
   2375 	int ptegidx;
   2376 	u_int p_valid = 0;
   2377 	u_int s_valid = 0;
   2378 	u_int invalid = 0;
   2379 
   2380 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2381 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2382 			if (pt->pte_hi & PTE_VALID) {
   2383 				if (pt->pte_hi & PTE_HID)
   2384 					s_valid++;
   2385 				else
   2386 					p_valid++;
   2387 			} else
   2388 				invalid++;
   2389 		}
   2390 	}
   2391 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2392 		p_valid, p_valid, s_valid, s_valid,
   2393 		invalid, invalid);
   2394 }
   2395 
   2396 void
   2397 pmap_print_mmuregs(void)
   2398 {
   2399 	int i;
   2400 	u_int cpuvers;
   2401 #ifndef PPC_OEA64
   2402 	vaddr_t addr;
   2403 	register_t soft_sr[16];
   2404 #endif
   2405 	struct bat soft_ibat[4];
   2406 	struct bat soft_dbat[4];
   2407 	register_t sdr1;
   2408 
   2409 	cpuvers = MFPVR() >> 16;
   2410 
   2411 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2412 #ifndef PPC_OEA64
   2413 	addr = 0;
   2414 	for (i=0; i<16; i++) {
   2415 		soft_sr[i] = MFSRIN(addr);
   2416 		addr += (1 << ADDR_SR_SHFT);
   2417 	}
   2418 #endif
   2419 
   2420 	/* read iBAT (601: uBAT) registers */
   2421 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2422 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2423 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2424 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2425 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2426 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2427 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2428 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2429 
   2430 
   2431 	if (cpuvers != MPC601) {
   2432 		/* read dBAT registers */
   2433 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2434 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2435 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2436 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2437 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2438 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2439 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2440 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2441 	}
   2442 
   2443 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2444 #ifndef PPC_OEA64
   2445 	printf("SR[]:\t");
   2446 	for (i=0; i<4; i++)
   2447 		printf("0x%08lx,   ", soft_sr[i]);
   2448 	printf("\n\t");
   2449 	for ( ; i<8; i++)
   2450 		printf("0x%08lx,   ", soft_sr[i]);
   2451 	printf("\n\t");
   2452 	for ( ; i<12; i++)
   2453 		printf("0x%08lx,   ", soft_sr[i]);
   2454 	printf("\n\t");
   2455 	for ( ; i<16; i++)
   2456 		printf("0x%08lx,   ", soft_sr[i]);
   2457 	printf("\n");
   2458 #endif
   2459 
   2460 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2461 	for (i=0; i<4; i++) {
   2462 		printf("0x%08lx 0x%08lx, ",
   2463 			soft_ibat[i].batu, soft_ibat[i].batl);
   2464 		if (i == 1)
   2465 			printf("\n\t");
   2466 	}
   2467 	if (cpuvers != MPC601) {
   2468 		printf("\ndBAT[]:\t");
   2469 		for (i=0; i<4; i++) {
   2470 			printf("0x%08lx 0x%08lx, ",
   2471 				soft_dbat[i].batu, soft_dbat[i].batl);
   2472 			if (i == 1)
   2473 				printf("\n\t");
   2474 		}
   2475 	}
   2476 	printf("\n");
   2477 }
   2478 
   2479 void
   2480 pmap_print_pte(pmap_t pm, vaddr_t va)
   2481 {
   2482 	struct pvo_entry *pvo;
   2483 	volatile struct pte *pt;
   2484 	int pteidx;
   2485 
   2486 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2487 	if (pvo != NULL) {
   2488 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2489 		if (pt != NULL) {
   2490 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2491 				va, pt,
   2492 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2493 				pt->pte_hi, pt->pte_lo);
   2494 		} else {
   2495 			printf("No valid PTE found\n");
   2496 		}
   2497 	} else {
   2498 		printf("Address not in pmap\n");
   2499 	}
   2500 }
   2501 
   2502 void
   2503 pmap_pteg_dist(void)
   2504 {
   2505 	struct pvo_entry *pvo;
   2506 	int ptegidx;
   2507 	int depth;
   2508 	int max_depth = 0;
   2509 	unsigned int depths[64];
   2510 
   2511 	memset(depths, 0, sizeof(depths));
   2512 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2513 		depth = 0;
   2514 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2515 			depth++;
   2516 		}
   2517 		if (depth > max_depth)
   2518 			max_depth = depth;
   2519 		if (depth > 63)
   2520 			depth = 63;
   2521 		depths[depth]++;
   2522 	}
   2523 
   2524 	for (depth = 0; depth < 64; depth++) {
   2525 		printf("  [%2d]: %8u", depth, depths[depth]);
   2526 		if ((depth & 3) == 3)
   2527 			printf("\n");
   2528 		if (depth == max_depth)
   2529 			break;
   2530 	}
   2531 	if ((depth & 3) != 3)
   2532 		printf("\n");
   2533 	printf("Max depth found was %d\n", max_depth);
   2534 }
   2535 #endif /* DEBUG */
   2536 
   2537 #if defined(PMAPCHECK) || defined(DEBUG)
   2538 void
   2539 pmap_pvo_verify(void)
   2540 {
   2541 	int ptegidx;
   2542 	int s;
   2543 
   2544 	s = splvm();
   2545 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2546 		struct pvo_entry *pvo;
   2547 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2548 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2549 				panic("pmap_pvo_verify: invalid pvo %p "
   2550 				    "on list %#x", pvo, ptegidx);
   2551 			pmap_pvo_check(pvo);
   2552 		}
   2553 	}
   2554 	splx(s);
   2555 }
   2556 #endif /* PMAPCHECK */
   2557 
   2558 
   2559 void *
   2560 pmap_pool_ualloc(struct pool *pp, int flags)
   2561 {
   2562 	struct pvo_page *pvop;
   2563 
   2564 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2565 	if (pvop != NULL) {
   2566 		pmap_upvop_free--;
   2567 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2568 		return pvop;
   2569 	}
   2570 	if (uvm.page_init_done != TRUE) {
   2571 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2572 	}
   2573 	return pmap_pool_malloc(pp, flags);
   2574 }
   2575 
   2576 void *
   2577 pmap_pool_malloc(struct pool *pp, int flags)
   2578 {
   2579 	struct pvo_page *pvop;
   2580 	struct vm_page *pg;
   2581 
   2582 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2583 	if (pvop != NULL) {
   2584 		pmap_mpvop_free--;
   2585 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2586 		return pvop;
   2587 	}
   2588  again:
   2589 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2590 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2591 	if (__predict_false(pg == NULL)) {
   2592 		if (flags & PR_WAITOK) {
   2593 			uvm_wait("plpg");
   2594 			goto again;
   2595 		} else {
   2596 			return (0);
   2597 		}
   2598 	}
   2599 	return (void *) VM_PAGE_TO_PHYS(pg);
   2600 }
   2601 
   2602 void
   2603 pmap_pool_ufree(struct pool *pp, void *va)
   2604 {
   2605 	struct pvo_page *pvop;
   2606 #if 0
   2607 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2608 		pmap_pool_mfree(va, size, tag);
   2609 		return;
   2610 	}
   2611 #endif
   2612 	pvop = va;
   2613 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2614 	pmap_upvop_free++;
   2615 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2616 		pmap_upvop_maxfree = pmap_upvop_free;
   2617 }
   2618 
   2619 void
   2620 pmap_pool_mfree(struct pool *pp, void *va)
   2621 {
   2622 	struct pvo_page *pvop;
   2623 
   2624 	pvop = va;
   2625 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2626 	pmap_mpvop_free++;
   2627 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2628 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2629 #if 0
   2630 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2631 #endif
   2632 }
   2633 
   2634 /*
   2635  * This routine in bootstraping to steal to-be-managed memory (which will
   2636  * then be unmanaged).  We use it to grab from the first 256MB for our
   2637  * pmap needs and above 256MB for other stuff.
   2638  */
   2639 vaddr_t
   2640 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2641 {
   2642 	vsize_t size;
   2643 	vaddr_t va;
   2644 	paddr_t pa = 0;
   2645 	int npgs, bank;
   2646 	struct vm_physseg *ps;
   2647 
   2648 	if (uvm.page_init_done == TRUE)
   2649 		panic("pmap_steal_memory: called _after_ bootstrap");
   2650 
   2651 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2652 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2653 
   2654 	size = round_page(vsize);
   2655 	npgs = atop(size);
   2656 
   2657 	/*
   2658 	 * PA 0 will never be among those given to UVM so we can use it
   2659 	 * to indicate we couldn't steal any memory.
   2660 	 */
   2661 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2662 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2663 		    ps->avail_end - ps->avail_start >= npgs) {
   2664 			pa = ptoa(ps->avail_start);
   2665 			break;
   2666 		}
   2667 	}
   2668 
   2669 	if (pa == 0)
   2670 		panic("pmap_steal_memory: no approriate memory to steal!");
   2671 
   2672 	ps->avail_start += npgs;
   2673 	ps->start += npgs;
   2674 
   2675 	/*
   2676 	 * If we've used up all the pages in the segment, remove it and
   2677 	 * compact the list.
   2678 	 */
   2679 	if (ps->avail_start == ps->end) {
   2680 		/*
   2681 		 * If this was the last one, then a very bad thing has occurred
   2682 		 */
   2683 		if (--vm_nphysseg == 0)
   2684 			panic("pmap_steal_memory: out of memory!");
   2685 
   2686 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2687 		for (; bank < vm_nphysseg; bank++, ps++) {
   2688 			ps[0] = ps[1];
   2689 		}
   2690 	}
   2691 
   2692 	va = (vaddr_t) pa;
   2693 	memset((caddr_t) va, 0, size);
   2694 	pmap_pages_stolen += npgs;
   2695 #ifdef DEBUG
   2696 	if (pmapdebug && npgs > 1) {
   2697 		u_int cnt = 0;
   2698 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2699 			cnt += ps->avail_end - ps->avail_start;
   2700 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2701 		    npgs, pmap_pages_stolen, cnt);
   2702 	}
   2703 #endif
   2704 
   2705 	return va;
   2706 }
   2707 
   2708 /*
   2709  * Find a chuck of memory with right size and alignment.
   2710  */
   2711 void *
   2712 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2713 {
   2714 	struct mem_region *mp;
   2715 	paddr_t s, e;
   2716 	int i, j;
   2717 
   2718 	size = round_page(size);
   2719 
   2720 	DPRINTFN(BOOT,
   2721 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2722 	    size, alignment, at_end));
   2723 
   2724 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2725 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2726 		    alignment);
   2727 
   2728 	if (at_end) {
   2729 		if (alignment != PAGE_SIZE)
   2730 			panic("pmap_boot_find_memory: invalid ending "
   2731 			    "alignment %lx", alignment);
   2732 
   2733 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2734 			s = mp->start + mp->size - size;
   2735 			if (s >= mp->start && mp->size >= size) {
   2736 				DPRINTFN(BOOT,(": %lx\n", s));
   2737 				DPRINTFN(BOOT,
   2738 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2739 				     "0x%lx size 0x%lx\n", mp - avail,
   2740 				     mp->start, mp->size));
   2741 				mp->size -= size;
   2742 				DPRINTFN(BOOT,
   2743 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2744 				     "0x%lx size 0x%lx\n", mp - avail,
   2745 				     mp->start, mp->size));
   2746 				return (void *) s;
   2747 			}
   2748 		}
   2749 		panic("pmap_boot_find_memory: no available memory");
   2750 	}
   2751 
   2752 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2753 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2754 		e = s + size;
   2755 
   2756 		/*
   2757 		 * Is the calculated region entirely within the region?
   2758 		 */
   2759 		if (s < mp->start || e > mp->start + mp->size)
   2760 			continue;
   2761 
   2762 		DPRINTFN(BOOT,(": %lx\n", s));
   2763 		if (s == mp->start) {
   2764 			/*
   2765 			 * If the block starts at the beginning of region,
   2766 			 * adjust the size & start. (the region may now be
   2767 			 * zero in length)
   2768 			 */
   2769 			DPRINTFN(BOOT,
   2770 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2771 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2772 			mp->start += size;
   2773 			mp->size -= size;
   2774 			DPRINTFN(BOOT,
   2775 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2776 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2777 		} else if (e == mp->start + mp->size) {
   2778 			/*
   2779 			 * If the block starts at the beginning of region,
   2780 			 * adjust only the size.
   2781 			 */
   2782 			DPRINTFN(BOOT,
   2783 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2784 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2785 			mp->size -= size;
   2786 			DPRINTFN(BOOT,
   2787 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2788 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2789 		} else {
   2790 			/*
   2791 			 * Block is in the middle of the region, so we
   2792 			 * have to split it in two.
   2793 			 */
   2794 			for (j = avail_cnt; j > i + 1; j--) {
   2795 				avail[j] = avail[j-1];
   2796 			}
   2797 			DPRINTFN(BOOT,
   2798 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2799 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2800 			mp[1].start = e;
   2801 			mp[1].size = mp[0].start + mp[0].size - e;
   2802 			mp[0].size = s - mp[0].start;
   2803 			avail_cnt++;
   2804 			for (; i < avail_cnt; i++) {
   2805 				DPRINTFN(BOOT,
   2806 				    ("pmap_boot_find_memory: a-avail[%d] "
   2807 				     "start 0x%lx size 0x%lx\n", i,
   2808 				     avail[i].start, avail[i].size));
   2809 			}
   2810 		}
   2811 		return (void *) s;
   2812 	}
   2813 	panic("pmap_boot_find_memory: not enough memory for "
   2814 	    "%lx/%lx allocation?", size, alignment);
   2815 }
   2816 
   2817 /*
   2818  * This is not part of the defined PMAP interface and is specific to the
   2819  * PowerPC architecture.  This is called during initppc, before the system
   2820  * is really initialized.
   2821  */
   2822 void
   2823 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2824 {
   2825 	struct mem_region *mp, tmp;
   2826 	paddr_t s, e;
   2827 	psize_t size;
   2828 	int i, j;
   2829 
   2830 	/*
   2831 	 * Get memory.
   2832 	 */
   2833 	mem_regions(&mem, &avail);
   2834 #if defined(DEBUG)
   2835 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2836 		printf("pmap_bootstrap: memory configuration:\n");
   2837 		for (mp = mem; mp->size; mp++) {
   2838 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2839 				mp->start, mp->size);
   2840 		}
   2841 		for (mp = avail; mp->size; mp++) {
   2842 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2843 				mp->start, mp->size);
   2844 		}
   2845 	}
   2846 #endif
   2847 
   2848 	/*
   2849 	 * Find out how much physical memory we have and in how many chunks.
   2850 	 */
   2851 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2852 		if (mp->start >= pmap_memlimit)
   2853 			continue;
   2854 		if (mp->start + mp->size > pmap_memlimit) {
   2855 			size = pmap_memlimit - mp->start;
   2856 			physmem += btoc(size);
   2857 		} else {
   2858 			physmem += btoc(mp->size);
   2859 		}
   2860 		mem_cnt++;
   2861 	}
   2862 
   2863 	/*
   2864 	 * Count the number of available entries.
   2865 	 */
   2866 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2867 		avail_cnt++;
   2868 
   2869 	/*
   2870 	 * Page align all regions.
   2871 	 */
   2872 	kernelstart = trunc_page(kernelstart);
   2873 	kernelend = round_page(kernelend);
   2874 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2875 		s = round_page(mp->start);
   2876 		mp->size -= (s - mp->start);
   2877 		mp->size = trunc_page(mp->size);
   2878 		mp->start = s;
   2879 		e = mp->start + mp->size;
   2880 
   2881 		DPRINTFN(BOOT,
   2882 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2883 		    i, mp->start, mp->size));
   2884 
   2885 		/*
   2886 		 * Don't allow the end to run beyond our artificial limit
   2887 		 */
   2888 		if (e > pmap_memlimit)
   2889 			e = pmap_memlimit;
   2890 
   2891 		/*
   2892 		 * Is this region empty or strange?  skip it.
   2893 		 */
   2894 		if (e <= s) {
   2895 			mp->start = 0;
   2896 			mp->size = 0;
   2897 			continue;
   2898 		}
   2899 
   2900 		/*
   2901 		 * Does this overlap the beginning of kernel?
   2902 		 *   Does extend past the end of the kernel?
   2903 		 */
   2904 		else if (s < kernelstart && e > kernelstart) {
   2905 			if (e > kernelend) {
   2906 				avail[avail_cnt].start = kernelend;
   2907 				avail[avail_cnt].size = e - kernelend;
   2908 				avail_cnt++;
   2909 			}
   2910 			mp->size = kernelstart - s;
   2911 		}
   2912 		/*
   2913 		 * Check whether this region overlaps the end of the kernel.
   2914 		 */
   2915 		else if (s < kernelend && e > kernelend) {
   2916 			mp->start = kernelend;
   2917 			mp->size = e - kernelend;
   2918 		}
   2919 		/*
   2920 		 * Look whether this regions is completely inside the kernel.
   2921 		 * Nuke it if it does.
   2922 		 */
   2923 		else if (s >= kernelstart && e <= kernelend) {
   2924 			mp->start = 0;
   2925 			mp->size = 0;
   2926 		}
   2927 		/*
   2928 		 * If the user imposed a memory limit, enforce it.
   2929 		 */
   2930 		else if (s >= pmap_memlimit) {
   2931 			mp->start = -PAGE_SIZE;	/* let's know why */
   2932 			mp->size = 0;
   2933 		}
   2934 		else {
   2935 			mp->start = s;
   2936 			mp->size = e - s;
   2937 		}
   2938 		DPRINTFN(BOOT,
   2939 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   2940 		    i, mp->start, mp->size));
   2941 	}
   2942 
   2943 	/*
   2944 	 * Move (and uncount) all the null return to the end.
   2945 	 */
   2946 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2947 		if (mp->size == 0) {
   2948 			tmp = avail[i];
   2949 			avail[i] = avail[--avail_cnt];
   2950 			avail[avail_cnt] = avail[i];
   2951 		}
   2952 	}
   2953 
   2954 	/*
   2955 	 * (Bubble)sort them into asecnding order.
   2956 	 */
   2957 	for (i = 0; i < avail_cnt; i++) {
   2958 		for (j = i + 1; j < avail_cnt; j++) {
   2959 			if (avail[i].start > avail[j].start) {
   2960 				tmp = avail[i];
   2961 				avail[i] = avail[j];
   2962 				avail[j] = tmp;
   2963 			}
   2964 		}
   2965 	}
   2966 
   2967 	/*
   2968 	 * Make sure they don't overlap.
   2969 	 */
   2970 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   2971 		if (mp[0].start + mp[0].size > mp[1].start) {
   2972 			mp[0].size = mp[1].start - mp[0].start;
   2973 		}
   2974 		DPRINTFN(BOOT,
   2975 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2976 		    i, mp->start, mp->size));
   2977 	}
   2978 	DPRINTFN(BOOT,
   2979 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2980 	    i, mp->start, mp->size));
   2981 
   2982 #ifdef	PTEGCOUNT
   2983 	pmap_pteg_cnt = PTEGCOUNT;
   2984 #else /* PTEGCOUNT */
   2985 	pmap_pteg_cnt = 0x1000;
   2986 
   2987 	while (pmap_pteg_cnt < physmem)
   2988 		pmap_pteg_cnt <<= 1;
   2989 
   2990 	pmap_pteg_cnt >>= 1;
   2991 #endif /* PTEGCOUNT */
   2992 
   2993 	/*
   2994 	 * Find suitably aligned memory for PTEG hash table.
   2995 	 */
   2996 	size = pmap_pteg_cnt * sizeof(struct pteg);
   2997 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   2998 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2999 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3000 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3001 		    pmap_pteg_table, size);
   3002 #endif
   3003 
   3004 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   3005 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3006 
   3007 	/*
   3008 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3009 	 * with pages.  So we just steal them before giving them to UVM.
   3010 	 */
   3011 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3012 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3013 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3014 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3015 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3016 		    pmap_pvo_table, size);
   3017 #endif
   3018 
   3019 	for (i = 0; i < pmap_pteg_cnt; i++)
   3020 		TAILQ_INIT(&pmap_pvo_table[i]);
   3021 
   3022 #ifndef MSGBUFADDR
   3023 	/*
   3024 	 * Allocate msgbuf in high memory.
   3025 	 */
   3026 	msgbuf_paddr =
   3027 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3028 #endif
   3029 
   3030 #ifdef __HAVE_PMAP_PHYSSEG
   3031 	{
   3032 		u_int npgs = 0;
   3033 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3034 			npgs += btoc(mp->size);
   3035 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3036 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3037 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3038 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3039 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3040 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3041 			    pmap_physseg.pvoh, size);
   3042 #endif
   3043 	}
   3044 #endif
   3045 
   3046 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3047 		paddr_t pfstart = atop(mp->start);
   3048 		paddr_t pfend = atop(mp->start + mp->size);
   3049 		if (mp->size == 0)
   3050 			continue;
   3051 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3052 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3053 				VM_FREELIST_FIRST256);
   3054 		} else if (mp->start >= SEGMENT_LENGTH) {
   3055 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3056 				VM_FREELIST_DEFAULT);
   3057 		} else {
   3058 			pfend = atop(SEGMENT_LENGTH);
   3059 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3060 				VM_FREELIST_FIRST256);
   3061 			pfstart = atop(SEGMENT_LENGTH);
   3062 			pfend = atop(mp->start + mp->size);
   3063 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3064 				VM_FREELIST_DEFAULT);
   3065 		}
   3066 	}
   3067 
   3068 	/*
   3069 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3070 	 */
   3071 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3072 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3073 	pmap_vsid_bitmap[0] |= 1;
   3074 
   3075 	/*
   3076 	 * Initialize kernel pmap and hardware.
   3077 	 */
   3078 #ifndef PPC_OEA64
   3079 	for (i = 0; i < 16; i++) {
   3080 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3081 		__asm __volatile ("mtsrin %0,%1"
   3082 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3083 	}
   3084 
   3085 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3086 	__asm __volatile ("mtsr %0,%1"
   3087 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3088 #ifdef KERNEL2_SR
   3089 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3090 	__asm __volatile ("mtsr %0,%1"
   3091 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3092 #endif
   3093 	for (i = 0; i < 16; i++) {
   3094 		if (iosrtable[i] & SR601_T) {
   3095 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3096 			__asm __volatile ("mtsrin %0,%1"
   3097 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3098 		}
   3099 	}
   3100 #endif /* !PPC_OEA64 */
   3101 
   3102 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3103 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3104 	tlbia();
   3105 
   3106 #ifdef ALTIVEC
   3107 	pmap_use_altivec = cpu_altivec;
   3108 #endif
   3109 
   3110 #ifdef DEBUG
   3111 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3112 		u_int cnt;
   3113 		int bank;
   3114 		char pbuf[9];
   3115 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3116 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3117 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3118 			    bank,
   3119 			    ptoa(vm_physmem[bank].avail_start),
   3120 			    ptoa(vm_physmem[bank].avail_end),
   3121 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3122 		}
   3123 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3124 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3125 		    pbuf, cnt);
   3126 	}
   3127 #endif
   3128 
   3129 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3130 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3131 	    &pmap_pool_uallocator);
   3132 
   3133 	pool_setlowat(&pmap_upvo_pool, 252);
   3134 
   3135 	pool_init(&pmap_pool, sizeof(struct pmap),
   3136 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3137 }
   3138