Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.26
      1 /*	$NetBSD: pmap.c,v 1.26 2004/08/24 21:31:49 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.26 2004/08/24 21:31:49 matt Exp $");
     71 
     72 #include "opt_ppcarch.h"
     73 #include "opt_altivec.h"
     74 #include "opt_pmap.h"
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/user.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 
     84 #if __NetBSD_Version__ < 105010000
     85 #include <vm/vm.h>
     86 #include <vm/vm_kern.h>
     87 #define	splvm()		splimp()
     88 #endif
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/pcb.h>
     93 #include <machine/powerpc.h>
     94 #include <powerpc/spr.h>
     95 #include <powerpc/oea/sr_601.h>
     96 #include <powerpc/bat.h>
     97 
     98 #if defined(DEBUG) || defined(PMAPCHECK)
     99 #define	STATIC
    100 #else
    101 #define	STATIC	static
    102 #endif
    103 
    104 #ifdef ALTIVEC
    105 int pmap_use_altivec;
    106 #endif
    107 
    108 volatile struct pteg *pmap_pteg_table;
    109 unsigned int pmap_pteg_cnt;
    110 unsigned int pmap_pteg_mask;
    111 #ifdef PMAP_MEMLIMIT
    112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    113 #else
    114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115 #endif
    116 
    117 struct pmap kernel_pmap_;
    118 unsigned int pmap_pages_stolen;
    119 u_long pmap_pte_valid;
    120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    121 u_long pmap_pvo_enter_depth;
    122 u_long pmap_pvo_remove_depth;
    123 #endif
    124 
    125 int physmem;
    126 #ifndef MSGBUFADDR
    127 extern paddr_t msgbuf_paddr;
    128 #endif
    129 
    130 static struct mem_region *mem, *avail;
    131 static u_int mem_cnt, avail_cnt;
    132 
    133 #ifdef __HAVE_PMAP_PHYSSEG
    134 /*
    135  * This is a cache of referenced/modified bits.
    136  * Bits herein are shifted by ATTRSHFT.
    137  */
    138 #define	ATTR_SHFT	4
    139 struct pmap_physseg pmap_physseg;
    140 #endif
    141 
    142 /*
    143  * The following structure is exactly 32 bytes long (one cacheline).
    144  */
    145 struct pvo_entry {
    146 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    147 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    148 	struct pte pvo_pte;			/* Prebuilt PTE */
    149 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    150 	vaddr_t pvo_vaddr;			/* VA of entry */
    151 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    152 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    153 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    154 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    155 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    156 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    157 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    158 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    159 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    160 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    161 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    162 #define	PVO_REMOVE		6		/* PVO has been removed */
    163 #define	PVO_WHERE_MASK		15
    164 #define	PVO_WHERE_SHFT		8
    165 };
    166 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    167 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    168 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    169 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    170 #define	PVO_PTEGIDX_CLR(pvo)	\
    171 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    172 #define	PVO_PTEGIDX_SET(pvo,i)	\
    173 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    174 #define	PVO_WHERE(pvo,w)	\
    175 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    176 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    177 
    178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    179 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    182 
    183 struct pool pmap_pool;		/* pool for pmap structures */
    184 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    185 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    186 
    187 /*
    188  * We keep a cache of unmanaged pages to be used for pvo entries for
    189  * unmanaged pages.
    190  */
    191 struct pvo_page {
    192 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    193 };
    194 SIMPLEQ_HEAD(pvop_head, pvo_page);
    195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    197 u_long pmap_upvop_free;
    198 u_long pmap_upvop_maxfree;
    199 u_long pmap_mpvop_free;
    200 u_long pmap_mpvop_maxfree;
    201 
    202 STATIC void *pmap_pool_ualloc(struct pool *, int);
    203 STATIC void *pmap_pool_malloc(struct pool *, int);
    204 
    205 STATIC void pmap_pool_ufree(struct pool *, void *);
    206 STATIC void pmap_pool_mfree(struct pool *, void *);
    207 
    208 static struct pool_allocator pmap_pool_mallocator = {
    209 	pmap_pool_malloc, pmap_pool_mfree, 0,
    210 };
    211 
    212 static struct pool_allocator pmap_pool_uallocator = {
    213 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    214 };
    215 
    216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    217 void pmap_pte_print(volatile struct pte *);
    218 #endif
    219 
    220 #ifdef DDB
    221 void pmap_pteg_check(void);
    222 void pmap_pteg_dist(void);
    223 void pmap_print_pte(pmap_t, vaddr_t);
    224 void pmap_print_mmuregs(void);
    225 #endif
    226 
    227 #if defined(DEBUG) || defined(PMAPCHECK)
    228 #ifdef PMAPCHECK
    229 int pmapcheck = 1;
    230 #else
    231 int pmapcheck = 0;
    232 #endif
    233 void pmap_pvo_verify(void);
    234 STATIC void pmap_pvo_check(const struct pvo_entry *);
    235 #define	PMAP_PVO_CHECK(pvo)	 		\
    236 	do {					\
    237 		if (pmapcheck)			\
    238 			pmap_pvo_check(pvo);	\
    239 	} while (0)
    240 #else
    241 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    242 #endif
    243 STATIC int pmap_pte_insert(int, struct pte *);
    244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    245 	vaddr_t, paddr_t, register_t, int);
    246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, boolean_t);
    247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    249 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    250 STATIC void pvo_set_exec(struct pvo_entry *);
    251 STATIC void pvo_clear_exec(struct pvo_entry *);
    252 
    253 STATIC void tlbia(void);
    254 
    255 STATIC void pmap_release(pmap_t);
    256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    257 
    258 static uint32_t pmap_pvo_reclaim_nextidx;
    259 #ifdef DEBUG
    260 static int pmap_pvo_reclaim_debugctr;
    261 #endif
    262 
    263 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    264 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    265 
    266 static int pmap_initialized;
    267 
    268 #if defined(DEBUG) || defined(PMAPDEBUG)
    269 #define	PMAPDEBUG_BOOT		0x0001
    270 #define	PMAPDEBUG_PTE		0x0002
    271 #define	PMAPDEBUG_EXEC		0x0008
    272 #define	PMAPDEBUG_PVOENTER	0x0010
    273 #define	PMAPDEBUG_PVOREMOVE	0x0020
    274 #define	PMAPDEBUG_ACTIVATE	0x0100
    275 #define	PMAPDEBUG_CREATE	0x0200
    276 #define	PMAPDEBUG_ENTER		0x1000
    277 #define	PMAPDEBUG_KENTER	0x2000
    278 #define	PMAPDEBUG_KREMOVE	0x4000
    279 #define	PMAPDEBUG_REMOVE	0x8000
    280 unsigned int pmapdebug = 0;
    281 # define DPRINTF(x)		printf x
    282 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    283 #else
    284 # define DPRINTF(x)
    285 # define DPRINTFN(n, x)
    286 #endif
    287 
    288 
    289 #ifdef PMAPCOUNTERS
    290 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    291 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    292 
    293 struct evcnt pmap_evcnt_mappings =
    294     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    295 	    "pmap", "pages mapped");
    296 struct evcnt pmap_evcnt_unmappings =
    297     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    298 	    "pmap", "pages unmapped");
    299 
    300 struct evcnt pmap_evcnt_kernel_mappings =
    301     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    302 	    "pmap", "kernel pages mapped");
    303 struct evcnt pmap_evcnt_kernel_unmappings =
    304     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    305 	    "pmap", "kernel pages unmapped");
    306 
    307 struct evcnt pmap_evcnt_mappings_replaced =
    308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    309 	    "pmap", "page mappings replaced");
    310 
    311 struct evcnt pmap_evcnt_exec_mappings =
    312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    313 	    "pmap", "exec pages mapped");
    314 struct evcnt pmap_evcnt_exec_cached =
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    316 	    "pmap", "exec pages cached");
    317 
    318 struct evcnt pmap_evcnt_exec_synced =
    319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    320 	    "pmap", "exec pages synced");
    321 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    322     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    323 	    "pmap", "exec pages synced (CM)");
    324 
    325 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    327 	    "pmap", "exec pages uncached (PP)");
    328 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    330 	    "pmap", "exec pages uncached (CM)");
    331 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    332     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    333 	    "pmap", "exec pages uncached (ZP)");
    334 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    335     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    336 	    "pmap", "exec pages uncached (CP)");
    337 
    338 struct evcnt pmap_evcnt_updates =
    339     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    340 	    "pmap", "updates");
    341 struct evcnt pmap_evcnt_collects =
    342     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    343 	    "pmap", "collects");
    344 struct evcnt pmap_evcnt_copies =
    345     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    346 	    "pmap", "copies");
    347 
    348 struct evcnt pmap_evcnt_ptes_spilled =
    349     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    350 	    "pmap", "ptes spilled from overflow");
    351 struct evcnt pmap_evcnt_ptes_unspilled =
    352     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    353 	    "pmap", "ptes not spilled");
    354 struct evcnt pmap_evcnt_ptes_evicted =
    355     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    356 	    "pmap", "ptes evicted");
    357 
    358 struct evcnt pmap_evcnt_ptes_primary[8] = {
    359     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    360 	    "pmap", "ptes added at primary[0]"),
    361     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    362 	    "pmap", "ptes added at primary[1]"),
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "ptes added at primary[2]"),
    365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366 	    "pmap", "ptes added at primary[3]"),
    367 
    368     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    369 	    "pmap", "ptes added at primary[4]"),
    370     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    371 	    "pmap", "ptes added at primary[5]"),
    372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373 	    "pmap", "ptes added at primary[6]"),
    374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    375 	    "pmap", "ptes added at primary[7]"),
    376 };
    377 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379 	    "pmap", "ptes added at secondary[0]"),
    380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    381 	    "pmap", "ptes added at secondary[1]"),
    382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    383 	    "pmap", "ptes added at secondary[2]"),
    384     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    385 	    "pmap", "ptes added at secondary[3]"),
    386 
    387     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    388 	    "pmap", "ptes added at secondary[4]"),
    389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    390 	    "pmap", "ptes added at secondary[5]"),
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes added at secondary[6]"),
    393     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    394 	    "pmap", "ptes added at secondary[7]"),
    395 };
    396 struct evcnt pmap_evcnt_ptes_removed =
    397     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    398 	    "pmap", "ptes removed");
    399 struct evcnt pmap_evcnt_ptes_changed =
    400     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    401 	    "pmap", "ptes changed");
    402 struct evcnt pmap_evcnt_pvos_reclaimed =
    403     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    404 	    "pmap", "pvos reclaimed");
    405 struct evcnt pmap_evcnt_pvos_failed =
    406     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    407 	    "pmap", "pvo allocation failures");
    408 
    409 /*
    410  * From pmap_subr.c
    411  */
    412 extern struct evcnt pmap_evcnt_zeroed_pages;
    413 extern struct evcnt pmap_evcnt_copied_pages;
    414 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    415 
    416 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
    417 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
    418 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
    419 
    420 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
    421 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
    422 
    423 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
    424 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
    425 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
    426 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
    427 
    428 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
    429 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
    430 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
    431 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
    432 
    433 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
    434 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
    435 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
    436 
    437 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
    438 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
    439 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
    440 
    441 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
    442 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
    443 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
    444 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
    445 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
    446 
    447 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
    448 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
    449 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
    450 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
    451 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
    452 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
    453 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
    454 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
    455 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
    456 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
    457 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
    458 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
    459 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
    460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
    461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
    462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
    463 
    464 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
    465 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
    466 #else
    467 #define	PMAPCOUNT(ev)	((void) 0)
    468 #define	PMAPCOUNT2(ev)	((void) 0)
    469 #endif
    470 
    471 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    472 #define	TLBSYNC()	__asm __volatile("tlbsync")
    473 #define	SYNC()		__asm __volatile("sync")
    474 #define	EIEIO()		__asm __volatile("eieio")
    475 #define	MFMSR()		mfmsr()
    476 #define	MTMSR(psl)	mtmsr(psl)
    477 #define	MFPVR()		mfpvr()
    478 #define	MFSRIN(va)	mfsrin(va)
    479 #define	MFTB()		mfrtcltbl()
    480 
    481 #ifndef PPC_OEA64
    482 static __inline register_t
    483 mfsrin(vaddr_t va)
    484 {
    485 	register_t sr;
    486 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    487 	return sr;
    488 }
    489 #endif	/* PPC_OEA64 */
    490 
    491 static __inline register_t
    492 pmap_interrupts_off(void)
    493 {
    494 	register_t msr = MFMSR();
    495 	if (msr & PSL_EE)
    496 		MTMSR(msr & ~PSL_EE);
    497 	return msr;
    498 }
    499 
    500 static void
    501 pmap_interrupts_restore(register_t msr)
    502 {
    503 	if (msr & PSL_EE)
    504 		MTMSR(msr);
    505 }
    506 
    507 static __inline u_int32_t
    508 mfrtcltbl(void)
    509 {
    510 
    511 	if ((MFPVR() >> 16) == MPC601)
    512 		return (mfrtcl() >> 7);
    513 	else
    514 		return (mftbl());
    515 }
    516 
    517 /*
    518  * These small routines may have to be replaced,
    519  * if/when we support processors other that the 604.
    520  */
    521 
    522 void
    523 tlbia(void)
    524 {
    525 	caddr_t i;
    526 
    527 	SYNC();
    528 	/*
    529 	 * Why not use "tlbia"?  Because not all processors implement it.
    530 	 *
    531 	 * This needs to be a per-CPU callback to do the appropriate thing
    532 	 * for the CPU. XXX
    533 	 */
    534 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    535 		TLBIE(i);
    536 		EIEIO();
    537 		SYNC();
    538 	}
    539 	TLBSYNC();
    540 	SYNC();
    541 }
    542 
    543 static __inline register_t
    544 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    545 {
    546 #ifdef PPC_OEA64
    547 #if 0
    548 	const struct ste *ste;
    549 	register_t hash;
    550 	int i;
    551 
    552 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    553 
    554 	/*
    555 	 * Try the primary group first
    556 	 */
    557 	ste = pm->pm_stes[hash].stes;
    558 	for (i = 0; i < 8; i++, ste++) {
    559 		if (ste->ste_hi & STE_V) &&
    560 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    561 			return ste;
    562 	}
    563 
    564 	/*
    565 	 * Then the secondary group.
    566 	 */
    567 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    568 	for (i = 0; i < 8; i++, ste++) {
    569 		if (ste->ste_hi & STE_V) &&
    570 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    571 			return addr;
    572 	}
    573 
    574 	return NULL;
    575 #else
    576 	/*
    577 	 * Rather than searching the STE groups for the VSID, we know
    578 	 * how we generate that from the ESID and so do that.
    579 	 */
    580 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    581 #endif
    582 #else
    583 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    584 #endif
    585 }
    586 
    587 static __inline register_t
    588 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    589 {
    590 	register_t hash;
    591 
    592 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    593 	return hash & pmap_pteg_mask;
    594 }
    595 
    596 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    597 /*
    598  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    599  * The only bit of magic is that the top 4 bits of the address doesn't
    600  * technically exist in the PTE.  But we know we reserved 4 bits of the
    601  * VSID for it so that's how we get it.
    602  */
    603 static vaddr_t
    604 pmap_pte_to_va(volatile const struct pte *pt)
    605 {
    606 	vaddr_t va;
    607 	uintptr_t ptaddr = (uintptr_t) pt;
    608 
    609 	if (pt->pte_hi & PTE_HID)
    610 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    611 
    612 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    613 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    614 	va <<= ADDR_PIDX_SHFT;
    615 
    616 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    617 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    618 
    619 #ifdef PPC_OEA64
    620 	/* PPC63 Bits 0-35 */
    621 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    622 #endif
    623 #ifdef PPC_OEA
    624 	/* PPC Bits 0-3 */
    625 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    626 #endif
    627 
    628 	return va;
    629 }
    630 #endif
    631 
    632 static __inline struct pvo_head *
    633 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    634 {
    635 #ifdef __HAVE_VM_PAGE_MD
    636 	struct vm_page *pg;
    637 
    638 	pg = PHYS_TO_VM_PAGE(pa);
    639 	if (pg_p != NULL)
    640 		*pg_p = pg;
    641 	if (pg == NULL)
    642 		return &pmap_pvo_unmanaged;
    643 	return &pg->mdpage.mdpg_pvoh;
    644 #endif
    645 #ifdef __HAVE_PMAP_PHYSSEG
    646 	int bank, pg;
    647 
    648 	bank = vm_physseg_find(atop(pa), &pg);
    649 	if (pg_p != NULL)
    650 		*pg_p = pg;
    651 	if (bank == -1)
    652 		return &pmap_pvo_unmanaged;
    653 	return &vm_physmem[bank].pmseg.pvoh[pg];
    654 #endif
    655 }
    656 
    657 static __inline struct pvo_head *
    658 vm_page_to_pvoh(struct vm_page *pg)
    659 {
    660 #ifdef __HAVE_VM_PAGE_MD
    661 	return &pg->mdpage.mdpg_pvoh;
    662 #endif
    663 #ifdef __HAVE_PMAP_PHYSSEG
    664 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    665 #endif
    666 }
    667 
    668 
    669 #ifdef __HAVE_PMAP_PHYSSEG
    670 static __inline char *
    671 pa_to_attr(paddr_t pa)
    672 {
    673 	int bank, pg;
    674 
    675 	bank = vm_physseg_find(atop(pa), &pg);
    676 	if (bank == -1)
    677 		return NULL;
    678 	return &vm_physmem[bank].pmseg.attrs[pg];
    679 }
    680 #endif
    681 
    682 static __inline void
    683 pmap_attr_clear(struct vm_page *pg, int ptebit)
    684 {
    685 #ifdef __HAVE_PMAP_PHYSSEG
    686 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    687 #endif
    688 #ifdef __HAVE_VM_PAGE_MD
    689 	pg->mdpage.mdpg_attrs &= ~ptebit;
    690 #endif
    691 }
    692 
    693 static __inline int
    694 pmap_attr_fetch(struct vm_page *pg)
    695 {
    696 #ifdef __HAVE_PMAP_PHYSSEG
    697 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    698 #endif
    699 #ifdef __HAVE_VM_PAGE_MD
    700 	return pg->mdpage.mdpg_attrs;
    701 #endif
    702 }
    703 
    704 static __inline void
    705 pmap_attr_save(struct vm_page *pg, int ptebit)
    706 {
    707 #ifdef __HAVE_PMAP_PHYSSEG
    708 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    709 #endif
    710 #ifdef __HAVE_VM_PAGE_MD
    711 	pg->mdpage.mdpg_attrs |= ptebit;
    712 #endif
    713 }
    714 
    715 static __inline int
    716 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    717 {
    718 	if (pt->pte_hi == pvo_pt->pte_hi
    719 #if 0
    720 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    721 	        ~(PTE_REF|PTE_CHG)) == 0
    722 #endif
    723 	    )
    724 		return 1;
    725 	return 0;
    726 }
    727 
    728 static __inline void
    729 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    730 {
    731 	/*
    732 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    733 	 * only gets set when the real pte is set in memory.
    734 	 *
    735 	 * Note: Don't set the valid bit for correct operation of tlb update.
    736 	 */
    737 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    738 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    739 	pt->pte_lo = pte_lo;
    740 }
    741 
    742 static __inline void
    743 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    744 {
    745 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    746 }
    747 
    748 static __inline void
    749 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    750 {
    751 	/*
    752 	 * As shown in Section 7.6.3.2.3
    753 	 */
    754 	pt->pte_lo &= ~ptebit;
    755 	TLBIE(va);
    756 	SYNC();
    757 	EIEIO();
    758 	TLBSYNC();
    759 	SYNC();
    760 }
    761 
    762 static __inline void
    763 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    764 {
    765 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    766 	if (pvo_pt->pte_hi & PTE_VALID)
    767 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    768 #endif
    769 	pvo_pt->pte_hi |= PTE_VALID;
    770 	/*
    771 	 * Update the PTE as defined in section 7.6.3.1
    772 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    773 	 * have been saved so this routine can restore them (if desired).
    774 	 */
    775 	pt->pte_lo = pvo_pt->pte_lo;
    776 	EIEIO();
    777 	pt->pte_hi = pvo_pt->pte_hi;
    778 	SYNC();
    779 	pmap_pte_valid++;
    780 }
    781 
    782 static __inline void
    783 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    784 {
    785 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    786 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    787 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    788 	if ((pt->pte_hi & PTE_VALID) == 0)
    789 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    790 #endif
    791 
    792 	pvo_pt->pte_hi &= ~PTE_VALID;
    793 	/*
    794 	 * Force the ref & chg bits back into the PTEs.
    795 	 */
    796 	SYNC();
    797 	/*
    798 	 * Invalidate the pte ... (Section 7.6.3.3)
    799 	 */
    800 	pt->pte_hi &= ~PTE_VALID;
    801 	SYNC();
    802 	TLBIE(va);
    803 	SYNC();
    804 	EIEIO();
    805 	TLBSYNC();
    806 	SYNC();
    807 	/*
    808 	 * Save the ref & chg bits ...
    809 	 */
    810 	pmap_pte_synch(pt, pvo_pt);
    811 	pmap_pte_valid--;
    812 }
    813 
    814 static __inline void
    815 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    816 {
    817 	/*
    818 	 * Invalidate the PTE
    819 	 */
    820 	pmap_pte_unset(pt, pvo_pt, va);
    821 	pmap_pte_set(pt, pvo_pt);
    822 }
    823 
    824 /*
    825  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    826  * (either primary or secondary location).
    827  *
    828  * Note: both the destination and source PTEs must not have PTE_VALID set.
    829  */
    830 
    831 STATIC int
    832 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    833 {
    834 	volatile struct pte *pt;
    835 	int i;
    836 
    837 #if defined(DEBUG)
    838 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    839 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    840 #endif
    841 	/*
    842 	 * First try primary hash.
    843 	 */
    844 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    845 		if ((pt->pte_hi & PTE_VALID) == 0) {
    846 			pvo_pt->pte_hi &= ~PTE_HID;
    847 			pmap_pte_set(pt, pvo_pt);
    848 			return i;
    849 		}
    850 	}
    851 
    852 	/*
    853 	 * Now try secondary hash.
    854 	 */
    855 	ptegidx ^= pmap_pteg_mask;
    856 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    857 		if ((pt->pte_hi & PTE_VALID) == 0) {
    858 			pvo_pt->pte_hi |= PTE_HID;
    859 			pmap_pte_set(pt, pvo_pt);
    860 			return i;
    861 		}
    862 	}
    863 	return -1;
    864 }
    865 
    866 /*
    867  * Spill handler.
    868  *
    869  * Tries to spill a page table entry from the overflow area.
    870  * This runs in either real mode (if dealing with a exception spill)
    871  * or virtual mode when dealing with manually spilling one of the
    872  * kernel's pte entries.  In either case, interrupts are already
    873  * disabled.
    874  */
    875 
    876 int
    877 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    878 {
    879 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    880 	struct pvo_entry *pvo;
    881 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    882 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    883 	int ptegidx, i, j;
    884 	volatile struct pteg *pteg;
    885 	volatile struct pte *pt;
    886 
    887 	ptegidx = va_to_pteg(pm, addr);
    888 
    889 	/*
    890 	 * Have to substitute some entry. Use the primary hash for this.
    891 	 * Use low bits of timebase as random generator.  Make sure we are
    892 	 * not picking a kernel pte for replacement.
    893 	 */
    894 	pteg = &pmap_pteg_table[ptegidx];
    895 	i = MFTB() & 7;
    896 	for (j = 0; j < 8; j++) {
    897 		pt = &pteg->pt[i];
    898 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    899 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    900 				!= KERNEL_VSIDBITS)
    901 			break;
    902 		i = (i + 1) & 7;
    903 	}
    904 	KASSERT(j < 8);
    905 
    906 	source_pvo = NULL;
    907 	victim_pvo = NULL;
    908 	pvoh = &pmap_pvo_table[ptegidx];
    909 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    910 
    911 		/*
    912 		 * We need to find pvo entry for this address...
    913 		 */
    914 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    915 
    916 		/*
    917 		 * If we haven't found the source and we come to a PVO with
    918 		 * a valid PTE, then we know we can't find it because all
    919 		 * evicted PVOs always are first in the list.
    920 		 */
    921 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    922 			break;
    923 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    924 		    addr == PVO_VADDR(pvo)) {
    925 
    926 			/*
    927 			 * Now we have found the entry to be spilled into the
    928 			 * pteg.  Attempt to insert it into the page table.
    929 			 */
    930 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    931 			if (j >= 0) {
    932 				PVO_PTEGIDX_SET(pvo, j);
    933 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    934 				PVO_WHERE(pvo, SPILL_INSERT);
    935 				pvo->pvo_pmap->pm_evictions--;
    936 				PMAPCOUNT(ptes_spilled);
    937 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    938 				    ? pmap_evcnt_ptes_secondary
    939 				    : pmap_evcnt_ptes_primary)[j]);
    940 
    941 				/*
    942 				 * Since we keep the evicted entries at the
    943 				 * from of the PVO list, we need move this
    944 				 * (now resident) PVO after the evicted
    945 				 * entries.
    946 				 */
    947 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    948 
    949 				/*
    950 				 * If we don't have to move (either we were the
    951 				 * last entry or the next entry was valid),
    952 				 * don't change our position.  Otherwise
    953 				 * move ourselves to the tail of the queue.
    954 				 */
    955 				if (next_pvo != NULL &&
    956 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    957 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    958 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    959 				}
    960 				return 1;
    961 			}
    962 			source_pvo = pvo;
    963 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    964 				return 0;
    965 			}
    966 			if (victim_pvo != NULL)
    967 				break;
    968 		}
    969 
    970 		/*
    971 		 * We also need the pvo entry of the victim we are replacing
    972 		 * so save the R & C bits of the PTE.
    973 		 */
    974 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    975 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    976 			vpvoh = pvoh;			/* *1* */
    977 			victim_pvo = pvo;
    978 			if (source_pvo != NULL)
    979 				break;
    980 		}
    981 	}
    982 
    983 	if (source_pvo == NULL) {
    984 		PMAPCOUNT(ptes_unspilled);
    985 		return 0;
    986 	}
    987 
    988 	if (victim_pvo == NULL) {
    989 		if ((pt->pte_hi & PTE_HID) == 0)
    990 			panic("pmap_pte_spill: victim p-pte (%p) has "
    991 			    "no pvo entry!", pt);
    992 
    993 		/*
    994 		 * If this is a secondary PTE, we need to search
    995 		 * its primary pvo bucket for the matching PVO.
    996 		 */
    997 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
    998 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    999 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1000 
   1001 			/*
   1002 			 * We also need the pvo entry of the victim we are
   1003 			 * replacing so save the R & C bits of the PTE.
   1004 			 */
   1005 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1006 				victim_pvo = pvo;
   1007 				break;
   1008 			}
   1009 		}
   1010 		if (victim_pvo == NULL)
   1011 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1012 			    "no pvo entry!", pt);
   1013 	}
   1014 
   1015 	/*
   1016 	 * The victim should be not be a kernel PVO/PTE entry.
   1017 	 */
   1018 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1019 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1020 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1021 
   1022 	/*
   1023 	 * We are invalidating the TLB entry for the EA for the
   1024 	 * we are replacing even though its valid; If we don't
   1025 	 * we lose any ref/chg bit changes contained in the TLB
   1026 	 * entry.
   1027 	 */
   1028 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1029 
   1030 	/*
   1031 	 * To enforce the PVO list ordering constraint that all
   1032 	 * evicted entries should come before all valid entries,
   1033 	 * move the source PVO to the tail of its list and the
   1034 	 * victim PVO to the head of its list (which might not be
   1035 	 * the same list, if the victim was using the secondary hash).
   1036 	 */
   1037 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1038 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1039 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1040 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1041 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1042 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1043 	victim_pvo->pvo_pmap->pm_evictions++;
   1044 	source_pvo->pvo_pmap->pm_evictions--;
   1045 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1046 	PVO_WHERE(source_pvo, SPILL_SET);
   1047 
   1048 	PVO_PTEGIDX_CLR(victim_pvo);
   1049 	PVO_PTEGIDX_SET(source_pvo, i);
   1050 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1051 	PMAPCOUNT(ptes_spilled);
   1052 	PMAPCOUNT(ptes_evicted);
   1053 	PMAPCOUNT(ptes_removed);
   1054 
   1055 	PMAP_PVO_CHECK(victim_pvo);
   1056 	PMAP_PVO_CHECK(source_pvo);
   1057 	return 1;
   1058 }
   1059 
   1060 /*
   1061  * Restrict given range to physical memory
   1062  */
   1063 void
   1064 pmap_real_memory(paddr_t *start, psize_t *size)
   1065 {
   1066 	struct mem_region *mp;
   1067 
   1068 	for (mp = mem; mp->size; mp++) {
   1069 		if (*start + *size > mp->start
   1070 		    && *start < mp->start + mp->size) {
   1071 			if (*start < mp->start) {
   1072 				*size -= mp->start - *start;
   1073 				*start = mp->start;
   1074 			}
   1075 			if (*start + *size > mp->start + mp->size)
   1076 				*size = mp->start + mp->size - *start;
   1077 			return;
   1078 		}
   1079 	}
   1080 	*size = 0;
   1081 }
   1082 
   1083 /*
   1084  * Initialize anything else for pmap handling.
   1085  * Called during vm_init().
   1086  */
   1087 void
   1088 pmap_init(void)
   1089 {
   1090 #ifdef __HAVE_PMAP_PHYSSEG
   1091 	struct pvo_tqhead *pvoh;
   1092 	int bank;
   1093 	long sz;
   1094 	char *attr;
   1095 
   1096 	pvoh = pmap_physseg.pvoh;
   1097 	attr = pmap_physseg.attrs;
   1098 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1099 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1100 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1101 		vm_physmem[bank].pmseg.attrs = attr;
   1102 		for (; sz > 0; sz--, pvoh++, attr++) {
   1103 			TAILQ_INIT(pvoh);
   1104 			*attr = 0;
   1105 		}
   1106 	}
   1107 #endif
   1108 
   1109 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1110 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1111 	    &pmap_pool_mallocator);
   1112 
   1113 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1114 
   1115 	pmap_initialized = 1;
   1116 
   1117 }
   1118 
   1119 /*
   1120  * How much virtual space does the kernel get?
   1121  */
   1122 void
   1123 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1124 {
   1125 	/*
   1126 	 * For now, reserve one segment (minus some overhead) for kernel
   1127 	 * virtual memory
   1128 	 */
   1129 	*start = VM_MIN_KERNEL_ADDRESS;
   1130 	*end = VM_MAX_KERNEL_ADDRESS;
   1131 }
   1132 
   1133 /*
   1134  * Allocate, initialize, and return a new physical map.
   1135  */
   1136 pmap_t
   1137 pmap_create(void)
   1138 {
   1139 	pmap_t pm;
   1140 
   1141 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1142 	memset((caddr_t)pm, 0, sizeof *pm);
   1143 	pmap_pinit(pm);
   1144 
   1145 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1146 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1147 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1148 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1149 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1150 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1151 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1152 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1153 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1154 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1155 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1156 	return pm;
   1157 }
   1158 
   1159 /*
   1160  * Initialize a preallocated and zeroed pmap structure.
   1161  */
   1162 void
   1163 pmap_pinit(pmap_t pm)
   1164 {
   1165 	register_t entropy = MFTB();
   1166 	register_t mask;
   1167 	int i;
   1168 
   1169 	/*
   1170 	 * Allocate some segment registers for this pmap.
   1171 	 */
   1172 	pm->pm_refs = 1;
   1173 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1174 		static register_t pmap_vsidcontext;
   1175 		register_t hash;
   1176 		unsigned int n;
   1177 
   1178 		/* Create a new value by multiplying by a prime adding in
   1179 		 * entropy from the timebase register.  This is to make the
   1180 		 * VSID more random so that the PT Hash function collides
   1181 		 * less often. (note that the prime causes gcc to do shifts
   1182 		 * instead of a multiply)
   1183 		 */
   1184 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1185 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1186 		if (hash == 0) {		/* 0 is special, avoid it */
   1187 			entropy += 0xbadf00d;
   1188 			continue;
   1189 		}
   1190 		n = hash >> 5;
   1191 		mask = 1L << (hash & (VSID_NBPW-1));
   1192 		hash = pmap_vsidcontext;
   1193 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1194 			/* anything free in this bucket? */
   1195 			if (~pmap_vsid_bitmap[n] == 0) {
   1196 				entropy = hash ^ (hash >> 16);
   1197 				continue;
   1198 			}
   1199 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1200 			mask = 1L << i;
   1201 			hash &= ~(VSID_NBPW-1);
   1202 			hash |= i;
   1203 		}
   1204 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1205 		pmap_vsid_bitmap[n] |= mask;
   1206 		pm->pm_vsid = hash;
   1207 #ifndef PPC_OEA64
   1208 		for (i = 0; i < 16; i++)
   1209 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1210 			    SR_NOEXEC;
   1211 #endif
   1212 		return;
   1213 	}
   1214 	panic("pmap_pinit: out of segments");
   1215 }
   1216 
   1217 /*
   1218  * Add a reference to the given pmap.
   1219  */
   1220 void
   1221 pmap_reference(pmap_t pm)
   1222 {
   1223 	pm->pm_refs++;
   1224 }
   1225 
   1226 /*
   1227  * Retire the given pmap from service.
   1228  * Should only be called if the map contains no valid mappings.
   1229  */
   1230 void
   1231 pmap_destroy(pmap_t pm)
   1232 {
   1233 	if (--pm->pm_refs == 0) {
   1234 		pmap_release(pm);
   1235 		pool_put(&pmap_pool, pm);
   1236 	}
   1237 }
   1238 
   1239 /*
   1240  * Release any resources held by the given physical map.
   1241  * Called when a pmap initialized by pmap_pinit is being released.
   1242  */
   1243 void
   1244 pmap_release(pmap_t pm)
   1245 {
   1246 	int idx, mask;
   1247 
   1248 	if (pm->pm_sr[0] == 0)
   1249 		panic("pmap_release");
   1250 	idx = pm->pm_vsid & (NPMAPS-1);
   1251 	mask = 1 << (idx % VSID_NBPW);
   1252 	idx /= VSID_NBPW;
   1253 
   1254 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1255 	pmap_vsid_bitmap[idx] &= ~mask;
   1256 }
   1257 
   1258 /*
   1259  * Copy the range specified by src_addr/len
   1260  * from the source map to the range dst_addr/len
   1261  * in the destination map.
   1262  *
   1263  * This routine is only advisory and need not do anything.
   1264  */
   1265 void
   1266 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1267 	vsize_t len, vaddr_t src_addr)
   1268 {
   1269 	PMAPCOUNT(copies);
   1270 }
   1271 
   1272 /*
   1273  * Require that all active physical maps contain no
   1274  * incorrect entries NOW.
   1275  */
   1276 void
   1277 pmap_update(struct pmap *pmap)
   1278 {
   1279 	PMAPCOUNT(updates);
   1280 	TLBSYNC();
   1281 }
   1282 
   1283 /*
   1284  * Garbage collects the physical map system for
   1285  * pages which are no longer used.
   1286  * Success need not be guaranteed -- that is, there
   1287  * may well be pages which are not referenced, but
   1288  * others may be collected.
   1289  * Called by the pageout daemon when pages are scarce.
   1290  */
   1291 void
   1292 pmap_collect(pmap_t pm)
   1293 {
   1294 	PMAPCOUNT(collects);
   1295 }
   1296 
   1297 static __inline int
   1298 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1299 {
   1300 	int pteidx;
   1301 	/*
   1302 	 * We can find the actual pte entry without searching by
   1303 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1304 	 * and by noticing the HID bit.
   1305 	 */
   1306 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1307 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1308 		pteidx ^= pmap_pteg_mask * 8;
   1309 	return pteidx;
   1310 }
   1311 
   1312 volatile struct pte *
   1313 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1314 {
   1315 	volatile struct pte *pt;
   1316 
   1317 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1318 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1319 		return NULL;
   1320 #endif
   1321 
   1322 	/*
   1323 	 * If we haven't been supplied the ptegidx, calculate it.
   1324 	 */
   1325 	if (pteidx == -1) {
   1326 		int ptegidx;
   1327 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1328 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1329 	}
   1330 
   1331 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1332 
   1333 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1334 	return pt;
   1335 #else
   1336 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1337 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1338 		    "pvo but no valid pte index", pvo);
   1339 	}
   1340 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1341 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1342 		    "pvo but no valid pte", pvo);
   1343 	}
   1344 
   1345 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1346 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1347 #if defined(DEBUG) || defined(PMAPCHECK)
   1348 			pmap_pte_print(pt);
   1349 #endif
   1350 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1351 			    "pmap_pteg_table %p but invalid in pvo",
   1352 			    pvo, pt);
   1353 		}
   1354 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1355 #if defined(DEBUG) || defined(PMAPCHECK)
   1356 			pmap_pte_print(pt);
   1357 #endif
   1358 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1359 			    "not match pte %p in pmap_pteg_table",
   1360 			    pvo, pt);
   1361 		}
   1362 		return pt;
   1363 	}
   1364 
   1365 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1366 #if defined(DEBUG) || defined(PMAPCHECK)
   1367 		pmap_pte_print(pt);
   1368 #endif
   1369 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1370 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1371 	}
   1372 	return NULL;
   1373 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1374 }
   1375 
   1376 struct pvo_entry *
   1377 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1378 {
   1379 	struct pvo_entry *pvo;
   1380 	int ptegidx;
   1381 
   1382 	va &= ~ADDR_POFF;
   1383 	ptegidx = va_to_pteg(pm, va);
   1384 
   1385 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1386 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1387 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1388 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1389 			    "list %#x (%p)", pvo, ptegidx,
   1390 			     &pmap_pvo_table[ptegidx]);
   1391 #endif
   1392 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1393 			if (pteidx_p)
   1394 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1395 			return pvo;
   1396 		}
   1397 	}
   1398 	return NULL;
   1399 }
   1400 
   1401 #if defined(DEBUG) || defined(PMAPCHECK)
   1402 void
   1403 pmap_pvo_check(const struct pvo_entry *pvo)
   1404 {
   1405 	struct pvo_head *pvo_head;
   1406 	struct pvo_entry *pvo0;
   1407 	volatile struct pte *pt;
   1408 	int failed = 0;
   1409 
   1410 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1411 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1412 
   1413 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1414 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1415 		    pvo, pvo->pvo_pmap);
   1416 		failed = 1;
   1417 	}
   1418 
   1419 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1420 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1421 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1422 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1423 		failed = 1;
   1424 	}
   1425 
   1426 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1427 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1428 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1429 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1430 		failed = 1;
   1431 	}
   1432 
   1433 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1434 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1435 	} else {
   1436 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1437 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1438 			    "on kernel unmanaged list\n", pvo);
   1439 			failed = 1;
   1440 		}
   1441 		pvo_head = &pmap_pvo_kunmanaged;
   1442 	}
   1443 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1444 		if (pvo0 == pvo)
   1445 			break;
   1446 	}
   1447 	if (pvo0 == NULL) {
   1448 		printf("pmap_pvo_check: pvo %p: not present "
   1449 		    "on its vlist head %p\n", pvo, pvo_head);
   1450 		failed = 1;
   1451 	}
   1452 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1453 		printf("pmap_pvo_check: pvo %p: not present "
   1454 		    "on its olist head\n", pvo);
   1455 		failed = 1;
   1456 	}
   1457 	pt = pmap_pvo_to_pte(pvo, -1);
   1458 	if (pt == NULL) {
   1459 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1460 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1461 			    "no PTE\n", pvo);
   1462 			failed = 1;
   1463 		}
   1464 	} else {
   1465 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1466 		    (uintptr_t) pt >=
   1467 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1468 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1469 			    "pteg table\n", pvo, pt);
   1470 			failed = 1;
   1471 		}
   1472 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1473 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1474 			    "no PTE\n", pvo);
   1475 			failed = 1;
   1476 		}
   1477 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1478 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1479 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1480 			failed = 1;
   1481 		}
   1482 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1483 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1484 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1485 			    "%#x/%#x\n", pvo,
   1486 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1487 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1488 			failed = 1;
   1489 		}
   1490 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1491 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1492 			    " doesn't not match PVO's VA %#lx\n",
   1493 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1494 			failed = 1;
   1495 		}
   1496 		if (failed)
   1497 			pmap_pte_print(pt);
   1498 	}
   1499 	if (failed)
   1500 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1501 		    pvo->pvo_pmap);
   1502 }
   1503 #endif /* DEBUG || PMAPCHECK */
   1504 
   1505 /*
   1506  * Search the PVO table looking for a non-wired entry.
   1507  * If we find one, remove it and return it.
   1508  */
   1509 
   1510 struct pvo_entry *
   1511 pmap_pvo_reclaim(struct pmap *pm)
   1512 {
   1513 	struct pvo_tqhead *pvoh;
   1514 	struct pvo_entry *pvo;
   1515 	uint32_t idx, endidx;
   1516 
   1517 	endidx = pmap_pvo_reclaim_nextidx;
   1518 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1519 	     idx = (idx + 1) & pmap_pteg_mask) {
   1520 		pvoh = &pmap_pvo_table[idx];
   1521 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1522 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
   1523 				pmap_pvo_remove(pvo, -1, FALSE);
   1524 				pmap_pvo_reclaim_nextidx = idx;
   1525 				PMAPCOUNT(pvos_reclaimed);
   1526 				return pvo;
   1527 			}
   1528 		}
   1529 	}
   1530 	return NULL;
   1531 }
   1532 
   1533 /*
   1534  * This returns whether this is the first mapping of a page.
   1535  */
   1536 int
   1537 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1538 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1539 {
   1540 	struct pvo_entry *pvo;
   1541 	struct pvo_tqhead *pvoh;
   1542 	register_t msr;
   1543 	int ptegidx;
   1544 	int i;
   1545 	int poolflags = PR_NOWAIT;
   1546 
   1547 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1548 	if (pmap_pvo_remove_depth > 0)
   1549 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1550 	if (++pmap_pvo_enter_depth > 1)
   1551 		panic("pmap_pvo_enter: called recursively!");
   1552 #endif
   1553 
   1554 	/*
   1555 	 * Compute the PTE Group index.
   1556 	 */
   1557 	va &= ~ADDR_POFF;
   1558 	ptegidx = va_to_pteg(pm, va);
   1559 
   1560 	msr = pmap_interrupts_off();
   1561 	/*
   1562 	 * Remove any existing mapping for this page.  Reuse the
   1563 	 * pvo entry if there a mapping.
   1564 	 */
   1565 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1566 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1567 #ifdef DEBUG
   1568 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1569 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1570 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1571 			   va < VM_MIN_KERNEL_ADDRESS) {
   1572 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1573 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1574 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1575 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1576 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1577 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1578 #ifdef DDBX
   1579 				Debugger();
   1580 #endif
   1581 			}
   1582 #endif
   1583 			PMAPCOUNT(mappings_replaced);
   1584 			pmap_pvo_remove(pvo, -1, TRUE);
   1585 			break;
   1586 		}
   1587 	}
   1588 
   1589 	/*
   1590 	 * If we aren't overwriting an mapping, try to allocate
   1591 	 */
   1592 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1593 	--pmap_pvo_enter_depth;
   1594 #endif
   1595 	pmap_interrupts_restore(msr);
   1596 	pvo = pool_get(pl, poolflags);
   1597 
   1598 #ifdef DEBUG
   1599 	/*
   1600 	 * Exercise pmap_pvo_reclaim() a little.
   1601 	 */
   1602 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1603 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1604 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1605 		pool_put(pl, pvo);
   1606 		pvo = NULL;
   1607 	}
   1608 #endif
   1609 
   1610 	msr = pmap_interrupts_off();
   1611 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1612 	++pmap_pvo_enter_depth;
   1613 #endif
   1614 	if (pvo == NULL) {
   1615 		pvo = pmap_pvo_reclaim(pm);
   1616 		if (pvo == NULL) {
   1617 			if ((flags & PMAP_CANFAIL) == 0)
   1618 				panic("pmap_pvo_enter: failed");
   1619 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1620 			pmap_pvo_enter_depth--;
   1621 #endif
   1622 			PMAPCOUNT(pvos_failed);
   1623 			pmap_interrupts_restore(msr);
   1624 			return ENOMEM;
   1625 		}
   1626 	}
   1627 
   1628 	pvo->pvo_vaddr = va;
   1629 	pvo->pvo_pmap = pm;
   1630 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1631 	if (flags & VM_PROT_EXECUTE) {
   1632 		PMAPCOUNT(exec_mappings);
   1633 		pvo_set_exec(pvo);
   1634 	}
   1635 	if (flags & PMAP_WIRED)
   1636 		pvo->pvo_vaddr |= PVO_WIRED;
   1637 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1638 		pvo->pvo_vaddr |= PVO_MANAGED;
   1639 		PMAPCOUNT(mappings);
   1640 	} else {
   1641 		PMAPCOUNT(kernel_mappings);
   1642 	}
   1643 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1644 
   1645 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1646 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1647 		pvo->pvo_pmap->pm_stats.wired_count++;
   1648 	pvo->pvo_pmap->pm_stats.resident_count++;
   1649 #if defined(DEBUG)
   1650 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1651 		DPRINTFN(PVOENTER,
   1652 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1653 		    pvo, pm, va, pa));
   1654 #endif
   1655 
   1656 	/*
   1657 	 * We hope this succeeds but it isn't required.
   1658 	 */
   1659 	pvoh = &pmap_pvo_table[ptegidx];
   1660 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1661 	if (i >= 0) {
   1662 		PVO_PTEGIDX_SET(pvo, i);
   1663 		PVO_WHERE(pvo, ENTER_INSERT);
   1664 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1665 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1666 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1667 	} else {
   1668 		/*
   1669 		 * Since we didn't have room for this entry (which makes it
   1670 		 * and evicted entry), place it at the head of the list.
   1671 		 */
   1672 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1673 		PMAPCOUNT(ptes_evicted);
   1674 		pm->pm_evictions++;
   1675 		/*
   1676 		 * If this is a kernel page, make sure it's active.
   1677 		 */
   1678 		if (pm == pmap_kernel()) {
   1679 			i = pmap_pte_spill(pm, va, FALSE);
   1680 			KASSERT(i);
   1681 		}
   1682 	}
   1683 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1684 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1685 	pmap_pvo_enter_depth--;
   1686 #endif
   1687 	pmap_interrupts_restore(msr);
   1688 	return 0;
   1689 }
   1690 
   1691 void
   1692 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, boolean_t free)
   1693 {
   1694 	volatile struct pte *pt;
   1695 	int ptegidx;
   1696 
   1697 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1698 	if (++pmap_pvo_remove_depth > 1)
   1699 		panic("pmap_pvo_remove: called recursively!");
   1700 #endif
   1701 
   1702 	/*
   1703 	 * If we haven't been supplied the ptegidx, calculate it.
   1704 	 */
   1705 	if (pteidx == -1) {
   1706 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1707 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1708 	} else {
   1709 		ptegidx = pteidx >> 3;
   1710 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1711 			ptegidx ^= pmap_pteg_mask;
   1712 	}
   1713 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1714 
   1715 	/*
   1716 	 * If there is an active pte entry, we need to deactivate it
   1717 	 * (and save the ref & chg bits).
   1718 	 */
   1719 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1720 	if (pt != NULL) {
   1721 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1722 		PVO_WHERE(pvo, REMOVE);
   1723 		PVO_PTEGIDX_CLR(pvo);
   1724 		PMAPCOUNT(ptes_removed);
   1725 	} else {
   1726 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1727 		pvo->pvo_pmap->pm_evictions--;
   1728 	}
   1729 
   1730 	/*
   1731 	 * Account for executable mappings.
   1732 	 */
   1733 	if (PVO_ISEXECUTABLE(pvo))
   1734 		pvo_clear_exec(pvo);
   1735 
   1736 	/*
   1737 	 * Update our statistics.
   1738 	 */
   1739 	pvo->pvo_pmap->pm_stats.resident_count--;
   1740 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1741 		pvo->pvo_pmap->pm_stats.wired_count--;
   1742 
   1743 	/*
   1744 	 * Save the REF/CHG bits into their cache if the page is managed.
   1745 	 */
   1746 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1747 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1748 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1749 
   1750 		if (pg != NULL) {
   1751 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1752 		}
   1753 		PMAPCOUNT(unmappings);
   1754 	} else {
   1755 		PMAPCOUNT(kernel_unmappings);
   1756 	}
   1757 
   1758 	/*
   1759 	 * Remove the PVO from its lists and return it to the pool.
   1760 	 */
   1761 	LIST_REMOVE(pvo, pvo_vlink);
   1762 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1763 	if (free) {
   1764 		pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
   1765 			 &pmap_upvo_pool, pvo);
   1766 	}
   1767 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1768 	pmap_pvo_remove_depth--;
   1769 #endif
   1770 }
   1771 
   1772 /*
   1773  * Mark a mapping as executable.
   1774  * If this is the first executable mapping in the segment,
   1775  * clear the noexec flag.
   1776  */
   1777 STATIC void
   1778 pvo_set_exec(struct pvo_entry *pvo)
   1779 {
   1780 	struct pmap *pm = pvo->pvo_pmap;
   1781 
   1782 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1783 		return;
   1784 	}
   1785 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1786 #ifdef PPC_OEA
   1787 	{
   1788 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1789 		if (pm->pm_exec[sr]++ == 0) {
   1790 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1791 		}
   1792 	}
   1793 #endif
   1794 }
   1795 
   1796 /*
   1797  * Mark a mapping as non-executable.
   1798  * If this was the last executable mapping in the segment,
   1799  * set the noexec flag.
   1800  */
   1801 STATIC void
   1802 pvo_clear_exec(struct pvo_entry *pvo)
   1803 {
   1804 	struct pmap *pm = pvo->pvo_pmap;
   1805 
   1806 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1807 		return;
   1808 	}
   1809 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1810 #ifdef PPC_OEA
   1811 	{
   1812 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1813 		if (--pm->pm_exec[sr] == 0) {
   1814 			pm->pm_sr[sr] |= SR_NOEXEC;
   1815 		}
   1816 	}
   1817 #endif
   1818 }
   1819 
   1820 /*
   1821  * Insert physical page at pa into the given pmap at virtual address va.
   1822  */
   1823 int
   1824 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1825 {
   1826 	struct mem_region *mp;
   1827 	struct pvo_head *pvo_head;
   1828 	struct vm_page *pg;
   1829 	struct pool *pl;
   1830 	register_t pte_lo;
   1831 	int error;
   1832 	u_int pvo_flags;
   1833 	u_int was_exec = 0;
   1834 
   1835 	if (__predict_false(!pmap_initialized)) {
   1836 		pvo_head = &pmap_pvo_kunmanaged;
   1837 		pl = &pmap_upvo_pool;
   1838 		pvo_flags = 0;
   1839 		pg = NULL;
   1840 		was_exec = PTE_EXEC;
   1841 	} else {
   1842 		pvo_head = pa_to_pvoh(pa, &pg);
   1843 		pl = &pmap_mpvo_pool;
   1844 		pvo_flags = PVO_MANAGED;
   1845 	}
   1846 
   1847 	DPRINTFN(ENTER,
   1848 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1849 	    pm, va, pa, prot, flags));
   1850 
   1851 	/*
   1852 	 * If this is a managed page, and it's the first reference to the
   1853 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1854 	 */
   1855 	if (pg != NULL)
   1856 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1857 
   1858 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1859 
   1860 	/*
   1861 	 * Assume the page is cache inhibited and access is guarded unless
   1862 	 * it's in our available memory array.  If it is in the memory array,
   1863 	 * asssume it's in memory coherent memory.
   1864 	 */
   1865 	pte_lo = PTE_IG;
   1866 	if ((flags & PMAP_NC) == 0) {
   1867 		for (mp = mem; mp->size; mp++) {
   1868 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1869 				pte_lo = PTE_M;
   1870 				break;
   1871 			}
   1872 		}
   1873 	}
   1874 
   1875 	if (prot & VM_PROT_WRITE)
   1876 		pte_lo |= PTE_BW;
   1877 	else
   1878 		pte_lo |= PTE_BR;
   1879 
   1880 	/*
   1881 	 * If this was in response to a fault, "pre-fault" the PTE's
   1882 	 * changed/referenced bit appropriately.
   1883 	 */
   1884 	if (flags & VM_PROT_WRITE)
   1885 		pte_lo |= PTE_CHG;
   1886 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1887 		pte_lo |= PTE_REF;
   1888 
   1889 	/*
   1890 	 * We need to know if this page can be executable
   1891 	 */
   1892 	flags |= (prot & VM_PROT_EXECUTE);
   1893 
   1894 	/*
   1895 	 * Record mapping for later back-translation and pte spilling.
   1896 	 * This will overwrite any existing mapping.
   1897 	 */
   1898 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1899 
   1900 	/*
   1901 	 * Flush the real page from the instruction cache if this page is
   1902 	 * mapped executable and cacheable and has not been flushed since
   1903 	 * the last time it was modified.
   1904 	 */
   1905 	if (error == 0 &&
   1906             (flags & VM_PROT_EXECUTE) &&
   1907             (pte_lo & PTE_I) == 0 &&
   1908 	    was_exec == 0) {
   1909 		DPRINTFN(ENTER, (" syncicache"));
   1910 		PMAPCOUNT(exec_synced);
   1911 		pmap_syncicache(pa, PAGE_SIZE);
   1912 		if (pg != NULL) {
   1913 			pmap_attr_save(pg, PTE_EXEC);
   1914 			PMAPCOUNT(exec_cached);
   1915 #if defined(DEBUG) || defined(PMAPDEBUG)
   1916 			if (pmapdebug & PMAPDEBUG_ENTER)
   1917 				printf(" marked-as-exec");
   1918 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1919 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1920 				    pg->phys_addr);
   1921 
   1922 #endif
   1923 		}
   1924 	}
   1925 
   1926 	DPRINTFN(ENTER, (": error=%d\n", error));
   1927 
   1928 	return error;
   1929 }
   1930 
   1931 void
   1932 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1933 {
   1934 	struct mem_region *mp;
   1935 	register_t pte_lo;
   1936 	int error;
   1937 
   1938 	if (va < VM_MIN_KERNEL_ADDRESS)
   1939 		panic("pmap_kenter_pa: attempt to enter "
   1940 		    "non-kernel address %#lx!", va);
   1941 
   1942 	DPRINTFN(KENTER,
   1943 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1944 
   1945 	/*
   1946 	 * Assume the page is cache inhibited and access is guarded unless
   1947 	 * it's in our available memory array.  If it is in the memory array,
   1948 	 * asssume it's in memory coherent memory.
   1949 	 */
   1950 	pte_lo = PTE_IG;
   1951 	if ((prot & PMAP_NC) == 0) {
   1952 		for (mp = mem; mp->size; mp++) {
   1953 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1954 				pte_lo = PTE_M;
   1955 				break;
   1956 			}
   1957 		}
   1958 	}
   1959 
   1960 	if (prot & VM_PROT_WRITE)
   1961 		pte_lo |= PTE_BW;
   1962 	else
   1963 		pte_lo |= PTE_BR;
   1964 
   1965 	/*
   1966 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1967 	 */
   1968 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1969 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1970 
   1971 	if (error != 0)
   1972 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1973 		      va, pa, error);
   1974 }
   1975 
   1976 void
   1977 pmap_kremove(vaddr_t va, vsize_t len)
   1978 {
   1979 	if (va < VM_MIN_KERNEL_ADDRESS)
   1980 		panic("pmap_kremove: attempt to remove "
   1981 		    "non-kernel address %#lx!", va);
   1982 
   1983 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1984 	pmap_remove(pmap_kernel(), va, va + len);
   1985 }
   1986 
   1987 /*
   1988  * Remove the given range of mapping entries.
   1989  */
   1990 void
   1991 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1992 {
   1993 	struct pvo_entry *pvo;
   1994 	register_t msr;
   1995 	int pteidx;
   1996 
   1997 	msr = pmap_interrupts_off();
   1998 	for (; va < endva; va += PAGE_SIZE) {
   1999 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2000 		if (pvo != NULL) {
   2001 			pmap_pvo_remove(pvo, pteidx, TRUE);
   2002 		}
   2003 	}
   2004 	pmap_interrupts_restore(msr);
   2005 }
   2006 
   2007 /*
   2008  * Get the physical page address for the given pmap/virtual address.
   2009  */
   2010 boolean_t
   2011 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2012 {
   2013 	struct pvo_entry *pvo;
   2014 	register_t msr;
   2015 
   2016 	/*
   2017 	 * If this is a kernel pmap lookup, also check the battable
   2018 	 * and if we get a hit, translate the VA to a PA using the
   2019 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   2020 	 * that will wrap back to 0.
   2021 	 */
   2022 	if (pm == pmap_kernel() &&
   2023 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2024 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2025 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2026 		if ((MFPVR() >> 16) != MPC601) {
   2027 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2028 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2029 				register_t batl =
   2030 				    battable[va >> ADDR_SR_SHFT].batl;
   2031 				register_t mask =
   2032 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2033 				*pap = (batl & mask) | (va & ~mask);
   2034 				return TRUE;
   2035 			}
   2036 		} else {
   2037 			register_t batu = battable[va >> 23].batu;
   2038 			register_t batl = battable[va >> 23].batl;
   2039 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2040 			if (BAT601_VALID_P(batl) &&
   2041 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2042 				register_t mask =
   2043 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2044 				*pap = (batl & mask) | (va & ~mask);
   2045 				return TRUE;
   2046 			} else if (SR601_VALID_P(sr) &&
   2047 				   SR601_PA_MATCH_P(sr, va)) {
   2048 				*pap = va;
   2049 				return TRUE;
   2050 			}
   2051 		}
   2052 		return FALSE;
   2053 	}
   2054 
   2055 	msr = pmap_interrupts_off();
   2056 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2057 	if (pvo != NULL) {
   2058 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2059 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   2060 	}
   2061 	pmap_interrupts_restore(msr);
   2062 	return pvo != NULL;
   2063 }
   2064 
   2065 /*
   2066  * Lower the protection on the specified range of this pmap.
   2067  */
   2068 void
   2069 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2070 {
   2071 	struct pvo_entry *pvo;
   2072 	volatile struct pte *pt;
   2073 	register_t msr;
   2074 	int pteidx;
   2075 
   2076 	/*
   2077 	 * Since this routine only downgrades protection, we should
   2078 	 * always be called with at least one bit not set.
   2079 	 */
   2080 	KASSERT(prot != VM_PROT_ALL);
   2081 
   2082 	/*
   2083 	 * If there is no protection, this is equivalent to
   2084 	 * remove the pmap from the pmap.
   2085 	 */
   2086 	if ((prot & VM_PROT_READ) == 0) {
   2087 		pmap_remove(pm, va, endva);
   2088 		return;
   2089 	}
   2090 
   2091 	msr = pmap_interrupts_off();
   2092 	for (; va < endva; va += PAGE_SIZE) {
   2093 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2094 		if (pvo == NULL)
   2095 			continue;
   2096 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2097 
   2098 		/*
   2099 		 * Revoke executable if asked to do so.
   2100 		 */
   2101 		if ((prot & VM_PROT_EXECUTE) == 0)
   2102 			pvo_clear_exec(pvo);
   2103 
   2104 #if 0
   2105 		/*
   2106 		 * If the page is already read-only, no change
   2107 		 * needs to be made.
   2108 		 */
   2109 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2110 			continue;
   2111 #endif
   2112 		/*
   2113 		 * Grab the PTE pointer before we diddle with
   2114 		 * the cached PTE copy.
   2115 		 */
   2116 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2117 		/*
   2118 		 * Change the protection of the page.
   2119 		 */
   2120 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2121 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2122 
   2123 		/*
   2124 		 * If the PVO is in the page table, update
   2125 		 * that pte at well.
   2126 		 */
   2127 		if (pt != NULL) {
   2128 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2129 			PVO_WHERE(pvo, PMAP_PROTECT);
   2130 			PMAPCOUNT(ptes_changed);
   2131 		}
   2132 
   2133 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2134 	}
   2135 	pmap_interrupts_restore(msr);
   2136 }
   2137 
   2138 void
   2139 pmap_unwire(pmap_t pm, vaddr_t va)
   2140 {
   2141 	struct pvo_entry *pvo;
   2142 	register_t msr;
   2143 
   2144 	msr = pmap_interrupts_off();
   2145 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2146 	if (pvo != NULL) {
   2147 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2148 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2149 			pm->pm_stats.wired_count--;
   2150 		}
   2151 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2152 	}
   2153 	pmap_interrupts_restore(msr);
   2154 }
   2155 
   2156 /*
   2157  * Lower the protection on the specified physical page.
   2158  */
   2159 void
   2160 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2161 {
   2162 	struct pvo_head *pvo_head;
   2163 	struct pvo_entry *pvo, *next_pvo;
   2164 	volatile struct pte *pt;
   2165 	register_t msr;
   2166 
   2167 	KASSERT(prot != VM_PROT_ALL);
   2168 	msr = pmap_interrupts_off();
   2169 
   2170 	/*
   2171 	 * When UVM reuses a page, it does a pmap_page_protect with
   2172 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2173 	 * since we know the page will have different contents.
   2174 	 */
   2175 	if ((prot & VM_PROT_READ) == 0) {
   2176 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2177 		    pg->phys_addr));
   2178 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2179 			PMAPCOUNT(exec_uncached_page_protect);
   2180 			pmap_attr_clear(pg, PTE_EXEC);
   2181 		}
   2182 	}
   2183 
   2184 	pvo_head = vm_page_to_pvoh(pg);
   2185 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2186 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2187 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2188 
   2189 		/*
   2190 		 * Downgrading to no mapping at all, we just remove the entry.
   2191 		 */
   2192 		if ((prot & VM_PROT_READ) == 0) {
   2193 			pmap_pvo_remove(pvo, -1, TRUE);
   2194 			continue;
   2195 		}
   2196 
   2197 		/*
   2198 		 * If EXEC permission is being revoked, just clear the
   2199 		 * flag in the PVO.
   2200 		 */
   2201 		if ((prot & VM_PROT_EXECUTE) == 0)
   2202 			pvo_clear_exec(pvo);
   2203 
   2204 		/*
   2205 		 * If this entry is already RO, don't diddle with the
   2206 		 * page table.
   2207 		 */
   2208 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2209 			PMAP_PVO_CHECK(pvo);
   2210 			continue;
   2211 		}
   2212 
   2213 		/*
   2214 		 * Grab the PTE before the we diddle the bits so
   2215 		 * pvo_to_pte can verify the pte contents are as
   2216 		 * expected.
   2217 		 */
   2218 		pt = pmap_pvo_to_pte(pvo, -1);
   2219 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2220 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2221 		if (pt != NULL) {
   2222 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2223 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2224 			PMAPCOUNT(ptes_changed);
   2225 		}
   2226 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2227 	}
   2228 	pmap_interrupts_restore(msr);
   2229 }
   2230 
   2231 /*
   2232  * Activate the address space for the specified process.  If the process
   2233  * is the current process, load the new MMU context.
   2234  */
   2235 void
   2236 pmap_activate(struct lwp *l)
   2237 {
   2238 	struct pcb *pcb = &l->l_addr->u_pcb;
   2239 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2240 
   2241 	DPRINTFN(ACTIVATE,
   2242 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2243 
   2244 	/*
   2245 	 * XXX Normally performed in cpu_fork().
   2246 	 */
   2247 	pcb->pcb_pm = pmap;
   2248 
   2249 	/*
   2250 	* In theory, the SR registers need only be valid on return
   2251 	* to user space wait to do them there.
   2252 	*/
   2253 	if (l == curlwp) {
   2254 		/* Store pointer to new current pmap. */
   2255 		curpm = pmap;
   2256 	}
   2257 }
   2258 
   2259 /*
   2260  * Deactivate the specified process's address space.
   2261  */
   2262 void
   2263 pmap_deactivate(struct lwp *l)
   2264 {
   2265 }
   2266 
   2267 boolean_t
   2268 pmap_query_bit(struct vm_page *pg, int ptebit)
   2269 {
   2270 	struct pvo_entry *pvo;
   2271 	volatile struct pte *pt;
   2272 	register_t msr;
   2273 
   2274 	if (pmap_attr_fetch(pg) & ptebit)
   2275 		return TRUE;
   2276 
   2277 	msr = pmap_interrupts_off();
   2278 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2279 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2280 		/*
   2281 		 * See if we saved the bit off.  If so cache, it and return
   2282 		 * success.
   2283 		 */
   2284 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2285 			pmap_attr_save(pg, ptebit);
   2286 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2287 			pmap_interrupts_restore(msr);
   2288 			return TRUE;
   2289 		}
   2290 	}
   2291 	/*
   2292 	 * No luck, now go thru the hard part of looking at the ptes
   2293 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2294 	 * to the PTEs.
   2295 	 */
   2296 	SYNC();
   2297 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2298 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2299 		/*
   2300 		 * See if this pvo have a valid PTE.  If so, fetch the
   2301 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2302 		 * ptebit is set, cache, it and return success.
   2303 		 */
   2304 		pt = pmap_pvo_to_pte(pvo, -1);
   2305 		if (pt != NULL) {
   2306 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2307 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2308 				pmap_attr_save(pg, ptebit);
   2309 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2310 				pmap_interrupts_restore(msr);
   2311 				return TRUE;
   2312 			}
   2313 		}
   2314 	}
   2315 	pmap_interrupts_restore(msr);
   2316 	return FALSE;
   2317 }
   2318 
   2319 boolean_t
   2320 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2321 {
   2322 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2323 	struct pvo_entry *pvo;
   2324 	volatile struct pte *pt;
   2325 	register_t msr;
   2326 	int rv = 0;
   2327 
   2328 	msr = pmap_interrupts_off();
   2329 
   2330 	/*
   2331 	 * Fetch the cache value
   2332 	 */
   2333 	rv |= pmap_attr_fetch(pg);
   2334 
   2335 	/*
   2336 	 * Clear the cached value.
   2337 	 */
   2338 	pmap_attr_clear(pg, ptebit);
   2339 
   2340 	/*
   2341 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2342 	 * can reset the right ones).  Note that since the pvo entries and
   2343 	 * list heads are accessed via BAT0 and are never placed in the
   2344 	 * page table, we don't have to worry about further accesses setting
   2345 	 * the REF/CHG bits.
   2346 	 */
   2347 	SYNC();
   2348 
   2349 	/*
   2350 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2351 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2352 	 */
   2353 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2354 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2355 		pt = pmap_pvo_to_pte(pvo, -1);
   2356 		if (pt != NULL) {
   2357 			/*
   2358 			 * Only sync the PTE if the bit we are looking
   2359 			 * for is not already set.
   2360 			 */
   2361 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2362 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2363 			/*
   2364 			 * If the bit we are looking for was already set,
   2365 			 * clear that bit in the pte.
   2366 			 */
   2367 			if (pvo->pvo_pte.pte_lo & ptebit)
   2368 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2369 		}
   2370 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2371 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2372 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2373 	}
   2374 	pmap_interrupts_restore(msr);
   2375 
   2376 	/*
   2377 	 * If we are clearing the modify bit and this page was marked EXEC
   2378 	 * and the user of the page thinks the page was modified, then we
   2379 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2380 	 * bit if it's not mapped.  The page itself might not have the CHG
   2381 	 * bit set if the modification was done via DMA to the page.
   2382 	 */
   2383 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2384 		if (LIST_EMPTY(pvoh)) {
   2385 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2386 			    pg->phys_addr));
   2387 			pmap_attr_clear(pg, PTE_EXEC);
   2388 			PMAPCOUNT(exec_uncached_clear_modify);
   2389 		} else {
   2390 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2391 			    pg->phys_addr));
   2392 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2393 			PMAPCOUNT(exec_synced_clear_modify);
   2394 		}
   2395 	}
   2396 	return (rv & ptebit) != 0;
   2397 }
   2398 
   2399 void
   2400 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2401 {
   2402 	struct pvo_entry *pvo;
   2403 	size_t offset = va & ADDR_POFF;
   2404 	int s;
   2405 
   2406 	s = splvm();
   2407 	while (len > 0) {
   2408 		size_t seglen = PAGE_SIZE - offset;
   2409 		if (seglen > len)
   2410 			seglen = len;
   2411 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2412 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2413 			pmap_syncicache(
   2414 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2415 			PMAP_PVO_CHECK(pvo);
   2416 		}
   2417 		va += seglen;
   2418 		len -= seglen;
   2419 		offset = 0;
   2420 	}
   2421 	splx(s);
   2422 }
   2423 
   2424 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2425 void
   2426 pmap_pte_print(volatile struct pte *pt)
   2427 {
   2428 	printf("PTE %p: ", pt);
   2429 	/* High word: */
   2430 	printf("0x%08lx: [", pt->pte_hi);
   2431 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2432 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2433 	printf("0x%06lx 0x%02lx",
   2434 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2435 	    pt->pte_hi & PTE_API);
   2436 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2437 	/* Low word: */
   2438 	printf(" 0x%08lx: [", pt->pte_lo);
   2439 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2440 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2441 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2442 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2443 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2444 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2445 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2446 	switch (pt->pte_lo & PTE_PP) {
   2447 	case PTE_BR: printf("br]\n"); break;
   2448 	case PTE_BW: printf("bw]\n"); break;
   2449 	case PTE_SO: printf("so]\n"); break;
   2450 	case PTE_SW: printf("sw]\n"); break;
   2451 	}
   2452 }
   2453 #endif
   2454 
   2455 #if defined(DDB)
   2456 void
   2457 pmap_pteg_check(void)
   2458 {
   2459 	volatile struct pte *pt;
   2460 	int i;
   2461 	int ptegidx;
   2462 	u_int p_valid = 0;
   2463 	u_int s_valid = 0;
   2464 	u_int invalid = 0;
   2465 
   2466 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2467 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2468 			if (pt->pte_hi & PTE_VALID) {
   2469 				if (pt->pte_hi & PTE_HID)
   2470 					s_valid++;
   2471 				else
   2472 					p_valid++;
   2473 			} else
   2474 				invalid++;
   2475 		}
   2476 	}
   2477 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2478 		p_valid, p_valid, s_valid, s_valid,
   2479 		invalid, invalid);
   2480 }
   2481 
   2482 void
   2483 pmap_print_mmuregs(void)
   2484 {
   2485 	int i;
   2486 	u_int cpuvers;
   2487 #ifndef PPC_OEA64
   2488 	vaddr_t addr;
   2489 	register_t soft_sr[16];
   2490 #endif
   2491 	struct bat soft_ibat[4];
   2492 	struct bat soft_dbat[4];
   2493 	register_t sdr1;
   2494 
   2495 	cpuvers = MFPVR() >> 16;
   2496 
   2497 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2498 #ifndef PPC_OEA64
   2499 	addr = 0;
   2500 	for (i=0; i<16; i++) {
   2501 		soft_sr[i] = MFSRIN(addr);
   2502 		addr += (1 << ADDR_SR_SHFT);
   2503 	}
   2504 #endif
   2505 
   2506 	/* read iBAT (601: uBAT) registers */
   2507 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2508 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2509 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2510 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2511 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2512 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2513 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2514 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2515 
   2516 
   2517 	if (cpuvers != MPC601) {
   2518 		/* read dBAT registers */
   2519 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2520 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2521 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2522 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2523 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2524 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2525 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2526 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2527 	}
   2528 
   2529 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2530 #ifndef PPC_OEA64
   2531 	printf("SR[]:\t");
   2532 	for (i=0; i<4; i++)
   2533 		printf("0x%08lx,   ", soft_sr[i]);
   2534 	printf("\n\t");
   2535 	for ( ; i<8; i++)
   2536 		printf("0x%08lx,   ", soft_sr[i]);
   2537 	printf("\n\t");
   2538 	for ( ; i<12; i++)
   2539 		printf("0x%08lx,   ", soft_sr[i]);
   2540 	printf("\n\t");
   2541 	for ( ; i<16; i++)
   2542 		printf("0x%08lx,   ", soft_sr[i]);
   2543 	printf("\n");
   2544 #endif
   2545 
   2546 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2547 	for (i=0; i<4; i++) {
   2548 		printf("0x%08lx 0x%08lx, ",
   2549 			soft_ibat[i].batu, soft_ibat[i].batl);
   2550 		if (i == 1)
   2551 			printf("\n\t");
   2552 	}
   2553 	if (cpuvers != MPC601) {
   2554 		printf("\ndBAT[]:\t");
   2555 		for (i=0; i<4; i++) {
   2556 			printf("0x%08lx 0x%08lx, ",
   2557 				soft_dbat[i].batu, soft_dbat[i].batl);
   2558 			if (i == 1)
   2559 				printf("\n\t");
   2560 		}
   2561 	}
   2562 	printf("\n");
   2563 }
   2564 
   2565 void
   2566 pmap_print_pte(pmap_t pm, vaddr_t va)
   2567 {
   2568 	struct pvo_entry *pvo;
   2569 	volatile struct pte *pt;
   2570 	int pteidx;
   2571 
   2572 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2573 	if (pvo != NULL) {
   2574 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2575 		if (pt != NULL) {
   2576 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2577 				va, pt,
   2578 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2579 				pt->pte_hi, pt->pte_lo);
   2580 		} else {
   2581 			printf("No valid PTE found\n");
   2582 		}
   2583 	} else {
   2584 		printf("Address not in pmap\n");
   2585 	}
   2586 }
   2587 
   2588 void
   2589 pmap_pteg_dist(void)
   2590 {
   2591 	struct pvo_entry *pvo;
   2592 	int ptegidx;
   2593 	int depth;
   2594 	int max_depth = 0;
   2595 	unsigned int depths[64];
   2596 
   2597 	memset(depths, 0, sizeof(depths));
   2598 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2599 		depth = 0;
   2600 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2601 			depth++;
   2602 		}
   2603 		if (depth > max_depth)
   2604 			max_depth = depth;
   2605 		if (depth > 63)
   2606 			depth = 63;
   2607 		depths[depth]++;
   2608 	}
   2609 
   2610 	for (depth = 0; depth < 64; depth++) {
   2611 		printf("  [%2d]: %8u", depth, depths[depth]);
   2612 		if ((depth & 3) == 3)
   2613 			printf("\n");
   2614 		if (depth == max_depth)
   2615 			break;
   2616 	}
   2617 	if ((depth & 3) != 3)
   2618 		printf("\n");
   2619 	printf("Max depth found was %d\n", max_depth);
   2620 }
   2621 #endif /* DEBUG */
   2622 
   2623 #if defined(PMAPCHECK) || defined(DEBUG)
   2624 void
   2625 pmap_pvo_verify(void)
   2626 {
   2627 	int ptegidx;
   2628 	int s;
   2629 
   2630 	s = splvm();
   2631 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2632 		struct pvo_entry *pvo;
   2633 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2634 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2635 				panic("pmap_pvo_verify: invalid pvo %p "
   2636 				    "on list %#x", pvo, ptegidx);
   2637 			pmap_pvo_check(pvo);
   2638 		}
   2639 	}
   2640 	splx(s);
   2641 }
   2642 #endif /* PMAPCHECK */
   2643 
   2644 
   2645 void *
   2646 pmap_pool_ualloc(struct pool *pp, int flags)
   2647 {
   2648 	struct pvo_page *pvop;
   2649 
   2650 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2651 	if (pvop != NULL) {
   2652 		pmap_upvop_free--;
   2653 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2654 		return pvop;
   2655 	}
   2656 	if (uvm.page_init_done != TRUE) {
   2657 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2658 	}
   2659 	return pmap_pool_malloc(pp, flags);
   2660 }
   2661 
   2662 void *
   2663 pmap_pool_malloc(struct pool *pp, int flags)
   2664 {
   2665 	struct pvo_page *pvop;
   2666 	struct vm_page *pg;
   2667 
   2668 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2669 	if (pvop != NULL) {
   2670 		pmap_mpvop_free--;
   2671 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2672 		return pvop;
   2673 	}
   2674  again:
   2675 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2676 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2677 	if (__predict_false(pg == NULL)) {
   2678 		if (flags & PR_WAITOK) {
   2679 			uvm_wait("plpg");
   2680 			goto again;
   2681 		} else {
   2682 			return (0);
   2683 		}
   2684 	}
   2685 	return (void *) VM_PAGE_TO_PHYS(pg);
   2686 }
   2687 
   2688 void
   2689 pmap_pool_ufree(struct pool *pp, void *va)
   2690 {
   2691 	struct pvo_page *pvop;
   2692 #if 0
   2693 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2694 		pmap_pool_mfree(va, size, tag);
   2695 		return;
   2696 	}
   2697 #endif
   2698 	pvop = va;
   2699 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2700 	pmap_upvop_free++;
   2701 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2702 		pmap_upvop_maxfree = pmap_upvop_free;
   2703 }
   2704 
   2705 void
   2706 pmap_pool_mfree(struct pool *pp, void *va)
   2707 {
   2708 	struct pvo_page *pvop;
   2709 
   2710 	pvop = va;
   2711 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2712 	pmap_mpvop_free++;
   2713 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2714 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2715 #if 0
   2716 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2717 #endif
   2718 }
   2719 
   2720 /*
   2721  * This routine in bootstraping to steal to-be-managed memory (which will
   2722  * then be unmanaged).  We use it to grab from the first 256MB for our
   2723  * pmap needs and above 256MB for other stuff.
   2724  */
   2725 vaddr_t
   2726 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2727 {
   2728 	vsize_t size;
   2729 	vaddr_t va;
   2730 	paddr_t pa = 0;
   2731 	int npgs, bank;
   2732 	struct vm_physseg *ps;
   2733 
   2734 	if (uvm.page_init_done == TRUE)
   2735 		panic("pmap_steal_memory: called _after_ bootstrap");
   2736 
   2737 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2738 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2739 
   2740 	size = round_page(vsize);
   2741 	npgs = atop(size);
   2742 
   2743 	/*
   2744 	 * PA 0 will never be among those given to UVM so we can use it
   2745 	 * to indicate we couldn't steal any memory.
   2746 	 */
   2747 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2748 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2749 		    ps->avail_end - ps->avail_start >= npgs) {
   2750 			pa = ptoa(ps->avail_start);
   2751 			break;
   2752 		}
   2753 	}
   2754 
   2755 	if (pa == 0)
   2756 		panic("pmap_steal_memory: no approriate memory to steal!");
   2757 
   2758 	ps->avail_start += npgs;
   2759 	ps->start += npgs;
   2760 
   2761 	/*
   2762 	 * If we've used up all the pages in the segment, remove it and
   2763 	 * compact the list.
   2764 	 */
   2765 	if (ps->avail_start == ps->end) {
   2766 		/*
   2767 		 * If this was the last one, then a very bad thing has occurred
   2768 		 */
   2769 		if (--vm_nphysseg == 0)
   2770 			panic("pmap_steal_memory: out of memory!");
   2771 
   2772 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2773 		for (; bank < vm_nphysseg; bank++, ps++) {
   2774 			ps[0] = ps[1];
   2775 		}
   2776 	}
   2777 
   2778 	va = (vaddr_t) pa;
   2779 	memset((caddr_t) va, 0, size);
   2780 	pmap_pages_stolen += npgs;
   2781 #ifdef DEBUG
   2782 	if (pmapdebug && npgs > 1) {
   2783 		u_int cnt = 0;
   2784 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2785 			cnt += ps->avail_end - ps->avail_start;
   2786 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2787 		    npgs, pmap_pages_stolen, cnt);
   2788 	}
   2789 #endif
   2790 
   2791 	return va;
   2792 }
   2793 
   2794 /*
   2795  * Find a chuck of memory with right size and alignment.
   2796  */
   2797 void *
   2798 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2799 {
   2800 	struct mem_region *mp;
   2801 	paddr_t s, e;
   2802 	int i, j;
   2803 
   2804 	size = round_page(size);
   2805 
   2806 	DPRINTFN(BOOT,
   2807 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2808 	    size, alignment, at_end));
   2809 
   2810 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2811 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2812 		    alignment);
   2813 
   2814 	if (at_end) {
   2815 		if (alignment != PAGE_SIZE)
   2816 			panic("pmap_boot_find_memory: invalid ending "
   2817 			    "alignment %lx", alignment);
   2818 
   2819 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2820 			s = mp->start + mp->size - size;
   2821 			if (s >= mp->start && mp->size >= size) {
   2822 				DPRINTFN(BOOT,(": %lx\n", s));
   2823 				DPRINTFN(BOOT,
   2824 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2825 				     "0x%lx size 0x%lx\n", mp - avail,
   2826 				     mp->start, mp->size));
   2827 				mp->size -= size;
   2828 				DPRINTFN(BOOT,
   2829 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2830 				     "0x%lx size 0x%lx\n", mp - avail,
   2831 				     mp->start, mp->size));
   2832 				return (void *) s;
   2833 			}
   2834 		}
   2835 		panic("pmap_boot_find_memory: no available memory");
   2836 	}
   2837 
   2838 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2839 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2840 		e = s + size;
   2841 
   2842 		/*
   2843 		 * Is the calculated region entirely within the region?
   2844 		 */
   2845 		if (s < mp->start || e > mp->start + mp->size)
   2846 			continue;
   2847 
   2848 		DPRINTFN(BOOT,(": %lx\n", s));
   2849 		if (s == mp->start) {
   2850 			/*
   2851 			 * If the block starts at the beginning of region,
   2852 			 * adjust the size & start. (the region may now be
   2853 			 * zero in length)
   2854 			 */
   2855 			DPRINTFN(BOOT,
   2856 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2857 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2858 			mp->start += size;
   2859 			mp->size -= size;
   2860 			DPRINTFN(BOOT,
   2861 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2862 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2863 		} else if (e == mp->start + mp->size) {
   2864 			/*
   2865 			 * If the block starts at the beginning of region,
   2866 			 * adjust only the size.
   2867 			 */
   2868 			DPRINTFN(BOOT,
   2869 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2870 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2871 			mp->size -= size;
   2872 			DPRINTFN(BOOT,
   2873 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2874 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2875 		} else {
   2876 			/*
   2877 			 * Block is in the middle of the region, so we
   2878 			 * have to split it in two.
   2879 			 */
   2880 			for (j = avail_cnt; j > i + 1; j--) {
   2881 				avail[j] = avail[j-1];
   2882 			}
   2883 			DPRINTFN(BOOT,
   2884 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2885 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2886 			mp[1].start = e;
   2887 			mp[1].size = mp[0].start + mp[0].size - e;
   2888 			mp[0].size = s - mp[0].start;
   2889 			avail_cnt++;
   2890 			for (; i < avail_cnt; i++) {
   2891 				DPRINTFN(BOOT,
   2892 				    ("pmap_boot_find_memory: a-avail[%d] "
   2893 				     "start 0x%lx size 0x%lx\n", i,
   2894 				     avail[i].start, avail[i].size));
   2895 			}
   2896 		}
   2897 		return (void *) s;
   2898 	}
   2899 	panic("pmap_boot_find_memory: not enough memory for "
   2900 	    "%lx/%lx allocation?", size, alignment);
   2901 }
   2902 
   2903 /*
   2904  * This is not part of the defined PMAP interface and is specific to the
   2905  * PowerPC architecture.  This is called during initppc, before the system
   2906  * is really initialized.
   2907  */
   2908 void
   2909 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2910 {
   2911 	struct mem_region *mp, tmp;
   2912 	paddr_t s, e;
   2913 	psize_t size;
   2914 	int i, j;
   2915 
   2916 	/*
   2917 	 * Get memory.
   2918 	 */
   2919 	mem_regions(&mem, &avail);
   2920 #if defined(DEBUG)
   2921 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2922 		printf("pmap_bootstrap: memory configuration:\n");
   2923 		for (mp = mem; mp->size; mp++) {
   2924 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2925 				mp->start, mp->size);
   2926 		}
   2927 		for (mp = avail; mp->size; mp++) {
   2928 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2929 				mp->start, mp->size);
   2930 		}
   2931 	}
   2932 #endif
   2933 
   2934 	/*
   2935 	 * Find out how much physical memory we have and in how many chunks.
   2936 	 */
   2937 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2938 		if (mp->start >= pmap_memlimit)
   2939 			continue;
   2940 		if (mp->start + mp->size > pmap_memlimit) {
   2941 			size = pmap_memlimit - mp->start;
   2942 			physmem += btoc(size);
   2943 		} else {
   2944 			physmem += btoc(mp->size);
   2945 		}
   2946 		mem_cnt++;
   2947 	}
   2948 
   2949 	/*
   2950 	 * Count the number of available entries.
   2951 	 */
   2952 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2953 		avail_cnt++;
   2954 
   2955 	/*
   2956 	 * Page align all regions.
   2957 	 */
   2958 	kernelstart = trunc_page(kernelstart);
   2959 	kernelend = round_page(kernelend);
   2960 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2961 		s = round_page(mp->start);
   2962 		mp->size -= (s - mp->start);
   2963 		mp->size = trunc_page(mp->size);
   2964 		mp->start = s;
   2965 		e = mp->start + mp->size;
   2966 
   2967 		DPRINTFN(BOOT,
   2968 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2969 		    i, mp->start, mp->size));
   2970 
   2971 		/*
   2972 		 * Don't allow the end to run beyond our artificial limit
   2973 		 */
   2974 		if (e > pmap_memlimit)
   2975 			e = pmap_memlimit;
   2976 
   2977 		/*
   2978 		 * Is this region empty or strange?  skip it.
   2979 		 */
   2980 		if (e <= s) {
   2981 			mp->start = 0;
   2982 			mp->size = 0;
   2983 			continue;
   2984 		}
   2985 
   2986 		/*
   2987 		 * Does this overlap the beginning of kernel?
   2988 		 *   Does extend past the end of the kernel?
   2989 		 */
   2990 		else if (s < kernelstart && e > kernelstart) {
   2991 			if (e > kernelend) {
   2992 				avail[avail_cnt].start = kernelend;
   2993 				avail[avail_cnt].size = e - kernelend;
   2994 				avail_cnt++;
   2995 			}
   2996 			mp->size = kernelstart - s;
   2997 		}
   2998 		/*
   2999 		 * Check whether this region overlaps the end of the kernel.
   3000 		 */
   3001 		else if (s < kernelend && e > kernelend) {
   3002 			mp->start = kernelend;
   3003 			mp->size = e - kernelend;
   3004 		}
   3005 		/*
   3006 		 * Look whether this regions is completely inside the kernel.
   3007 		 * Nuke it if it does.
   3008 		 */
   3009 		else if (s >= kernelstart && e <= kernelend) {
   3010 			mp->start = 0;
   3011 			mp->size = 0;
   3012 		}
   3013 		/*
   3014 		 * If the user imposed a memory limit, enforce it.
   3015 		 */
   3016 		else if (s >= pmap_memlimit) {
   3017 			mp->start = -PAGE_SIZE;	/* let's know why */
   3018 			mp->size = 0;
   3019 		}
   3020 		else {
   3021 			mp->start = s;
   3022 			mp->size = e - s;
   3023 		}
   3024 		DPRINTFN(BOOT,
   3025 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   3026 		    i, mp->start, mp->size));
   3027 	}
   3028 
   3029 	/*
   3030 	 * Move (and uncount) all the null return to the end.
   3031 	 */
   3032 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3033 		if (mp->size == 0) {
   3034 			tmp = avail[i];
   3035 			avail[i] = avail[--avail_cnt];
   3036 			avail[avail_cnt] = avail[i];
   3037 		}
   3038 	}
   3039 
   3040 	/*
   3041 	 * (Bubble)sort them into asecnding order.
   3042 	 */
   3043 	for (i = 0; i < avail_cnt; i++) {
   3044 		for (j = i + 1; j < avail_cnt; j++) {
   3045 			if (avail[i].start > avail[j].start) {
   3046 				tmp = avail[i];
   3047 				avail[i] = avail[j];
   3048 				avail[j] = tmp;
   3049 			}
   3050 		}
   3051 	}
   3052 
   3053 	/*
   3054 	 * Make sure they don't overlap.
   3055 	 */
   3056 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3057 		if (mp[0].start + mp[0].size > mp[1].start) {
   3058 			mp[0].size = mp[1].start - mp[0].start;
   3059 		}
   3060 		DPRINTFN(BOOT,
   3061 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3062 		    i, mp->start, mp->size));
   3063 	}
   3064 	DPRINTFN(BOOT,
   3065 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3066 	    i, mp->start, mp->size));
   3067 
   3068 #ifdef	PTEGCOUNT
   3069 	pmap_pteg_cnt = PTEGCOUNT;
   3070 #else /* PTEGCOUNT */
   3071 	pmap_pteg_cnt = 0x1000;
   3072 
   3073 	while (pmap_pteg_cnt < physmem)
   3074 		pmap_pteg_cnt <<= 1;
   3075 
   3076 	pmap_pteg_cnt >>= 1;
   3077 #endif /* PTEGCOUNT */
   3078 
   3079 	/*
   3080 	 * Find suitably aligned memory for PTEG hash table.
   3081 	 */
   3082 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3083 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3084 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3085 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3086 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3087 		    pmap_pteg_table, size);
   3088 #endif
   3089 
   3090 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   3091 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3092 
   3093 	/*
   3094 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3095 	 * with pages.  So we just steal them before giving them to UVM.
   3096 	 */
   3097 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3098 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3099 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3100 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3101 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3102 		    pmap_pvo_table, size);
   3103 #endif
   3104 
   3105 	for (i = 0; i < pmap_pteg_cnt; i++)
   3106 		TAILQ_INIT(&pmap_pvo_table[i]);
   3107 
   3108 #ifndef MSGBUFADDR
   3109 	/*
   3110 	 * Allocate msgbuf in high memory.
   3111 	 */
   3112 	msgbuf_paddr =
   3113 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3114 #endif
   3115 
   3116 #ifdef __HAVE_PMAP_PHYSSEG
   3117 	{
   3118 		u_int npgs = 0;
   3119 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3120 			npgs += btoc(mp->size);
   3121 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3122 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3123 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3125 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3126 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3127 			    pmap_physseg.pvoh, size);
   3128 #endif
   3129 	}
   3130 #endif
   3131 
   3132 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3133 		paddr_t pfstart = atop(mp->start);
   3134 		paddr_t pfend = atop(mp->start + mp->size);
   3135 		if (mp->size == 0)
   3136 			continue;
   3137 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3138 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3139 				VM_FREELIST_FIRST256);
   3140 		} else if (mp->start >= SEGMENT_LENGTH) {
   3141 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3142 				VM_FREELIST_DEFAULT);
   3143 		} else {
   3144 			pfend = atop(SEGMENT_LENGTH);
   3145 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3146 				VM_FREELIST_FIRST256);
   3147 			pfstart = atop(SEGMENT_LENGTH);
   3148 			pfend = atop(mp->start + mp->size);
   3149 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3150 				VM_FREELIST_DEFAULT);
   3151 		}
   3152 	}
   3153 
   3154 	/*
   3155 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3156 	 */
   3157 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3158 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3159 	pmap_vsid_bitmap[0] |= 1;
   3160 
   3161 	/*
   3162 	 * Initialize kernel pmap and hardware.
   3163 	 */
   3164 #ifndef PPC_OEA64
   3165 	for (i = 0; i < 16; i++) {
   3166 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3167 		__asm __volatile ("mtsrin %0,%1"
   3168 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3169 	}
   3170 
   3171 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3172 	__asm __volatile ("mtsr %0,%1"
   3173 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3174 #ifdef KERNEL2_SR
   3175 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3176 	__asm __volatile ("mtsr %0,%1"
   3177 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3178 #endif
   3179 	for (i = 0; i < 16; i++) {
   3180 		if (iosrtable[i] & SR601_T) {
   3181 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3182 			__asm __volatile ("mtsrin %0,%1"
   3183 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3184 		}
   3185 	}
   3186 #endif /* !PPC_OEA64 */
   3187 
   3188 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3189 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3190 	tlbia();
   3191 
   3192 #ifdef ALTIVEC
   3193 	pmap_use_altivec = cpu_altivec;
   3194 #endif
   3195 
   3196 #ifdef DEBUG
   3197 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3198 		u_int cnt;
   3199 		int bank;
   3200 		char pbuf[9];
   3201 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3202 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3203 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3204 			    bank,
   3205 			    ptoa(vm_physmem[bank].avail_start),
   3206 			    ptoa(vm_physmem[bank].avail_end),
   3207 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3208 		}
   3209 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3210 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3211 		    pbuf, cnt);
   3212 	}
   3213 #endif
   3214 
   3215 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3216 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3217 	    &pmap_pool_uallocator);
   3218 
   3219 	pool_setlowat(&pmap_upvo_pool, 252);
   3220 
   3221 	pool_init(&pmap_pool, sizeof(struct pmap),
   3222 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3223 }
   3224