pmap.c revision 1.25 1 /* $NetBSD: pmap.c,v 1.25 2004/08/19 15:31:57 chs Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.25 2004/08/19 15:31:57 chs Exp $");
71
72 #include "opt_ppcarch.h"
73 #include "opt_altivec.h"
74 #include "opt_pmap.h"
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83
84 #if __NetBSD_Version__ < 105010000
85 #include <vm/vm.h>
86 #include <vm/vm_kern.h>
87 #define splvm() splimp()
88 #endif
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97
98 #if defined(DEBUG) || defined(PMAPCHECK)
99 #define STATIC
100 #else
101 #define STATIC static
102 #endif
103
104 #ifdef ALTIVEC
105 int pmap_use_altivec;
106 #endif
107
108 volatile struct pteg *pmap_pteg_table;
109 unsigned int pmap_pteg_cnt;
110 unsigned int pmap_pteg_mask;
111 #ifdef PMAP_MEMLIMIT
112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 #else
114 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
115 #endif
116
117 struct pmap kernel_pmap_;
118 unsigned int pmap_pages_stolen;
119 u_long pmap_pte_valid;
120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 u_long pmap_pvo_enter_depth;
122 u_long pmap_pvo_remove_depth;
123 #endif
124
125 int physmem;
126 #ifndef MSGBUFADDR
127 extern paddr_t msgbuf_paddr;
128 #endif
129
130 static struct mem_region *mem, *avail;
131 static u_int mem_cnt, avail_cnt;
132
133 #ifdef __HAVE_PMAP_PHYSSEG
134 /*
135 * This is a cache of referenced/modified bits.
136 * Bits herein are shifted by ATTRSHFT.
137 */
138 #define ATTR_SHFT 4
139 struct pmap_physseg pmap_physseg;
140 #endif
141
142 /*
143 * The following structure is exactly 32 bytes long (one cacheline).
144 */
145 struct pvo_entry {
146 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
147 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
148 struct pte pvo_pte; /* Prebuilt PTE */
149 pmap_t pvo_pmap; /* ptr to owning pmap */
150 vaddr_t pvo_vaddr; /* VA of entry */
151 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
152 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
153 #define PVO_WIRED 0x0010 /* PVO entry is wired */
154 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
155 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
156 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
157 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
158 #define PVO_SPILL_SET 2 /* PVO has been spilled */
159 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
160 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
161 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
162 #define PVO_REMOVE 6 /* PVO has been removed */
163 #define PVO_WHERE_MASK 15
164 #define PVO_WHERE_SHFT 8
165 };
166 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
167 #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 #define PVO_PTEGIDX_CLR(pvo) \
171 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 #define PVO_PTEGIDX_SET(pvo,i) \
173 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 #define PVO_WHERE(pvo,w) \
175 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177
178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
182
183 struct pool pmap_pool; /* pool for pmap structures */
184 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
185 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
186
187 /*
188 * We keep a cache of unmanaged pages to be used for pvo entries for
189 * unmanaged pages.
190 */
191 struct pvo_page {
192 SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 };
194 SIMPLEQ_HEAD(pvop_head, pvo_page);
195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 u_long pmap_upvop_free;
198 u_long pmap_upvop_maxfree;
199 u_long pmap_mpvop_free;
200 u_long pmap_mpvop_maxfree;
201
202 STATIC void *pmap_pool_ualloc(struct pool *, int);
203 STATIC void *pmap_pool_malloc(struct pool *, int);
204
205 STATIC void pmap_pool_ufree(struct pool *, void *);
206 STATIC void pmap_pool_mfree(struct pool *, void *);
207
208 static struct pool_allocator pmap_pool_mallocator = {
209 pmap_pool_malloc, pmap_pool_mfree, 0,
210 };
211
212 static struct pool_allocator pmap_pool_uallocator = {
213 pmap_pool_ualloc, pmap_pool_ufree, 0,
214 };
215
216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 void pmap_pte_print(volatile struct pte *);
218 #endif
219
220 #ifdef DDB
221 void pmap_pteg_check(void);
222 void pmap_pteg_dist(void);
223 void pmap_print_pte(pmap_t, vaddr_t);
224 void pmap_print_mmuregs(void);
225 #endif
226
227 #if defined(DEBUG) || defined(PMAPCHECK)
228 #ifdef PMAPCHECK
229 int pmapcheck = 1;
230 #else
231 int pmapcheck = 0;
232 #endif
233 void pmap_pvo_verify(void);
234 STATIC void pmap_pvo_check(const struct pvo_entry *);
235 #define PMAP_PVO_CHECK(pvo) \
236 do { \
237 if (pmapcheck) \
238 pmap_pvo_check(pvo); \
239 } while (0)
240 #else
241 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
242 #endif
243 STATIC int pmap_pte_insert(int, struct pte *);
244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 vaddr_t, paddr_t, register_t, int);
246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, boolean_t);
247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
249 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
250 STATIC void pvo_set_exec(struct pvo_entry *);
251 STATIC void pvo_clear_exec(struct pvo_entry *);
252
253 STATIC void tlbia(void);
254
255 STATIC void pmap_release(pmap_t);
256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
257
258 static uint32_t pmap_pvo_reclaim_nextidx;
259 #ifdef DEBUG
260 static int pmap_pvo_reclaim_debugctr;
261 #endif
262
263 #define VSID_NBPW (sizeof(uint32_t) * 8)
264 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
265
266 static int pmap_initialized;
267
268 #if defined(DEBUG) || defined(PMAPDEBUG)
269 #define PMAPDEBUG_BOOT 0x0001
270 #define PMAPDEBUG_PTE 0x0002
271 #define PMAPDEBUG_EXEC 0x0008
272 #define PMAPDEBUG_PVOENTER 0x0010
273 #define PMAPDEBUG_PVOREMOVE 0x0020
274 #define PMAPDEBUG_ACTIVATE 0x0100
275 #define PMAPDEBUG_CREATE 0x0200
276 #define PMAPDEBUG_ENTER 0x1000
277 #define PMAPDEBUG_KENTER 0x2000
278 #define PMAPDEBUG_KREMOVE 0x4000
279 #define PMAPDEBUG_REMOVE 0x8000
280 unsigned int pmapdebug = 0;
281 # define DPRINTF(x) printf x
282 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
283 #else
284 # define DPRINTF(x)
285 # define DPRINTFN(n, x)
286 #endif
287
288
289 #ifdef PMAPCOUNTERS
290 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
291 #define PMAPCOUNT2(ev) ((ev).ev_count++)
292
293 struct evcnt pmap_evcnt_mappings =
294 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
295 "pmap", "pages mapped");
296 struct evcnt pmap_evcnt_unmappings =
297 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
298 "pmap", "pages unmapped");
299
300 struct evcnt pmap_evcnt_kernel_mappings =
301 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
302 "pmap", "kernel pages mapped");
303 struct evcnt pmap_evcnt_kernel_unmappings =
304 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
305 "pmap", "kernel pages unmapped");
306
307 struct evcnt pmap_evcnt_mappings_replaced =
308 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
309 "pmap", "page mappings replaced");
310
311 struct evcnt pmap_evcnt_exec_mappings =
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
313 "pmap", "exec pages mapped");
314 struct evcnt pmap_evcnt_exec_cached =
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
316 "pmap", "exec pages cached");
317
318 struct evcnt pmap_evcnt_exec_synced =
319 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
320 "pmap", "exec pages synced");
321 struct evcnt pmap_evcnt_exec_synced_clear_modify =
322 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
323 "pmap", "exec pages synced (CM)");
324
325 struct evcnt pmap_evcnt_exec_uncached_page_protect =
326 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
327 "pmap", "exec pages uncached (PP)");
328 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
329 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
330 "pmap", "exec pages uncached (CM)");
331 struct evcnt pmap_evcnt_exec_uncached_zero_page =
332 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
333 "pmap", "exec pages uncached (ZP)");
334 struct evcnt pmap_evcnt_exec_uncached_copy_page =
335 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
336 "pmap", "exec pages uncached (CP)");
337
338 struct evcnt pmap_evcnt_updates =
339 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
340 "pmap", "updates");
341 struct evcnt pmap_evcnt_collects =
342 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
343 "pmap", "collects");
344 struct evcnt pmap_evcnt_copies =
345 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
346 "pmap", "copies");
347
348 struct evcnt pmap_evcnt_ptes_spilled =
349 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
350 "pmap", "ptes spilled from overflow");
351 struct evcnt pmap_evcnt_ptes_unspilled =
352 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
353 "pmap", "ptes not spilled");
354 struct evcnt pmap_evcnt_ptes_evicted =
355 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
356 "pmap", "ptes evicted");
357
358 struct evcnt pmap_evcnt_ptes_primary[8] = {
359 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
360 "pmap", "ptes added at primary[0]"),
361 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
362 "pmap", "ptes added at primary[1]"),
363 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 "pmap", "ptes added at primary[2]"),
365 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 "pmap", "ptes added at primary[3]"),
367
368 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
369 "pmap", "ptes added at primary[4]"),
370 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
371 "pmap", "ptes added at primary[5]"),
372 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 "pmap", "ptes added at primary[6]"),
374 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
375 "pmap", "ptes added at primary[7]"),
376 };
377 struct evcnt pmap_evcnt_ptes_secondary[8] = {
378 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
379 "pmap", "ptes added at secondary[0]"),
380 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 "pmap", "ptes added at secondary[1]"),
382 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 "pmap", "ptes added at secondary[2]"),
384 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 "pmap", "ptes added at secondary[3]"),
386
387 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
388 "pmap", "ptes added at secondary[4]"),
389 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 "pmap", "ptes added at secondary[5]"),
391 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 "pmap", "ptes added at secondary[6]"),
393 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
394 "pmap", "ptes added at secondary[7]"),
395 };
396 struct evcnt pmap_evcnt_ptes_removed =
397 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
398 "pmap", "ptes removed");
399 struct evcnt pmap_evcnt_ptes_changed =
400 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
401 "pmap", "ptes changed");
402
403 /*
404 * From pmap_subr.c
405 */
406 extern struct evcnt pmap_evcnt_zeroed_pages;
407 extern struct evcnt pmap_evcnt_copied_pages;
408 extern struct evcnt pmap_evcnt_idlezeroed_pages;
409 #else
410 #define PMAPCOUNT(ev) ((void) 0)
411 #define PMAPCOUNT2(ev) ((void) 0)
412 #endif
413
414 #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
415 #define TLBSYNC() __asm __volatile("tlbsync")
416 #define SYNC() __asm __volatile("sync")
417 #define EIEIO() __asm __volatile("eieio")
418 #define MFMSR() mfmsr()
419 #define MTMSR(psl) mtmsr(psl)
420 #define MFPVR() mfpvr()
421 #define MFSRIN(va) mfsrin(va)
422 #define MFTB() mfrtcltbl()
423
424 #ifndef PPC_OEA64
425 static __inline register_t
426 mfsrin(vaddr_t va)
427 {
428 register_t sr;
429 __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
430 return sr;
431 }
432 #endif /* PPC_OEA64 */
433
434 static __inline register_t
435 pmap_interrupts_off(void)
436 {
437 register_t msr = MFMSR();
438 if (msr & PSL_EE)
439 MTMSR(msr & ~PSL_EE);
440 return msr;
441 }
442
443 static void
444 pmap_interrupts_restore(register_t msr)
445 {
446 if (msr & PSL_EE)
447 MTMSR(msr);
448 }
449
450 static __inline u_int32_t
451 mfrtcltbl(void)
452 {
453
454 if ((MFPVR() >> 16) == MPC601)
455 return (mfrtcl() >> 7);
456 else
457 return (mftbl());
458 }
459
460 /*
461 * These small routines may have to be replaced,
462 * if/when we support processors other that the 604.
463 */
464
465 void
466 tlbia(void)
467 {
468 caddr_t i;
469
470 SYNC();
471 /*
472 * Why not use "tlbia"? Because not all processors implement it.
473 *
474 * This needs to be a per-CPU callback to do the appropriate thing
475 * for the CPU. XXX
476 */
477 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
478 TLBIE(i);
479 EIEIO();
480 SYNC();
481 }
482 TLBSYNC();
483 SYNC();
484 }
485
486 static __inline register_t
487 va_to_vsid(const struct pmap *pm, vaddr_t addr)
488 {
489 #ifdef PPC_OEA64
490 #if 0
491 const struct ste *ste;
492 register_t hash;
493 int i;
494
495 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
496
497 /*
498 * Try the primary group first
499 */
500 ste = pm->pm_stes[hash].stes;
501 for (i = 0; i < 8; i++, ste++) {
502 if (ste->ste_hi & STE_V) &&
503 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
504 return ste;
505 }
506
507 /*
508 * Then the secondary group.
509 */
510 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
511 for (i = 0; i < 8; i++, ste++) {
512 if (ste->ste_hi & STE_V) &&
513 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
514 return addr;
515 }
516
517 return NULL;
518 #else
519 /*
520 * Rather than searching the STE groups for the VSID, we know
521 * how we generate that from the ESID and so do that.
522 */
523 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
524 #endif
525 #else
526 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
527 #endif
528 }
529
530 static __inline register_t
531 va_to_pteg(const struct pmap *pm, vaddr_t addr)
532 {
533 register_t hash;
534
535 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
536 return hash & pmap_pteg_mask;
537 }
538
539 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
540 /*
541 * Given a PTE in the page table, calculate the VADDR that hashes to it.
542 * The only bit of magic is that the top 4 bits of the address doesn't
543 * technically exist in the PTE. But we know we reserved 4 bits of the
544 * VSID for it so that's how we get it.
545 */
546 static vaddr_t
547 pmap_pte_to_va(volatile const struct pte *pt)
548 {
549 vaddr_t va;
550 uintptr_t ptaddr = (uintptr_t) pt;
551
552 if (pt->pte_hi & PTE_HID)
553 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
554
555 /* PPC Bits 10-19 PPC64 Bits 42-51 */
556 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
557 va <<= ADDR_PIDX_SHFT;
558
559 /* PPC Bits 4-9 PPC64 Bits 36-41 */
560 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
561
562 #ifdef PPC_OEA64
563 /* PPC63 Bits 0-35 */
564 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
565 #endif
566 #ifdef PPC_OEA
567 /* PPC Bits 0-3 */
568 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
569 #endif
570
571 return va;
572 }
573 #endif
574
575 static __inline struct pvo_head *
576 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
577 {
578 #ifdef __HAVE_VM_PAGE_MD
579 struct vm_page *pg;
580
581 pg = PHYS_TO_VM_PAGE(pa);
582 if (pg_p != NULL)
583 *pg_p = pg;
584 if (pg == NULL)
585 return &pmap_pvo_unmanaged;
586 return &pg->mdpage.mdpg_pvoh;
587 #endif
588 #ifdef __HAVE_PMAP_PHYSSEG
589 int bank, pg;
590
591 bank = vm_physseg_find(atop(pa), &pg);
592 if (pg_p != NULL)
593 *pg_p = pg;
594 if (bank == -1)
595 return &pmap_pvo_unmanaged;
596 return &vm_physmem[bank].pmseg.pvoh[pg];
597 #endif
598 }
599
600 static __inline struct pvo_head *
601 vm_page_to_pvoh(struct vm_page *pg)
602 {
603 #ifdef __HAVE_VM_PAGE_MD
604 return &pg->mdpage.mdpg_pvoh;
605 #endif
606 #ifdef __HAVE_PMAP_PHYSSEG
607 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
608 #endif
609 }
610
611
612 #ifdef __HAVE_PMAP_PHYSSEG
613 static __inline char *
614 pa_to_attr(paddr_t pa)
615 {
616 int bank, pg;
617
618 bank = vm_physseg_find(atop(pa), &pg);
619 if (bank == -1)
620 return NULL;
621 return &vm_physmem[bank].pmseg.attrs[pg];
622 }
623 #endif
624
625 static __inline void
626 pmap_attr_clear(struct vm_page *pg, int ptebit)
627 {
628 #ifdef __HAVE_PMAP_PHYSSEG
629 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
630 #endif
631 #ifdef __HAVE_VM_PAGE_MD
632 pg->mdpage.mdpg_attrs &= ~ptebit;
633 #endif
634 }
635
636 static __inline int
637 pmap_attr_fetch(struct vm_page *pg)
638 {
639 #ifdef __HAVE_PMAP_PHYSSEG
640 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
641 #endif
642 #ifdef __HAVE_VM_PAGE_MD
643 return pg->mdpage.mdpg_attrs;
644 #endif
645 }
646
647 static __inline void
648 pmap_attr_save(struct vm_page *pg, int ptebit)
649 {
650 #ifdef __HAVE_PMAP_PHYSSEG
651 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
652 #endif
653 #ifdef __HAVE_VM_PAGE_MD
654 pg->mdpage.mdpg_attrs |= ptebit;
655 #endif
656 }
657
658 static __inline int
659 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
660 {
661 if (pt->pte_hi == pvo_pt->pte_hi
662 #if 0
663 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
664 ~(PTE_REF|PTE_CHG)) == 0
665 #endif
666 )
667 return 1;
668 return 0;
669 }
670
671 static __inline void
672 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
673 {
674 /*
675 * Construct the PTE. Default to IMB initially. Valid bit
676 * only gets set when the real pte is set in memory.
677 *
678 * Note: Don't set the valid bit for correct operation of tlb update.
679 */
680 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
681 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
682 pt->pte_lo = pte_lo;
683 }
684
685 static __inline void
686 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
687 {
688 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
689 }
690
691 static __inline void
692 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
693 {
694 /*
695 * As shown in Section 7.6.3.2.3
696 */
697 pt->pte_lo &= ~ptebit;
698 TLBIE(va);
699 SYNC();
700 EIEIO();
701 TLBSYNC();
702 SYNC();
703 }
704
705 static __inline void
706 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
707 {
708 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
709 if (pvo_pt->pte_hi & PTE_VALID)
710 panic("pte_set: setting an already valid pte %p", pvo_pt);
711 #endif
712 pvo_pt->pte_hi |= PTE_VALID;
713 /*
714 * Update the PTE as defined in section 7.6.3.1
715 * Note that the REF/CHG bits are from pvo_pt and thus should
716 * have been saved so this routine can restore them (if desired).
717 */
718 pt->pte_lo = pvo_pt->pte_lo;
719 EIEIO();
720 pt->pte_hi = pvo_pt->pte_hi;
721 SYNC();
722 pmap_pte_valid++;
723 }
724
725 static __inline void
726 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
727 {
728 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
729 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
730 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
731 if ((pt->pte_hi & PTE_VALID) == 0)
732 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
733 #endif
734
735 pvo_pt->pte_hi &= ~PTE_VALID;
736 /*
737 * Force the ref & chg bits back into the PTEs.
738 */
739 SYNC();
740 /*
741 * Invalidate the pte ... (Section 7.6.3.3)
742 */
743 pt->pte_hi &= ~PTE_VALID;
744 SYNC();
745 TLBIE(va);
746 SYNC();
747 EIEIO();
748 TLBSYNC();
749 SYNC();
750 /*
751 * Save the ref & chg bits ...
752 */
753 pmap_pte_synch(pt, pvo_pt);
754 pmap_pte_valid--;
755 }
756
757 static __inline void
758 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
759 {
760 /*
761 * Invalidate the PTE
762 */
763 pmap_pte_unset(pt, pvo_pt, va);
764 pmap_pte_set(pt, pvo_pt);
765 }
766
767 /*
768 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
769 * (either primary or secondary location).
770 *
771 * Note: both the destination and source PTEs must not have PTE_VALID set.
772 */
773
774 STATIC int
775 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
776 {
777 volatile struct pte *pt;
778 int i;
779
780 #if defined(DEBUG)
781 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
782 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
783 #endif
784 /*
785 * First try primary hash.
786 */
787 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
788 if ((pt->pte_hi & PTE_VALID) == 0) {
789 pvo_pt->pte_hi &= ~PTE_HID;
790 pmap_pte_set(pt, pvo_pt);
791 return i;
792 }
793 }
794
795 /*
796 * Now try secondary hash.
797 */
798 ptegidx ^= pmap_pteg_mask;
799 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
800 if ((pt->pte_hi & PTE_VALID) == 0) {
801 pvo_pt->pte_hi |= PTE_HID;
802 pmap_pte_set(pt, pvo_pt);
803 return i;
804 }
805 }
806 return -1;
807 }
808
809 /*
810 * Spill handler.
811 *
812 * Tries to spill a page table entry from the overflow area.
813 * This runs in either real mode (if dealing with a exception spill)
814 * or virtual mode when dealing with manually spilling one of the
815 * kernel's pte entries. In either case, interrupts are already
816 * disabled.
817 */
818
819 int
820 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
821 {
822 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
823 struct pvo_entry *pvo;
824 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
825 struct pvo_tqhead *pvoh, *vpvoh = NULL;
826 int ptegidx, i, j;
827 volatile struct pteg *pteg;
828 volatile struct pte *pt;
829
830 ptegidx = va_to_pteg(pm, addr);
831
832 /*
833 * Have to substitute some entry. Use the primary hash for this.
834 * Use low bits of timebase as random generator. Make sure we are
835 * not picking a kernel pte for replacement.
836 */
837 pteg = &pmap_pteg_table[ptegidx];
838 i = MFTB() & 7;
839 for (j = 0; j < 8; j++) {
840 pt = &pteg->pt[i];
841 if ((pt->pte_hi & PTE_VALID) == 0 ||
842 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
843 != KERNEL_VSIDBITS)
844 break;
845 i = (i + 1) & 7;
846 }
847 KASSERT(j < 8);
848
849 source_pvo = NULL;
850 victim_pvo = NULL;
851 pvoh = &pmap_pvo_table[ptegidx];
852 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
853
854 /*
855 * We need to find pvo entry for this address...
856 */
857 PMAP_PVO_CHECK(pvo); /* sanity check */
858
859 /*
860 * If we haven't found the source and we come to a PVO with
861 * a valid PTE, then we know we can't find it because all
862 * evicted PVOs always are first in the list.
863 */
864 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
865 break;
866 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
867 addr == PVO_VADDR(pvo)) {
868
869 /*
870 * Now we have found the entry to be spilled into the
871 * pteg. Attempt to insert it into the page table.
872 */
873 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
874 if (j >= 0) {
875 PVO_PTEGIDX_SET(pvo, j);
876 PMAP_PVO_CHECK(pvo); /* sanity check */
877 PVO_WHERE(pvo, SPILL_INSERT);
878 pvo->pvo_pmap->pm_evictions--;
879 PMAPCOUNT(ptes_spilled);
880 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
881 ? pmap_evcnt_ptes_secondary
882 : pmap_evcnt_ptes_primary)[j]);
883
884 /*
885 * Since we keep the evicted entries at the
886 * from of the PVO list, we need move this
887 * (now resident) PVO after the evicted
888 * entries.
889 */
890 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
891
892 /*
893 * If we don't have to move (either we were the
894 * last entry or the next entry was valid),
895 * don't change our position. Otherwise
896 * move ourselves to the tail of the queue.
897 */
898 if (next_pvo != NULL &&
899 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
900 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
901 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
902 }
903 return 1;
904 }
905 source_pvo = pvo;
906 if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
907 return 0;
908 }
909 if (victim_pvo != NULL)
910 break;
911 }
912
913 /*
914 * We also need the pvo entry of the victim we are replacing
915 * so save the R & C bits of the PTE.
916 */
917 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
918 pmap_pte_compare(pt, &pvo->pvo_pte)) {
919 vpvoh = pvoh; /* *1* */
920 victim_pvo = pvo;
921 if (source_pvo != NULL)
922 break;
923 }
924 }
925
926 if (source_pvo == NULL) {
927 PMAPCOUNT(ptes_unspilled);
928 return 0;
929 }
930
931 if (victim_pvo == NULL) {
932 if ((pt->pte_hi & PTE_HID) == 0)
933 panic("pmap_pte_spill: victim p-pte (%p) has "
934 "no pvo entry!", pt);
935
936 /*
937 * If this is a secondary PTE, we need to search
938 * its primary pvo bucket for the matching PVO.
939 */
940 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
941 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
942 PMAP_PVO_CHECK(pvo); /* sanity check */
943
944 /*
945 * We also need the pvo entry of the victim we are
946 * replacing so save the R & C bits of the PTE.
947 */
948 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
949 victim_pvo = pvo;
950 break;
951 }
952 }
953 if (victim_pvo == NULL)
954 panic("pmap_pte_spill: victim s-pte (%p) has "
955 "no pvo entry!", pt);
956 }
957
958 /*
959 * The victim should be not be a kernel PVO/PTE entry.
960 */
961 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
962 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
963 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
964
965 /*
966 * We are invalidating the TLB entry for the EA for the
967 * we are replacing even though its valid; If we don't
968 * we lose any ref/chg bit changes contained in the TLB
969 * entry.
970 */
971 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
972
973 /*
974 * To enforce the PVO list ordering constraint that all
975 * evicted entries should come before all valid entries,
976 * move the source PVO to the tail of its list and the
977 * victim PVO to the head of its list (which might not be
978 * the same list, if the victim was using the secondary hash).
979 */
980 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
981 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
982 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
983 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
984 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
985 pmap_pte_set(pt, &source_pvo->pvo_pte);
986 victim_pvo->pvo_pmap->pm_evictions++;
987 source_pvo->pvo_pmap->pm_evictions--;
988 PVO_WHERE(victim_pvo, SPILL_UNSET);
989 PVO_WHERE(source_pvo, SPILL_SET);
990
991 PVO_PTEGIDX_CLR(victim_pvo);
992 PVO_PTEGIDX_SET(source_pvo, i);
993 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
994 PMAPCOUNT(ptes_spilled);
995 PMAPCOUNT(ptes_evicted);
996 PMAPCOUNT(ptes_removed);
997
998 PMAP_PVO_CHECK(victim_pvo);
999 PMAP_PVO_CHECK(source_pvo);
1000 return 1;
1001 }
1002
1003 /*
1004 * Restrict given range to physical memory
1005 */
1006 void
1007 pmap_real_memory(paddr_t *start, psize_t *size)
1008 {
1009 struct mem_region *mp;
1010
1011 for (mp = mem; mp->size; mp++) {
1012 if (*start + *size > mp->start
1013 && *start < mp->start + mp->size) {
1014 if (*start < mp->start) {
1015 *size -= mp->start - *start;
1016 *start = mp->start;
1017 }
1018 if (*start + *size > mp->start + mp->size)
1019 *size = mp->start + mp->size - *start;
1020 return;
1021 }
1022 }
1023 *size = 0;
1024 }
1025
1026 /*
1027 * Initialize anything else for pmap handling.
1028 * Called during vm_init().
1029 */
1030 void
1031 pmap_init(void)
1032 {
1033 #ifdef __HAVE_PMAP_PHYSSEG
1034 struct pvo_tqhead *pvoh;
1035 int bank;
1036 long sz;
1037 char *attr;
1038
1039 pvoh = pmap_physseg.pvoh;
1040 attr = pmap_physseg.attrs;
1041 for (bank = 0; bank < vm_nphysseg; bank++) {
1042 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1043 vm_physmem[bank].pmseg.pvoh = pvoh;
1044 vm_physmem[bank].pmseg.attrs = attr;
1045 for (; sz > 0; sz--, pvoh++, attr++) {
1046 TAILQ_INIT(pvoh);
1047 *attr = 0;
1048 }
1049 }
1050 #endif
1051
1052 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1053 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1054 &pmap_pool_mallocator);
1055
1056 pool_setlowat(&pmap_mpvo_pool, 1008);
1057
1058 pmap_initialized = 1;
1059
1060 #ifdef PMAPCOUNTERS
1061 evcnt_attach_static(&pmap_evcnt_mappings);
1062 evcnt_attach_static(&pmap_evcnt_mappings_replaced);
1063 evcnt_attach_static(&pmap_evcnt_unmappings);
1064
1065 evcnt_attach_static(&pmap_evcnt_kernel_mappings);
1066 evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
1067
1068 evcnt_attach_static(&pmap_evcnt_exec_mappings);
1069 evcnt_attach_static(&pmap_evcnt_exec_cached);
1070 evcnt_attach_static(&pmap_evcnt_exec_synced);
1071 evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
1072
1073 evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
1074 evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
1075 evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
1076 evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
1077
1078 evcnt_attach_static(&pmap_evcnt_zeroed_pages);
1079 evcnt_attach_static(&pmap_evcnt_copied_pages);
1080 evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
1081
1082 evcnt_attach_static(&pmap_evcnt_updates);
1083 evcnt_attach_static(&pmap_evcnt_collects);
1084 evcnt_attach_static(&pmap_evcnt_copies);
1085
1086 evcnt_attach_static(&pmap_evcnt_ptes_spilled);
1087 evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
1088 evcnt_attach_static(&pmap_evcnt_ptes_evicted);
1089 evcnt_attach_static(&pmap_evcnt_ptes_removed);
1090 evcnt_attach_static(&pmap_evcnt_ptes_changed);
1091 evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
1092 evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
1093 evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
1094 evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
1095 evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
1096 evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
1097 evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
1098 evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
1099 evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
1100 evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
1101 evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
1102 evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
1103 evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
1104 evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
1105 evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
1106 evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
1107 #endif
1108 }
1109
1110 /*
1111 * How much virtual space does the kernel get?
1112 */
1113 void
1114 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1115 {
1116 /*
1117 * For now, reserve one segment (minus some overhead) for kernel
1118 * virtual memory
1119 */
1120 *start = VM_MIN_KERNEL_ADDRESS;
1121 *end = VM_MAX_KERNEL_ADDRESS;
1122 }
1123
1124 /*
1125 * Allocate, initialize, and return a new physical map.
1126 */
1127 pmap_t
1128 pmap_create(void)
1129 {
1130 pmap_t pm;
1131
1132 pm = pool_get(&pmap_pool, PR_WAITOK);
1133 memset((caddr_t)pm, 0, sizeof *pm);
1134 pmap_pinit(pm);
1135
1136 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1137 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1138 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1139 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1140 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1141 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1142 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1143 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1144 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1145 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1146 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1147 return pm;
1148 }
1149
1150 /*
1151 * Initialize a preallocated and zeroed pmap structure.
1152 */
1153 void
1154 pmap_pinit(pmap_t pm)
1155 {
1156 register_t entropy = MFTB();
1157 register_t mask;
1158 int i;
1159
1160 /*
1161 * Allocate some segment registers for this pmap.
1162 */
1163 pm->pm_refs = 1;
1164 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1165 static register_t pmap_vsidcontext;
1166 register_t hash;
1167 unsigned int n;
1168
1169 /* Create a new value by multiplying by a prime adding in
1170 * entropy from the timebase register. This is to make the
1171 * VSID more random so that the PT Hash function collides
1172 * less often. (note that the prime causes gcc to do shifts
1173 * instead of a multiply)
1174 */
1175 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1176 hash = pmap_vsidcontext & (NPMAPS - 1);
1177 if (hash == 0) { /* 0 is special, avoid it */
1178 entropy += 0xbadf00d;
1179 continue;
1180 }
1181 n = hash >> 5;
1182 mask = 1L << (hash & (VSID_NBPW-1));
1183 hash = pmap_vsidcontext;
1184 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1185 /* anything free in this bucket? */
1186 if (~pmap_vsid_bitmap[n] == 0) {
1187 entropy = hash ^ (hash >> 16);
1188 continue;
1189 }
1190 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1191 mask = 1L << i;
1192 hash &= ~(VSID_NBPW-1);
1193 hash |= i;
1194 }
1195 hash &= PTE_VSID >> PTE_VSID_SHFT;
1196 pmap_vsid_bitmap[n] |= mask;
1197 pm->pm_vsid = hash;
1198 #ifndef PPC_OEA64
1199 for (i = 0; i < 16; i++)
1200 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1201 SR_NOEXEC;
1202 #endif
1203 return;
1204 }
1205 panic("pmap_pinit: out of segments");
1206 }
1207
1208 /*
1209 * Add a reference to the given pmap.
1210 */
1211 void
1212 pmap_reference(pmap_t pm)
1213 {
1214 pm->pm_refs++;
1215 }
1216
1217 /*
1218 * Retire the given pmap from service.
1219 * Should only be called if the map contains no valid mappings.
1220 */
1221 void
1222 pmap_destroy(pmap_t pm)
1223 {
1224 if (--pm->pm_refs == 0) {
1225 pmap_release(pm);
1226 pool_put(&pmap_pool, pm);
1227 }
1228 }
1229
1230 /*
1231 * Release any resources held by the given physical map.
1232 * Called when a pmap initialized by pmap_pinit is being released.
1233 */
1234 void
1235 pmap_release(pmap_t pm)
1236 {
1237 int idx, mask;
1238
1239 if (pm->pm_sr[0] == 0)
1240 panic("pmap_release");
1241 idx = pm->pm_vsid & (NPMAPS-1);
1242 mask = 1 << (idx % VSID_NBPW);
1243 idx /= VSID_NBPW;
1244
1245 KASSERT(pmap_vsid_bitmap[idx] & mask);
1246 pmap_vsid_bitmap[idx] &= ~mask;
1247 }
1248
1249 /*
1250 * Copy the range specified by src_addr/len
1251 * from the source map to the range dst_addr/len
1252 * in the destination map.
1253 *
1254 * This routine is only advisory and need not do anything.
1255 */
1256 void
1257 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1258 vsize_t len, vaddr_t src_addr)
1259 {
1260 PMAPCOUNT(copies);
1261 }
1262
1263 /*
1264 * Require that all active physical maps contain no
1265 * incorrect entries NOW.
1266 */
1267 void
1268 pmap_update(struct pmap *pmap)
1269 {
1270 PMAPCOUNT(updates);
1271 TLBSYNC();
1272 }
1273
1274 /*
1275 * Garbage collects the physical map system for
1276 * pages which are no longer used.
1277 * Success need not be guaranteed -- that is, there
1278 * may well be pages which are not referenced, but
1279 * others may be collected.
1280 * Called by the pageout daemon when pages are scarce.
1281 */
1282 void
1283 pmap_collect(pmap_t pm)
1284 {
1285 PMAPCOUNT(collects);
1286 }
1287
1288 static __inline int
1289 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1290 {
1291 int pteidx;
1292 /*
1293 * We can find the actual pte entry without searching by
1294 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1295 * and by noticing the HID bit.
1296 */
1297 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1298 if (pvo->pvo_pte.pte_hi & PTE_HID)
1299 pteidx ^= pmap_pteg_mask * 8;
1300 return pteidx;
1301 }
1302
1303 volatile struct pte *
1304 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1305 {
1306 volatile struct pte *pt;
1307
1308 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1309 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1310 return NULL;
1311 #endif
1312
1313 /*
1314 * If we haven't been supplied the ptegidx, calculate it.
1315 */
1316 if (pteidx == -1) {
1317 int ptegidx;
1318 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1319 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1320 }
1321
1322 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1323
1324 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1325 return pt;
1326 #else
1327 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1328 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1329 "pvo but no valid pte index", pvo);
1330 }
1331 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1332 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1333 "pvo but no valid pte", pvo);
1334 }
1335
1336 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1337 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1338 #if defined(DEBUG) || defined(PMAPCHECK)
1339 pmap_pte_print(pt);
1340 #endif
1341 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1342 "pmap_pteg_table %p but invalid in pvo",
1343 pvo, pt);
1344 }
1345 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1346 #if defined(DEBUG) || defined(PMAPCHECK)
1347 pmap_pte_print(pt);
1348 #endif
1349 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1350 "not match pte %p in pmap_pteg_table",
1351 pvo, pt);
1352 }
1353 return pt;
1354 }
1355
1356 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1357 #if defined(DEBUG) || defined(PMAPCHECK)
1358 pmap_pte_print(pt);
1359 #endif
1360 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1361 "pmap_pteg_table but valid in pvo", pvo, pt);
1362 }
1363 return NULL;
1364 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1365 }
1366
1367 struct pvo_entry *
1368 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1369 {
1370 struct pvo_entry *pvo;
1371 int ptegidx;
1372
1373 va &= ~ADDR_POFF;
1374 ptegidx = va_to_pteg(pm, va);
1375
1376 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1377 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1378 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1379 panic("pmap_pvo_find_va: invalid pvo %p on "
1380 "list %#x (%p)", pvo, ptegidx,
1381 &pmap_pvo_table[ptegidx]);
1382 #endif
1383 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1384 if (pteidx_p)
1385 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1386 return pvo;
1387 }
1388 }
1389 return NULL;
1390 }
1391
1392 #if defined(DEBUG) || defined(PMAPCHECK)
1393 void
1394 pmap_pvo_check(const struct pvo_entry *pvo)
1395 {
1396 struct pvo_head *pvo_head;
1397 struct pvo_entry *pvo0;
1398 volatile struct pte *pt;
1399 int failed = 0;
1400
1401 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1402 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1403
1404 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1405 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1406 pvo, pvo->pvo_pmap);
1407 failed = 1;
1408 }
1409
1410 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1411 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1412 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1413 pvo, TAILQ_NEXT(pvo, pvo_olink));
1414 failed = 1;
1415 }
1416
1417 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1418 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1419 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1420 pvo, LIST_NEXT(pvo, pvo_vlink));
1421 failed = 1;
1422 }
1423
1424 if (pvo->pvo_vaddr & PVO_MANAGED) {
1425 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1426 } else {
1427 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1428 printf("pmap_pvo_check: pvo %p: non kernel address "
1429 "on kernel unmanaged list\n", pvo);
1430 failed = 1;
1431 }
1432 pvo_head = &pmap_pvo_kunmanaged;
1433 }
1434 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1435 if (pvo0 == pvo)
1436 break;
1437 }
1438 if (pvo0 == NULL) {
1439 printf("pmap_pvo_check: pvo %p: not present "
1440 "on its vlist head %p\n", pvo, pvo_head);
1441 failed = 1;
1442 }
1443 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1444 printf("pmap_pvo_check: pvo %p: not present "
1445 "on its olist head\n", pvo);
1446 failed = 1;
1447 }
1448 pt = pmap_pvo_to_pte(pvo, -1);
1449 if (pt == NULL) {
1450 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1451 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1452 "no PTE\n", pvo);
1453 failed = 1;
1454 }
1455 } else {
1456 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1457 (uintptr_t) pt >=
1458 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1459 printf("pmap_pvo_check: pvo %p: pte %p not in "
1460 "pteg table\n", pvo, pt);
1461 failed = 1;
1462 }
1463 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1464 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1465 "no PTE\n", pvo);
1466 failed = 1;
1467 }
1468 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1469 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1470 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1471 failed = 1;
1472 }
1473 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1474 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1475 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1476 "%#x/%#x\n", pvo,
1477 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1478 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1479 failed = 1;
1480 }
1481 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1482 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1483 " doesn't not match PVO's VA %#lx\n",
1484 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1485 failed = 1;
1486 }
1487 if (failed)
1488 pmap_pte_print(pt);
1489 }
1490 if (failed)
1491 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1492 pvo->pvo_pmap);
1493 }
1494 #endif /* DEBUG || PMAPCHECK */
1495
1496 /*
1497 * Search the PVO table looking for a non-wired entry.
1498 * If we find one, remove it and return it.
1499 */
1500
1501 struct pvo_entry *
1502 pmap_pvo_reclaim(struct pmap *pm)
1503 {
1504 struct pvo_tqhead *pvoh;
1505 struct pvo_entry *pvo;
1506 uint32_t idx, endidx;
1507
1508 endidx = pmap_pvo_reclaim_nextidx;
1509 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1510 idx = (idx + 1) & pmap_pteg_mask) {
1511 pvoh = &pmap_pvo_table[idx];
1512 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1513 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
1514 pmap_pvo_remove(pvo, -1, FALSE);
1515 pmap_pvo_reclaim_nextidx = idx;
1516 return pvo;
1517 }
1518 }
1519 }
1520 return NULL;
1521 }
1522
1523 /*
1524 * This returns whether this is the first mapping of a page.
1525 */
1526 int
1527 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1528 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1529 {
1530 struct pvo_entry *pvo;
1531 struct pvo_tqhead *pvoh;
1532 register_t msr;
1533 int ptegidx;
1534 int i;
1535 int poolflags = PR_NOWAIT;
1536
1537 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1538 if (pmap_pvo_remove_depth > 0)
1539 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1540 if (++pmap_pvo_enter_depth > 1)
1541 panic("pmap_pvo_enter: called recursively!");
1542 #endif
1543
1544 /*
1545 * Compute the PTE Group index.
1546 */
1547 va &= ~ADDR_POFF;
1548 ptegidx = va_to_pteg(pm, va);
1549
1550 msr = pmap_interrupts_off();
1551 /*
1552 * Remove any existing mapping for this page. Reuse the
1553 * pvo entry if there a mapping.
1554 */
1555 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1556 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1557 #ifdef DEBUG
1558 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1559 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1560 ~(PTE_REF|PTE_CHG)) == 0 &&
1561 va < VM_MIN_KERNEL_ADDRESS) {
1562 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1563 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1564 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1565 (unsigned int) pvo->pvo_pte.pte_hi,
1566 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1567 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1568 #ifdef DDBX
1569 Debugger();
1570 #endif
1571 }
1572 #endif
1573 PMAPCOUNT(mappings_replaced);
1574 pmap_pvo_remove(pvo, -1, TRUE);
1575 break;
1576 }
1577 }
1578
1579 /*
1580 * If we aren't overwriting an mapping, try to allocate
1581 */
1582 pmap_interrupts_restore(msr);
1583 pvo = pool_get(pl, poolflags);
1584
1585 #ifdef DEBUG
1586 /*
1587 * Exercise pmap_pvo_reclaim() a little.
1588 */
1589 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1590 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1591 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1592 pool_put(pl, pvo);
1593 pvo = NULL;
1594 }
1595 #endif
1596
1597 msr = pmap_interrupts_off();
1598 if (pvo == NULL) {
1599 pvo = pmap_pvo_reclaim(pm);
1600 if (pvo == NULL) {
1601 if ((flags & PMAP_CANFAIL) == 0)
1602 panic("pmap_pvo_enter: failed");
1603 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1604 pmap_pvo_enter_depth--;
1605 #endif
1606 pmap_interrupts_restore(msr);
1607 return ENOMEM;
1608 }
1609 }
1610
1611 pvo->pvo_vaddr = va;
1612 pvo->pvo_pmap = pm;
1613 pvo->pvo_vaddr &= ~ADDR_POFF;
1614 if (flags & VM_PROT_EXECUTE) {
1615 PMAPCOUNT(exec_mappings);
1616 pvo_set_exec(pvo);
1617 }
1618 if (flags & PMAP_WIRED)
1619 pvo->pvo_vaddr |= PVO_WIRED;
1620 if (pvo_head != &pmap_pvo_kunmanaged) {
1621 pvo->pvo_vaddr |= PVO_MANAGED;
1622 PMAPCOUNT(mappings);
1623 } else {
1624 PMAPCOUNT(kernel_mappings);
1625 }
1626 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1627
1628 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1629 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1630 pvo->pvo_pmap->pm_stats.wired_count++;
1631 pvo->pvo_pmap->pm_stats.resident_count++;
1632 #if defined(DEBUG)
1633 if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1634 DPRINTFN(PVOENTER,
1635 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1636 pvo, pm, va, pa));
1637 #endif
1638
1639 /*
1640 * We hope this succeeds but it isn't required.
1641 */
1642 pvoh = &pmap_pvo_table[ptegidx];
1643 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1644 if (i >= 0) {
1645 PVO_PTEGIDX_SET(pvo, i);
1646 PVO_WHERE(pvo, ENTER_INSERT);
1647 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1648 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1649 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1650 } else {
1651 /*
1652 * Since we didn't have room for this entry (which makes it
1653 * and evicted entry), place it at the head of the list.
1654 */
1655 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1656 PMAPCOUNT(ptes_evicted);
1657 pm->pm_evictions++;
1658 /*
1659 * If this is a kernel page, make sure it's active.
1660 */
1661 if (pm == pmap_kernel()) {
1662 i = pmap_pte_spill(pm, va, FALSE);
1663 KASSERT(i);
1664 }
1665 }
1666 PMAP_PVO_CHECK(pvo); /* sanity check */
1667 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1668 pmap_pvo_enter_depth--;
1669 #endif
1670 pmap_interrupts_restore(msr);
1671 return 0;
1672 }
1673
1674 void
1675 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, boolean_t free)
1676 {
1677 volatile struct pte *pt;
1678 int ptegidx;
1679
1680 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1681 if (++pmap_pvo_remove_depth > 1)
1682 panic("pmap_pvo_remove: called recursively!");
1683 #endif
1684
1685 /*
1686 * If we haven't been supplied the ptegidx, calculate it.
1687 */
1688 if (pteidx == -1) {
1689 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1690 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1691 } else {
1692 ptegidx = pteidx >> 3;
1693 if (pvo->pvo_pte.pte_hi & PTE_HID)
1694 ptegidx ^= pmap_pteg_mask;
1695 }
1696 PMAP_PVO_CHECK(pvo); /* sanity check */
1697
1698 /*
1699 * If there is an active pte entry, we need to deactivate it
1700 * (and save the ref & chg bits).
1701 */
1702 pt = pmap_pvo_to_pte(pvo, pteidx);
1703 if (pt != NULL) {
1704 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1705 PVO_WHERE(pvo, REMOVE);
1706 PVO_PTEGIDX_CLR(pvo);
1707 PMAPCOUNT(ptes_removed);
1708 } else {
1709 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1710 pvo->pvo_pmap->pm_evictions--;
1711 }
1712
1713 /*
1714 * Account for executable mappings.
1715 */
1716 if (PVO_ISEXECUTABLE(pvo))
1717 pvo_clear_exec(pvo);
1718
1719 /*
1720 * Update our statistics.
1721 */
1722 pvo->pvo_pmap->pm_stats.resident_count--;
1723 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1724 pvo->pvo_pmap->pm_stats.wired_count--;
1725
1726 /*
1727 * Save the REF/CHG bits into their cache if the page is managed.
1728 */
1729 if (pvo->pvo_vaddr & PVO_MANAGED) {
1730 register_t ptelo = pvo->pvo_pte.pte_lo;
1731 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1732
1733 if (pg != NULL) {
1734 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1735 }
1736 PMAPCOUNT(unmappings);
1737 } else {
1738 PMAPCOUNT(kernel_unmappings);
1739 }
1740
1741 /*
1742 * Remove the PVO from its lists and return it to the pool.
1743 */
1744 LIST_REMOVE(pvo, pvo_vlink);
1745 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1746 if (free) {
1747 pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
1748 &pmap_upvo_pool, pvo);
1749 }
1750 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1751 pmap_pvo_remove_depth--;
1752 #endif
1753 }
1754
1755 /*
1756 * Mark a mapping as executable.
1757 * If this is the first executable mapping in the segment,
1758 * clear the noexec flag.
1759 */
1760 STATIC void
1761 pvo_set_exec(struct pvo_entry *pvo)
1762 {
1763 struct pmap *pm = pvo->pvo_pmap;
1764
1765 if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1766 return;
1767 }
1768 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1769 #ifdef PPC_OEA
1770 {
1771 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1772 if (pm->pm_exec[sr]++ == 0) {
1773 pm->pm_sr[sr] &= ~SR_NOEXEC;
1774 }
1775 }
1776 #endif
1777 }
1778
1779 /*
1780 * Mark a mapping as non-executable.
1781 * If this was the last executable mapping in the segment,
1782 * set the noexec flag.
1783 */
1784 STATIC void
1785 pvo_clear_exec(struct pvo_entry *pvo)
1786 {
1787 struct pmap *pm = pvo->pvo_pmap;
1788
1789 if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1790 return;
1791 }
1792 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1793 #ifdef PPC_OEA
1794 {
1795 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1796 if (--pm->pm_exec[sr] == 0) {
1797 pm->pm_sr[sr] |= SR_NOEXEC;
1798 }
1799 }
1800 #endif
1801 }
1802
1803 /*
1804 * Insert physical page at pa into the given pmap at virtual address va.
1805 */
1806 int
1807 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1808 {
1809 struct mem_region *mp;
1810 struct pvo_head *pvo_head;
1811 struct vm_page *pg;
1812 struct pool *pl;
1813 register_t pte_lo;
1814 int error;
1815 u_int pvo_flags;
1816 u_int was_exec = 0;
1817
1818 if (__predict_false(!pmap_initialized)) {
1819 pvo_head = &pmap_pvo_kunmanaged;
1820 pl = &pmap_upvo_pool;
1821 pvo_flags = 0;
1822 pg = NULL;
1823 was_exec = PTE_EXEC;
1824 } else {
1825 pvo_head = pa_to_pvoh(pa, &pg);
1826 pl = &pmap_mpvo_pool;
1827 pvo_flags = PVO_MANAGED;
1828 }
1829
1830 DPRINTFN(ENTER,
1831 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1832 pm, va, pa, prot, flags));
1833
1834 /*
1835 * If this is a managed page, and it's the first reference to the
1836 * page clear the execness of the page. Otherwise fetch the execness.
1837 */
1838 if (pg != NULL)
1839 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1840
1841 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1842
1843 /*
1844 * Assume the page is cache inhibited and access is guarded unless
1845 * it's in our available memory array. If it is in the memory array,
1846 * asssume it's in memory coherent memory.
1847 */
1848 pte_lo = PTE_IG;
1849 if ((flags & PMAP_NC) == 0) {
1850 for (mp = mem; mp->size; mp++) {
1851 if (pa >= mp->start && pa < mp->start + mp->size) {
1852 pte_lo = PTE_M;
1853 break;
1854 }
1855 }
1856 }
1857
1858 if (prot & VM_PROT_WRITE)
1859 pte_lo |= PTE_BW;
1860 else
1861 pte_lo |= PTE_BR;
1862
1863 /*
1864 * If this was in response to a fault, "pre-fault" the PTE's
1865 * changed/referenced bit appropriately.
1866 */
1867 if (flags & VM_PROT_WRITE)
1868 pte_lo |= PTE_CHG;
1869 if (flags & (VM_PROT_READ|VM_PROT_WRITE))
1870 pte_lo |= PTE_REF;
1871
1872 /*
1873 * We need to know if this page can be executable
1874 */
1875 flags |= (prot & VM_PROT_EXECUTE);
1876
1877 /*
1878 * Record mapping for later back-translation and pte spilling.
1879 * This will overwrite any existing mapping.
1880 */
1881 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1882
1883 /*
1884 * Flush the real page from the instruction cache if this page is
1885 * mapped executable and cacheable and has not been flushed since
1886 * the last time it was modified.
1887 */
1888 if (error == 0 &&
1889 (flags & VM_PROT_EXECUTE) &&
1890 (pte_lo & PTE_I) == 0 &&
1891 was_exec == 0) {
1892 DPRINTFN(ENTER, (" syncicache"));
1893 PMAPCOUNT(exec_synced);
1894 pmap_syncicache(pa, PAGE_SIZE);
1895 if (pg != NULL) {
1896 pmap_attr_save(pg, PTE_EXEC);
1897 PMAPCOUNT(exec_cached);
1898 #if defined(DEBUG) || defined(PMAPDEBUG)
1899 if (pmapdebug & PMAPDEBUG_ENTER)
1900 printf(" marked-as-exec");
1901 else if (pmapdebug & PMAPDEBUG_EXEC)
1902 printf("[pmap_enter: %#lx: marked-as-exec]\n",
1903 pg->phys_addr);
1904
1905 #endif
1906 }
1907 }
1908
1909 DPRINTFN(ENTER, (": error=%d\n", error));
1910
1911 return error;
1912 }
1913
1914 void
1915 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1916 {
1917 struct mem_region *mp;
1918 register_t pte_lo;
1919 int error;
1920
1921 if (va < VM_MIN_KERNEL_ADDRESS)
1922 panic("pmap_kenter_pa: attempt to enter "
1923 "non-kernel address %#lx!", va);
1924
1925 DPRINTFN(KENTER,
1926 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1927
1928 /*
1929 * Assume the page is cache inhibited and access is guarded unless
1930 * it's in our available memory array. If it is in the memory array,
1931 * asssume it's in memory coherent memory.
1932 */
1933 pte_lo = PTE_IG;
1934 if ((prot & PMAP_NC) == 0) {
1935 for (mp = mem; mp->size; mp++) {
1936 if (pa >= mp->start && pa < mp->start + mp->size) {
1937 pte_lo = PTE_M;
1938 break;
1939 }
1940 }
1941 }
1942
1943 if (prot & VM_PROT_WRITE)
1944 pte_lo |= PTE_BW;
1945 else
1946 pte_lo |= PTE_BR;
1947
1948 /*
1949 * We don't care about REF/CHG on PVOs on the unmanaged list.
1950 */
1951 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1952 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1953
1954 if (error != 0)
1955 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1956 va, pa, error);
1957 }
1958
1959 void
1960 pmap_kremove(vaddr_t va, vsize_t len)
1961 {
1962 if (va < VM_MIN_KERNEL_ADDRESS)
1963 panic("pmap_kremove: attempt to remove "
1964 "non-kernel address %#lx!", va);
1965
1966 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1967 pmap_remove(pmap_kernel(), va, va + len);
1968 }
1969
1970 /*
1971 * Remove the given range of mapping entries.
1972 */
1973 void
1974 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1975 {
1976 struct pvo_entry *pvo;
1977 register_t msr;
1978 int pteidx;
1979
1980 msr = pmap_interrupts_off();
1981 for (; va < endva; va += PAGE_SIZE) {
1982 pvo = pmap_pvo_find_va(pm, va, &pteidx);
1983 if (pvo != NULL) {
1984 pmap_pvo_remove(pvo, pteidx, TRUE);
1985 }
1986 }
1987 pmap_interrupts_restore(msr);
1988 }
1989
1990 /*
1991 * Get the physical page address for the given pmap/virtual address.
1992 */
1993 boolean_t
1994 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
1995 {
1996 struct pvo_entry *pvo;
1997 register_t msr;
1998
1999 /*
2000 * If this is a kernel pmap lookup, also check the battable
2001 * and if we get a hit, translate the VA to a PA using the
2002 * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
2003 * that will wrap back to 0.
2004 */
2005 if (pm == pmap_kernel() &&
2006 (va < VM_MIN_KERNEL_ADDRESS ||
2007 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2008 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2009 if ((MFPVR() >> 16) != MPC601) {
2010 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2011 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2012 register_t batl =
2013 battable[va >> ADDR_SR_SHFT].batl;
2014 register_t mask =
2015 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2016 *pap = (batl & mask) | (va & ~mask);
2017 return TRUE;
2018 }
2019 } else {
2020 register_t batu = battable[va >> 23].batu;
2021 register_t batl = battable[va >> 23].batl;
2022 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2023 if (BAT601_VALID_P(batl) &&
2024 BAT601_VA_MATCH_P(batu, batl, va)) {
2025 register_t mask =
2026 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2027 *pap = (batl & mask) | (va & ~mask);
2028 return TRUE;
2029 } else if (SR601_VALID_P(sr) &&
2030 SR601_PA_MATCH_P(sr, va)) {
2031 *pap = va;
2032 return TRUE;
2033 }
2034 }
2035 return FALSE;
2036 }
2037
2038 msr = pmap_interrupts_off();
2039 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2040 if (pvo != NULL) {
2041 PMAP_PVO_CHECK(pvo); /* sanity check */
2042 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
2043 }
2044 pmap_interrupts_restore(msr);
2045 return pvo != NULL;
2046 }
2047
2048 /*
2049 * Lower the protection on the specified range of this pmap.
2050 */
2051 void
2052 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2053 {
2054 struct pvo_entry *pvo;
2055 volatile struct pte *pt;
2056 register_t msr;
2057 int pteidx;
2058
2059 /*
2060 * Since this routine only downgrades protection, we should
2061 * always be called with at least one bit not set.
2062 */
2063 KASSERT(prot != VM_PROT_ALL);
2064
2065 /*
2066 * If there is no protection, this is equivalent to
2067 * remove the pmap from the pmap.
2068 */
2069 if ((prot & VM_PROT_READ) == 0) {
2070 pmap_remove(pm, va, endva);
2071 return;
2072 }
2073
2074 msr = pmap_interrupts_off();
2075 for (; va < endva; va += PAGE_SIZE) {
2076 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2077 if (pvo == NULL)
2078 continue;
2079 PMAP_PVO_CHECK(pvo); /* sanity check */
2080
2081 /*
2082 * Revoke executable if asked to do so.
2083 */
2084 if ((prot & VM_PROT_EXECUTE) == 0)
2085 pvo_clear_exec(pvo);
2086
2087 #if 0
2088 /*
2089 * If the page is already read-only, no change
2090 * needs to be made.
2091 */
2092 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2093 continue;
2094 #endif
2095 /*
2096 * Grab the PTE pointer before we diddle with
2097 * the cached PTE copy.
2098 */
2099 pt = pmap_pvo_to_pte(pvo, pteidx);
2100 /*
2101 * Change the protection of the page.
2102 */
2103 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2104 pvo->pvo_pte.pte_lo |= PTE_BR;
2105
2106 /*
2107 * If the PVO is in the page table, update
2108 * that pte at well.
2109 */
2110 if (pt != NULL) {
2111 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2112 PVO_WHERE(pvo, PMAP_PROTECT);
2113 PMAPCOUNT(ptes_changed);
2114 }
2115
2116 PMAP_PVO_CHECK(pvo); /* sanity check */
2117 }
2118 pmap_interrupts_restore(msr);
2119 }
2120
2121 void
2122 pmap_unwire(pmap_t pm, vaddr_t va)
2123 {
2124 struct pvo_entry *pvo;
2125 register_t msr;
2126
2127 msr = pmap_interrupts_off();
2128 pvo = pmap_pvo_find_va(pm, va, NULL);
2129 if (pvo != NULL) {
2130 if (pvo->pvo_vaddr & PVO_WIRED) {
2131 pvo->pvo_vaddr &= ~PVO_WIRED;
2132 pm->pm_stats.wired_count--;
2133 }
2134 PMAP_PVO_CHECK(pvo); /* sanity check */
2135 }
2136 pmap_interrupts_restore(msr);
2137 }
2138
2139 /*
2140 * Lower the protection on the specified physical page.
2141 */
2142 void
2143 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2144 {
2145 struct pvo_head *pvo_head;
2146 struct pvo_entry *pvo, *next_pvo;
2147 volatile struct pte *pt;
2148 register_t msr;
2149
2150 KASSERT(prot != VM_PROT_ALL);
2151 msr = pmap_interrupts_off();
2152
2153 /*
2154 * When UVM reuses a page, it does a pmap_page_protect with
2155 * VM_PROT_NONE. At that point, we can clear the exec flag
2156 * since we know the page will have different contents.
2157 */
2158 if ((prot & VM_PROT_READ) == 0) {
2159 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2160 pg->phys_addr));
2161 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2162 PMAPCOUNT(exec_uncached_page_protect);
2163 pmap_attr_clear(pg, PTE_EXEC);
2164 }
2165 }
2166
2167 pvo_head = vm_page_to_pvoh(pg);
2168 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2169 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2170 PMAP_PVO_CHECK(pvo); /* sanity check */
2171
2172 /*
2173 * Downgrading to no mapping at all, we just remove the entry.
2174 */
2175 if ((prot & VM_PROT_READ) == 0) {
2176 pmap_pvo_remove(pvo, -1, TRUE);
2177 continue;
2178 }
2179
2180 /*
2181 * If EXEC permission is being revoked, just clear the
2182 * flag in the PVO.
2183 */
2184 if ((prot & VM_PROT_EXECUTE) == 0)
2185 pvo_clear_exec(pvo);
2186
2187 /*
2188 * If this entry is already RO, don't diddle with the
2189 * page table.
2190 */
2191 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2192 PMAP_PVO_CHECK(pvo);
2193 continue;
2194 }
2195
2196 /*
2197 * Grab the PTE before the we diddle the bits so
2198 * pvo_to_pte can verify the pte contents are as
2199 * expected.
2200 */
2201 pt = pmap_pvo_to_pte(pvo, -1);
2202 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2203 pvo->pvo_pte.pte_lo |= PTE_BR;
2204 if (pt != NULL) {
2205 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2206 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2207 PMAPCOUNT(ptes_changed);
2208 }
2209 PMAP_PVO_CHECK(pvo); /* sanity check */
2210 }
2211 pmap_interrupts_restore(msr);
2212 }
2213
2214 /*
2215 * Activate the address space for the specified process. If the process
2216 * is the current process, load the new MMU context.
2217 */
2218 void
2219 pmap_activate(struct lwp *l)
2220 {
2221 struct pcb *pcb = &l->l_addr->u_pcb;
2222 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2223
2224 DPRINTFN(ACTIVATE,
2225 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2226
2227 /*
2228 * XXX Normally performed in cpu_fork().
2229 */
2230 pcb->pcb_pm = pmap;
2231
2232 /*
2233 * In theory, the SR registers need only be valid on return
2234 * to user space wait to do them there.
2235 */
2236 if (l == curlwp) {
2237 /* Store pointer to new current pmap. */
2238 curpm = pmap;
2239 }
2240 }
2241
2242 /*
2243 * Deactivate the specified process's address space.
2244 */
2245 void
2246 pmap_deactivate(struct lwp *l)
2247 {
2248 }
2249
2250 boolean_t
2251 pmap_query_bit(struct vm_page *pg, int ptebit)
2252 {
2253 struct pvo_entry *pvo;
2254 volatile struct pte *pt;
2255 register_t msr;
2256
2257 if (pmap_attr_fetch(pg) & ptebit)
2258 return TRUE;
2259
2260 msr = pmap_interrupts_off();
2261 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2262 PMAP_PVO_CHECK(pvo); /* sanity check */
2263 /*
2264 * See if we saved the bit off. If so cache, it and return
2265 * success.
2266 */
2267 if (pvo->pvo_pte.pte_lo & ptebit) {
2268 pmap_attr_save(pg, ptebit);
2269 PMAP_PVO_CHECK(pvo); /* sanity check */
2270 pmap_interrupts_restore(msr);
2271 return TRUE;
2272 }
2273 }
2274 /*
2275 * No luck, now go thru the hard part of looking at the ptes
2276 * themselves. Sync so any pending REF/CHG bits are flushed
2277 * to the PTEs.
2278 */
2279 SYNC();
2280 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2281 PMAP_PVO_CHECK(pvo); /* sanity check */
2282 /*
2283 * See if this pvo have a valid PTE. If so, fetch the
2284 * REF/CHG bits from the valid PTE. If the appropriate
2285 * ptebit is set, cache, it and return success.
2286 */
2287 pt = pmap_pvo_to_pte(pvo, -1);
2288 if (pt != NULL) {
2289 pmap_pte_synch(pt, &pvo->pvo_pte);
2290 if (pvo->pvo_pte.pte_lo & ptebit) {
2291 pmap_attr_save(pg, ptebit);
2292 PMAP_PVO_CHECK(pvo); /* sanity check */
2293 pmap_interrupts_restore(msr);
2294 return TRUE;
2295 }
2296 }
2297 }
2298 pmap_interrupts_restore(msr);
2299 return FALSE;
2300 }
2301
2302 boolean_t
2303 pmap_clear_bit(struct vm_page *pg, int ptebit)
2304 {
2305 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2306 struct pvo_entry *pvo;
2307 volatile struct pte *pt;
2308 register_t msr;
2309 int rv = 0;
2310
2311 msr = pmap_interrupts_off();
2312
2313 /*
2314 * Fetch the cache value
2315 */
2316 rv |= pmap_attr_fetch(pg);
2317
2318 /*
2319 * Clear the cached value.
2320 */
2321 pmap_attr_clear(pg, ptebit);
2322
2323 /*
2324 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2325 * can reset the right ones). Note that since the pvo entries and
2326 * list heads are accessed via BAT0 and are never placed in the
2327 * page table, we don't have to worry about further accesses setting
2328 * the REF/CHG bits.
2329 */
2330 SYNC();
2331
2332 /*
2333 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2334 * valid PTE. If so, clear the ptebit from the valid PTE.
2335 */
2336 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2337 PMAP_PVO_CHECK(pvo); /* sanity check */
2338 pt = pmap_pvo_to_pte(pvo, -1);
2339 if (pt != NULL) {
2340 /*
2341 * Only sync the PTE if the bit we are looking
2342 * for is not already set.
2343 */
2344 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2345 pmap_pte_synch(pt, &pvo->pvo_pte);
2346 /*
2347 * If the bit we are looking for was already set,
2348 * clear that bit in the pte.
2349 */
2350 if (pvo->pvo_pte.pte_lo & ptebit)
2351 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2352 }
2353 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2354 pvo->pvo_pte.pte_lo &= ~ptebit;
2355 PMAP_PVO_CHECK(pvo); /* sanity check */
2356 }
2357 pmap_interrupts_restore(msr);
2358
2359 /*
2360 * If we are clearing the modify bit and this page was marked EXEC
2361 * and the user of the page thinks the page was modified, then we
2362 * need to clean it from the icache if it's mapped or clear the EXEC
2363 * bit if it's not mapped. The page itself might not have the CHG
2364 * bit set if the modification was done via DMA to the page.
2365 */
2366 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2367 if (LIST_EMPTY(pvoh)) {
2368 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2369 pg->phys_addr));
2370 pmap_attr_clear(pg, PTE_EXEC);
2371 PMAPCOUNT(exec_uncached_clear_modify);
2372 } else {
2373 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2374 pg->phys_addr));
2375 pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2376 PMAPCOUNT(exec_synced_clear_modify);
2377 }
2378 }
2379 return (rv & ptebit) != 0;
2380 }
2381
2382 void
2383 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2384 {
2385 struct pvo_entry *pvo;
2386 size_t offset = va & ADDR_POFF;
2387 int s;
2388
2389 s = splvm();
2390 while (len > 0) {
2391 size_t seglen = PAGE_SIZE - offset;
2392 if (seglen > len)
2393 seglen = len;
2394 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2395 if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2396 pmap_syncicache(
2397 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2398 PMAP_PVO_CHECK(pvo);
2399 }
2400 va += seglen;
2401 len -= seglen;
2402 offset = 0;
2403 }
2404 splx(s);
2405 }
2406
2407 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2408 void
2409 pmap_pte_print(volatile struct pte *pt)
2410 {
2411 printf("PTE %p: ", pt);
2412 /* High word: */
2413 printf("0x%08lx: [", pt->pte_hi);
2414 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2415 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2416 printf("0x%06lx 0x%02lx",
2417 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2418 pt->pte_hi & PTE_API);
2419 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2420 /* Low word: */
2421 printf(" 0x%08lx: [", pt->pte_lo);
2422 printf("0x%05lx... ", pt->pte_lo >> 12);
2423 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2424 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2425 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2426 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2427 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2428 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2429 switch (pt->pte_lo & PTE_PP) {
2430 case PTE_BR: printf("br]\n"); break;
2431 case PTE_BW: printf("bw]\n"); break;
2432 case PTE_SO: printf("so]\n"); break;
2433 case PTE_SW: printf("sw]\n"); break;
2434 }
2435 }
2436 #endif
2437
2438 #if defined(DDB)
2439 void
2440 pmap_pteg_check(void)
2441 {
2442 volatile struct pte *pt;
2443 int i;
2444 int ptegidx;
2445 u_int p_valid = 0;
2446 u_int s_valid = 0;
2447 u_int invalid = 0;
2448
2449 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2450 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2451 if (pt->pte_hi & PTE_VALID) {
2452 if (pt->pte_hi & PTE_HID)
2453 s_valid++;
2454 else
2455 p_valid++;
2456 } else
2457 invalid++;
2458 }
2459 }
2460 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2461 p_valid, p_valid, s_valid, s_valid,
2462 invalid, invalid);
2463 }
2464
2465 void
2466 pmap_print_mmuregs(void)
2467 {
2468 int i;
2469 u_int cpuvers;
2470 #ifndef PPC_OEA64
2471 vaddr_t addr;
2472 register_t soft_sr[16];
2473 #endif
2474 struct bat soft_ibat[4];
2475 struct bat soft_dbat[4];
2476 register_t sdr1;
2477
2478 cpuvers = MFPVR() >> 16;
2479
2480 __asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2481 #ifndef PPC_OEA64
2482 addr = 0;
2483 for (i=0; i<16; i++) {
2484 soft_sr[i] = MFSRIN(addr);
2485 addr += (1 << ADDR_SR_SHFT);
2486 }
2487 #endif
2488
2489 /* read iBAT (601: uBAT) registers */
2490 __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2491 __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2492 __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2493 __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2494 __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2495 __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2496 __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2497 __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2498
2499
2500 if (cpuvers != MPC601) {
2501 /* read dBAT registers */
2502 __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2503 __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2504 __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2505 __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2506 __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2507 __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2508 __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2509 __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2510 }
2511
2512 printf("SDR1:\t0x%lx\n", (long) sdr1);
2513 #ifndef PPC_OEA64
2514 printf("SR[]:\t");
2515 for (i=0; i<4; i++)
2516 printf("0x%08lx, ", soft_sr[i]);
2517 printf("\n\t");
2518 for ( ; i<8; i++)
2519 printf("0x%08lx, ", soft_sr[i]);
2520 printf("\n\t");
2521 for ( ; i<12; i++)
2522 printf("0x%08lx, ", soft_sr[i]);
2523 printf("\n\t");
2524 for ( ; i<16; i++)
2525 printf("0x%08lx, ", soft_sr[i]);
2526 printf("\n");
2527 #endif
2528
2529 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2530 for (i=0; i<4; i++) {
2531 printf("0x%08lx 0x%08lx, ",
2532 soft_ibat[i].batu, soft_ibat[i].batl);
2533 if (i == 1)
2534 printf("\n\t");
2535 }
2536 if (cpuvers != MPC601) {
2537 printf("\ndBAT[]:\t");
2538 for (i=0; i<4; i++) {
2539 printf("0x%08lx 0x%08lx, ",
2540 soft_dbat[i].batu, soft_dbat[i].batl);
2541 if (i == 1)
2542 printf("\n\t");
2543 }
2544 }
2545 printf("\n");
2546 }
2547
2548 void
2549 pmap_print_pte(pmap_t pm, vaddr_t va)
2550 {
2551 struct pvo_entry *pvo;
2552 volatile struct pte *pt;
2553 int pteidx;
2554
2555 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2556 if (pvo != NULL) {
2557 pt = pmap_pvo_to_pte(pvo, pteidx);
2558 if (pt != NULL) {
2559 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2560 va, pt,
2561 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2562 pt->pte_hi, pt->pte_lo);
2563 } else {
2564 printf("No valid PTE found\n");
2565 }
2566 } else {
2567 printf("Address not in pmap\n");
2568 }
2569 }
2570
2571 void
2572 pmap_pteg_dist(void)
2573 {
2574 struct pvo_entry *pvo;
2575 int ptegidx;
2576 int depth;
2577 int max_depth = 0;
2578 unsigned int depths[64];
2579
2580 memset(depths, 0, sizeof(depths));
2581 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2582 depth = 0;
2583 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2584 depth++;
2585 }
2586 if (depth > max_depth)
2587 max_depth = depth;
2588 if (depth > 63)
2589 depth = 63;
2590 depths[depth]++;
2591 }
2592
2593 for (depth = 0; depth < 64; depth++) {
2594 printf(" [%2d]: %8u", depth, depths[depth]);
2595 if ((depth & 3) == 3)
2596 printf("\n");
2597 if (depth == max_depth)
2598 break;
2599 }
2600 if ((depth & 3) != 3)
2601 printf("\n");
2602 printf("Max depth found was %d\n", max_depth);
2603 }
2604 #endif /* DEBUG */
2605
2606 #if defined(PMAPCHECK) || defined(DEBUG)
2607 void
2608 pmap_pvo_verify(void)
2609 {
2610 int ptegidx;
2611 int s;
2612
2613 s = splvm();
2614 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2615 struct pvo_entry *pvo;
2616 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2617 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2618 panic("pmap_pvo_verify: invalid pvo %p "
2619 "on list %#x", pvo, ptegidx);
2620 pmap_pvo_check(pvo);
2621 }
2622 }
2623 splx(s);
2624 }
2625 #endif /* PMAPCHECK */
2626
2627
2628 void *
2629 pmap_pool_ualloc(struct pool *pp, int flags)
2630 {
2631 struct pvo_page *pvop;
2632
2633 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2634 if (pvop != NULL) {
2635 pmap_upvop_free--;
2636 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2637 return pvop;
2638 }
2639 if (uvm.page_init_done != TRUE) {
2640 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2641 }
2642 return pmap_pool_malloc(pp, flags);
2643 }
2644
2645 void *
2646 pmap_pool_malloc(struct pool *pp, int flags)
2647 {
2648 struct pvo_page *pvop;
2649 struct vm_page *pg;
2650
2651 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2652 if (pvop != NULL) {
2653 pmap_mpvop_free--;
2654 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2655 return pvop;
2656 }
2657 again:
2658 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2659 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2660 if (__predict_false(pg == NULL)) {
2661 if (flags & PR_WAITOK) {
2662 uvm_wait("plpg");
2663 goto again;
2664 } else {
2665 return (0);
2666 }
2667 }
2668 return (void *) VM_PAGE_TO_PHYS(pg);
2669 }
2670
2671 void
2672 pmap_pool_ufree(struct pool *pp, void *va)
2673 {
2674 struct pvo_page *pvop;
2675 #if 0
2676 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2677 pmap_pool_mfree(va, size, tag);
2678 return;
2679 }
2680 #endif
2681 pvop = va;
2682 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2683 pmap_upvop_free++;
2684 if (pmap_upvop_free > pmap_upvop_maxfree)
2685 pmap_upvop_maxfree = pmap_upvop_free;
2686 }
2687
2688 void
2689 pmap_pool_mfree(struct pool *pp, void *va)
2690 {
2691 struct pvo_page *pvop;
2692
2693 pvop = va;
2694 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2695 pmap_mpvop_free++;
2696 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2697 pmap_mpvop_maxfree = pmap_mpvop_free;
2698 #if 0
2699 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2700 #endif
2701 }
2702
2703 /*
2704 * This routine in bootstraping to steal to-be-managed memory (which will
2705 * then be unmanaged). We use it to grab from the first 256MB for our
2706 * pmap needs and above 256MB for other stuff.
2707 */
2708 vaddr_t
2709 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2710 {
2711 vsize_t size;
2712 vaddr_t va;
2713 paddr_t pa = 0;
2714 int npgs, bank;
2715 struct vm_physseg *ps;
2716
2717 if (uvm.page_init_done == TRUE)
2718 panic("pmap_steal_memory: called _after_ bootstrap");
2719
2720 *vstartp = VM_MIN_KERNEL_ADDRESS;
2721 *vendp = VM_MAX_KERNEL_ADDRESS;
2722
2723 size = round_page(vsize);
2724 npgs = atop(size);
2725
2726 /*
2727 * PA 0 will never be among those given to UVM so we can use it
2728 * to indicate we couldn't steal any memory.
2729 */
2730 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2731 if (ps->free_list == VM_FREELIST_FIRST256 &&
2732 ps->avail_end - ps->avail_start >= npgs) {
2733 pa = ptoa(ps->avail_start);
2734 break;
2735 }
2736 }
2737
2738 if (pa == 0)
2739 panic("pmap_steal_memory: no approriate memory to steal!");
2740
2741 ps->avail_start += npgs;
2742 ps->start += npgs;
2743
2744 /*
2745 * If we've used up all the pages in the segment, remove it and
2746 * compact the list.
2747 */
2748 if (ps->avail_start == ps->end) {
2749 /*
2750 * If this was the last one, then a very bad thing has occurred
2751 */
2752 if (--vm_nphysseg == 0)
2753 panic("pmap_steal_memory: out of memory!");
2754
2755 printf("pmap_steal_memory: consumed bank %d\n", bank);
2756 for (; bank < vm_nphysseg; bank++, ps++) {
2757 ps[0] = ps[1];
2758 }
2759 }
2760
2761 va = (vaddr_t) pa;
2762 memset((caddr_t) va, 0, size);
2763 pmap_pages_stolen += npgs;
2764 #ifdef DEBUG
2765 if (pmapdebug && npgs > 1) {
2766 u_int cnt = 0;
2767 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2768 cnt += ps->avail_end - ps->avail_start;
2769 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2770 npgs, pmap_pages_stolen, cnt);
2771 }
2772 #endif
2773
2774 return va;
2775 }
2776
2777 /*
2778 * Find a chuck of memory with right size and alignment.
2779 */
2780 void *
2781 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2782 {
2783 struct mem_region *mp;
2784 paddr_t s, e;
2785 int i, j;
2786
2787 size = round_page(size);
2788
2789 DPRINTFN(BOOT,
2790 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2791 size, alignment, at_end));
2792
2793 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2794 panic("pmap_boot_find_memory: invalid alignment %lx",
2795 alignment);
2796
2797 if (at_end) {
2798 if (alignment != PAGE_SIZE)
2799 panic("pmap_boot_find_memory: invalid ending "
2800 "alignment %lx", alignment);
2801
2802 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2803 s = mp->start + mp->size - size;
2804 if (s >= mp->start && mp->size >= size) {
2805 DPRINTFN(BOOT,(": %lx\n", s));
2806 DPRINTFN(BOOT,
2807 ("pmap_boot_find_memory: b-avail[%d] start "
2808 "0x%lx size 0x%lx\n", mp - avail,
2809 mp->start, mp->size));
2810 mp->size -= size;
2811 DPRINTFN(BOOT,
2812 ("pmap_boot_find_memory: a-avail[%d] start "
2813 "0x%lx size 0x%lx\n", mp - avail,
2814 mp->start, mp->size));
2815 return (void *) s;
2816 }
2817 }
2818 panic("pmap_boot_find_memory: no available memory");
2819 }
2820
2821 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2822 s = (mp->start + alignment - 1) & ~(alignment-1);
2823 e = s + size;
2824
2825 /*
2826 * Is the calculated region entirely within the region?
2827 */
2828 if (s < mp->start || e > mp->start + mp->size)
2829 continue;
2830
2831 DPRINTFN(BOOT,(": %lx\n", s));
2832 if (s == mp->start) {
2833 /*
2834 * If the block starts at the beginning of region,
2835 * adjust the size & start. (the region may now be
2836 * zero in length)
2837 */
2838 DPRINTFN(BOOT,
2839 ("pmap_boot_find_memory: b-avail[%d] start "
2840 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2841 mp->start += size;
2842 mp->size -= size;
2843 DPRINTFN(BOOT,
2844 ("pmap_boot_find_memory: a-avail[%d] start "
2845 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2846 } else if (e == mp->start + mp->size) {
2847 /*
2848 * If the block starts at the beginning of region,
2849 * adjust only the size.
2850 */
2851 DPRINTFN(BOOT,
2852 ("pmap_boot_find_memory: b-avail[%d] start "
2853 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2854 mp->size -= size;
2855 DPRINTFN(BOOT,
2856 ("pmap_boot_find_memory: a-avail[%d] start "
2857 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2858 } else {
2859 /*
2860 * Block is in the middle of the region, so we
2861 * have to split it in two.
2862 */
2863 for (j = avail_cnt; j > i + 1; j--) {
2864 avail[j] = avail[j-1];
2865 }
2866 DPRINTFN(BOOT,
2867 ("pmap_boot_find_memory: b-avail[%d] start "
2868 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2869 mp[1].start = e;
2870 mp[1].size = mp[0].start + mp[0].size - e;
2871 mp[0].size = s - mp[0].start;
2872 avail_cnt++;
2873 for (; i < avail_cnt; i++) {
2874 DPRINTFN(BOOT,
2875 ("pmap_boot_find_memory: a-avail[%d] "
2876 "start 0x%lx size 0x%lx\n", i,
2877 avail[i].start, avail[i].size));
2878 }
2879 }
2880 return (void *) s;
2881 }
2882 panic("pmap_boot_find_memory: not enough memory for "
2883 "%lx/%lx allocation?", size, alignment);
2884 }
2885
2886 /*
2887 * This is not part of the defined PMAP interface and is specific to the
2888 * PowerPC architecture. This is called during initppc, before the system
2889 * is really initialized.
2890 */
2891 void
2892 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2893 {
2894 struct mem_region *mp, tmp;
2895 paddr_t s, e;
2896 psize_t size;
2897 int i, j;
2898
2899 /*
2900 * Get memory.
2901 */
2902 mem_regions(&mem, &avail);
2903 #if defined(DEBUG)
2904 if (pmapdebug & PMAPDEBUG_BOOT) {
2905 printf("pmap_bootstrap: memory configuration:\n");
2906 for (mp = mem; mp->size; mp++) {
2907 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2908 mp->start, mp->size);
2909 }
2910 for (mp = avail; mp->size; mp++) {
2911 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2912 mp->start, mp->size);
2913 }
2914 }
2915 #endif
2916
2917 /*
2918 * Find out how much physical memory we have and in how many chunks.
2919 */
2920 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2921 if (mp->start >= pmap_memlimit)
2922 continue;
2923 if (mp->start + mp->size > pmap_memlimit) {
2924 size = pmap_memlimit - mp->start;
2925 physmem += btoc(size);
2926 } else {
2927 physmem += btoc(mp->size);
2928 }
2929 mem_cnt++;
2930 }
2931
2932 /*
2933 * Count the number of available entries.
2934 */
2935 for (avail_cnt = 0, mp = avail; mp->size; mp++)
2936 avail_cnt++;
2937
2938 /*
2939 * Page align all regions.
2940 */
2941 kernelstart = trunc_page(kernelstart);
2942 kernelend = round_page(kernelend);
2943 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2944 s = round_page(mp->start);
2945 mp->size -= (s - mp->start);
2946 mp->size = trunc_page(mp->size);
2947 mp->start = s;
2948 e = mp->start + mp->size;
2949
2950 DPRINTFN(BOOT,
2951 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2952 i, mp->start, mp->size));
2953
2954 /*
2955 * Don't allow the end to run beyond our artificial limit
2956 */
2957 if (e > pmap_memlimit)
2958 e = pmap_memlimit;
2959
2960 /*
2961 * Is this region empty or strange? skip it.
2962 */
2963 if (e <= s) {
2964 mp->start = 0;
2965 mp->size = 0;
2966 continue;
2967 }
2968
2969 /*
2970 * Does this overlap the beginning of kernel?
2971 * Does extend past the end of the kernel?
2972 */
2973 else if (s < kernelstart && e > kernelstart) {
2974 if (e > kernelend) {
2975 avail[avail_cnt].start = kernelend;
2976 avail[avail_cnt].size = e - kernelend;
2977 avail_cnt++;
2978 }
2979 mp->size = kernelstart - s;
2980 }
2981 /*
2982 * Check whether this region overlaps the end of the kernel.
2983 */
2984 else if (s < kernelend && e > kernelend) {
2985 mp->start = kernelend;
2986 mp->size = e - kernelend;
2987 }
2988 /*
2989 * Look whether this regions is completely inside the kernel.
2990 * Nuke it if it does.
2991 */
2992 else if (s >= kernelstart && e <= kernelend) {
2993 mp->start = 0;
2994 mp->size = 0;
2995 }
2996 /*
2997 * If the user imposed a memory limit, enforce it.
2998 */
2999 else if (s >= pmap_memlimit) {
3000 mp->start = -PAGE_SIZE; /* let's know why */
3001 mp->size = 0;
3002 }
3003 else {
3004 mp->start = s;
3005 mp->size = e - s;
3006 }
3007 DPRINTFN(BOOT,
3008 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3009 i, mp->start, mp->size));
3010 }
3011
3012 /*
3013 * Move (and uncount) all the null return to the end.
3014 */
3015 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3016 if (mp->size == 0) {
3017 tmp = avail[i];
3018 avail[i] = avail[--avail_cnt];
3019 avail[avail_cnt] = avail[i];
3020 }
3021 }
3022
3023 /*
3024 * (Bubble)sort them into asecnding order.
3025 */
3026 for (i = 0; i < avail_cnt; i++) {
3027 for (j = i + 1; j < avail_cnt; j++) {
3028 if (avail[i].start > avail[j].start) {
3029 tmp = avail[i];
3030 avail[i] = avail[j];
3031 avail[j] = tmp;
3032 }
3033 }
3034 }
3035
3036 /*
3037 * Make sure they don't overlap.
3038 */
3039 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3040 if (mp[0].start + mp[0].size > mp[1].start) {
3041 mp[0].size = mp[1].start - mp[0].start;
3042 }
3043 DPRINTFN(BOOT,
3044 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3045 i, mp->start, mp->size));
3046 }
3047 DPRINTFN(BOOT,
3048 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3049 i, mp->start, mp->size));
3050
3051 #ifdef PTEGCOUNT
3052 pmap_pteg_cnt = PTEGCOUNT;
3053 #else /* PTEGCOUNT */
3054 pmap_pteg_cnt = 0x1000;
3055
3056 while (pmap_pteg_cnt < physmem)
3057 pmap_pteg_cnt <<= 1;
3058
3059 pmap_pteg_cnt >>= 1;
3060 #endif /* PTEGCOUNT */
3061
3062 /*
3063 * Find suitably aligned memory for PTEG hash table.
3064 */
3065 size = pmap_pteg_cnt * sizeof(struct pteg);
3066 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3067 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3068 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3069 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3070 pmap_pteg_table, size);
3071 #endif
3072
3073 memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
3074 pmap_pteg_mask = pmap_pteg_cnt - 1;
3075
3076 /*
3077 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3078 * with pages. So we just steal them before giving them to UVM.
3079 */
3080 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3081 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3082 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3083 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3084 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3085 pmap_pvo_table, size);
3086 #endif
3087
3088 for (i = 0; i < pmap_pteg_cnt; i++)
3089 TAILQ_INIT(&pmap_pvo_table[i]);
3090
3091 #ifndef MSGBUFADDR
3092 /*
3093 * Allocate msgbuf in high memory.
3094 */
3095 msgbuf_paddr =
3096 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3097 #endif
3098
3099 #ifdef __HAVE_PMAP_PHYSSEG
3100 {
3101 u_int npgs = 0;
3102 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3103 npgs += btoc(mp->size);
3104 size = (sizeof(struct pvo_head) + 1) * npgs;
3105 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3106 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3107 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3108 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3109 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3110 pmap_physseg.pvoh, size);
3111 #endif
3112 }
3113 #endif
3114
3115 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3116 paddr_t pfstart = atop(mp->start);
3117 paddr_t pfend = atop(mp->start + mp->size);
3118 if (mp->size == 0)
3119 continue;
3120 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3121 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3122 VM_FREELIST_FIRST256);
3123 } else if (mp->start >= SEGMENT_LENGTH) {
3124 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3125 VM_FREELIST_DEFAULT);
3126 } else {
3127 pfend = atop(SEGMENT_LENGTH);
3128 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3129 VM_FREELIST_FIRST256);
3130 pfstart = atop(SEGMENT_LENGTH);
3131 pfend = atop(mp->start + mp->size);
3132 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3133 VM_FREELIST_DEFAULT);
3134 }
3135 }
3136
3137 /*
3138 * Make sure kernel vsid is allocated as well as VSID 0.
3139 */
3140 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3141 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3142 pmap_vsid_bitmap[0] |= 1;
3143
3144 /*
3145 * Initialize kernel pmap and hardware.
3146 */
3147 #ifndef PPC_OEA64
3148 for (i = 0; i < 16; i++) {
3149 pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3150 __asm __volatile ("mtsrin %0,%1"
3151 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3152 }
3153
3154 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3155 __asm __volatile ("mtsr %0,%1"
3156 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3157 #ifdef KERNEL2_SR
3158 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3159 __asm __volatile ("mtsr %0,%1"
3160 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3161 #endif
3162 for (i = 0; i < 16; i++) {
3163 if (iosrtable[i] & SR601_T) {
3164 pmap_kernel()->pm_sr[i] = iosrtable[i];
3165 __asm __volatile ("mtsrin %0,%1"
3166 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3167 }
3168 }
3169 #endif /* !PPC_OEA64 */
3170
3171 __asm __volatile ("sync; mtsdr1 %0; isync"
3172 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3173 tlbia();
3174
3175 #ifdef ALTIVEC
3176 pmap_use_altivec = cpu_altivec;
3177 #endif
3178
3179 #ifdef DEBUG
3180 if (pmapdebug & PMAPDEBUG_BOOT) {
3181 u_int cnt;
3182 int bank;
3183 char pbuf[9];
3184 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3185 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3186 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3187 bank,
3188 ptoa(vm_physmem[bank].avail_start),
3189 ptoa(vm_physmem[bank].avail_end),
3190 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3191 }
3192 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3193 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3194 pbuf, cnt);
3195 }
3196 #endif
3197
3198 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3199 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3200 &pmap_pool_uallocator);
3201
3202 pool_setlowat(&pmap_upvo_pool, 252);
3203
3204 pool_init(&pmap_pool, sizeof(struct pmap),
3205 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3206 }
3207