pmap.c revision 1.28 1 /* $NetBSD: pmap.c,v 1.28 2005/02/13 02:03:54 chs Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.28 2005/02/13 02:03:54 chs Exp $");
71
72 #include "opt_ppcarch.h"
73 #include "opt_altivec.h"
74 #include "opt_pmap.h"
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83
84 #if __NetBSD_Version__ < 105010000
85 #include <vm/vm.h>
86 #include <vm/vm_kern.h>
87 #define splvm() splimp()
88 #endif
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97
98 #if defined(DEBUG) || defined(PMAPCHECK)
99 #define STATIC
100 #else
101 #define STATIC static
102 #endif
103
104 #ifdef ALTIVEC
105 int pmap_use_altivec;
106 #endif
107
108 volatile struct pteg *pmap_pteg_table;
109 unsigned int pmap_pteg_cnt;
110 unsigned int pmap_pteg_mask;
111 #ifdef PMAP_MEMLIMIT
112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 #else
114 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
115 #endif
116
117 struct pmap kernel_pmap_;
118 unsigned int pmap_pages_stolen;
119 u_long pmap_pte_valid;
120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 u_long pmap_pvo_enter_depth;
122 u_long pmap_pvo_remove_depth;
123 #endif
124
125 int physmem;
126 #ifndef MSGBUFADDR
127 extern paddr_t msgbuf_paddr;
128 #endif
129
130 static struct mem_region *mem, *avail;
131 static u_int mem_cnt, avail_cnt;
132
133 #ifdef __HAVE_PMAP_PHYSSEG
134 /*
135 * This is a cache of referenced/modified bits.
136 * Bits herein are shifted by ATTRSHFT.
137 */
138 #define ATTR_SHFT 4
139 struct pmap_physseg pmap_physseg;
140 #endif
141
142 /*
143 * The following structure is exactly 32 bytes long (one cacheline).
144 */
145 struct pvo_entry {
146 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
147 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
148 struct pte pvo_pte; /* Prebuilt PTE */
149 pmap_t pvo_pmap; /* ptr to owning pmap */
150 vaddr_t pvo_vaddr; /* VA of entry */
151 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
152 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
153 #define PVO_WIRED 0x0010 /* PVO entry is wired */
154 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
155 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
156 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
157 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
158 #define PVO_SPILL_SET 2 /* PVO has been spilled */
159 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
160 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
161 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
162 #define PVO_REMOVE 6 /* PVO has been removed */
163 #define PVO_WHERE_MASK 15
164 #define PVO_WHERE_SHFT 8
165 };
166 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
167 #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 #define PVO_PTEGIDX_CLR(pvo) \
171 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 #define PVO_PTEGIDX_SET(pvo,i) \
173 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 #define PVO_WHERE(pvo,w) \
175 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177
178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
182
183 struct pool pmap_pool; /* pool for pmap structures */
184 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
185 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
186
187 /*
188 * We keep a cache of unmanaged pages to be used for pvo entries for
189 * unmanaged pages.
190 */
191 struct pvo_page {
192 SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 };
194 SIMPLEQ_HEAD(pvop_head, pvo_page);
195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 u_long pmap_upvop_free;
198 u_long pmap_upvop_maxfree;
199 u_long pmap_mpvop_free;
200 u_long pmap_mpvop_maxfree;
201
202 STATIC void *pmap_pool_ualloc(struct pool *, int);
203 STATIC void *pmap_pool_malloc(struct pool *, int);
204
205 STATIC void pmap_pool_ufree(struct pool *, void *);
206 STATIC void pmap_pool_mfree(struct pool *, void *);
207
208 static struct pool_allocator pmap_pool_mallocator = {
209 pmap_pool_malloc, pmap_pool_mfree, 0,
210 };
211
212 static struct pool_allocator pmap_pool_uallocator = {
213 pmap_pool_ualloc, pmap_pool_ufree, 0,
214 };
215
216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 void pmap_pte_print(volatile struct pte *);
218 #endif
219
220 #ifdef DDB
221 void pmap_pteg_check(void);
222 void pmap_pteg_dist(void);
223 void pmap_print_pte(pmap_t, vaddr_t);
224 void pmap_print_mmuregs(void);
225 #endif
226
227 #if defined(DEBUG) || defined(PMAPCHECK)
228 #ifdef PMAPCHECK
229 int pmapcheck = 1;
230 #else
231 int pmapcheck = 0;
232 #endif
233 void pmap_pvo_verify(void);
234 STATIC void pmap_pvo_check(const struct pvo_entry *);
235 #define PMAP_PVO_CHECK(pvo) \
236 do { \
237 if (pmapcheck) \
238 pmap_pvo_check(pvo); \
239 } while (0)
240 #else
241 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
242 #endif
243 STATIC int pmap_pte_insert(int, struct pte *);
244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 vaddr_t, paddr_t, register_t, int);
246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, boolean_t);
247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
249 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
250 STATIC void pvo_set_exec(struct pvo_entry *);
251 STATIC void pvo_clear_exec(struct pvo_entry *);
252
253 STATIC void tlbia(void);
254
255 STATIC void pmap_release(pmap_t);
256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
257
258 static uint32_t pmap_pvo_reclaim_nextidx;
259 #ifdef DEBUG
260 static int pmap_pvo_reclaim_debugctr;
261 #endif
262
263 #define VSID_NBPW (sizeof(uint32_t) * 8)
264 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
265
266 static int pmap_initialized;
267
268 #if defined(DEBUG) || defined(PMAPDEBUG)
269 #define PMAPDEBUG_BOOT 0x0001
270 #define PMAPDEBUG_PTE 0x0002
271 #define PMAPDEBUG_EXEC 0x0008
272 #define PMAPDEBUG_PVOENTER 0x0010
273 #define PMAPDEBUG_PVOREMOVE 0x0020
274 #define PMAPDEBUG_ACTIVATE 0x0100
275 #define PMAPDEBUG_CREATE 0x0200
276 #define PMAPDEBUG_ENTER 0x1000
277 #define PMAPDEBUG_KENTER 0x2000
278 #define PMAPDEBUG_KREMOVE 0x4000
279 #define PMAPDEBUG_REMOVE 0x8000
280 unsigned int pmapdebug = 0;
281 # define DPRINTF(x) printf x
282 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
283 #else
284 # define DPRINTF(x)
285 # define DPRINTFN(n, x)
286 #endif
287
288
289 #ifdef PMAPCOUNTERS
290 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
291 #define PMAPCOUNT2(ev) ((ev).ev_count++)
292
293 struct evcnt pmap_evcnt_mappings =
294 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
295 "pmap", "pages mapped");
296 struct evcnt pmap_evcnt_unmappings =
297 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
298 "pmap", "pages unmapped");
299
300 struct evcnt pmap_evcnt_kernel_mappings =
301 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
302 "pmap", "kernel pages mapped");
303 struct evcnt pmap_evcnt_kernel_unmappings =
304 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
305 "pmap", "kernel pages unmapped");
306
307 struct evcnt pmap_evcnt_mappings_replaced =
308 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
309 "pmap", "page mappings replaced");
310
311 struct evcnt pmap_evcnt_exec_mappings =
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
313 "pmap", "exec pages mapped");
314 struct evcnt pmap_evcnt_exec_cached =
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
316 "pmap", "exec pages cached");
317
318 struct evcnt pmap_evcnt_exec_synced =
319 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
320 "pmap", "exec pages synced");
321 struct evcnt pmap_evcnt_exec_synced_clear_modify =
322 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
323 "pmap", "exec pages synced (CM)");
324
325 struct evcnt pmap_evcnt_exec_uncached_page_protect =
326 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
327 "pmap", "exec pages uncached (PP)");
328 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
329 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
330 "pmap", "exec pages uncached (CM)");
331 struct evcnt pmap_evcnt_exec_uncached_zero_page =
332 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
333 "pmap", "exec pages uncached (ZP)");
334 struct evcnt pmap_evcnt_exec_uncached_copy_page =
335 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
336 "pmap", "exec pages uncached (CP)");
337
338 struct evcnt pmap_evcnt_updates =
339 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
340 "pmap", "updates");
341 struct evcnt pmap_evcnt_collects =
342 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
343 "pmap", "collects");
344 struct evcnt pmap_evcnt_copies =
345 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
346 "pmap", "copies");
347
348 struct evcnt pmap_evcnt_ptes_spilled =
349 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
350 "pmap", "ptes spilled from overflow");
351 struct evcnt pmap_evcnt_ptes_unspilled =
352 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
353 "pmap", "ptes not spilled");
354 struct evcnt pmap_evcnt_ptes_evicted =
355 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
356 "pmap", "ptes evicted");
357
358 struct evcnt pmap_evcnt_ptes_primary[8] = {
359 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
360 "pmap", "ptes added at primary[0]"),
361 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
362 "pmap", "ptes added at primary[1]"),
363 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 "pmap", "ptes added at primary[2]"),
365 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 "pmap", "ptes added at primary[3]"),
367
368 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
369 "pmap", "ptes added at primary[4]"),
370 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
371 "pmap", "ptes added at primary[5]"),
372 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 "pmap", "ptes added at primary[6]"),
374 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
375 "pmap", "ptes added at primary[7]"),
376 };
377 struct evcnt pmap_evcnt_ptes_secondary[8] = {
378 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
379 "pmap", "ptes added at secondary[0]"),
380 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 "pmap", "ptes added at secondary[1]"),
382 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 "pmap", "ptes added at secondary[2]"),
384 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 "pmap", "ptes added at secondary[3]"),
386
387 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
388 "pmap", "ptes added at secondary[4]"),
389 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 "pmap", "ptes added at secondary[5]"),
391 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 "pmap", "ptes added at secondary[6]"),
393 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
394 "pmap", "ptes added at secondary[7]"),
395 };
396 struct evcnt pmap_evcnt_ptes_removed =
397 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
398 "pmap", "ptes removed");
399 struct evcnt pmap_evcnt_ptes_changed =
400 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
401 "pmap", "ptes changed");
402 struct evcnt pmap_evcnt_pvos_reclaimed =
403 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
404 "pmap", "pvos reclaimed");
405 struct evcnt pmap_evcnt_pvos_failed =
406 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
407 "pmap", "pvo allocation failures");
408
409 /*
410 * From pmap_subr.c
411 */
412 extern struct evcnt pmap_evcnt_zeroed_pages;
413 extern struct evcnt pmap_evcnt_copied_pages;
414 extern struct evcnt pmap_evcnt_idlezeroed_pages;
415
416 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
417 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
418 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
419
420 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
421 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
422
423 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
424 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
425 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
426 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
427
428 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
429 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
430 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
431 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
432
433 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
434 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
435 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
436
437 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
438 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
439 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
440
441 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
442 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
443 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
445 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
446
447 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
448 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
449 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
450 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
451 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
452 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
453 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
454 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
455 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
456 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
457 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
458 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
459 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
463
464 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
465 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
466 #else
467 #define PMAPCOUNT(ev) ((void) 0)
468 #define PMAPCOUNT2(ev) ((void) 0)
469 #endif
470
471 #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
472 #define TLBSYNC() __asm __volatile("tlbsync")
473 #define SYNC() __asm __volatile("sync")
474 #define EIEIO() __asm __volatile("eieio")
475 #define MFMSR() mfmsr()
476 #define MTMSR(psl) mtmsr(psl)
477 #define MFPVR() mfpvr()
478 #define MFSRIN(va) mfsrin(va)
479 #define MFTB() mfrtcltbl()
480
481 #ifndef PPC_OEA64
482 static __inline register_t
483 mfsrin(vaddr_t va)
484 {
485 register_t sr;
486 __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
487 return sr;
488 }
489 #endif /* PPC_OEA64 */
490
491 static __inline register_t
492 pmap_interrupts_off(void)
493 {
494 register_t msr = MFMSR();
495 if (msr & PSL_EE)
496 MTMSR(msr & ~PSL_EE);
497 return msr;
498 }
499
500 static void
501 pmap_interrupts_restore(register_t msr)
502 {
503 if (msr & PSL_EE)
504 MTMSR(msr);
505 }
506
507 static __inline u_int32_t
508 mfrtcltbl(void)
509 {
510
511 if ((MFPVR() >> 16) == MPC601)
512 return (mfrtcl() >> 7);
513 else
514 return (mftbl());
515 }
516
517 /*
518 * These small routines may have to be replaced,
519 * if/when we support processors other that the 604.
520 */
521
522 void
523 tlbia(void)
524 {
525 caddr_t i;
526
527 SYNC();
528 /*
529 * Why not use "tlbia"? Because not all processors implement it.
530 *
531 * This needs to be a per-CPU callback to do the appropriate thing
532 * for the CPU. XXX
533 */
534 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
535 TLBIE(i);
536 EIEIO();
537 SYNC();
538 }
539 TLBSYNC();
540 SYNC();
541 }
542
543 static __inline register_t
544 va_to_vsid(const struct pmap *pm, vaddr_t addr)
545 {
546 #ifdef PPC_OEA64
547 #if 0
548 const struct ste *ste;
549 register_t hash;
550 int i;
551
552 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
553
554 /*
555 * Try the primary group first
556 */
557 ste = pm->pm_stes[hash].stes;
558 for (i = 0; i < 8; i++, ste++) {
559 if (ste->ste_hi & STE_V) &&
560 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
561 return ste;
562 }
563
564 /*
565 * Then the secondary group.
566 */
567 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
568 for (i = 0; i < 8; i++, ste++) {
569 if (ste->ste_hi & STE_V) &&
570 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
571 return addr;
572 }
573
574 return NULL;
575 #else
576 /*
577 * Rather than searching the STE groups for the VSID, we know
578 * how we generate that from the ESID and so do that.
579 */
580 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
581 #endif
582 #else
583 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
584 #endif
585 }
586
587 static __inline register_t
588 va_to_pteg(const struct pmap *pm, vaddr_t addr)
589 {
590 register_t hash;
591
592 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
593 return hash & pmap_pteg_mask;
594 }
595
596 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
597 /*
598 * Given a PTE in the page table, calculate the VADDR that hashes to it.
599 * The only bit of magic is that the top 4 bits of the address doesn't
600 * technically exist in the PTE. But we know we reserved 4 bits of the
601 * VSID for it so that's how we get it.
602 */
603 static vaddr_t
604 pmap_pte_to_va(volatile const struct pte *pt)
605 {
606 vaddr_t va;
607 uintptr_t ptaddr = (uintptr_t) pt;
608
609 if (pt->pte_hi & PTE_HID)
610 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
611
612 /* PPC Bits 10-19 PPC64 Bits 42-51 */
613 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
614 va <<= ADDR_PIDX_SHFT;
615
616 /* PPC Bits 4-9 PPC64 Bits 36-41 */
617 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
618
619 #ifdef PPC_OEA64
620 /* PPC63 Bits 0-35 */
621 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
622 #endif
623 #ifdef PPC_OEA
624 /* PPC Bits 0-3 */
625 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
626 #endif
627
628 return va;
629 }
630 #endif
631
632 static __inline struct pvo_head *
633 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
634 {
635 #ifdef __HAVE_VM_PAGE_MD
636 struct vm_page *pg;
637
638 pg = PHYS_TO_VM_PAGE(pa);
639 if (pg_p != NULL)
640 *pg_p = pg;
641 if (pg == NULL)
642 return &pmap_pvo_unmanaged;
643 return &pg->mdpage.mdpg_pvoh;
644 #endif
645 #ifdef __HAVE_PMAP_PHYSSEG
646 int bank, pg;
647
648 bank = vm_physseg_find(atop(pa), &pg);
649 if (pg_p != NULL)
650 *pg_p = pg;
651 if (bank == -1)
652 return &pmap_pvo_unmanaged;
653 return &vm_physmem[bank].pmseg.pvoh[pg];
654 #endif
655 }
656
657 static __inline struct pvo_head *
658 vm_page_to_pvoh(struct vm_page *pg)
659 {
660 #ifdef __HAVE_VM_PAGE_MD
661 return &pg->mdpage.mdpg_pvoh;
662 #endif
663 #ifdef __HAVE_PMAP_PHYSSEG
664 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
665 #endif
666 }
667
668
669 #ifdef __HAVE_PMAP_PHYSSEG
670 static __inline char *
671 pa_to_attr(paddr_t pa)
672 {
673 int bank, pg;
674
675 bank = vm_physseg_find(atop(pa), &pg);
676 if (bank == -1)
677 return NULL;
678 return &vm_physmem[bank].pmseg.attrs[pg];
679 }
680 #endif
681
682 static __inline void
683 pmap_attr_clear(struct vm_page *pg, int ptebit)
684 {
685 #ifdef __HAVE_PMAP_PHYSSEG
686 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
687 #endif
688 #ifdef __HAVE_VM_PAGE_MD
689 pg->mdpage.mdpg_attrs &= ~ptebit;
690 #endif
691 }
692
693 static __inline int
694 pmap_attr_fetch(struct vm_page *pg)
695 {
696 #ifdef __HAVE_PMAP_PHYSSEG
697 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
698 #endif
699 #ifdef __HAVE_VM_PAGE_MD
700 return pg->mdpage.mdpg_attrs;
701 #endif
702 }
703
704 static __inline void
705 pmap_attr_save(struct vm_page *pg, int ptebit)
706 {
707 #ifdef __HAVE_PMAP_PHYSSEG
708 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
709 #endif
710 #ifdef __HAVE_VM_PAGE_MD
711 pg->mdpage.mdpg_attrs |= ptebit;
712 #endif
713 }
714
715 static __inline int
716 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
717 {
718 if (pt->pte_hi == pvo_pt->pte_hi
719 #if 0
720 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
721 ~(PTE_REF|PTE_CHG)) == 0
722 #endif
723 )
724 return 1;
725 return 0;
726 }
727
728 static __inline void
729 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
730 {
731 /*
732 * Construct the PTE. Default to IMB initially. Valid bit
733 * only gets set when the real pte is set in memory.
734 *
735 * Note: Don't set the valid bit for correct operation of tlb update.
736 */
737 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
738 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
739 pt->pte_lo = pte_lo;
740 }
741
742 static __inline void
743 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
744 {
745 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
746 }
747
748 static __inline void
749 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
750 {
751 /*
752 * As shown in Section 7.6.3.2.3
753 */
754 pt->pte_lo &= ~ptebit;
755 TLBIE(va);
756 SYNC();
757 EIEIO();
758 TLBSYNC();
759 SYNC();
760 }
761
762 static __inline void
763 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
764 {
765 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
766 if (pvo_pt->pte_hi & PTE_VALID)
767 panic("pte_set: setting an already valid pte %p", pvo_pt);
768 #endif
769 pvo_pt->pte_hi |= PTE_VALID;
770 /*
771 * Update the PTE as defined in section 7.6.3.1
772 * Note that the REF/CHG bits are from pvo_pt and thus should
773 * have been saved so this routine can restore them (if desired).
774 */
775 pt->pte_lo = pvo_pt->pte_lo;
776 EIEIO();
777 pt->pte_hi = pvo_pt->pte_hi;
778 SYNC();
779 pmap_pte_valid++;
780 }
781
782 static __inline void
783 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
784 {
785 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
786 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
787 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
788 if ((pt->pte_hi & PTE_VALID) == 0)
789 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
790 #endif
791
792 pvo_pt->pte_hi &= ~PTE_VALID;
793 /*
794 * Force the ref & chg bits back into the PTEs.
795 */
796 SYNC();
797 /*
798 * Invalidate the pte ... (Section 7.6.3.3)
799 */
800 pt->pte_hi &= ~PTE_VALID;
801 SYNC();
802 TLBIE(va);
803 SYNC();
804 EIEIO();
805 TLBSYNC();
806 SYNC();
807 /*
808 * Save the ref & chg bits ...
809 */
810 pmap_pte_synch(pt, pvo_pt);
811 pmap_pte_valid--;
812 }
813
814 static __inline void
815 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
816 {
817 /*
818 * Invalidate the PTE
819 */
820 pmap_pte_unset(pt, pvo_pt, va);
821 pmap_pte_set(pt, pvo_pt);
822 }
823
824 /*
825 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
826 * (either primary or secondary location).
827 *
828 * Note: both the destination and source PTEs must not have PTE_VALID set.
829 */
830
831 STATIC int
832 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
833 {
834 volatile struct pte *pt;
835 int i;
836
837 #if defined(DEBUG)
838 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
839 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
840 #endif
841 /*
842 * First try primary hash.
843 */
844 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
845 if ((pt->pte_hi & PTE_VALID) == 0) {
846 pvo_pt->pte_hi &= ~PTE_HID;
847 pmap_pte_set(pt, pvo_pt);
848 return i;
849 }
850 }
851
852 /*
853 * Now try secondary hash.
854 */
855 ptegidx ^= pmap_pteg_mask;
856 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
857 if ((pt->pte_hi & PTE_VALID) == 0) {
858 pvo_pt->pte_hi |= PTE_HID;
859 pmap_pte_set(pt, pvo_pt);
860 return i;
861 }
862 }
863 return -1;
864 }
865
866 /*
867 * Spill handler.
868 *
869 * Tries to spill a page table entry from the overflow area.
870 * This runs in either real mode (if dealing with a exception spill)
871 * or virtual mode when dealing with manually spilling one of the
872 * kernel's pte entries. In either case, interrupts are already
873 * disabled.
874 */
875
876 int
877 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
878 {
879 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
880 struct pvo_entry *pvo;
881 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
882 struct pvo_tqhead *pvoh, *vpvoh = NULL;
883 int ptegidx, i, j;
884 volatile struct pteg *pteg;
885 volatile struct pte *pt;
886
887 ptegidx = va_to_pteg(pm, addr);
888
889 /*
890 * Have to substitute some entry. Use the primary hash for this.
891 * Use low bits of timebase as random generator. Make sure we are
892 * not picking a kernel pte for replacement.
893 */
894 pteg = &pmap_pteg_table[ptegidx];
895 i = MFTB() & 7;
896 for (j = 0; j < 8; j++) {
897 pt = &pteg->pt[i];
898 if ((pt->pte_hi & PTE_VALID) == 0 ||
899 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
900 != KERNEL_VSIDBITS)
901 break;
902 i = (i + 1) & 7;
903 }
904 KASSERT(j < 8);
905
906 source_pvo = NULL;
907 victim_pvo = NULL;
908 pvoh = &pmap_pvo_table[ptegidx];
909 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
910
911 /*
912 * We need to find pvo entry for this address...
913 */
914 PMAP_PVO_CHECK(pvo); /* sanity check */
915
916 /*
917 * If we haven't found the source and we come to a PVO with
918 * a valid PTE, then we know we can't find it because all
919 * evicted PVOs always are first in the list.
920 */
921 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
922 break;
923 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
924 addr == PVO_VADDR(pvo)) {
925
926 /*
927 * Now we have found the entry to be spilled into the
928 * pteg. Attempt to insert it into the page table.
929 */
930 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
931 if (j >= 0) {
932 PVO_PTEGIDX_SET(pvo, j);
933 PMAP_PVO_CHECK(pvo); /* sanity check */
934 PVO_WHERE(pvo, SPILL_INSERT);
935 pvo->pvo_pmap->pm_evictions--;
936 PMAPCOUNT(ptes_spilled);
937 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
938 ? pmap_evcnt_ptes_secondary
939 : pmap_evcnt_ptes_primary)[j]);
940
941 /*
942 * Since we keep the evicted entries at the
943 * from of the PVO list, we need move this
944 * (now resident) PVO after the evicted
945 * entries.
946 */
947 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
948
949 /*
950 * If we don't have to move (either we were the
951 * last entry or the next entry was valid),
952 * don't change our position. Otherwise
953 * move ourselves to the tail of the queue.
954 */
955 if (next_pvo != NULL &&
956 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
957 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
958 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
959 }
960 return 1;
961 }
962 source_pvo = pvo;
963 if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
964 return 0;
965 }
966 if (victim_pvo != NULL)
967 break;
968 }
969
970 /*
971 * We also need the pvo entry of the victim we are replacing
972 * so save the R & C bits of the PTE.
973 */
974 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
975 pmap_pte_compare(pt, &pvo->pvo_pte)) {
976 vpvoh = pvoh; /* *1* */
977 victim_pvo = pvo;
978 if (source_pvo != NULL)
979 break;
980 }
981 }
982
983 if (source_pvo == NULL) {
984 PMAPCOUNT(ptes_unspilled);
985 return 0;
986 }
987
988 if (victim_pvo == NULL) {
989 if ((pt->pte_hi & PTE_HID) == 0)
990 panic("pmap_pte_spill: victim p-pte (%p) has "
991 "no pvo entry!", pt);
992
993 /*
994 * If this is a secondary PTE, we need to search
995 * its primary pvo bucket for the matching PVO.
996 */
997 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
998 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
999 PMAP_PVO_CHECK(pvo); /* sanity check */
1000
1001 /*
1002 * We also need the pvo entry of the victim we are
1003 * replacing so save the R & C bits of the PTE.
1004 */
1005 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1006 victim_pvo = pvo;
1007 break;
1008 }
1009 }
1010 if (victim_pvo == NULL)
1011 panic("pmap_pte_spill: victim s-pte (%p) has "
1012 "no pvo entry!", pt);
1013 }
1014
1015 /*
1016 * The victim should be not be a kernel PVO/PTE entry.
1017 */
1018 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1019 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1020 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1021
1022 /*
1023 * We are invalidating the TLB entry for the EA for the
1024 * we are replacing even though its valid; If we don't
1025 * we lose any ref/chg bit changes contained in the TLB
1026 * entry.
1027 */
1028 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1029
1030 /*
1031 * To enforce the PVO list ordering constraint that all
1032 * evicted entries should come before all valid entries,
1033 * move the source PVO to the tail of its list and the
1034 * victim PVO to the head of its list (which might not be
1035 * the same list, if the victim was using the secondary hash).
1036 */
1037 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1038 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1039 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1040 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1041 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1042 pmap_pte_set(pt, &source_pvo->pvo_pte);
1043 victim_pvo->pvo_pmap->pm_evictions++;
1044 source_pvo->pvo_pmap->pm_evictions--;
1045 PVO_WHERE(victim_pvo, SPILL_UNSET);
1046 PVO_WHERE(source_pvo, SPILL_SET);
1047
1048 PVO_PTEGIDX_CLR(victim_pvo);
1049 PVO_PTEGIDX_SET(source_pvo, i);
1050 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1051 PMAPCOUNT(ptes_spilled);
1052 PMAPCOUNT(ptes_evicted);
1053 PMAPCOUNT(ptes_removed);
1054
1055 PMAP_PVO_CHECK(victim_pvo);
1056 PMAP_PVO_CHECK(source_pvo);
1057 return 1;
1058 }
1059
1060 /*
1061 * Restrict given range to physical memory
1062 */
1063 void
1064 pmap_real_memory(paddr_t *start, psize_t *size)
1065 {
1066 struct mem_region *mp;
1067
1068 for (mp = mem; mp->size; mp++) {
1069 if (*start + *size > mp->start
1070 && *start < mp->start + mp->size) {
1071 if (*start < mp->start) {
1072 *size -= mp->start - *start;
1073 *start = mp->start;
1074 }
1075 if (*start + *size > mp->start + mp->size)
1076 *size = mp->start + mp->size - *start;
1077 return;
1078 }
1079 }
1080 *size = 0;
1081 }
1082
1083 /*
1084 * Initialize anything else for pmap handling.
1085 * Called during vm_init().
1086 */
1087 void
1088 pmap_init(void)
1089 {
1090 #ifdef __HAVE_PMAP_PHYSSEG
1091 struct pvo_tqhead *pvoh;
1092 int bank;
1093 long sz;
1094 char *attr;
1095
1096 pvoh = pmap_physseg.pvoh;
1097 attr = pmap_physseg.attrs;
1098 for (bank = 0; bank < vm_nphysseg; bank++) {
1099 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1100 vm_physmem[bank].pmseg.pvoh = pvoh;
1101 vm_physmem[bank].pmseg.attrs = attr;
1102 for (; sz > 0; sz--, pvoh++, attr++) {
1103 TAILQ_INIT(pvoh);
1104 *attr = 0;
1105 }
1106 }
1107 #endif
1108
1109 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1110 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1111 &pmap_pool_mallocator);
1112
1113 pool_setlowat(&pmap_mpvo_pool, 1008);
1114
1115 pmap_initialized = 1;
1116
1117 }
1118
1119 /*
1120 * How much virtual space does the kernel get?
1121 */
1122 void
1123 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1124 {
1125 /*
1126 * For now, reserve one segment (minus some overhead) for kernel
1127 * virtual memory
1128 */
1129 *start = VM_MIN_KERNEL_ADDRESS;
1130 *end = VM_MAX_KERNEL_ADDRESS;
1131 }
1132
1133 /*
1134 * Allocate, initialize, and return a new physical map.
1135 */
1136 pmap_t
1137 pmap_create(void)
1138 {
1139 pmap_t pm;
1140
1141 pm = pool_get(&pmap_pool, PR_WAITOK);
1142 memset((caddr_t)pm, 0, sizeof *pm);
1143 pmap_pinit(pm);
1144
1145 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1146 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1147 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1148 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1149 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1150 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1151 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1152 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1153 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1154 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1155 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1156 return pm;
1157 }
1158
1159 /*
1160 * Initialize a preallocated and zeroed pmap structure.
1161 */
1162 void
1163 pmap_pinit(pmap_t pm)
1164 {
1165 register_t entropy = MFTB();
1166 register_t mask;
1167 int i;
1168
1169 /*
1170 * Allocate some segment registers for this pmap.
1171 */
1172 pm->pm_refs = 1;
1173 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1174 static register_t pmap_vsidcontext;
1175 register_t hash;
1176 unsigned int n;
1177
1178 /* Create a new value by multiplying by a prime adding in
1179 * entropy from the timebase register. This is to make the
1180 * VSID more random so that the PT Hash function collides
1181 * less often. (note that the prime causes gcc to do shifts
1182 * instead of a multiply)
1183 */
1184 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1185 hash = pmap_vsidcontext & (NPMAPS - 1);
1186 if (hash == 0) { /* 0 is special, avoid it */
1187 entropy += 0xbadf00d;
1188 continue;
1189 }
1190 n = hash >> 5;
1191 mask = 1L << (hash & (VSID_NBPW-1));
1192 hash = pmap_vsidcontext;
1193 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1194 /* anything free in this bucket? */
1195 if (~pmap_vsid_bitmap[n] == 0) {
1196 entropy = hash ^ (hash >> 16);
1197 continue;
1198 }
1199 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1200 mask = 1L << i;
1201 hash &= ~(VSID_NBPW-1);
1202 hash |= i;
1203 }
1204 hash &= PTE_VSID >> PTE_VSID_SHFT;
1205 pmap_vsid_bitmap[n] |= mask;
1206 pm->pm_vsid = hash;
1207 #ifndef PPC_OEA64
1208 for (i = 0; i < 16; i++)
1209 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1210 SR_NOEXEC;
1211 #endif
1212 return;
1213 }
1214 panic("pmap_pinit: out of segments");
1215 }
1216
1217 /*
1218 * Add a reference to the given pmap.
1219 */
1220 void
1221 pmap_reference(pmap_t pm)
1222 {
1223 pm->pm_refs++;
1224 }
1225
1226 /*
1227 * Retire the given pmap from service.
1228 * Should only be called if the map contains no valid mappings.
1229 */
1230 void
1231 pmap_destroy(pmap_t pm)
1232 {
1233 if (--pm->pm_refs == 0) {
1234 pmap_release(pm);
1235 pool_put(&pmap_pool, pm);
1236 }
1237 }
1238
1239 /*
1240 * Release any resources held by the given physical map.
1241 * Called when a pmap initialized by pmap_pinit is being released.
1242 */
1243 void
1244 pmap_release(pmap_t pm)
1245 {
1246 int idx, mask;
1247
1248 if (pm->pm_sr[0] == 0)
1249 panic("pmap_release");
1250 idx = pm->pm_vsid & (NPMAPS-1);
1251 mask = 1 << (idx % VSID_NBPW);
1252 idx /= VSID_NBPW;
1253
1254 KASSERT(pmap_vsid_bitmap[idx] & mask);
1255 pmap_vsid_bitmap[idx] &= ~mask;
1256 }
1257
1258 /*
1259 * Copy the range specified by src_addr/len
1260 * from the source map to the range dst_addr/len
1261 * in the destination map.
1262 *
1263 * This routine is only advisory and need not do anything.
1264 */
1265 void
1266 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1267 vsize_t len, vaddr_t src_addr)
1268 {
1269 PMAPCOUNT(copies);
1270 }
1271
1272 /*
1273 * Require that all active physical maps contain no
1274 * incorrect entries NOW.
1275 */
1276 void
1277 pmap_update(struct pmap *pmap)
1278 {
1279 PMAPCOUNT(updates);
1280 TLBSYNC();
1281 }
1282
1283 /*
1284 * Garbage collects the physical map system for
1285 * pages which are no longer used.
1286 * Success need not be guaranteed -- that is, there
1287 * may well be pages which are not referenced, but
1288 * others may be collected.
1289 * Called by the pageout daemon when pages are scarce.
1290 */
1291 void
1292 pmap_collect(pmap_t pm)
1293 {
1294 PMAPCOUNT(collects);
1295 }
1296
1297 static __inline int
1298 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1299 {
1300 int pteidx;
1301 /*
1302 * We can find the actual pte entry without searching by
1303 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1304 * and by noticing the HID bit.
1305 */
1306 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1307 if (pvo->pvo_pte.pte_hi & PTE_HID)
1308 pteidx ^= pmap_pteg_mask * 8;
1309 return pteidx;
1310 }
1311
1312 volatile struct pte *
1313 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1314 {
1315 volatile struct pte *pt;
1316
1317 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1318 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1319 return NULL;
1320 #endif
1321
1322 /*
1323 * If we haven't been supplied the ptegidx, calculate it.
1324 */
1325 if (pteidx == -1) {
1326 int ptegidx;
1327 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1328 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1329 }
1330
1331 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1332
1333 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1334 return pt;
1335 #else
1336 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1337 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1338 "pvo but no valid pte index", pvo);
1339 }
1340 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1341 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1342 "pvo but no valid pte", pvo);
1343 }
1344
1345 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1346 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1347 #if defined(DEBUG) || defined(PMAPCHECK)
1348 pmap_pte_print(pt);
1349 #endif
1350 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1351 "pmap_pteg_table %p but invalid in pvo",
1352 pvo, pt);
1353 }
1354 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1355 #if defined(DEBUG) || defined(PMAPCHECK)
1356 pmap_pte_print(pt);
1357 #endif
1358 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1359 "not match pte %p in pmap_pteg_table",
1360 pvo, pt);
1361 }
1362 return pt;
1363 }
1364
1365 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1366 #if defined(DEBUG) || defined(PMAPCHECK)
1367 pmap_pte_print(pt);
1368 #endif
1369 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1370 "pmap_pteg_table but valid in pvo", pvo, pt);
1371 }
1372 return NULL;
1373 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1374 }
1375
1376 struct pvo_entry *
1377 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1378 {
1379 struct pvo_entry *pvo;
1380 int ptegidx;
1381
1382 va &= ~ADDR_POFF;
1383 ptegidx = va_to_pteg(pm, va);
1384
1385 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1386 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1387 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1388 panic("pmap_pvo_find_va: invalid pvo %p on "
1389 "list %#x (%p)", pvo, ptegidx,
1390 &pmap_pvo_table[ptegidx]);
1391 #endif
1392 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1393 if (pteidx_p)
1394 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1395 return pvo;
1396 }
1397 }
1398 return NULL;
1399 }
1400
1401 #if defined(DEBUG) || defined(PMAPCHECK)
1402 void
1403 pmap_pvo_check(const struct pvo_entry *pvo)
1404 {
1405 struct pvo_head *pvo_head;
1406 struct pvo_entry *pvo0;
1407 volatile struct pte *pt;
1408 int failed = 0;
1409
1410 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1411 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1412
1413 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1414 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1415 pvo, pvo->pvo_pmap);
1416 failed = 1;
1417 }
1418
1419 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1420 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1421 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1422 pvo, TAILQ_NEXT(pvo, pvo_olink));
1423 failed = 1;
1424 }
1425
1426 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1427 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1428 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1429 pvo, LIST_NEXT(pvo, pvo_vlink));
1430 failed = 1;
1431 }
1432
1433 if (pvo->pvo_vaddr & PVO_MANAGED) {
1434 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1435 } else {
1436 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1437 printf("pmap_pvo_check: pvo %p: non kernel address "
1438 "on kernel unmanaged list\n", pvo);
1439 failed = 1;
1440 }
1441 pvo_head = &pmap_pvo_kunmanaged;
1442 }
1443 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1444 if (pvo0 == pvo)
1445 break;
1446 }
1447 if (pvo0 == NULL) {
1448 printf("pmap_pvo_check: pvo %p: not present "
1449 "on its vlist head %p\n", pvo, pvo_head);
1450 failed = 1;
1451 }
1452 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1453 printf("pmap_pvo_check: pvo %p: not present "
1454 "on its olist head\n", pvo);
1455 failed = 1;
1456 }
1457 pt = pmap_pvo_to_pte(pvo, -1);
1458 if (pt == NULL) {
1459 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1460 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1461 "no PTE\n", pvo);
1462 failed = 1;
1463 }
1464 } else {
1465 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1466 (uintptr_t) pt >=
1467 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1468 printf("pmap_pvo_check: pvo %p: pte %p not in "
1469 "pteg table\n", pvo, pt);
1470 failed = 1;
1471 }
1472 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1473 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1474 "no PTE\n", pvo);
1475 failed = 1;
1476 }
1477 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1478 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1479 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1480 failed = 1;
1481 }
1482 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1483 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1484 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1485 "%#x/%#x\n", pvo,
1486 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1487 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1488 failed = 1;
1489 }
1490 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1491 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1492 " doesn't not match PVO's VA %#lx\n",
1493 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1494 failed = 1;
1495 }
1496 if (failed)
1497 pmap_pte_print(pt);
1498 }
1499 if (failed)
1500 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1501 pvo->pvo_pmap);
1502 }
1503 #endif /* DEBUG || PMAPCHECK */
1504
1505 /*
1506 * Search the PVO table looking for a non-wired entry.
1507 * If we find one, remove it and return it.
1508 */
1509
1510 struct pvo_entry *
1511 pmap_pvo_reclaim(struct pmap *pm)
1512 {
1513 struct pvo_tqhead *pvoh;
1514 struct pvo_entry *pvo;
1515 uint32_t idx, endidx;
1516
1517 endidx = pmap_pvo_reclaim_nextidx;
1518 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1519 idx = (idx + 1) & pmap_pteg_mask) {
1520 pvoh = &pmap_pvo_table[idx];
1521 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1522 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
1523 pmap_pvo_remove(pvo, -1, FALSE);
1524 pmap_pvo_reclaim_nextidx = idx;
1525 PMAPCOUNT(pvos_reclaimed);
1526 return pvo;
1527 }
1528 }
1529 }
1530 return NULL;
1531 }
1532
1533 /*
1534 * This returns whether this is the first mapping of a page.
1535 */
1536 int
1537 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1538 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1539 {
1540 struct pvo_entry *pvo;
1541 struct pvo_tqhead *pvoh;
1542 register_t msr;
1543 int ptegidx;
1544 int i;
1545 int poolflags = PR_NOWAIT;
1546
1547 /*
1548 * Compute the PTE Group index.
1549 */
1550 va &= ~ADDR_POFF;
1551 ptegidx = va_to_pteg(pm, va);
1552
1553 msr = pmap_interrupts_off();
1554
1555 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1556 if (pmap_pvo_remove_depth > 0)
1557 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1558 if (++pmap_pvo_enter_depth > 1)
1559 panic("pmap_pvo_enter: called recursively!");
1560 #endif
1561
1562 /*
1563 * Remove any existing mapping for this page. Reuse the
1564 * pvo entry if there a mapping.
1565 */
1566 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1567 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1568 #ifdef DEBUG
1569 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1570 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1571 ~(PTE_REF|PTE_CHG)) == 0 &&
1572 va < VM_MIN_KERNEL_ADDRESS) {
1573 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1574 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1575 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1576 (unsigned int) pvo->pvo_pte.pte_hi,
1577 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1578 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1579 #ifdef DDBX
1580 Debugger();
1581 #endif
1582 }
1583 #endif
1584 PMAPCOUNT(mappings_replaced);
1585 pmap_pvo_remove(pvo, -1, TRUE);
1586 break;
1587 }
1588 }
1589
1590 /*
1591 * If we aren't overwriting an mapping, try to allocate
1592 */
1593 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1594 --pmap_pvo_enter_depth;
1595 #endif
1596 pmap_interrupts_restore(msr);
1597 pvo = pool_get(pl, poolflags);
1598
1599 #ifdef DEBUG
1600 /*
1601 * Exercise pmap_pvo_reclaim() a little.
1602 */
1603 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1604 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1605 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1606 pool_put(pl, pvo);
1607 pvo = NULL;
1608 }
1609 #endif
1610
1611 msr = pmap_interrupts_off();
1612 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1613 ++pmap_pvo_enter_depth;
1614 #endif
1615 if (pvo == NULL) {
1616 pvo = pmap_pvo_reclaim(pm);
1617 if (pvo == NULL) {
1618 if ((flags & PMAP_CANFAIL) == 0)
1619 panic("pmap_pvo_enter: failed");
1620 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1621 pmap_pvo_enter_depth--;
1622 #endif
1623 PMAPCOUNT(pvos_failed);
1624 pmap_interrupts_restore(msr);
1625 return ENOMEM;
1626 }
1627 }
1628
1629 pvo->pvo_vaddr = va;
1630 pvo->pvo_pmap = pm;
1631 pvo->pvo_vaddr &= ~ADDR_POFF;
1632 if (flags & VM_PROT_EXECUTE) {
1633 PMAPCOUNT(exec_mappings);
1634 pvo_set_exec(pvo);
1635 }
1636 if (flags & PMAP_WIRED)
1637 pvo->pvo_vaddr |= PVO_WIRED;
1638 if (pvo_head != &pmap_pvo_kunmanaged) {
1639 pvo->pvo_vaddr |= PVO_MANAGED;
1640 PMAPCOUNT(mappings);
1641 } else {
1642 PMAPCOUNT(kernel_mappings);
1643 }
1644 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1645
1646 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1647 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1648 pvo->pvo_pmap->pm_stats.wired_count++;
1649 pvo->pvo_pmap->pm_stats.resident_count++;
1650 #if defined(DEBUG)
1651 if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1652 DPRINTFN(PVOENTER,
1653 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1654 pvo, pm, va, pa));
1655 #endif
1656
1657 /*
1658 * We hope this succeeds but it isn't required.
1659 */
1660 pvoh = &pmap_pvo_table[ptegidx];
1661 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1662 if (i >= 0) {
1663 PVO_PTEGIDX_SET(pvo, i);
1664 PVO_WHERE(pvo, ENTER_INSERT);
1665 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1666 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1667 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1668 } else {
1669 /*
1670 * Since we didn't have room for this entry (which makes it
1671 * and evicted entry), place it at the head of the list.
1672 */
1673 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1674 PMAPCOUNT(ptes_evicted);
1675 pm->pm_evictions++;
1676 /*
1677 * If this is a kernel page, make sure it's active.
1678 */
1679 if (pm == pmap_kernel()) {
1680 i = pmap_pte_spill(pm, va, FALSE);
1681 KASSERT(i);
1682 }
1683 }
1684 PMAP_PVO_CHECK(pvo); /* sanity check */
1685 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1686 pmap_pvo_enter_depth--;
1687 #endif
1688 pmap_interrupts_restore(msr);
1689 return 0;
1690 }
1691
1692 void
1693 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, boolean_t free)
1694 {
1695 volatile struct pte *pt;
1696 int ptegidx;
1697
1698 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1699 if (++pmap_pvo_remove_depth > 1)
1700 panic("pmap_pvo_remove: called recursively!");
1701 #endif
1702
1703 /*
1704 * If we haven't been supplied the ptegidx, calculate it.
1705 */
1706 if (pteidx == -1) {
1707 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1708 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1709 } else {
1710 ptegidx = pteidx >> 3;
1711 if (pvo->pvo_pte.pte_hi & PTE_HID)
1712 ptegidx ^= pmap_pteg_mask;
1713 }
1714 PMAP_PVO_CHECK(pvo); /* sanity check */
1715
1716 /*
1717 * If there is an active pte entry, we need to deactivate it
1718 * (and save the ref & chg bits).
1719 */
1720 pt = pmap_pvo_to_pte(pvo, pteidx);
1721 if (pt != NULL) {
1722 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1723 PVO_WHERE(pvo, REMOVE);
1724 PVO_PTEGIDX_CLR(pvo);
1725 PMAPCOUNT(ptes_removed);
1726 } else {
1727 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1728 pvo->pvo_pmap->pm_evictions--;
1729 }
1730
1731 /*
1732 * Account for executable mappings.
1733 */
1734 if (PVO_ISEXECUTABLE(pvo))
1735 pvo_clear_exec(pvo);
1736
1737 /*
1738 * Update our statistics.
1739 */
1740 pvo->pvo_pmap->pm_stats.resident_count--;
1741 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1742 pvo->pvo_pmap->pm_stats.wired_count--;
1743
1744 /*
1745 * Save the REF/CHG bits into their cache if the page is managed.
1746 */
1747 if (pvo->pvo_vaddr & PVO_MANAGED) {
1748 register_t ptelo = pvo->pvo_pte.pte_lo;
1749 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1750
1751 if (pg != NULL) {
1752 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1753 }
1754 PMAPCOUNT(unmappings);
1755 } else {
1756 PMAPCOUNT(kernel_unmappings);
1757 }
1758
1759 /*
1760 * Remove the PVO from its lists and return it to the pool.
1761 */
1762 LIST_REMOVE(pvo, pvo_vlink);
1763 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1764 if (free) {
1765 pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
1766 &pmap_upvo_pool, pvo);
1767 }
1768 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1769 pmap_pvo_remove_depth--;
1770 #endif
1771 }
1772
1773 /*
1774 * Mark a mapping as executable.
1775 * If this is the first executable mapping in the segment,
1776 * clear the noexec flag.
1777 */
1778 STATIC void
1779 pvo_set_exec(struct pvo_entry *pvo)
1780 {
1781 struct pmap *pm = pvo->pvo_pmap;
1782
1783 if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1784 return;
1785 }
1786 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1787 #ifdef PPC_OEA
1788 {
1789 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1790 if (pm->pm_exec[sr]++ == 0) {
1791 pm->pm_sr[sr] &= ~SR_NOEXEC;
1792 }
1793 }
1794 #endif
1795 }
1796
1797 /*
1798 * Mark a mapping as non-executable.
1799 * If this was the last executable mapping in the segment,
1800 * set the noexec flag.
1801 */
1802 STATIC void
1803 pvo_clear_exec(struct pvo_entry *pvo)
1804 {
1805 struct pmap *pm = pvo->pvo_pmap;
1806
1807 if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1808 return;
1809 }
1810 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1811 #ifdef PPC_OEA
1812 {
1813 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1814 if (--pm->pm_exec[sr] == 0) {
1815 pm->pm_sr[sr] |= SR_NOEXEC;
1816 }
1817 }
1818 #endif
1819 }
1820
1821 /*
1822 * Insert physical page at pa into the given pmap at virtual address va.
1823 */
1824 int
1825 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1826 {
1827 struct mem_region *mp;
1828 struct pvo_head *pvo_head;
1829 struct vm_page *pg;
1830 struct pool *pl;
1831 register_t pte_lo;
1832 int error;
1833 u_int pvo_flags;
1834 u_int was_exec = 0;
1835
1836 if (__predict_false(!pmap_initialized)) {
1837 pvo_head = &pmap_pvo_kunmanaged;
1838 pl = &pmap_upvo_pool;
1839 pvo_flags = 0;
1840 pg = NULL;
1841 was_exec = PTE_EXEC;
1842 } else {
1843 pvo_head = pa_to_pvoh(pa, &pg);
1844 pl = &pmap_mpvo_pool;
1845 pvo_flags = PVO_MANAGED;
1846 }
1847
1848 DPRINTFN(ENTER,
1849 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1850 pm, va, pa, prot, flags));
1851
1852 /*
1853 * If this is a managed page, and it's the first reference to the
1854 * page clear the execness of the page. Otherwise fetch the execness.
1855 */
1856 if (pg != NULL)
1857 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1858
1859 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1860
1861 /*
1862 * Assume the page is cache inhibited and access is guarded unless
1863 * it's in our available memory array. If it is in the memory array,
1864 * asssume it's in memory coherent memory.
1865 */
1866 pte_lo = PTE_IG;
1867 if ((flags & PMAP_NC) == 0) {
1868 for (mp = mem; mp->size; mp++) {
1869 if (pa >= mp->start && pa < mp->start + mp->size) {
1870 pte_lo = PTE_M;
1871 break;
1872 }
1873 }
1874 }
1875
1876 if (prot & VM_PROT_WRITE)
1877 pte_lo |= PTE_BW;
1878 else
1879 pte_lo |= PTE_BR;
1880
1881 /*
1882 * If this was in response to a fault, "pre-fault" the PTE's
1883 * changed/referenced bit appropriately.
1884 */
1885 if (flags & VM_PROT_WRITE)
1886 pte_lo |= PTE_CHG;
1887 if (flags & (VM_PROT_READ|VM_PROT_WRITE))
1888 pte_lo |= PTE_REF;
1889
1890 /*
1891 * We need to know if this page can be executable
1892 */
1893 flags |= (prot & VM_PROT_EXECUTE);
1894
1895 /*
1896 * Record mapping for later back-translation and pte spilling.
1897 * This will overwrite any existing mapping.
1898 */
1899 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1900
1901 /*
1902 * Flush the real page from the instruction cache if this page is
1903 * mapped executable and cacheable and has not been flushed since
1904 * the last time it was modified.
1905 */
1906 if (error == 0 &&
1907 (flags & VM_PROT_EXECUTE) &&
1908 (pte_lo & PTE_I) == 0 &&
1909 was_exec == 0) {
1910 DPRINTFN(ENTER, (" syncicache"));
1911 PMAPCOUNT(exec_synced);
1912 pmap_syncicache(pa, PAGE_SIZE);
1913 if (pg != NULL) {
1914 pmap_attr_save(pg, PTE_EXEC);
1915 PMAPCOUNT(exec_cached);
1916 #if defined(DEBUG) || defined(PMAPDEBUG)
1917 if (pmapdebug & PMAPDEBUG_ENTER)
1918 printf(" marked-as-exec");
1919 else if (pmapdebug & PMAPDEBUG_EXEC)
1920 printf("[pmap_enter: %#lx: marked-as-exec]\n",
1921 pg->phys_addr);
1922
1923 #endif
1924 }
1925 }
1926
1927 DPRINTFN(ENTER, (": error=%d\n", error));
1928
1929 return error;
1930 }
1931
1932 void
1933 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1934 {
1935 struct mem_region *mp;
1936 register_t pte_lo;
1937 int error;
1938
1939 if (va < VM_MIN_KERNEL_ADDRESS)
1940 panic("pmap_kenter_pa: attempt to enter "
1941 "non-kernel address %#lx!", va);
1942
1943 DPRINTFN(KENTER,
1944 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1945
1946 /*
1947 * Assume the page is cache inhibited and access is guarded unless
1948 * it's in our available memory array. If it is in the memory array,
1949 * asssume it's in memory coherent memory.
1950 */
1951 pte_lo = PTE_IG;
1952 if ((prot & PMAP_NC) == 0) {
1953 for (mp = mem; mp->size; mp++) {
1954 if (pa >= mp->start && pa < mp->start + mp->size) {
1955 pte_lo = PTE_M;
1956 break;
1957 }
1958 }
1959 }
1960
1961 if (prot & VM_PROT_WRITE)
1962 pte_lo |= PTE_BW;
1963 else
1964 pte_lo |= PTE_BR;
1965
1966 /*
1967 * We don't care about REF/CHG on PVOs on the unmanaged list.
1968 */
1969 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1970 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1971
1972 if (error != 0)
1973 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1974 va, pa, error);
1975 }
1976
1977 void
1978 pmap_kremove(vaddr_t va, vsize_t len)
1979 {
1980 if (va < VM_MIN_KERNEL_ADDRESS)
1981 panic("pmap_kremove: attempt to remove "
1982 "non-kernel address %#lx!", va);
1983
1984 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1985 pmap_remove(pmap_kernel(), va, va + len);
1986 }
1987
1988 /*
1989 * Remove the given range of mapping entries.
1990 */
1991 void
1992 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1993 {
1994 struct pvo_entry *pvo;
1995 register_t msr;
1996 int pteidx;
1997
1998 msr = pmap_interrupts_off();
1999 for (; va < endva; va += PAGE_SIZE) {
2000 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2001 if (pvo != NULL) {
2002 pmap_pvo_remove(pvo, pteidx, TRUE);
2003 }
2004 }
2005 pmap_interrupts_restore(msr);
2006 }
2007
2008 /*
2009 * Get the physical page address for the given pmap/virtual address.
2010 */
2011 boolean_t
2012 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2013 {
2014 struct pvo_entry *pvo;
2015 register_t msr;
2016
2017 /*
2018 * If this is a kernel pmap lookup, also check the battable
2019 * and if we get a hit, translate the VA to a PA using the
2020 * BAT entries. Don't check for VM_MAX_KENREL_ADDRESS is
2021 * that will wrap back to 0.
2022 */
2023 if (pm == pmap_kernel() &&
2024 (va < VM_MIN_KERNEL_ADDRESS ||
2025 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2026 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2027 if ((MFPVR() >> 16) != MPC601) {
2028 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2029 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2030 register_t batl =
2031 battable[va >> ADDR_SR_SHFT].batl;
2032 register_t mask =
2033 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2034 *pap = (batl & mask) | (va & ~mask);
2035 return TRUE;
2036 }
2037 } else {
2038 register_t batu = battable[va >> 23].batu;
2039 register_t batl = battable[va >> 23].batl;
2040 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2041 if (BAT601_VALID_P(batl) &&
2042 BAT601_VA_MATCH_P(batu, batl, va)) {
2043 register_t mask =
2044 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2045 *pap = (batl & mask) | (va & ~mask);
2046 return TRUE;
2047 } else if (SR601_VALID_P(sr) &&
2048 SR601_PA_MATCH_P(sr, va)) {
2049 *pap = va;
2050 return TRUE;
2051 }
2052 }
2053 return FALSE;
2054 }
2055
2056 msr = pmap_interrupts_off();
2057 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2058 if (pvo != NULL) {
2059 PMAP_PVO_CHECK(pvo); /* sanity check */
2060 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
2061 }
2062 pmap_interrupts_restore(msr);
2063 return pvo != NULL;
2064 }
2065
2066 /*
2067 * Lower the protection on the specified range of this pmap.
2068 */
2069 void
2070 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2071 {
2072 struct pvo_entry *pvo;
2073 volatile struct pte *pt;
2074 register_t msr;
2075 int pteidx;
2076
2077 /*
2078 * Since this routine only downgrades protection, we should
2079 * always be called with at least one bit not set.
2080 */
2081 KASSERT(prot != VM_PROT_ALL);
2082
2083 /*
2084 * If there is no protection, this is equivalent to
2085 * remove the pmap from the pmap.
2086 */
2087 if ((prot & VM_PROT_READ) == 0) {
2088 pmap_remove(pm, va, endva);
2089 return;
2090 }
2091
2092 msr = pmap_interrupts_off();
2093 for (; va < endva; va += PAGE_SIZE) {
2094 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2095 if (pvo == NULL)
2096 continue;
2097 PMAP_PVO_CHECK(pvo); /* sanity check */
2098
2099 /*
2100 * Revoke executable if asked to do so.
2101 */
2102 if ((prot & VM_PROT_EXECUTE) == 0)
2103 pvo_clear_exec(pvo);
2104
2105 #if 0
2106 /*
2107 * If the page is already read-only, no change
2108 * needs to be made.
2109 */
2110 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2111 continue;
2112 #endif
2113 /*
2114 * Grab the PTE pointer before we diddle with
2115 * the cached PTE copy.
2116 */
2117 pt = pmap_pvo_to_pte(pvo, pteidx);
2118 /*
2119 * Change the protection of the page.
2120 */
2121 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2122 pvo->pvo_pte.pte_lo |= PTE_BR;
2123
2124 /*
2125 * If the PVO is in the page table, update
2126 * that pte at well.
2127 */
2128 if (pt != NULL) {
2129 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2130 PVO_WHERE(pvo, PMAP_PROTECT);
2131 PMAPCOUNT(ptes_changed);
2132 }
2133
2134 PMAP_PVO_CHECK(pvo); /* sanity check */
2135 }
2136 pmap_interrupts_restore(msr);
2137 }
2138
2139 void
2140 pmap_unwire(pmap_t pm, vaddr_t va)
2141 {
2142 struct pvo_entry *pvo;
2143 register_t msr;
2144
2145 msr = pmap_interrupts_off();
2146 pvo = pmap_pvo_find_va(pm, va, NULL);
2147 if (pvo != NULL) {
2148 if (pvo->pvo_vaddr & PVO_WIRED) {
2149 pvo->pvo_vaddr &= ~PVO_WIRED;
2150 pm->pm_stats.wired_count--;
2151 }
2152 PMAP_PVO_CHECK(pvo); /* sanity check */
2153 }
2154 pmap_interrupts_restore(msr);
2155 }
2156
2157 /*
2158 * Lower the protection on the specified physical page.
2159 */
2160 void
2161 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2162 {
2163 struct pvo_head *pvo_head;
2164 struct pvo_entry *pvo, *next_pvo;
2165 volatile struct pte *pt;
2166 register_t msr;
2167
2168 KASSERT(prot != VM_PROT_ALL);
2169 msr = pmap_interrupts_off();
2170
2171 /*
2172 * When UVM reuses a page, it does a pmap_page_protect with
2173 * VM_PROT_NONE. At that point, we can clear the exec flag
2174 * since we know the page will have different contents.
2175 */
2176 if ((prot & VM_PROT_READ) == 0) {
2177 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2178 pg->phys_addr));
2179 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2180 PMAPCOUNT(exec_uncached_page_protect);
2181 pmap_attr_clear(pg, PTE_EXEC);
2182 }
2183 }
2184
2185 pvo_head = vm_page_to_pvoh(pg);
2186 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2187 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2188 PMAP_PVO_CHECK(pvo); /* sanity check */
2189
2190 /*
2191 * Downgrading to no mapping at all, we just remove the entry.
2192 */
2193 if ((prot & VM_PROT_READ) == 0) {
2194 pmap_pvo_remove(pvo, -1, TRUE);
2195 continue;
2196 }
2197
2198 /*
2199 * If EXEC permission is being revoked, just clear the
2200 * flag in the PVO.
2201 */
2202 if ((prot & VM_PROT_EXECUTE) == 0)
2203 pvo_clear_exec(pvo);
2204
2205 /*
2206 * If this entry is already RO, don't diddle with the
2207 * page table.
2208 */
2209 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2210 PMAP_PVO_CHECK(pvo);
2211 continue;
2212 }
2213
2214 /*
2215 * Grab the PTE before the we diddle the bits so
2216 * pvo_to_pte can verify the pte contents are as
2217 * expected.
2218 */
2219 pt = pmap_pvo_to_pte(pvo, -1);
2220 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2221 pvo->pvo_pte.pte_lo |= PTE_BR;
2222 if (pt != NULL) {
2223 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2224 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2225 PMAPCOUNT(ptes_changed);
2226 }
2227 PMAP_PVO_CHECK(pvo); /* sanity check */
2228 }
2229 pmap_interrupts_restore(msr);
2230 }
2231
2232 /*
2233 * Activate the address space for the specified process. If the process
2234 * is the current process, load the new MMU context.
2235 */
2236 void
2237 pmap_activate(struct lwp *l)
2238 {
2239 struct pcb *pcb = &l->l_addr->u_pcb;
2240 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2241
2242 DPRINTFN(ACTIVATE,
2243 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2244
2245 /*
2246 * XXX Normally performed in cpu_fork().
2247 */
2248 pcb->pcb_pm = pmap;
2249
2250 /*
2251 * In theory, the SR registers need only be valid on return
2252 * to user space wait to do them there.
2253 */
2254 if (l == curlwp) {
2255 /* Store pointer to new current pmap. */
2256 curpm = pmap;
2257 }
2258 }
2259
2260 /*
2261 * Deactivate the specified process's address space.
2262 */
2263 void
2264 pmap_deactivate(struct lwp *l)
2265 {
2266 }
2267
2268 boolean_t
2269 pmap_query_bit(struct vm_page *pg, int ptebit)
2270 {
2271 struct pvo_entry *pvo;
2272 volatile struct pte *pt;
2273 register_t msr;
2274
2275 if (pmap_attr_fetch(pg) & ptebit)
2276 return TRUE;
2277
2278 msr = pmap_interrupts_off();
2279 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2280 PMAP_PVO_CHECK(pvo); /* sanity check */
2281 /*
2282 * See if we saved the bit off. If so cache, it and return
2283 * success.
2284 */
2285 if (pvo->pvo_pte.pte_lo & ptebit) {
2286 pmap_attr_save(pg, ptebit);
2287 PMAP_PVO_CHECK(pvo); /* sanity check */
2288 pmap_interrupts_restore(msr);
2289 return TRUE;
2290 }
2291 }
2292 /*
2293 * No luck, now go thru the hard part of looking at the ptes
2294 * themselves. Sync so any pending REF/CHG bits are flushed
2295 * to the PTEs.
2296 */
2297 SYNC();
2298 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2299 PMAP_PVO_CHECK(pvo); /* sanity check */
2300 /*
2301 * See if this pvo have a valid PTE. If so, fetch the
2302 * REF/CHG bits from the valid PTE. If the appropriate
2303 * ptebit is set, cache, it and return success.
2304 */
2305 pt = pmap_pvo_to_pte(pvo, -1);
2306 if (pt != NULL) {
2307 pmap_pte_synch(pt, &pvo->pvo_pte);
2308 if (pvo->pvo_pte.pte_lo & ptebit) {
2309 pmap_attr_save(pg, ptebit);
2310 PMAP_PVO_CHECK(pvo); /* sanity check */
2311 pmap_interrupts_restore(msr);
2312 return TRUE;
2313 }
2314 }
2315 }
2316 pmap_interrupts_restore(msr);
2317 return FALSE;
2318 }
2319
2320 boolean_t
2321 pmap_clear_bit(struct vm_page *pg, int ptebit)
2322 {
2323 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2324 struct pvo_entry *pvo;
2325 volatile struct pte *pt;
2326 register_t msr;
2327 int rv = 0;
2328
2329 msr = pmap_interrupts_off();
2330
2331 /*
2332 * Fetch the cache value
2333 */
2334 rv |= pmap_attr_fetch(pg);
2335
2336 /*
2337 * Clear the cached value.
2338 */
2339 pmap_attr_clear(pg, ptebit);
2340
2341 /*
2342 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2343 * can reset the right ones). Note that since the pvo entries and
2344 * list heads are accessed via BAT0 and are never placed in the
2345 * page table, we don't have to worry about further accesses setting
2346 * the REF/CHG bits.
2347 */
2348 SYNC();
2349
2350 /*
2351 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2352 * valid PTE. If so, clear the ptebit from the valid PTE.
2353 */
2354 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2355 PMAP_PVO_CHECK(pvo); /* sanity check */
2356 pt = pmap_pvo_to_pte(pvo, -1);
2357 if (pt != NULL) {
2358 /*
2359 * Only sync the PTE if the bit we are looking
2360 * for is not already set.
2361 */
2362 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2363 pmap_pte_synch(pt, &pvo->pvo_pte);
2364 /*
2365 * If the bit we are looking for was already set,
2366 * clear that bit in the pte.
2367 */
2368 if (pvo->pvo_pte.pte_lo & ptebit)
2369 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2370 }
2371 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2372 pvo->pvo_pte.pte_lo &= ~ptebit;
2373 PMAP_PVO_CHECK(pvo); /* sanity check */
2374 }
2375 pmap_interrupts_restore(msr);
2376
2377 /*
2378 * If we are clearing the modify bit and this page was marked EXEC
2379 * and the user of the page thinks the page was modified, then we
2380 * need to clean it from the icache if it's mapped or clear the EXEC
2381 * bit if it's not mapped. The page itself might not have the CHG
2382 * bit set if the modification was done via DMA to the page.
2383 */
2384 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2385 if (LIST_EMPTY(pvoh)) {
2386 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2387 pg->phys_addr));
2388 pmap_attr_clear(pg, PTE_EXEC);
2389 PMAPCOUNT(exec_uncached_clear_modify);
2390 } else {
2391 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2392 pg->phys_addr));
2393 pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2394 PMAPCOUNT(exec_synced_clear_modify);
2395 }
2396 }
2397 return (rv & ptebit) != 0;
2398 }
2399
2400 void
2401 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2402 {
2403 struct pvo_entry *pvo;
2404 size_t offset = va & ADDR_POFF;
2405 int s;
2406
2407 s = splvm();
2408 while (len > 0) {
2409 size_t seglen = PAGE_SIZE - offset;
2410 if (seglen > len)
2411 seglen = len;
2412 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2413 if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2414 pmap_syncicache(
2415 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2416 PMAP_PVO_CHECK(pvo);
2417 }
2418 va += seglen;
2419 len -= seglen;
2420 offset = 0;
2421 }
2422 splx(s);
2423 }
2424
2425 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2426 void
2427 pmap_pte_print(volatile struct pte *pt)
2428 {
2429 printf("PTE %p: ", pt);
2430 /* High word: */
2431 printf("0x%08lx: [", pt->pte_hi);
2432 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2433 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2434 printf("0x%06lx 0x%02lx",
2435 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2436 pt->pte_hi & PTE_API);
2437 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2438 /* Low word: */
2439 printf(" 0x%08lx: [", pt->pte_lo);
2440 printf("0x%05lx... ", pt->pte_lo >> 12);
2441 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2442 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2443 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2444 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2445 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2446 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2447 switch (pt->pte_lo & PTE_PP) {
2448 case PTE_BR: printf("br]\n"); break;
2449 case PTE_BW: printf("bw]\n"); break;
2450 case PTE_SO: printf("so]\n"); break;
2451 case PTE_SW: printf("sw]\n"); break;
2452 }
2453 }
2454 #endif
2455
2456 #if defined(DDB)
2457 void
2458 pmap_pteg_check(void)
2459 {
2460 volatile struct pte *pt;
2461 int i;
2462 int ptegidx;
2463 u_int p_valid = 0;
2464 u_int s_valid = 0;
2465 u_int invalid = 0;
2466
2467 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2468 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2469 if (pt->pte_hi & PTE_VALID) {
2470 if (pt->pte_hi & PTE_HID)
2471 s_valid++;
2472 else
2473 p_valid++;
2474 } else
2475 invalid++;
2476 }
2477 }
2478 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2479 p_valid, p_valid, s_valid, s_valid,
2480 invalid, invalid);
2481 }
2482
2483 void
2484 pmap_print_mmuregs(void)
2485 {
2486 int i;
2487 u_int cpuvers;
2488 #ifndef PPC_OEA64
2489 vaddr_t addr;
2490 register_t soft_sr[16];
2491 #endif
2492 struct bat soft_ibat[4];
2493 struct bat soft_dbat[4];
2494 register_t sdr1;
2495
2496 cpuvers = MFPVR() >> 16;
2497 __asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2498 #ifndef PPC_OEA64
2499 addr = 0;
2500 for (i = 0; i < 16; i++) {
2501 soft_sr[i] = MFSRIN(addr);
2502 addr += (1 << ADDR_SR_SHFT);
2503 }
2504 #endif
2505
2506 /* read iBAT (601: uBAT) registers */
2507 __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2508 __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2509 __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2510 __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2511 __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2512 __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2513 __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2514 __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2515
2516
2517 if (cpuvers != MPC601) {
2518 /* read dBAT registers */
2519 __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2520 __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2521 __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2522 __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2523 __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2524 __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2525 __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2526 __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2527 }
2528
2529 printf("SDR1:\t0x%lx\n", (long) sdr1);
2530 #ifndef PPC_OEA64
2531 printf("SR[]:\t");
2532 for (i = 0; i < 4; i++)
2533 printf("0x%08lx, ", soft_sr[i]);
2534 printf("\n\t");
2535 for ( ; i < 8; i++)
2536 printf("0x%08lx, ", soft_sr[i]);
2537 printf("\n\t");
2538 for ( ; i < 12; i++)
2539 printf("0x%08lx, ", soft_sr[i]);
2540 printf("\n\t");
2541 for ( ; i < 16; i++)
2542 printf("0x%08lx, ", soft_sr[i]);
2543 printf("\n");
2544 #endif
2545
2546 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2547 for (i = 0; i < 4; i++) {
2548 printf("0x%08lx 0x%08lx, ",
2549 soft_ibat[i].batu, soft_ibat[i].batl);
2550 if (i == 1)
2551 printf("\n\t");
2552 }
2553 if (cpuvers != MPC601) {
2554 printf("\ndBAT[]:\t");
2555 for (i = 0; i < 4; i++) {
2556 printf("0x%08lx 0x%08lx, ",
2557 soft_dbat[i].batu, soft_dbat[i].batl);
2558 if (i == 1)
2559 printf("\n\t");
2560 }
2561 }
2562 printf("\n");
2563 }
2564
2565 void
2566 pmap_print_pte(pmap_t pm, vaddr_t va)
2567 {
2568 struct pvo_entry *pvo;
2569 volatile struct pte *pt;
2570 int pteidx;
2571
2572 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2573 if (pvo != NULL) {
2574 pt = pmap_pvo_to_pte(pvo, pteidx);
2575 if (pt != NULL) {
2576 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2577 va, pt,
2578 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2579 pt->pte_hi, pt->pte_lo);
2580 } else {
2581 printf("No valid PTE found\n");
2582 }
2583 } else {
2584 printf("Address not in pmap\n");
2585 }
2586 }
2587
2588 void
2589 pmap_pteg_dist(void)
2590 {
2591 struct pvo_entry *pvo;
2592 int ptegidx;
2593 int depth;
2594 int max_depth = 0;
2595 unsigned int depths[64];
2596
2597 memset(depths, 0, sizeof(depths));
2598 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2599 depth = 0;
2600 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2601 depth++;
2602 }
2603 if (depth > max_depth)
2604 max_depth = depth;
2605 if (depth > 63)
2606 depth = 63;
2607 depths[depth]++;
2608 }
2609
2610 for (depth = 0; depth < 64; depth++) {
2611 printf(" [%2d]: %8u", depth, depths[depth]);
2612 if ((depth & 3) == 3)
2613 printf("\n");
2614 if (depth == max_depth)
2615 break;
2616 }
2617 if ((depth & 3) != 3)
2618 printf("\n");
2619 printf("Max depth found was %d\n", max_depth);
2620 }
2621 #endif /* DEBUG */
2622
2623 #if defined(PMAPCHECK) || defined(DEBUG)
2624 void
2625 pmap_pvo_verify(void)
2626 {
2627 int ptegidx;
2628 int s;
2629
2630 s = splvm();
2631 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2632 struct pvo_entry *pvo;
2633 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2634 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2635 panic("pmap_pvo_verify: invalid pvo %p "
2636 "on list %#x", pvo, ptegidx);
2637 pmap_pvo_check(pvo);
2638 }
2639 }
2640 splx(s);
2641 }
2642 #endif /* PMAPCHECK */
2643
2644
2645 void *
2646 pmap_pool_ualloc(struct pool *pp, int flags)
2647 {
2648 struct pvo_page *pvop;
2649
2650 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2651 if (pvop != NULL) {
2652 pmap_upvop_free--;
2653 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2654 return pvop;
2655 }
2656 if (uvm.page_init_done != TRUE) {
2657 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2658 }
2659 return pmap_pool_malloc(pp, flags);
2660 }
2661
2662 void *
2663 pmap_pool_malloc(struct pool *pp, int flags)
2664 {
2665 struct pvo_page *pvop;
2666 struct vm_page *pg;
2667
2668 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2669 if (pvop != NULL) {
2670 pmap_mpvop_free--;
2671 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2672 return pvop;
2673 }
2674 again:
2675 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2676 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2677 if (__predict_false(pg == NULL)) {
2678 if (flags & PR_WAITOK) {
2679 uvm_wait("plpg");
2680 goto again;
2681 } else {
2682 return (0);
2683 }
2684 }
2685 return (void *) VM_PAGE_TO_PHYS(pg);
2686 }
2687
2688 void
2689 pmap_pool_ufree(struct pool *pp, void *va)
2690 {
2691 struct pvo_page *pvop;
2692 #if 0
2693 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2694 pmap_pool_mfree(va, size, tag);
2695 return;
2696 }
2697 #endif
2698 pvop = va;
2699 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2700 pmap_upvop_free++;
2701 if (pmap_upvop_free > pmap_upvop_maxfree)
2702 pmap_upvop_maxfree = pmap_upvop_free;
2703 }
2704
2705 void
2706 pmap_pool_mfree(struct pool *pp, void *va)
2707 {
2708 struct pvo_page *pvop;
2709
2710 pvop = va;
2711 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2712 pmap_mpvop_free++;
2713 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2714 pmap_mpvop_maxfree = pmap_mpvop_free;
2715 #if 0
2716 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2717 #endif
2718 }
2719
2720 /*
2721 * This routine in bootstraping to steal to-be-managed memory (which will
2722 * then be unmanaged). We use it to grab from the first 256MB for our
2723 * pmap needs and above 256MB for other stuff.
2724 */
2725 vaddr_t
2726 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2727 {
2728 vsize_t size;
2729 vaddr_t va;
2730 paddr_t pa = 0;
2731 int npgs, bank;
2732 struct vm_physseg *ps;
2733
2734 if (uvm.page_init_done == TRUE)
2735 panic("pmap_steal_memory: called _after_ bootstrap");
2736
2737 *vstartp = VM_MIN_KERNEL_ADDRESS;
2738 *vendp = VM_MAX_KERNEL_ADDRESS;
2739
2740 size = round_page(vsize);
2741 npgs = atop(size);
2742
2743 /*
2744 * PA 0 will never be among those given to UVM so we can use it
2745 * to indicate we couldn't steal any memory.
2746 */
2747 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2748 if (ps->free_list == VM_FREELIST_FIRST256 &&
2749 ps->avail_end - ps->avail_start >= npgs) {
2750 pa = ptoa(ps->avail_start);
2751 break;
2752 }
2753 }
2754
2755 if (pa == 0)
2756 panic("pmap_steal_memory: no approriate memory to steal!");
2757
2758 ps->avail_start += npgs;
2759 ps->start += npgs;
2760
2761 /*
2762 * If we've used up all the pages in the segment, remove it and
2763 * compact the list.
2764 */
2765 if (ps->avail_start == ps->end) {
2766 /*
2767 * If this was the last one, then a very bad thing has occurred
2768 */
2769 if (--vm_nphysseg == 0)
2770 panic("pmap_steal_memory: out of memory!");
2771
2772 printf("pmap_steal_memory: consumed bank %d\n", bank);
2773 for (; bank < vm_nphysseg; bank++, ps++) {
2774 ps[0] = ps[1];
2775 }
2776 }
2777
2778 va = (vaddr_t) pa;
2779 memset((caddr_t) va, 0, size);
2780 pmap_pages_stolen += npgs;
2781 #ifdef DEBUG
2782 if (pmapdebug && npgs > 1) {
2783 u_int cnt = 0;
2784 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2785 cnt += ps->avail_end - ps->avail_start;
2786 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2787 npgs, pmap_pages_stolen, cnt);
2788 }
2789 #endif
2790
2791 return va;
2792 }
2793
2794 /*
2795 * Find a chuck of memory with right size and alignment.
2796 */
2797 void *
2798 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2799 {
2800 struct mem_region *mp;
2801 paddr_t s, e;
2802 int i, j;
2803
2804 size = round_page(size);
2805
2806 DPRINTFN(BOOT,
2807 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2808 size, alignment, at_end));
2809
2810 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2811 panic("pmap_boot_find_memory: invalid alignment %lx",
2812 alignment);
2813
2814 if (at_end) {
2815 if (alignment != PAGE_SIZE)
2816 panic("pmap_boot_find_memory: invalid ending "
2817 "alignment %lx", alignment);
2818
2819 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2820 s = mp->start + mp->size - size;
2821 if (s >= mp->start && mp->size >= size) {
2822 DPRINTFN(BOOT,(": %lx\n", s));
2823 DPRINTFN(BOOT,
2824 ("pmap_boot_find_memory: b-avail[%d] start "
2825 "0x%lx size 0x%lx\n", mp - avail,
2826 mp->start, mp->size));
2827 mp->size -= size;
2828 DPRINTFN(BOOT,
2829 ("pmap_boot_find_memory: a-avail[%d] start "
2830 "0x%lx size 0x%lx\n", mp - avail,
2831 mp->start, mp->size));
2832 return (void *) s;
2833 }
2834 }
2835 panic("pmap_boot_find_memory: no available memory");
2836 }
2837
2838 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2839 s = (mp->start + alignment - 1) & ~(alignment-1);
2840 e = s + size;
2841
2842 /*
2843 * Is the calculated region entirely within the region?
2844 */
2845 if (s < mp->start || e > mp->start + mp->size)
2846 continue;
2847
2848 DPRINTFN(BOOT,(": %lx\n", s));
2849 if (s == mp->start) {
2850 /*
2851 * If the block starts at the beginning of region,
2852 * adjust the size & start. (the region may now be
2853 * zero in length)
2854 */
2855 DPRINTFN(BOOT,
2856 ("pmap_boot_find_memory: b-avail[%d] start "
2857 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2858 mp->start += size;
2859 mp->size -= size;
2860 DPRINTFN(BOOT,
2861 ("pmap_boot_find_memory: a-avail[%d] start "
2862 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2863 } else if (e == mp->start + mp->size) {
2864 /*
2865 * If the block starts at the beginning of region,
2866 * adjust only the size.
2867 */
2868 DPRINTFN(BOOT,
2869 ("pmap_boot_find_memory: b-avail[%d] start "
2870 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2871 mp->size -= size;
2872 DPRINTFN(BOOT,
2873 ("pmap_boot_find_memory: a-avail[%d] start "
2874 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2875 } else {
2876 /*
2877 * Block is in the middle of the region, so we
2878 * have to split it in two.
2879 */
2880 for (j = avail_cnt; j > i + 1; j--) {
2881 avail[j] = avail[j-1];
2882 }
2883 DPRINTFN(BOOT,
2884 ("pmap_boot_find_memory: b-avail[%d] start "
2885 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2886 mp[1].start = e;
2887 mp[1].size = mp[0].start + mp[0].size - e;
2888 mp[0].size = s - mp[0].start;
2889 avail_cnt++;
2890 for (; i < avail_cnt; i++) {
2891 DPRINTFN(BOOT,
2892 ("pmap_boot_find_memory: a-avail[%d] "
2893 "start 0x%lx size 0x%lx\n", i,
2894 avail[i].start, avail[i].size));
2895 }
2896 }
2897 return (void *) s;
2898 }
2899 panic("pmap_boot_find_memory: not enough memory for "
2900 "%lx/%lx allocation?", size, alignment);
2901 }
2902
2903 /*
2904 * This is not part of the defined PMAP interface and is specific to the
2905 * PowerPC architecture. This is called during initppc, before the system
2906 * is really initialized.
2907 */
2908 void
2909 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2910 {
2911 struct mem_region *mp, tmp;
2912 paddr_t s, e;
2913 psize_t size;
2914 int i, j;
2915
2916 /*
2917 * Get memory.
2918 */
2919 mem_regions(&mem, &avail);
2920 #if defined(DEBUG)
2921 if (pmapdebug & PMAPDEBUG_BOOT) {
2922 printf("pmap_bootstrap: memory configuration:\n");
2923 for (mp = mem; mp->size; mp++) {
2924 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2925 mp->start, mp->size);
2926 }
2927 for (mp = avail; mp->size; mp++) {
2928 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2929 mp->start, mp->size);
2930 }
2931 }
2932 #endif
2933
2934 /*
2935 * Find out how much physical memory we have and in how many chunks.
2936 */
2937 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2938 if (mp->start >= pmap_memlimit)
2939 continue;
2940 if (mp->start + mp->size > pmap_memlimit) {
2941 size = pmap_memlimit - mp->start;
2942 physmem += btoc(size);
2943 } else {
2944 physmem += btoc(mp->size);
2945 }
2946 mem_cnt++;
2947 }
2948
2949 /*
2950 * Count the number of available entries.
2951 */
2952 for (avail_cnt = 0, mp = avail; mp->size; mp++)
2953 avail_cnt++;
2954
2955 /*
2956 * Page align all regions.
2957 */
2958 kernelstart = trunc_page(kernelstart);
2959 kernelend = round_page(kernelend);
2960 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2961 s = round_page(mp->start);
2962 mp->size -= (s - mp->start);
2963 mp->size = trunc_page(mp->size);
2964 mp->start = s;
2965 e = mp->start + mp->size;
2966
2967 DPRINTFN(BOOT,
2968 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2969 i, mp->start, mp->size));
2970
2971 /*
2972 * Don't allow the end to run beyond our artificial limit
2973 */
2974 if (e > pmap_memlimit)
2975 e = pmap_memlimit;
2976
2977 /*
2978 * Is this region empty or strange? skip it.
2979 */
2980 if (e <= s) {
2981 mp->start = 0;
2982 mp->size = 0;
2983 continue;
2984 }
2985
2986 /*
2987 * Does this overlap the beginning of kernel?
2988 * Does extend past the end of the kernel?
2989 */
2990 else if (s < kernelstart && e > kernelstart) {
2991 if (e > kernelend) {
2992 avail[avail_cnt].start = kernelend;
2993 avail[avail_cnt].size = e - kernelend;
2994 avail_cnt++;
2995 }
2996 mp->size = kernelstart - s;
2997 }
2998 /*
2999 * Check whether this region overlaps the end of the kernel.
3000 */
3001 else if (s < kernelend && e > kernelend) {
3002 mp->start = kernelend;
3003 mp->size = e - kernelend;
3004 }
3005 /*
3006 * Look whether this regions is completely inside the kernel.
3007 * Nuke it if it does.
3008 */
3009 else if (s >= kernelstart && e <= kernelend) {
3010 mp->start = 0;
3011 mp->size = 0;
3012 }
3013 /*
3014 * If the user imposed a memory limit, enforce it.
3015 */
3016 else if (s >= pmap_memlimit) {
3017 mp->start = -PAGE_SIZE; /* let's know why */
3018 mp->size = 0;
3019 }
3020 else {
3021 mp->start = s;
3022 mp->size = e - s;
3023 }
3024 DPRINTFN(BOOT,
3025 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3026 i, mp->start, mp->size));
3027 }
3028
3029 /*
3030 * Move (and uncount) all the null return to the end.
3031 */
3032 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3033 if (mp->size == 0) {
3034 tmp = avail[i];
3035 avail[i] = avail[--avail_cnt];
3036 avail[avail_cnt] = avail[i];
3037 }
3038 }
3039
3040 /*
3041 * (Bubble)sort them into asecnding order.
3042 */
3043 for (i = 0; i < avail_cnt; i++) {
3044 for (j = i + 1; j < avail_cnt; j++) {
3045 if (avail[i].start > avail[j].start) {
3046 tmp = avail[i];
3047 avail[i] = avail[j];
3048 avail[j] = tmp;
3049 }
3050 }
3051 }
3052
3053 /*
3054 * Make sure they don't overlap.
3055 */
3056 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3057 if (mp[0].start + mp[0].size > mp[1].start) {
3058 mp[0].size = mp[1].start - mp[0].start;
3059 }
3060 DPRINTFN(BOOT,
3061 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3062 i, mp->start, mp->size));
3063 }
3064 DPRINTFN(BOOT,
3065 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3066 i, mp->start, mp->size));
3067
3068 #ifdef PTEGCOUNT
3069 pmap_pteg_cnt = PTEGCOUNT;
3070 #else /* PTEGCOUNT */
3071 pmap_pteg_cnt = 0x1000;
3072
3073 while (pmap_pteg_cnt < physmem)
3074 pmap_pteg_cnt <<= 1;
3075
3076 pmap_pteg_cnt >>= 1;
3077 #endif /* PTEGCOUNT */
3078
3079 /*
3080 * Find suitably aligned memory for PTEG hash table.
3081 */
3082 size = pmap_pteg_cnt * sizeof(struct pteg);
3083 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3084 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3085 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3086 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3087 pmap_pteg_table, size);
3088 #endif
3089
3090 memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
3091 pmap_pteg_mask = pmap_pteg_cnt - 1;
3092
3093 /*
3094 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3095 * with pages. So we just steal them before giving them to UVM.
3096 */
3097 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3098 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3099 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3100 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3101 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3102 pmap_pvo_table, size);
3103 #endif
3104
3105 for (i = 0; i < pmap_pteg_cnt; i++)
3106 TAILQ_INIT(&pmap_pvo_table[i]);
3107
3108 #ifndef MSGBUFADDR
3109 /*
3110 * Allocate msgbuf in high memory.
3111 */
3112 msgbuf_paddr =
3113 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3114 #endif
3115
3116 #ifdef __HAVE_PMAP_PHYSSEG
3117 {
3118 u_int npgs = 0;
3119 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3120 npgs += btoc(mp->size);
3121 size = (sizeof(struct pvo_head) + 1) * npgs;
3122 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3123 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3125 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3126 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3127 pmap_physseg.pvoh, size);
3128 #endif
3129 }
3130 #endif
3131
3132 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3133 paddr_t pfstart = atop(mp->start);
3134 paddr_t pfend = atop(mp->start + mp->size);
3135 if (mp->size == 0)
3136 continue;
3137 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3138 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3139 VM_FREELIST_FIRST256);
3140 } else if (mp->start >= SEGMENT_LENGTH) {
3141 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3142 VM_FREELIST_DEFAULT);
3143 } else {
3144 pfend = atop(SEGMENT_LENGTH);
3145 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3146 VM_FREELIST_FIRST256);
3147 pfstart = atop(SEGMENT_LENGTH);
3148 pfend = atop(mp->start + mp->size);
3149 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3150 VM_FREELIST_DEFAULT);
3151 }
3152 }
3153
3154 /*
3155 * Make sure kernel vsid is allocated as well as VSID 0.
3156 */
3157 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3158 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3159 pmap_vsid_bitmap[0] |= 1;
3160
3161 /*
3162 * Initialize kernel pmap and hardware.
3163 */
3164 #ifndef PPC_OEA64
3165 for (i = 0; i < 16; i++) {
3166 pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3167 __asm __volatile ("mtsrin %0,%1"
3168 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3169 }
3170
3171 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3172 __asm __volatile ("mtsr %0,%1"
3173 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3174 #ifdef KERNEL2_SR
3175 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3176 __asm __volatile ("mtsr %0,%1"
3177 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3178 #endif
3179 for (i = 0; i < 16; i++) {
3180 if (iosrtable[i] & SR601_T) {
3181 pmap_kernel()->pm_sr[i] = iosrtable[i];
3182 __asm __volatile ("mtsrin %0,%1"
3183 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3184 }
3185 }
3186 #endif /* !PPC_OEA64 */
3187
3188 __asm __volatile ("sync; mtsdr1 %0; isync"
3189 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3190 tlbia();
3191
3192 #ifdef ALTIVEC
3193 pmap_use_altivec = cpu_altivec;
3194 #endif
3195
3196 #ifdef DEBUG
3197 if (pmapdebug & PMAPDEBUG_BOOT) {
3198 u_int cnt;
3199 int bank;
3200 char pbuf[9];
3201 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3202 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3203 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3204 bank,
3205 ptoa(vm_physmem[bank].avail_start),
3206 ptoa(vm_physmem[bank].avail_end),
3207 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3208 }
3209 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3210 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3211 pbuf, cnt);
3212 }
3213 #endif
3214
3215 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3216 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3217 &pmap_pool_uallocator);
3218
3219 pool_setlowat(&pmap_upvo_pool, 252);
3220
3221 pool_init(&pmap_pool, sizeof(struct pmap),
3222 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3223 }
3224