Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.25
      1 /*	$NetBSD: pmap.c,v 1.25 2004/08/19 15:31:57 chs Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.25 2004/08/19 15:31:57 chs Exp $");
     71 
     72 #include "opt_ppcarch.h"
     73 #include "opt_altivec.h"
     74 #include "opt_pmap.h"
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/user.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 
     84 #if __NetBSD_Version__ < 105010000
     85 #include <vm/vm.h>
     86 #include <vm/vm_kern.h>
     87 #define	splvm()		splimp()
     88 #endif
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/pcb.h>
     93 #include <machine/powerpc.h>
     94 #include <powerpc/spr.h>
     95 #include <powerpc/oea/sr_601.h>
     96 #include <powerpc/bat.h>
     97 
     98 #if defined(DEBUG) || defined(PMAPCHECK)
     99 #define	STATIC
    100 #else
    101 #define	STATIC	static
    102 #endif
    103 
    104 #ifdef ALTIVEC
    105 int pmap_use_altivec;
    106 #endif
    107 
    108 volatile struct pteg *pmap_pteg_table;
    109 unsigned int pmap_pteg_cnt;
    110 unsigned int pmap_pteg_mask;
    111 #ifdef PMAP_MEMLIMIT
    112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    113 #else
    114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115 #endif
    116 
    117 struct pmap kernel_pmap_;
    118 unsigned int pmap_pages_stolen;
    119 u_long pmap_pte_valid;
    120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    121 u_long pmap_pvo_enter_depth;
    122 u_long pmap_pvo_remove_depth;
    123 #endif
    124 
    125 int physmem;
    126 #ifndef MSGBUFADDR
    127 extern paddr_t msgbuf_paddr;
    128 #endif
    129 
    130 static struct mem_region *mem, *avail;
    131 static u_int mem_cnt, avail_cnt;
    132 
    133 #ifdef __HAVE_PMAP_PHYSSEG
    134 /*
    135  * This is a cache of referenced/modified bits.
    136  * Bits herein are shifted by ATTRSHFT.
    137  */
    138 #define	ATTR_SHFT	4
    139 struct pmap_physseg pmap_physseg;
    140 #endif
    141 
    142 /*
    143  * The following structure is exactly 32 bytes long (one cacheline).
    144  */
    145 struct pvo_entry {
    146 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    147 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    148 	struct pte pvo_pte;			/* Prebuilt PTE */
    149 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    150 	vaddr_t pvo_vaddr;			/* VA of entry */
    151 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    152 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    153 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    154 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    155 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    156 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    157 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    158 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    159 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    160 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    161 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    162 #define	PVO_REMOVE		6		/* PVO has been removed */
    163 #define	PVO_WHERE_MASK		15
    164 #define	PVO_WHERE_SHFT		8
    165 };
    166 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    167 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    168 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    169 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    170 #define	PVO_PTEGIDX_CLR(pvo)	\
    171 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    172 #define	PVO_PTEGIDX_SET(pvo,i)	\
    173 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    174 #define	PVO_WHERE(pvo,w)	\
    175 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    176 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    177 
    178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    179 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    182 
    183 struct pool pmap_pool;		/* pool for pmap structures */
    184 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    185 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    186 
    187 /*
    188  * We keep a cache of unmanaged pages to be used for pvo entries for
    189  * unmanaged pages.
    190  */
    191 struct pvo_page {
    192 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    193 };
    194 SIMPLEQ_HEAD(pvop_head, pvo_page);
    195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    197 u_long pmap_upvop_free;
    198 u_long pmap_upvop_maxfree;
    199 u_long pmap_mpvop_free;
    200 u_long pmap_mpvop_maxfree;
    201 
    202 STATIC void *pmap_pool_ualloc(struct pool *, int);
    203 STATIC void *pmap_pool_malloc(struct pool *, int);
    204 
    205 STATIC void pmap_pool_ufree(struct pool *, void *);
    206 STATIC void pmap_pool_mfree(struct pool *, void *);
    207 
    208 static struct pool_allocator pmap_pool_mallocator = {
    209 	pmap_pool_malloc, pmap_pool_mfree, 0,
    210 };
    211 
    212 static struct pool_allocator pmap_pool_uallocator = {
    213 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    214 };
    215 
    216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    217 void pmap_pte_print(volatile struct pte *);
    218 #endif
    219 
    220 #ifdef DDB
    221 void pmap_pteg_check(void);
    222 void pmap_pteg_dist(void);
    223 void pmap_print_pte(pmap_t, vaddr_t);
    224 void pmap_print_mmuregs(void);
    225 #endif
    226 
    227 #if defined(DEBUG) || defined(PMAPCHECK)
    228 #ifdef PMAPCHECK
    229 int pmapcheck = 1;
    230 #else
    231 int pmapcheck = 0;
    232 #endif
    233 void pmap_pvo_verify(void);
    234 STATIC void pmap_pvo_check(const struct pvo_entry *);
    235 #define	PMAP_PVO_CHECK(pvo)	 		\
    236 	do {					\
    237 		if (pmapcheck)			\
    238 			pmap_pvo_check(pvo);	\
    239 	} while (0)
    240 #else
    241 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    242 #endif
    243 STATIC int pmap_pte_insert(int, struct pte *);
    244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    245 	vaddr_t, paddr_t, register_t, int);
    246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, boolean_t);
    247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    249 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    250 STATIC void pvo_set_exec(struct pvo_entry *);
    251 STATIC void pvo_clear_exec(struct pvo_entry *);
    252 
    253 STATIC void tlbia(void);
    254 
    255 STATIC void pmap_release(pmap_t);
    256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    257 
    258 static uint32_t pmap_pvo_reclaim_nextidx;
    259 #ifdef DEBUG
    260 static int pmap_pvo_reclaim_debugctr;
    261 #endif
    262 
    263 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    264 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    265 
    266 static int pmap_initialized;
    267 
    268 #if defined(DEBUG) || defined(PMAPDEBUG)
    269 #define	PMAPDEBUG_BOOT		0x0001
    270 #define	PMAPDEBUG_PTE		0x0002
    271 #define	PMAPDEBUG_EXEC		0x0008
    272 #define	PMAPDEBUG_PVOENTER	0x0010
    273 #define	PMAPDEBUG_PVOREMOVE	0x0020
    274 #define	PMAPDEBUG_ACTIVATE	0x0100
    275 #define	PMAPDEBUG_CREATE	0x0200
    276 #define	PMAPDEBUG_ENTER		0x1000
    277 #define	PMAPDEBUG_KENTER	0x2000
    278 #define	PMAPDEBUG_KREMOVE	0x4000
    279 #define	PMAPDEBUG_REMOVE	0x8000
    280 unsigned int pmapdebug = 0;
    281 # define DPRINTF(x)		printf x
    282 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    283 #else
    284 # define DPRINTF(x)
    285 # define DPRINTFN(n, x)
    286 #endif
    287 
    288 
    289 #ifdef PMAPCOUNTERS
    290 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    291 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    292 
    293 struct evcnt pmap_evcnt_mappings =
    294     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    295 	    "pmap", "pages mapped");
    296 struct evcnt pmap_evcnt_unmappings =
    297     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    298 	    "pmap", "pages unmapped");
    299 
    300 struct evcnt pmap_evcnt_kernel_mappings =
    301     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    302 	    "pmap", "kernel pages mapped");
    303 struct evcnt pmap_evcnt_kernel_unmappings =
    304     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    305 	    "pmap", "kernel pages unmapped");
    306 
    307 struct evcnt pmap_evcnt_mappings_replaced =
    308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    309 	    "pmap", "page mappings replaced");
    310 
    311 struct evcnt pmap_evcnt_exec_mappings =
    312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    313 	    "pmap", "exec pages mapped");
    314 struct evcnt pmap_evcnt_exec_cached =
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    316 	    "pmap", "exec pages cached");
    317 
    318 struct evcnt pmap_evcnt_exec_synced =
    319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    320 	    "pmap", "exec pages synced");
    321 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    322     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    323 	    "pmap", "exec pages synced (CM)");
    324 
    325 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    327 	    "pmap", "exec pages uncached (PP)");
    328 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    330 	    "pmap", "exec pages uncached (CM)");
    331 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    332     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    333 	    "pmap", "exec pages uncached (ZP)");
    334 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    335     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    336 	    "pmap", "exec pages uncached (CP)");
    337 
    338 struct evcnt pmap_evcnt_updates =
    339     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    340 	    "pmap", "updates");
    341 struct evcnt pmap_evcnt_collects =
    342     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    343 	    "pmap", "collects");
    344 struct evcnt pmap_evcnt_copies =
    345     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    346 	    "pmap", "copies");
    347 
    348 struct evcnt pmap_evcnt_ptes_spilled =
    349     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    350 	    "pmap", "ptes spilled from overflow");
    351 struct evcnt pmap_evcnt_ptes_unspilled =
    352     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    353 	    "pmap", "ptes not spilled");
    354 struct evcnt pmap_evcnt_ptes_evicted =
    355     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    356 	    "pmap", "ptes evicted");
    357 
    358 struct evcnt pmap_evcnt_ptes_primary[8] = {
    359     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    360 	    "pmap", "ptes added at primary[0]"),
    361     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    362 	    "pmap", "ptes added at primary[1]"),
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "ptes added at primary[2]"),
    365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366 	    "pmap", "ptes added at primary[3]"),
    367 
    368     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    369 	    "pmap", "ptes added at primary[4]"),
    370     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    371 	    "pmap", "ptes added at primary[5]"),
    372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373 	    "pmap", "ptes added at primary[6]"),
    374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    375 	    "pmap", "ptes added at primary[7]"),
    376 };
    377 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379 	    "pmap", "ptes added at secondary[0]"),
    380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    381 	    "pmap", "ptes added at secondary[1]"),
    382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    383 	    "pmap", "ptes added at secondary[2]"),
    384     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    385 	    "pmap", "ptes added at secondary[3]"),
    386 
    387     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    388 	    "pmap", "ptes added at secondary[4]"),
    389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    390 	    "pmap", "ptes added at secondary[5]"),
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes added at secondary[6]"),
    393     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    394 	    "pmap", "ptes added at secondary[7]"),
    395 };
    396 struct evcnt pmap_evcnt_ptes_removed =
    397     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    398 	    "pmap", "ptes removed");
    399 struct evcnt pmap_evcnt_ptes_changed =
    400     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    401 	    "pmap", "ptes changed");
    402 
    403 /*
    404  * From pmap_subr.c
    405  */
    406 extern struct evcnt pmap_evcnt_zeroed_pages;
    407 extern struct evcnt pmap_evcnt_copied_pages;
    408 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    409 #else
    410 #define	PMAPCOUNT(ev)	((void) 0)
    411 #define	PMAPCOUNT2(ev)	((void) 0)
    412 #endif
    413 
    414 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    415 #define	TLBSYNC()	__asm __volatile("tlbsync")
    416 #define	SYNC()		__asm __volatile("sync")
    417 #define	EIEIO()		__asm __volatile("eieio")
    418 #define	MFMSR()		mfmsr()
    419 #define	MTMSR(psl)	mtmsr(psl)
    420 #define	MFPVR()		mfpvr()
    421 #define	MFSRIN(va)	mfsrin(va)
    422 #define	MFTB()		mfrtcltbl()
    423 
    424 #ifndef PPC_OEA64
    425 static __inline register_t
    426 mfsrin(vaddr_t va)
    427 {
    428 	register_t sr;
    429 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    430 	return sr;
    431 }
    432 #endif	/* PPC_OEA64 */
    433 
    434 static __inline register_t
    435 pmap_interrupts_off(void)
    436 {
    437 	register_t msr = MFMSR();
    438 	if (msr & PSL_EE)
    439 		MTMSR(msr & ~PSL_EE);
    440 	return msr;
    441 }
    442 
    443 static void
    444 pmap_interrupts_restore(register_t msr)
    445 {
    446 	if (msr & PSL_EE)
    447 		MTMSR(msr);
    448 }
    449 
    450 static __inline u_int32_t
    451 mfrtcltbl(void)
    452 {
    453 
    454 	if ((MFPVR() >> 16) == MPC601)
    455 		return (mfrtcl() >> 7);
    456 	else
    457 		return (mftbl());
    458 }
    459 
    460 /*
    461  * These small routines may have to be replaced,
    462  * if/when we support processors other that the 604.
    463  */
    464 
    465 void
    466 tlbia(void)
    467 {
    468 	caddr_t i;
    469 
    470 	SYNC();
    471 	/*
    472 	 * Why not use "tlbia"?  Because not all processors implement it.
    473 	 *
    474 	 * This needs to be a per-CPU callback to do the appropriate thing
    475 	 * for the CPU. XXX
    476 	 */
    477 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    478 		TLBIE(i);
    479 		EIEIO();
    480 		SYNC();
    481 	}
    482 	TLBSYNC();
    483 	SYNC();
    484 }
    485 
    486 static __inline register_t
    487 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    488 {
    489 #ifdef PPC_OEA64
    490 #if 0
    491 	const struct ste *ste;
    492 	register_t hash;
    493 	int i;
    494 
    495 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    496 
    497 	/*
    498 	 * Try the primary group first
    499 	 */
    500 	ste = pm->pm_stes[hash].stes;
    501 	for (i = 0; i < 8; i++, ste++) {
    502 		if (ste->ste_hi & STE_V) &&
    503 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    504 			return ste;
    505 	}
    506 
    507 	/*
    508 	 * Then the secondary group.
    509 	 */
    510 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    511 	for (i = 0; i < 8; i++, ste++) {
    512 		if (ste->ste_hi & STE_V) &&
    513 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    514 			return addr;
    515 	}
    516 
    517 	return NULL;
    518 #else
    519 	/*
    520 	 * Rather than searching the STE groups for the VSID, we know
    521 	 * how we generate that from the ESID and so do that.
    522 	 */
    523 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    524 #endif
    525 #else
    526 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    527 #endif
    528 }
    529 
    530 static __inline register_t
    531 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    532 {
    533 	register_t hash;
    534 
    535 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    536 	return hash & pmap_pteg_mask;
    537 }
    538 
    539 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    540 /*
    541  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    542  * The only bit of magic is that the top 4 bits of the address doesn't
    543  * technically exist in the PTE.  But we know we reserved 4 bits of the
    544  * VSID for it so that's how we get it.
    545  */
    546 static vaddr_t
    547 pmap_pte_to_va(volatile const struct pte *pt)
    548 {
    549 	vaddr_t va;
    550 	uintptr_t ptaddr = (uintptr_t) pt;
    551 
    552 	if (pt->pte_hi & PTE_HID)
    553 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    554 
    555 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    556 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    557 	va <<= ADDR_PIDX_SHFT;
    558 
    559 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    560 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    561 
    562 #ifdef PPC_OEA64
    563 	/* PPC63 Bits 0-35 */
    564 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    565 #endif
    566 #ifdef PPC_OEA
    567 	/* PPC Bits 0-3 */
    568 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    569 #endif
    570 
    571 	return va;
    572 }
    573 #endif
    574 
    575 static __inline struct pvo_head *
    576 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    577 {
    578 #ifdef __HAVE_VM_PAGE_MD
    579 	struct vm_page *pg;
    580 
    581 	pg = PHYS_TO_VM_PAGE(pa);
    582 	if (pg_p != NULL)
    583 		*pg_p = pg;
    584 	if (pg == NULL)
    585 		return &pmap_pvo_unmanaged;
    586 	return &pg->mdpage.mdpg_pvoh;
    587 #endif
    588 #ifdef __HAVE_PMAP_PHYSSEG
    589 	int bank, pg;
    590 
    591 	bank = vm_physseg_find(atop(pa), &pg);
    592 	if (pg_p != NULL)
    593 		*pg_p = pg;
    594 	if (bank == -1)
    595 		return &pmap_pvo_unmanaged;
    596 	return &vm_physmem[bank].pmseg.pvoh[pg];
    597 #endif
    598 }
    599 
    600 static __inline struct pvo_head *
    601 vm_page_to_pvoh(struct vm_page *pg)
    602 {
    603 #ifdef __HAVE_VM_PAGE_MD
    604 	return &pg->mdpage.mdpg_pvoh;
    605 #endif
    606 #ifdef __HAVE_PMAP_PHYSSEG
    607 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    608 #endif
    609 }
    610 
    611 
    612 #ifdef __HAVE_PMAP_PHYSSEG
    613 static __inline char *
    614 pa_to_attr(paddr_t pa)
    615 {
    616 	int bank, pg;
    617 
    618 	bank = vm_physseg_find(atop(pa), &pg);
    619 	if (bank == -1)
    620 		return NULL;
    621 	return &vm_physmem[bank].pmseg.attrs[pg];
    622 }
    623 #endif
    624 
    625 static __inline void
    626 pmap_attr_clear(struct vm_page *pg, int ptebit)
    627 {
    628 #ifdef __HAVE_PMAP_PHYSSEG
    629 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    630 #endif
    631 #ifdef __HAVE_VM_PAGE_MD
    632 	pg->mdpage.mdpg_attrs &= ~ptebit;
    633 #endif
    634 }
    635 
    636 static __inline int
    637 pmap_attr_fetch(struct vm_page *pg)
    638 {
    639 #ifdef __HAVE_PMAP_PHYSSEG
    640 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    641 #endif
    642 #ifdef __HAVE_VM_PAGE_MD
    643 	return pg->mdpage.mdpg_attrs;
    644 #endif
    645 }
    646 
    647 static __inline void
    648 pmap_attr_save(struct vm_page *pg, int ptebit)
    649 {
    650 #ifdef __HAVE_PMAP_PHYSSEG
    651 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    652 #endif
    653 #ifdef __HAVE_VM_PAGE_MD
    654 	pg->mdpage.mdpg_attrs |= ptebit;
    655 #endif
    656 }
    657 
    658 static __inline int
    659 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    660 {
    661 	if (pt->pte_hi == pvo_pt->pte_hi
    662 #if 0
    663 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    664 	        ~(PTE_REF|PTE_CHG)) == 0
    665 #endif
    666 	    )
    667 		return 1;
    668 	return 0;
    669 }
    670 
    671 static __inline void
    672 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    673 {
    674 	/*
    675 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    676 	 * only gets set when the real pte is set in memory.
    677 	 *
    678 	 * Note: Don't set the valid bit for correct operation of tlb update.
    679 	 */
    680 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    681 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    682 	pt->pte_lo = pte_lo;
    683 }
    684 
    685 static __inline void
    686 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    687 {
    688 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    689 }
    690 
    691 static __inline void
    692 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    693 {
    694 	/*
    695 	 * As shown in Section 7.6.3.2.3
    696 	 */
    697 	pt->pte_lo &= ~ptebit;
    698 	TLBIE(va);
    699 	SYNC();
    700 	EIEIO();
    701 	TLBSYNC();
    702 	SYNC();
    703 }
    704 
    705 static __inline void
    706 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    707 {
    708 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    709 	if (pvo_pt->pte_hi & PTE_VALID)
    710 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    711 #endif
    712 	pvo_pt->pte_hi |= PTE_VALID;
    713 	/*
    714 	 * Update the PTE as defined in section 7.6.3.1
    715 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    716 	 * have been saved so this routine can restore them (if desired).
    717 	 */
    718 	pt->pte_lo = pvo_pt->pte_lo;
    719 	EIEIO();
    720 	pt->pte_hi = pvo_pt->pte_hi;
    721 	SYNC();
    722 	pmap_pte_valid++;
    723 }
    724 
    725 static __inline void
    726 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    727 {
    728 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    729 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    730 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    731 	if ((pt->pte_hi & PTE_VALID) == 0)
    732 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    733 #endif
    734 
    735 	pvo_pt->pte_hi &= ~PTE_VALID;
    736 	/*
    737 	 * Force the ref & chg bits back into the PTEs.
    738 	 */
    739 	SYNC();
    740 	/*
    741 	 * Invalidate the pte ... (Section 7.6.3.3)
    742 	 */
    743 	pt->pte_hi &= ~PTE_VALID;
    744 	SYNC();
    745 	TLBIE(va);
    746 	SYNC();
    747 	EIEIO();
    748 	TLBSYNC();
    749 	SYNC();
    750 	/*
    751 	 * Save the ref & chg bits ...
    752 	 */
    753 	pmap_pte_synch(pt, pvo_pt);
    754 	pmap_pte_valid--;
    755 }
    756 
    757 static __inline void
    758 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    759 {
    760 	/*
    761 	 * Invalidate the PTE
    762 	 */
    763 	pmap_pte_unset(pt, pvo_pt, va);
    764 	pmap_pte_set(pt, pvo_pt);
    765 }
    766 
    767 /*
    768  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    769  * (either primary or secondary location).
    770  *
    771  * Note: both the destination and source PTEs must not have PTE_VALID set.
    772  */
    773 
    774 STATIC int
    775 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    776 {
    777 	volatile struct pte *pt;
    778 	int i;
    779 
    780 #if defined(DEBUG)
    781 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    782 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    783 #endif
    784 	/*
    785 	 * First try primary hash.
    786 	 */
    787 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    788 		if ((pt->pte_hi & PTE_VALID) == 0) {
    789 			pvo_pt->pte_hi &= ~PTE_HID;
    790 			pmap_pte_set(pt, pvo_pt);
    791 			return i;
    792 		}
    793 	}
    794 
    795 	/*
    796 	 * Now try secondary hash.
    797 	 */
    798 	ptegidx ^= pmap_pteg_mask;
    799 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    800 		if ((pt->pte_hi & PTE_VALID) == 0) {
    801 			pvo_pt->pte_hi |= PTE_HID;
    802 			pmap_pte_set(pt, pvo_pt);
    803 			return i;
    804 		}
    805 	}
    806 	return -1;
    807 }
    808 
    809 /*
    810  * Spill handler.
    811  *
    812  * Tries to spill a page table entry from the overflow area.
    813  * This runs in either real mode (if dealing with a exception spill)
    814  * or virtual mode when dealing with manually spilling one of the
    815  * kernel's pte entries.  In either case, interrupts are already
    816  * disabled.
    817  */
    818 
    819 int
    820 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    821 {
    822 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    823 	struct pvo_entry *pvo;
    824 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    825 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    826 	int ptegidx, i, j;
    827 	volatile struct pteg *pteg;
    828 	volatile struct pte *pt;
    829 
    830 	ptegidx = va_to_pteg(pm, addr);
    831 
    832 	/*
    833 	 * Have to substitute some entry. Use the primary hash for this.
    834 	 * Use low bits of timebase as random generator.  Make sure we are
    835 	 * not picking a kernel pte for replacement.
    836 	 */
    837 	pteg = &pmap_pteg_table[ptegidx];
    838 	i = MFTB() & 7;
    839 	for (j = 0; j < 8; j++) {
    840 		pt = &pteg->pt[i];
    841 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    842 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    843 				!= KERNEL_VSIDBITS)
    844 			break;
    845 		i = (i + 1) & 7;
    846 	}
    847 	KASSERT(j < 8);
    848 
    849 	source_pvo = NULL;
    850 	victim_pvo = NULL;
    851 	pvoh = &pmap_pvo_table[ptegidx];
    852 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    853 
    854 		/*
    855 		 * We need to find pvo entry for this address...
    856 		 */
    857 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    858 
    859 		/*
    860 		 * If we haven't found the source and we come to a PVO with
    861 		 * a valid PTE, then we know we can't find it because all
    862 		 * evicted PVOs always are first in the list.
    863 		 */
    864 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    865 			break;
    866 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    867 		    addr == PVO_VADDR(pvo)) {
    868 
    869 			/*
    870 			 * Now we have found the entry to be spilled into the
    871 			 * pteg.  Attempt to insert it into the page table.
    872 			 */
    873 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    874 			if (j >= 0) {
    875 				PVO_PTEGIDX_SET(pvo, j);
    876 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    877 				PVO_WHERE(pvo, SPILL_INSERT);
    878 				pvo->pvo_pmap->pm_evictions--;
    879 				PMAPCOUNT(ptes_spilled);
    880 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    881 				    ? pmap_evcnt_ptes_secondary
    882 				    : pmap_evcnt_ptes_primary)[j]);
    883 
    884 				/*
    885 				 * Since we keep the evicted entries at the
    886 				 * from of the PVO list, we need move this
    887 				 * (now resident) PVO after the evicted
    888 				 * entries.
    889 				 */
    890 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    891 
    892 				/*
    893 				 * If we don't have to move (either we were the
    894 				 * last entry or the next entry was valid),
    895 				 * don't change our position.  Otherwise
    896 				 * move ourselves to the tail of the queue.
    897 				 */
    898 				if (next_pvo != NULL &&
    899 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    900 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    901 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    902 				}
    903 				return 1;
    904 			}
    905 			source_pvo = pvo;
    906 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    907 				return 0;
    908 			}
    909 			if (victim_pvo != NULL)
    910 				break;
    911 		}
    912 
    913 		/*
    914 		 * We also need the pvo entry of the victim we are replacing
    915 		 * so save the R & C bits of the PTE.
    916 		 */
    917 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    918 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    919 			vpvoh = pvoh;			/* *1* */
    920 			victim_pvo = pvo;
    921 			if (source_pvo != NULL)
    922 				break;
    923 		}
    924 	}
    925 
    926 	if (source_pvo == NULL) {
    927 		PMAPCOUNT(ptes_unspilled);
    928 		return 0;
    929 	}
    930 
    931 	if (victim_pvo == NULL) {
    932 		if ((pt->pte_hi & PTE_HID) == 0)
    933 			panic("pmap_pte_spill: victim p-pte (%p) has "
    934 			    "no pvo entry!", pt);
    935 
    936 		/*
    937 		 * If this is a secondary PTE, we need to search
    938 		 * its primary pvo bucket for the matching PVO.
    939 		 */
    940 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
    941 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    942 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    943 
    944 			/*
    945 			 * We also need the pvo entry of the victim we are
    946 			 * replacing so save the R & C bits of the PTE.
    947 			 */
    948 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    949 				victim_pvo = pvo;
    950 				break;
    951 			}
    952 		}
    953 		if (victim_pvo == NULL)
    954 			panic("pmap_pte_spill: victim s-pte (%p) has "
    955 			    "no pvo entry!", pt);
    956 	}
    957 
    958 	/*
    959 	 * The victim should be not be a kernel PVO/PTE entry.
    960 	 */
    961 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
    962 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
    963 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
    964 
    965 	/*
    966 	 * We are invalidating the TLB entry for the EA for the
    967 	 * we are replacing even though its valid; If we don't
    968 	 * we lose any ref/chg bit changes contained in the TLB
    969 	 * entry.
    970 	 */
    971 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    972 
    973 	/*
    974 	 * To enforce the PVO list ordering constraint that all
    975 	 * evicted entries should come before all valid entries,
    976 	 * move the source PVO to the tail of its list and the
    977 	 * victim PVO to the head of its list (which might not be
    978 	 * the same list, if the victim was using the secondary hash).
    979 	 */
    980 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    981 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    982 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    983 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    984 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    985 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    986 	victim_pvo->pvo_pmap->pm_evictions++;
    987 	source_pvo->pvo_pmap->pm_evictions--;
    988 	PVO_WHERE(victim_pvo, SPILL_UNSET);
    989 	PVO_WHERE(source_pvo, SPILL_SET);
    990 
    991 	PVO_PTEGIDX_CLR(victim_pvo);
    992 	PVO_PTEGIDX_SET(source_pvo, i);
    993 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    994 	PMAPCOUNT(ptes_spilled);
    995 	PMAPCOUNT(ptes_evicted);
    996 	PMAPCOUNT(ptes_removed);
    997 
    998 	PMAP_PVO_CHECK(victim_pvo);
    999 	PMAP_PVO_CHECK(source_pvo);
   1000 	return 1;
   1001 }
   1002 
   1003 /*
   1004  * Restrict given range to physical memory
   1005  */
   1006 void
   1007 pmap_real_memory(paddr_t *start, psize_t *size)
   1008 {
   1009 	struct mem_region *mp;
   1010 
   1011 	for (mp = mem; mp->size; mp++) {
   1012 		if (*start + *size > mp->start
   1013 		    && *start < mp->start + mp->size) {
   1014 			if (*start < mp->start) {
   1015 				*size -= mp->start - *start;
   1016 				*start = mp->start;
   1017 			}
   1018 			if (*start + *size > mp->start + mp->size)
   1019 				*size = mp->start + mp->size - *start;
   1020 			return;
   1021 		}
   1022 	}
   1023 	*size = 0;
   1024 }
   1025 
   1026 /*
   1027  * Initialize anything else for pmap handling.
   1028  * Called during vm_init().
   1029  */
   1030 void
   1031 pmap_init(void)
   1032 {
   1033 #ifdef __HAVE_PMAP_PHYSSEG
   1034 	struct pvo_tqhead *pvoh;
   1035 	int bank;
   1036 	long sz;
   1037 	char *attr;
   1038 
   1039 	pvoh = pmap_physseg.pvoh;
   1040 	attr = pmap_physseg.attrs;
   1041 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1042 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1043 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1044 		vm_physmem[bank].pmseg.attrs = attr;
   1045 		for (; sz > 0; sz--, pvoh++, attr++) {
   1046 			TAILQ_INIT(pvoh);
   1047 			*attr = 0;
   1048 		}
   1049 	}
   1050 #endif
   1051 
   1052 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1053 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1054 	    &pmap_pool_mallocator);
   1055 
   1056 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1057 
   1058 	pmap_initialized = 1;
   1059 
   1060 #ifdef PMAPCOUNTERS
   1061 	evcnt_attach_static(&pmap_evcnt_mappings);
   1062 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
   1063 	evcnt_attach_static(&pmap_evcnt_unmappings);
   1064 
   1065 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
   1066 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
   1067 
   1068 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
   1069 	evcnt_attach_static(&pmap_evcnt_exec_cached);
   1070 	evcnt_attach_static(&pmap_evcnt_exec_synced);
   1071 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
   1072 
   1073 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
   1074 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
   1075 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
   1076 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
   1077 
   1078 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
   1079 	evcnt_attach_static(&pmap_evcnt_copied_pages);
   1080 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
   1081 
   1082 	evcnt_attach_static(&pmap_evcnt_updates);
   1083 	evcnt_attach_static(&pmap_evcnt_collects);
   1084 	evcnt_attach_static(&pmap_evcnt_copies);
   1085 
   1086 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
   1087 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1088 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1089 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1090 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1091 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1092 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1093 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1094 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1095 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1096 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1097 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1098 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1099 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1100 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1101 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1102 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1103 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1104 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1105 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1106 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1107 #endif
   1108 }
   1109 
   1110 /*
   1111  * How much virtual space does the kernel get?
   1112  */
   1113 void
   1114 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1115 {
   1116 	/*
   1117 	 * For now, reserve one segment (minus some overhead) for kernel
   1118 	 * virtual memory
   1119 	 */
   1120 	*start = VM_MIN_KERNEL_ADDRESS;
   1121 	*end = VM_MAX_KERNEL_ADDRESS;
   1122 }
   1123 
   1124 /*
   1125  * Allocate, initialize, and return a new physical map.
   1126  */
   1127 pmap_t
   1128 pmap_create(void)
   1129 {
   1130 	pmap_t pm;
   1131 
   1132 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1133 	memset((caddr_t)pm, 0, sizeof *pm);
   1134 	pmap_pinit(pm);
   1135 
   1136 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1137 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1138 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1139 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1140 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1141 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1142 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1143 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1144 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1145 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1146 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1147 	return pm;
   1148 }
   1149 
   1150 /*
   1151  * Initialize a preallocated and zeroed pmap structure.
   1152  */
   1153 void
   1154 pmap_pinit(pmap_t pm)
   1155 {
   1156 	register_t entropy = MFTB();
   1157 	register_t mask;
   1158 	int i;
   1159 
   1160 	/*
   1161 	 * Allocate some segment registers for this pmap.
   1162 	 */
   1163 	pm->pm_refs = 1;
   1164 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1165 		static register_t pmap_vsidcontext;
   1166 		register_t hash;
   1167 		unsigned int n;
   1168 
   1169 		/* Create a new value by multiplying by a prime adding in
   1170 		 * entropy from the timebase register.  This is to make the
   1171 		 * VSID more random so that the PT Hash function collides
   1172 		 * less often. (note that the prime causes gcc to do shifts
   1173 		 * instead of a multiply)
   1174 		 */
   1175 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1176 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1177 		if (hash == 0) {		/* 0 is special, avoid it */
   1178 			entropy += 0xbadf00d;
   1179 			continue;
   1180 		}
   1181 		n = hash >> 5;
   1182 		mask = 1L << (hash & (VSID_NBPW-1));
   1183 		hash = pmap_vsidcontext;
   1184 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1185 			/* anything free in this bucket? */
   1186 			if (~pmap_vsid_bitmap[n] == 0) {
   1187 				entropy = hash ^ (hash >> 16);
   1188 				continue;
   1189 			}
   1190 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1191 			mask = 1L << i;
   1192 			hash &= ~(VSID_NBPW-1);
   1193 			hash |= i;
   1194 		}
   1195 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1196 		pmap_vsid_bitmap[n] |= mask;
   1197 		pm->pm_vsid = hash;
   1198 #ifndef PPC_OEA64
   1199 		for (i = 0; i < 16; i++)
   1200 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1201 			    SR_NOEXEC;
   1202 #endif
   1203 		return;
   1204 	}
   1205 	panic("pmap_pinit: out of segments");
   1206 }
   1207 
   1208 /*
   1209  * Add a reference to the given pmap.
   1210  */
   1211 void
   1212 pmap_reference(pmap_t pm)
   1213 {
   1214 	pm->pm_refs++;
   1215 }
   1216 
   1217 /*
   1218  * Retire the given pmap from service.
   1219  * Should only be called if the map contains no valid mappings.
   1220  */
   1221 void
   1222 pmap_destroy(pmap_t pm)
   1223 {
   1224 	if (--pm->pm_refs == 0) {
   1225 		pmap_release(pm);
   1226 		pool_put(&pmap_pool, pm);
   1227 	}
   1228 }
   1229 
   1230 /*
   1231  * Release any resources held by the given physical map.
   1232  * Called when a pmap initialized by pmap_pinit is being released.
   1233  */
   1234 void
   1235 pmap_release(pmap_t pm)
   1236 {
   1237 	int idx, mask;
   1238 
   1239 	if (pm->pm_sr[0] == 0)
   1240 		panic("pmap_release");
   1241 	idx = pm->pm_vsid & (NPMAPS-1);
   1242 	mask = 1 << (idx % VSID_NBPW);
   1243 	idx /= VSID_NBPW;
   1244 
   1245 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1246 	pmap_vsid_bitmap[idx] &= ~mask;
   1247 }
   1248 
   1249 /*
   1250  * Copy the range specified by src_addr/len
   1251  * from the source map to the range dst_addr/len
   1252  * in the destination map.
   1253  *
   1254  * This routine is only advisory and need not do anything.
   1255  */
   1256 void
   1257 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1258 	vsize_t len, vaddr_t src_addr)
   1259 {
   1260 	PMAPCOUNT(copies);
   1261 }
   1262 
   1263 /*
   1264  * Require that all active physical maps contain no
   1265  * incorrect entries NOW.
   1266  */
   1267 void
   1268 pmap_update(struct pmap *pmap)
   1269 {
   1270 	PMAPCOUNT(updates);
   1271 	TLBSYNC();
   1272 }
   1273 
   1274 /*
   1275  * Garbage collects the physical map system for
   1276  * pages which are no longer used.
   1277  * Success need not be guaranteed -- that is, there
   1278  * may well be pages which are not referenced, but
   1279  * others may be collected.
   1280  * Called by the pageout daemon when pages are scarce.
   1281  */
   1282 void
   1283 pmap_collect(pmap_t pm)
   1284 {
   1285 	PMAPCOUNT(collects);
   1286 }
   1287 
   1288 static __inline int
   1289 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1290 {
   1291 	int pteidx;
   1292 	/*
   1293 	 * We can find the actual pte entry without searching by
   1294 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1295 	 * and by noticing the HID bit.
   1296 	 */
   1297 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1298 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1299 		pteidx ^= pmap_pteg_mask * 8;
   1300 	return pteidx;
   1301 }
   1302 
   1303 volatile struct pte *
   1304 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1305 {
   1306 	volatile struct pte *pt;
   1307 
   1308 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1309 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1310 		return NULL;
   1311 #endif
   1312 
   1313 	/*
   1314 	 * If we haven't been supplied the ptegidx, calculate it.
   1315 	 */
   1316 	if (pteidx == -1) {
   1317 		int ptegidx;
   1318 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1319 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1320 	}
   1321 
   1322 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1323 
   1324 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1325 	return pt;
   1326 #else
   1327 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1328 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1329 		    "pvo but no valid pte index", pvo);
   1330 	}
   1331 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1332 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1333 		    "pvo but no valid pte", pvo);
   1334 	}
   1335 
   1336 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1337 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1338 #if defined(DEBUG) || defined(PMAPCHECK)
   1339 			pmap_pte_print(pt);
   1340 #endif
   1341 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1342 			    "pmap_pteg_table %p but invalid in pvo",
   1343 			    pvo, pt);
   1344 		}
   1345 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1346 #if defined(DEBUG) || defined(PMAPCHECK)
   1347 			pmap_pte_print(pt);
   1348 #endif
   1349 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1350 			    "not match pte %p in pmap_pteg_table",
   1351 			    pvo, pt);
   1352 		}
   1353 		return pt;
   1354 	}
   1355 
   1356 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1357 #if defined(DEBUG) || defined(PMAPCHECK)
   1358 		pmap_pte_print(pt);
   1359 #endif
   1360 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1361 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1362 	}
   1363 	return NULL;
   1364 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1365 }
   1366 
   1367 struct pvo_entry *
   1368 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1369 {
   1370 	struct pvo_entry *pvo;
   1371 	int ptegidx;
   1372 
   1373 	va &= ~ADDR_POFF;
   1374 	ptegidx = va_to_pteg(pm, va);
   1375 
   1376 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1377 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1378 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1379 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1380 			    "list %#x (%p)", pvo, ptegidx,
   1381 			     &pmap_pvo_table[ptegidx]);
   1382 #endif
   1383 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1384 			if (pteidx_p)
   1385 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1386 			return pvo;
   1387 		}
   1388 	}
   1389 	return NULL;
   1390 }
   1391 
   1392 #if defined(DEBUG) || defined(PMAPCHECK)
   1393 void
   1394 pmap_pvo_check(const struct pvo_entry *pvo)
   1395 {
   1396 	struct pvo_head *pvo_head;
   1397 	struct pvo_entry *pvo0;
   1398 	volatile struct pte *pt;
   1399 	int failed = 0;
   1400 
   1401 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1402 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1403 
   1404 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1405 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1406 		    pvo, pvo->pvo_pmap);
   1407 		failed = 1;
   1408 	}
   1409 
   1410 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1411 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1412 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1413 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1414 		failed = 1;
   1415 	}
   1416 
   1417 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1418 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1419 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1420 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1421 		failed = 1;
   1422 	}
   1423 
   1424 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1425 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1426 	} else {
   1427 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1428 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1429 			    "on kernel unmanaged list\n", pvo);
   1430 			failed = 1;
   1431 		}
   1432 		pvo_head = &pmap_pvo_kunmanaged;
   1433 	}
   1434 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1435 		if (pvo0 == pvo)
   1436 			break;
   1437 	}
   1438 	if (pvo0 == NULL) {
   1439 		printf("pmap_pvo_check: pvo %p: not present "
   1440 		    "on its vlist head %p\n", pvo, pvo_head);
   1441 		failed = 1;
   1442 	}
   1443 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1444 		printf("pmap_pvo_check: pvo %p: not present "
   1445 		    "on its olist head\n", pvo);
   1446 		failed = 1;
   1447 	}
   1448 	pt = pmap_pvo_to_pte(pvo, -1);
   1449 	if (pt == NULL) {
   1450 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1451 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1452 			    "no PTE\n", pvo);
   1453 			failed = 1;
   1454 		}
   1455 	} else {
   1456 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1457 		    (uintptr_t) pt >=
   1458 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1459 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1460 			    "pteg table\n", pvo, pt);
   1461 			failed = 1;
   1462 		}
   1463 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1464 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1465 			    "no PTE\n", pvo);
   1466 			failed = 1;
   1467 		}
   1468 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1469 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1470 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1471 			failed = 1;
   1472 		}
   1473 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1474 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1475 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1476 			    "%#x/%#x\n", pvo,
   1477 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1478 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1479 			failed = 1;
   1480 		}
   1481 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1482 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1483 			    " doesn't not match PVO's VA %#lx\n",
   1484 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1485 			failed = 1;
   1486 		}
   1487 		if (failed)
   1488 			pmap_pte_print(pt);
   1489 	}
   1490 	if (failed)
   1491 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1492 		    pvo->pvo_pmap);
   1493 }
   1494 #endif /* DEBUG || PMAPCHECK */
   1495 
   1496 /*
   1497  * Search the PVO table looking for a non-wired entry.
   1498  * If we find one, remove it and return it.
   1499  */
   1500 
   1501 struct pvo_entry *
   1502 pmap_pvo_reclaim(struct pmap *pm)
   1503 {
   1504 	struct pvo_tqhead *pvoh;
   1505 	struct pvo_entry *pvo;
   1506 	uint32_t idx, endidx;
   1507 
   1508 	endidx = pmap_pvo_reclaim_nextidx;
   1509 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1510 	     idx = (idx + 1) & pmap_pteg_mask) {
   1511 		pvoh = &pmap_pvo_table[idx];
   1512 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1513 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
   1514 				pmap_pvo_remove(pvo, -1, FALSE);
   1515 				pmap_pvo_reclaim_nextidx = idx;
   1516 				return pvo;
   1517 			}
   1518 		}
   1519 	}
   1520 	return NULL;
   1521 }
   1522 
   1523 /*
   1524  * This returns whether this is the first mapping of a page.
   1525  */
   1526 int
   1527 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1528 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1529 {
   1530 	struct pvo_entry *pvo;
   1531 	struct pvo_tqhead *pvoh;
   1532 	register_t msr;
   1533 	int ptegidx;
   1534 	int i;
   1535 	int poolflags = PR_NOWAIT;
   1536 
   1537 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1538 	if (pmap_pvo_remove_depth > 0)
   1539 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1540 	if (++pmap_pvo_enter_depth > 1)
   1541 		panic("pmap_pvo_enter: called recursively!");
   1542 #endif
   1543 
   1544 	/*
   1545 	 * Compute the PTE Group index.
   1546 	 */
   1547 	va &= ~ADDR_POFF;
   1548 	ptegidx = va_to_pteg(pm, va);
   1549 
   1550 	msr = pmap_interrupts_off();
   1551 	/*
   1552 	 * Remove any existing mapping for this page.  Reuse the
   1553 	 * pvo entry if there a mapping.
   1554 	 */
   1555 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1556 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1557 #ifdef DEBUG
   1558 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1559 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1560 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1561 			   va < VM_MIN_KERNEL_ADDRESS) {
   1562 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1563 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1564 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1565 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1566 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1567 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1568 #ifdef DDBX
   1569 				Debugger();
   1570 #endif
   1571 			}
   1572 #endif
   1573 			PMAPCOUNT(mappings_replaced);
   1574 			pmap_pvo_remove(pvo, -1, TRUE);
   1575 			break;
   1576 		}
   1577 	}
   1578 
   1579 	/*
   1580 	 * If we aren't overwriting an mapping, try to allocate
   1581 	 */
   1582 	pmap_interrupts_restore(msr);
   1583 	pvo = pool_get(pl, poolflags);
   1584 
   1585 #ifdef DEBUG
   1586 	/*
   1587 	 * Exercise pmap_pvo_reclaim() a little.
   1588 	 */
   1589 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1590 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1591 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1592 		pool_put(pl, pvo);
   1593 		pvo = NULL;
   1594 	}
   1595 #endif
   1596 
   1597 	msr = pmap_interrupts_off();
   1598 	if (pvo == NULL) {
   1599 		pvo = pmap_pvo_reclaim(pm);
   1600 		if (pvo == NULL) {
   1601 			if ((flags & PMAP_CANFAIL) == 0)
   1602 				panic("pmap_pvo_enter: failed");
   1603 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1604 			pmap_pvo_enter_depth--;
   1605 #endif
   1606 			pmap_interrupts_restore(msr);
   1607 			return ENOMEM;
   1608 		}
   1609 	}
   1610 
   1611 	pvo->pvo_vaddr = va;
   1612 	pvo->pvo_pmap = pm;
   1613 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1614 	if (flags & VM_PROT_EXECUTE) {
   1615 		PMAPCOUNT(exec_mappings);
   1616 		pvo_set_exec(pvo);
   1617 	}
   1618 	if (flags & PMAP_WIRED)
   1619 		pvo->pvo_vaddr |= PVO_WIRED;
   1620 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1621 		pvo->pvo_vaddr |= PVO_MANAGED;
   1622 		PMAPCOUNT(mappings);
   1623 	} else {
   1624 		PMAPCOUNT(kernel_mappings);
   1625 	}
   1626 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1627 
   1628 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1629 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1630 		pvo->pvo_pmap->pm_stats.wired_count++;
   1631 	pvo->pvo_pmap->pm_stats.resident_count++;
   1632 #if defined(DEBUG)
   1633 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1634 		DPRINTFN(PVOENTER,
   1635 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1636 		    pvo, pm, va, pa));
   1637 #endif
   1638 
   1639 	/*
   1640 	 * We hope this succeeds but it isn't required.
   1641 	 */
   1642 	pvoh = &pmap_pvo_table[ptegidx];
   1643 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1644 	if (i >= 0) {
   1645 		PVO_PTEGIDX_SET(pvo, i);
   1646 		PVO_WHERE(pvo, ENTER_INSERT);
   1647 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1648 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1649 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1650 	} else {
   1651 		/*
   1652 		 * Since we didn't have room for this entry (which makes it
   1653 		 * and evicted entry), place it at the head of the list.
   1654 		 */
   1655 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1656 		PMAPCOUNT(ptes_evicted);
   1657 		pm->pm_evictions++;
   1658 		/*
   1659 		 * If this is a kernel page, make sure it's active.
   1660 		 */
   1661 		if (pm == pmap_kernel()) {
   1662 			i = pmap_pte_spill(pm, va, FALSE);
   1663 			KASSERT(i);
   1664 		}
   1665 	}
   1666 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1667 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1668 	pmap_pvo_enter_depth--;
   1669 #endif
   1670 	pmap_interrupts_restore(msr);
   1671 	return 0;
   1672 }
   1673 
   1674 void
   1675 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, boolean_t free)
   1676 {
   1677 	volatile struct pte *pt;
   1678 	int ptegidx;
   1679 
   1680 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1681 	if (++pmap_pvo_remove_depth > 1)
   1682 		panic("pmap_pvo_remove: called recursively!");
   1683 #endif
   1684 
   1685 	/*
   1686 	 * If we haven't been supplied the ptegidx, calculate it.
   1687 	 */
   1688 	if (pteidx == -1) {
   1689 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1690 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1691 	} else {
   1692 		ptegidx = pteidx >> 3;
   1693 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1694 			ptegidx ^= pmap_pteg_mask;
   1695 	}
   1696 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1697 
   1698 	/*
   1699 	 * If there is an active pte entry, we need to deactivate it
   1700 	 * (and save the ref & chg bits).
   1701 	 */
   1702 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1703 	if (pt != NULL) {
   1704 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1705 		PVO_WHERE(pvo, REMOVE);
   1706 		PVO_PTEGIDX_CLR(pvo);
   1707 		PMAPCOUNT(ptes_removed);
   1708 	} else {
   1709 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1710 		pvo->pvo_pmap->pm_evictions--;
   1711 	}
   1712 
   1713 	/*
   1714 	 * Account for executable mappings.
   1715 	 */
   1716 	if (PVO_ISEXECUTABLE(pvo))
   1717 		pvo_clear_exec(pvo);
   1718 
   1719 	/*
   1720 	 * Update our statistics.
   1721 	 */
   1722 	pvo->pvo_pmap->pm_stats.resident_count--;
   1723 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1724 		pvo->pvo_pmap->pm_stats.wired_count--;
   1725 
   1726 	/*
   1727 	 * Save the REF/CHG bits into their cache if the page is managed.
   1728 	 */
   1729 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1730 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1731 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1732 
   1733 		if (pg != NULL) {
   1734 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1735 		}
   1736 		PMAPCOUNT(unmappings);
   1737 	} else {
   1738 		PMAPCOUNT(kernel_unmappings);
   1739 	}
   1740 
   1741 	/*
   1742 	 * Remove the PVO from its lists and return it to the pool.
   1743 	 */
   1744 	LIST_REMOVE(pvo, pvo_vlink);
   1745 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1746 	if (free) {
   1747 		pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
   1748 			 &pmap_upvo_pool, pvo);
   1749 	}
   1750 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1751 	pmap_pvo_remove_depth--;
   1752 #endif
   1753 }
   1754 
   1755 /*
   1756  * Mark a mapping as executable.
   1757  * If this is the first executable mapping in the segment,
   1758  * clear the noexec flag.
   1759  */
   1760 STATIC void
   1761 pvo_set_exec(struct pvo_entry *pvo)
   1762 {
   1763 	struct pmap *pm = pvo->pvo_pmap;
   1764 
   1765 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1766 		return;
   1767 	}
   1768 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1769 #ifdef PPC_OEA
   1770 	{
   1771 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1772 		if (pm->pm_exec[sr]++ == 0) {
   1773 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1774 		}
   1775 	}
   1776 #endif
   1777 }
   1778 
   1779 /*
   1780  * Mark a mapping as non-executable.
   1781  * If this was the last executable mapping in the segment,
   1782  * set the noexec flag.
   1783  */
   1784 STATIC void
   1785 pvo_clear_exec(struct pvo_entry *pvo)
   1786 {
   1787 	struct pmap *pm = pvo->pvo_pmap;
   1788 
   1789 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1790 		return;
   1791 	}
   1792 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1793 #ifdef PPC_OEA
   1794 	{
   1795 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1796 		if (--pm->pm_exec[sr] == 0) {
   1797 			pm->pm_sr[sr] |= SR_NOEXEC;
   1798 		}
   1799 	}
   1800 #endif
   1801 }
   1802 
   1803 /*
   1804  * Insert physical page at pa into the given pmap at virtual address va.
   1805  */
   1806 int
   1807 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1808 {
   1809 	struct mem_region *mp;
   1810 	struct pvo_head *pvo_head;
   1811 	struct vm_page *pg;
   1812 	struct pool *pl;
   1813 	register_t pte_lo;
   1814 	int error;
   1815 	u_int pvo_flags;
   1816 	u_int was_exec = 0;
   1817 
   1818 	if (__predict_false(!pmap_initialized)) {
   1819 		pvo_head = &pmap_pvo_kunmanaged;
   1820 		pl = &pmap_upvo_pool;
   1821 		pvo_flags = 0;
   1822 		pg = NULL;
   1823 		was_exec = PTE_EXEC;
   1824 	} else {
   1825 		pvo_head = pa_to_pvoh(pa, &pg);
   1826 		pl = &pmap_mpvo_pool;
   1827 		pvo_flags = PVO_MANAGED;
   1828 	}
   1829 
   1830 	DPRINTFN(ENTER,
   1831 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1832 	    pm, va, pa, prot, flags));
   1833 
   1834 	/*
   1835 	 * If this is a managed page, and it's the first reference to the
   1836 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1837 	 */
   1838 	if (pg != NULL)
   1839 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1840 
   1841 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1842 
   1843 	/*
   1844 	 * Assume the page is cache inhibited and access is guarded unless
   1845 	 * it's in our available memory array.  If it is in the memory array,
   1846 	 * asssume it's in memory coherent memory.
   1847 	 */
   1848 	pte_lo = PTE_IG;
   1849 	if ((flags & PMAP_NC) == 0) {
   1850 		for (mp = mem; mp->size; mp++) {
   1851 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1852 				pte_lo = PTE_M;
   1853 				break;
   1854 			}
   1855 		}
   1856 	}
   1857 
   1858 	if (prot & VM_PROT_WRITE)
   1859 		pte_lo |= PTE_BW;
   1860 	else
   1861 		pte_lo |= PTE_BR;
   1862 
   1863 	/*
   1864 	 * If this was in response to a fault, "pre-fault" the PTE's
   1865 	 * changed/referenced bit appropriately.
   1866 	 */
   1867 	if (flags & VM_PROT_WRITE)
   1868 		pte_lo |= PTE_CHG;
   1869 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1870 		pte_lo |= PTE_REF;
   1871 
   1872 	/*
   1873 	 * We need to know if this page can be executable
   1874 	 */
   1875 	flags |= (prot & VM_PROT_EXECUTE);
   1876 
   1877 	/*
   1878 	 * Record mapping for later back-translation and pte spilling.
   1879 	 * This will overwrite any existing mapping.
   1880 	 */
   1881 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1882 
   1883 	/*
   1884 	 * Flush the real page from the instruction cache if this page is
   1885 	 * mapped executable and cacheable and has not been flushed since
   1886 	 * the last time it was modified.
   1887 	 */
   1888 	if (error == 0 &&
   1889             (flags & VM_PROT_EXECUTE) &&
   1890             (pte_lo & PTE_I) == 0 &&
   1891 	    was_exec == 0) {
   1892 		DPRINTFN(ENTER, (" syncicache"));
   1893 		PMAPCOUNT(exec_synced);
   1894 		pmap_syncicache(pa, PAGE_SIZE);
   1895 		if (pg != NULL) {
   1896 			pmap_attr_save(pg, PTE_EXEC);
   1897 			PMAPCOUNT(exec_cached);
   1898 #if defined(DEBUG) || defined(PMAPDEBUG)
   1899 			if (pmapdebug & PMAPDEBUG_ENTER)
   1900 				printf(" marked-as-exec");
   1901 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1902 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1903 				    pg->phys_addr);
   1904 
   1905 #endif
   1906 		}
   1907 	}
   1908 
   1909 	DPRINTFN(ENTER, (": error=%d\n", error));
   1910 
   1911 	return error;
   1912 }
   1913 
   1914 void
   1915 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1916 {
   1917 	struct mem_region *mp;
   1918 	register_t pte_lo;
   1919 	int error;
   1920 
   1921 	if (va < VM_MIN_KERNEL_ADDRESS)
   1922 		panic("pmap_kenter_pa: attempt to enter "
   1923 		    "non-kernel address %#lx!", va);
   1924 
   1925 	DPRINTFN(KENTER,
   1926 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1927 
   1928 	/*
   1929 	 * Assume the page is cache inhibited and access is guarded unless
   1930 	 * it's in our available memory array.  If it is in the memory array,
   1931 	 * asssume it's in memory coherent memory.
   1932 	 */
   1933 	pte_lo = PTE_IG;
   1934 	if ((prot & PMAP_NC) == 0) {
   1935 		for (mp = mem; mp->size; mp++) {
   1936 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1937 				pte_lo = PTE_M;
   1938 				break;
   1939 			}
   1940 		}
   1941 	}
   1942 
   1943 	if (prot & VM_PROT_WRITE)
   1944 		pte_lo |= PTE_BW;
   1945 	else
   1946 		pte_lo |= PTE_BR;
   1947 
   1948 	/*
   1949 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1950 	 */
   1951 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1952 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1953 
   1954 	if (error != 0)
   1955 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1956 		      va, pa, error);
   1957 }
   1958 
   1959 void
   1960 pmap_kremove(vaddr_t va, vsize_t len)
   1961 {
   1962 	if (va < VM_MIN_KERNEL_ADDRESS)
   1963 		panic("pmap_kremove: attempt to remove "
   1964 		    "non-kernel address %#lx!", va);
   1965 
   1966 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1967 	pmap_remove(pmap_kernel(), va, va + len);
   1968 }
   1969 
   1970 /*
   1971  * Remove the given range of mapping entries.
   1972  */
   1973 void
   1974 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1975 {
   1976 	struct pvo_entry *pvo;
   1977 	register_t msr;
   1978 	int pteidx;
   1979 
   1980 	msr = pmap_interrupts_off();
   1981 	for (; va < endva; va += PAGE_SIZE) {
   1982 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1983 		if (pvo != NULL) {
   1984 			pmap_pvo_remove(pvo, pteidx, TRUE);
   1985 		}
   1986 	}
   1987 	pmap_interrupts_restore(msr);
   1988 }
   1989 
   1990 /*
   1991  * Get the physical page address for the given pmap/virtual address.
   1992  */
   1993 boolean_t
   1994 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1995 {
   1996 	struct pvo_entry *pvo;
   1997 	register_t msr;
   1998 
   1999 	/*
   2000 	 * If this is a kernel pmap lookup, also check the battable
   2001 	 * and if we get a hit, translate the VA to a PA using the
   2002 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   2003 	 * that will wrap back to 0.
   2004 	 */
   2005 	if (pm == pmap_kernel() &&
   2006 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2007 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2008 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2009 		if ((MFPVR() >> 16) != MPC601) {
   2010 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2011 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2012 				register_t batl =
   2013 				    battable[va >> ADDR_SR_SHFT].batl;
   2014 				register_t mask =
   2015 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2016 				*pap = (batl & mask) | (va & ~mask);
   2017 				return TRUE;
   2018 			}
   2019 		} else {
   2020 			register_t batu = battable[va >> 23].batu;
   2021 			register_t batl = battable[va >> 23].batl;
   2022 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2023 			if (BAT601_VALID_P(batl) &&
   2024 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2025 				register_t mask =
   2026 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2027 				*pap = (batl & mask) | (va & ~mask);
   2028 				return TRUE;
   2029 			} else if (SR601_VALID_P(sr) &&
   2030 				   SR601_PA_MATCH_P(sr, va)) {
   2031 				*pap = va;
   2032 				return TRUE;
   2033 			}
   2034 		}
   2035 		return FALSE;
   2036 	}
   2037 
   2038 	msr = pmap_interrupts_off();
   2039 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2040 	if (pvo != NULL) {
   2041 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2042 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   2043 	}
   2044 	pmap_interrupts_restore(msr);
   2045 	return pvo != NULL;
   2046 }
   2047 
   2048 /*
   2049  * Lower the protection on the specified range of this pmap.
   2050  */
   2051 void
   2052 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2053 {
   2054 	struct pvo_entry *pvo;
   2055 	volatile struct pte *pt;
   2056 	register_t msr;
   2057 	int pteidx;
   2058 
   2059 	/*
   2060 	 * Since this routine only downgrades protection, we should
   2061 	 * always be called with at least one bit not set.
   2062 	 */
   2063 	KASSERT(prot != VM_PROT_ALL);
   2064 
   2065 	/*
   2066 	 * If there is no protection, this is equivalent to
   2067 	 * remove the pmap from the pmap.
   2068 	 */
   2069 	if ((prot & VM_PROT_READ) == 0) {
   2070 		pmap_remove(pm, va, endva);
   2071 		return;
   2072 	}
   2073 
   2074 	msr = pmap_interrupts_off();
   2075 	for (; va < endva; va += PAGE_SIZE) {
   2076 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2077 		if (pvo == NULL)
   2078 			continue;
   2079 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2080 
   2081 		/*
   2082 		 * Revoke executable if asked to do so.
   2083 		 */
   2084 		if ((prot & VM_PROT_EXECUTE) == 0)
   2085 			pvo_clear_exec(pvo);
   2086 
   2087 #if 0
   2088 		/*
   2089 		 * If the page is already read-only, no change
   2090 		 * needs to be made.
   2091 		 */
   2092 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2093 			continue;
   2094 #endif
   2095 		/*
   2096 		 * Grab the PTE pointer before we diddle with
   2097 		 * the cached PTE copy.
   2098 		 */
   2099 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2100 		/*
   2101 		 * Change the protection of the page.
   2102 		 */
   2103 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2104 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2105 
   2106 		/*
   2107 		 * If the PVO is in the page table, update
   2108 		 * that pte at well.
   2109 		 */
   2110 		if (pt != NULL) {
   2111 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2112 			PVO_WHERE(pvo, PMAP_PROTECT);
   2113 			PMAPCOUNT(ptes_changed);
   2114 		}
   2115 
   2116 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2117 	}
   2118 	pmap_interrupts_restore(msr);
   2119 }
   2120 
   2121 void
   2122 pmap_unwire(pmap_t pm, vaddr_t va)
   2123 {
   2124 	struct pvo_entry *pvo;
   2125 	register_t msr;
   2126 
   2127 	msr = pmap_interrupts_off();
   2128 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2129 	if (pvo != NULL) {
   2130 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2131 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2132 			pm->pm_stats.wired_count--;
   2133 		}
   2134 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2135 	}
   2136 	pmap_interrupts_restore(msr);
   2137 }
   2138 
   2139 /*
   2140  * Lower the protection on the specified physical page.
   2141  */
   2142 void
   2143 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2144 {
   2145 	struct pvo_head *pvo_head;
   2146 	struct pvo_entry *pvo, *next_pvo;
   2147 	volatile struct pte *pt;
   2148 	register_t msr;
   2149 
   2150 	KASSERT(prot != VM_PROT_ALL);
   2151 	msr = pmap_interrupts_off();
   2152 
   2153 	/*
   2154 	 * When UVM reuses a page, it does a pmap_page_protect with
   2155 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2156 	 * since we know the page will have different contents.
   2157 	 */
   2158 	if ((prot & VM_PROT_READ) == 0) {
   2159 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2160 		    pg->phys_addr));
   2161 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2162 			PMAPCOUNT(exec_uncached_page_protect);
   2163 			pmap_attr_clear(pg, PTE_EXEC);
   2164 		}
   2165 	}
   2166 
   2167 	pvo_head = vm_page_to_pvoh(pg);
   2168 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2169 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2170 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2171 
   2172 		/*
   2173 		 * Downgrading to no mapping at all, we just remove the entry.
   2174 		 */
   2175 		if ((prot & VM_PROT_READ) == 0) {
   2176 			pmap_pvo_remove(pvo, -1, TRUE);
   2177 			continue;
   2178 		}
   2179 
   2180 		/*
   2181 		 * If EXEC permission is being revoked, just clear the
   2182 		 * flag in the PVO.
   2183 		 */
   2184 		if ((prot & VM_PROT_EXECUTE) == 0)
   2185 			pvo_clear_exec(pvo);
   2186 
   2187 		/*
   2188 		 * If this entry is already RO, don't diddle with the
   2189 		 * page table.
   2190 		 */
   2191 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2192 			PMAP_PVO_CHECK(pvo);
   2193 			continue;
   2194 		}
   2195 
   2196 		/*
   2197 		 * Grab the PTE before the we diddle the bits so
   2198 		 * pvo_to_pte can verify the pte contents are as
   2199 		 * expected.
   2200 		 */
   2201 		pt = pmap_pvo_to_pte(pvo, -1);
   2202 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2203 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2204 		if (pt != NULL) {
   2205 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2206 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2207 			PMAPCOUNT(ptes_changed);
   2208 		}
   2209 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2210 	}
   2211 	pmap_interrupts_restore(msr);
   2212 }
   2213 
   2214 /*
   2215  * Activate the address space for the specified process.  If the process
   2216  * is the current process, load the new MMU context.
   2217  */
   2218 void
   2219 pmap_activate(struct lwp *l)
   2220 {
   2221 	struct pcb *pcb = &l->l_addr->u_pcb;
   2222 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2223 
   2224 	DPRINTFN(ACTIVATE,
   2225 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2226 
   2227 	/*
   2228 	 * XXX Normally performed in cpu_fork().
   2229 	 */
   2230 	pcb->pcb_pm = pmap;
   2231 
   2232 	/*
   2233 	* In theory, the SR registers need only be valid on return
   2234 	* to user space wait to do them there.
   2235 	*/
   2236 	if (l == curlwp) {
   2237 		/* Store pointer to new current pmap. */
   2238 		curpm = pmap;
   2239 	}
   2240 }
   2241 
   2242 /*
   2243  * Deactivate the specified process's address space.
   2244  */
   2245 void
   2246 pmap_deactivate(struct lwp *l)
   2247 {
   2248 }
   2249 
   2250 boolean_t
   2251 pmap_query_bit(struct vm_page *pg, int ptebit)
   2252 {
   2253 	struct pvo_entry *pvo;
   2254 	volatile struct pte *pt;
   2255 	register_t msr;
   2256 
   2257 	if (pmap_attr_fetch(pg) & ptebit)
   2258 		return TRUE;
   2259 
   2260 	msr = pmap_interrupts_off();
   2261 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2262 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2263 		/*
   2264 		 * See if we saved the bit off.  If so cache, it and return
   2265 		 * success.
   2266 		 */
   2267 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2268 			pmap_attr_save(pg, ptebit);
   2269 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2270 			pmap_interrupts_restore(msr);
   2271 			return TRUE;
   2272 		}
   2273 	}
   2274 	/*
   2275 	 * No luck, now go thru the hard part of looking at the ptes
   2276 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2277 	 * to the PTEs.
   2278 	 */
   2279 	SYNC();
   2280 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2281 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2282 		/*
   2283 		 * See if this pvo have a valid PTE.  If so, fetch the
   2284 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2285 		 * ptebit is set, cache, it and return success.
   2286 		 */
   2287 		pt = pmap_pvo_to_pte(pvo, -1);
   2288 		if (pt != NULL) {
   2289 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2290 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2291 				pmap_attr_save(pg, ptebit);
   2292 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2293 				pmap_interrupts_restore(msr);
   2294 				return TRUE;
   2295 			}
   2296 		}
   2297 	}
   2298 	pmap_interrupts_restore(msr);
   2299 	return FALSE;
   2300 }
   2301 
   2302 boolean_t
   2303 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2304 {
   2305 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2306 	struct pvo_entry *pvo;
   2307 	volatile struct pte *pt;
   2308 	register_t msr;
   2309 	int rv = 0;
   2310 
   2311 	msr = pmap_interrupts_off();
   2312 
   2313 	/*
   2314 	 * Fetch the cache value
   2315 	 */
   2316 	rv |= pmap_attr_fetch(pg);
   2317 
   2318 	/*
   2319 	 * Clear the cached value.
   2320 	 */
   2321 	pmap_attr_clear(pg, ptebit);
   2322 
   2323 	/*
   2324 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2325 	 * can reset the right ones).  Note that since the pvo entries and
   2326 	 * list heads are accessed via BAT0 and are never placed in the
   2327 	 * page table, we don't have to worry about further accesses setting
   2328 	 * the REF/CHG bits.
   2329 	 */
   2330 	SYNC();
   2331 
   2332 	/*
   2333 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2334 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2335 	 */
   2336 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2337 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2338 		pt = pmap_pvo_to_pte(pvo, -1);
   2339 		if (pt != NULL) {
   2340 			/*
   2341 			 * Only sync the PTE if the bit we are looking
   2342 			 * for is not already set.
   2343 			 */
   2344 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2345 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2346 			/*
   2347 			 * If the bit we are looking for was already set,
   2348 			 * clear that bit in the pte.
   2349 			 */
   2350 			if (pvo->pvo_pte.pte_lo & ptebit)
   2351 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2352 		}
   2353 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2354 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2355 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2356 	}
   2357 	pmap_interrupts_restore(msr);
   2358 
   2359 	/*
   2360 	 * If we are clearing the modify bit and this page was marked EXEC
   2361 	 * and the user of the page thinks the page was modified, then we
   2362 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2363 	 * bit if it's not mapped.  The page itself might not have the CHG
   2364 	 * bit set if the modification was done via DMA to the page.
   2365 	 */
   2366 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2367 		if (LIST_EMPTY(pvoh)) {
   2368 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2369 			    pg->phys_addr));
   2370 			pmap_attr_clear(pg, PTE_EXEC);
   2371 			PMAPCOUNT(exec_uncached_clear_modify);
   2372 		} else {
   2373 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2374 			    pg->phys_addr));
   2375 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2376 			PMAPCOUNT(exec_synced_clear_modify);
   2377 		}
   2378 	}
   2379 	return (rv & ptebit) != 0;
   2380 }
   2381 
   2382 void
   2383 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2384 {
   2385 	struct pvo_entry *pvo;
   2386 	size_t offset = va & ADDR_POFF;
   2387 	int s;
   2388 
   2389 	s = splvm();
   2390 	while (len > 0) {
   2391 		size_t seglen = PAGE_SIZE - offset;
   2392 		if (seglen > len)
   2393 			seglen = len;
   2394 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2395 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2396 			pmap_syncicache(
   2397 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2398 			PMAP_PVO_CHECK(pvo);
   2399 		}
   2400 		va += seglen;
   2401 		len -= seglen;
   2402 		offset = 0;
   2403 	}
   2404 	splx(s);
   2405 }
   2406 
   2407 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2408 void
   2409 pmap_pte_print(volatile struct pte *pt)
   2410 {
   2411 	printf("PTE %p: ", pt);
   2412 	/* High word: */
   2413 	printf("0x%08lx: [", pt->pte_hi);
   2414 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2415 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2416 	printf("0x%06lx 0x%02lx",
   2417 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2418 	    pt->pte_hi & PTE_API);
   2419 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2420 	/* Low word: */
   2421 	printf(" 0x%08lx: [", pt->pte_lo);
   2422 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2423 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2424 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2425 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2426 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2427 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2428 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2429 	switch (pt->pte_lo & PTE_PP) {
   2430 	case PTE_BR: printf("br]\n"); break;
   2431 	case PTE_BW: printf("bw]\n"); break;
   2432 	case PTE_SO: printf("so]\n"); break;
   2433 	case PTE_SW: printf("sw]\n"); break;
   2434 	}
   2435 }
   2436 #endif
   2437 
   2438 #if defined(DDB)
   2439 void
   2440 pmap_pteg_check(void)
   2441 {
   2442 	volatile struct pte *pt;
   2443 	int i;
   2444 	int ptegidx;
   2445 	u_int p_valid = 0;
   2446 	u_int s_valid = 0;
   2447 	u_int invalid = 0;
   2448 
   2449 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2450 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2451 			if (pt->pte_hi & PTE_VALID) {
   2452 				if (pt->pte_hi & PTE_HID)
   2453 					s_valid++;
   2454 				else
   2455 					p_valid++;
   2456 			} else
   2457 				invalid++;
   2458 		}
   2459 	}
   2460 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2461 		p_valid, p_valid, s_valid, s_valid,
   2462 		invalid, invalid);
   2463 }
   2464 
   2465 void
   2466 pmap_print_mmuregs(void)
   2467 {
   2468 	int i;
   2469 	u_int cpuvers;
   2470 #ifndef PPC_OEA64
   2471 	vaddr_t addr;
   2472 	register_t soft_sr[16];
   2473 #endif
   2474 	struct bat soft_ibat[4];
   2475 	struct bat soft_dbat[4];
   2476 	register_t sdr1;
   2477 
   2478 	cpuvers = MFPVR() >> 16;
   2479 
   2480 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2481 #ifndef PPC_OEA64
   2482 	addr = 0;
   2483 	for (i=0; i<16; i++) {
   2484 		soft_sr[i] = MFSRIN(addr);
   2485 		addr += (1 << ADDR_SR_SHFT);
   2486 	}
   2487 #endif
   2488 
   2489 	/* read iBAT (601: uBAT) registers */
   2490 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2491 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2492 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2493 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2494 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2495 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2496 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2497 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2498 
   2499 
   2500 	if (cpuvers != MPC601) {
   2501 		/* read dBAT registers */
   2502 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2503 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2504 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2505 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2506 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2507 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2508 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2509 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2510 	}
   2511 
   2512 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2513 #ifndef PPC_OEA64
   2514 	printf("SR[]:\t");
   2515 	for (i=0; i<4; i++)
   2516 		printf("0x%08lx,   ", soft_sr[i]);
   2517 	printf("\n\t");
   2518 	for ( ; i<8; i++)
   2519 		printf("0x%08lx,   ", soft_sr[i]);
   2520 	printf("\n\t");
   2521 	for ( ; i<12; i++)
   2522 		printf("0x%08lx,   ", soft_sr[i]);
   2523 	printf("\n\t");
   2524 	for ( ; i<16; i++)
   2525 		printf("0x%08lx,   ", soft_sr[i]);
   2526 	printf("\n");
   2527 #endif
   2528 
   2529 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2530 	for (i=0; i<4; i++) {
   2531 		printf("0x%08lx 0x%08lx, ",
   2532 			soft_ibat[i].batu, soft_ibat[i].batl);
   2533 		if (i == 1)
   2534 			printf("\n\t");
   2535 	}
   2536 	if (cpuvers != MPC601) {
   2537 		printf("\ndBAT[]:\t");
   2538 		for (i=0; i<4; i++) {
   2539 			printf("0x%08lx 0x%08lx, ",
   2540 				soft_dbat[i].batu, soft_dbat[i].batl);
   2541 			if (i == 1)
   2542 				printf("\n\t");
   2543 		}
   2544 	}
   2545 	printf("\n");
   2546 }
   2547 
   2548 void
   2549 pmap_print_pte(pmap_t pm, vaddr_t va)
   2550 {
   2551 	struct pvo_entry *pvo;
   2552 	volatile struct pte *pt;
   2553 	int pteidx;
   2554 
   2555 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2556 	if (pvo != NULL) {
   2557 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2558 		if (pt != NULL) {
   2559 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2560 				va, pt,
   2561 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2562 				pt->pte_hi, pt->pte_lo);
   2563 		} else {
   2564 			printf("No valid PTE found\n");
   2565 		}
   2566 	} else {
   2567 		printf("Address not in pmap\n");
   2568 	}
   2569 }
   2570 
   2571 void
   2572 pmap_pteg_dist(void)
   2573 {
   2574 	struct pvo_entry *pvo;
   2575 	int ptegidx;
   2576 	int depth;
   2577 	int max_depth = 0;
   2578 	unsigned int depths[64];
   2579 
   2580 	memset(depths, 0, sizeof(depths));
   2581 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2582 		depth = 0;
   2583 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2584 			depth++;
   2585 		}
   2586 		if (depth > max_depth)
   2587 			max_depth = depth;
   2588 		if (depth > 63)
   2589 			depth = 63;
   2590 		depths[depth]++;
   2591 	}
   2592 
   2593 	for (depth = 0; depth < 64; depth++) {
   2594 		printf("  [%2d]: %8u", depth, depths[depth]);
   2595 		if ((depth & 3) == 3)
   2596 			printf("\n");
   2597 		if (depth == max_depth)
   2598 			break;
   2599 	}
   2600 	if ((depth & 3) != 3)
   2601 		printf("\n");
   2602 	printf("Max depth found was %d\n", max_depth);
   2603 }
   2604 #endif /* DEBUG */
   2605 
   2606 #if defined(PMAPCHECK) || defined(DEBUG)
   2607 void
   2608 pmap_pvo_verify(void)
   2609 {
   2610 	int ptegidx;
   2611 	int s;
   2612 
   2613 	s = splvm();
   2614 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2615 		struct pvo_entry *pvo;
   2616 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2617 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2618 				panic("pmap_pvo_verify: invalid pvo %p "
   2619 				    "on list %#x", pvo, ptegidx);
   2620 			pmap_pvo_check(pvo);
   2621 		}
   2622 	}
   2623 	splx(s);
   2624 }
   2625 #endif /* PMAPCHECK */
   2626 
   2627 
   2628 void *
   2629 pmap_pool_ualloc(struct pool *pp, int flags)
   2630 {
   2631 	struct pvo_page *pvop;
   2632 
   2633 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2634 	if (pvop != NULL) {
   2635 		pmap_upvop_free--;
   2636 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2637 		return pvop;
   2638 	}
   2639 	if (uvm.page_init_done != TRUE) {
   2640 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2641 	}
   2642 	return pmap_pool_malloc(pp, flags);
   2643 }
   2644 
   2645 void *
   2646 pmap_pool_malloc(struct pool *pp, int flags)
   2647 {
   2648 	struct pvo_page *pvop;
   2649 	struct vm_page *pg;
   2650 
   2651 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2652 	if (pvop != NULL) {
   2653 		pmap_mpvop_free--;
   2654 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2655 		return pvop;
   2656 	}
   2657  again:
   2658 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2659 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2660 	if (__predict_false(pg == NULL)) {
   2661 		if (flags & PR_WAITOK) {
   2662 			uvm_wait("plpg");
   2663 			goto again;
   2664 		} else {
   2665 			return (0);
   2666 		}
   2667 	}
   2668 	return (void *) VM_PAGE_TO_PHYS(pg);
   2669 }
   2670 
   2671 void
   2672 pmap_pool_ufree(struct pool *pp, void *va)
   2673 {
   2674 	struct pvo_page *pvop;
   2675 #if 0
   2676 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2677 		pmap_pool_mfree(va, size, tag);
   2678 		return;
   2679 	}
   2680 #endif
   2681 	pvop = va;
   2682 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2683 	pmap_upvop_free++;
   2684 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2685 		pmap_upvop_maxfree = pmap_upvop_free;
   2686 }
   2687 
   2688 void
   2689 pmap_pool_mfree(struct pool *pp, void *va)
   2690 {
   2691 	struct pvo_page *pvop;
   2692 
   2693 	pvop = va;
   2694 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2695 	pmap_mpvop_free++;
   2696 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2697 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2698 #if 0
   2699 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2700 #endif
   2701 }
   2702 
   2703 /*
   2704  * This routine in bootstraping to steal to-be-managed memory (which will
   2705  * then be unmanaged).  We use it to grab from the first 256MB for our
   2706  * pmap needs and above 256MB for other stuff.
   2707  */
   2708 vaddr_t
   2709 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2710 {
   2711 	vsize_t size;
   2712 	vaddr_t va;
   2713 	paddr_t pa = 0;
   2714 	int npgs, bank;
   2715 	struct vm_physseg *ps;
   2716 
   2717 	if (uvm.page_init_done == TRUE)
   2718 		panic("pmap_steal_memory: called _after_ bootstrap");
   2719 
   2720 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2721 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2722 
   2723 	size = round_page(vsize);
   2724 	npgs = atop(size);
   2725 
   2726 	/*
   2727 	 * PA 0 will never be among those given to UVM so we can use it
   2728 	 * to indicate we couldn't steal any memory.
   2729 	 */
   2730 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2731 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2732 		    ps->avail_end - ps->avail_start >= npgs) {
   2733 			pa = ptoa(ps->avail_start);
   2734 			break;
   2735 		}
   2736 	}
   2737 
   2738 	if (pa == 0)
   2739 		panic("pmap_steal_memory: no approriate memory to steal!");
   2740 
   2741 	ps->avail_start += npgs;
   2742 	ps->start += npgs;
   2743 
   2744 	/*
   2745 	 * If we've used up all the pages in the segment, remove it and
   2746 	 * compact the list.
   2747 	 */
   2748 	if (ps->avail_start == ps->end) {
   2749 		/*
   2750 		 * If this was the last one, then a very bad thing has occurred
   2751 		 */
   2752 		if (--vm_nphysseg == 0)
   2753 			panic("pmap_steal_memory: out of memory!");
   2754 
   2755 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2756 		for (; bank < vm_nphysseg; bank++, ps++) {
   2757 			ps[0] = ps[1];
   2758 		}
   2759 	}
   2760 
   2761 	va = (vaddr_t) pa;
   2762 	memset((caddr_t) va, 0, size);
   2763 	pmap_pages_stolen += npgs;
   2764 #ifdef DEBUG
   2765 	if (pmapdebug && npgs > 1) {
   2766 		u_int cnt = 0;
   2767 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2768 			cnt += ps->avail_end - ps->avail_start;
   2769 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2770 		    npgs, pmap_pages_stolen, cnt);
   2771 	}
   2772 #endif
   2773 
   2774 	return va;
   2775 }
   2776 
   2777 /*
   2778  * Find a chuck of memory with right size and alignment.
   2779  */
   2780 void *
   2781 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2782 {
   2783 	struct mem_region *mp;
   2784 	paddr_t s, e;
   2785 	int i, j;
   2786 
   2787 	size = round_page(size);
   2788 
   2789 	DPRINTFN(BOOT,
   2790 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2791 	    size, alignment, at_end));
   2792 
   2793 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2794 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2795 		    alignment);
   2796 
   2797 	if (at_end) {
   2798 		if (alignment != PAGE_SIZE)
   2799 			panic("pmap_boot_find_memory: invalid ending "
   2800 			    "alignment %lx", alignment);
   2801 
   2802 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2803 			s = mp->start + mp->size - size;
   2804 			if (s >= mp->start && mp->size >= size) {
   2805 				DPRINTFN(BOOT,(": %lx\n", s));
   2806 				DPRINTFN(BOOT,
   2807 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2808 				     "0x%lx size 0x%lx\n", mp - avail,
   2809 				     mp->start, mp->size));
   2810 				mp->size -= size;
   2811 				DPRINTFN(BOOT,
   2812 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2813 				     "0x%lx size 0x%lx\n", mp - avail,
   2814 				     mp->start, mp->size));
   2815 				return (void *) s;
   2816 			}
   2817 		}
   2818 		panic("pmap_boot_find_memory: no available memory");
   2819 	}
   2820 
   2821 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2822 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2823 		e = s + size;
   2824 
   2825 		/*
   2826 		 * Is the calculated region entirely within the region?
   2827 		 */
   2828 		if (s < mp->start || e > mp->start + mp->size)
   2829 			continue;
   2830 
   2831 		DPRINTFN(BOOT,(": %lx\n", s));
   2832 		if (s == mp->start) {
   2833 			/*
   2834 			 * If the block starts at the beginning of region,
   2835 			 * adjust the size & start. (the region may now be
   2836 			 * zero in length)
   2837 			 */
   2838 			DPRINTFN(BOOT,
   2839 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2840 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2841 			mp->start += size;
   2842 			mp->size -= size;
   2843 			DPRINTFN(BOOT,
   2844 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2845 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2846 		} else if (e == mp->start + mp->size) {
   2847 			/*
   2848 			 * If the block starts at the beginning of region,
   2849 			 * adjust only the size.
   2850 			 */
   2851 			DPRINTFN(BOOT,
   2852 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2853 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2854 			mp->size -= size;
   2855 			DPRINTFN(BOOT,
   2856 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2857 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2858 		} else {
   2859 			/*
   2860 			 * Block is in the middle of the region, so we
   2861 			 * have to split it in two.
   2862 			 */
   2863 			for (j = avail_cnt; j > i + 1; j--) {
   2864 				avail[j] = avail[j-1];
   2865 			}
   2866 			DPRINTFN(BOOT,
   2867 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2868 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2869 			mp[1].start = e;
   2870 			mp[1].size = mp[0].start + mp[0].size - e;
   2871 			mp[0].size = s - mp[0].start;
   2872 			avail_cnt++;
   2873 			for (; i < avail_cnt; i++) {
   2874 				DPRINTFN(BOOT,
   2875 				    ("pmap_boot_find_memory: a-avail[%d] "
   2876 				     "start 0x%lx size 0x%lx\n", i,
   2877 				     avail[i].start, avail[i].size));
   2878 			}
   2879 		}
   2880 		return (void *) s;
   2881 	}
   2882 	panic("pmap_boot_find_memory: not enough memory for "
   2883 	    "%lx/%lx allocation?", size, alignment);
   2884 }
   2885 
   2886 /*
   2887  * This is not part of the defined PMAP interface and is specific to the
   2888  * PowerPC architecture.  This is called during initppc, before the system
   2889  * is really initialized.
   2890  */
   2891 void
   2892 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2893 {
   2894 	struct mem_region *mp, tmp;
   2895 	paddr_t s, e;
   2896 	psize_t size;
   2897 	int i, j;
   2898 
   2899 	/*
   2900 	 * Get memory.
   2901 	 */
   2902 	mem_regions(&mem, &avail);
   2903 #if defined(DEBUG)
   2904 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2905 		printf("pmap_bootstrap: memory configuration:\n");
   2906 		for (mp = mem; mp->size; mp++) {
   2907 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2908 				mp->start, mp->size);
   2909 		}
   2910 		for (mp = avail; mp->size; mp++) {
   2911 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2912 				mp->start, mp->size);
   2913 		}
   2914 	}
   2915 #endif
   2916 
   2917 	/*
   2918 	 * Find out how much physical memory we have and in how many chunks.
   2919 	 */
   2920 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2921 		if (mp->start >= pmap_memlimit)
   2922 			continue;
   2923 		if (mp->start + mp->size > pmap_memlimit) {
   2924 			size = pmap_memlimit - mp->start;
   2925 			physmem += btoc(size);
   2926 		} else {
   2927 			physmem += btoc(mp->size);
   2928 		}
   2929 		mem_cnt++;
   2930 	}
   2931 
   2932 	/*
   2933 	 * Count the number of available entries.
   2934 	 */
   2935 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2936 		avail_cnt++;
   2937 
   2938 	/*
   2939 	 * Page align all regions.
   2940 	 */
   2941 	kernelstart = trunc_page(kernelstart);
   2942 	kernelend = round_page(kernelend);
   2943 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2944 		s = round_page(mp->start);
   2945 		mp->size -= (s - mp->start);
   2946 		mp->size = trunc_page(mp->size);
   2947 		mp->start = s;
   2948 		e = mp->start + mp->size;
   2949 
   2950 		DPRINTFN(BOOT,
   2951 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2952 		    i, mp->start, mp->size));
   2953 
   2954 		/*
   2955 		 * Don't allow the end to run beyond our artificial limit
   2956 		 */
   2957 		if (e > pmap_memlimit)
   2958 			e = pmap_memlimit;
   2959 
   2960 		/*
   2961 		 * Is this region empty or strange?  skip it.
   2962 		 */
   2963 		if (e <= s) {
   2964 			mp->start = 0;
   2965 			mp->size = 0;
   2966 			continue;
   2967 		}
   2968 
   2969 		/*
   2970 		 * Does this overlap the beginning of kernel?
   2971 		 *   Does extend past the end of the kernel?
   2972 		 */
   2973 		else if (s < kernelstart && e > kernelstart) {
   2974 			if (e > kernelend) {
   2975 				avail[avail_cnt].start = kernelend;
   2976 				avail[avail_cnt].size = e - kernelend;
   2977 				avail_cnt++;
   2978 			}
   2979 			mp->size = kernelstart - s;
   2980 		}
   2981 		/*
   2982 		 * Check whether this region overlaps the end of the kernel.
   2983 		 */
   2984 		else if (s < kernelend && e > kernelend) {
   2985 			mp->start = kernelend;
   2986 			mp->size = e - kernelend;
   2987 		}
   2988 		/*
   2989 		 * Look whether this regions is completely inside the kernel.
   2990 		 * Nuke it if it does.
   2991 		 */
   2992 		else if (s >= kernelstart && e <= kernelend) {
   2993 			mp->start = 0;
   2994 			mp->size = 0;
   2995 		}
   2996 		/*
   2997 		 * If the user imposed a memory limit, enforce it.
   2998 		 */
   2999 		else if (s >= pmap_memlimit) {
   3000 			mp->start = -PAGE_SIZE;	/* let's know why */
   3001 			mp->size = 0;
   3002 		}
   3003 		else {
   3004 			mp->start = s;
   3005 			mp->size = e - s;
   3006 		}
   3007 		DPRINTFN(BOOT,
   3008 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   3009 		    i, mp->start, mp->size));
   3010 	}
   3011 
   3012 	/*
   3013 	 * Move (and uncount) all the null return to the end.
   3014 	 */
   3015 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3016 		if (mp->size == 0) {
   3017 			tmp = avail[i];
   3018 			avail[i] = avail[--avail_cnt];
   3019 			avail[avail_cnt] = avail[i];
   3020 		}
   3021 	}
   3022 
   3023 	/*
   3024 	 * (Bubble)sort them into asecnding order.
   3025 	 */
   3026 	for (i = 0; i < avail_cnt; i++) {
   3027 		for (j = i + 1; j < avail_cnt; j++) {
   3028 			if (avail[i].start > avail[j].start) {
   3029 				tmp = avail[i];
   3030 				avail[i] = avail[j];
   3031 				avail[j] = tmp;
   3032 			}
   3033 		}
   3034 	}
   3035 
   3036 	/*
   3037 	 * Make sure they don't overlap.
   3038 	 */
   3039 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3040 		if (mp[0].start + mp[0].size > mp[1].start) {
   3041 			mp[0].size = mp[1].start - mp[0].start;
   3042 		}
   3043 		DPRINTFN(BOOT,
   3044 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3045 		    i, mp->start, mp->size));
   3046 	}
   3047 	DPRINTFN(BOOT,
   3048 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3049 	    i, mp->start, mp->size));
   3050 
   3051 #ifdef	PTEGCOUNT
   3052 	pmap_pteg_cnt = PTEGCOUNT;
   3053 #else /* PTEGCOUNT */
   3054 	pmap_pteg_cnt = 0x1000;
   3055 
   3056 	while (pmap_pteg_cnt < physmem)
   3057 		pmap_pteg_cnt <<= 1;
   3058 
   3059 	pmap_pteg_cnt >>= 1;
   3060 #endif /* PTEGCOUNT */
   3061 
   3062 	/*
   3063 	 * Find suitably aligned memory for PTEG hash table.
   3064 	 */
   3065 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3066 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3067 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3068 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3069 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3070 		    pmap_pteg_table, size);
   3071 #endif
   3072 
   3073 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   3074 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3075 
   3076 	/*
   3077 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3078 	 * with pages.  So we just steal them before giving them to UVM.
   3079 	 */
   3080 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3081 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3082 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3083 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3084 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3085 		    pmap_pvo_table, size);
   3086 #endif
   3087 
   3088 	for (i = 0; i < pmap_pteg_cnt; i++)
   3089 		TAILQ_INIT(&pmap_pvo_table[i]);
   3090 
   3091 #ifndef MSGBUFADDR
   3092 	/*
   3093 	 * Allocate msgbuf in high memory.
   3094 	 */
   3095 	msgbuf_paddr =
   3096 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3097 #endif
   3098 
   3099 #ifdef __HAVE_PMAP_PHYSSEG
   3100 	{
   3101 		u_int npgs = 0;
   3102 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3103 			npgs += btoc(mp->size);
   3104 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3105 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3106 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3107 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3108 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3109 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3110 			    pmap_physseg.pvoh, size);
   3111 #endif
   3112 	}
   3113 #endif
   3114 
   3115 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3116 		paddr_t pfstart = atop(mp->start);
   3117 		paddr_t pfend = atop(mp->start + mp->size);
   3118 		if (mp->size == 0)
   3119 			continue;
   3120 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3121 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3122 				VM_FREELIST_FIRST256);
   3123 		} else if (mp->start >= SEGMENT_LENGTH) {
   3124 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3125 				VM_FREELIST_DEFAULT);
   3126 		} else {
   3127 			pfend = atop(SEGMENT_LENGTH);
   3128 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3129 				VM_FREELIST_FIRST256);
   3130 			pfstart = atop(SEGMENT_LENGTH);
   3131 			pfend = atop(mp->start + mp->size);
   3132 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3133 				VM_FREELIST_DEFAULT);
   3134 		}
   3135 	}
   3136 
   3137 	/*
   3138 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3139 	 */
   3140 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3141 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3142 	pmap_vsid_bitmap[0] |= 1;
   3143 
   3144 	/*
   3145 	 * Initialize kernel pmap and hardware.
   3146 	 */
   3147 #ifndef PPC_OEA64
   3148 	for (i = 0; i < 16; i++) {
   3149 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3150 		__asm __volatile ("mtsrin %0,%1"
   3151 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3152 	}
   3153 
   3154 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3155 	__asm __volatile ("mtsr %0,%1"
   3156 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3157 #ifdef KERNEL2_SR
   3158 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3159 	__asm __volatile ("mtsr %0,%1"
   3160 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3161 #endif
   3162 	for (i = 0; i < 16; i++) {
   3163 		if (iosrtable[i] & SR601_T) {
   3164 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3165 			__asm __volatile ("mtsrin %0,%1"
   3166 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3167 		}
   3168 	}
   3169 #endif /* !PPC_OEA64 */
   3170 
   3171 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3172 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3173 	tlbia();
   3174 
   3175 #ifdef ALTIVEC
   3176 	pmap_use_altivec = cpu_altivec;
   3177 #endif
   3178 
   3179 #ifdef DEBUG
   3180 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3181 		u_int cnt;
   3182 		int bank;
   3183 		char pbuf[9];
   3184 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3185 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3186 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3187 			    bank,
   3188 			    ptoa(vm_physmem[bank].avail_start),
   3189 			    ptoa(vm_physmem[bank].avail_end),
   3190 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3191 		}
   3192 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3193 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3194 		    pbuf, cnt);
   3195 	}
   3196 #endif
   3197 
   3198 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3199 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3200 	    &pmap_pool_uallocator);
   3201 
   3202 	pool_setlowat(&pmap_upvo_pool, 252);
   3203 
   3204 	pool_init(&pmap_pool, sizeof(struct pmap),
   3205 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3206 }
   3207