Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.32.2.1
      1 /*	$NetBSD: pmap.c,v 1.32.2.1 2006/06/21 14:55:03 yamt Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.32.2.1 2006/06/21 14:55:03 yamt Exp $");
     71 
     72 #include "opt_ppcarch.h"
     73 #include "opt_altivec.h"
     74 #include "opt_pmap.h"
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/user.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 
     84 #if __NetBSD_Version__ < 105010000
     85 #include <vm/vm.h>
     86 #include <vm/vm_kern.h>
     87 #define	splvm()		splimp()
     88 #endif
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/pcb.h>
     93 #include <machine/powerpc.h>
     94 #include <powerpc/spr.h>
     95 #include <powerpc/oea/sr_601.h>
     96 #include <powerpc/bat.h>
     97 
     98 #if defined(DEBUG) || defined(PMAPCHECK)
     99 #define	STATIC
    100 #else
    101 #define	STATIC	static
    102 #endif
    103 
    104 #ifdef ALTIVEC
    105 int pmap_use_altivec;
    106 #endif
    107 
    108 volatile struct pteg *pmap_pteg_table;
    109 unsigned int pmap_pteg_cnt;
    110 unsigned int pmap_pteg_mask;
    111 #ifdef PMAP_MEMLIMIT
    112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    113 #else
    114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115 #endif
    116 
    117 struct pmap kernel_pmap_;
    118 unsigned int pmap_pages_stolen;
    119 u_long pmap_pte_valid;
    120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    121 u_long pmap_pvo_enter_depth;
    122 u_long pmap_pvo_remove_depth;
    123 #endif
    124 
    125 int physmem;
    126 #ifndef MSGBUFADDR
    127 extern paddr_t msgbuf_paddr;
    128 #endif
    129 
    130 static struct mem_region *mem, *avail;
    131 static u_int mem_cnt, avail_cnt;
    132 
    133 #ifdef __HAVE_PMAP_PHYSSEG
    134 /*
    135  * This is a cache of referenced/modified bits.
    136  * Bits herein are shifted by ATTRSHFT.
    137  */
    138 #define	ATTR_SHFT	4
    139 struct pmap_physseg pmap_physseg;
    140 #endif
    141 
    142 /*
    143  * The following structure is exactly 32 bytes long (one cacheline).
    144  */
    145 struct pvo_entry {
    146 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    147 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    148 	struct pte pvo_pte;			/* Prebuilt PTE */
    149 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    150 	vaddr_t pvo_vaddr;			/* VA of entry */
    151 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    152 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    153 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    154 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    155 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    156 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    157 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    158 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    159 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    160 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    161 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    162 #define	PVO_REMOVE		6		/* PVO has been removed */
    163 #define	PVO_WHERE_MASK		15
    164 #define	PVO_WHERE_SHFT		8
    165 };
    166 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    167 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    168 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    169 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    170 #define	PVO_PTEGIDX_CLR(pvo)	\
    171 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    172 #define	PVO_PTEGIDX_SET(pvo,i)	\
    173 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    174 #define	PVO_WHERE(pvo,w)	\
    175 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    176 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    177 
    178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    179 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    182 
    183 struct pool pmap_pool;		/* pool for pmap structures */
    184 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    185 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    186 
    187 /*
    188  * We keep a cache of unmanaged pages to be used for pvo entries for
    189  * unmanaged pages.
    190  */
    191 struct pvo_page {
    192 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    193 };
    194 SIMPLEQ_HEAD(pvop_head, pvo_page);
    195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    197 u_long pmap_upvop_free;
    198 u_long pmap_upvop_maxfree;
    199 u_long pmap_mpvop_free;
    200 u_long pmap_mpvop_maxfree;
    201 
    202 STATIC void *pmap_pool_ualloc(struct pool *, int);
    203 STATIC void *pmap_pool_malloc(struct pool *, int);
    204 
    205 STATIC void pmap_pool_ufree(struct pool *, void *);
    206 STATIC void pmap_pool_mfree(struct pool *, void *);
    207 
    208 static struct pool_allocator pmap_pool_mallocator = {
    209 	pmap_pool_malloc, pmap_pool_mfree, 0,
    210 };
    211 
    212 static struct pool_allocator pmap_pool_uallocator = {
    213 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    214 };
    215 
    216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    217 void pmap_pte_print(volatile struct pte *);
    218 #endif
    219 
    220 #ifdef DDB
    221 void pmap_pteg_check(void);
    222 void pmap_pteg_dist(void);
    223 void pmap_print_pte(pmap_t, vaddr_t);
    224 void pmap_print_mmuregs(void);
    225 #endif
    226 
    227 #if defined(DEBUG) || defined(PMAPCHECK)
    228 #ifdef PMAPCHECK
    229 int pmapcheck = 1;
    230 #else
    231 int pmapcheck = 0;
    232 #endif
    233 void pmap_pvo_verify(void);
    234 STATIC void pmap_pvo_check(const struct pvo_entry *);
    235 #define	PMAP_PVO_CHECK(pvo)	 		\
    236 	do {					\
    237 		if (pmapcheck)			\
    238 			pmap_pvo_check(pvo);	\
    239 	} while (0)
    240 #else
    241 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    242 #endif
    243 STATIC int pmap_pte_insert(int, struct pte *);
    244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    245 	vaddr_t, paddr_t, register_t, int);
    246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    247 STATIC void pmap_pvo_free(struct pvo_entry *);
    248 STATIC void pmap_pvo_free_list(struct pvo_head *);
    249 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    250 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    251 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    252 STATIC void pvo_set_exec(struct pvo_entry *);
    253 STATIC void pvo_clear_exec(struct pvo_entry *);
    254 
    255 STATIC void tlbia(void);
    256 
    257 STATIC void pmap_release(pmap_t);
    258 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    259 
    260 static uint32_t pmap_pvo_reclaim_nextidx;
    261 #ifdef DEBUG
    262 static int pmap_pvo_reclaim_debugctr;
    263 #endif
    264 
    265 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    266 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    267 
    268 static int pmap_initialized;
    269 
    270 #if defined(DEBUG) || defined(PMAPDEBUG)
    271 #define	PMAPDEBUG_BOOT		0x0001
    272 #define	PMAPDEBUG_PTE		0x0002
    273 #define	PMAPDEBUG_EXEC		0x0008
    274 #define	PMAPDEBUG_PVOENTER	0x0010
    275 #define	PMAPDEBUG_PVOREMOVE	0x0020
    276 #define	PMAPDEBUG_ACTIVATE	0x0100
    277 #define	PMAPDEBUG_CREATE	0x0200
    278 #define	PMAPDEBUG_ENTER		0x1000
    279 #define	PMAPDEBUG_KENTER	0x2000
    280 #define	PMAPDEBUG_KREMOVE	0x4000
    281 #define	PMAPDEBUG_REMOVE	0x8000
    282 unsigned int pmapdebug = 0;
    283 # define DPRINTF(x)		printf x
    284 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    285 #else
    286 # define DPRINTF(x)
    287 # define DPRINTFN(n, x)
    288 #endif
    289 
    290 
    291 #ifdef PMAPCOUNTERS
    292 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    293 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    294 
    295 struct evcnt pmap_evcnt_mappings =
    296     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    297 	    "pmap", "pages mapped");
    298 struct evcnt pmap_evcnt_unmappings =
    299     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    300 	    "pmap", "pages unmapped");
    301 
    302 struct evcnt pmap_evcnt_kernel_mappings =
    303     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    304 	    "pmap", "kernel pages mapped");
    305 struct evcnt pmap_evcnt_kernel_unmappings =
    306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    307 	    "pmap", "kernel pages unmapped");
    308 
    309 struct evcnt pmap_evcnt_mappings_replaced =
    310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    311 	    "pmap", "page mappings replaced");
    312 
    313 struct evcnt pmap_evcnt_exec_mappings =
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    315 	    "pmap", "exec pages mapped");
    316 struct evcnt pmap_evcnt_exec_cached =
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    318 	    "pmap", "exec pages cached");
    319 
    320 struct evcnt pmap_evcnt_exec_synced =
    321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    322 	    "pmap", "exec pages synced");
    323 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    324     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    325 	    "pmap", "exec pages synced (CM)");
    326 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
    327     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    328 	    "pmap", "exec pages synced (PR)");
    329 
    330 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    331     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    332 	    "pmap", "exec pages uncached (PP)");
    333 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    335 	    "pmap", "exec pages uncached (CM)");
    336 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    337     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    338 	    "pmap", "exec pages uncached (ZP)");
    339 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    340     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    341 	    "pmap", "exec pages uncached (CP)");
    342 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
    343     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    344 	    "pmap", "exec pages uncached (PR)");
    345 
    346 struct evcnt pmap_evcnt_updates =
    347     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    348 	    "pmap", "updates");
    349 struct evcnt pmap_evcnt_collects =
    350     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    351 	    "pmap", "collects");
    352 struct evcnt pmap_evcnt_copies =
    353     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    354 	    "pmap", "copies");
    355 
    356 struct evcnt pmap_evcnt_ptes_spilled =
    357     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    358 	    "pmap", "ptes spilled from overflow");
    359 struct evcnt pmap_evcnt_ptes_unspilled =
    360     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    361 	    "pmap", "ptes not spilled");
    362 struct evcnt pmap_evcnt_ptes_evicted =
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "ptes evicted");
    365 
    366 struct evcnt pmap_evcnt_ptes_primary[8] = {
    367     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    368 	    "pmap", "ptes added at primary[0]"),
    369     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    370 	    "pmap", "ptes added at primary[1]"),
    371     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    372 	    "pmap", "ptes added at primary[2]"),
    373     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    374 	    "pmap", "ptes added at primary[3]"),
    375 
    376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377 	    "pmap", "ptes added at primary[4]"),
    378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379 	    "pmap", "ptes added at primary[5]"),
    380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    381 	    "pmap", "ptes added at primary[6]"),
    382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    383 	    "pmap", "ptes added at primary[7]"),
    384 };
    385 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    386     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    387 	    "pmap", "ptes added at secondary[0]"),
    388     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    389 	    "pmap", "ptes added at secondary[1]"),
    390     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    391 	    "pmap", "ptes added at secondary[2]"),
    392     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    393 	    "pmap", "ptes added at secondary[3]"),
    394 
    395     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    396 	    "pmap", "ptes added at secondary[4]"),
    397     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    398 	    "pmap", "ptes added at secondary[5]"),
    399     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    400 	    "pmap", "ptes added at secondary[6]"),
    401     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    402 	    "pmap", "ptes added at secondary[7]"),
    403 };
    404 struct evcnt pmap_evcnt_ptes_removed =
    405     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    406 	    "pmap", "ptes removed");
    407 struct evcnt pmap_evcnt_ptes_changed =
    408     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    409 	    "pmap", "ptes changed");
    410 struct evcnt pmap_evcnt_pvos_reclaimed =
    411     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    412 	    "pmap", "pvos reclaimed");
    413 struct evcnt pmap_evcnt_pvos_failed =
    414     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    415 	    "pmap", "pvo allocation failures");
    416 
    417 /*
    418  * From pmap_subr.c
    419  */
    420 extern struct evcnt pmap_evcnt_zeroed_pages;
    421 extern struct evcnt pmap_evcnt_copied_pages;
    422 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    423 
    424 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
    425 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
    426 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
    427 
    428 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
    429 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
    430 
    431 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
    432 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
    433 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
    434 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
    435 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
    436 
    437 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
    438 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
    439 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
    440 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
    441 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
    442 
    443 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
    444 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
    445 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
    446 
    447 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
    448 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
    449 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
    450 
    451 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
    452 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
    453 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
    454 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
    455 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
    456 
    457 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
    458 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
    459 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
    460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
    461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
    462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
    463 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
    464 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
    465 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
    466 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
    467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
    468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
    469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
    470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
    471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
    472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
    473 
    474 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
    475 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
    476 #else
    477 #define	PMAPCOUNT(ev)	((void) 0)
    478 #define	PMAPCOUNT2(ev)	((void) 0)
    479 #endif
    480 
    481 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    482 #define	TLBSYNC()	__asm volatile("tlbsync")
    483 #define	SYNC()		__asm volatile("sync")
    484 #define	EIEIO()		__asm volatile("eieio")
    485 #define	MFMSR()		mfmsr()
    486 #define	MTMSR(psl)	mtmsr(psl)
    487 #define	MFPVR()		mfpvr()
    488 #define	MFSRIN(va)	mfsrin(va)
    489 #define	MFTB()		mfrtcltbl()
    490 
    491 #ifndef PPC_OEA64
    492 static inline register_t
    493 mfsrin(vaddr_t va)
    494 {
    495 	register_t sr;
    496 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    497 	return sr;
    498 }
    499 #endif	/* PPC_OEA64 */
    500 
    501 static inline register_t
    502 pmap_interrupts_off(void)
    503 {
    504 	register_t msr = MFMSR();
    505 	if (msr & PSL_EE)
    506 		MTMSR(msr & ~PSL_EE);
    507 	return msr;
    508 }
    509 
    510 static void
    511 pmap_interrupts_restore(register_t msr)
    512 {
    513 	if (msr & PSL_EE)
    514 		MTMSR(msr);
    515 }
    516 
    517 static inline u_int32_t
    518 mfrtcltbl(void)
    519 {
    520 
    521 	if ((MFPVR() >> 16) == MPC601)
    522 		return (mfrtcl() >> 7);
    523 	else
    524 		return (mftbl());
    525 }
    526 
    527 /*
    528  * These small routines may have to be replaced,
    529  * if/when we support processors other that the 604.
    530  */
    531 
    532 void
    533 tlbia(void)
    534 {
    535 	caddr_t i;
    536 
    537 	SYNC();
    538 	/*
    539 	 * Why not use "tlbia"?  Because not all processors implement it.
    540 	 *
    541 	 * This needs to be a per-CPU callback to do the appropriate thing
    542 	 * for the CPU. XXX
    543 	 */
    544 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    545 		TLBIE(i);
    546 		EIEIO();
    547 		SYNC();
    548 	}
    549 	TLBSYNC();
    550 	SYNC();
    551 }
    552 
    553 static inline register_t
    554 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    555 {
    556 #ifdef PPC_OEA64
    557 #if 0
    558 	const struct ste *ste;
    559 	register_t hash;
    560 	int i;
    561 
    562 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    563 
    564 	/*
    565 	 * Try the primary group first
    566 	 */
    567 	ste = pm->pm_stes[hash].stes;
    568 	for (i = 0; i < 8; i++, ste++) {
    569 		if (ste->ste_hi & STE_V) &&
    570 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    571 			return ste;
    572 	}
    573 
    574 	/*
    575 	 * Then the secondary group.
    576 	 */
    577 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    578 	for (i = 0; i < 8; i++, ste++) {
    579 		if (ste->ste_hi & STE_V) &&
    580 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    581 			return addr;
    582 	}
    583 
    584 	return NULL;
    585 #else
    586 	/*
    587 	 * Rather than searching the STE groups for the VSID, we know
    588 	 * how we generate that from the ESID and so do that.
    589 	 */
    590 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    591 #endif
    592 #else
    593 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    594 #endif
    595 }
    596 
    597 static inline register_t
    598 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    599 {
    600 	register_t hash;
    601 
    602 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    603 	return hash & pmap_pteg_mask;
    604 }
    605 
    606 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    607 /*
    608  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    609  * The only bit of magic is that the top 4 bits of the address doesn't
    610  * technically exist in the PTE.  But we know we reserved 4 bits of the
    611  * VSID for it so that's how we get it.
    612  */
    613 static vaddr_t
    614 pmap_pte_to_va(volatile const struct pte *pt)
    615 {
    616 	vaddr_t va;
    617 	uintptr_t ptaddr = (uintptr_t) pt;
    618 
    619 	if (pt->pte_hi & PTE_HID)
    620 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    621 
    622 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    623 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    624 	va <<= ADDR_PIDX_SHFT;
    625 
    626 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    627 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    628 
    629 #ifdef PPC_OEA64
    630 	/* PPC63 Bits 0-35 */
    631 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    632 #endif
    633 #ifdef PPC_OEA
    634 	/* PPC Bits 0-3 */
    635 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    636 #endif
    637 
    638 	return va;
    639 }
    640 #endif
    641 
    642 static inline struct pvo_head *
    643 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    644 {
    645 #ifdef __HAVE_VM_PAGE_MD
    646 	struct vm_page *pg;
    647 
    648 	pg = PHYS_TO_VM_PAGE(pa);
    649 	if (pg_p != NULL)
    650 		*pg_p = pg;
    651 	if (pg == NULL)
    652 		return &pmap_pvo_unmanaged;
    653 	return &pg->mdpage.mdpg_pvoh;
    654 #endif
    655 #ifdef __HAVE_PMAP_PHYSSEG
    656 	int bank, pg;
    657 
    658 	bank = vm_physseg_find(atop(pa), &pg);
    659 	if (pg_p != NULL)
    660 		*pg_p = pg;
    661 	if (bank == -1)
    662 		return &pmap_pvo_unmanaged;
    663 	return &vm_physmem[bank].pmseg.pvoh[pg];
    664 #endif
    665 }
    666 
    667 static inline struct pvo_head *
    668 vm_page_to_pvoh(struct vm_page *pg)
    669 {
    670 #ifdef __HAVE_VM_PAGE_MD
    671 	return &pg->mdpage.mdpg_pvoh;
    672 #endif
    673 #ifdef __HAVE_PMAP_PHYSSEG
    674 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    675 #endif
    676 }
    677 
    678 
    679 #ifdef __HAVE_PMAP_PHYSSEG
    680 static inline char *
    681 pa_to_attr(paddr_t pa)
    682 {
    683 	int bank, pg;
    684 
    685 	bank = vm_physseg_find(atop(pa), &pg);
    686 	if (bank == -1)
    687 		return NULL;
    688 	return &vm_physmem[bank].pmseg.attrs[pg];
    689 }
    690 #endif
    691 
    692 static inline void
    693 pmap_attr_clear(struct vm_page *pg, int ptebit)
    694 {
    695 #ifdef __HAVE_PMAP_PHYSSEG
    696 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    697 #endif
    698 #ifdef __HAVE_VM_PAGE_MD
    699 	pg->mdpage.mdpg_attrs &= ~ptebit;
    700 #endif
    701 }
    702 
    703 static inline int
    704 pmap_attr_fetch(struct vm_page *pg)
    705 {
    706 #ifdef __HAVE_PMAP_PHYSSEG
    707 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    708 #endif
    709 #ifdef __HAVE_VM_PAGE_MD
    710 	return pg->mdpage.mdpg_attrs;
    711 #endif
    712 }
    713 
    714 static inline void
    715 pmap_attr_save(struct vm_page *pg, int ptebit)
    716 {
    717 #ifdef __HAVE_PMAP_PHYSSEG
    718 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    719 #endif
    720 #ifdef __HAVE_VM_PAGE_MD
    721 	pg->mdpage.mdpg_attrs |= ptebit;
    722 #endif
    723 }
    724 
    725 static inline int
    726 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    727 {
    728 	if (pt->pte_hi == pvo_pt->pte_hi
    729 #if 0
    730 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    731 	        ~(PTE_REF|PTE_CHG)) == 0
    732 #endif
    733 	    )
    734 		return 1;
    735 	return 0;
    736 }
    737 
    738 static inline void
    739 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    740 {
    741 	/*
    742 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    743 	 * only gets set when the real pte is set in memory.
    744 	 *
    745 	 * Note: Don't set the valid bit for correct operation of tlb update.
    746 	 */
    747 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    748 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    749 	pt->pte_lo = pte_lo;
    750 }
    751 
    752 static inline void
    753 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    754 {
    755 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    756 }
    757 
    758 static inline void
    759 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    760 {
    761 	/*
    762 	 * As shown in Section 7.6.3.2.3
    763 	 */
    764 	pt->pte_lo &= ~ptebit;
    765 	TLBIE(va);
    766 	SYNC();
    767 	EIEIO();
    768 	TLBSYNC();
    769 	SYNC();
    770 }
    771 
    772 static inline void
    773 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    774 {
    775 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    776 	if (pvo_pt->pte_hi & PTE_VALID)
    777 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    778 #endif
    779 	pvo_pt->pte_hi |= PTE_VALID;
    780 	/*
    781 	 * Update the PTE as defined in section 7.6.3.1
    782 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    783 	 * have been saved so this routine can restore them (if desired).
    784 	 */
    785 	pt->pte_lo = pvo_pt->pte_lo;
    786 	EIEIO();
    787 	pt->pte_hi = pvo_pt->pte_hi;
    788 	SYNC();
    789 	pmap_pte_valid++;
    790 }
    791 
    792 static inline void
    793 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    794 {
    795 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    796 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    797 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    798 	if ((pt->pte_hi & PTE_VALID) == 0)
    799 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    800 #endif
    801 
    802 	pvo_pt->pte_hi &= ~PTE_VALID;
    803 	/*
    804 	 * Force the ref & chg bits back into the PTEs.
    805 	 */
    806 	SYNC();
    807 	/*
    808 	 * Invalidate the pte ... (Section 7.6.3.3)
    809 	 */
    810 	pt->pte_hi &= ~PTE_VALID;
    811 	SYNC();
    812 	TLBIE(va);
    813 	SYNC();
    814 	EIEIO();
    815 	TLBSYNC();
    816 	SYNC();
    817 	/*
    818 	 * Save the ref & chg bits ...
    819 	 */
    820 	pmap_pte_synch(pt, pvo_pt);
    821 	pmap_pte_valid--;
    822 }
    823 
    824 static inline void
    825 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    826 {
    827 	/*
    828 	 * Invalidate the PTE
    829 	 */
    830 	pmap_pte_unset(pt, pvo_pt, va);
    831 	pmap_pte_set(pt, pvo_pt);
    832 }
    833 
    834 /*
    835  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    836  * (either primary or secondary location).
    837  *
    838  * Note: both the destination and source PTEs must not have PTE_VALID set.
    839  */
    840 
    841 STATIC int
    842 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    843 {
    844 	volatile struct pte *pt;
    845 	int i;
    846 
    847 #if defined(DEBUG)
    848 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    849 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    850 #endif
    851 	/*
    852 	 * First try primary hash.
    853 	 */
    854 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    855 		if ((pt->pte_hi & PTE_VALID) == 0) {
    856 			pvo_pt->pte_hi &= ~PTE_HID;
    857 			pmap_pte_set(pt, pvo_pt);
    858 			return i;
    859 		}
    860 	}
    861 
    862 	/*
    863 	 * Now try secondary hash.
    864 	 */
    865 	ptegidx ^= pmap_pteg_mask;
    866 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    867 		if ((pt->pte_hi & PTE_VALID) == 0) {
    868 			pvo_pt->pte_hi |= PTE_HID;
    869 			pmap_pte_set(pt, pvo_pt);
    870 			return i;
    871 		}
    872 	}
    873 	return -1;
    874 }
    875 
    876 /*
    877  * Spill handler.
    878  *
    879  * Tries to spill a page table entry from the overflow area.
    880  * This runs in either real mode (if dealing with a exception spill)
    881  * or virtual mode when dealing with manually spilling one of the
    882  * kernel's pte entries.  In either case, interrupts are already
    883  * disabled.
    884  */
    885 
    886 int
    887 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    888 {
    889 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    890 	struct pvo_entry *pvo;
    891 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    892 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    893 	int ptegidx, i, j;
    894 	volatile struct pteg *pteg;
    895 	volatile struct pte *pt;
    896 
    897 	ptegidx = va_to_pteg(pm, addr);
    898 
    899 	/*
    900 	 * Have to substitute some entry. Use the primary hash for this.
    901 	 * Use low bits of timebase as random generator.  Make sure we are
    902 	 * not picking a kernel pte for replacement.
    903 	 */
    904 	pteg = &pmap_pteg_table[ptegidx];
    905 	i = MFTB() & 7;
    906 	for (j = 0; j < 8; j++) {
    907 		pt = &pteg->pt[i];
    908 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    909 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    910 				!= KERNEL_VSIDBITS)
    911 			break;
    912 		i = (i + 1) & 7;
    913 	}
    914 	KASSERT(j < 8);
    915 
    916 	source_pvo = NULL;
    917 	victim_pvo = NULL;
    918 	pvoh = &pmap_pvo_table[ptegidx];
    919 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    920 
    921 		/*
    922 		 * We need to find pvo entry for this address...
    923 		 */
    924 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    925 
    926 		/*
    927 		 * If we haven't found the source and we come to a PVO with
    928 		 * a valid PTE, then we know we can't find it because all
    929 		 * evicted PVOs always are first in the list.
    930 		 */
    931 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    932 			break;
    933 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    934 		    addr == PVO_VADDR(pvo)) {
    935 
    936 			/*
    937 			 * Now we have found the entry to be spilled into the
    938 			 * pteg.  Attempt to insert it into the page table.
    939 			 */
    940 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    941 			if (j >= 0) {
    942 				PVO_PTEGIDX_SET(pvo, j);
    943 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    944 				PVO_WHERE(pvo, SPILL_INSERT);
    945 				pvo->pvo_pmap->pm_evictions--;
    946 				PMAPCOUNT(ptes_spilled);
    947 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    948 				    ? pmap_evcnt_ptes_secondary
    949 				    : pmap_evcnt_ptes_primary)[j]);
    950 
    951 				/*
    952 				 * Since we keep the evicted entries at the
    953 				 * from of the PVO list, we need move this
    954 				 * (now resident) PVO after the evicted
    955 				 * entries.
    956 				 */
    957 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    958 
    959 				/*
    960 				 * If we don't have to move (either we were the
    961 				 * last entry or the next entry was valid),
    962 				 * don't change our position.  Otherwise
    963 				 * move ourselves to the tail of the queue.
    964 				 */
    965 				if (next_pvo != NULL &&
    966 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    967 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    968 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    969 				}
    970 				return 1;
    971 			}
    972 			source_pvo = pvo;
    973 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    974 				return 0;
    975 			}
    976 			if (victim_pvo != NULL)
    977 				break;
    978 		}
    979 
    980 		/*
    981 		 * We also need the pvo entry of the victim we are replacing
    982 		 * so save the R & C bits of the PTE.
    983 		 */
    984 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    985 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    986 			vpvoh = pvoh;			/* *1* */
    987 			victim_pvo = pvo;
    988 			if (source_pvo != NULL)
    989 				break;
    990 		}
    991 	}
    992 
    993 	if (source_pvo == NULL) {
    994 		PMAPCOUNT(ptes_unspilled);
    995 		return 0;
    996 	}
    997 
    998 	if (victim_pvo == NULL) {
    999 		if ((pt->pte_hi & PTE_HID) == 0)
   1000 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1001 			    "no pvo entry!", pt);
   1002 
   1003 		/*
   1004 		 * If this is a secondary PTE, we need to search
   1005 		 * its primary pvo bucket for the matching PVO.
   1006 		 */
   1007 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1008 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1009 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1010 
   1011 			/*
   1012 			 * We also need the pvo entry of the victim we are
   1013 			 * replacing so save the R & C bits of the PTE.
   1014 			 */
   1015 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1016 				victim_pvo = pvo;
   1017 				break;
   1018 			}
   1019 		}
   1020 		if (victim_pvo == NULL)
   1021 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1022 			    "no pvo entry!", pt);
   1023 	}
   1024 
   1025 	/*
   1026 	 * The victim should be not be a kernel PVO/PTE entry.
   1027 	 */
   1028 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1029 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1030 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1031 
   1032 	/*
   1033 	 * We are invalidating the TLB entry for the EA for the
   1034 	 * we are replacing even though its valid; If we don't
   1035 	 * we lose any ref/chg bit changes contained in the TLB
   1036 	 * entry.
   1037 	 */
   1038 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1039 
   1040 	/*
   1041 	 * To enforce the PVO list ordering constraint that all
   1042 	 * evicted entries should come before all valid entries,
   1043 	 * move the source PVO to the tail of its list and the
   1044 	 * victim PVO to the head of its list (which might not be
   1045 	 * the same list, if the victim was using the secondary hash).
   1046 	 */
   1047 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1048 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1049 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1050 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1051 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1052 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1053 	victim_pvo->pvo_pmap->pm_evictions++;
   1054 	source_pvo->pvo_pmap->pm_evictions--;
   1055 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1056 	PVO_WHERE(source_pvo, SPILL_SET);
   1057 
   1058 	PVO_PTEGIDX_CLR(victim_pvo);
   1059 	PVO_PTEGIDX_SET(source_pvo, i);
   1060 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1061 	PMAPCOUNT(ptes_spilled);
   1062 	PMAPCOUNT(ptes_evicted);
   1063 	PMAPCOUNT(ptes_removed);
   1064 
   1065 	PMAP_PVO_CHECK(victim_pvo);
   1066 	PMAP_PVO_CHECK(source_pvo);
   1067 	return 1;
   1068 }
   1069 
   1070 /*
   1071  * Restrict given range to physical memory
   1072  */
   1073 void
   1074 pmap_real_memory(paddr_t *start, psize_t *size)
   1075 {
   1076 	struct mem_region *mp;
   1077 
   1078 	for (mp = mem; mp->size; mp++) {
   1079 		if (*start + *size > mp->start
   1080 		    && *start < mp->start + mp->size) {
   1081 			if (*start < mp->start) {
   1082 				*size -= mp->start - *start;
   1083 				*start = mp->start;
   1084 			}
   1085 			if (*start + *size > mp->start + mp->size)
   1086 				*size = mp->start + mp->size - *start;
   1087 			return;
   1088 		}
   1089 	}
   1090 	*size = 0;
   1091 }
   1092 
   1093 /*
   1094  * Initialize anything else for pmap handling.
   1095  * Called during vm_init().
   1096  */
   1097 void
   1098 pmap_init(void)
   1099 {
   1100 #ifdef __HAVE_PMAP_PHYSSEG
   1101 	struct pvo_tqhead *pvoh;
   1102 	int bank;
   1103 	long sz;
   1104 	char *attr;
   1105 
   1106 	pvoh = pmap_physseg.pvoh;
   1107 	attr = pmap_physseg.attrs;
   1108 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1109 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1110 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1111 		vm_physmem[bank].pmseg.attrs = attr;
   1112 		for (; sz > 0; sz--, pvoh++, attr++) {
   1113 			TAILQ_INIT(pvoh);
   1114 			*attr = 0;
   1115 		}
   1116 	}
   1117 #endif
   1118 
   1119 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1120 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1121 	    &pmap_pool_mallocator);
   1122 
   1123 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1124 
   1125 	pmap_initialized = 1;
   1126 
   1127 }
   1128 
   1129 /*
   1130  * How much virtual space does the kernel get?
   1131  */
   1132 void
   1133 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1134 {
   1135 	/*
   1136 	 * For now, reserve one segment (minus some overhead) for kernel
   1137 	 * virtual memory
   1138 	 */
   1139 	*start = VM_MIN_KERNEL_ADDRESS;
   1140 	*end = VM_MAX_KERNEL_ADDRESS;
   1141 }
   1142 
   1143 /*
   1144  * Allocate, initialize, and return a new physical map.
   1145  */
   1146 pmap_t
   1147 pmap_create(void)
   1148 {
   1149 	pmap_t pm;
   1150 
   1151 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1152 	memset((caddr_t)pm, 0, sizeof *pm);
   1153 	pmap_pinit(pm);
   1154 
   1155 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1156 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1157 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1158 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1159 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1160 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1161 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1162 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1163 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1164 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1165 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1166 	return pm;
   1167 }
   1168 
   1169 /*
   1170  * Initialize a preallocated and zeroed pmap structure.
   1171  */
   1172 void
   1173 pmap_pinit(pmap_t pm)
   1174 {
   1175 	register_t entropy = MFTB();
   1176 	register_t mask;
   1177 	int i;
   1178 
   1179 	/*
   1180 	 * Allocate some segment registers for this pmap.
   1181 	 */
   1182 	pm->pm_refs = 1;
   1183 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1184 		static register_t pmap_vsidcontext;
   1185 		register_t hash;
   1186 		unsigned int n;
   1187 
   1188 		/* Create a new value by multiplying by a prime adding in
   1189 		 * entropy from the timebase register.  This is to make the
   1190 		 * VSID more random so that the PT Hash function collides
   1191 		 * less often. (note that the prime causes gcc to do shifts
   1192 		 * instead of a multiply)
   1193 		 */
   1194 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1195 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1196 		if (hash == 0) {		/* 0 is special, avoid it */
   1197 			entropy += 0xbadf00d;
   1198 			continue;
   1199 		}
   1200 		n = hash >> 5;
   1201 		mask = 1L << (hash & (VSID_NBPW-1));
   1202 		hash = pmap_vsidcontext;
   1203 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1204 			/* anything free in this bucket? */
   1205 			if (~pmap_vsid_bitmap[n] == 0) {
   1206 				entropy = hash ^ (hash >> 16);
   1207 				continue;
   1208 			}
   1209 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1210 			mask = 1L << i;
   1211 			hash &= ~(VSID_NBPW-1);
   1212 			hash |= i;
   1213 		}
   1214 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1215 		pmap_vsid_bitmap[n] |= mask;
   1216 		pm->pm_vsid = hash;
   1217 #ifndef PPC_OEA64
   1218 		for (i = 0; i < 16; i++)
   1219 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1220 			    SR_NOEXEC;
   1221 #endif
   1222 		return;
   1223 	}
   1224 	panic("pmap_pinit: out of segments");
   1225 }
   1226 
   1227 /*
   1228  * Add a reference to the given pmap.
   1229  */
   1230 void
   1231 pmap_reference(pmap_t pm)
   1232 {
   1233 	pm->pm_refs++;
   1234 }
   1235 
   1236 /*
   1237  * Retire the given pmap from service.
   1238  * Should only be called if the map contains no valid mappings.
   1239  */
   1240 void
   1241 pmap_destroy(pmap_t pm)
   1242 {
   1243 	if (--pm->pm_refs == 0) {
   1244 		pmap_release(pm);
   1245 		pool_put(&pmap_pool, pm);
   1246 	}
   1247 }
   1248 
   1249 /*
   1250  * Release any resources held by the given physical map.
   1251  * Called when a pmap initialized by pmap_pinit is being released.
   1252  */
   1253 void
   1254 pmap_release(pmap_t pm)
   1255 {
   1256 	int idx, mask;
   1257 
   1258 	if (pm->pm_sr[0] == 0)
   1259 		panic("pmap_release");
   1260 	idx = pm->pm_vsid & (NPMAPS-1);
   1261 	mask = 1 << (idx % VSID_NBPW);
   1262 	idx /= VSID_NBPW;
   1263 
   1264 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1265 	pmap_vsid_bitmap[idx] &= ~mask;
   1266 }
   1267 
   1268 /*
   1269  * Copy the range specified by src_addr/len
   1270  * from the source map to the range dst_addr/len
   1271  * in the destination map.
   1272  *
   1273  * This routine is only advisory and need not do anything.
   1274  */
   1275 void
   1276 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1277 	vsize_t len, vaddr_t src_addr)
   1278 {
   1279 	PMAPCOUNT(copies);
   1280 }
   1281 
   1282 /*
   1283  * Require that all active physical maps contain no
   1284  * incorrect entries NOW.
   1285  */
   1286 void
   1287 pmap_update(struct pmap *pmap)
   1288 {
   1289 	PMAPCOUNT(updates);
   1290 	TLBSYNC();
   1291 }
   1292 
   1293 /*
   1294  * Garbage collects the physical map system for
   1295  * pages which are no longer used.
   1296  * Success need not be guaranteed -- that is, there
   1297  * may well be pages which are not referenced, but
   1298  * others may be collected.
   1299  * Called by the pageout daemon when pages are scarce.
   1300  */
   1301 void
   1302 pmap_collect(pmap_t pm)
   1303 {
   1304 	PMAPCOUNT(collects);
   1305 }
   1306 
   1307 static inline int
   1308 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1309 {
   1310 	int pteidx;
   1311 	/*
   1312 	 * We can find the actual pte entry without searching by
   1313 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1314 	 * and by noticing the HID bit.
   1315 	 */
   1316 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1317 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1318 		pteidx ^= pmap_pteg_mask * 8;
   1319 	return pteidx;
   1320 }
   1321 
   1322 volatile struct pte *
   1323 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1324 {
   1325 	volatile struct pte *pt;
   1326 
   1327 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1328 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1329 		return NULL;
   1330 #endif
   1331 
   1332 	/*
   1333 	 * If we haven't been supplied the ptegidx, calculate it.
   1334 	 */
   1335 	if (pteidx == -1) {
   1336 		int ptegidx;
   1337 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1338 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1339 	}
   1340 
   1341 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1342 
   1343 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1344 	return pt;
   1345 #else
   1346 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1347 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1348 		    "pvo but no valid pte index", pvo);
   1349 	}
   1350 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1351 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1352 		    "pvo but no valid pte", pvo);
   1353 	}
   1354 
   1355 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1356 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1357 #if defined(DEBUG) || defined(PMAPCHECK)
   1358 			pmap_pte_print(pt);
   1359 #endif
   1360 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1361 			    "pmap_pteg_table %p but invalid in pvo",
   1362 			    pvo, pt);
   1363 		}
   1364 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1365 #if defined(DEBUG) || defined(PMAPCHECK)
   1366 			pmap_pte_print(pt);
   1367 #endif
   1368 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1369 			    "not match pte %p in pmap_pteg_table",
   1370 			    pvo, pt);
   1371 		}
   1372 		return pt;
   1373 	}
   1374 
   1375 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1376 #if defined(DEBUG) || defined(PMAPCHECK)
   1377 		pmap_pte_print(pt);
   1378 #endif
   1379 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1380 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1381 	}
   1382 	return NULL;
   1383 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1384 }
   1385 
   1386 struct pvo_entry *
   1387 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1388 {
   1389 	struct pvo_entry *pvo;
   1390 	int ptegidx;
   1391 
   1392 	va &= ~ADDR_POFF;
   1393 	ptegidx = va_to_pteg(pm, va);
   1394 
   1395 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1396 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1397 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1398 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1399 			    "list %#x (%p)", pvo, ptegidx,
   1400 			     &pmap_pvo_table[ptegidx]);
   1401 #endif
   1402 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1403 			if (pteidx_p)
   1404 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1405 			return pvo;
   1406 		}
   1407 	}
   1408 	return NULL;
   1409 }
   1410 
   1411 #if defined(DEBUG) || defined(PMAPCHECK)
   1412 void
   1413 pmap_pvo_check(const struct pvo_entry *pvo)
   1414 {
   1415 	struct pvo_head *pvo_head;
   1416 	struct pvo_entry *pvo0;
   1417 	volatile struct pte *pt;
   1418 	int failed = 0;
   1419 
   1420 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1421 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1422 
   1423 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1424 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1425 		    pvo, pvo->pvo_pmap);
   1426 		failed = 1;
   1427 	}
   1428 
   1429 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1430 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1431 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1432 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1433 		failed = 1;
   1434 	}
   1435 
   1436 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1437 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1438 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1439 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1440 		failed = 1;
   1441 	}
   1442 
   1443 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1444 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1445 	} else {
   1446 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1447 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1448 			    "on kernel unmanaged list\n", pvo);
   1449 			failed = 1;
   1450 		}
   1451 		pvo_head = &pmap_pvo_kunmanaged;
   1452 	}
   1453 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1454 		if (pvo0 == pvo)
   1455 			break;
   1456 	}
   1457 	if (pvo0 == NULL) {
   1458 		printf("pmap_pvo_check: pvo %p: not present "
   1459 		    "on its vlist head %p\n", pvo, pvo_head);
   1460 		failed = 1;
   1461 	}
   1462 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1463 		printf("pmap_pvo_check: pvo %p: not present "
   1464 		    "on its olist head\n", pvo);
   1465 		failed = 1;
   1466 	}
   1467 	pt = pmap_pvo_to_pte(pvo, -1);
   1468 	if (pt == NULL) {
   1469 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1470 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1471 			    "no PTE\n", pvo);
   1472 			failed = 1;
   1473 		}
   1474 	} else {
   1475 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1476 		    (uintptr_t) pt >=
   1477 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1478 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1479 			    "pteg table\n", pvo, pt);
   1480 			failed = 1;
   1481 		}
   1482 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1483 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1484 			    "no PTE\n", pvo);
   1485 			failed = 1;
   1486 		}
   1487 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1488 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1489 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1490 			failed = 1;
   1491 		}
   1492 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1493 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1494 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1495 			    "%#x/%#x\n", pvo,
   1496 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1497 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1498 			failed = 1;
   1499 		}
   1500 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1501 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1502 			    " doesn't not match PVO's VA %#lx\n",
   1503 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1504 			failed = 1;
   1505 		}
   1506 		if (failed)
   1507 			pmap_pte_print(pt);
   1508 	}
   1509 	if (failed)
   1510 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1511 		    pvo->pvo_pmap);
   1512 }
   1513 #endif /* DEBUG || PMAPCHECK */
   1514 
   1515 /*
   1516  * Search the PVO table looking for a non-wired entry.
   1517  * If we find one, remove it and return it.
   1518  */
   1519 
   1520 struct pvo_entry *
   1521 pmap_pvo_reclaim(struct pmap *pm)
   1522 {
   1523 	struct pvo_tqhead *pvoh;
   1524 	struct pvo_entry *pvo;
   1525 	uint32_t idx, endidx;
   1526 
   1527 	endidx = pmap_pvo_reclaim_nextidx;
   1528 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1529 	     idx = (idx + 1) & pmap_pteg_mask) {
   1530 		pvoh = &pmap_pvo_table[idx];
   1531 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1532 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
   1533 				pmap_pvo_remove(pvo, -1, NULL);
   1534 				pmap_pvo_reclaim_nextidx = idx;
   1535 				PMAPCOUNT(pvos_reclaimed);
   1536 				return pvo;
   1537 			}
   1538 		}
   1539 	}
   1540 	return NULL;
   1541 }
   1542 
   1543 /*
   1544  * This returns whether this is the first mapping of a page.
   1545  */
   1546 int
   1547 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1548 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1549 {
   1550 	struct pvo_entry *pvo;
   1551 	struct pvo_tqhead *pvoh;
   1552 	register_t msr;
   1553 	int ptegidx;
   1554 	int i;
   1555 	int poolflags = PR_NOWAIT;
   1556 
   1557 	/*
   1558 	 * Compute the PTE Group index.
   1559 	 */
   1560 	va &= ~ADDR_POFF;
   1561 	ptegidx = va_to_pteg(pm, va);
   1562 
   1563 	msr = pmap_interrupts_off();
   1564 
   1565 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1566 	if (pmap_pvo_remove_depth > 0)
   1567 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1568 	if (++pmap_pvo_enter_depth > 1)
   1569 		panic("pmap_pvo_enter: called recursively!");
   1570 #endif
   1571 
   1572 	/*
   1573 	 * Remove any existing mapping for this page.  Reuse the
   1574 	 * pvo entry if there a mapping.
   1575 	 */
   1576 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1577 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1578 #ifdef DEBUG
   1579 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1580 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1581 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1582 			   va < VM_MIN_KERNEL_ADDRESS) {
   1583 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1584 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1585 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1586 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1587 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1588 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1589 #ifdef DDBX
   1590 				Debugger();
   1591 #endif
   1592 			}
   1593 #endif
   1594 			PMAPCOUNT(mappings_replaced);
   1595 			pmap_pvo_remove(pvo, -1, NULL);
   1596 			break;
   1597 		}
   1598 	}
   1599 
   1600 	/*
   1601 	 * If we aren't overwriting an mapping, try to allocate
   1602 	 */
   1603 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1604 	--pmap_pvo_enter_depth;
   1605 #endif
   1606 	pmap_interrupts_restore(msr);
   1607 	if (pvo) {
   1608 		pmap_pvo_free(pvo);
   1609 	}
   1610 	pvo = pool_get(pl, poolflags);
   1611 
   1612 #ifdef DEBUG
   1613 	/*
   1614 	 * Exercise pmap_pvo_reclaim() a little.
   1615 	 */
   1616 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1617 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1618 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1619 		pool_put(pl, pvo);
   1620 		pvo = NULL;
   1621 	}
   1622 #endif
   1623 
   1624 	msr = pmap_interrupts_off();
   1625 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1626 	++pmap_pvo_enter_depth;
   1627 #endif
   1628 	if (pvo == NULL) {
   1629 		pvo = pmap_pvo_reclaim(pm);
   1630 		if (pvo == NULL) {
   1631 			if ((flags & PMAP_CANFAIL) == 0)
   1632 				panic("pmap_pvo_enter: failed");
   1633 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1634 			pmap_pvo_enter_depth--;
   1635 #endif
   1636 			PMAPCOUNT(pvos_failed);
   1637 			pmap_interrupts_restore(msr);
   1638 			return ENOMEM;
   1639 		}
   1640 	}
   1641 
   1642 	pvo->pvo_vaddr = va;
   1643 	pvo->pvo_pmap = pm;
   1644 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1645 	if (flags & VM_PROT_EXECUTE) {
   1646 		PMAPCOUNT(exec_mappings);
   1647 		pvo_set_exec(pvo);
   1648 	}
   1649 	if (flags & PMAP_WIRED)
   1650 		pvo->pvo_vaddr |= PVO_WIRED;
   1651 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1652 		pvo->pvo_vaddr |= PVO_MANAGED;
   1653 		PMAPCOUNT(mappings);
   1654 	} else {
   1655 		PMAPCOUNT(kernel_mappings);
   1656 	}
   1657 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1658 
   1659 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1660 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1661 		pvo->pvo_pmap->pm_stats.wired_count++;
   1662 	pvo->pvo_pmap->pm_stats.resident_count++;
   1663 #if defined(DEBUG)
   1664 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1665 		DPRINTFN(PVOENTER,
   1666 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1667 		    pvo, pm, va, pa));
   1668 #endif
   1669 
   1670 	/*
   1671 	 * We hope this succeeds but it isn't required.
   1672 	 */
   1673 	pvoh = &pmap_pvo_table[ptegidx];
   1674 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1675 	if (i >= 0) {
   1676 		PVO_PTEGIDX_SET(pvo, i);
   1677 		PVO_WHERE(pvo, ENTER_INSERT);
   1678 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1679 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1680 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1681 	} else {
   1682 		/*
   1683 		 * Since we didn't have room for this entry (which makes it
   1684 		 * and evicted entry), place it at the head of the list.
   1685 		 */
   1686 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1687 		PMAPCOUNT(ptes_evicted);
   1688 		pm->pm_evictions++;
   1689 		/*
   1690 		 * If this is a kernel page, make sure it's active.
   1691 		 */
   1692 		if (pm == pmap_kernel()) {
   1693 			i = pmap_pte_spill(pm, va, FALSE);
   1694 			KASSERT(i);
   1695 		}
   1696 	}
   1697 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1698 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1699 	pmap_pvo_enter_depth--;
   1700 #endif
   1701 	pmap_interrupts_restore(msr);
   1702 	return 0;
   1703 }
   1704 
   1705 void
   1706 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1707 {
   1708 	volatile struct pte *pt;
   1709 	int ptegidx;
   1710 
   1711 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1712 	if (++pmap_pvo_remove_depth > 1)
   1713 		panic("pmap_pvo_remove: called recursively!");
   1714 #endif
   1715 
   1716 	/*
   1717 	 * If we haven't been supplied the ptegidx, calculate it.
   1718 	 */
   1719 	if (pteidx == -1) {
   1720 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1721 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1722 	} else {
   1723 		ptegidx = pteidx >> 3;
   1724 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1725 			ptegidx ^= pmap_pteg_mask;
   1726 	}
   1727 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1728 
   1729 	/*
   1730 	 * If there is an active pte entry, we need to deactivate it
   1731 	 * (and save the ref & chg bits).
   1732 	 */
   1733 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1734 	if (pt != NULL) {
   1735 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1736 		PVO_WHERE(pvo, REMOVE);
   1737 		PVO_PTEGIDX_CLR(pvo);
   1738 		PMAPCOUNT(ptes_removed);
   1739 	} else {
   1740 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1741 		pvo->pvo_pmap->pm_evictions--;
   1742 	}
   1743 
   1744 	/*
   1745 	 * Account for executable mappings.
   1746 	 */
   1747 	if (PVO_ISEXECUTABLE(pvo))
   1748 		pvo_clear_exec(pvo);
   1749 
   1750 	/*
   1751 	 * Update our statistics.
   1752 	 */
   1753 	pvo->pvo_pmap->pm_stats.resident_count--;
   1754 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1755 		pvo->pvo_pmap->pm_stats.wired_count--;
   1756 
   1757 	/*
   1758 	 * Save the REF/CHG bits into their cache if the page is managed.
   1759 	 */
   1760 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1761 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1762 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1763 
   1764 		if (pg != NULL) {
   1765 			/*
   1766 			 * If this page was changed and it is mapped exec,
   1767 			 * invalidate it.
   1768 			 */
   1769 			if ((ptelo & PTE_CHG) &&
   1770 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1771 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1772 				if (LIST_EMPTY(pvoh)) {
   1773 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1774 					    "%#lx: clear-exec]\n",
   1775 					    VM_PAGE_TO_PHYS(pg)));
   1776 					pmap_attr_clear(pg, PTE_EXEC);
   1777 					PMAPCOUNT(exec_uncached_pvo_remove);
   1778 				} else {
   1779 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1780 					    "%#lx: syncicache]\n",
   1781 					    VM_PAGE_TO_PHYS(pg)));
   1782 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1783 					    PAGE_SIZE);
   1784 					PMAPCOUNT(exec_synced_pvo_remove);
   1785 				}
   1786 			}
   1787 
   1788 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1789 		}
   1790 		PMAPCOUNT(unmappings);
   1791 	} else {
   1792 		PMAPCOUNT(kernel_unmappings);
   1793 	}
   1794 
   1795 	/*
   1796 	 * Remove the PVO from its lists and return it to the pool.
   1797 	 */
   1798 	LIST_REMOVE(pvo, pvo_vlink);
   1799 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1800 	if (pvol) {
   1801 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1802 	}
   1803 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1804 	pmap_pvo_remove_depth--;
   1805 #endif
   1806 }
   1807 
   1808 void
   1809 pmap_pvo_free(struct pvo_entry *pvo)
   1810 {
   1811 
   1812 	pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
   1813 		 &pmap_upvo_pool, pvo);
   1814 }
   1815 
   1816 void
   1817 pmap_pvo_free_list(struct pvo_head *pvol)
   1818 {
   1819 	struct pvo_entry *pvo, *npvo;
   1820 
   1821 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1822 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1823 		LIST_REMOVE(pvo, pvo_vlink);
   1824 		pmap_pvo_free(pvo);
   1825 	}
   1826 }
   1827 
   1828 /*
   1829  * Mark a mapping as executable.
   1830  * If this is the first executable mapping in the segment,
   1831  * clear the noexec flag.
   1832  */
   1833 STATIC void
   1834 pvo_set_exec(struct pvo_entry *pvo)
   1835 {
   1836 	struct pmap *pm = pvo->pvo_pmap;
   1837 
   1838 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1839 		return;
   1840 	}
   1841 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1842 #ifdef PPC_OEA
   1843 	{
   1844 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1845 		if (pm->pm_exec[sr]++ == 0) {
   1846 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1847 		}
   1848 	}
   1849 #endif
   1850 }
   1851 
   1852 /*
   1853  * Mark a mapping as non-executable.
   1854  * If this was the last executable mapping in the segment,
   1855  * set the noexec flag.
   1856  */
   1857 STATIC void
   1858 pvo_clear_exec(struct pvo_entry *pvo)
   1859 {
   1860 	struct pmap *pm = pvo->pvo_pmap;
   1861 
   1862 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1863 		return;
   1864 	}
   1865 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1866 #ifdef PPC_OEA
   1867 	{
   1868 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1869 		if (--pm->pm_exec[sr] == 0) {
   1870 			pm->pm_sr[sr] |= SR_NOEXEC;
   1871 		}
   1872 	}
   1873 #endif
   1874 }
   1875 
   1876 /*
   1877  * Insert physical page at pa into the given pmap at virtual address va.
   1878  */
   1879 int
   1880 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1881 {
   1882 	struct mem_region *mp;
   1883 	struct pvo_head *pvo_head;
   1884 	struct vm_page *pg;
   1885 	struct pool *pl;
   1886 	register_t pte_lo;
   1887 	int error;
   1888 	u_int pvo_flags;
   1889 	u_int was_exec = 0;
   1890 
   1891 	if (__predict_false(!pmap_initialized)) {
   1892 		pvo_head = &pmap_pvo_kunmanaged;
   1893 		pl = &pmap_upvo_pool;
   1894 		pvo_flags = 0;
   1895 		pg = NULL;
   1896 		was_exec = PTE_EXEC;
   1897 	} else {
   1898 		pvo_head = pa_to_pvoh(pa, &pg);
   1899 		pl = &pmap_mpvo_pool;
   1900 		pvo_flags = PVO_MANAGED;
   1901 	}
   1902 
   1903 	DPRINTFN(ENTER,
   1904 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1905 	    pm, va, pa, prot, flags));
   1906 
   1907 	/*
   1908 	 * If this is a managed page, and it's the first reference to the
   1909 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1910 	 */
   1911 	if (pg != NULL)
   1912 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1913 
   1914 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1915 
   1916 	/*
   1917 	 * Assume the page is cache inhibited and access is guarded unless
   1918 	 * it's in our available memory array.  If it is in the memory array,
   1919 	 * asssume it's in memory coherent memory.
   1920 	 */
   1921 	pte_lo = PTE_IG;
   1922 	if ((flags & PMAP_NC) == 0) {
   1923 		for (mp = mem; mp->size; mp++) {
   1924 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1925 				pte_lo = PTE_M;
   1926 				break;
   1927 			}
   1928 		}
   1929 	}
   1930 
   1931 	if (prot & VM_PROT_WRITE)
   1932 		pte_lo |= PTE_BW;
   1933 	else
   1934 		pte_lo |= PTE_BR;
   1935 
   1936 	/*
   1937 	 * If this was in response to a fault, "pre-fault" the PTE's
   1938 	 * changed/referenced bit appropriately.
   1939 	 */
   1940 	if (flags & VM_PROT_WRITE)
   1941 		pte_lo |= PTE_CHG;
   1942 	if (flags & VM_PROT_ALL)
   1943 		pte_lo |= PTE_REF;
   1944 
   1945 	/*
   1946 	 * We need to know if this page can be executable
   1947 	 */
   1948 	flags |= (prot & VM_PROT_EXECUTE);
   1949 
   1950 	/*
   1951 	 * Record mapping for later back-translation and pte spilling.
   1952 	 * This will overwrite any existing mapping.
   1953 	 */
   1954 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1955 
   1956 	/*
   1957 	 * Flush the real page from the instruction cache if this page is
   1958 	 * mapped executable and cacheable and has not been flushed since
   1959 	 * the last time it was modified.
   1960 	 */
   1961 	if (error == 0 &&
   1962             (flags & VM_PROT_EXECUTE) &&
   1963             (pte_lo & PTE_I) == 0 &&
   1964 	    was_exec == 0) {
   1965 		DPRINTFN(ENTER, (" syncicache"));
   1966 		PMAPCOUNT(exec_synced);
   1967 		pmap_syncicache(pa, PAGE_SIZE);
   1968 		if (pg != NULL) {
   1969 			pmap_attr_save(pg, PTE_EXEC);
   1970 			PMAPCOUNT(exec_cached);
   1971 #if defined(DEBUG) || defined(PMAPDEBUG)
   1972 			if (pmapdebug & PMAPDEBUG_ENTER)
   1973 				printf(" marked-as-exec");
   1974 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1975 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1976 				    VM_PAGE_TO_PHYS(pg));
   1977 
   1978 #endif
   1979 		}
   1980 	}
   1981 
   1982 	DPRINTFN(ENTER, (": error=%d\n", error));
   1983 
   1984 	return error;
   1985 }
   1986 
   1987 void
   1988 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1989 {
   1990 	struct mem_region *mp;
   1991 	register_t pte_lo;
   1992 	int error;
   1993 
   1994 	if (va < VM_MIN_KERNEL_ADDRESS)
   1995 		panic("pmap_kenter_pa: attempt to enter "
   1996 		    "non-kernel address %#lx!", va);
   1997 
   1998 	DPRINTFN(KENTER,
   1999 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   2000 
   2001 	/*
   2002 	 * Assume the page is cache inhibited and access is guarded unless
   2003 	 * it's in our available memory array.  If it is in the memory array,
   2004 	 * asssume it's in memory coherent memory.
   2005 	 */
   2006 	pte_lo = PTE_IG;
   2007 	if ((prot & PMAP_NC) == 0) {
   2008 		for (mp = mem; mp->size; mp++) {
   2009 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2010 				pte_lo = PTE_M;
   2011 				break;
   2012 			}
   2013 		}
   2014 	}
   2015 
   2016 	if (prot & VM_PROT_WRITE)
   2017 		pte_lo |= PTE_BW;
   2018 	else
   2019 		pte_lo |= PTE_BR;
   2020 
   2021 	/*
   2022 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2023 	 */
   2024 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2025 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2026 
   2027 	if (error != 0)
   2028 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   2029 		      va, pa, error);
   2030 }
   2031 
   2032 void
   2033 pmap_kremove(vaddr_t va, vsize_t len)
   2034 {
   2035 	if (va < VM_MIN_KERNEL_ADDRESS)
   2036 		panic("pmap_kremove: attempt to remove "
   2037 		    "non-kernel address %#lx!", va);
   2038 
   2039 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   2040 	pmap_remove(pmap_kernel(), va, va + len);
   2041 }
   2042 
   2043 /*
   2044  * Remove the given range of mapping entries.
   2045  */
   2046 void
   2047 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2048 {
   2049 	struct pvo_head pvol;
   2050 	struct pvo_entry *pvo;
   2051 	register_t msr;
   2052 	int pteidx;
   2053 
   2054 	LIST_INIT(&pvol);
   2055 	msr = pmap_interrupts_off();
   2056 	for (; va < endva; va += PAGE_SIZE) {
   2057 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2058 		if (pvo != NULL) {
   2059 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2060 		}
   2061 	}
   2062 	pmap_interrupts_restore(msr);
   2063 	pmap_pvo_free_list(&pvol);
   2064 }
   2065 
   2066 /*
   2067  * Get the physical page address for the given pmap/virtual address.
   2068  */
   2069 boolean_t
   2070 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2071 {
   2072 	struct pvo_entry *pvo;
   2073 	register_t msr;
   2074 
   2075 	/*
   2076 	 * If this is a kernel pmap lookup, also check the battable
   2077 	 * and if we get a hit, translate the VA to a PA using the
   2078 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2079 	 * that will wrap back to 0.
   2080 	 */
   2081 	if (pm == pmap_kernel() &&
   2082 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2083 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2084 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2085 		if ((MFPVR() >> 16) != MPC601) {
   2086 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2087 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2088 				register_t batl =
   2089 				    battable[va >> ADDR_SR_SHFT].batl;
   2090 				register_t mask =
   2091 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2092 				if (pap)
   2093 					*pap = (batl & mask) | (va & ~mask);
   2094 				return TRUE;
   2095 			}
   2096 		} else {
   2097 			register_t batu = battable[va >> 23].batu;
   2098 			register_t batl = battable[va >> 23].batl;
   2099 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2100 			if (BAT601_VALID_P(batl) &&
   2101 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2102 				register_t mask =
   2103 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2104 				if (pap)
   2105 					*pap = (batl & mask) | (va & ~mask);
   2106 				return TRUE;
   2107 			} else if (SR601_VALID_P(sr) &&
   2108 				   SR601_PA_MATCH_P(sr, va)) {
   2109 				if (pap)
   2110 					*pap = va;
   2111 				return TRUE;
   2112 			}
   2113 		}
   2114 		return FALSE;
   2115 	}
   2116 
   2117 	msr = pmap_interrupts_off();
   2118 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2119 	if (pvo != NULL) {
   2120 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2121 		if (pap)
   2122 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2123 			    | (va & ADDR_POFF);
   2124 	}
   2125 	pmap_interrupts_restore(msr);
   2126 	return pvo != NULL;
   2127 }
   2128 
   2129 /*
   2130  * Lower the protection on the specified range of this pmap.
   2131  */
   2132 void
   2133 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2134 {
   2135 	struct pvo_entry *pvo;
   2136 	volatile struct pte *pt;
   2137 	register_t msr;
   2138 	int pteidx;
   2139 
   2140 	/*
   2141 	 * Since this routine only downgrades protection, we should
   2142 	 * always be called with at least one bit not set.
   2143 	 */
   2144 	KASSERT(prot != VM_PROT_ALL);
   2145 
   2146 	/*
   2147 	 * If there is no protection, this is equivalent to
   2148 	 * remove the pmap from the pmap.
   2149 	 */
   2150 	if ((prot & VM_PROT_READ) == 0) {
   2151 		pmap_remove(pm, va, endva);
   2152 		return;
   2153 	}
   2154 
   2155 	msr = pmap_interrupts_off();
   2156 	for (; va < endva; va += PAGE_SIZE) {
   2157 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2158 		if (pvo == NULL)
   2159 			continue;
   2160 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2161 
   2162 		/*
   2163 		 * Revoke executable if asked to do so.
   2164 		 */
   2165 		if ((prot & VM_PROT_EXECUTE) == 0)
   2166 			pvo_clear_exec(pvo);
   2167 
   2168 #if 0
   2169 		/*
   2170 		 * If the page is already read-only, no change
   2171 		 * needs to be made.
   2172 		 */
   2173 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2174 			continue;
   2175 #endif
   2176 		/*
   2177 		 * Grab the PTE pointer before we diddle with
   2178 		 * the cached PTE copy.
   2179 		 */
   2180 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2181 		/*
   2182 		 * Change the protection of the page.
   2183 		 */
   2184 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2185 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2186 
   2187 		/*
   2188 		 * If the PVO is in the page table, update
   2189 		 * that pte at well.
   2190 		 */
   2191 		if (pt != NULL) {
   2192 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2193 			PVO_WHERE(pvo, PMAP_PROTECT);
   2194 			PMAPCOUNT(ptes_changed);
   2195 		}
   2196 
   2197 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2198 	}
   2199 	pmap_interrupts_restore(msr);
   2200 }
   2201 
   2202 void
   2203 pmap_unwire(pmap_t pm, vaddr_t va)
   2204 {
   2205 	struct pvo_entry *pvo;
   2206 	register_t msr;
   2207 
   2208 	msr = pmap_interrupts_off();
   2209 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2210 	if (pvo != NULL) {
   2211 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2212 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2213 			pm->pm_stats.wired_count--;
   2214 		}
   2215 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2216 	}
   2217 	pmap_interrupts_restore(msr);
   2218 }
   2219 
   2220 /*
   2221  * Lower the protection on the specified physical page.
   2222  */
   2223 void
   2224 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2225 {
   2226 	struct pvo_head *pvo_head, pvol;
   2227 	struct pvo_entry *pvo, *next_pvo;
   2228 	volatile struct pte *pt;
   2229 	register_t msr;
   2230 
   2231 	KASSERT(prot != VM_PROT_ALL);
   2232 	LIST_INIT(&pvol);
   2233 	msr = pmap_interrupts_off();
   2234 
   2235 	/*
   2236 	 * When UVM reuses a page, it does a pmap_page_protect with
   2237 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2238 	 * since we know the page will have different contents.
   2239 	 */
   2240 	if ((prot & VM_PROT_READ) == 0) {
   2241 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2242 		    VM_PAGE_TO_PHYS(pg)));
   2243 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2244 			PMAPCOUNT(exec_uncached_page_protect);
   2245 			pmap_attr_clear(pg, PTE_EXEC);
   2246 		}
   2247 	}
   2248 
   2249 	pvo_head = vm_page_to_pvoh(pg);
   2250 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2251 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2252 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2253 
   2254 		/*
   2255 		 * Downgrading to no mapping at all, we just remove the entry.
   2256 		 */
   2257 		if ((prot & VM_PROT_READ) == 0) {
   2258 			pmap_pvo_remove(pvo, -1, &pvol);
   2259 			continue;
   2260 		}
   2261 
   2262 		/*
   2263 		 * If EXEC permission is being revoked, just clear the
   2264 		 * flag in the PVO.
   2265 		 */
   2266 		if ((prot & VM_PROT_EXECUTE) == 0)
   2267 			pvo_clear_exec(pvo);
   2268 
   2269 		/*
   2270 		 * If this entry is already RO, don't diddle with the
   2271 		 * page table.
   2272 		 */
   2273 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2274 			PMAP_PVO_CHECK(pvo);
   2275 			continue;
   2276 		}
   2277 
   2278 		/*
   2279 		 * Grab the PTE before the we diddle the bits so
   2280 		 * pvo_to_pte can verify the pte contents are as
   2281 		 * expected.
   2282 		 */
   2283 		pt = pmap_pvo_to_pte(pvo, -1);
   2284 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2285 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2286 		if (pt != NULL) {
   2287 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2288 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2289 			PMAPCOUNT(ptes_changed);
   2290 		}
   2291 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2292 	}
   2293 	pmap_interrupts_restore(msr);
   2294 	pmap_pvo_free_list(&pvol);
   2295 }
   2296 
   2297 /*
   2298  * Activate the address space for the specified process.  If the process
   2299  * is the current process, load the new MMU context.
   2300  */
   2301 void
   2302 pmap_activate(struct lwp *l)
   2303 {
   2304 	struct pcb *pcb = &l->l_addr->u_pcb;
   2305 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2306 
   2307 	DPRINTFN(ACTIVATE,
   2308 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2309 
   2310 	/*
   2311 	 * XXX Normally performed in cpu_fork().
   2312 	 */
   2313 	pcb->pcb_pm = pmap;
   2314 
   2315 	/*
   2316 	* In theory, the SR registers need only be valid on return
   2317 	* to user space wait to do them there.
   2318 	*/
   2319 	if (l == curlwp) {
   2320 		/* Store pointer to new current pmap. */
   2321 		curpm = pmap;
   2322 	}
   2323 }
   2324 
   2325 /*
   2326  * Deactivate the specified process's address space.
   2327  */
   2328 void
   2329 pmap_deactivate(struct lwp *l)
   2330 {
   2331 }
   2332 
   2333 boolean_t
   2334 pmap_query_bit(struct vm_page *pg, int ptebit)
   2335 {
   2336 	struct pvo_entry *pvo;
   2337 	volatile struct pte *pt;
   2338 	register_t msr;
   2339 
   2340 	if (pmap_attr_fetch(pg) & ptebit)
   2341 		return TRUE;
   2342 
   2343 	msr = pmap_interrupts_off();
   2344 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2345 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2346 		/*
   2347 		 * See if we saved the bit off.  If so cache, it and return
   2348 		 * success.
   2349 		 */
   2350 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2351 			pmap_attr_save(pg, ptebit);
   2352 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2353 			pmap_interrupts_restore(msr);
   2354 			return TRUE;
   2355 		}
   2356 	}
   2357 	/*
   2358 	 * No luck, now go thru the hard part of looking at the ptes
   2359 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2360 	 * to the PTEs.
   2361 	 */
   2362 	SYNC();
   2363 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2364 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2365 		/*
   2366 		 * See if this pvo have a valid PTE.  If so, fetch the
   2367 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2368 		 * ptebit is set, cache, it and return success.
   2369 		 */
   2370 		pt = pmap_pvo_to_pte(pvo, -1);
   2371 		if (pt != NULL) {
   2372 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2373 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2374 				pmap_attr_save(pg, ptebit);
   2375 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2376 				pmap_interrupts_restore(msr);
   2377 				return TRUE;
   2378 			}
   2379 		}
   2380 	}
   2381 	pmap_interrupts_restore(msr);
   2382 	return FALSE;
   2383 }
   2384 
   2385 boolean_t
   2386 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2387 {
   2388 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2389 	struct pvo_entry *pvo;
   2390 	volatile struct pte *pt;
   2391 	register_t msr;
   2392 	int rv = 0;
   2393 
   2394 	msr = pmap_interrupts_off();
   2395 
   2396 	/*
   2397 	 * Fetch the cache value
   2398 	 */
   2399 	rv |= pmap_attr_fetch(pg);
   2400 
   2401 	/*
   2402 	 * Clear the cached value.
   2403 	 */
   2404 	pmap_attr_clear(pg, ptebit);
   2405 
   2406 	/*
   2407 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2408 	 * can reset the right ones).  Note that since the pvo entries and
   2409 	 * list heads are accessed via BAT0 and are never placed in the
   2410 	 * page table, we don't have to worry about further accesses setting
   2411 	 * the REF/CHG bits.
   2412 	 */
   2413 	SYNC();
   2414 
   2415 	/*
   2416 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2417 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2418 	 */
   2419 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2420 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2421 		pt = pmap_pvo_to_pte(pvo, -1);
   2422 		if (pt != NULL) {
   2423 			/*
   2424 			 * Only sync the PTE if the bit we are looking
   2425 			 * for is not already set.
   2426 			 */
   2427 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2428 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2429 			/*
   2430 			 * If the bit we are looking for was already set,
   2431 			 * clear that bit in the pte.
   2432 			 */
   2433 			if (pvo->pvo_pte.pte_lo & ptebit)
   2434 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2435 		}
   2436 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2437 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2438 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2439 	}
   2440 	pmap_interrupts_restore(msr);
   2441 
   2442 	/*
   2443 	 * If we are clearing the modify bit and this page was marked EXEC
   2444 	 * and the user of the page thinks the page was modified, then we
   2445 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2446 	 * bit if it's not mapped.  The page itself might not have the CHG
   2447 	 * bit set if the modification was done via DMA to the page.
   2448 	 */
   2449 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2450 		if (LIST_EMPTY(pvoh)) {
   2451 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2452 			    VM_PAGE_TO_PHYS(pg)));
   2453 			pmap_attr_clear(pg, PTE_EXEC);
   2454 			PMAPCOUNT(exec_uncached_clear_modify);
   2455 		} else {
   2456 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2457 			    VM_PAGE_TO_PHYS(pg)));
   2458 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2459 			PMAPCOUNT(exec_synced_clear_modify);
   2460 		}
   2461 	}
   2462 	return (rv & ptebit) != 0;
   2463 }
   2464 
   2465 void
   2466 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2467 {
   2468 	struct pvo_entry *pvo;
   2469 	size_t offset = va & ADDR_POFF;
   2470 	int s;
   2471 
   2472 	s = splvm();
   2473 	while (len > 0) {
   2474 		size_t seglen = PAGE_SIZE - offset;
   2475 		if (seglen > len)
   2476 			seglen = len;
   2477 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2478 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2479 			pmap_syncicache(
   2480 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2481 			PMAP_PVO_CHECK(pvo);
   2482 		}
   2483 		va += seglen;
   2484 		len -= seglen;
   2485 		offset = 0;
   2486 	}
   2487 	splx(s);
   2488 }
   2489 
   2490 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2491 void
   2492 pmap_pte_print(volatile struct pte *pt)
   2493 {
   2494 	printf("PTE %p: ", pt);
   2495 	/* High word: */
   2496 	printf("0x%08lx: [", pt->pte_hi);
   2497 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2498 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2499 	printf("0x%06lx 0x%02lx",
   2500 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2501 	    pt->pte_hi & PTE_API);
   2502 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2503 	/* Low word: */
   2504 	printf(" 0x%08lx: [", pt->pte_lo);
   2505 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2506 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2507 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2508 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2509 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2510 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2511 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2512 	switch (pt->pte_lo & PTE_PP) {
   2513 	case PTE_BR: printf("br]\n"); break;
   2514 	case PTE_BW: printf("bw]\n"); break;
   2515 	case PTE_SO: printf("so]\n"); break;
   2516 	case PTE_SW: printf("sw]\n"); break;
   2517 	}
   2518 }
   2519 #endif
   2520 
   2521 #if defined(DDB)
   2522 void
   2523 pmap_pteg_check(void)
   2524 {
   2525 	volatile struct pte *pt;
   2526 	int i;
   2527 	int ptegidx;
   2528 	u_int p_valid = 0;
   2529 	u_int s_valid = 0;
   2530 	u_int invalid = 0;
   2531 
   2532 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2533 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2534 			if (pt->pte_hi & PTE_VALID) {
   2535 				if (pt->pte_hi & PTE_HID)
   2536 					s_valid++;
   2537 				else
   2538 					p_valid++;
   2539 			} else
   2540 				invalid++;
   2541 		}
   2542 	}
   2543 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2544 		p_valid, p_valid, s_valid, s_valid,
   2545 		invalid, invalid);
   2546 }
   2547 
   2548 void
   2549 pmap_print_mmuregs(void)
   2550 {
   2551 	int i;
   2552 	u_int cpuvers;
   2553 #ifndef PPC_OEA64
   2554 	vaddr_t addr;
   2555 	register_t soft_sr[16];
   2556 #endif
   2557 	struct bat soft_ibat[4];
   2558 	struct bat soft_dbat[4];
   2559 	register_t sdr1;
   2560 
   2561 	cpuvers = MFPVR() >> 16;
   2562 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2563 #ifndef PPC_OEA64
   2564 	addr = 0;
   2565 	for (i = 0; i < 16; i++) {
   2566 		soft_sr[i] = MFSRIN(addr);
   2567 		addr += (1 << ADDR_SR_SHFT);
   2568 	}
   2569 #endif
   2570 
   2571 	/* read iBAT (601: uBAT) registers */
   2572 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2573 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2574 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2575 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2576 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2577 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2578 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2579 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2580 
   2581 
   2582 	if (cpuvers != MPC601) {
   2583 		/* read dBAT registers */
   2584 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2585 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2586 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2587 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2588 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2589 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2590 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2591 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2592 	}
   2593 
   2594 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2595 #ifndef PPC_OEA64
   2596 	printf("SR[]:\t");
   2597 	for (i = 0; i < 4; i++)
   2598 		printf("0x%08lx,   ", soft_sr[i]);
   2599 	printf("\n\t");
   2600 	for ( ; i < 8; i++)
   2601 		printf("0x%08lx,   ", soft_sr[i]);
   2602 	printf("\n\t");
   2603 	for ( ; i < 12; i++)
   2604 		printf("0x%08lx,   ", soft_sr[i]);
   2605 	printf("\n\t");
   2606 	for ( ; i < 16; i++)
   2607 		printf("0x%08lx,   ", soft_sr[i]);
   2608 	printf("\n");
   2609 #endif
   2610 
   2611 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2612 	for (i = 0; i < 4; i++) {
   2613 		printf("0x%08lx 0x%08lx, ",
   2614 			soft_ibat[i].batu, soft_ibat[i].batl);
   2615 		if (i == 1)
   2616 			printf("\n\t");
   2617 	}
   2618 	if (cpuvers != MPC601) {
   2619 		printf("\ndBAT[]:\t");
   2620 		for (i = 0; i < 4; i++) {
   2621 			printf("0x%08lx 0x%08lx, ",
   2622 				soft_dbat[i].batu, soft_dbat[i].batl);
   2623 			if (i == 1)
   2624 				printf("\n\t");
   2625 		}
   2626 	}
   2627 	printf("\n");
   2628 }
   2629 
   2630 void
   2631 pmap_print_pte(pmap_t pm, vaddr_t va)
   2632 {
   2633 	struct pvo_entry *pvo;
   2634 	volatile struct pte *pt;
   2635 	int pteidx;
   2636 
   2637 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2638 	if (pvo != NULL) {
   2639 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2640 		if (pt != NULL) {
   2641 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2642 				va, pt,
   2643 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2644 				pt->pte_hi, pt->pte_lo);
   2645 		} else {
   2646 			printf("No valid PTE found\n");
   2647 		}
   2648 	} else {
   2649 		printf("Address not in pmap\n");
   2650 	}
   2651 }
   2652 
   2653 void
   2654 pmap_pteg_dist(void)
   2655 {
   2656 	struct pvo_entry *pvo;
   2657 	int ptegidx;
   2658 	int depth;
   2659 	int max_depth = 0;
   2660 	unsigned int depths[64];
   2661 
   2662 	memset(depths, 0, sizeof(depths));
   2663 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2664 		depth = 0;
   2665 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2666 			depth++;
   2667 		}
   2668 		if (depth > max_depth)
   2669 			max_depth = depth;
   2670 		if (depth > 63)
   2671 			depth = 63;
   2672 		depths[depth]++;
   2673 	}
   2674 
   2675 	for (depth = 0; depth < 64; depth++) {
   2676 		printf("  [%2d]: %8u", depth, depths[depth]);
   2677 		if ((depth & 3) == 3)
   2678 			printf("\n");
   2679 		if (depth == max_depth)
   2680 			break;
   2681 	}
   2682 	if ((depth & 3) != 3)
   2683 		printf("\n");
   2684 	printf("Max depth found was %d\n", max_depth);
   2685 }
   2686 #endif /* DEBUG */
   2687 
   2688 #if defined(PMAPCHECK) || defined(DEBUG)
   2689 void
   2690 pmap_pvo_verify(void)
   2691 {
   2692 	int ptegidx;
   2693 	int s;
   2694 
   2695 	s = splvm();
   2696 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2697 		struct pvo_entry *pvo;
   2698 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2699 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2700 				panic("pmap_pvo_verify: invalid pvo %p "
   2701 				    "on list %#x", pvo, ptegidx);
   2702 			pmap_pvo_check(pvo);
   2703 		}
   2704 	}
   2705 	splx(s);
   2706 }
   2707 #endif /* PMAPCHECK */
   2708 
   2709 
   2710 void *
   2711 pmap_pool_ualloc(struct pool *pp, int flags)
   2712 {
   2713 	struct pvo_page *pvop;
   2714 
   2715 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2716 	if (pvop != NULL) {
   2717 		pmap_upvop_free--;
   2718 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2719 		return pvop;
   2720 	}
   2721 	if (uvm.page_init_done != TRUE) {
   2722 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2723 	}
   2724 	return pmap_pool_malloc(pp, flags);
   2725 }
   2726 
   2727 void *
   2728 pmap_pool_malloc(struct pool *pp, int flags)
   2729 {
   2730 	struct pvo_page *pvop;
   2731 	struct vm_page *pg;
   2732 
   2733 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2734 	if (pvop != NULL) {
   2735 		pmap_mpvop_free--;
   2736 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2737 		return pvop;
   2738 	}
   2739  again:
   2740 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2741 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2742 	if (__predict_false(pg == NULL)) {
   2743 		if (flags & PR_WAITOK) {
   2744 			uvm_wait("plpg");
   2745 			goto again;
   2746 		} else {
   2747 			return (0);
   2748 		}
   2749 	}
   2750 	return (void *) VM_PAGE_TO_PHYS(pg);
   2751 }
   2752 
   2753 void
   2754 pmap_pool_ufree(struct pool *pp, void *va)
   2755 {
   2756 	struct pvo_page *pvop;
   2757 #if 0
   2758 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2759 		pmap_pool_mfree(va, size, tag);
   2760 		return;
   2761 	}
   2762 #endif
   2763 	pvop = va;
   2764 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2765 	pmap_upvop_free++;
   2766 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2767 		pmap_upvop_maxfree = pmap_upvop_free;
   2768 }
   2769 
   2770 void
   2771 pmap_pool_mfree(struct pool *pp, void *va)
   2772 {
   2773 	struct pvo_page *pvop;
   2774 
   2775 	pvop = va;
   2776 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2777 	pmap_mpvop_free++;
   2778 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2779 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2780 #if 0
   2781 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2782 #endif
   2783 }
   2784 
   2785 /*
   2786  * This routine in bootstraping to steal to-be-managed memory (which will
   2787  * then be unmanaged).  We use it to grab from the first 256MB for our
   2788  * pmap needs and above 256MB for other stuff.
   2789  */
   2790 vaddr_t
   2791 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2792 {
   2793 	vsize_t size;
   2794 	vaddr_t va;
   2795 	paddr_t pa = 0;
   2796 	int npgs, bank;
   2797 	struct vm_physseg *ps;
   2798 
   2799 	if (uvm.page_init_done == TRUE)
   2800 		panic("pmap_steal_memory: called _after_ bootstrap");
   2801 
   2802 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2803 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2804 
   2805 	size = round_page(vsize);
   2806 	npgs = atop(size);
   2807 
   2808 	/*
   2809 	 * PA 0 will never be among those given to UVM so we can use it
   2810 	 * to indicate we couldn't steal any memory.
   2811 	 */
   2812 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2813 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2814 		    ps->avail_end - ps->avail_start >= npgs) {
   2815 			pa = ptoa(ps->avail_start);
   2816 			break;
   2817 		}
   2818 	}
   2819 
   2820 	if (pa == 0)
   2821 		panic("pmap_steal_memory: no approriate memory to steal!");
   2822 
   2823 	ps->avail_start += npgs;
   2824 	ps->start += npgs;
   2825 
   2826 	/*
   2827 	 * If we've used up all the pages in the segment, remove it and
   2828 	 * compact the list.
   2829 	 */
   2830 	if (ps->avail_start == ps->end) {
   2831 		/*
   2832 		 * If this was the last one, then a very bad thing has occurred
   2833 		 */
   2834 		if (--vm_nphysseg == 0)
   2835 			panic("pmap_steal_memory: out of memory!");
   2836 
   2837 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2838 		for (; bank < vm_nphysseg; bank++, ps++) {
   2839 			ps[0] = ps[1];
   2840 		}
   2841 	}
   2842 
   2843 	va = (vaddr_t) pa;
   2844 	memset((caddr_t) va, 0, size);
   2845 	pmap_pages_stolen += npgs;
   2846 #ifdef DEBUG
   2847 	if (pmapdebug && npgs > 1) {
   2848 		u_int cnt = 0;
   2849 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2850 			cnt += ps->avail_end - ps->avail_start;
   2851 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2852 		    npgs, pmap_pages_stolen, cnt);
   2853 	}
   2854 #endif
   2855 
   2856 	return va;
   2857 }
   2858 
   2859 /*
   2860  * Find a chuck of memory with right size and alignment.
   2861  */
   2862 void *
   2863 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2864 {
   2865 	struct mem_region *mp;
   2866 	paddr_t s, e;
   2867 	int i, j;
   2868 
   2869 	size = round_page(size);
   2870 
   2871 	DPRINTFN(BOOT,
   2872 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2873 	    size, alignment, at_end));
   2874 
   2875 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2876 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2877 		    alignment);
   2878 
   2879 	if (at_end) {
   2880 		if (alignment != PAGE_SIZE)
   2881 			panic("pmap_boot_find_memory: invalid ending "
   2882 			    "alignment %lx", alignment);
   2883 
   2884 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2885 			s = mp->start + mp->size - size;
   2886 			if (s >= mp->start && mp->size >= size) {
   2887 				DPRINTFN(BOOT,(": %lx\n", s));
   2888 				DPRINTFN(BOOT,
   2889 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2890 				     "0x%lx size 0x%lx\n", mp - avail,
   2891 				     mp->start, mp->size));
   2892 				mp->size -= size;
   2893 				DPRINTFN(BOOT,
   2894 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2895 				     "0x%lx size 0x%lx\n", mp - avail,
   2896 				     mp->start, mp->size));
   2897 				return (void *) s;
   2898 			}
   2899 		}
   2900 		panic("pmap_boot_find_memory: no available memory");
   2901 	}
   2902 
   2903 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2904 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2905 		e = s + size;
   2906 
   2907 		/*
   2908 		 * Is the calculated region entirely within the region?
   2909 		 */
   2910 		if (s < mp->start || e > mp->start + mp->size)
   2911 			continue;
   2912 
   2913 		DPRINTFN(BOOT,(": %lx\n", s));
   2914 		if (s == mp->start) {
   2915 			/*
   2916 			 * If the block starts at the beginning of region,
   2917 			 * adjust the size & start. (the region may now be
   2918 			 * zero in length)
   2919 			 */
   2920 			DPRINTFN(BOOT,
   2921 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2922 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2923 			mp->start += size;
   2924 			mp->size -= size;
   2925 			DPRINTFN(BOOT,
   2926 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2927 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2928 		} else if (e == mp->start + mp->size) {
   2929 			/*
   2930 			 * If the block starts at the beginning of region,
   2931 			 * adjust only the size.
   2932 			 */
   2933 			DPRINTFN(BOOT,
   2934 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2935 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2936 			mp->size -= size;
   2937 			DPRINTFN(BOOT,
   2938 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2939 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2940 		} else {
   2941 			/*
   2942 			 * Block is in the middle of the region, so we
   2943 			 * have to split it in two.
   2944 			 */
   2945 			for (j = avail_cnt; j > i + 1; j--) {
   2946 				avail[j] = avail[j-1];
   2947 			}
   2948 			DPRINTFN(BOOT,
   2949 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2950 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2951 			mp[1].start = e;
   2952 			mp[1].size = mp[0].start + mp[0].size - e;
   2953 			mp[0].size = s - mp[0].start;
   2954 			avail_cnt++;
   2955 			for (; i < avail_cnt; i++) {
   2956 				DPRINTFN(BOOT,
   2957 				    ("pmap_boot_find_memory: a-avail[%d] "
   2958 				     "start 0x%lx size 0x%lx\n", i,
   2959 				     avail[i].start, avail[i].size));
   2960 			}
   2961 		}
   2962 		return (void *) s;
   2963 	}
   2964 	panic("pmap_boot_find_memory: not enough memory for "
   2965 	    "%lx/%lx allocation?", size, alignment);
   2966 }
   2967 
   2968 /*
   2969  * This is not part of the defined PMAP interface and is specific to the
   2970  * PowerPC architecture.  This is called during initppc, before the system
   2971  * is really initialized.
   2972  */
   2973 void
   2974 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2975 {
   2976 	struct mem_region *mp, tmp;
   2977 	paddr_t s, e;
   2978 	psize_t size;
   2979 	int i, j;
   2980 
   2981 	/*
   2982 	 * Get memory.
   2983 	 */
   2984 	mem_regions(&mem, &avail);
   2985 #if defined(DEBUG)
   2986 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2987 		printf("pmap_bootstrap: memory configuration:\n");
   2988 		for (mp = mem; mp->size; mp++) {
   2989 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2990 				mp->start, mp->size);
   2991 		}
   2992 		for (mp = avail; mp->size; mp++) {
   2993 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2994 				mp->start, mp->size);
   2995 		}
   2996 	}
   2997 #endif
   2998 
   2999 	/*
   3000 	 * Find out how much physical memory we have and in how many chunks.
   3001 	 */
   3002 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3003 		if (mp->start >= pmap_memlimit)
   3004 			continue;
   3005 		if (mp->start + mp->size > pmap_memlimit) {
   3006 			size = pmap_memlimit - mp->start;
   3007 			physmem += btoc(size);
   3008 		} else {
   3009 			physmem += btoc(mp->size);
   3010 		}
   3011 		mem_cnt++;
   3012 	}
   3013 
   3014 	/*
   3015 	 * Count the number of available entries.
   3016 	 */
   3017 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3018 		avail_cnt++;
   3019 
   3020 	/*
   3021 	 * Page align all regions.
   3022 	 */
   3023 	kernelstart = trunc_page(kernelstart);
   3024 	kernelend = round_page(kernelend);
   3025 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3026 		s = round_page(mp->start);
   3027 		mp->size -= (s - mp->start);
   3028 		mp->size = trunc_page(mp->size);
   3029 		mp->start = s;
   3030 		e = mp->start + mp->size;
   3031 
   3032 		DPRINTFN(BOOT,
   3033 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   3034 		    i, mp->start, mp->size));
   3035 
   3036 		/*
   3037 		 * Don't allow the end to run beyond our artificial limit
   3038 		 */
   3039 		if (e > pmap_memlimit)
   3040 			e = pmap_memlimit;
   3041 
   3042 		/*
   3043 		 * Is this region empty or strange?  skip it.
   3044 		 */
   3045 		if (e <= s) {
   3046 			mp->start = 0;
   3047 			mp->size = 0;
   3048 			continue;
   3049 		}
   3050 
   3051 		/*
   3052 		 * Does this overlap the beginning of kernel?
   3053 		 *   Does extend past the end of the kernel?
   3054 		 */
   3055 		else if (s < kernelstart && e > kernelstart) {
   3056 			if (e > kernelend) {
   3057 				avail[avail_cnt].start = kernelend;
   3058 				avail[avail_cnt].size = e - kernelend;
   3059 				avail_cnt++;
   3060 			}
   3061 			mp->size = kernelstart - s;
   3062 		}
   3063 		/*
   3064 		 * Check whether this region overlaps the end of the kernel.
   3065 		 */
   3066 		else if (s < kernelend && e > kernelend) {
   3067 			mp->start = kernelend;
   3068 			mp->size = e - kernelend;
   3069 		}
   3070 		/*
   3071 		 * Look whether this regions is completely inside the kernel.
   3072 		 * Nuke it if it does.
   3073 		 */
   3074 		else if (s >= kernelstart && e <= kernelend) {
   3075 			mp->start = 0;
   3076 			mp->size = 0;
   3077 		}
   3078 		/*
   3079 		 * If the user imposed a memory limit, enforce it.
   3080 		 */
   3081 		else if (s >= pmap_memlimit) {
   3082 			mp->start = -PAGE_SIZE;	/* let's know why */
   3083 			mp->size = 0;
   3084 		}
   3085 		else {
   3086 			mp->start = s;
   3087 			mp->size = e - s;
   3088 		}
   3089 		DPRINTFN(BOOT,
   3090 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   3091 		    i, mp->start, mp->size));
   3092 	}
   3093 
   3094 	/*
   3095 	 * Move (and uncount) all the null return to the end.
   3096 	 */
   3097 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3098 		if (mp->size == 0) {
   3099 			tmp = avail[i];
   3100 			avail[i] = avail[--avail_cnt];
   3101 			avail[avail_cnt] = avail[i];
   3102 		}
   3103 	}
   3104 
   3105 	/*
   3106 	 * (Bubble)sort them into asecnding order.
   3107 	 */
   3108 	for (i = 0; i < avail_cnt; i++) {
   3109 		for (j = i + 1; j < avail_cnt; j++) {
   3110 			if (avail[i].start > avail[j].start) {
   3111 				tmp = avail[i];
   3112 				avail[i] = avail[j];
   3113 				avail[j] = tmp;
   3114 			}
   3115 		}
   3116 	}
   3117 
   3118 	/*
   3119 	 * Make sure they don't overlap.
   3120 	 */
   3121 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3122 		if (mp[0].start + mp[0].size > mp[1].start) {
   3123 			mp[0].size = mp[1].start - mp[0].start;
   3124 		}
   3125 		DPRINTFN(BOOT,
   3126 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3127 		    i, mp->start, mp->size));
   3128 	}
   3129 	DPRINTFN(BOOT,
   3130 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3131 	    i, mp->start, mp->size));
   3132 
   3133 #ifdef	PTEGCOUNT
   3134 	pmap_pteg_cnt = PTEGCOUNT;
   3135 #else /* PTEGCOUNT */
   3136 	pmap_pteg_cnt = 0x1000;
   3137 
   3138 	while (pmap_pteg_cnt < physmem)
   3139 		pmap_pteg_cnt <<= 1;
   3140 
   3141 	pmap_pteg_cnt >>= 1;
   3142 #endif /* PTEGCOUNT */
   3143 
   3144 	/*
   3145 	 * Find suitably aligned memory for PTEG hash table.
   3146 	 */
   3147 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3148 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3149 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3150 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3151 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3152 		    pmap_pteg_table, size);
   3153 #endif
   3154 
   3155 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3156 		pmap_pteg_cnt * sizeof(struct pteg));
   3157 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3158 
   3159 	/*
   3160 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3161 	 * with pages.  So we just steal them before giving them to UVM.
   3162 	 */
   3163 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3164 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3165 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3166 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3167 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3168 		    pmap_pvo_table, size);
   3169 #endif
   3170 
   3171 	for (i = 0; i < pmap_pteg_cnt; i++)
   3172 		TAILQ_INIT(&pmap_pvo_table[i]);
   3173 
   3174 #ifndef MSGBUFADDR
   3175 	/*
   3176 	 * Allocate msgbuf in high memory.
   3177 	 */
   3178 	msgbuf_paddr =
   3179 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3180 #endif
   3181 
   3182 #ifdef __HAVE_PMAP_PHYSSEG
   3183 	{
   3184 		u_int npgs = 0;
   3185 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3186 			npgs += btoc(mp->size);
   3187 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3188 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3189 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3190 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3191 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3192 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3193 			    pmap_physseg.pvoh, size);
   3194 #endif
   3195 	}
   3196 #endif
   3197 
   3198 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3199 		paddr_t pfstart = atop(mp->start);
   3200 		paddr_t pfend = atop(mp->start + mp->size);
   3201 		if (mp->size == 0)
   3202 			continue;
   3203 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3204 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3205 				VM_FREELIST_FIRST256);
   3206 		} else if (mp->start >= SEGMENT_LENGTH) {
   3207 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3208 				VM_FREELIST_DEFAULT);
   3209 		} else {
   3210 			pfend = atop(SEGMENT_LENGTH);
   3211 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3212 				VM_FREELIST_FIRST256);
   3213 			pfstart = atop(SEGMENT_LENGTH);
   3214 			pfend = atop(mp->start + mp->size);
   3215 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3216 				VM_FREELIST_DEFAULT);
   3217 		}
   3218 	}
   3219 
   3220 	/*
   3221 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3222 	 */
   3223 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3224 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3225 	pmap_vsid_bitmap[0] |= 1;
   3226 
   3227 	/*
   3228 	 * Initialize kernel pmap and hardware.
   3229 	 */
   3230 #ifndef PPC_OEA64
   3231 	for (i = 0; i < 16; i++) {
   3232 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3233 		__asm volatile ("mtsrin %0,%1"
   3234 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3235 	}
   3236 
   3237 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3238 	__asm volatile ("mtsr %0,%1"
   3239 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3240 #ifdef KERNEL2_SR
   3241 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3242 	__asm volatile ("mtsr %0,%1"
   3243 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3244 #endif
   3245 	for (i = 0; i < 16; i++) {
   3246 		if (iosrtable[i] & SR601_T) {
   3247 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3248 			__asm volatile ("mtsrin %0,%1"
   3249 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3250 		}
   3251 	}
   3252 #endif /* !PPC_OEA64 */
   3253 
   3254 	__asm volatile ("sync; mtsdr1 %0; isync"
   3255 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3256 	tlbia();
   3257 
   3258 #ifdef ALTIVEC
   3259 	pmap_use_altivec = cpu_altivec;
   3260 #endif
   3261 
   3262 #ifdef DEBUG
   3263 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3264 		u_int cnt;
   3265 		int bank;
   3266 		char pbuf[9];
   3267 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3268 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3269 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3270 			    bank,
   3271 			    ptoa(vm_physmem[bank].avail_start),
   3272 			    ptoa(vm_physmem[bank].avail_end),
   3273 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3274 		}
   3275 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3276 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3277 		    pbuf, cnt);
   3278 	}
   3279 #endif
   3280 
   3281 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3282 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3283 	    &pmap_pool_uallocator);
   3284 
   3285 	pool_setlowat(&pmap_upvo_pool, 252);
   3286 
   3287 	pool_init(&pmap_pool, sizeof(struct pmap),
   3288 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3289 }
   3290