Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.35
      1 /*	$NetBSD: pmap.c,v 1.35 2005/12/24 20:07:28 perry Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.35 2005/12/24 20:07:28 perry Exp $");
     71 
     72 #include "opt_ppcarch.h"
     73 #include "opt_altivec.h"
     74 #include "opt_pmap.h"
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/user.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 
     84 #if __NetBSD_Version__ < 105010000
     85 #include <vm/vm.h>
     86 #include <vm/vm_kern.h>
     87 #define	splvm()		splimp()
     88 #endif
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/pcb.h>
     93 #include <machine/powerpc.h>
     94 #include <powerpc/spr.h>
     95 #include <powerpc/oea/sr_601.h>
     96 #include <powerpc/bat.h>
     97 
     98 #if defined(DEBUG) || defined(PMAPCHECK)
     99 #define	STATIC
    100 #else
    101 #define	STATIC	static
    102 #endif
    103 
    104 #ifdef ALTIVEC
    105 int pmap_use_altivec;
    106 #endif
    107 
    108 volatile struct pteg *pmap_pteg_table;
    109 unsigned int pmap_pteg_cnt;
    110 unsigned int pmap_pteg_mask;
    111 #ifdef PMAP_MEMLIMIT
    112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    113 #else
    114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    115 #endif
    116 
    117 struct pmap kernel_pmap_;
    118 unsigned int pmap_pages_stolen;
    119 u_long pmap_pte_valid;
    120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    121 u_long pmap_pvo_enter_depth;
    122 u_long pmap_pvo_remove_depth;
    123 #endif
    124 
    125 int physmem;
    126 #ifndef MSGBUFADDR
    127 extern paddr_t msgbuf_paddr;
    128 #endif
    129 
    130 static struct mem_region *mem, *avail;
    131 static u_int mem_cnt, avail_cnt;
    132 
    133 #ifdef __HAVE_PMAP_PHYSSEG
    134 /*
    135  * This is a cache of referenced/modified bits.
    136  * Bits herein are shifted by ATTRSHFT.
    137  */
    138 #define	ATTR_SHFT	4
    139 struct pmap_physseg pmap_physseg;
    140 #endif
    141 
    142 /*
    143  * The following structure is exactly 32 bytes long (one cacheline).
    144  */
    145 struct pvo_entry {
    146 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    147 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    148 	struct pte pvo_pte;			/* Prebuilt PTE */
    149 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    150 	vaddr_t pvo_vaddr;			/* VA of entry */
    151 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    152 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    153 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    154 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    155 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    156 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    157 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    158 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    159 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    160 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    161 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    162 #define	PVO_REMOVE		6		/* PVO has been removed */
    163 #define	PVO_WHERE_MASK		15
    164 #define	PVO_WHERE_SHFT		8
    165 };
    166 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    167 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    168 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    169 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    170 #define	PVO_PTEGIDX_CLR(pvo)	\
    171 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    172 #define	PVO_PTEGIDX_SET(pvo,i)	\
    173 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    174 #define	PVO_WHERE(pvo,w)	\
    175 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    176 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    177 
    178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    179 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    182 
    183 struct pool pmap_pool;		/* pool for pmap structures */
    184 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    185 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    186 
    187 /*
    188  * We keep a cache of unmanaged pages to be used for pvo entries for
    189  * unmanaged pages.
    190  */
    191 struct pvo_page {
    192 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    193 };
    194 SIMPLEQ_HEAD(pvop_head, pvo_page);
    195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    197 u_long pmap_upvop_free;
    198 u_long pmap_upvop_maxfree;
    199 u_long pmap_mpvop_free;
    200 u_long pmap_mpvop_maxfree;
    201 
    202 STATIC void *pmap_pool_ualloc(struct pool *, int);
    203 STATIC void *pmap_pool_malloc(struct pool *, int);
    204 
    205 STATIC void pmap_pool_ufree(struct pool *, void *);
    206 STATIC void pmap_pool_mfree(struct pool *, void *);
    207 
    208 static struct pool_allocator pmap_pool_mallocator = {
    209 	pmap_pool_malloc, pmap_pool_mfree, 0,
    210 };
    211 
    212 static struct pool_allocator pmap_pool_uallocator = {
    213 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    214 };
    215 
    216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    217 void pmap_pte_print(volatile struct pte *);
    218 #endif
    219 
    220 #ifdef DDB
    221 void pmap_pteg_check(void);
    222 void pmap_pteg_dist(void);
    223 void pmap_print_pte(pmap_t, vaddr_t);
    224 void pmap_print_mmuregs(void);
    225 #endif
    226 
    227 #if defined(DEBUG) || defined(PMAPCHECK)
    228 #ifdef PMAPCHECK
    229 int pmapcheck = 1;
    230 #else
    231 int pmapcheck = 0;
    232 #endif
    233 void pmap_pvo_verify(void);
    234 STATIC void pmap_pvo_check(const struct pvo_entry *);
    235 #define	PMAP_PVO_CHECK(pvo)	 		\
    236 	do {					\
    237 		if (pmapcheck)			\
    238 			pmap_pvo_check(pvo);	\
    239 	} while (0)
    240 #else
    241 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    242 #endif
    243 STATIC int pmap_pte_insert(int, struct pte *);
    244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    245 	vaddr_t, paddr_t, register_t, int);
    246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    247 STATIC void pmap_pvo_free(struct pvo_entry *);
    248 STATIC void pmap_pvo_free_list(struct pvo_head *);
    249 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    250 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    251 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    252 STATIC void pvo_set_exec(struct pvo_entry *);
    253 STATIC void pvo_clear_exec(struct pvo_entry *);
    254 
    255 STATIC void tlbia(void);
    256 
    257 STATIC void pmap_release(pmap_t);
    258 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    259 
    260 static uint32_t pmap_pvo_reclaim_nextidx;
    261 #ifdef DEBUG
    262 static int pmap_pvo_reclaim_debugctr;
    263 #endif
    264 
    265 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    266 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    267 
    268 static int pmap_initialized;
    269 
    270 #if defined(DEBUG) || defined(PMAPDEBUG)
    271 #define	PMAPDEBUG_BOOT		0x0001
    272 #define	PMAPDEBUG_PTE		0x0002
    273 #define	PMAPDEBUG_EXEC		0x0008
    274 #define	PMAPDEBUG_PVOENTER	0x0010
    275 #define	PMAPDEBUG_PVOREMOVE	0x0020
    276 #define	PMAPDEBUG_ACTIVATE	0x0100
    277 #define	PMAPDEBUG_CREATE	0x0200
    278 #define	PMAPDEBUG_ENTER		0x1000
    279 #define	PMAPDEBUG_KENTER	0x2000
    280 #define	PMAPDEBUG_KREMOVE	0x4000
    281 #define	PMAPDEBUG_REMOVE	0x8000
    282 unsigned int pmapdebug = 0;
    283 # define DPRINTF(x)		printf x
    284 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    285 #else
    286 # define DPRINTF(x)
    287 # define DPRINTFN(n, x)
    288 #endif
    289 
    290 
    291 #ifdef PMAPCOUNTERS
    292 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    293 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    294 
    295 struct evcnt pmap_evcnt_mappings =
    296     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    297 	    "pmap", "pages mapped");
    298 struct evcnt pmap_evcnt_unmappings =
    299     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    300 	    "pmap", "pages unmapped");
    301 
    302 struct evcnt pmap_evcnt_kernel_mappings =
    303     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    304 	    "pmap", "kernel pages mapped");
    305 struct evcnt pmap_evcnt_kernel_unmappings =
    306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    307 	    "pmap", "kernel pages unmapped");
    308 
    309 struct evcnt pmap_evcnt_mappings_replaced =
    310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    311 	    "pmap", "page mappings replaced");
    312 
    313 struct evcnt pmap_evcnt_exec_mappings =
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    315 	    "pmap", "exec pages mapped");
    316 struct evcnt pmap_evcnt_exec_cached =
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    318 	    "pmap", "exec pages cached");
    319 
    320 struct evcnt pmap_evcnt_exec_synced =
    321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    322 	    "pmap", "exec pages synced");
    323 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    324     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    325 	    "pmap", "exec pages synced (CM)");
    326 
    327 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    328     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    329 	    "pmap", "exec pages uncached (PP)");
    330 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    331     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    332 	    "pmap", "exec pages uncached (CM)");
    333 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    335 	    "pmap", "exec pages uncached (ZP)");
    336 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    337     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    338 	    "pmap", "exec pages uncached (CP)");
    339 
    340 struct evcnt pmap_evcnt_updates =
    341     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    342 	    "pmap", "updates");
    343 struct evcnt pmap_evcnt_collects =
    344     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    345 	    "pmap", "collects");
    346 struct evcnt pmap_evcnt_copies =
    347     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    348 	    "pmap", "copies");
    349 
    350 struct evcnt pmap_evcnt_ptes_spilled =
    351     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    352 	    "pmap", "ptes spilled from overflow");
    353 struct evcnt pmap_evcnt_ptes_unspilled =
    354     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    355 	    "pmap", "ptes not spilled");
    356 struct evcnt pmap_evcnt_ptes_evicted =
    357     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    358 	    "pmap", "ptes evicted");
    359 
    360 struct evcnt pmap_evcnt_ptes_primary[8] = {
    361     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    362 	    "pmap", "ptes added at primary[0]"),
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "ptes added at primary[1]"),
    365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366 	    "pmap", "ptes added at primary[2]"),
    367     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    368 	    "pmap", "ptes added at primary[3]"),
    369 
    370     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    371 	    "pmap", "ptes added at primary[4]"),
    372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373 	    "pmap", "ptes added at primary[5]"),
    374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    375 	    "pmap", "ptes added at primary[6]"),
    376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377 	    "pmap", "ptes added at primary[7]"),
    378 };
    379 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    381 	    "pmap", "ptes added at secondary[0]"),
    382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    383 	    "pmap", "ptes added at secondary[1]"),
    384     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    385 	    "pmap", "ptes added at secondary[2]"),
    386     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    387 	    "pmap", "ptes added at secondary[3]"),
    388 
    389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    390 	    "pmap", "ptes added at secondary[4]"),
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes added at secondary[5]"),
    393     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    394 	    "pmap", "ptes added at secondary[6]"),
    395     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    396 	    "pmap", "ptes added at secondary[7]"),
    397 };
    398 struct evcnt pmap_evcnt_ptes_removed =
    399     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    400 	    "pmap", "ptes removed");
    401 struct evcnt pmap_evcnt_ptes_changed =
    402     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    403 	    "pmap", "ptes changed");
    404 struct evcnt pmap_evcnt_pvos_reclaimed =
    405     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    406 	    "pmap", "pvos reclaimed");
    407 struct evcnt pmap_evcnt_pvos_failed =
    408     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    409 	    "pmap", "pvo allocation failures");
    410 
    411 /*
    412  * From pmap_subr.c
    413  */
    414 extern struct evcnt pmap_evcnt_zeroed_pages;
    415 extern struct evcnt pmap_evcnt_copied_pages;
    416 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    417 
    418 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
    419 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
    420 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
    421 
    422 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
    423 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
    424 
    425 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
    426 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
    427 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
    428 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
    429 
    430 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
    431 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
    432 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
    433 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
    434 
    435 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
    436 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
    437 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
    438 
    439 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
    440 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
    441 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
    442 
    443 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
    444 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
    445 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
    446 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
    447 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
    448 
    449 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
    450 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
    451 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
    452 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
    453 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
    454 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
    455 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
    456 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
    457 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
    458 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
    459 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
    460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
    461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
    462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
    463 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
    464 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
    465 
    466 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
    467 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
    468 #else
    469 #define	PMAPCOUNT(ev)	((void) 0)
    470 #define	PMAPCOUNT2(ev)	((void) 0)
    471 #endif
    472 
    473 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    474 #define	TLBSYNC()	__asm volatile("tlbsync")
    475 #define	SYNC()		__asm volatile("sync")
    476 #define	EIEIO()		__asm volatile("eieio")
    477 #define	MFMSR()		mfmsr()
    478 #define	MTMSR(psl)	mtmsr(psl)
    479 #define	MFPVR()		mfpvr()
    480 #define	MFSRIN(va)	mfsrin(va)
    481 #define	MFTB()		mfrtcltbl()
    482 
    483 #ifndef PPC_OEA64
    484 static inline register_t
    485 mfsrin(vaddr_t va)
    486 {
    487 	register_t sr;
    488 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    489 	return sr;
    490 }
    491 #endif	/* PPC_OEA64 */
    492 
    493 static inline register_t
    494 pmap_interrupts_off(void)
    495 {
    496 	register_t msr = MFMSR();
    497 	if (msr & PSL_EE)
    498 		MTMSR(msr & ~PSL_EE);
    499 	return msr;
    500 }
    501 
    502 static void
    503 pmap_interrupts_restore(register_t msr)
    504 {
    505 	if (msr & PSL_EE)
    506 		MTMSR(msr);
    507 }
    508 
    509 static inline u_int32_t
    510 mfrtcltbl(void)
    511 {
    512 
    513 	if ((MFPVR() >> 16) == MPC601)
    514 		return (mfrtcl() >> 7);
    515 	else
    516 		return (mftbl());
    517 }
    518 
    519 /*
    520  * These small routines may have to be replaced,
    521  * if/when we support processors other that the 604.
    522  */
    523 
    524 void
    525 tlbia(void)
    526 {
    527 	caddr_t i;
    528 
    529 	SYNC();
    530 	/*
    531 	 * Why not use "tlbia"?  Because not all processors implement it.
    532 	 *
    533 	 * This needs to be a per-CPU callback to do the appropriate thing
    534 	 * for the CPU. XXX
    535 	 */
    536 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    537 		TLBIE(i);
    538 		EIEIO();
    539 		SYNC();
    540 	}
    541 	TLBSYNC();
    542 	SYNC();
    543 }
    544 
    545 static inline register_t
    546 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    547 {
    548 #ifdef PPC_OEA64
    549 #if 0
    550 	const struct ste *ste;
    551 	register_t hash;
    552 	int i;
    553 
    554 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    555 
    556 	/*
    557 	 * Try the primary group first
    558 	 */
    559 	ste = pm->pm_stes[hash].stes;
    560 	for (i = 0; i < 8; i++, ste++) {
    561 		if (ste->ste_hi & STE_V) &&
    562 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    563 			return ste;
    564 	}
    565 
    566 	/*
    567 	 * Then the secondary group.
    568 	 */
    569 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    570 	for (i = 0; i < 8; i++, ste++) {
    571 		if (ste->ste_hi & STE_V) &&
    572 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    573 			return addr;
    574 	}
    575 
    576 	return NULL;
    577 #else
    578 	/*
    579 	 * Rather than searching the STE groups for the VSID, we know
    580 	 * how we generate that from the ESID and so do that.
    581 	 */
    582 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    583 #endif
    584 #else
    585 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    586 #endif
    587 }
    588 
    589 static inline register_t
    590 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    591 {
    592 	register_t hash;
    593 
    594 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    595 	return hash & pmap_pteg_mask;
    596 }
    597 
    598 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    599 /*
    600  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    601  * The only bit of magic is that the top 4 bits of the address doesn't
    602  * technically exist in the PTE.  But we know we reserved 4 bits of the
    603  * VSID for it so that's how we get it.
    604  */
    605 static vaddr_t
    606 pmap_pte_to_va(volatile const struct pte *pt)
    607 {
    608 	vaddr_t va;
    609 	uintptr_t ptaddr = (uintptr_t) pt;
    610 
    611 	if (pt->pte_hi & PTE_HID)
    612 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    613 
    614 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    615 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    616 	va <<= ADDR_PIDX_SHFT;
    617 
    618 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    619 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    620 
    621 #ifdef PPC_OEA64
    622 	/* PPC63 Bits 0-35 */
    623 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    624 #endif
    625 #ifdef PPC_OEA
    626 	/* PPC Bits 0-3 */
    627 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    628 #endif
    629 
    630 	return va;
    631 }
    632 #endif
    633 
    634 static inline struct pvo_head *
    635 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    636 {
    637 #ifdef __HAVE_VM_PAGE_MD
    638 	struct vm_page *pg;
    639 
    640 	pg = PHYS_TO_VM_PAGE(pa);
    641 	if (pg_p != NULL)
    642 		*pg_p = pg;
    643 	if (pg == NULL)
    644 		return &pmap_pvo_unmanaged;
    645 	return &pg->mdpage.mdpg_pvoh;
    646 #endif
    647 #ifdef __HAVE_PMAP_PHYSSEG
    648 	int bank, pg;
    649 
    650 	bank = vm_physseg_find(atop(pa), &pg);
    651 	if (pg_p != NULL)
    652 		*pg_p = pg;
    653 	if (bank == -1)
    654 		return &pmap_pvo_unmanaged;
    655 	return &vm_physmem[bank].pmseg.pvoh[pg];
    656 #endif
    657 }
    658 
    659 static inline struct pvo_head *
    660 vm_page_to_pvoh(struct vm_page *pg)
    661 {
    662 #ifdef __HAVE_VM_PAGE_MD
    663 	return &pg->mdpage.mdpg_pvoh;
    664 #endif
    665 #ifdef __HAVE_PMAP_PHYSSEG
    666 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    667 #endif
    668 }
    669 
    670 
    671 #ifdef __HAVE_PMAP_PHYSSEG
    672 static inline char *
    673 pa_to_attr(paddr_t pa)
    674 {
    675 	int bank, pg;
    676 
    677 	bank = vm_physseg_find(atop(pa), &pg);
    678 	if (bank == -1)
    679 		return NULL;
    680 	return &vm_physmem[bank].pmseg.attrs[pg];
    681 }
    682 #endif
    683 
    684 static inline void
    685 pmap_attr_clear(struct vm_page *pg, int ptebit)
    686 {
    687 #ifdef __HAVE_PMAP_PHYSSEG
    688 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    689 #endif
    690 #ifdef __HAVE_VM_PAGE_MD
    691 	pg->mdpage.mdpg_attrs &= ~ptebit;
    692 #endif
    693 }
    694 
    695 static inline int
    696 pmap_attr_fetch(struct vm_page *pg)
    697 {
    698 #ifdef __HAVE_PMAP_PHYSSEG
    699 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    700 #endif
    701 #ifdef __HAVE_VM_PAGE_MD
    702 	return pg->mdpage.mdpg_attrs;
    703 #endif
    704 }
    705 
    706 static inline void
    707 pmap_attr_save(struct vm_page *pg, int ptebit)
    708 {
    709 #ifdef __HAVE_PMAP_PHYSSEG
    710 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    711 #endif
    712 #ifdef __HAVE_VM_PAGE_MD
    713 	pg->mdpage.mdpg_attrs |= ptebit;
    714 #endif
    715 }
    716 
    717 static inline int
    718 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    719 {
    720 	if (pt->pte_hi == pvo_pt->pte_hi
    721 #if 0
    722 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    723 	        ~(PTE_REF|PTE_CHG)) == 0
    724 #endif
    725 	    )
    726 		return 1;
    727 	return 0;
    728 }
    729 
    730 static inline void
    731 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    732 {
    733 	/*
    734 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    735 	 * only gets set when the real pte is set in memory.
    736 	 *
    737 	 * Note: Don't set the valid bit for correct operation of tlb update.
    738 	 */
    739 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    740 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    741 	pt->pte_lo = pte_lo;
    742 }
    743 
    744 static inline void
    745 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    746 {
    747 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    748 }
    749 
    750 static inline void
    751 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    752 {
    753 	/*
    754 	 * As shown in Section 7.6.3.2.3
    755 	 */
    756 	pt->pte_lo &= ~ptebit;
    757 	TLBIE(va);
    758 	SYNC();
    759 	EIEIO();
    760 	TLBSYNC();
    761 	SYNC();
    762 }
    763 
    764 static inline void
    765 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    766 {
    767 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    768 	if (pvo_pt->pte_hi & PTE_VALID)
    769 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    770 #endif
    771 	pvo_pt->pte_hi |= PTE_VALID;
    772 	/*
    773 	 * Update the PTE as defined in section 7.6.3.1
    774 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    775 	 * have been saved so this routine can restore them (if desired).
    776 	 */
    777 	pt->pte_lo = pvo_pt->pte_lo;
    778 	EIEIO();
    779 	pt->pte_hi = pvo_pt->pte_hi;
    780 	SYNC();
    781 	pmap_pte_valid++;
    782 }
    783 
    784 static inline void
    785 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    786 {
    787 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    788 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    789 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    790 	if ((pt->pte_hi & PTE_VALID) == 0)
    791 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    792 #endif
    793 
    794 	pvo_pt->pte_hi &= ~PTE_VALID;
    795 	/*
    796 	 * Force the ref & chg bits back into the PTEs.
    797 	 */
    798 	SYNC();
    799 	/*
    800 	 * Invalidate the pte ... (Section 7.6.3.3)
    801 	 */
    802 	pt->pte_hi &= ~PTE_VALID;
    803 	SYNC();
    804 	TLBIE(va);
    805 	SYNC();
    806 	EIEIO();
    807 	TLBSYNC();
    808 	SYNC();
    809 	/*
    810 	 * Save the ref & chg bits ...
    811 	 */
    812 	pmap_pte_synch(pt, pvo_pt);
    813 	pmap_pte_valid--;
    814 }
    815 
    816 static inline void
    817 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    818 {
    819 	/*
    820 	 * Invalidate the PTE
    821 	 */
    822 	pmap_pte_unset(pt, pvo_pt, va);
    823 	pmap_pte_set(pt, pvo_pt);
    824 }
    825 
    826 /*
    827  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    828  * (either primary or secondary location).
    829  *
    830  * Note: both the destination and source PTEs must not have PTE_VALID set.
    831  */
    832 
    833 STATIC int
    834 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    835 {
    836 	volatile struct pte *pt;
    837 	int i;
    838 
    839 #if defined(DEBUG)
    840 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    841 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    842 #endif
    843 	/*
    844 	 * First try primary hash.
    845 	 */
    846 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    847 		if ((pt->pte_hi & PTE_VALID) == 0) {
    848 			pvo_pt->pte_hi &= ~PTE_HID;
    849 			pmap_pte_set(pt, pvo_pt);
    850 			return i;
    851 		}
    852 	}
    853 
    854 	/*
    855 	 * Now try secondary hash.
    856 	 */
    857 	ptegidx ^= pmap_pteg_mask;
    858 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    859 		if ((pt->pte_hi & PTE_VALID) == 0) {
    860 			pvo_pt->pte_hi |= PTE_HID;
    861 			pmap_pte_set(pt, pvo_pt);
    862 			return i;
    863 		}
    864 	}
    865 	return -1;
    866 }
    867 
    868 /*
    869  * Spill handler.
    870  *
    871  * Tries to spill a page table entry from the overflow area.
    872  * This runs in either real mode (if dealing with a exception spill)
    873  * or virtual mode when dealing with manually spilling one of the
    874  * kernel's pte entries.  In either case, interrupts are already
    875  * disabled.
    876  */
    877 
    878 int
    879 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    880 {
    881 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    882 	struct pvo_entry *pvo;
    883 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    884 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    885 	int ptegidx, i, j;
    886 	volatile struct pteg *pteg;
    887 	volatile struct pte *pt;
    888 
    889 	ptegidx = va_to_pteg(pm, addr);
    890 
    891 	/*
    892 	 * Have to substitute some entry. Use the primary hash for this.
    893 	 * Use low bits of timebase as random generator.  Make sure we are
    894 	 * not picking a kernel pte for replacement.
    895 	 */
    896 	pteg = &pmap_pteg_table[ptegidx];
    897 	i = MFTB() & 7;
    898 	for (j = 0; j < 8; j++) {
    899 		pt = &pteg->pt[i];
    900 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    901 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    902 				!= KERNEL_VSIDBITS)
    903 			break;
    904 		i = (i + 1) & 7;
    905 	}
    906 	KASSERT(j < 8);
    907 
    908 	source_pvo = NULL;
    909 	victim_pvo = NULL;
    910 	pvoh = &pmap_pvo_table[ptegidx];
    911 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    912 
    913 		/*
    914 		 * We need to find pvo entry for this address...
    915 		 */
    916 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    917 
    918 		/*
    919 		 * If we haven't found the source and we come to a PVO with
    920 		 * a valid PTE, then we know we can't find it because all
    921 		 * evicted PVOs always are first in the list.
    922 		 */
    923 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    924 			break;
    925 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    926 		    addr == PVO_VADDR(pvo)) {
    927 
    928 			/*
    929 			 * Now we have found the entry to be spilled into the
    930 			 * pteg.  Attempt to insert it into the page table.
    931 			 */
    932 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    933 			if (j >= 0) {
    934 				PVO_PTEGIDX_SET(pvo, j);
    935 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    936 				PVO_WHERE(pvo, SPILL_INSERT);
    937 				pvo->pvo_pmap->pm_evictions--;
    938 				PMAPCOUNT(ptes_spilled);
    939 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    940 				    ? pmap_evcnt_ptes_secondary
    941 				    : pmap_evcnt_ptes_primary)[j]);
    942 
    943 				/*
    944 				 * Since we keep the evicted entries at the
    945 				 * from of the PVO list, we need move this
    946 				 * (now resident) PVO after the evicted
    947 				 * entries.
    948 				 */
    949 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    950 
    951 				/*
    952 				 * If we don't have to move (either we were the
    953 				 * last entry or the next entry was valid),
    954 				 * don't change our position.  Otherwise
    955 				 * move ourselves to the tail of the queue.
    956 				 */
    957 				if (next_pvo != NULL &&
    958 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    959 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    960 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    961 				}
    962 				return 1;
    963 			}
    964 			source_pvo = pvo;
    965 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
    966 				return 0;
    967 			}
    968 			if (victim_pvo != NULL)
    969 				break;
    970 		}
    971 
    972 		/*
    973 		 * We also need the pvo entry of the victim we are replacing
    974 		 * so save the R & C bits of the PTE.
    975 		 */
    976 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    977 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    978 			vpvoh = pvoh;			/* *1* */
    979 			victim_pvo = pvo;
    980 			if (source_pvo != NULL)
    981 				break;
    982 		}
    983 	}
    984 
    985 	if (source_pvo == NULL) {
    986 		PMAPCOUNT(ptes_unspilled);
    987 		return 0;
    988 	}
    989 
    990 	if (victim_pvo == NULL) {
    991 		if ((pt->pte_hi & PTE_HID) == 0)
    992 			panic("pmap_pte_spill: victim p-pte (%p) has "
    993 			    "no pvo entry!", pt);
    994 
    995 		/*
    996 		 * If this is a secondary PTE, we need to search
    997 		 * its primary pvo bucket for the matching PVO.
    998 		 */
    999 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1000 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1001 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1002 
   1003 			/*
   1004 			 * We also need the pvo entry of the victim we are
   1005 			 * replacing so save the R & C bits of the PTE.
   1006 			 */
   1007 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1008 				victim_pvo = pvo;
   1009 				break;
   1010 			}
   1011 		}
   1012 		if (victim_pvo == NULL)
   1013 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1014 			    "no pvo entry!", pt);
   1015 	}
   1016 
   1017 	/*
   1018 	 * The victim should be not be a kernel PVO/PTE entry.
   1019 	 */
   1020 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1021 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1022 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1023 
   1024 	/*
   1025 	 * We are invalidating the TLB entry for the EA for the
   1026 	 * we are replacing even though its valid; If we don't
   1027 	 * we lose any ref/chg bit changes contained in the TLB
   1028 	 * entry.
   1029 	 */
   1030 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1031 
   1032 	/*
   1033 	 * To enforce the PVO list ordering constraint that all
   1034 	 * evicted entries should come before all valid entries,
   1035 	 * move the source PVO to the tail of its list and the
   1036 	 * victim PVO to the head of its list (which might not be
   1037 	 * the same list, if the victim was using the secondary hash).
   1038 	 */
   1039 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1040 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1041 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1042 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1043 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1044 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1045 	victim_pvo->pvo_pmap->pm_evictions++;
   1046 	source_pvo->pvo_pmap->pm_evictions--;
   1047 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1048 	PVO_WHERE(source_pvo, SPILL_SET);
   1049 
   1050 	PVO_PTEGIDX_CLR(victim_pvo);
   1051 	PVO_PTEGIDX_SET(source_pvo, i);
   1052 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1053 	PMAPCOUNT(ptes_spilled);
   1054 	PMAPCOUNT(ptes_evicted);
   1055 	PMAPCOUNT(ptes_removed);
   1056 
   1057 	PMAP_PVO_CHECK(victim_pvo);
   1058 	PMAP_PVO_CHECK(source_pvo);
   1059 	return 1;
   1060 }
   1061 
   1062 /*
   1063  * Restrict given range to physical memory
   1064  */
   1065 void
   1066 pmap_real_memory(paddr_t *start, psize_t *size)
   1067 {
   1068 	struct mem_region *mp;
   1069 
   1070 	for (mp = mem; mp->size; mp++) {
   1071 		if (*start + *size > mp->start
   1072 		    && *start < mp->start + mp->size) {
   1073 			if (*start < mp->start) {
   1074 				*size -= mp->start - *start;
   1075 				*start = mp->start;
   1076 			}
   1077 			if (*start + *size > mp->start + mp->size)
   1078 				*size = mp->start + mp->size - *start;
   1079 			return;
   1080 		}
   1081 	}
   1082 	*size = 0;
   1083 }
   1084 
   1085 /*
   1086  * Initialize anything else for pmap handling.
   1087  * Called during vm_init().
   1088  */
   1089 void
   1090 pmap_init(void)
   1091 {
   1092 #ifdef __HAVE_PMAP_PHYSSEG
   1093 	struct pvo_tqhead *pvoh;
   1094 	int bank;
   1095 	long sz;
   1096 	char *attr;
   1097 
   1098 	pvoh = pmap_physseg.pvoh;
   1099 	attr = pmap_physseg.attrs;
   1100 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1101 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1102 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1103 		vm_physmem[bank].pmseg.attrs = attr;
   1104 		for (; sz > 0; sz--, pvoh++, attr++) {
   1105 			TAILQ_INIT(pvoh);
   1106 			*attr = 0;
   1107 		}
   1108 	}
   1109 #endif
   1110 
   1111 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1112 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1113 	    &pmap_pool_mallocator);
   1114 
   1115 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1116 
   1117 	pmap_initialized = 1;
   1118 
   1119 }
   1120 
   1121 /*
   1122  * How much virtual space does the kernel get?
   1123  */
   1124 void
   1125 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1126 {
   1127 	/*
   1128 	 * For now, reserve one segment (minus some overhead) for kernel
   1129 	 * virtual memory
   1130 	 */
   1131 	*start = VM_MIN_KERNEL_ADDRESS;
   1132 	*end = VM_MAX_KERNEL_ADDRESS;
   1133 }
   1134 
   1135 /*
   1136  * Allocate, initialize, and return a new physical map.
   1137  */
   1138 pmap_t
   1139 pmap_create(void)
   1140 {
   1141 	pmap_t pm;
   1142 
   1143 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1144 	memset((caddr_t)pm, 0, sizeof *pm);
   1145 	pmap_pinit(pm);
   1146 
   1147 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1148 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1149 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1150 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1151 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1152 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1153 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1154 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1155 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1156 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1157 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1158 	return pm;
   1159 }
   1160 
   1161 /*
   1162  * Initialize a preallocated and zeroed pmap structure.
   1163  */
   1164 void
   1165 pmap_pinit(pmap_t pm)
   1166 {
   1167 	register_t entropy = MFTB();
   1168 	register_t mask;
   1169 	int i;
   1170 
   1171 	/*
   1172 	 * Allocate some segment registers for this pmap.
   1173 	 */
   1174 	pm->pm_refs = 1;
   1175 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1176 		static register_t pmap_vsidcontext;
   1177 		register_t hash;
   1178 		unsigned int n;
   1179 
   1180 		/* Create a new value by multiplying by a prime adding in
   1181 		 * entropy from the timebase register.  This is to make the
   1182 		 * VSID more random so that the PT Hash function collides
   1183 		 * less often. (note that the prime causes gcc to do shifts
   1184 		 * instead of a multiply)
   1185 		 */
   1186 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1187 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1188 		if (hash == 0) {		/* 0 is special, avoid it */
   1189 			entropy += 0xbadf00d;
   1190 			continue;
   1191 		}
   1192 		n = hash >> 5;
   1193 		mask = 1L << (hash & (VSID_NBPW-1));
   1194 		hash = pmap_vsidcontext;
   1195 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1196 			/* anything free in this bucket? */
   1197 			if (~pmap_vsid_bitmap[n] == 0) {
   1198 				entropy = hash ^ (hash >> 16);
   1199 				continue;
   1200 			}
   1201 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1202 			mask = 1L << i;
   1203 			hash &= ~(VSID_NBPW-1);
   1204 			hash |= i;
   1205 		}
   1206 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1207 		pmap_vsid_bitmap[n] |= mask;
   1208 		pm->pm_vsid = hash;
   1209 #ifndef PPC_OEA64
   1210 		for (i = 0; i < 16; i++)
   1211 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1212 			    SR_NOEXEC;
   1213 #endif
   1214 		return;
   1215 	}
   1216 	panic("pmap_pinit: out of segments");
   1217 }
   1218 
   1219 /*
   1220  * Add a reference to the given pmap.
   1221  */
   1222 void
   1223 pmap_reference(pmap_t pm)
   1224 {
   1225 	pm->pm_refs++;
   1226 }
   1227 
   1228 /*
   1229  * Retire the given pmap from service.
   1230  * Should only be called if the map contains no valid mappings.
   1231  */
   1232 void
   1233 pmap_destroy(pmap_t pm)
   1234 {
   1235 	if (--pm->pm_refs == 0) {
   1236 		pmap_release(pm);
   1237 		pool_put(&pmap_pool, pm);
   1238 	}
   1239 }
   1240 
   1241 /*
   1242  * Release any resources held by the given physical map.
   1243  * Called when a pmap initialized by pmap_pinit is being released.
   1244  */
   1245 void
   1246 pmap_release(pmap_t pm)
   1247 {
   1248 	int idx, mask;
   1249 
   1250 	if (pm->pm_sr[0] == 0)
   1251 		panic("pmap_release");
   1252 	idx = pm->pm_vsid & (NPMAPS-1);
   1253 	mask = 1 << (idx % VSID_NBPW);
   1254 	idx /= VSID_NBPW;
   1255 
   1256 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1257 	pmap_vsid_bitmap[idx] &= ~mask;
   1258 }
   1259 
   1260 /*
   1261  * Copy the range specified by src_addr/len
   1262  * from the source map to the range dst_addr/len
   1263  * in the destination map.
   1264  *
   1265  * This routine is only advisory and need not do anything.
   1266  */
   1267 void
   1268 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1269 	vsize_t len, vaddr_t src_addr)
   1270 {
   1271 	PMAPCOUNT(copies);
   1272 }
   1273 
   1274 /*
   1275  * Require that all active physical maps contain no
   1276  * incorrect entries NOW.
   1277  */
   1278 void
   1279 pmap_update(struct pmap *pmap)
   1280 {
   1281 	PMAPCOUNT(updates);
   1282 	TLBSYNC();
   1283 }
   1284 
   1285 /*
   1286  * Garbage collects the physical map system for
   1287  * pages which are no longer used.
   1288  * Success need not be guaranteed -- that is, there
   1289  * may well be pages which are not referenced, but
   1290  * others may be collected.
   1291  * Called by the pageout daemon when pages are scarce.
   1292  */
   1293 void
   1294 pmap_collect(pmap_t pm)
   1295 {
   1296 	PMAPCOUNT(collects);
   1297 }
   1298 
   1299 static inline int
   1300 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1301 {
   1302 	int pteidx;
   1303 	/*
   1304 	 * We can find the actual pte entry without searching by
   1305 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1306 	 * and by noticing the HID bit.
   1307 	 */
   1308 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1309 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1310 		pteidx ^= pmap_pteg_mask * 8;
   1311 	return pteidx;
   1312 }
   1313 
   1314 volatile struct pte *
   1315 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1316 {
   1317 	volatile struct pte *pt;
   1318 
   1319 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1320 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1321 		return NULL;
   1322 #endif
   1323 
   1324 	/*
   1325 	 * If we haven't been supplied the ptegidx, calculate it.
   1326 	 */
   1327 	if (pteidx == -1) {
   1328 		int ptegidx;
   1329 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1330 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1331 	}
   1332 
   1333 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1334 
   1335 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1336 	return pt;
   1337 #else
   1338 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1339 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1340 		    "pvo but no valid pte index", pvo);
   1341 	}
   1342 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1343 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1344 		    "pvo but no valid pte", pvo);
   1345 	}
   1346 
   1347 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1348 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1349 #if defined(DEBUG) || defined(PMAPCHECK)
   1350 			pmap_pte_print(pt);
   1351 #endif
   1352 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1353 			    "pmap_pteg_table %p but invalid in pvo",
   1354 			    pvo, pt);
   1355 		}
   1356 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1357 #if defined(DEBUG) || defined(PMAPCHECK)
   1358 			pmap_pte_print(pt);
   1359 #endif
   1360 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1361 			    "not match pte %p in pmap_pteg_table",
   1362 			    pvo, pt);
   1363 		}
   1364 		return pt;
   1365 	}
   1366 
   1367 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1368 #if defined(DEBUG) || defined(PMAPCHECK)
   1369 		pmap_pte_print(pt);
   1370 #endif
   1371 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1372 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1373 	}
   1374 	return NULL;
   1375 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1376 }
   1377 
   1378 struct pvo_entry *
   1379 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1380 {
   1381 	struct pvo_entry *pvo;
   1382 	int ptegidx;
   1383 
   1384 	va &= ~ADDR_POFF;
   1385 	ptegidx = va_to_pteg(pm, va);
   1386 
   1387 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1388 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1389 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1390 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1391 			    "list %#x (%p)", pvo, ptegidx,
   1392 			     &pmap_pvo_table[ptegidx]);
   1393 #endif
   1394 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1395 			if (pteidx_p)
   1396 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1397 			return pvo;
   1398 		}
   1399 	}
   1400 	return NULL;
   1401 }
   1402 
   1403 #if defined(DEBUG) || defined(PMAPCHECK)
   1404 void
   1405 pmap_pvo_check(const struct pvo_entry *pvo)
   1406 {
   1407 	struct pvo_head *pvo_head;
   1408 	struct pvo_entry *pvo0;
   1409 	volatile struct pte *pt;
   1410 	int failed = 0;
   1411 
   1412 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1413 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1414 
   1415 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1416 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1417 		    pvo, pvo->pvo_pmap);
   1418 		failed = 1;
   1419 	}
   1420 
   1421 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1422 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1423 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1424 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1425 		failed = 1;
   1426 	}
   1427 
   1428 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1429 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1430 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1431 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1432 		failed = 1;
   1433 	}
   1434 
   1435 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1436 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1437 	} else {
   1438 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1439 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1440 			    "on kernel unmanaged list\n", pvo);
   1441 			failed = 1;
   1442 		}
   1443 		pvo_head = &pmap_pvo_kunmanaged;
   1444 	}
   1445 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1446 		if (pvo0 == pvo)
   1447 			break;
   1448 	}
   1449 	if (pvo0 == NULL) {
   1450 		printf("pmap_pvo_check: pvo %p: not present "
   1451 		    "on its vlist head %p\n", pvo, pvo_head);
   1452 		failed = 1;
   1453 	}
   1454 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1455 		printf("pmap_pvo_check: pvo %p: not present "
   1456 		    "on its olist head\n", pvo);
   1457 		failed = 1;
   1458 	}
   1459 	pt = pmap_pvo_to_pte(pvo, -1);
   1460 	if (pt == NULL) {
   1461 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1462 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1463 			    "no PTE\n", pvo);
   1464 			failed = 1;
   1465 		}
   1466 	} else {
   1467 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1468 		    (uintptr_t) pt >=
   1469 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1470 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1471 			    "pteg table\n", pvo, pt);
   1472 			failed = 1;
   1473 		}
   1474 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1475 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1476 			    "no PTE\n", pvo);
   1477 			failed = 1;
   1478 		}
   1479 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1480 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1481 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1482 			failed = 1;
   1483 		}
   1484 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1485 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1486 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1487 			    "%#x/%#x\n", pvo,
   1488 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1489 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1490 			failed = 1;
   1491 		}
   1492 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1493 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1494 			    " doesn't not match PVO's VA %#lx\n",
   1495 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1496 			failed = 1;
   1497 		}
   1498 		if (failed)
   1499 			pmap_pte_print(pt);
   1500 	}
   1501 	if (failed)
   1502 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1503 		    pvo->pvo_pmap);
   1504 }
   1505 #endif /* DEBUG || PMAPCHECK */
   1506 
   1507 /*
   1508  * Search the PVO table looking for a non-wired entry.
   1509  * If we find one, remove it and return it.
   1510  */
   1511 
   1512 struct pvo_entry *
   1513 pmap_pvo_reclaim(struct pmap *pm)
   1514 {
   1515 	struct pvo_tqhead *pvoh;
   1516 	struct pvo_entry *pvo;
   1517 	uint32_t idx, endidx;
   1518 
   1519 	endidx = pmap_pvo_reclaim_nextidx;
   1520 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1521 	     idx = (idx + 1) & pmap_pteg_mask) {
   1522 		pvoh = &pmap_pvo_table[idx];
   1523 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1524 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
   1525 				pmap_pvo_remove(pvo, -1, NULL);
   1526 				pmap_pvo_reclaim_nextidx = idx;
   1527 				PMAPCOUNT(pvos_reclaimed);
   1528 				return pvo;
   1529 			}
   1530 		}
   1531 	}
   1532 	return NULL;
   1533 }
   1534 
   1535 /*
   1536  * This returns whether this is the first mapping of a page.
   1537  */
   1538 int
   1539 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1540 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1541 {
   1542 	struct pvo_entry *pvo;
   1543 	struct pvo_tqhead *pvoh;
   1544 	register_t msr;
   1545 	int ptegidx;
   1546 	int i;
   1547 	int poolflags = PR_NOWAIT;
   1548 
   1549 	/*
   1550 	 * Compute the PTE Group index.
   1551 	 */
   1552 	va &= ~ADDR_POFF;
   1553 	ptegidx = va_to_pteg(pm, va);
   1554 
   1555 	msr = pmap_interrupts_off();
   1556 
   1557 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1558 	if (pmap_pvo_remove_depth > 0)
   1559 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1560 	if (++pmap_pvo_enter_depth > 1)
   1561 		panic("pmap_pvo_enter: called recursively!");
   1562 #endif
   1563 
   1564 	/*
   1565 	 * Remove any existing mapping for this page.  Reuse the
   1566 	 * pvo entry if there a mapping.
   1567 	 */
   1568 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1569 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1570 #ifdef DEBUG
   1571 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1572 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1573 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1574 			   va < VM_MIN_KERNEL_ADDRESS) {
   1575 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1576 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1577 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1578 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1579 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1580 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1581 #ifdef DDBX
   1582 				Debugger();
   1583 #endif
   1584 			}
   1585 #endif
   1586 			PMAPCOUNT(mappings_replaced);
   1587 			pmap_pvo_remove(pvo, -1, NULL);
   1588 			break;
   1589 		}
   1590 	}
   1591 
   1592 	/*
   1593 	 * If we aren't overwriting an mapping, try to allocate
   1594 	 */
   1595 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1596 	--pmap_pvo_enter_depth;
   1597 #endif
   1598 	pmap_interrupts_restore(msr);
   1599 	if (pvo) {
   1600 		pmap_pvo_free(pvo);
   1601 	}
   1602 	pvo = pool_get(pl, poolflags);
   1603 
   1604 #ifdef DEBUG
   1605 	/*
   1606 	 * Exercise pmap_pvo_reclaim() a little.
   1607 	 */
   1608 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1609 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1610 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1611 		pool_put(pl, pvo);
   1612 		pvo = NULL;
   1613 	}
   1614 #endif
   1615 
   1616 	msr = pmap_interrupts_off();
   1617 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1618 	++pmap_pvo_enter_depth;
   1619 #endif
   1620 	if (pvo == NULL) {
   1621 		pvo = pmap_pvo_reclaim(pm);
   1622 		if (pvo == NULL) {
   1623 			if ((flags & PMAP_CANFAIL) == 0)
   1624 				panic("pmap_pvo_enter: failed");
   1625 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1626 			pmap_pvo_enter_depth--;
   1627 #endif
   1628 			PMAPCOUNT(pvos_failed);
   1629 			pmap_interrupts_restore(msr);
   1630 			return ENOMEM;
   1631 		}
   1632 	}
   1633 
   1634 	pvo->pvo_vaddr = va;
   1635 	pvo->pvo_pmap = pm;
   1636 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1637 	if (flags & VM_PROT_EXECUTE) {
   1638 		PMAPCOUNT(exec_mappings);
   1639 		pvo_set_exec(pvo);
   1640 	}
   1641 	if (flags & PMAP_WIRED)
   1642 		pvo->pvo_vaddr |= PVO_WIRED;
   1643 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1644 		pvo->pvo_vaddr |= PVO_MANAGED;
   1645 		PMAPCOUNT(mappings);
   1646 	} else {
   1647 		PMAPCOUNT(kernel_mappings);
   1648 	}
   1649 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1650 
   1651 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1652 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1653 		pvo->pvo_pmap->pm_stats.wired_count++;
   1654 	pvo->pvo_pmap->pm_stats.resident_count++;
   1655 #if defined(DEBUG)
   1656 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1657 		DPRINTFN(PVOENTER,
   1658 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1659 		    pvo, pm, va, pa));
   1660 #endif
   1661 
   1662 	/*
   1663 	 * We hope this succeeds but it isn't required.
   1664 	 */
   1665 	pvoh = &pmap_pvo_table[ptegidx];
   1666 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1667 	if (i >= 0) {
   1668 		PVO_PTEGIDX_SET(pvo, i);
   1669 		PVO_WHERE(pvo, ENTER_INSERT);
   1670 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1671 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1672 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1673 	} else {
   1674 		/*
   1675 		 * Since we didn't have room for this entry (which makes it
   1676 		 * and evicted entry), place it at the head of the list.
   1677 		 */
   1678 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1679 		PMAPCOUNT(ptes_evicted);
   1680 		pm->pm_evictions++;
   1681 		/*
   1682 		 * If this is a kernel page, make sure it's active.
   1683 		 */
   1684 		if (pm == pmap_kernel()) {
   1685 			i = pmap_pte_spill(pm, va, FALSE);
   1686 			KASSERT(i);
   1687 		}
   1688 	}
   1689 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1690 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1691 	pmap_pvo_enter_depth--;
   1692 #endif
   1693 	pmap_interrupts_restore(msr);
   1694 	return 0;
   1695 }
   1696 
   1697 void
   1698 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1699 {
   1700 	volatile struct pte *pt;
   1701 	int ptegidx;
   1702 
   1703 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1704 	if (++pmap_pvo_remove_depth > 1)
   1705 		panic("pmap_pvo_remove: called recursively!");
   1706 #endif
   1707 
   1708 	/*
   1709 	 * If we haven't been supplied the ptegidx, calculate it.
   1710 	 */
   1711 	if (pteidx == -1) {
   1712 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1713 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1714 	} else {
   1715 		ptegidx = pteidx >> 3;
   1716 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1717 			ptegidx ^= pmap_pteg_mask;
   1718 	}
   1719 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1720 
   1721 	/*
   1722 	 * If there is an active pte entry, we need to deactivate it
   1723 	 * (and save the ref & chg bits).
   1724 	 */
   1725 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1726 	if (pt != NULL) {
   1727 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1728 		PVO_WHERE(pvo, REMOVE);
   1729 		PVO_PTEGIDX_CLR(pvo);
   1730 		PMAPCOUNT(ptes_removed);
   1731 	} else {
   1732 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1733 		pvo->pvo_pmap->pm_evictions--;
   1734 	}
   1735 
   1736 	/*
   1737 	 * Account for executable mappings.
   1738 	 */
   1739 	if (PVO_ISEXECUTABLE(pvo))
   1740 		pvo_clear_exec(pvo);
   1741 
   1742 	/*
   1743 	 * Update our statistics.
   1744 	 */
   1745 	pvo->pvo_pmap->pm_stats.resident_count--;
   1746 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1747 		pvo->pvo_pmap->pm_stats.wired_count--;
   1748 
   1749 	/*
   1750 	 * Save the REF/CHG bits into their cache if the page is managed.
   1751 	 */
   1752 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1753 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1754 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1755 
   1756 		if (pg != NULL) {
   1757 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1758 		}
   1759 		PMAPCOUNT(unmappings);
   1760 	} else {
   1761 		PMAPCOUNT(kernel_unmappings);
   1762 	}
   1763 
   1764 	/*
   1765 	 * Remove the PVO from its lists and return it to the pool.
   1766 	 */
   1767 	LIST_REMOVE(pvo, pvo_vlink);
   1768 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1769 	if (pvol) {
   1770 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1771 	}
   1772 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1773 	pmap_pvo_remove_depth--;
   1774 #endif
   1775 }
   1776 
   1777 void
   1778 pmap_pvo_free(struct pvo_entry *pvo)
   1779 {
   1780 
   1781 	pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
   1782 		 &pmap_upvo_pool, pvo);
   1783 }
   1784 
   1785 void
   1786 pmap_pvo_free_list(struct pvo_head *pvol)
   1787 {
   1788 	struct pvo_entry *pvo, *npvo;
   1789 
   1790 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1791 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1792 		LIST_REMOVE(pvo, pvo_vlink);
   1793 		pmap_pvo_free(pvo);
   1794 	}
   1795 }
   1796 
   1797 /*
   1798  * Mark a mapping as executable.
   1799  * If this is the first executable mapping in the segment,
   1800  * clear the noexec flag.
   1801  */
   1802 STATIC void
   1803 pvo_set_exec(struct pvo_entry *pvo)
   1804 {
   1805 	struct pmap *pm = pvo->pvo_pmap;
   1806 
   1807 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1808 		return;
   1809 	}
   1810 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1811 #ifdef PPC_OEA
   1812 	{
   1813 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1814 		if (pm->pm_exec[sr]++ == 0) {
   1815 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1816 		}
   1817 	}
   1818 #endif
   1819 }
   1820 
   1821 /*
   1822  * Mark a mapping as non-executable.
   1823  * If this was the last executable mapping in the segment,
   1824  * set the noexec flag.
   1825  */
   1826 STATIC void
   1827 pvo_clear_exec(struct pvo_entry *pvo)
   1828 {
   1829 	struct pmap *pm = pvo->pvo_pmap;
   1830 
   1831 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1832 		return;
   1833 	}
   1834 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1835 #ifdef PPC_OEA
   1836 	{
   1837 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1838 		if (--pm->pm_exec[sr] == 0) {
   1839 			pm->pm_sr[sr] |= SR_NOEXEC;
   1840 		}
   1841 	}
   1842 #endif
   1843 }
   1844 
   1845 /*
   1846  * Insert physical page at pa into the given pmap at virtual address va.
   1847  */
   1848 int
   1849 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1850 {
   1851 	struct mem_region *mp;
   1852 	struct pvo_head *pvo_head;
   1853 	struct vm_page *pg;
   1854 	struct pool *pl;
   1855 	register_t pte_lo;
   1856 	int error;
   1857 	u_int pvo_flags;
   1858 	u_int was_exec = 0;
   1859 
   1860 	if (__predict_false(!pmap_initialized)) {
   1861 		pvo_head = &pmap_pvo_kunmanaged;
   1862 		pl = &pmap_upvo_pool;
   1863 		pvo_flags = 0;
   1864 		pg = NULL;
   1865 		was_exec = PTE_EXEC;
   1866 	} else {
   1867 		pvo_head = pa_to_pvoh(pa, &pg);
   1868 		pl = &pmap_mpvo_pool;
   1869 		pvo_flags = PVO_MANAGED;
   1870 	}
   1871 
   1872 	DPRINTFN(ENTER,
   1873 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1874 	    pm, va, pa, prot, flags));
   1875 
   1876 	/*
   1877 	 * If this is a managed page, and it's the first reference to the
   1878 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1879 	 */
   1880 	if (pg != NULL)
   1881 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1882 
   1883 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1884 
   1885 	/*
   1886 	 * Assume the page is cache inhibited and access is guarded unless
   1887 	 * it's in our available memory array.  If it is in the memory array,
   1888 	 * asssume it's in memory coherent memory.
   1889 	 */
   1890 	pte_lo = PTE_IG;
   1891 	if ((flags & PMAP_NC) == 0) {
   1892 		for (mp = mem; mp->size; mp++) {
   1893 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1894 				pte_lo = PTE_M;
   1895 				break;
   1896 			}
   1897 		}
   1898 	}
   1899 
   1900 	if (prot & VM_PROT_WRITE)
   1901 		pte_lo |= PTE_BW;
   1902 	else
   1903 		pte_lo |= PTE_BR;
   1904 
   1905 	/*
   1906 	 * If this was in response to a fault, "pre-fault" the PTE's
   1907 	 * changed/referenced bit appropriately.
   1908 	 */
   1909 	if (flags & VM_PROT_WRITE)
   1910 		pte_lo |= PTE_CHG;
   1911 	if (flags & VM_PROT_ALL)
   1912 		pte_lo |= PTE_REF;
   1913 
   1914 	/*
   1915 	 * We need to know if this page can be executable
   1916 	 */
   1917 	flags |= (prot & VM_PROT_EXECUTE);
   1918 
   1919 	/*
   1920 	 * Record mapping for later back-translation and pte spilling.
   1921 	 * This will overwrite any existing mapping.
   1922 	 */
   1923 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1924 
   1925 	/*
   1926 	 * Flush the real page from the instruction cache if this page is
   1927 	 * mapped executable and cacheable and has not been flushed since
   1928 	 * the last time it was modified.
   1929 	 */
   1930 	if (error == 0 &&
   1931             (flags & VM_PROT_EXECUTE) &&
   1932             (pte_lo & PTE_I) == 0 &&
   1933 	    was_exec == 0) {
   1934 		DPRINTFN(ENTER, (" syncicache"));
   1935 		PMAPCOUNT(exec_synced);
   1936 		pmap_syncicache(pa, PAGE_SIZE);
   1937 		if (pg != NULL) {
   1938 			pmap_attr_save(pg, PTE_EXEC);
   1939 			PMAPCOUNT(exec_cached);
   1940 #if defined(DEBUG) || defined(PMAPDEBUG)
   1941 			if (pmapdebug & PMAPDEBUG_ENTER)
   1942 				printf(" marked-as-exec");
   1943 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1944 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1945 				    VM_PAGE_TO_PHYS(pg));
   1946 
   1947 #endif
   1948 		}
   1949 	}
   1950 
   1951 	DPRINTFN(ENTER, (": error=%d\n", error));
   1952 
   1953 	return error;
   1954 }
   1955 
   1956 void
   1957 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1958 {
   1959 	struct mem_region *mp;
   1960 	register_t pte_lo;
   1961 	int error;
   1962 
   1963 	if (va < VM_MIN_KERNEL_ADDRESS)
   1964 		panic("pmap_kenter_pa: attempt to enter "
   1965 		    "non-kernel address %#lx!", va);
   1966 
   1967 	DPRINTFN(KENTER,
   1968 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1969 
   1970 	/*
   1971 	 * Assume the page is cache inhibited and access is guarded unless
   1972 	 * it's in our available memory array.  If it is in the memory array,
   1973 	 * asssume it's in memory coherent memory.
   1974 	 */
   1975 	pte_lo = PTE_IG;
   1976 	if ((prot & PMAP_NC) == 0) {
   1977 		for (mp = mem; mp->size; mp++) {
   1978 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1979 				pte_lo = PTE_M;
   1980 				break;
   1981 			}
   1982 		}
   1983 	}
   1984 
   1985 	if (prot & VM_PROT_WRITE)
   1986 		pte_lo |= PTE_BW;
   1987 	else
   1988 		pte_lo |= PTE_BR;
   1989 
   1990 	/*
   1991 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1992 	 */
   1993 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1994 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1995 
   1996 	if (error != 0)
   1997 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1998 		      va, pa, error);
   1999 }
   2000 
   2001 void
   2002 pmap_kremove(vaddr_t va, vsize_t len)
   2003 {
   2004 	if (va < VM_MIN_KERNEL_ADDRESS)
   2005 		panic("pmap_kremove: attempt to remove "
   2006 		    "non-kernel address %#lx!", va);
   2007 
   2008 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   2009 	pmap_remove(pmap_kernel(), va, va + len);
   2010 }
   2011 
   2012 /*
   2013  * Remove the given range of mapping entries.
   2014  */
   2015 void
   2016 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2017 {
   2018 	struct pvo_head pvol;
   2019 	struct pvo_entry *pvo;
   2020 	register_t msr;
   2021 	int pteidx;
   2022 
   2023 	LIST_INIT(&pvol);
   2024 	msr = pmap_interrupts_off();
   2025 	for (; va < endva; va += PAGE_SIZE) {
   2026 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2027 		if (pvo != NULL) {
   2028 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2029 		}
   2030 	}
   2031 	pmap_interrupts_restore(msr);
   2032 	pmap_pvo_free_list(&pvol);
   2033 }
   2034 
   2035 /*
   2036  * Get the physical page address for the given pmap/virtual address.
   2037  */
   2038 boolean_t
   2039 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2040 {
   2041 	struct pvo_entry *pvo;
   2042 	register_t msr;
   2043 
   2044 	/*
   2045 	 * If this is a kernel pmap lookup, also check the battable
   2046 	 * and if we get a hit, translate the VA to a PA using the
   2047 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   2048 	 * that will wrap back to 0.
   2049 	 */
   2050 	if (pm == pmap_kernel() &&
   2051 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2052 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2053 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2054 		if ((MFPVR() >> 16) != MPC601) {
   2055 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2056 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2057 				register_t batl =
   2058 				    battable[va >> ADDR_SR_SHFT].batl;
   2059 				register_t mask =
   2060 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2061 				if (pap)
   2062 					*pap = (batl & mask) | (va & ~mask);
   2063 				return TRUE;
   2064 			}
   2065 		} else {
   2066 			register_t batu = battable[va >> 23].batu;
   2067 			register_t batl = battable[va >> 23].batl;
   2068 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2069 			if (BAT601_VALID_P(batl) &&
   2070 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2071 				register_t mask =
   2072 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2073 				if (pap)
   2074 					*pap = (batl & mask) | (va & ~mask);
   2075 				return TRUE;
   2076 			} else if (SR601_VALID_P(sr) &&
   2077 				   SR601_PA_MATCH_P(sr, va)) {
   2078 				if (pap)
   2079 					*pap = va;
   2080 				return TRUE;
   2081 			}
   2082 		}
   2083 		return FALSE;
   2084 	}
   2085 
   2086 	msr = pmap_interrupts_off();
   2087 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2088 	if (pvo != NULL) {
   2089 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2090 		if (pap)
   2091 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2092 			    | (va & ADDR_POFF);
   2093 	}
   2094 	pmap_interrupts_restore(msr);
   2095 	return pvo != NULL;
   2096 }
   2097 
   2098 /*
   2099  * Lower the protection on the specified range of this pmap.
   2100  */
   2101 void
   2102 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2103 {
   2104 	struct pvo_entry *pvo;
   2105 	volatile struct pte *pt;
   2106 	register_t msr;
   2107 	int pteidx;
   2108 
   2109 	/*
   2110 	 * Since this routine only downgrades protection, we should
   2111 	 * always be called with at least one bit not set.
   2112 	 */
   2113 	KASSERT(prot != VM_PROT_ALL);
   2114 
   2115 	/*
   2116 	 * If there is no protection, this is equivalent to
   2117 	 * remove the pmap from the pmap.
   2118 	 */
   2119 	if ((prot & VM_PROT_READ) == 0) {
   2120 		pmap_remove(pm, va, endva);
   2121 		return;
   2122 	}
   2123 
   2124 	msr = pmap_interrupts_off();
   2125 	for (; va < endva; va += PAGE_SIZE) {
   2126 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2127 		if (pvo == NULL)
   2128 			continue;
   2129 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2130 
   2131 		/*
   2132 		 * Revoke executable if asked to do so.
   2133 		 */
   2134 		if ((prot & VM_PROT_EXECUTE) == 0)
   2135 			pvo_clear_exec(pvo);
   2136 
   2137 #if 0
   2138 		/*
   2139 		 * If the page is already read-only, no change
   2140 		 * needs to be made.
   2141 		 */
   2142 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2143 			continue;
   2144 #endif
   2145 		/*
   2146 		 * Grab the PTE pointer before we diddle with
   2147 		 * the cached PTE copy.
   2148 		 */
   2149 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2150 		/*
   2151 		 * Change the protection of the page.
   2152 		 */
   2153 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2154 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2155 
   2156 		/*
   2157 		 * If the PVO is in the page table, update
   2158 		 * that pte at well.
   2159 		 */
   2160 		if (pt != NULL) {
   2161 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2162 			PVO_WHERE(pvo, PMAP_PROTECT);
   2163 			PMAPCOUNT(ptes_changed);
   2164 		}
   2165 
   2166 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2167 	}
   2168 	pmap_interrupts_restore(msr);
   2169 }
   2170 
   2171 void
   2172 pmap_unwire(pmap_t pm, vaddr_t va)
   2173 {
   2174 	struct pvo_entry *pvo;
   2175 	register_t msr;
   2176 
   2177 	msr = pmap_interrupts_off();
   2178 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2179 	if (pvo != NULL) {
   2180 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2181 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2182 			pm->pm_stats.wired_count--;
   2183 		}
   2184 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2185 	}
   2186 	pmap_interrupts_restore(msr);
   2187 }
   2188 
   2189 /*
   2190  * Lower the protection on the specified physical page.
   2191  */
   2192 void
   2193 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2194 {
   2195 	struct pvo_head *pvo_head, pvol;
   2196 	struct pvo_entry *pvo, *next_pvo;
   2197 	volatile struct pte *pt;
   2198 	register_t msr;
   2199 
   2200 	KASSERT(prot != VM_PROT_ALL);
   2201 	LIST_INIT(&pvol);
   2202 	msr = pmap_interrupts_off();
   2203 
   2204 	/*
   2205 	 * When UVM reuses a page, it does a pmap_page_protect with
   2206 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2207 	 * since we know the page will have different contents.
   2208 	 */
   2209 	if ((prot & VM_PROT_READ) == 0) {
   2210 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2211 		    VM_PAGE_TO_PHYS(pg)));
   2212 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2213 			PMAPCOUNT(exec_uncached_page_protect);
   2214 			pmap_attr_clear(pg, PTE_EXEC);
   2215 		}
   2216 	}
   2217 
   2218 	pvo_head = vm_page_to_pvoh(pg);
   2219 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2220 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2221 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2222 
   2223 		/*
   2224 		 * Downgrading to no mapping at all, we just remove the entry.
   2225 		 */
   2226 		if ((prot & VM_PROT_READ) == 0) {
   2227 			pmap_pvo_remove(pvo, -1, &pvol);
   2228 			continue;
   2229 		}
   2230 
   2231 		/*
   2232 		 * If EXEC permission is being revoked, just clear the
   2233 		 * flag in the PVO.
   2234 		 */
   2235 		if ((prot & VM_PROT_EXECUTE) == 0)
   2236 			pvo_clear_exec(pvo);
   2237 
   2238 		/*
   2239 		 * If this entry is already RO, don't diddle with the
   2240 		 * page table.
   2241 		 */
   2242 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2243 			PMAP_PVO_CHECK(pvo);
   2244 			continue;
   2245 		}
   2246 
   2247 		/*
   2248 		 * Grab the PTE before the we diddle the bits so
   2249 		 * pvo_to_pte can verify the pte contents are as
   2250 		 * expected.
   2251 		 */
   2252 		pt = pmap_pvo_to_pte(pvo, -1);
   2253 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2254 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2255 		if (pt != NULL) {
   2256 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2257 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2258 			PMAPCOUNT(ptes_changed);
   2259 		}
   2260 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2261 	}
   2262 	pmap_interrupts_restore(msr);
   2263 	pmap_pvo_free_list(&pvol);
   2264 }
   2265 
   2266 /*
   2267  * Activate the address space for the specified process.  If the process
   2268  * is the current process, load the new MMU context.
   2269  */
   2270 void
   2271 pmap_activate(struct lwp *l)
   2272 {
   2273 	struct pcb *pcb = &l->l_addr->u_pcb;
   2274 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2275 
   2276 	DPRINTFN(ACTIVATE,
   2277 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2278 
   2279 	/*
   2280 	 * XXX Normally performed in cpu_fork().
   2281 	 */
   2282 	pcb->pcb_pm = pmap;
   2283 
   2284 	/*
   2285 	* In theory, the SR registers need only be valid on return
   2286 	* to user space wait to do them there.
   2287 	*/
   2288 	if (l == curlwp) {
   2289 		/* Store pointer to new current pmap. */
   2290 		curpm = pmap;
   2291 	}
   2292 }
   2293 
   2294 /*
   2295  * Deactivate the specified process's address space.
   2296  */
   2297 void
   2298 pmap_deactivate(struct lwp *l)
   2299 {
   2300 }
   2301 
   2302 boolean_t
   2303 pmap_query_bit(struct vm_page *pg, int ptebit)
   2304 {
   2305 	struct pvo_entry *pvo;
   2306 	volatile struct pte *pt;
   2307 	register_t msr;
   2308 
   2309 	if (pmap_attr_fetch(pg) & ptebit)
   2310 		return TRUE;
   2311 
   2312 	msr = pmap_interrupts_off();
   2313 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2314 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2315 		/*
   2316 		 * See if we saved the bit off.  If so cache, it and return
   2317 		 * success.
   2318 		 */
   2319 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2320 			pmap_attr_save(pg, ptebit);
   2321 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2322 			pmap_interrupts_restore(msr);
   2323 			return TRUE;
   2324 		}
   2325 	}
   2326 	/*
   2327 	 * No luck, now go thru the hard part of looking at the ptes
   2328 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2329 	 * to the PTEs.
   2330 	 */
   2331 	SYNC();
   2332 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2333 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2334 		/*
   2335 		 * See if this pvo have a valid PTE.  If so, fetch the
   2336 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2337 		 * ptebit is set, cache, it and return success.
   2338 		 */
   2339 		pt = pmap_pvo_to_pte(pvo, -1);
   2340 		if (pt != NULL) {
   2341 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2342 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2343 				pmap_attr_save(pg, ptebit);
   2344 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2345 				pmap_interrupts_restore(msr);
   2346 				return TRUE;
   2347 			}
   2348 		}
   2349 	}
   2350 	pmap_interrupts_restore(msr);
   2351 	return FALSE;
   2352 }
   2353 
   2354 boolean_t
   2355 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2356 {
   2357 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2358 	struct pvo_entry *pvo;
   2359 	volatile struct pte *pt;
   2360 	register_t msr;
   2361 	int rv = 0;
   2362 
   2363 	msr = pmap_interrupts_off();
   2364 
   2365 	/*
   2366 	 * Fetch the cache value
   2367 	 */
   2368 	rv |= pmap_attr_fetch(pg);
   2369 
   2370 	/*
   2371 	 * Clear the cached value.
   2372 	 */
   2373 	pmap_attr_clear(pg, ptebit);
   2374 
   2375 	/*
   2376 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2377 	 * can reset the right ones).  Note that since the pvo entries and
   2378 	 * list heads are accessed via BAT0 and are never placed in the
   2379 	 * page table, we don't have to worry about further accesses setting
   2380 	 * the REF/CHG bits.
   2381 	 */
   2382 	SYNC();
   2383 
   2384 	/*
   2385 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2386 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2387 	 */
   2388 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2389 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2390 		pt = pmap_pvo_to_pte(pvo, -1);
   2391 		if (pt != NULL) {
   2392 			/*
   2393 			 * Only sync the PTE if the bit we are looking
   2394 			 * for is not already set.
   2395 			 */
   2396 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2397 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2398 			/*
   2399 			 * If the bit we are looking for was already set,
   2400 			 * clear that bit in the pte.
   2401 			 */
   2402 			if (pvo->pvo_pte.pte_lo & ptebit)
   2403 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2404 		}
   2405 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2406 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2407 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2408 	}
   2409 	pmap_interrupts_restore(msr);
   2410 
   2411 	/*
   2412 	 * If we are clearing the modify bit and this page was marked EXEC
   2413 	 * and the user of the page thinks the page was modified, then we
   2414 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2415 	 * bit if it's not mapped.  The page itself might not have the CHG
   2416 	 * bit set if the modification was done via DMA to the page.
   2417 	 */
   2418 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2419 		if (LIST_EMPTY(pvoh)) {
   2420 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2421 			    VM_PAGE_TO_PHYS(pg)));
   2422 			pmap_attr_clear(pg, PTE_EXEC);
   2423 			PMAPCOUNT(exec_uncached_clear_modify);
   2424 		} else {
   2425 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2426 			    VM_PAGE_TO_PHYS(pg)));
   2427 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2428 			PMAPCOUNT(exec_synced_clear_modify);
   2429 		}
   2430 	}
   2431 	return (rv & ptebit) != 0;
   2432 }
   2433 
   2434 void
   2435 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2436 {
   2437 	struct pvo_entry *pvo;
   2438 	size_t offset = va & ADDR_POFF;
   2439 	int s;
   2440 
   2441 	s = splvm();
   2442 	while (len > 0) {
   2443 		size_t seglen = PAGE_SIZE - offset;
   2444 		if (seglen > len)
   2445 			seglen = len;
   2446 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2447 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2448 			pmap_syncicache(
   2449 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2450 			PMAP_PVO_CHECK(pvo);
   2451 		}
   2452 		va += seglen;
   2453 		len -= seglen;
   2454 		offset = 0;
   2455 	}
   2456 	splx(s);
   2457 }
   2458 
   2459 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2460 void
   2461 pmap_pte_print(volatile struct pte *pt)
   2462 {
   2463 	printf("PTE %p: ", pt);
   2464 	/* High word: */
   2465 	printf("0x%08lx: [", pt->pte_hi);
   2466 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2467 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2468 	printf("0x%06lx 0x%02lx",
   2469 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2470 	    pt->pte_hi & PTE_API);
   2471 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2472 	/* Low word: */
   2473 	printf(" 0x%08lx: [", pt->pte_lo);
   2474 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2475 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2476 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2477 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2478 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2479 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2480 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2481 	switch (pt->pte_lo & PTE_PP) {
   2482 	case PTE_BR: printf("br]\n"); break;
   2483 	case PTE_BW: printf("bw]\n"); break;
   2484 	case PTE_SO: printf("so]\n"); break;
   2485 	case PTE_SW: printf("sw]\n"); break;
   2486 	}
   2487 }
   2488 #endif
   2489 
   2490 #if defined(DDB)
   2491 void
   2492 pmap_pteg_check(void)
   2493 {
   2494 	volatile struct pte *pt;
   2495 	int i;
   2496 	int ptegidx;
   2497 	u_int p_valid = 0;
   2498 	u_int s_valid = 0;
   2499 	u_int invalid = 0;
   2500 
   2501 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2502 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2503 			if (pt->pte_hi & PTE_VALID) {
   2504 				if (pt->pte_hi & PTE_HID)
   2505 					s_valid++;
   2506 				else
   2507 					p_valid++;
   2508 			} else
   2509 				invalid++;
   2510 		}
   2511 	}
   2512 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2513 		p_valid, p_valid, s_valid, s_valid,
   2514 		invalid, invalid);
   2515 }
   2516 
   2517 void
   2518 pmap_print_mmuregs(void)
   2519 {
   2520 	int i;
   2521 	u_int cpuvers;
   2522 #ifndef PPC_OEA64
   2523 	vaddr_t addr;
   2524 	register_t soft_sr[16];
   2525 #endif
   2526 	struct bat soft_ibat[4];
   2527 	struct bat soft_dbat[4];
   2528 	register_t sdr1;
   2529 
   2530 	cpuvers = MFPVR() >> 16;
   2531 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2532 #ifndef PPC_OEA64
   2533 	addr = 0;
   2534 	for (i = 0; i < 16; i++) {
   2535 		soft_sr[i] = MFSRIN(addr);
   2536 		addr += (1 << ADDR_SR_SHFT);
   2537 	}
   2538 #endif
   2539 
   2540 	/* read iBAT (601: uBAT) registers */
   2541 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2542 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2543 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2544 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2545 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2546 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2547 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2548 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2549 
   2550 
   2551 	if (cpuvers != MPC601) {
   2552 		/* read dBAT registers */
   2553 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2554 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2555 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2556 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2557 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2558 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2559 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2560 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2561 	}
   2562 
   2563 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2564 #ifndef PPC_OEA64
   2565 	printf("SR[]:\t");
   2566 	for (i = 0; i < 4; i++)
   2567 		printf("0x%08lx,   ", soft_sr[i]);
   2568 	printf("\n\t");
   2569 	for ( ; i < 8; i++)
   2570 		printf("0x%08lx,   ", soft_sr[i]);
   2571 	printf("\n\t");
   2572 	for ( ; i < 12; i++)
   2573 		printf("0x%08lx,   ", soft_sr[i]);
   2574 	printf("\n\t");
   2575 	for ( ; i < 16; i++)
   2576 		printf("0x%08lx,   ", soft_sr[i]);
   2577 	printf("\n");
   2578 #endif
   2579 
   2580 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2581 	for (i = 0; i < 4; i++) {
   2582 		printf("0x%08lx 0x%08lx, ",
   2583 			soft_ibat[i].batu, soft_ibat[i].batl);
   2584 		if (i == 1)
   2585 			printf("\n\t");
   2586 	}
   2587 	if (cpuvers != MPC601) {
   2588 		printf("\ndBAT[]:\t");
   2589 		for (i = 0; i < 4; i++) {
   2590 			printf("0x%08lx 0x%08lx, ",
   2591 				soft_dbat[i].batu, soft_dbat[i].batl);
   2592 			if (i == 1)
   2593 				printf("\n\t");
   2594 		}
   2595 	}
   2596 	printf("\n");
   2597 }
   2598 
   2599 void
   2600 pmap_print_pte(pmap_t pm, vaddr_t va)
   2601 {
   2602 	struct pvo_entry *pvo;
   2603 	volatile struct pte *pt;
   2604 	int pteidx;
   2605 
   2606 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2607 	if (pvo != NULL) {
   2608 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2609 		if (pt != NULL) {
   2610 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2611 				va, pt,
   2612 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2613 				pt->pte_hi, pt->pte_lo);
   2614 		} else {
   2615 			printf("No valid PTE found\n");
   2616 		}
   2617 	} else {
   2618 		printf("Address not in pmap\n");
   2619 	}
   2620 }
   2621 
   2622 void
   2623 pmap_pteg_dist(void)
   2624 {
   2625 	struct pvo_entry *pvo;
   2626 	int ptegidx;
   2627 	int depth;
   2628 	int max_depth = 0;
   2629 	unsigned int depths[64];
   2630 
   2631 	memset(depths, 0, sizeof(depths));
   2632 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2633 		depth = 0;
   2634 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2635 			depth++;
   2636 		}
   2637 		if (depth > max_depth)
   2638 			max_depth = depth;
   2639 		if (depth > 63)
   2640 			depth = 63;
   2641 		depths[depth]++;
   2642 	}
   2643 
   2644 	for (depth = 0; depth < 64; depth++) {
   2645 		printf("  [%2d]: %8u", depth, depths[depth]);
   2646 		if ((depth & 3) == 3)
   2647 			printf("\n");
   2648 		if (depth == max_depth)
   2649 			break;
   2650 	}
   2651 	if ((depth & 3) != 3)
   2652 		printf("\n");
   2653 	printf("Max depth found was %d\n", max_depth);
   2654 }
   2655 #endif /* DEBUG */
   2656 
   2657 #if defined(PMAPCHECK) || defined(DEBUG)
   2658 void
   2659 pmap_pvo_verify(void)
   2660 {
   2661 	int ptegidx;
   2662 	int s;
   2663 
   2664 	s = splvm();
   2665 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2666 		struct pvo_entry *pvo;
   2667 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2668 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2669 				panic("pmap_pvo_verify: invalid pvo %p "
   2670 				    "on list %#x", pvo, ptegidx);
   2671 			pmap_pvo_check(pvo);
   2672 		}
   2673 	}
   2674 	splx(s);
   2675 }
   2676 #endif /* PMAPCHECK */
   2677 
   2678 
   2679 void *
   2680 pmap_pool_ualloc(struct pool *pp, int flags)
   2681 {
   2682 	struct pvo_page *pvop;
   2683 
   2684 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2685 	if (pvop != NULL) {
   2686 		pmap_upvop_free--;
   2687 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2688 		return pvop;
   2689 	}
   2690 	if (uvm.page_init_done != TRUE) {
   2691 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2692 	}
   2693 	return pmap_pool_malloc(pp, flags);
   2694 }
   2695 
   2696 void *
   2697 pmap_pool_malloc(struct pool *pp, int flags)
   2698 {
   2699 	struct pvo_page *pvop;
   2700 	struct vm_page *pg;
   2701 
   2702 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2703 	if (pvop != NULL) {
   2704 		pmap_mpvop_free--;
   2705 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2706 		return pvop;
   2707 	}
   2708  again:
   2709 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2710 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2711 	if (__predict_false(pg == NULL)) {
   2712 		if (flags & PR_WAITOK) {
   2713 			uvm_wait("plpg");
   2714 			goto again;
   2715 		} else {
   2716 			return (0);
   2717 		}
   2718 	}
   2719 	return (void *) VM_PAGE_TO_PHYS(pg);
   2720 }
   2721 
   2722 void
   2723 pmap_pool_ufree(struct pool *pp, void *va)
   2724 {
   2725 	struct pvo_page *pvop;
   2726 #if 0
   2727 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2728 		pmap_pool_mfree(va, size, tag);
   2729 		return;
   2730 	}
   2731 #endif
   2732 	pvop = va;
   2733 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2734 	pmap_upvop_free++;
   2735 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2736 		pmap_upvop_maxfree = pmap_upvop_free;
   2737 }
   2738 
   2739 void
   2740 pmap_pool_mfree(struct pool *pp, void *va)
   2741 {
   2742 	struct pvo_page *pvop;
   2743 
   2744 	pvop = va;
   2745 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2746 	pmap_mpvop_free++;
   2747 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2748 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2749 #if 0
   2750 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2751 #endif
   2752 }
   2753 
   2754 /*
   2755  * This routine in bootstraping to steal to-be-managed memory (which will
   2756  * then be unmanaged).  We use it to grab from the first 256MB for our
   2757  * pmap needs and above 256MB for other stuff.
   2758  */
   2759 vaddr_t
   2760 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2761 {
   2762 	vsize_t size;
   2763 	vaddr_t va;
   2764 	paddr_t pa = 0;
   2765 	int npgs, bank;
   2766 	struct vm_physseg *ps;
   2767 
   2768 	if (uvm.page_init_done == TRUE)
   2769 		panic("pmap_steal_memory: called _after_ bootstrap");
   2770 
   2771 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2772 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2773 
   2774 	size = round_page(vsize);
   2775 	npgs = atop(size);
   2776 
   2777 	/*
   2778 	 * PA 0 will never be among those given to UVM so we can use it
   2779 	 * to indicate we couldn't steal any memory.
   2780 	 */
   2781 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2782 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2783 		    ps->avail_end - ps->avail_start >= npgs) {
   2784 			pa = ptoa(ps->avail_start);
   2785 			break;
   2786 		}
   2787 	}
   2788 
   2789 	if (pa == 0)
   2790 		panic("pmap_steal_memory: no approriate memory to steal!");
   2791 
   2792 	ps->avail_start += npgs;
   2793 	ps->start += npgs;
   2794 
   2795 	/*
   2796 	 * If we've used up all the pages in the segment, remove it and
   2797 	 * compact the list.
   2798 	 */
   2799 	if (ps->avail_start == ps->end) {
   2800 		/*
   2801 		 * If this was the last one, then a very bad thing has occurred
   2802 		 */
   2803 		if (--vm_nphysseg == 0)
   2804 			panic("pmap_steal_memory: out of memory!");
   2805 
   2806 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2807 		for (; bank < vm_nphysseg; bank++, ps++) {
   2808 			ps[0] = ps[1];
   2809 		}
   2810 	}
   2811 
   2812 	va = (vaddr_t) pa;
   2813 	memset((caddr_t) va, 0, size);
   2814 	pmap_pages_stolen += npgs;
   2815 #ifdef DEBUG
   2816 	if (pmapdebug && npgs > 1) {
   2817 		u_int cnt = 0;
   2818 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2819 			cnt += ps->avail_end - ps->avail_start;
   2820 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2821 		    npgs, pmap_pages_stolen, cnt);
   2822 	}
   2823 #endif
   2824 
   2825 	return va;
   2826 }
   2827 
   2828 /*
   2829  * Find a chuck of memory with right size and alignment.
   2830  */
   2831 void *
   2832 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2833 {
   2834 	struct mem_region *mp;
   2835 	paddr_t s, e;
   2836 	int i, j;
   2837 
   2838 	size = round_page(size);
   2839 
   2840 	DPRINTFN(BOOT,
   2841 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2842 	    size, alignment, at_end));
   2843 
   2844 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2845 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2846 		    alignment);
   2847 
   2848 	if (at_end) {
   2849 		if (alignment != PAGE_SIZE)
   2850 			panic("pmap_boot_find_memory: invalid ending "
   2851 			    "alignment %lx", alignment);
   2852 
   2853 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2854 			s = mp->start + mp->size - size;
   2855 			if (s >= mp->start && mp->size >= size) {
   2856 				DPRINTFN(BOOT,(": %lx\n", s));
   2857 				DPRINTFN(BOOT,
   2858 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2859 				     "0x%lx size 0x%lx\n", mp - avail,
   2860 				     mp->start, mp->size));
   2861 				mp->size -= size;
   2862 				DPRINTFN(BOOT,
   2863 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2864 				     "0x%lx size 0x%lx\n", mp - avail,
   2865 				     mp->start, mp->size));
   2866 				return (void *) s;
   2867 			}
   2868 		}
   2869 		panic("pmap_boot_find_memory: no available memory");
   2870 	}
   2871 
   2872 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2873 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2874 		e = s + size;
   2875 
   2876 		/*
   2877 		 * Is the calculated region entirely within the region?
   2878 		 */
   2879 		if (s < mp->start || e > mp->start + mp->size)
   2880 			continue;
   2881 
   2882 		DPRINTFN(BOOT,(": %lx\n", s));
   2883 		if (s == mp->start) {
   2884 			/*
   2885 			 * If the block starts at the beginning of region,
   2886 			 * adjust the size & start. (the region may now be
   2887 			 * zero in length)
   2888 			 */
   2889 			DPRINTFN(BOOT,
   2890 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2891 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2892 			mp->start += size;
   2893 			mp->size -= size;
   2894 			DPRINTFN(BOOT,
   2895 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2896 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2897 		} else if (e == mp->start + mp->size) {
   2898 			/*
   2899 			 * If the block starts at the beginning of region,
   2900 			 * adjust only the size.
   2901 			 */
   2902 			DPRINTFN(BOOT,
   2903 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2904 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2905 			mp->size -= size;
   2906 			DPRINTFN(BOOT,
   2907 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2908 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2909 		} else {
   2910 			/*
   2911 			 * Block is in the middle of the region, so we
   2912 			 * have to split it in two.
   2913 			 */
   2914 			for (j = avail_cnt; j > i + 1; j--) {
   2915 				avail[j] = avail[j-1];
   2916 			}
   2917 			DPRINTFN(BOOT,
   2918 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2919 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2920 			mp[1].start = e;
   2921 			mp[1].size = mp[0].start + mp[0].size - e;
   2922 			mp[0].size = s - mp[0].start;
   2923 			avail_cnt++;
   2924 			for (; i < avail_cnt; i++) {
   2925 				DPRINTFN(BOOT,
   2926 				    ("pmap_boot_find_memory: a-avail[%d] "
   2927 				     "start 0x%lx size 0x%lx\n", i,
   2928 				     avail[i].start, avail[i].size));
   2929 			}
   2930 		}
   2931 		return (void *) s;
   2932 	}
   2933 	panic("pmap_boot_find_memory: not enough memory for "
   2934 	    "%lx/%lx allocation?", size, alignment);
   2935 }
   2936 
   2937 /*
   2938  * This is not part of the defined PMAP interface and is specific to the
   2939  * PowerPC architecture.  This is called during initppc, before the system
   2940  * is really initialized.
   2941  */
   2942 void
   2943 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2944 {
   2945 	struct mem_region *mp, tmp;
   2946 	paddr_t s, e;
   2947 	psize_t size;
   2948 	int i, j;
   2949 
   2950 	/*
   2951 	 * Get memory.
   2952 	 */
   2953 	mem_regions(&mem, &avail);
   2954 #if defined(DEBUG)
   2955 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2956 		printf("pmap_bootstrap: memory configuration:\n");
   2957 		for (mp = mem; mp->size; mp++) {
   2958 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2959 				mp->start, mp->size);
   2960 		}
   2961 		for (mp = avail; mp->size; mp++) {
   2962 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2963 				mp->start, mp->size);
   2964 		}
   2965 	}
   2966 #endif
   2967 
   2968 	/*
   2969 	 * Find out how much physical memory we have and in how many chunks.
   2970 	 */
   2971 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2972 		if (mp->start >= pmap_memlimit)
   2973 			continue;
   2974 		if (mp->start + mp->size > pmap_memlimit) {
   2975 			size = pmap_memlimit - mp->start;
   2976 			physmem += btoc(size);
   2977 		} else {
   2978 			physmem += btoc(mp->size);
   2979 		}
   2980 		mem_cnt++;
   2981 	}
   2982 
   2983 	/*
   2984 	 * Count the number of available entries.
   2985 	 */
   2986 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2987 		avail_cnt++;
   2988 
   2989 	/*
   2990 	 * Page align all regions.
   2991 	 */
   2992 	kernelstart = trunc_page(kernelstart);
   2993 	kernelend = round_page(kernelend);
   2994 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2995 		s = round_page(mp->start);
   2996 		mp->size -= (s - mp->start);
   2997 		mp->size = trunc_page(mp->size);
   2998 		mp->start = s;
   2999 		e = mp->start + mp->size;
   3000 
   3001 		DPRINTFN(BOOT,
   3002 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   3003 		    i, mp->start, mp->size));
   3004 
   3005 		/*
   3006 		 * Don't allow the end to run beyond our artificial limit
   3007 		 */
   3008 		if (e > pmap_memlimit)
   3009 			e = pmap_memlimit;
   3010 
   3011 		/*
   3012 		 * Is this region empty or strange?  skip it.
   3013 		 */
   3014 		if (e <= s) {
   3015 			mp->start = 0;
   3016 			mp->size = 0;
   3017 			continue;
   3018 		}
   3019 
   3020 		/*
   3021 		 * Does this overlap the beginning of kernel?
   3022 		 *   Does extend past the end of the kernel?
   3023 		 */
   3024 		else if (s < kernelstart && e > kernelstart) {
   3025 			if (e > kernelend) {
   3026 				avail[avail_cnt].start = kernelend;
   3027 				avail[avail_cnt].size = e - kernelend;
   3028 				avail_cnt++;
   3029 			}
   3030 			mp->size = kernelstart - s;
   3031 		}
   3032 		/*
   3033 		 * Check whether this region overlaps the end of the kernel.
   3034 		 */
   3035 		else if (s < kernelend && e > kernelend) {
   3036 			mp->start = kernelend;
   3037 			mp->size = e - kernelend;
   3038 		}
   3039 		/*
   3040 		 * Look whether this regions is completely inside the kernel.
   3041 		 * Nuke it if it does.
   3042 		 */
   3043 		else if (s >= kernelstart && e <= kernelend) {
   3044 			mp->start = 0;
   3045 			mp->size = 0;
   3046 		}
   3047 		/*
   3048 		 * If the user imposed a memory limit, enforce it.
   3049 		 */
   3050 		else if (s >= pmap_memlimit) {
   3051 			mp->start = -PAGE_SIZE;	/* let's know why */
   3052 			mp->size = 0;
   3053 		}
   3054 		else {
   3055 			mp->start = s;
   3056 			mp->size = e - s;
   3057 		}
   3058 		DPRINTFN(BOOT,
   3059 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   3060 		    i, mp->start, mp->size));
   3061 	}
   3062 
   3063 	/*
   3064 	 * Move (and uncount) all the null return to the end.
   3065 	 */
   3066 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3067 		if (mp->size == 0) {
   3068 			tmp = avail[i];
   3069 			avail[i] = avail[--avail_cnt];
   3070 			avail[avail_cnt] = avail[i];
   3071 		}
   3072 	}
   3073 
   3074 	/*
   3075 	 * (Bubble)sort them into asecnding order.
   3076 	 */
   3077 	for (i = 0; i < avail_cnt; i++) {
   3078 		for (j = i + 1; j < avail_cnt; j++) {
   3079 			if (avail[i].start > avail[j].start) {
   3080 				tmp = avail[i];
   3081 				avail[i] = avail[j];
   3082 				avail[j] = tmp;
   3083 			}
   3084 		}
   3085 	}
   3086 
   3087 	/*
   3088 	 * Make sure they don't overlap.
   3089 	 */
   3090 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3091 		if (mp[0].start + mp[0].size > mp[1].start) {
   3092 			mp[0].size = mp[1].start - mp[0].start;
   3093 		}
   3094 		DPRINTFN(BOOT,
   3095 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3096 		    i, mp->start, mp->size));
   3097 	}
   3098 	DPRINTFN(BOOT,
   3099 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3100 	    i, mp->start, mp->size));
   3101 
   3102 #ifdef	PTEGCOUNT
   3103 	pmap_pteg_cnt = PTEGCOUNT;
   3104 #else /* PTEGCOUNT */
   3105 	pmap_pteg_cnt = 0x1000;
   3106 
   3107 	while (pmap_pteg_cnt < physmem)
   3108 		pmap_pteg_cnt <<= 1;
   3109 
   3110 	pmap_pteg_cnt >>= 1;
   3111 #endif /* PTEGCOUNT */
   3112 
   3113 	/*
   3114 	 * Find suitably aligned memory for PTEG hash table.
   3115 	 */
   3116 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3117 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3118 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3119 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3120 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3121 		    pmap_pteg_table, size);
   3122 #endif
   3123 
   3124 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3125 		pmap_pteg_cnt * sizeof(struct pteg));
   3126 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3127 
   3128 	/*
   3129 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3130 	 * with pages.  So we just steal them before giving them to UVM.
   3131 	 */
   3132 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3133 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3134 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3135 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3136 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3137 		    pmap_pvo_table, size);
   3138 #endif
   3139 
   3140 	for (i = 0; i < pmap_pteg_cnt; i++)
   3141 		TAILQ_INIT(&pmap_pvo_table[i]);
   3142 
   3143 #ifndef MSGBUFADDR
   3144 	/*
   3145 	 * Allocate msgbuf in high memory.
   3146 	 */
   3147 	msgbuf_paddr =
   3148 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3149 #endif
   3150 
   3151 #ifdef __HAVE_PMAP_PHYSSEG
   3152 	{
   3153 		u_int npgs = 0;
   3154 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3155 			npgs += btoc(mp->size);
   3156 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3157 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3158 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3159 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3160 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3161 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3162 			    pmap_physseg.pvoh, size);
   3163 #endif
   3164 	}
   3165 #endif
   3166 
   3167 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3168 		paddr_t pfstart = atop(mp->start);
   3169 		paddr_t pfend = atop(mp->start + mp->size);
   3170 		if (mp->size == 0)
   3171 			continue;
   3172 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3173 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3174 				VM_FREELIST_FIRST256);
   3175 		} else if (mp->start >= SEGMENT_LENGTH) {
   3176 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3177 				VM_FREELIST_DEFAULT);
   3178 		} else {
   3179 			pfend = atop(SEGMENT_LENGTH);
   3180 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3181 				VM_FREELIST_FIRST256);
   3182 			pfstart = atop(SEGMENT_LENGTH);
   3183 			pfend = atop(mp->start + mp->size);
   3184 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3185 				VM_FREELIST_DEFAULT);
   3186 		}
   3187 	}
   3188 
   3189 	/*
   3190 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3191 	 */
   3192 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3193 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3194 	pmap_vsid_bitmap[0] |= 1;
   3195 
   3196 	/*
   3197 	 * Initialize kernel pmap and hardware.
   3198 	 */
   3199 #ifndef PPC_OEA64
   3200 	for (i = 0; i < 16; i++) {
   3201 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   3202 		__asm volatile ("mtsrin %0,%1"
   3203 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   3204 	}
   3205 
   3206 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3207 	__asm volatile ("mtsr %0,%1"
   3208 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3209 #ifdef KERNEL2_SR
   3210 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3211 	__asm volatile ("mtsr %0,%1"
   3212 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3213 #endif
   3214 	for (i = 0; i < 16; i++) {
   3215 		if (iosrtable[i] & SR601_T) {
   3216 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3217 			__asm volatile ("mtsrin %0,%1"
   3218 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3219 		}
   3220 	}
   3221 #endif /* !PPC_OEA64 */
   3222 
   3223 	__asm volatile ("sync; mtsdr1 %0; isync"
   3224 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3225 	tlbia();
   3226 
   3227 #ifdef ALTIVEC
   3228 	pmap_use_altivec = cpu_altivec;
   3229 #endif
   3230 
   3231 #ifdef DEBUG
   3232 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3233 		u_int cnt;
   3234 		int bank;
   3235 		char pbuf[9];
   3236 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3237 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3238 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3239 			    bank,
   3240 			    ptoa(vm_physmem[bank].avail_start),
   3241 			    ptoa(vm_physmem[bank].avail_end),
   3242 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3243 		}
   3244 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3245 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3246 		    pbuf, cnt);
   3247 	}
   3248 #endif
   3249 
   3250 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3251 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3252 	    &pmap_pool_uallocator);
   3253 
   3254 	pool_setlowat(&pmap_upvo_pool, 252);
   3255 
   3256 	pool_init(&pmap_pool, sizeof(struct pmap),
   3257 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3258 }
   3259