pmap.c revision 1.22 1 /* $NetBSD: pmap.c,v 1.22 2004/03/21 10:25:59 aymeric Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.22 2004/03/21 10:25:59 aymeric Exp $");
71
72 #include "opt_ppcarch.h"
73 #include "opt_altivec.h"
74 #include "opt_pmap.h"
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83
84 #if __NetBSD_Version__ < 105010000
85 #include <vm/vm.h>
86 #include <vm/vm_kern.h>
87 #define splvm() splimp()
88 #endif
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97
98 #if defined(DEBUG) || defined(PMAPCHECK)
99 #define STATIC
100 #else
101 #define STATIC static
102 #endif
103
104 #ifdef ALTIVEC
105 int pmap_use_altivec;
106 #endif
107
108 volatile struct pteg *pmap_pteg_table;
109 unsigned int pmap_pteg_cnt;
110 unsigned int pmap_pteg_mask;
111 #ifdef PMAP_MEMLIMIT
112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 #else
114 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
115 #endif
116
117 struct pmap kernel_pmap_;
118 unsigned int pmap_pages_stolen;
119 u_long pmap_pte_valid;
120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 u_long pmap_pvo_enter_depth;
122 u_long pmap_pvo_remove_depth;
123 #endif
124
125 int physmem;
126 #ifndef MSGBUFADDR
127 extern paddr_t msgbuf_paddr;
128 #endif
129
130 static struct mem_region *mem, *avail;
131 static u_int mem_cnt, avail_cnt;
132
133 #ifdef __HAVE_PMAP_PHYSSEG
134 /*
135 * This is a cache of referenced/modified bits.
136 * Bits herein are shifted by ATTRSHFT.
137 */
138 #define ATTR_SHFT 4
139 struct pmap_physseg pmap_physseg;
140 #endif
141
142 /*
143 * The following structure is exactly 32 bytes long (one cacheline).
144 */
145 struct pvo_entry {
146 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
147 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
148 struct pte pvo_pte; /* Prebuilt PTE */
149 pmap_t pvo_pmap; /* ptr to owning pmap */
150 vaddr_t pvo_vaddr; /* VA of entry */
151 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
152 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
153 #define PVO_WIRED 0x0010 /* PVO entry is wired */
154 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
155 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
156 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
157 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
158 #define PVO_SPILL_SET 2 /* PVO has been spilled */
159 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
160 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
161 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
162 #define PVO_REMOVE 6 /* PVO has been removed */
163 #define PVO_WHERE_MASK 15
164 #define PVO_WHERE_SHFT 8
165 };
166 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
167 #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 #define PVO_PTEGIDX_CLR(pvo) \
171 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 #define PVO_PTEGIDX_SET(pvo,i) \
173 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 #define PVO_WHERE(pvo,w) \
175 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177
178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
182
183 struct pool pmap_pool; /* pool for pmap structures */
184 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
185 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
186
187 /*
188 * We keep a cache of unmanaged pages to be used for pvo entries for
189 * unmanaged pages.
190 */
191 struct pvo_page {
192 SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 };
194 SIMPLEQ_HEAD(pvop_head, pvo_page);
195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 u_long pmap_upvop_free;
198 u_long pmap_upvop_maxfree;
199 u_long pmap_mpvop_free;
200 u_long pmap_mpvop_maxfree;
201
202 STATIC void *pmap_pool_ualloc(struct pool *, int);
203 STATIC void *pmap_pool_malloc(struct pool *, int);
204
205 STATIC void pmap_pool_ufree(struct pool *, void *);
206 STATIC void pmap_pool_mfree(struct pool *, void *);
207
208 static struct pool_allocator pmap_pool_mallocator = {
209 pmap_pool_malloc, pmap_pool_mfree, 0,
210 };
211
212 static struct pool_allocator pmap_pool_uallocator = {
213 pmap_pool_ualloc, pmap_pool_ufree, 0,
214 };
215
216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 void pmap_pte_print(volatile struct pte *);
218 #endif
219
220 #ifdef DDB
221 void pmap_pteg_check(void);
222 void pmap_pteg_dist(void);
223 void pmap_print_pte(pmap_t, vaddr_t);
224 void pmap_print_mmuregs(void);
225 #endif
226
227 #if defined(DEBUG) || defined(PMAPCHECK)
228 #ifdef PMAPCHECK
229 int pmapcheck = 1;
230 #else
231 int pmapcheck = 0;
232 #endif
233 void pmap_pvo_verify(void);
234 STATIC void pmap_pvo_check(const struct pvo_entry *);
235 #define PMAP_PVO_CHECK(pvo) \
236 do { \
237 if (pmapcheck) \
238 pmap_pvo_check(pvo); \
239 } while (0)
240 #else
241 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
242 #endif
243 STATIC int pmap_pte_insert(int, struct pte *);
244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 vaddr_t, paddr_t, register_t, int);
246 STATIC void pmap_pvo_remove(struct pvo_entry *, int);
247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
249 #define pmap_pvo_reclaim(pm) NULL
250 STATIC void pvo_set_exec(struct pvo_entry *);
251 STATIC void pvo_clear_exec(struct pvo_entry *);
252
253 STATIC void tlbia(void);
254
255 STATIC void pmap_release(pmap_t);
256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
257
258 #define VSID_NBPW (sizeof(uint32_t) * 8)
259 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
260
261 static int pmap_initialized;
262
263 #if defined(DEBUG) || defined(PMAPDEBUG)
264 #define PMAPDEBUG_BOOT 0x0001
265 #define PMAPDEBUG_PTE 0x0002
266 #define PMAPDEBUG_EXEC 0x0008
267 #define PMAPDEBUG_PVOENTER 0x0010
268 #define PMAPDEBUG_PVOREMOVE 0x0020
269 #define PMAPDEBUG_ACTIVATE 0x0100
270 #define PMAPDEBUG_CREATE 0x0200
271 #define PMAPDEBUG_ENTER 0x1000
272 #define PMAPDEBUG_KENTER 0x2000
273 #define PMAPDEBUG_KREMOVE 0x4000
274 #define PMAPDEBUG_REMOVE 0x8000
275 unsigned int pmapdebug = 0;
276 # define DPRINTF(x) printf x
277 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
278 #else
279 # define DPRINTF(x)
280 # define DPRINTFN(n, x)
281 #endif
282
283
284 #ifdef PMAPCOUNTERS
285 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
286 #define PMAPCOUNT2(ev) ((ev).ev_count++)
287
288 struct evcnt pmap_evcnt_mappings =
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
290 "pmap", "pages mapped");
291 struct evcnt pmap_evcnt_unmappings =
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
293 "pmap", "pages unmapped");
294
295 struct evcnt pmap_evcnt_kernel_mappings =
296 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
297 "pmap", "kernel pages mapped");
298 struct evcnt pmap_evcnt_kernel_unmappings =
299 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
300 "pmap", "kernel pages unmapped");
301
302 struct evcnt pmap_evcnt_mappings_replaced =
303 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
304 "pmap", "page mappings replaced");
305
306 struct evcnt pmap_evcnt_exec_mappings =
307 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
308 "pmap", "exec pages mapped");
309 struct evcnt pmap_evcnt_exec_cached =
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
311 "pmap", "exec pages cached");
312
313 struct evcnt pmap_evcnt_exec_synced =
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
315 "pmap", "exec pages synced");
316 struct evcnt pmap_evcnt_exec_synced_clear_modify =
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
318 "pmap", "exec pages synced (CM)");
319
320 struct evcnt pmap_evcnt_exec_uncached_page_protect =
321 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
322 "pmap", "exec pages uncached (PP)");
323 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
324 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
325 "pmap", "exec pages uncached (CM)");
326 struct evcnt pmap_evcnt_exec_uncached_zero_page =
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
328 "pmap", "exec pages uncached (ZP)");
329 struct evcnt pmap_evcnt_exec_uncached_copy_page =
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
331 "pmap", "exec pages uncached (CP)");
332
333 struct evcnt pmap_evcnt_updates =
334 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
335 "pmap", "updates");
336 struct evcnt pmap_evcnt_collects =
337 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
338 "pmap", "collects");
339 struct evcnt pmap_evcnt_copies =
340 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
341 "pmap", "copies");
342
343 struct evcnt pmap_evcnt_ptes_spilled =
344 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
345 "pmap", "ptes spilled from overflow");
346 struct evcnt pmap_evcnt_ptes_unspilled =
347 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
348 "pmap", "ptes not spilled");
349 struct evcnt pmap_evcnt_ptes_evicted =
350 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
351 "pmap", "ptes evicted");
352
353 struct evcnt pmap_evcnt_ptes_primary[8] = {
354 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 "pmap", "ptes added at primary[0]"),
356 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 "pmap", "ptes added at primary[1]"),
358 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
359 "pmap", "ptes added at primary[2]"),
360 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
361 "pmap", "ptes added at primary[3]"),
362
363 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 "pmap", "ptes added at primary[4]"),
365 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 "pmap", "ptes added at primary[5]"),
367 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
368 "pmap", "ptes added at primary[6]"),
369 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
370 "pmap", "ptes added at primary[7]"),
371 };
372 struct evcnt pmap_evcnt_ptes_secondary[8] = {
373 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
374 "pmap", "ptes added at secondary[0]"),
375 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
376 "pmap", "ptes added at secondary[1]"),
377 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
378 "pmap", "ptes added at secondary[2]"),
379 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
380 "pmap", "ptes added at secondary[3]"),
381
382 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 "pmap", "ptes added at secondary[4]"),
384 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 "pmap", "ptes added at secondary[5]"),
386 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
387 "pmap", "ptes added at secondary[6]"),
388 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
389 "pmap", "ptes added at secondary[7]"),
390 };
391 struct evcnt pmap_evcnt_ptes_removed =
392 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
393 "pmap", "ptes removed");
394 struct evcnt pmap_evcnt_ptes_changed =
395 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 "pmap", "ptes changed");
397
398 /*
399 * From pmap_subr.c
400 */
401 extern struct evcnt pmap_evcnt_zeroed_pages;
402 extern struct evcnt pmap_evcnt_copied_pages;
403 extern struct evcnt pmap_evcnt_idlezeroed_pages;
404 #else
405 #define PMAPCOUNT(ev) ((void) 0)
406 #define PMAPCOUNT2(ev) ((void) 0)
407 #endif
408
409 #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
410 #define TLBSYNC() __asm __volatile("tlbsync")
411 #define SYNC() __asm __volatile("sync")
412 #define EIEIO() __asm __volatile("eieio")
413 #define MFMSR() mfmsr()
414 #define MTMSR(psl) mtmsr(psl)
415 #define MFPVR() mfpvr()
416 #define MFSRIN(va) mfsrin(va)
417 #define MFTB() mfrtcltbl()
418
419 #ifndef PPC_OEA64
420 static __inline register_t
421 mfsrin(vaddr_t va)
422 {
423 register_t sr;
424 __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
425 return sr;
426 }
427 #endif /* PPC_OEA64 */
428
429 static __inline register_t
430 pmap_interrupts_off(void)
431 {
432 register_t msr = MFMSR();
433 if (msr & PSL_EE)
434 MTMSR(msr & ~PSL_EE);
435 return msr;
436 }
437
438 static void
439 pmap_interrupts_restore(register_t msr)
440 {
441 if (msr & PSL_EE)
442 MTMSR(msr);
443 }
444
445 static __inline u_int32_t
446 mfrtcltbl(void)
447 {
448
449 if ((MFPVR() >> 16) == MPC601)
450 return (mfrtcl() >> 7);
451 else
452 return (mftbl());
453 }
454
455 /*
456 * These small routines may have to be replaced,
457 * if/when we support processors other that the 604.
458 */
459
460 void
461 tlbia(void)
462 {
463 caddr_t i;
464
465 SYNC();
466 /*
467 * Why not use "tlbia"? Because not all processors implement it.
468 *
469 * This needs to be a per-CPU callback to do the appropriate thing
470 * for the CPU. XXX
471 */
472 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
473 TLBIE(i);
474 EIEIO();
475 SYNC();
476 }
477 TLBSYNC();
478 SYNC();
479 }
480
481 static __inline register_t
482 va_to_vsid(const struct pmap *pm, vaddr_t addr)
483 {
484 #ifdef PPC_OEA64
485 #if 0
486 const struct ste *ste;
487 register_t hash;
488 int i;
489
490 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
491
492 /*
493 * Try the primary group first
494 */
495 ste = pm->pm_stes[hash].stes;
496 for (i = 0; i < 8; i++, ste++) {
497 if (ste->ste_hi & STE_V) &&
498 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
499 return ste;
500 }
501
502 /*
503 * Then the secondary group.
504 */
505 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
506 for (i = 0; i < 8; i++, ste++) {
507 if (ste->ste_hi & STE_V) &&
508 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
509 return addr;
510 }
511
512 return NULL;
513 #else
514 /*
515 * Rather than searching the STE groups for the VSID, we know
516 * how we generate that from the ESID and so do that.
517 */
518 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
519 #endif
520 #else
521 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
522 #endif
523 }
524
525 static __inline register_t
526 va_to_pteg(const struct pmap *pm, vaddr_t addr)
527 {
528 register_t hash;
529
530 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
531 return hash & pmap_pteg_mask;
532 }
533
534 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
535 /*
536 * Given a PTE in the page table, calculate the VADDR that hashes to it.
537 * The only bit of magic is that the top 4 bits of the address doesn't
538 * technically exist in the PTE. But we know we reserved 4 bits of the
539 * VSID for it so that's how we get it.
540 */
541 static vaddr_t
542 pmap_pte_to_va(volatile const struct pte *pt)
543 {
544 vaddr_t va;
545 uintptr_t ptaddr = (uintptr_t) pt;
546
547 if (pt->pte_hi & PTE_HID)
548 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
549
550 /* PPC Bits 10-19 PPC64 Bits 42-51 */
551 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
552 va <<= ADDR_PIDX_SHFT;
553
554 /* PPC Bits 4-9 PPC64 Bits 36-41 */
555 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
556
557 #ifdef PPC_OEA64
558 /* PPC63 Bits 0-35 */
559 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
560 #endif
561 #ifdef PPC_OEA
562 /* PPC Bits 0-3 */
563 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
564 #endif
565
566 return va;
567 }
568 #endif
569
570 static __inline struct pvo_head *
571 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
572 {
573 #ifdef __HAVE_VM_PAGE_MD
574 struct vm_page *pg;
575
576 pg = PHYS_TO_VM_PAGE(pa);
577 if (pg_p != NULL)
578 *pg_p = pg;
579 if (pg == NULL)
580 return &pmap_pvo_unmanaged;
581 return &pg->mdpage.mdpg_pvoh;
582 #endif
583 #ifdef __HAVE_PMAP_PHYSSEG
584 int bank, pg;
585
586 bank = vm_physseg_find(atop(pa), &pg);
587 if (pg_p != NULL)
588 *pg_p = pg;
589 if (bank == -1)
590 return &pmap_pvo_unmanaged;
591 return &vm_physmem[bank].pmseg.pvoh[pg];
592 #endif
593 }
594
595 static __inline struct pvo_head *
596 vm_page_to_pvoh(struct vm_page *pg)
597 {
598 #ifdef __HAVE_VM_PAGE_MD
599 return &pg->mdpage.mdpg_pvoh;
600 #endif
601 #ifdef __HAVE_PMAP_PHYSSEG
602 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
603 #endif
604 }
605
606
607 #ifdef __HAVE_PMAP_PHYSSEG
608 static __inline char *
609 pa_to_attr(paddr_t pa)
610 {
611 int bank, pg;
612
613 bank = vm_physseg_find(atop(pa), &pg);
614 if (bank == -1)
615 return NULL;
616 return &vm_physmem[bank].pmseg.attrs[pg];
617 }
618 #endif
619
620 static __inline void
621 pmap_attr_clear(struct vm_page *pg, int ptebit)
622 {
623 #ifdef __HAVE_PMAP_PHYSSEG
624 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
625 #endif
626 #ifdef __HAVE_VM_PAGE_MD
627 pg->mdpage.mdpg_attrs &= ~ptebit;
628 #endif
629 }
630
631 static __inline int
632 pmap_attr_fetch(struct vm_page *pg)
633 {
634 #ifdef __HAVE_PMAP_PHYSSEG
635 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
636 #endif
637 #ifdef __HAVE_VM_PAGE_MD
638 return pg->mdpage.mdpg_attrs;
639 #endif
640 }
641
642 static __inline void
643 pmap_attr_save(struct vm_page *pg, int ptebit)
644 {
645 #ifdef __HAVE_PMAP_PHYSSEG
646 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
647 #endif
648 #ifdef __HAVE_VM_PAGE_MD
649 pg->mdpage.mdpg_attrs |= ptebit;
650 #endif
651 }
652
653 static __inline int
654 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
655 {
656 if (pt->pte_hi == pvo_pt->pte_hi
657 #if 0
658 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
659 ~(PTE_REF|PTE_CHG)) == 0
660 #endif
661 )
662 return 1;
663 return 0;
664 }
665
666 static __inline void
667 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
668 {
669 /*
670 * Construct the PTE. Default to IMB initially. Valid bit
671 * only gets set when the real pte is set in memory.
672 *
673 * Note: Don't set the valid bit for correct operation of tlb update.
674 */
675 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
676 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
677 pt->pte_lo = pte_lo;
678 }
679
680 static __inline void
681 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
682 {
683 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
684 }
685
686 static __inline void
687 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
688 {
689 /*
690 * As shown in Section 7.6.3.2.3
691 */
692 pt->pte_lo &= ~ptebit;
693 TLBIE(va);
694 SYNC();
695 EIEIO();
696 TLBSYNC();
697 SYNC();
698 }
699
700 static __inline void
701 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
702 {
703 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
704 if (pvo_pt->pte_hi & PTE_VALID)
705 panic("pte_set: setting an already valid pte %p", pvo_pt);
706 #endif
707 pvo_pt->pte_hi |= PTE_VALID;
708 /*
709 * Update the PTE as defined in section 7.6.3.1
710 * Note that the REF/CHG bits are from pvo_pt and thus should
711 * have been saved so this routine can restore them (if desired).
712 */
713 pt->pte_lo = pvo_pt->pte_lo;
714 EIEIO();
715 pt->pte_hi = pvo_pt->pte_hi;
716 SYNC();
717 pmap_pte_valid++;
718 }
719
720 static __inline void
721 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
722 {
723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
724 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
725 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
726 if ((pt->pte_hi & PTE_VALID) == 0)
727 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
728 #endif
729
730 pvo_pt->pte_hi &= ~PTE_VALID;
731 /*
732 * Force the ref & chg bits back into the PTEs.
733 */
734 SYNC();
735 /*
736 * Invalidate the pte ... (Section 7.6.3.3)
737 */
738 pt->pte_hi &= ~PTE_VALID;
739 SYNC();
740 TLBIE(va);
741 SYNC();
742 EIEIO();
743 TLBSYNC();
744 SYNC();
745 /*
746 * Save the ref & chg bits ...
747 */
748 pmap_pte_synch(pt, pvo_pt);
749 pmap_pte_valid--;
750 }
751
752 static __inline void
753 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
754 {
755 /*
756 * Invalidate the PTE
757 */
758 pmap_pte_unset(pt, pvo_pt, va);
759 pmap_pte_set(pt, pvo_pt);
760 }
761
762 /*
763 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
764 * (either primary or secondary location).
765 *
766 * Note: both the destination and source PTEs must not have PTE_VALID set.
767 */
768
769 STATIC int
770 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
771 {
772 volatile struct pte *pt;
773 int i;
774
775 #if defined(DEBUG)
776 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
777 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
778 #endif
779 /*
780 * First try primary hash.
781 */
782 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
783 if ((pt->pte_hi & PTE_VALID) == 0) {
784 pvo_pt->pte_hi &= ~PTE_HID;
785 pmap_pte_set(pt, pvo_pt);
786 return i;
787 }
788 }
789
790 /*
791 * Now try secondary hash.
792 */
793 ptegidx ^= pmap_pteg_mask;
794 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
795 if ((pt->pte_hi & PTE_VALID) == 0) {
796 pvo_pt->pte_hi |= PTE_HID;
797 pmap_pte_set(pt, pvo_pt);
798 return i;
799 }
800 }
801 return -1;
802 }
803
804 /*
805 * Spill handler.
806 *
807 * Tries to spill a page table entry from the overflow area.
808 * This runs in either real mode (if dealing with a exception spill)
809 * or virtual mode when dealing with manually spilling one of the
810 * kernel's pte entries. In either case, interrupts are already
811 * disabled.
812 */
813
814 int
815 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
816 {
817 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
818 struct pvo_entry *pvo;
819 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
820 struct pvo_tqhead *pvoh, *vpvoh = NULL;
821 int ptegidx, i, j;
822 volatile struct pteg *pteg;
823 volatile struct pte *pt;
824
825 ptegidx = va_to_pteg(pm, addr);
826
827 /*
828 * Have to substitute some entry. Use the primary hash for this.
829 * Use low bits of timebase as random generator. Make sure we are
830 * not picking a kernel pte for replacement.
831 */
832 pteg = &pmap_pteg_table[ptegidx];
833 i = MFTB() & 7;
834 for (j = 0; j < 8; j++) {
835 pt = &pteg->pt[i];
836 if ((pt->pte_hi & PTE_VALID) == 0 ||
837 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
838 != KERNEL_VSIDBITS)
839 break;
840 i = (i + 1) & 7;
841 }
842 KASSERT(j < 8);
843
844 source_pvo = NULL;
845 victim_pvo = NULL;
846 pvoh = &pmap_pvo_table[ptegidx];
847 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
848
849 /*
850 * We need to find pvo entry for this address...
851 */
852 PMAP_PVO_CHECK(pvo); /* sanity check */
853
854 /*
855 * If we haven't found the source and we come to a PVO with
856 * a valid PTE, then we know we can't find it because all
857 * evicted PVOs always are first in the list.
858 */
859 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
860 break;
861 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
862 addr == PVO_VADDR(pvo)) {
863
864 /*
865 * Now we have found the entry to be spilled into the
866 * pteg. Attempt to insert it into the page table.
867 */
868 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
869 if (j >= 0) {
870 PVO_PTEGIDX_SET(pvo, j);
871 PMAP_PVO_CHECK(pvo); /* sanity check */
872 PVO_WHERE(pvo, SPILL_INSERT);
873 pvo->pvo_pmap->pm_evictions--;
874 PMAPCOUNT(ptes_spilled);
875 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
876 ? pmap_evcnt_ptes_secondary
877 : pmap_evcnt_ptes_primary)[j]);
878
879 /*
880 * Since we keep the evicted entries at the
881 * from of the PVO list, we need move this
882 * (now resident) PVO after the evicted
883 * entries.
884 */
885 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
886
887 /*
888 * If we don't have to move (either we were the
889 * last entry or the next entry was valid),
890 * don't change our position. Otherwise
891 * move ourselves to the tail of the queue.
892 */
893 if (next_pvo != NULL &&
894 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
895 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
896 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
897 }
898 return 1;
899 }
900 source_pvo = pvo;
901 if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
902 return 0;
903 }
904 if (victim_pvo != NULL)
905 break;
906 }
907
908 /*
909 * We also need the pvo entry of the victim we are replacing
910 * so save the R & C bits of the PTE.
911 */
912 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
913 pmap_pte_compare(pt, &pvo->pvo_pte)) {
914 vpvoh = pvoh; /* *1* */
915 victim_pvo = pvo;
916 if (source_pvo != NULL)
917 break;
918 }
919 }
920
921 if (source_pvo == NULL) {
922 PMAPCOUNT(ptes_unspilled);
923 return 0;
924 }
925
926 if (victim_pvo == NULL) {
927 if ((pt->pte_hi & PTE_HID) == 0)
928 panic("pmap_pte_spill: victim p-pte (%p) has "
929 "no pvo entry!", pt);
930
931 /*
932 * If this is a secondary PTE, we need to search
933 * its primary pvo bucket for the matching PVO.
934 */
935 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
936 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
937 PMAP_PVO_CHECK(pvo); /* sanity check */
938
939 /*
940 * We also need the pvo entry of the victim we are
941 * replacing so save the R & C bits of the PTE.
942 */
943 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
944 victim_pvo = pvo;
945 break;
946 }
947 }
948 if (victim_pvo == NULL)
949 panic("pmap_pte_spill: victim s-pte (%p) has "
950 "no pvo entry!", pt);
951 }
952
953 /*
954 * The victim should be not be a kernel PVO/PTE entry.
955 */
956 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
957 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
958 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
959
960 /*
961 * We are invalidating the TLB entry for the EA for the
962 * we are replacing even though its valid; If we don't
963 * we lose any ref/chg bit changes contained in the TLB
964 * entry.
965 */
966 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
967
968 /*
969 * To enforce the PVO list ordering constraint that all
970 * evicted entries should come before all valid entries,
971 * move the source PVO to the tail of its list and the
972 * victim PVO to the head of its list (which might not be
973 * the same list, if the victim was using the secondary hash).
974 */
975 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
976 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
977 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
978 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
979 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
980 pmap_pte_set(pt, &source_pvo->pvo_pte);
981 victim_pvo->pvo_pmap->pm_evictions++;
982 source_pvo->pvo_pmap->pm_evictions--;
983 PVO_WHERE(victim_pvo, SPILL_UNSET);
984 PVO_WHERE(source_pvo, SPILL_SET);
985
986 PVO_PTEGIDX_CLR(victim_pvo);
987 PVO_PTEGIDX_SET(source_pvo, i);
988 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
989 PMAPCOUNT(ptes_spilled);
990 PMAPCOUNT(ptes_evicted);
991 PMAPCOUNT(ptes_removed);
992
993 PMAP_PVO_CHECK(victim_pvo);
994 PMAP_PVO_CHECK(source_pvo);
995 return 1;
996 }
997
998 /*
999 * Restrict given range to physical memory
1000 */
1001 void
1002 pmap_real_memory(paddr_t *start, psize_t *size)
1003 {
1004 struct mem_region *mp;
1005
1006 for (mp = mem; mp->size; mp++) {
1007 if (*start + *size > mp->start
1008 && *start < mp->start + mp->size) {
1009 if (*start < mp->start) {
1010 *size -= mp->start - *start;
1011 *start = mp->start;
1012 }
1013 if (*start + *size > mp->start + mp->size)
1014 *size = mp->start + mp->size - *start;
1015 return;
1016 }
1017 }
1018 *size = 0;
1019 }
1020
1021 /*
1022 * Initialize anything else for pmap handling.
1023 * Called during vm_init().
1024 */
1025 void
1026 pmap_init(void)
1027 {
1028 #ifdef __HAVE_PMAP_PHYSSEG
1029 struct pvo_tqhead *pvoh;
1030 int bank;
1031 long sz;
1032 char *attr;
1033
1034 pvoh = pmap_physseg.pvoh;
1035 attr = pmap_physseg.attrs;
1036 for (bank = 0; bank < vm_nphysseg; bank++) {
1037 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1038 vm_physmem[bank].pmseg.pvoh = pvoh;
1039 vm_physmem[bank].pmseg.attrs = attr;
1040 for (; sz > 0; sz--, pvoh++, attr++) {
1041 TAILQ_INIT(pvoh);
1042 *attr = 0;
1043 }
1044 }
1045 #endif
1046
1047 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1048 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1049 &pmap_pool_mallocator);
1050
1051 pool_setlowat(&pmap_mpvo_pool, 1008);
1052
1053 pmap_initialized = 1;
1054
1055 #ifdef PMAPCOUNTERS
1056 evcnt_attach_static(&pmap_evcnt_mappings);
1057 evcnt_attach_static(&pmap_evcnt_mappings_replaced);
1058 evcnt_attach_static(&pmap_evcnt_unmappings);
1059
1060 evcnt_attach_static(&pmap_evcnt_kernel_mappings);
1061 evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
1062
1063 evcnt_attach_static(&pmap_evcnt_exec_mappings);
1064 evcnt_attach_static(&pmap_evcnt_exec_cached);
1065 evcnt_attach_static(&pmap_evcnt_exec_synced);
1066 evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
1067
1068 evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
1069 evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
1070 evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
1071 evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
1072
1073 evcnt_attach_static(&pmap_evcnt_zeroed_pages);
1074 evcnt_attach_static(&pmap_evcnt_copied_pages);
1075 evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
1076
1077 evcnt_attach_static(&pmap_evcnt_updates);
1078 evcnt_attach_static(&pmap_evcnt_collects);
1079 evcnt_attach_static(&pmap_evcnt_copies);
1080
1081 evcnt_attach_static(&pmap_evcnt_ptes_spilled);
1082 evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
1083 evcnt_attach_static(&pmap_evcnt_ptes_evicted);
1084 evcnt_attach_static(&pmap_evcnt_ptes_removed);
1085 evcnt_attach_static(&pmap_evcnt_ptes_changed);
1086 evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
1087 evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
1088 evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
1089 evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
1090 evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
1091 evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
1092 evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
1093 evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
1094 evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
1095 evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
1096 evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
1097 evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
1098 evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
1099 evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
1100 evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
1101 evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
1102 #endif
1103 }
1104
1105 /*
1106 * How much virtual space does the kernel get?
1107 */
1108 void
1109 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1110 {
1111 /*
1112 * For now, reserve one segment (minus some overhead) for kernel
1113 * virtual memory
1114 */
1115 *start = VM_MIN_KERNEL_ADDRESS;
1116 *end = VM_MAX_KERNEL_ADDRESS;
1117 }
1118
1119 /*
1120 * Allocate, initialize, and return a new physical map.
1121 */
1122 pmap_t
1123 pmap_create(void)
1124 {
1125 pmap_t pm;
1126
1127 pm = pool_get(&pmap_pool, PR_WAITOK);
1128 memset((caddr_t)pm, 0, sizeof *pm);
1129 pmap_pinit(pm);
1130
1131 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1132 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1133 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1134 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1135 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1136 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1137 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1138 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1139 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1140 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1141 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1142 return pm;
1143 }
1144
1145 /*
1146 * Initialize a preallocated and zeroed pmap structure.
1147 */
1148 void
1149 pmap_pinit(pmap_t pm)
1150 {
1151 register_t entropy = MFTB();
1152 register_t mask;
1153 int i;
1154
1155 /*
1156 * Allocate some segment registers for this pmap.
1157 */
1158 pm->pm_refs = 1;
1159 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1160 static register_t pmap_vsidcontext;
1161 register_t hash;
1162 unsigned int n;
1163
1164 /* Create a new value by multiplying by a prime adding in
1165 * entropy from the timebase register. This is to make the
1166 * VSID more random so that the PT Hash function collides
1167 * less often. (note that the prime causes gcc to do shifts
1168 * instead of a multiply)
1169 */
1170 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1171 hash = pmap_vsidcontext & (NPMAPS - 1);
1172 if (hash == 0) /* 0 is special, avoid it */
1173 continue;
1174 n = hash >> 5;
1175 mask = 1L << (hash & (VSID_NBPW-1));
1176 hash = pmap_vsidcontext;
1177 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1178 /* anything free in this bucket? */
1179 if (~pmap_vsid_bitmap[n] == 0) {
1180 entropy = hash >> PTE_VSID_SHFT;
1181 continue;
1182 }
1183 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1184 mask = 1L << i;
1185 hash &= ~(VSID_NBPW-1);
1186 hash |= i;
1187 }
1188 hash &= PTE_VSID >> PTE_VSID_SHFT;
1189 pmap_vsid_bitmap[n] |= mask;
1190 pm->pm_vsid = hash;
1191 #ifndef PPC_OEA64
1192 for (i = 0; i < 16; i++)
1193 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1194 SR_NOEXEC;
1195 #endif
1196 return;
1197 }
1198 panic("pmap_pinit: out of segments");
1199 }
1200
1201 /*
1202 * Add a reference to the given pmap.
1203 */
1204 void
1205 pmap_reference(pmap_t pm)
1206 {
1207 pm->pm_refs++;
1208 }
1209
1210 /*
1211 * Retire the given pmap from service.
1212 * Should only be called if the map contains no valid mappings.
1213 */
1214 void
1215 pmap_destroy(pmap_t pm)
1216 {
1217 if (--pm->pm_refs == 0) {
1218 pmap_release(pm);
1219 pool_put(&pmap_pool, pm);
1220 }
1221 }
1222
1223 /*
1224 * Release any resources held by the given physical map.
1225 * Called when a pmap initialized by pmap_pinit is being released.
1226 */
1227 void
1228 pmap_release(pmap_t pm)
1229 {
1230 int idx, mask;
1231
1232 if (pm->pm_sr[0] == 0)
1233 panic("pmap_release");
1234 idx = pm->pm_vsid & (NPMAPS-1);
1235 mask = 1 << (idx % VSID_NBPW);
1236 idx /= VSID_NBPW;
1237
1238 KASSERT(pmap_vsid_bitmap[idx] & mask);
1239 pmap_vsid_bitmap[idx] &= ~mask;
1240 }
1241
1242 /*
1243 * Copy the range specified by src_addr/len
1244 * from the source map to the range dst_addr/len
1245 * in the destination map.
1246 *
1247 * This routine is only advisory and need not do anything.
1248 */
1249 void
1250 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1251 vsize_t len, vaddr_t src_addr)
1252 {
1253 PMAPCOUNT(copies);
1254 }
1255
1256 /*
1257 * Require that all active physical maps contain no
1258 * incorrect entries NOW.
1259 */
1260 void
1261 pmap_update(struct pmap *pmap)
1262 {
1263 PMAPCOUNT(updates);
1264 TLBSYNC();
1265 }
1266
1267 /*
1268 * Garbage collects the physical map system for
1269 * pages which are no longer used.
1270 * Success need not be guaranteed -- that is, there
1271 * may well be pages which are not referenced, but
1272 * others may be collected.
1273 * Called by the pageout daemon when pages are scarce.
1274 */
1275 void
1276 pmap_collect(pmap_t pm)
1277 {
1278 PMAPCOUNT(collects);
1279 }
1280
1281 static __inline int
1282 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1283 {
1284 int pteidx;
1285 /*
1286 * We can find the actual pte entry without searching by
1287 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1288 * and by noticing the HID bit.
1289 */
1290 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1291 if (pvo->pvo_pte.pte_hi & PTE_HID)
1292 pteidx ^= pmap_pteg_mask * 8;
1293 return pteidx;
1294 }
1295
1296 volatile struct pte *
1297 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1298 {
1299 volatile struct pte *pt;
1300
1301 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1302 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1303 return NULL;
1304 #endif
1305
1306 /*
1307 * If we haven't been supplied the ptegidx, calculate it.
1308 */
1309 if (pteidx == -1) {
1310 int ptegidx;
1311 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1312 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1313 }
1314
1315 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1316
1317 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1318 return pt;
1319 #else
1320 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1321 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1322 "pvo but no valid pte index", pvo);
1323 }
1324 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1325 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1326 "pvo but no valid pte", pvo);
1327 }
1328
1329 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1330 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1331 #if defined(DEBUG) || defined(PMAPCHECK)
1332 pmap_pte_print(pt);
1333 #endif
1334 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1335 "pmap_pteg_table %p but invalid in pvo",
1336 pvo, pt);
1337 }
1338 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1339 #if defined(DEBUG) || defined(PMAPCHECK)
1340 pmap_pte_print(pt);
1341 #endif
1342 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1343 "not match pte %p in pmap_pteg_table",
1344 pvo, pt);
1345 }
1346 return pt;
1347 }
1348
1349 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1350 #if defined(DEBUG) || defined(PMAPCHECK)
1351 pmap_pte_print(pt);
1352 #endif
1353 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1354 "pmap_pteg_table but valid in pvo", pvo, pt);
1355 }
1356 return NULL;
1357 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1358 }
1359
1360 struct pvo_entry *
1361 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1362 {
1363 struct pvo_entry *pvo;
1364 int ptegidx;
1365
1366 va &= ~ADDR_POFF;
1367 ptegidx = va_to_pteg(pm, va);
1368
1369 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1370 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1371 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1372 panic("pmap_pvo_find_va: invalid pvo %p on "
1373 "list %#x (%p)", pvo, ptegidx,
1374 &pmap_pvo_table[ptegidx]);
1375 #endif
1376 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1377 if (pteidx_p)
1378 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1379 return pvo;
1380 }
1381 }
1382 return NULL;
1383 }
1384
1385 #if defined(DEBUG) || defined(PMAPCHECK)
1386 void
1387 pmap_pvo_check(const struct pvo_entry *pvo)
1388 {
1389 struct pvo_head *pvo_head;
1390 struct pvo_entry *pvo0;
1391 volatile struct pte *pt;
1392 int failed = 0;
1393
1394 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1395 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1396
1397 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1398 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1399 pvo, pvo->pvo_pmap);
1400 failed = 1;
1401 }
1402
1403 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1404 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1405 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1406 pvo, TAILQ_NEXT(pvo, pvo_olink));
1407 failed = 1;
1408 }
1409
1410 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1411 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1412 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1413 pvo, LIST_NEXT(pvo, pvo_vlink));
1414 failed = 1;
1415 }
1416
1417 if (pvo->pvo_vaddr & PVO_MANAGED) {
1418 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1419 } else {
1420 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1421 printf("pmap_pvo_check: pvo %p: non kernel address "
1422 "on kernel unmanaged list\n", pvo);
1423 failed = 1;
1424 }
1425 pvo_head = &pmap_pvo_kunmanaged;
1426 }
1427 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1428 if (pvo0 == pvo)
1429 break;
1430 }
1431 if (pvo0 == NULL) {
1432 printf("pmap_pvo_check: pvo %p: not present "
1433 "on its vlist head %p\n", pvo, pvo_head);
1434 failed = 1;
1435 }
1436 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1437 printf("pmap_pvo_check: pvo %p: not present "
1438 "on its olist head\n", pvo);
1439 failed = 1;
1440 }
1441 pt = pmap_pvo_to_pte(pvo, -1);
1442 if (pt == NULL) {
1443 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1444 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1445 "no PTE\n", pvo);
1446 failed = 1;
1447 }
1448 } else {
1449 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1450 (uintptr_t) pt >=
1451 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1452 printf("pmap_pvo_check: pvo %p: pte %p not in "
1453 "pteg table\n", pvo, pt);
1454 failed = 1;
1455 }
1456 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1457 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1458 "no PTE\n", pvo);
1459 failed = 1;
1460 }
1461 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1462 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1463 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1464 failed = 1;
1465 }
1466 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1467 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1468 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1469 "%#x/%#x\n", pvo,
1470 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1471 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1472 failed = 1;
1473 }
1474 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1475 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1476 " doesn't not match PVO's VA %#lx\n",
1477 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1478 failed = 1;
1479 }
1480 if (failed)
1481 pmap_pte_print(pt);
1482 }
1483 if (failed)
1484 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1485 pvo->pvo_pmap);
1486 }
1487 #endif /* DEBUG || PMAPCHECK */
1488
1489 /*
1490 * This returns whether this is the first mapping of a page.
1491 */
1492 int
1493 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1494 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1495 {
1496 struct pvo_entry *pvo;
1497 struct pvo_tqhead *pvoh;
1498 register_t msr;
1499 int ptegidx;
1500 int i;
1501 int poolflags = PR_NOWAIT;
1502
1503 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1504 if (pmap_pvo_remove_depth > 0)
1505 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1506 if (++pmap_pvo_enter_depth > 1)
1507 panic("pmap_pvo_enter: called recursively!");
1508 #endif
1509
1510 /*
1511 * Compute the PTE Group index.
1512 */
1513 va &= ~ADDR_POFF;
1514 ptegidx = va_to_pteg(pm, va);
1515
1516 msr = pmap_interrupts_off();
1517 /*
1518 * Remove any existing mapping for this page. Reuse the
1519 * pvo entry if there a mapping.
1520 */
1521 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1522 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1523 #ifdef DEBUG
1524 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1525 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1526 ~(PTE_REF|PTE_CHG)) == 0 &&
1527 va < VM_MIN_KERNEL_ADDRESS) {
1528 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1529 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1530 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1531 (unsigned int) pvo->pvo_pte.pte_hi,
1532 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1533 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1534 #ifdef DDBX
1535 Debugger();
1536 #endif
1537 }
1538 #endif
1539 PMAPCOUNT(mappings_replaced);
1540 pmap_pvo_remove(pvo, -1);
1541 break;
1542 }
1543 }
1544
1545 /*
1546 * If we aren't overwriting an mapping, try to allocate
1547 */
1548 pmap_interrupts_restore(msr);
1549 pvo = pool_get(pl, poolflags);
1550 msr = pmap_interrupts_off();
1551 if (pvo == NULL) {
1552 pvo = pmap_pvo_reclaim(pm);
1553 if (pvo == NULL) {
1554 if ((flags & PMAP_CANFAIL) == 0)
1555 panic("pmap_pvo_enter: failed");
1556 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1557 pmap_pvo_enter_depth--;
1558 #endif
1559 pmap_interrupts_restore(msr);
1560 return ENOMEM;
1561 }
1562 }
1563 pvo->pvo_vaddr = va;
1564 pvo->pvo_pmap = pm;
1565 pvo->pvo_vaddr &= ~ADDR_POFF;
1566 if (flags & VM_PROT_EXECUTE) {
1567 PMAPCOUNT(exec_mappings);
1568 pvo_set_exec(pvo);
1569 }
1570 if (flags & PMAP_WIRED)
1571 pvo->pvo_vaddr |= PVO_WIRED;
1572 if (pvo_head != &pmap_pvo_kunmanaged) {
1573 pvo->pvo_vaddr |= PVO_MANAGED;
1574 PMAPCOUNT(mappings);
1575 } else {
1576 PMAPCOUNT(kernel_mappings);
1577 }
1578 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1579
1580 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1581 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1582 pvo->pvo_pmap->pm_stats.wired_count++;
1583 pvo->pvo_pmap->pm_stats.resident_count++;
1584 #if defined(DEBUG)
1585 if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1586 DPRINTFN(PVOENTER,
1587 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1588 pvo, pm, va, pa));
1589 #endif
1590
1591 /*
1592 * We hope this succeeds but it isn't required.
1593 */
1594 pvoh = &pmap_pvo_table[ptegidx];
1595 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1596 if (i >= 0) {
1597 PVO_PTEGIDX_SET(pvo, i);
1598 PVO_WHERE(pvo, ENTER_INSERT);
1599 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1600 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1601 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1602 } else {
1603 /*
1604 * Since we didn't have room for this entry (which makes it
1605 * and evicted entry), place it at the head of the list.
1606 */
1607 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1608 PMAPCOUNT(ptes_evicted);
1609 pm->pm_evictions++;
1610 /*
1611 * If this is a kernel page, make sure it's active.
1612 */
1613 if (pm == pmap_kernel()) {
1614 i = pmap_pte_spill(pm, va, FALSE);
1615 KASSERT(i);
1616 }
1617 }
1618 PMAP_PVO_CHECK(pvo); /* sanity check */
1619 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1620 pmap_pvo_enter_depth--;
1621 #endif
1622 pmap_interrupts_restore(msr);
1623 return 0;
1624 }
1625
1626 void
1627 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1628 {
1629 volatile struct pte *pt;
1630 int ptegidx;
1631
1632 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1633 if (++pmap_pvo_remove_depth > 1)
1634 panic("pmap_pvo_remove: called recursively!");
1635 #endif
1636
1637 /*
1638 * If we haven't been supplied the ptegidx, calculate it.
1639 */
1640 if (pteidx == -1) {
1641 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1642 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1643 } else {
1644 ptegidx = pteidx >> 3;
1645 if (pvo->pvo_pte.pte_hi & PTE_HID)
1646 ptegidx ^= pmap_pteg_mask;
1647 }
1648 PMAP_PVO_CHECK(pvo); /* sanity check */
1649
1650 /*
1651 * If there is an active pte entry, we need to deactivate it
1652 * (and save the ref & chg bits).
1653 */
1654 pt = pmap_pvo_to_pte(pvo, pteidx);
1655 if (pt != NULL) {
1656 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1657 PVO_WHERE(pvo, REMOVE);
1658 PVO_PTEGIDX_CLR(pvo);
1659 PMAPCOUNT(ptes_removed);
1660 } else {
1661 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1662 pvo->pvo_pmap->pm_evictions--;
1663 }
1664
1665 /*
1666 * Account for executable mappings.
1667 */
1668 if (PVO_ISEXECUTABLE(pvo))
1669 pvo_clear_exec(pvo);
1670
1671 /*
1672 * Update our statistics.
1673 */
1674 pvo->pvo_pmap->pm_stats.resident_count--;
1675 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1676 pvo->pvo_pmap->pm_stats.wired_count--;
1677
1678 /*
1679 * Save the REF/CHG bits into their cache if the page is managed.
1680 */
1681 if (pvo->pvo_vaddr & PVO_MANAGED) {
1682 register_t ptelo = pvo->pvo_pte.pte_lo;
1683 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1684
1685 if (pg != NULL) {
1686 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1687 }
1688 PMAPCOUNT(unmappings);
1689 } else {
1690 PMAPCOUNT(kernel_unmappings);
1691 }
1692
1693 /*
1694 * Remove the PVO from its lists and return it to the pool.
1695 */
1696 LIST_REMOVE(pvo, pvo_vlink);
1697 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1698 pool_put(pvo->pvo_vaddr & PVO_MANAGED
1699 ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1700 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1701 pmap_pvo_remove_depth--;
1702 #endif
1703 }
1704
1705 /*
1706 * Mark a mapping as executable.
1707 * If this is the first executable mapping in the segment,
1708 * clear the noexec flag.
1709 */
1710 STATIC void
1711 pvo_set_exec(struct pvo_entry *pvo)
1712 {
1713 struct pmap *pm = pvo->pvo_pmap;
1714
1715 if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1716 return;
1717 }
1718 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1719 #ifdef PPC_OEA
1720 {
1721 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1722 if (pm->pm_exec[sr]++ == 0) {
1723 pm->pm_sr[sr] &= ~SR_NOEXEC;
1724 }
1725 }
1726 #endif
1727 }
1728
1729 /*
1730 * Mark a mapping as non-executable.
1731 * If this was the last executable mapping in the segment,
1732 * set the noexec flag.
1733 */
1734 STATIC void
1735 pvo_clear_exec(struct pvo_entry *pvo)
1736 {
1737 struct pmap *pm = pvo->pvo_pmap;
1738
1739 if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1740 return;
1741 }
1742 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1743 #ifdef PPC_OEA
1744 {
1745 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1746 if (--pm->pm_exec[sr] == 0) {
1747 pm->pm_sr[sr] |= SR_NOEXEC;
1748 }
1749 }
1750 #endif
1751 }
1752
1753 /*
1754 * Insert physical page at pa into the given pmap at virtual address va.
1755 */
1756 int
1757 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1758 {
1759 struct mem_region *mp;
1760 struct pvo_head *pvo_head;
1761 struct vm_page *pg;
1762 struct pool *pl;
1763 register_t pte_lo;
1764 int error;
1765 u_int pvo_flags;
1766 u_int was_exec = 0;
1767
1768 if (__predict_false(!pmap_initialized)) {
1769 pvo_head = &pmap_pvo_kunmanaged;
1770 pl = &pmap_upvo_pool;
1771 pvo_flags = 0;
1772 pg = NULL;
1773 was_exec = PTE_EXEC;
1774 } else {
1775 pvo_head = pa_to_pvoh(pa, &pg);
1776 pl = &pmap_mpvo_pool;
1777 pvo_flags = PVO_MANAGED;
1778 }
1779
1780 DPRINTFN(ENTER,
1781 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1782 pm, va, pa, prot, flags));
1783
1784 /*
1785 * If this is a managed page, and it's the first reference to the
1786 * page clear the execness of the page. Otherwise fetch the execness.
1787 */
1788 if (pg != NULL)
1789 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1790
1791 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1792
1793 /*
1794 * Assume the page is cache inhibited and access is guarded unless
1795 * it's in our available memory array. If it is in the memory array,
1796 * asssume it's in memory coherent memory.
1797 */
1798 pte_lo = PTE_IG;
1799 if ((flags & PMAP_NC) == 0) {
1800 for (mp = mem; mp->size; mp++) {
1801 if (pa >= mp->start && pa < mp->start + mp->size) {
1802 pte_lo = PTE_M;
1803 break;
1804 }
1805 }
1806 }
1807
1808 if (prot & VM_PROT_WRITE)
1809 pte_lo |= PTE_BW;
1810 else
1811 pte_lo |= PTE_BR;
1812
1813 /*
1814 * If this was in response to a fault, "pre-fault" the PTE's
1815 * changed/referenced bit appropriately.
1816 */
1817 if (flags & VM_PROT_WRITE)
1818 pte_lo |= PTE_CHG;
1819 if (flags & (VM_PROT_READ|VM_PROT_WRITE))
1820 pte_lo |= PTE_REF;
1821
1822 /*
1823 * We need to know if this page can be executable
1824 */
1825 flags |= (prot & VM_PROT_EXECUTE);
1826
1827 /*
1828 * Record mapping for later back-translation and pte spilling.
1829 * This will overwrite any existing mapping.
1830 */
1831 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1832
1833 /*
1834 * Flush the real page from the instruction cache if this page is
1835 * mapped executable and cacheable and has not been flushed since
1836 * the last time it was modified.
1837 */
1838 if (error == 0 &&
1839 (flags & VM_PROT_EXECUTE) &&
1840 (pte_lo & PTE_I) == 0 &&
1841 was_exec == 0) {
1842 DPRINTFN(ENTER, (" syncicache"));
1843 PMAPCOUNT(exec_synced);
1844 pmap_syncicache(pa, PAGE_SIZE);
1845 if (pg != NULL) {
1846 pmap_attr_save(pg, PTE_EXEC);
1847 PMAPCOUNT(exec_cached);
1848 #if defined(DEBUG) || defined(PMAPDEBUG)
1849 if (pmapdebug & PMAPDEBUG_ENTER)
1850 printf(" marked-as-exec");
1851 else if (pmapdebug & PMAPDEBUG_EXEC)
1852 printf("[pmap_enter: %#lx: marked-as-exec]\n",
1853 pg->phys_addr);
1854
1855 #endif
1856 }
1857 }
1858
1859 DPRINTFN(ENTER, (": error=%d\n", error));
1860
1861 return error;
1862 }
1863
1864 void
1865 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1866 {
1867 struct mem_region *mp;
1868 register_t pte_lo;
1869 int error;
1870
1871 if (va < VM_MIN_KERNEL_ADDRESS)
1872 panic("pmap_kenter_pa: attempt to enter "
1873 "non-kernel address %#lx!", va);
1874
1875 DPRINTFN(KENTER,
1876 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1877
1878 /*
1879 * Assume the page is cache inhibited and access is guarded unless
1880 * it's in our available memory array. If it is in the memory array,
1881 * asssume it's in memory coherent memory.
1882 */
1883 pte_lo = PTE_IG;
1884 if ((prot & PMAP_NC) == 0) {
1885 for (mp = mem; mp->size; mp++) {
1886 if (pa >= mp->start && pa < mp->start + mp->size) {
1887 pte_lo = PTE_M;
1888 break;
1889 }
1890 }
1891 }
1892
1893 if (prot & VM_PROT_WRITE)
1894 pte_lo |= PTE_BW;
1895 else
1896 pte_lo |= PTE_BR;
1897
1898 /*
1899 * We don't care about REF/CHG on PVOs on the unmanaged list.
1900 */
1901 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1902 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1903
1904 if (error != 0)
1905 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1906 va, pa, error);
1907 }
1908
1909 void
1910 pmap_kremove(vaddr_t va, vsize_t len)
1911 {
1912 if (va < VM_MIN_KERNEL_ADDRESS)
1913 panic("pmap_kremove: attempt to remove "
1914 "non-kernel address %#lx!", va);
1915
1916 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1917 pmap_remove(pmap_kernel(), va, va + len);
1918 }
1919
1920 /*
1921 * Remove the given range of mapping entries.
1922 */
1923 void
1924 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1925 {
1926 struct pvo_entry *pvo;
1927 register_t msr;
1928 int pteidx;
1929
1930 msr = pmap_interrupts_off();
1931 for (; va < endva; va += PAGE_SIZE) {
1932 pvo = pmap_pvo_find_va(pm, va, &pteidx);
1933 if (pvo != NULL) {
1934 pmap_pvo_remove(pvo, pteidx);
1935 }
1936 }
1937 pmap_interrupts_restore(msr);
1938 }
1939
1940 /*
1941 * Get the physical page address for the given pmap/virtual address.
1942 */
1943 boolean_t
1944 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
1945 {
1946 struct pvo_entry *pvo;
1947 register_t msr;
1948
1949 /*
1950 * If this is a kernel pmap lookup, also check the battable
1951 * and if we get a hit, translate the VA to a PA using the
1952 * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
1953 * that will wrap back to 0.
1954 */
1955 if (pm == pmap_kernel() &&
1956 (va < VM_MIN_KERNEL_ADDRESS ||
1957 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
1958 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
1959 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
1960 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
1961 register_t batl = battable[va >> ADDR_SR_SHFT].batl;
1962 register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
1963 *pap = (batl & mask) | (va & ~mask);
1964 return TRUE;
1965 }
1966 return FALSE;
1967 }
1968
1969 msr = pmap_interrupts_off();
1970 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1971 if (pvo != NULL) {
1972 PMAP_PVO_CHECK(pvo); /* sanity check */
1973 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1974 }
1975 pmap_interrupts_restore(msr);
1976 return pvo != NULL;
1977 }
1978
1979 /*
1980 * Lower the protection on the specified range of this pmap.
1981 */
1982 void
1983 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
1984 {
1985 struct pvo_entry *pvo;
1986 volatile struct pte *pt;
1987 register_t msr;
1988 int pteidx;
1989
1990 /*
1991 * Since this routine only downgrades protection, we should
1992 * always be called with at least one bit not set.
1993 */
1994 KASSERT(prot != VM_PROT_ALL);
1995
1996 /*
1997 * If there is no protection, this is equivalent to
1998 * remove the pmap from the pmap.
1999 */
2000 if ((prot & VM_PROT_READ) == 0) {
2001 pmap_remove(pm, va, endva);
2002 return;
2003 }
2004
2005 msr = pmap_interrupts_off();
2006 for (; va < endva; va += PAGE_SIZE) {
2007 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2008 if (pvo == NULL)
2009 continue;
2010 PMAP_PVO_CHECK(pvo); /* sanity check */
2011
2012 /*
2013 * Revoke executable if asked to do so.
2014 */
2015 if ((prot & VM_PROT_EXECUTE) == 0)
2016 pvo_clear_exec(pvo);
2017
2018 #if 0
2019 /*
2020 * If the page is already read-only, no change
2021 * needs to be made.
2022 */
2023 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2024 continue;
2025 #endif
2026 /*
2027 * Grab the PTE pointer before we diddle with
2028 * the cached PTE copy.
2029 */
2030 pt = pmap_pvo_to_pte(pvo, pteidx);
2031 /*
2032 * Change the protection of the page.
2033 */
2034 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2035 pvo->pvo_pte.pte_lo |= PTE_BR;
2036
2037 /*
2038 * If the PVO is in the page table, update
2039 * that pte at well.
2040 */
2041 if (pt != NULL) {
2042 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2043 PVO_WHERE(pvo, PMAP_PROTECT);
2044 PMAPCOUNT(ptes_changed);
2045 }
2046
2047 PMAP_PVO_CHECK(pvo); /* sanity check */
2048 }
2049 pmap_interrupts_restore(msr);
2050 }
2051
2052 void
2053 pmap_unwire(pmap_t pm, vaddr_t va)
2054 {
2055 struct pvo_entry *pvo;
2056 register_t msr;
2057
2058 msr = pmap_interrupts_off();
2059 pvo = pmap_pvo_find_va(pm, va, NULL);
2060 if (pvo != NULL) {
2061 if (pvo->pvo_vaddr & PVO_WIRED) {
2062 pvo->pvo_vaddr &= ~PVO_WIRED;
2063 pm->pm_stats.wired_count--;
2064 }
2065 PMAP_PVO_CHECK(pvo); /* sanity check */
2066 }
2067 pmap_interrupts_restore(msr);
2068 }
2069
2070 /*
2071 * Lower the protection on the specified physical page.
2072 */
2073 void
2074 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2075 {
2076 struct pvo_head *pvo_head;
2077 struct pvo_entry *pvo, *next_pvo;
2078 volatile struct pte *pt;
2079 register_t msr;
2080
2081 KASSERT(prot != VM_PROT_ALL);
2082 msr = pmap_interrupts_off();
2083
2084 /*
2085 * When UVM reuses a page, it does a pmap_page_protect with
2086 * VM_PROT_NONE. At that point, we can clear the exec flag
2087 * since we know the page will have different contents.
2088 */
2089 if ((prot & VM_PROT_READ) == 0) {
2090 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2091 pg->phys_addr));
2092 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2093 PMAPCOUNT(exec_uncached_page_protect);
2094 pmap_attr_clear(pg, PTE_EXEC);
2095 }
2096 }
2097
2098 pvo_head = vm_page_to_pvoh(pg);
2099 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2100 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2101 PMAP_PVO_CHECK(pvo); /* sanity check */
2102
2103 /*
2104 * Downgrading to no mapping at all, we just remove the entry.
2105 */
2106 if ((prot & VM_PROT_READ) == 0) {
2107 pmap_pvo_remove(pvo, -1);
2108 continue;
2109 }
2110
2111 /*
2112 * If EXEC permission is being revoked, just clear the
2113 * flag in the PVO.
2114 */
2115 if ((prot & VM_PROT_EXECUTE) == 0)
2116 pvo_clear_exec(pvo);
2117
2118 /*
2119 * If this entry is already RO, don't diddle with the
2120 * page table.
2121 */
2122 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2123 PMAP_PVO_CHECK(pvo);
2124 continue;
2125 }
2126
2127 /*
2128 * Grab the PTE before the we diddle the bits so
2129 * pvo_to_pte can verify the pte contents are as
2130 * expected.
2131 */
2132 pt = pmap_pvo_to_pte(pvo, -1);
2133 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2134 pvo->pvo_pte.pte_lo |= PTE_BR;
2135 if (pt != NULL) {
2136 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2137 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2138 PMAPCOUNT(ptes_changed);
2139 }
2140 PMAP_PVO_CHECK(pvo); /* sanity check */
2141 }
2142 pmap_interrupts_restore(msr);
2143 }
2144
2145 /*
2146 * Activate the address space for the specified process. If the process
2147 * is the current process, load the new MMU context.
2148 */
2149 void
2150 pmap_activate(struct lwp *l)
2151 {
2152 struct pcb *pcb = &l->l_addr->u_pcb;
2153 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2154
2155 DPRINTFN(ACTIVATE,
2156 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2157
2158 /*
2159 * XXX Normally performed in cpu_fork().
2160 */
2161 pcb->pcb_pm = pmap;
2162
2163 /*
2164 * In theory, the SR registers need only be valid on return
2165 * to user space wait to do them there.
2166 */
2167 if (l == curlwp) {
2168 /* Store pointer to new current pmap. */
2169 curpm = pmap;
2170 }
2171 }
2172
2173 /*
2174 * Deactivate the specified process's address space.
2175 */
2176 void
2177 pmap_deactivate(struct lwp *l)
2178 {
2179 }
2180
2181 boolean_t
2182 pmap_query_bit(struct vm_page *pg, int ptebit)
2183 {
2184 struct pvo_entry *pvo;
2185 volatile struct pte *pt;
2186 register_t msr;
2187
2188 if (pmap_attr_fetch(pg) & ptebit)
2189 return TRUE;
2190
2191 msr = pmap_interrupts_off();
2192 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2193 PMAP_PVO_CHECK(pvo); /* sanity check */
2194 /*
2195 * See if we saved the bit off. If so cache, it and return
2196 * success.
2197 */
2198 if (pvo->pvo_pte.pte_lo & ptebit) {
2199 pmap_attr_save(pg, ptebit);
2200 PMAP_PVO_CHECK(pvo); /* sanity check */
2201 pmap_interrupts_restore(msr);
2202 return TRUE;
2203 }
2204 }
2205 /*
2206 * No luck, now go thru the hard part of looking at the ptes
2207 * themselves. Sync so any pending REF/CHG bits are flushed
2208 * to the PTEs.
2209 */
2210 SYNC();
2211 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2212 PMAP_PVO_CHECK(pvo); /* sanity check */
2213 /*
2214 * See if this pvo have a valid PTE. If so, fetch the
2215 * REF/CHG bits from the valid PTE. If the appropriate
2216 * ptebit is set, cache, it and return success.
2217 */
2218 pt = pmap_pvo_to_pte(pvo, -1);
2219 if (pt != NULL) {
2220 pmap_pte_synch(pt, &pvo->pvo_pte);
2221 if (pvo->pvo_pte.pte_lo & ptebit) {
2222 pmap_attr_save(pg, ptebit);
2223 PMAP_PVO_CHECK(pvo); /* sanity check */
2224 pmap_interrupts_restore(msr);
2225 return TRUE;
2226 }
2227 }
2228 }
2229 pmap_interrupts_restore(msr);
2230 return FALSE;
2231 }
2232
2233 boolean_t
2234 pmap_clear_bit(struct vm_page *pg, int ptebit)
2235 {
2236 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2237 struct pvo_entry *pvo;
2238 volatile struct pte *pt;
2239 register_t msr;
2240 int rv = 0;
2241
2242 msr = pmap_interrupts_off();
2243
2244 /*
2245 * Fetch the cache value
2246 */
2247 rv |= pmap_attr_fetch(pg);
2248
2249 /*
2250 * Clear the cached value.
2251 */
2252 pmap_attr_clear(pg, ptebit);
2253
2254 /*
2255 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2256 * can reset the right ones). Note that since the pvo entries and
2257 * list heads are accessed via BAT0 and are never placed in the
2258 * page table, we don't have to worry about further accesses setting
2259 * the REF/CHG bits.
2260 */
2261 SYNC();
2262
2263 /*
2264 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2265 * valid PTE. If so, clear the ptebit from the valid PTE.
2266 */
2267 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2268 PMAP_PVO_CHECK(pvo); /* sanity check */
2269 pt = pmap_pvo_to_pte(pvo, -1);
2270 if (pt != NULL) {
2271 /*
2272 * Only sync the PTE if the bit we are looking
2273 * for is not already set.
2274 */
2275 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2276 pmap_pte_synch(pt, &pvo->pvo_pte);
2277 /*
2278 * If the bit we are looking for was already set,
2279 * clear that bit in the pte.
2280 */
2281 if (pvo->pvo_pte.pte_lo & ptebit)
2282 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2283 }
2284 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2285 pvo->pvo_pte.pte_lo &= ~ptebit;
2286 PMAP_PVO_CHECK(pvo); /* sanity check */
2287 }
2288 pmap_interrupts_restore(msr);
2289
2290 /*
2291 * If we are clearing the modify bit and this page was marked EXEC
2292 * and the user of the page thinks the page was modified, then we
2293 * need to clean it from the icache if it's mapped or clear the EXEC
2294 * bit if it's not mapped. The page itself might not have the CHG
2295 * bit set if the modification was done via DMA to the page.
2296 */
2297 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2298 if (LIST_EMPTY(pvoh)) {
2299 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2300 pg->phys_addr));
2301 pmap_attr_clear(pg, PTE_EXEC);
2302 PMAPCOUNT(exec_uncached_clear_modify);
2303 } else {
2304 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2305 pg->phys_addr));
2306 pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2307 PMAPCOUNT(exec_synced_clear_modify);
2308 }
2309 }
2310 return (rv & ptebit) != 0;
2311 }
2312
2313 void
2314 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2315 {
2316 struct pvo_entry *pvo;
2317 size_t offset = va & ADDR_POFF;
2318 int s;
2319
2320 s = splvm();
2321 while (len > 0) {
2322 size_t seglen = PAGE_SIZE - offset;
2323 if (seglen > len)
2324 seglen = len;
2325 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2326 if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2327 pmap_syncicache(
2328 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2329 PMAP_PVO_CHECK(pvo);
2330 }
2331 va += seglen;
2332 len -= seglen;
2333 offset = 0;
2334 }
2335 splx(s);
2336 }
2337
2338 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2339 void
2340 pmap_pte_print(volatile struct pte *pt)
2341 {
2342 printf("PTE %p: ", pt);
2343 /* High word: */
2344 printf("0x%08lx: [", pt->pte_hi);
2345 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2346 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2347 printf("0x%06lx 0x%02lx",
2348 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2349 pt->pte_hi & PTE_API);
2350 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2351 /* Low word: */
2352 printf(" 0x%08lx: [", pt->pte_lo);
2353 printf("0x%05lx... ", pt->pte_lo >> 12);
2354 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2355 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2356 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2357 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2358 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2359 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2360 switch (pt->pte_lo & PTE_PP) {
2361 case PTE_BR: printf("br]\n"); break;
2362 case PTE_BW: printf("bw]\n"); break;
2363 case PTE_SO: printf("so]\n"); break;
2364 case PTE_SW: printf("sw]\n"); break;
2365 }
2366 }
2367 #endif
2368
2369 #if defined(DDB)
2370 void
2371 pmap_pteg_check(void)
2372 {
2373 volatile struct pte *pt;
2374 int i;
2375 int ptegidx;
2376 u_int p_valid = 0;
2377 u_int s_valid = 0;
2378 u_int invalid = 0;
2379
2380 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2381 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2382 if (pt->pte_hi & PTE_VALID) {
2383 if (pt->pte_hi & PTE_HID)
2384 s_valid++;
2385 else
2386 p_valid++;
2387 } else
2388 invalid++;
2389 }
2390 }
2391 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2392 p_valid, p_valid, s_valid, s_valid,
2393 invalid, invalid);
2394 }
2395
2396 void
2397 pmap_print_mmuregs(void)
2398 {
2399 int i;
2400 u_int cpuvers;
2401 #ifndef PPC_OEA64
2402 vaddr_t addr;
2403 register_t soft_sr[16];
2404 #endif
2405 struct bat soft_ibat[4];
2406 struct bat soft_dbat[4];
2407 register_t sdr1;
2408
2409 cpuvers = MFPVR() >> 16;
2410
2411 __asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2412 #ifndef PPC_OEA64
2413 addr = 0;
2414 for (i=0; i<16; i++) {
2415 soft_sr[i] = MFSRIN(addr);
2416 addr += (1 << ADDR_SR_SHFT);
2417 }
2418 #endif
2419
2420 /* read iBAT (601: uBAT) registers */
2421 __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2422 __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2423 __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2424 __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2425 __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2426 __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2427 __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2428 __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2429
2430
2431 if (cpuvers != MPC601) {
2432 /* read dBAT registers */
2433 __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2434 __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2435 __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2436 __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2437 __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2438 __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2439 __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2440 __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2441 }
2442
2443 printf("SDR1:\t0x%lx\n", (long) sdr1);
2444 #ifndef PPC_OEA64
2445 printf("SR[]:\t");
2446 for (i=0; i<4; i++)
2447 printf("0x%08lx, ", soft_sr[i]);
2448 printf("\n\t");
2449 for ( ; i<8; i++)
2450 printf("0x%08lx, ", soft_sr[i]);
2451 printf("\n\t");
2452 for ( ; i<12; i++)
2453 printf("0x%08lx, ", soft_sr[i]);
2454 printf("\n\t");
2455 for ( ; i<16; i++)
2456 printf("0x%08lx, ", soft_sr[i]);
2457 printf("\n");
2458 #endif
2459
2460 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2461 for (i=0; i<4; i++) {
2462 printf("0x%08lx 0x%08lx, ",
2463 soft_ibat[i].batu, soft_ibat[i].batl);
2464 if (i == 1)
2465 printf("\n\t");
2466 }
2467 if (cpuvers != MPC601) {
2468 printf("\ndBAT[]:\t");
2469 for (i=0; i<4; i++) {
2470 printf("0x%08lx 0x%08lx, ",
2471 soft_dbat[i].batu, soft_dbat[i].batl);
2472 if (i == 1)
2473 printf("\n\t");
2474 }
2475 }
2476 printf("\n");
2477 }
2478
2479 void
2480 pmap_print_pte(pmap_t pm, vaddr_t va)
2481 {
2482 struct pvo_entry *pvo;
2483 volatile struct pte *pt;
2484 int pteidx;
2485
2486 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2487 if (pvo != NULL) {
2488 pt = pmap_pvo_to_pte(pvo, pteidx);
2489 if (pt != NULL) {
2490 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2491 va, pt,
2492 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2493 pt->pte_hi, pt->pte_lo);
2494 } else {
2495 printf("No valid PTE found\n");
2496 }
2497 } else {
2498 printf("Address not in pmap\n");
2499 }
2500 }
2501
2502 void
2503 pmap_pteg_dist(void)
2504 {
2505 struct pvo_entry *pvo;
2506 int ptegidx;
2507 int depth;
2508 int max_depth = 0;
2509 unsigned int depths[64];
2510
2511 memset(depths, 0, sizeof(depths));
2512 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2513 depth = 0;
2514 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2515 depth++;
2516 }
2517 if (depth > max_depth)
2518 max_depth = depth;
2519 if (depth > 63)
2520 depth = 63;
2521 depths[depth]++;
2522 }
2523
2524 for (depth = 0; depth < 64; depth++) {
2525 printf(" [%2d]: %8u", depth, depths[depth]);
2526 if ((depth & 3) == 3)
2527 printf("\n");
2528 if (depth == max_depth)
2529 break;
2530 }
2531 if ((depth & 3) != 3)
2532 printf("\n");
2533 printf("Max depth found was %d\n", max_depth);
2534 }
2535 #endif /* DEBUG */
2536
2537 #if defined(PMAPCHECK) || defined(DEBUG)
2538 void
2539 pmap_pvo_verify(void)
2540 {
2541 int ptegidx;
2542 int s;
2543
2544 s = splvm();
2545 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2546 struct pvo_entry *pvo;
2547 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2548 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2549 panic("pmap_pvo_verify: invalid pvo %p "
2550 "on list %#x", pvo, ptegidx);
2551 pmap_pvo_check(pvo);
2552 }
2553 }
2554 splx(s);
2555 }
2556 #endif /* PMAPCHECK */
2557
2558
2559 void *
2560 pmap_pool_ualloc(struct pool *pp, int flags)
2561 {
2562 struct pvo_page *pvop;
2563
2564 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2565 if (pvop != NULL) {
2566 pmap_upvop_free--;
2567 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2568 return pvop;
2569 }
2570 if (uvm.page_init_done != TRUE) {
2571 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2572 }
2573 return pmap_pool_malloc(pp, flags);
2574 }
2575
2576 void *
2577 pmap_pool_malloc(struct pool *pp, int flags)
2578 {
2579 struct pvo_page *pvop;
2580 struct vm_page *pg;
2581
2582 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2583 if (pvop != NULL) {
2584 pmap_mpvop_free--;
2585 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2586 return pvop;
2587 }
2588 again:
2589 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2590 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2591 if (__predict_false(pg == NULL)) {
2592 if (flags & PR_WAITOK) {
2593 uvm_wait("plpg");
2594 goto again;
2595 } else {
2596 return (0);
2597 }
2598 }
2599 return (void *) VM_PAGE_TO_PHYS(pg);
2600 }
2601
2602 void
2603 pmap_pool_ufree(struct pool *pp, void *va)
2604 {
2605 struct pvo_page *pvop;
2606 #if 0
2607 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2608 pmap_pool_mfree(va, size, tag);
2609 return;
2610 }
2611 #endif
2612 pvop = va;
2613 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2614 pmap_upvop_free++;
2615 if (pmap_upvop_free > pmap_upvop_maxfree)
2616 pmap_upvop_maxfree = pmap_upvop_free;
2617 }
2618
2619 void
2620 pmap_pool_mfree(struct pool *pp, void *va)
2621 {
2622 struct pvo_page *pvop;
2623
2624 pvop = va;
2625 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2626 pmap_mpvop_free++;
2627 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2628 pmap_mpvop_maxfree = pmap_mpvop_free;
2629 #if 0
2630 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2631 #endif
2632 }
2633
2634 /*
2635 * This routine in bootstraping to steal to-be-managed memory (which will
2636 * then be unmanaged). We use it to grab from the first 256MB for our
2637 * pmap needs and above 256MB for other stuff.
2638 */
2639 vaddr_t
2640 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2641 {
2642 vsize_t size;
2643 vaddr_t va;
2644 paddr_t pa = 0;
2645 int npgs, bank;
2646 struct vm_physseg *ps;
2647
2648 if (uvm.page_init_done == TRUE)
2649 panic("pmap_steal_memory: called _after_ bootstrap");
2650
2651 *vstartp = VM_MIN_KERNEL_ADDRESS;
2652 *vendp = VM_MAX_KERNEL_ADDRESS;
2653
2654 size = round_page(vsize);
2655 npgs = atop(size);
2656
2657 /*
2658 * PA 0 will never be among those given to UVM so we can use it
2659 * to indicate we couldn't steal any memory.
2660 */
2661 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2662 if (ps->free_list == VM_FREELIST_FIRST256 &&
2663 ps->avail_end - ps->avail_start >= npgs) {
2664 pa = ptoa(ps->avail_start);
2665 break;
2666 }
2667 }
2668
2669 if (pa == 0)
2670 panic("pmap_steal_memory: no approriate memory to steal!");
2671
2672 ps->avail_start += npgs;
2673 ps->start += npgs;
2674
2675 /*
2676 * If we've used up all the pages in the segment, remove it and
2677 * compact the list.
2678 */
2679 if (ps->avail_start == ps->end) {
2680 /*
2681 * If this was the last one, then a very bad thing has occurred
2682 */
2683 if (--vm_nphysseg == 0)
2684 panic("pmap_steal_memory: out of memory!");
2685
2686 printf("pmap_steal_memory: consumed bank %d\n", bank);
2687 for (; bank < vm_nphysseg; bank++, ps++) {
2688 ps[0] = ps[1];
2689 }
2690 }
2691
2692 va = (vaddr_t) pa;
2693 memset((caddr_t) va, 0, size);
2694 pmap_pages_stolen += npgs;
2695 #ifdef DEBUG
2696 if (pmapdebug && npgs > 1) {
2697 u_int cnt = 0;
2698 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2699 cnt += ps->avail_end - ps->avail_start;
2700 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2701 npgs, pmap_pages_stolen, cnt);
2702 }
2703 #endif
2704
2705 return va;
2706 }
2707
2708 /*
2709 * Find a chuck of memory with right size and alignment.
2710 */
2711 void *
2712 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2713 {
2714 struct mem_region *mp;
2715 paddr_t s, e;
2716 int i, j;
2717
2718 size = round_page(size);
2719
2720 DPRINTFN(BOOT,
2721 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2722 size, alignment, at_end));
2723
2724 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2725 panic("pmap_boot_find_memory: invalid alignment %lx",
2726 alignment);
2727
2728 if (at_end) {
2729 if (alignment != PAGE_SIZE)
2730 panic("pmap_boot_find_memory: invalid ending "
2731 "alignment %lx", alignment);
2732
2733 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2734 s = mp->start + mp->size - size;
2735 if (s >= mp->start && mp->size >= size) {
2736 DPRINTFN(BOOT,(": %lx\n", s));
2737 DPRINTFN(BOOT,
2738 ("pmap_boot_find_memory: b-avail[%d] start "
2739 "0x%lx size 0x%lx\n", mp - avail,
2740 mp->start, mp->size));
2741 mp->size -= size;
2742 DPRINTFN(BOOT,
2743 ("pmap_boot_find_memory: a-avail[%d] start "
2744 "0x%lx size 0x%lx\n", mp - avail,
2745 mp->start, mp->size));
2746 return (void *) s;
2747 }
2748 }
2749 panic("pmap_boot_find_memory: no available memory");
2750 }
2751
2752 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2753 s = (mp->start + alignment - 1) & ~(alignment-1);
2754 e = s + size;
2755
2756 /*
2757 * Is the calculated region entirely within the region?
2758 */
2759 if (s < mp->start || e > mp->start + mp->size)
2760 continue;
2761
2762 DPRINTFN(BOOT,(": %lx\n", s));
2763 if (s == mp->start) {
2764 /*
2765 * If the block starts at the beginning of region,
2766 * adjust the size & start. (the region may now be
2767 * zero in length)
2768 */
2769 DPRINTFN(BOOT,
2770 ("pmap_boot_find_memory: b-avail[%d] start "
2771 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2772 mp->start += size;
2773 mp->size -= size;
2774 DPRINTFN(BOOT,
2775 ("pmap_boot_find_memory: a-avail[%d] start "
2776 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2777 } else if (e == mp->start + mp->size) {
2778 /*
2779 * If the block starts at the beginning of region,
2780 * adjust only the size.
2781 */
2782 DPRINTFN(BOOT,
2783 ("pmap_boot_find_memory: b-avail[%d] start "
2784 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2785 mp->size -= size;
2786 DPRINTFN(BOOT,
2787 ("pmap_boot_find_memory: a-avail[%d] start "
2788 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2789 } else {
2790 /*
2791 * Block is in the middle of the region, so we
2792 * have to split it in two.
2793 */
2794 for (j = avail_cnt; j > i + 1; j--) {
2795 avail[j] = avail[j-1];
2796 }
2797 DPRINTFN(BOOT,
2798 ("pmap_boot_find_memory: b-avail[%d] start "
2799 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2800 mp[1].start = e;
2801 mp[1].size = mp[0].start + mp[0].size - e;
2802 mp[0].size = s - mp[0].start;
2803 avail_cnt++;
2804 for (; i < avail_cnt; i++) {
2805 DPRINTFN(BOOT,
2806 ("pmap_boot_find_memory: a-avail[%d] "
2807 "start 0x%lx size 0x%lx\n", i,
2808 avail[i].start, avail[i].size));
2809 }
2810 }
2811 return (void *) s;
2812 }
2813 panic("pmap_boot_find_memory: not enough memory for "
2814 "%lx/%lx allocation?", size, alignment);
2815 }
2816
2817 /*
2818 * This is not part of the defined PMAP interface and is specific to the
2819 * PowerPC architecture. This is called during initppc, before the system
2820 * is really initialized.
2821 */
2822 void
2823 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2824 {
2825 struct mem_region *mp, tmp;
2826 paddr_t s, e;
2827 psize_t size;
2828 int i, j;
2829
2830 /*
2831 * Get memory.
2832 */
2833 mem_regions(&mem, &avail);
2834 #if defined(DEBUG)
2835 if (pmapdebug & PMAPDEBUG_BOOT) {
2836 printf("pmap_bootstrap: memory configuration:\n");
2837 for (mp = mem; mp->size; mp++) {
2838 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2839 mp->start, mp->size);
2840 }
2841 for (mp = avail; mp->size; mp++) {
2842 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2843 mp->start, mp->size);
2844 }
2845 }
2846 #endif
2847
2848 /*
2849 * Find out how much physical memory we have and in how many chunks.
2850 */
2851 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2852 if (mp->start >= pmap_memlimit)
2853 continue;
2854 if (mp->start + mp->size > pmap_memlimit) {
2855 size = pmap_memlimit - mp->start;
2856 physmem += btoc(size);
2857 } else {
2858 physmem += btoc(mp->size);
2859 }
2860 mem_cnt++;
2861 }
2862
2863 /*
2864 * Count the number of available entries.
2865 */
2866 for (avail_cnt = 0, mp = avail; mp->size; mp++)
2867 avail_cnt++;
2868
2869 /*
2870 * Page align all regions.
2871 */
2872 kernelstart = trunc_page(kernelstart);
2873 kernelend = round_page(kernelend);
2874 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2875 s = round_page(mp->start);
2876 mp->size -= (s - mp->start);
2877 mp->size = trunc_page(mp->size);
2878 mp->start = s;
2879 e = mp->start + mp->size;
2880
2881 DPRINTFN(BOOT,
2882 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2883 i, mp->start, mp->size));
2884
2885 /*
2886 * Don't allow the end to run beyond our artificial limit
2887 */
2888 if (e > pmap_memlimit)
2889 e = pmap_memlimit;
2890
2891 /*
2892 * Is this region empty or strange? skip it.
2893 */
2894 if (e <= s) {
2895 mp->start = 0;
2896 mp->size = 0;
2897 continue;
2898 }
2899
2900 /*
2901 * Does this overlap the beginning of kernel?
2902 * Does extend past the end of the kernel?
2903 */
2904 else if (s < kernelstart && e > kernelstart) {
2905 if (e > kernelend) {
2906 avail[avail_cnt].start = kernelend;
2907 avail[avail_cnt].size = e - kernelend;
2908 avail_cnt++;
2909 }
2910 mp->size = kernelstart - s;
2911 }
2912 /*
2913 * Check whether this region overlaps the end of the kernel.
2914 */
2915 else if (s < kernelend && e > kernelend) {
2916 mp->start = kernelend;
2917 mp->size = e - kernelend;
2918 }
2919 /*
2920 * Look whether this regions is completely inside the kernel.
2921 * Nuke it if it does.
2922 */
2923 else if (s >= kernelstart && e <= kernelend) {
2924 mp->start = 0;
2925 mp->size = 0;
2926 }
2927 /*
2928 * If the user imposed a memory limit, enforce it.
2929 */
2930 else if (s >= pmap_memlimit) {
2931 mp->start = -PAGE_SIZE; /* let's know why */
2932 mp->size = 0;
2933 }
2934 else {
2935 mp->start = s;
2936 mp->size = e - s;
2937 }
2938 DPRINTFN(BOOT,
2939 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
2940 i, mp->start, mp->size));
2941 }
2942
2943 /*
2944 * Move (and uncount) all the null return to the end.
2945 */
2946 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2947 if (mp->size == 0) {
2948 tmp = avail[i];
2949 avail[i] = avail[--avail_cnt];
2950 avail[avail_cnt] = avail[i];
2951 }
2952 }
2953
2954 /*
2955 * (Bubble)sort them into asecnding order.
2956 */
2957 for (i = 0; i < avail_cnt; i++) {
2958 for (j = i + 1; j < avail_cnt; j++) {
2959 if (avail[i].start > avail[j].start) {
2960 tmp = avail[i];
2961 avail[i] = avail[j];
2962 avail[j] = tmp;
2963 }
2964 }
2965 }
2966
2967 /*
2968 * Make sure they don't overlap.
2969 */
2970 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
2971 if (mp[0].start + mp[0].size > mp[1].start) {
2972 mp[0].size = mp[1].start - mp[0].start;
2973 }
2974 DPRINTFN(BOOT,
2975 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2976 i, mp->start, mp->size));
2977 }
2978 DPRINTFN(BOOT,
2979 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
2980 i, mp->start, mp->size));
2981
2982 #ifdef PTEGCOUNT
2983 pmap_pteg_cnt = PTEGCOUNT;
2984 #else /* PTEGCOUNT */
2985 pmap_pteg_cnt = 0x1000;
2986
2987 while (pmap_pteg_cnt < physmem)
2988 pmap_pteg_cnt <<= 1;
2989
2990 pmap_pteg_cnt >>= 1;
2991 #endif /* PTEGCOUNT */
2992
2993 /*
2994 * Find suitably aligned memory for PTEG hash table.
2995 */
2996 size = pmap_pteg_cnt * sizeof(struct pteg);
2997 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
2998 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
2999 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3000 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3001 pmap_pteg_table, size);
3002 #endif
3003
3004 memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
3005 pmap_pteg_mask = pmap_pteg_cnt - 1;
3006
3007 /*
3008 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3009 * with pages. So we just steal them before giving them to UVM.
3010 */
3011 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3012 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3013 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3014 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3015 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3016 pmap_pvo_table, size);
3017 #endif
3018
3019 for (i = 0; i < pmap_pteg_cnt; i++)
3020 TAILQ_INIT(&pmap_pvo_table[i]);
3021
3022 #ifndef MSGBUFADDR
3023 /*
3024 * Allocate msgbuf in high memory.
3025 */
3026 msgbuf_paddr =
3027 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3028 #endif
3029
3030 #ifdef __HAVE_PMAP_PHYSSEG
3031 {
3032 u_int npgs = 0;
3033 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3034 npgs += btoc(mp->size);
3035 size = (sizeof(struct pvo_head) + 1) * npgs;
3036 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3037 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3038 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3039 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3040 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3041 pmap_physseg.pvoh, size);
3042 #endif
3043 }
3044 #endif
3045
3046 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3047 paddr_t pfstart = atop(mp->start);
3048 paddr_t pfend = atop(mp->start + mp->size);
3049 if (mp->size == 0)
3050 continue;
3051 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3052 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3053 VM_FREELIST_FIRST256);
3054 } else if (mp->start >= SEGMENT_LENGTH) {
3055 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3056 VM_FREELIST_DEFAULT);
3057 } else {
3058 pfend = atop(SEGMENT_LENGTH);
3059 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3060 VM_FREELIST_FIRST256);
3061 pfstart = atop(SEGMENT_LENGTH);
3062 pfend = atop(mp->start + mp->size);
3063 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3064 VM_FREELIST_DEFAULT);
3065 }
3066 }
3067
3068 /*
3069 * Make sure kernel vsid is allocated as well as VSID 0.
3070 */
3071 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3072 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3073 pmap_vsid_bitmap[0] |= 1;
3074
3075 /*
3076 * Initialize kernel pmap and hardware.
3077 */
3078 #ifndef PPC_OEA64
3079 for (i = 0; i < 16; i++) {
3080 pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3081 __asm __volatile ("mtsrin %0,%1"
3082 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3083 }
3084
3085 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3086 __asm __volatile ("mtsr %0,%1"
3087 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3088 #ifdef KERNEL2_SR
3089 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3090 __asm __volatile ("mtsr %0,%1"
3091 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3092 #endif
3093 for (i = 0; i < 16; i++) {
3094 if (iosrtable[i] & SR601_T) {
3095 pmap_kernel()->pm_sr[i] = iosrtable[i];
3096 __asm __volatile ("mtsrin %0,%1"
3097 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3098 }
3099 }
3100 #endif /* !PPC_OEA64 */
3101
3102 __asm __volatile ("sync; mtsdr1 %0; isync"
3103 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3104 tlbia();
3105
3106 #ifdef ALTIVEC
3107 pmap_use_altivec = cpu_altivec;
3108 #endif
3109
3110 #ifdef DEBUG
3111 if (pmapdebug & PMAPDEBUG_BOOT) {
3112 u_int cnt;
3113 int bank;
3114 char pbuf[9];
3115 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3116 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3117 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3118 bank,
3119 ptoa(vm_physmem[bank].avail_start),
3120 ptoa(vm_physmem[bank].avail_end),
3121 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3122 }
3123 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3124 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3125 pbuf, cnt);
3126 }
3127 #endif
3128
3129 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3130 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3131 &pmap_pool_uallocator);
3132
3133 pool_setlowat(&pmap_upvo_pool, 252);
3134
3135 pool_init(&pmap_pool, sizeof(struct pmap),
3136 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3137 }
3138