pmap.c revision 1.36 1 /* $NetBSD: pmap.c,v 1.36 2006/05/12 16:01:05 nathanw Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.36 2006/05/12 16:01:05 nathanw Exp $");
71
72 #include "opt_ppcarch.h"
73 #include "opt_altivec.h"
74 #include "opt_pmap.h"
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83
84 #if __NetBSD_Version__ < 105010000
85 #include <vm/vm.h>
86 #include <vm/vm_kern.h>
87 #define splvm() splimp()
88 #endif
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97
98 #if defined(DEBUG) || defined(PMAPCHECK)
99 #define STATIC
100 #else
101 #define STATIC static
102 #endif
103
104 #ifdef ALTIVEC
105 int pmap_use_altivec;
106 #endif
107
108 volatile struct pteg *pmap_pteg_table;
109 unsigned int pmap_pteg_cnt;
110 unsigned int pmap_pteg_mask;
111 #ifdef PMAP_MEMLIMIT
112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 #else
114 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
115 #endif
116
117 struct pmap kernel_pmap_;
118 unsigned int pmap_pages_stolen;
119 u_long pmap_pte_valid;
120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 u_long pmap_pvo_enter_depth;
122 u_long pmap_pvo_remove_depth;
123 #endif
124
125 int physmem;
126 #ifndef MSGBUFADDR
127 extern paddr_t msgbuf_paddr;
128 #endif
129
130 static struct mem_region *mem, *avail;
131 static u_int mem_cnt, avail_cnt;
132
133 #ifdef __HAVE_PMAP_PHYSSEG
134 /*
135 * This is a cache of referenced/modified bits.
136 * Bits herein are shifted by ATTRSHFT.
137 */
138 #define ATTR_SHFT 4
139 struct pmap_physseg pmap_physseg;
140 #endif
141
142 /*
143 * The following structure is exactly 32 bytes long (one cacheline).
144 */
145 struct pvo_entry {
146 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
147 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
148 struct pte pvo_pte; /* Prebuilt PTE */
149 pmap_t pvo_pmap; /* ptr to owning pmap */
150 vaddr_t pvo_vaddr; /* VA of entry */
151 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
152 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
153 #define PVO_WIRED 0x0010 /* PVO entry is wired */
154 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
155 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
156 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
157 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
158 #define PVO_SPILL_SET 2 /* PVO has been spilled */
159 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
160 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
161 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
162 #define PVO_REMOVE 6 /* PVO has been removed */
163 #define PVO_WHERE_MASK 15
164 #define PVO_WHERE_SHFT 8
165 };
166 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
167 #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 #define PVO_PTEGIDX_CLR(pvo) \
171 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 #define PVO_PTEGIDX_SET(pvo,i) \
173 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 #define PVO_WHERE(pvo,w) \
175 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177
178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
182
183 struct pool pmap_pool; /* pool for pmap structures */
184 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
185 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
186
187 /*
188 * We keep a cache of unmanaged pages to be used for pvo entries for
189 * unmanaged pages.
190 */
191 struct pvo_page {
192 SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 };
194 SIMPLEQ_HEAD(pvop_head, pvo_page);
195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 u_long pmap_upvop_free;
198 u_long pmap_upvop_maxfree;
199 u_long pmap_mpvop_free;
200 u_long pmap_mpvop_maxfree;
201
202 STATIC void *pmap_pool_ualloc(struct pool *, int);
203 STATIC void *pmap_pool_malloc(struct pool *, int);
204
205 STATIC void pmap_pool_ufree(struct pool *, void *);
206 STATIC void pmap_pool_mfree(struct pool *, void *);
207
208 static struct pool_allocator pmap_pool_mallocator = {
209 pmap_pool_malloc, pmap_pool_mfree, 0,
210 };
211
212 static struct pool_allocator pmap_pool_uallocator = {
213 pmap_pool_ualloc, pmap_pool_ufree, 0,
214 };
215
216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 void pmap_pte_print(volatile struct pte *);
218 #endif
219
220 #ifdef DDB
221 void pmap_pteg_check(void);
222 void pmap_pteg_dist(void);
223 void pmap_print_pte(pmap_t, vaddr_t);
224 void pmap_print_mmuregs(void);
225 #endif
226
227 #if defined(DEBUG) || defined(PMAPCHECK)
228 #ifdef PMAPCHECK
229 int pmapcheck = 1;
230 #else
231 int pmapcheck = 0;
232 #endif
233 void pmap_pvo_verify(void);
234 STATIC void pmap_pvo_check(const struct pvo_entry *);
235 #define PMAP_PVO_CHECK(pvo) \
236 do { \
237 if (pmapcheck) \
238 pmap_pvo_check(pvo); \
239 } while (0)
240 #else
241 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
242 #endif
243 STATIC int pmap_pte_insert(int, struct pte *);
244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 vaddr_t, paddr_t, register_t, int);
246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
247 STATIC void pmap_pvo_free(struct pvo_entry *);
248 STATIC void pmap_pvo_free_list(struct pvo_head *);
249 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
250 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
251 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
252 STATIC void pvo_set_exec(struct pvo_entry *);
253 STATIC void pvo_clear_exec(struct pvo_entry *);
254
255 STATIC void tlbia(void);
256
257 STATIC void pmap_release(pmap_t);
258 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
259
260 static uint32_t pmap_pvo_reclaim_nextidx;
261 #ifdef DEBUG
262 static int pmap_pvo_reclaim_debugctr;
263 #endif
264
265 #define VSID_NBPW (sizeof(uint32_t) * 8)
266 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
267
268 static int pmap_initialized;
269
270 #if defined(DEBUG) || defined(PMAPDEBUG)
271 #define PMAPDEBUG_BOOT 0x0001
272 #define PMAPDEBUG_PTE 0x0002
273 #define PMAPDEBUG_EXEC 0x0008
274 #define PMAPDEBUG_PVOENTER 0x0010
275 #define PMAPDEBUG_PVOREMOVE 0x0020
276 #define PMAPDEBUG_ACTIVATE 0x0100
277 #define PMAPDEBUG_CREATE 0x0200
278 #define PMAPDEBUG_ENTER 0x1000
279 #define PMAPDEBUG_KENTER 0x2000
280 #define PMAPDEBUG_KREMOVE 0x4000
281 #define PMAPDEBUG_REMOVE 0x8000
282 unsigned int pmapdebug = 0;
283 # define DPRINTF(x) printf x
284 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
285 #else
286 # define DPRINTF(x)
287 # define DPRINTFN(n, x)
288 #endif
289
290
291 #ifdef PMAPCOUNTERS
292 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
293 #define PMAPCOUNT2(ev) ((ev).ev_count++)
294
295 struct evcnt pmap_evcnt_mappings =
296 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
297 "pmap", "pages mapped");
298 struct evcnt pmap_evcnt_unmappings =
299 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
300 "pmap", "pages unmapped");
301
302 struct evcnt pmap_evcnt_kernel_mappings =
303 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
304 "pmap", "kernel pages mapped");
305 struct evcnt pmap_evcnt_kernel_unmappings =
306 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
307 "pmap", "kernel pages unmapped");
308
309 struct evcnt pmap_evcnt_mappings_replaced =
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
311 "pmap", "page mappings replaced");
312
313 struct evcnt pmap_evcnt_exec_mappings =
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
315 "pmap", "exec pages mapped");
316 struct evcnt pmap_evcnt_exec_cached =
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
318 "pmap", "exec pages cached");
319
320 struct evcnt pmap_evcnt_exec_synced =
321 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
322 "pmap", "exec pages synced");
323 struct evcnt pmap_evcnt_exec_synced_clear_modify =
324 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
325 "pmap", "exec pages synced (CM)");
326
327 struct evcnt pmap_evcnt_exec_uncached_page_protect =
328 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
329 "pmap", "exec pages uncached (PP)");
330 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
331 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
332 "pmap", "exec pages uncached (CM)");
333 struct evcnt pmap_evcnt_exec_uncached_zero_page =
334 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
335 "pmap", "exec pages uncached (ZP)");
336 struct evcnt pmap_evcnt_exec_uncached_copy_page =
337 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
338 "pmap", "exec pages uncached (CP)");
339
340 struct evcnt pmap_evcnt_updates =
341 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
342 "pmap", "updates");
343 struct evcnt pmap_evcnt_collects =
344 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
345 "pmap", "collects");
346 struct evcnt pmap_evcnt_copies =
347 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
348 "pmap", "copies");
349
350 struct evcnt pmap_evcnt_ptes_spilled =
351 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
352 "pmap", "ptes spilled from overflow");
353 struct evcnt pmap_evcnt_ptes_unspilled =
354 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 "pmap", "ptes not spilled");
356 struct evcnt pmap_evcnt_ptes_evicted =
357 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
358 "pmap", "ptes evicted");
359
360 struct evcnt pmap_evcnt_ptes_primary[8] = {
361 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
362 "pmap", "ptes added at primary[0]"),
363 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 "pmap", "ptes added at primary[1]"),
365 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 "pmap", "ptes added at primary[2]"),
367 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
368 "pmap", "ptes added at primary[3]"),
369
370 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
371 "pmap", "ptes added at primary[4]"),
372 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 "pmap", "ptes added at primary[5]"),
374 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
375 "pmap", "ptes added at primary[6]"),
376 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
377 "pmap", "ptes added at primary[7]"),
378 };
379 struct evcnt pmap_evcnt_ptes_secondary[8] = {
380 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 "pmap", "ptes added at secondary[0]"),
382 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 "pmap", "ptes added at secondary[1]"),
384 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 "pmap", "ptes added at secondary[2]"),
386 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
387 "pmap", "ptes added at secondary[3]"),
388
389 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 "pmap", "ptes added at secondary[4]"),
391 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 "pmap", "ptes added at secondary[5]"),
393 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
394 "pmap", "ptes added at secondary[6]"),
395 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 "pmap", "ptes added at secondary[7]"),
397 };
398 struct evcnt pmap_evcnt_ptes_removed =
399 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
400 "pmap", "ptes removed");
401 struct evcnt pmap_evcnt_ptes_changed =
402 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
403 "pmap", "ptes changed");
404 struct evcnt pmap_evcnt_pvos_reclaimed =
405 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
406 "pmap", "pvos reclaimed");
407 struct evcnt pmap_evcnt_pvos_failed =
408 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
409 "pmap", "pvo allocation failures");
410
411 /*
412 * From pmap_subr.c
413 */
414 extern struct evcnt pmap_evcnt_zeroed_pages;
415 extern struct evcnt pmap_evcnt_copied_pages;
416 extern struct evcnt pmap_evcnt_idlezeroed_pages;
417
418 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
419 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
420 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
421
422 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
423 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
424
425 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
426 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
427 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
428 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
429
430 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
431 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
432 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
433 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
434
435 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
436 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
437 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
438
439 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
440 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
441 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
442
443 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
445 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
446 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
447 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
448
449 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
450 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
451 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
452 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
453 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
454 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
455 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
456 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
457 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
458 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
459 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
463 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
464 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
465
466 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
467 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
468 #else
469 #define PMAPCOUNT(ev) ((void) 0)
470 #define PMAPCOUNT2(ev) ((void) 0)
471 #endif
472
473 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
474 #define TLBSYNC() __asm volatile("tlbsync")
475 #define SYNC() __asm volatile("sync")
476 #define EIEIO() __asm volatile("eieio")
477 #define MFMSR() mfmsr()
478 #define MTMSR(psl) mtmsr(psl)
479 #define MFPVR() mfpvr()
480 #define MFSRIN(va) mfsrin(va)
481 #define MFTB() mfrtcltbl()
482
483 #ifndef PPC_OEA64
484 static inline register_t
485 mfsrin(vaddr_t va)
486 {
487 register_t sr;
488 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
489 return sr;
490 }
491 #endif /* PPC_OEA64 */
492
493 static inline register_t
494 pmap_interrupts_off(void)
495 {
496 register_t msr = MFMSR();
497 if (msr & PSL_EE)
498 MTMSR(msr & ~PSL_EE);
499 return msr;
500 }
501
502 static void
503 pmap_interrupts_restore(register_t msr)
504 {
505 if (msr & PSL_EE)
506 MTMSR(msr);
507 }
508
509 static inline u_int32_t
510 mfrtcltbl(void)
511 {
512
513 if ((MFPVR() >> 16) == MPC601)
514 return (mfrtcl() >> 7);
515 else
516 return (mftbl());
517 }
518
519 /*
520 * These small routines may have to be replaced,
521 * if/when we support processors other that the 604.
522 */
523
524 void
525 tlbia(void)
526 {
527 caddr_t i;
528
529 SYNC();
530 /*
531 * Why not use "tlbia"? Because not all processors implement it.
532 *
533 * This needs to be a per-CPU callback to do the appropriate thing
534 * for the CPU. XXX
535 */
536 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
537 TLBIE(i);
538 EIEIO();
539 SYNC();
540 }
541 TLBSYNC();
542 SYNC();
543 }
544
545 static inline register_t
546 va_to_vsid(const struct pmap *pm, vaddr_t addr)
547 {
548 #ifdef PPC_OEA64
549 #if 0
550 const struct ste *ste;
551 register_t hash;
552 int i;
553
554 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
555
556 /*
557 * Try the primary group first
558 */
559 ste = pm->pm_stes[hash].stes;
560 for (i = 0; i < 8; i++, ste++) {
561 if (ste->ste_hi & STE_V) &&
562 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
563 return ste;
564 }
565
566 /*
567 * Then the secondary group.
568 */
569 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
570 for (i = 0; i < 8; i++, ste++) {
571 if (ste->ste_hi & STE_V) &&
572 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
573 return addr;
574 }
575
576 return NULL;
577 #else
578 /*
579 * Rather than searching the STE groups for the VSID, we know
580 * how we generate that from the ESID and so do that.
581 */
582 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
583 #endif
584 #else
585 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
586 #endif
587 }
588
589 static inline register_t
590 va_to_pteg(const struct pmap *pm, vaddr_t addr)
591 {
592 register_t hash;
593
594 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
595 return hash & pmap_pteg_mask;
596 }
597
598 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
599 /*
600 * Given a PTE in the page table, calculate the VADDR that hashes to it.
601 * The only bit of magic is that the top 4 bits of the address doesn't
602 * technically exist in the PTE. But we know we reserved 4 bits of the
603 * VSID for it so that's how we get it.
604 */
605 static vaddr_t
606 pmap_pte_to_va(volatile const struct pte *pt)
607 {
608 vaddr_t va;
609 uintptr_t ptaddr = (uintptr_t) pt;
610
611 if (pt->pte_hi & PTE_HID)
612 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
613
614 /* PPC Bits 10-19 PPC64 Bits 42-51 */
615 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
616 va <<= ADDR_PIDX_SHFT;
617
618 /* PPC Bits 4-9 PPC64 Bits 36-41 */
619 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
620
621 #ifdef PPC_OEA64
622 /* PPC63 Bits 0-35 */
623 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
624 #endif
625 #ifdef PPC_OEA
626 /* PPC Bits 0-3 */
627 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
628 #endif
629
630 return va;
631 }
632 #endif
633
634 static inline struct pvo_head *
635 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
636 {
637 #ifdef __HAVE_VM_PAGE_MD
638 struct vm_page *pg;
639
640 pg = PHYS_TO_VM_PAGE(pa);
641 if (pg_p != NULL)
642 *pg_p = pg;
643 if (pg == NULL)
644 return &pmap_pvo_unmanaged;
645 return &pg->mdpage.mdpg_pvoh;
646 #endif
647 #ifdef __HAVE_PMAP_PHYSSEG
648 int bank, pg;
649
650 bank = vm_physseg_find(atop(pa), &pg);
651 if (pg_p != NULL)
652 *pg_p = pg;
653 if (bank == -1)
654 return &pmap_pvo_unmanaged;
655 return &vm_physmem[bank].pmseg.pvoh[pg];
656 #endif
657 }
658
659 static inline struct pvo_head *
660 vm_page_to_pvoh(struct vm_page *pg)
661 {
662 #ifdef __HAVE_VM_PAGE_MD
663 return &pg->mdpage.mdpg_pvoh;
664 #endif
665 #ifdef __HAVE_PMAP_PHYSSEG
666 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
667 #endif
668 }
669
670
671 #ifdef __HAVE_PMAP_PHYSSEG
672 static inline char *
673 pa_to_attr(paddr_t pa)
674 {
675 int bank, pg;
676
677 bank = vm_physseg_find(atop(pa), &pg);
678 if (bank == -1)
679 return NULL;
680 return &vm_physmem[bank].pmseg.attrs[pg];
681 }
682 #endif
683
684 static inline void
685 pmap_attr_clear(struct vm_page *pg, int ptebit)
686 {
687 #ifdef __HAVE_PMAP_PHYSSEG
688 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
689 #endif
690 #ifdef __HAVE_VM_PAGE_MD
691 pg->mdpage.mdpg_attrs &= ~ptebit;
692 #endif
693 }
694
695 static inline int
696 pmap_attr_fetch(struct vm_page *pg)
697 {
698 #ifdef __HAVE_PMAP_PHYSSEG
699 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
700 #endif
701 #ifdef __HAVE_VM_PAGE_MD
702 return pg->mdpage.mdpg_attrs;
703 #endif
704 }
705
706 static inline void
707 pmap_attr_save(struct vm_page *pg, int ptebit)
708 {
709 #ifdef __HAVE_PMAP_PHYSSEG
710 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
711 #endif
712 #ifdef __HAVE_VM_PAGE_MD
713 pg->mdpage.mdpg_attrs |= ptebit;
714 #endif
715 }
716
717 static inline int
718 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
719 {
720 if (pt->pte_hi == pvo_pt->pte_hi
721 #if 0
722 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
723 ~(PTE_REF|PTE_CHG)) == 0
724 #endif
725 )
726 return 1;
727 return 0;
728 }
729
730 static inline void
731 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
732 {
733 /*
734 * Construct the PTE. Default to IMB initially. Valid bit
735 * only gets set when the real pte is set in memory.
736 *
737 * Note: Don't set the valid bit for correct operation of tlb update.
738 */
739 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
740 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
741 pt->pte_lo = pte_lo;
742 }
743
744 static inline void
745 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
746 {
747 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
748 }
749
750 static inline void
751 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
752 {
753 /*
754 * As shown in Section 7.6.3.2.3
755 */
756 pt->pte_lo &= ~ptebit;
757 TLBIE(va);
758 SYNC();
759 EIEIO();
760 TLBSYNC();
761 SYNC();
762 }
763
764 static inline void
765 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
766 {
767 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
768 if (pvo_pt->pte_hi & PTE_VALID)
769 panic("pte_set: setting an already valid pte %p", pvo_pt);
770 #endif
771 pvo_pt->pte_hi |= PTE_VALID;
772 /*
773 * Update the PTE as defined in section 7.6.3.1
774 * Note that the REF/CHG bits are from pvo_pt and thus should
775 * have been saved so this routine can restore them (if desired).
776 */
777 pt->pte_lo = pvo_pt->pte_lo;
778 EIEIO();
779 pt->pte_hi = pvo_pt->pte_hi;
780 SYNC();
781 pmap_pte_valid++;
782 }
783
784 static inline void
785 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
786 {
787 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
788 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
789 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
790 if ((pt->pte_hi & PTE_VALID) == 0)
791 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
792 #endif
793
794 pvo_pt->pte_hi &= ~PTE_VALID;
795 /*
796 * Force the ref & chg bits back into the PTEs.
797 */
798 SYNC();
799 /*
800 * Invalidate the pte ... (Section 7.6.3.3)
801 */
802 pt->pte_hi &= ~PTE_VALID;
803 SYNC();
804 TLBIE(va);
805 SYNC();
806 EIEIO();
807 TLBSYNC();
808 SYNC();
809 /*
810 * Save the ref & chg bits ...
811 */
812 pmap_pte_synch(pt, pvo_pt);
813 pmap_pte_valid--;
814 }
815
816 static inline void
817 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
818 {
819 /*
820 * Invalidate the PTE
821 */
822 pmap_pte_unset(pt, pvo_pt, va);
823 pmap_pte_set(pt, pvo_pt);
824 }
825
826 /*
827 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
828 * (either primary or secondary location).
829 *
830 * Note: both the destination and source PTEs must not have PTE_VALID set.
831 */
832
833 STATIC int
834 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
835 {
836 volatile struct pte *pt;
837 int i;
838
839 #if defined(DEBUG)
840 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
841 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
842 #endif
843 /*
844 * First try primary hash.
845 */
846 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
847 if ((pt->pte_hi & PTE_VALID) == 0) {
848 pvo_pt->pte_hi &= ~PTE_HID;
849 pmap_pte_set(pt, pvo_pt);
850 return i;
851 }
852 }
853
854 /*
855 * Now try secondary hash.
856 */
857 ptegidx ^= pmap_pteg_mask;
858 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
859 if ((pt->pte_hi & PTE_VALID) == 0) {
860 pvo_pt->pte_hi |= PTE_HID;
861 pmap_pte_set(pt, pvo_pt);
862 return i;
863 }
864 }
865 return -1;
866 }
867
868 /*
869 * Spill handler.
870 *
871 * Tries to spill a page table entry from the overflow area.
872 * This runs in either real mode (if dealing with a exception spill)
873 * or virtual mode when dealing with manually spilling one of the
874 * kernel's pte entries. In either case, interrupts are already
875 * disabled.
876 */
877
878 int
879 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
880 {
881 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
882 struct pvo_entry *pvo;
883 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
884 struct pvo_tqhead *pvoh, *vpvoh = NULL;
885 int ptegidx, i, j;
886 volatile struct pteg *pteg;
887 volatile struct pte *pt;
888
889 ptegidx = va_to_pteg(pm, addr);
890
891 /*
892 * Have to substitute some entry. Use the primary hash for this.
893 * Use low bits of timebase as random generator. Make sure we are
894 * not picking a kernel pte for replacement.
895 */
896 pteg = &pmap_pteg_table[ptegidx];
897 i = MFTB() & 7;
898 for (j = 0; j < 8; j++) {
899 pt = &pteg->pt[i];
900 if ((pt->pte_hi & PTE_VALID) == 0 ||
901 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
902 != KERNEL_VSIDBITS)
903 break;
904 i = (i + 1) & 7;
905 }
906 KASSERT(j < 8);
907
908 source_pvo = NULL;
909 victim_pvo = NULL;
910 pvoh = &pmap_pvo_table[ptegidx];
911 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
912
913 /*
914 * We need to find pvo entry for this address...
915 */
916 PMAP_PVO_CHECK(pvo); /* sanity check */
917
918 /*
919 * If we haven't found the source and we come to a PVO with
920 * a valid PTE, then we know we can't find it because all
921 * evicted PVOs always are first in the list.
922 */
923 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
924 break;
925 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
926 addr == PVO_VADDR(pvo)) {
927
928 /*
929 * Now we have found the entry to be spilled into the
930 * pteg. Attempt to insert it into the page table.
931 */
932 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
933 if (j >= 0) {
934 PVO_PTEGIDX_SET(pvo, j);
935 PMAP_PVO_CHECK(pvo); /* sanity check */
936 PVO_WHERE(pvo, SPILL_INSERT);
937 pvo->pvo_pmap->pm_evictions--;
938 PMAPCOUNT(ptes_spilled);
939 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
940 ? pmap_evcnt_ptes_secondary
941 : pmap_evcnt_ptes_primary)[j]);
942
943 /*
944 * Since we keep the evicted entries at the
945 * from of the PVO list, we need move this
946 * (now resident) PVO after the evicted
947 * entries.
948 */
949 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
950
951 /*
952 * If we don't have to move (either we were the
953 * last entry or the next entry was valid),
954 * don't change our position. Otherwise
955 * move ourselves to the tail of the queue.
956 */
957 if (next_pvo != NULL &&
958 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
959 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
960 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
961 }
962 return 1;
963 }
964 source_pvo = pvo;
965 if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
966 return 0;
967 }
968 if (victim_pvo != NULL)
969 break;
970 }
971
972 /*
973 * We also need the pvo entry of the victim we are replacing
974 * so save the R & C bits of the PTE.
975 */
976 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
977 pmap_pte_compare(pt, &pvo->pvo_pte)) {
978 vpvoh = pvoh; /* *1* */
979 victim_pvo = pvo;
980 if (source_pvo != NULL)
981 break;
982 }
983 }
984
985 if (source_pvo == NULL) {
986 PMAPCOUNT(ptes_unspilled);
987 return 0;
988 }
989
990 if (victim_pvo == NULL) {
991 if ((pt->pte_hi & PTE_HID) == 0)
992 panic("pmap_pte_spill: victim p-pte (%p) has "
993 "no pvo entry!", pt);
994
995 /*
996 * If this is a secondary PTE, we need to search
997 * its primary pvo bucket for the matching PVO.
998 */
999 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1000 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1001 PMAP_PVO_CHECK(pvo); /* sanity check */
1002
1003 /*
1004 * We also need the pvo entry of the victim we are
1005 * replacing so save the R & C bits of the PTE.
1006 */
1007 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1008 victim_pvo = pvo;
1009 break;
1010 }
1011 }
1012 if (victim_pvo == NULL)
1013 panic("pmap_pte_spill: victim s-pte (%p) has "
1014 "no pvo entry!", pt);
1015 }
1016
1017 /*
1018 * The victim should be not be a kernel PVO/PTE entry.
1019 */
1020 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1021 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1022 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1023
1024 /*
1025 * We are invalidating the TLB entry for the EA for the
1026 * we are replacing even though its valid; If we don't
1027 * we lose any ref/chg bit changes contained in the TLB
1028 * entry.
1029 */
1030 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1031
1032 /*
1033 * To enforce the PVO list ordering constraint that all
1034 * evicted entries should come before all valid entries,
1035 * move the source PVO to the tail of its list and the
1036 * victim PVO to the head of its list (which might not be
1037 * the same list, if the victim was using the secondary hash).
1038 */
1039 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1040 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1041 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1042 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1043 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1044 pmap_pte_set(pt, &source_pvo->pvo_pte);
1045 victim_pvo->pvo_pmap->pm_evictions++;
1046 source_pvo->pvo_pmap->pm_evictions--;
1047 PVO_WHERE(victim_pvo, SPILL_UNSET);
1048 PVO_WHERE(source_pvo, SPILL_SET);
1049
1050 PVO_PTEGIDX_CLR(victim_pvo);
1051 PVO_PTEGIDX_SET(source_pvo, i);
1052 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1053 PMAPCOUNT(ptes_spilled);
1054 PMAPCOUNT(ptes_evicted);
1055 PMAPCOUNT(ptes_removed);
1056
1057 PMAP_PVO_CHECK(victim_pvo);
1058 PMAP_PVO_CHECK(source_pvo);
1059 return 1;
1060 }
1061
1062 /*
1063 * Restrict given range to physical memory
1064 */
1065 void
1066 pmap_real_memory(paddr_t *start, psize_t *size)
1067 {
1068 struct mem_region *mp;
1069
1070 for (mp = mem; mp->size; mp++) {
1071 if (*start + *size > mp->start
1072 && *start < mp->start + mp->size) {
1073 if (*start < mp->start) {
1074 *size -= mp->start - *start;
1075 *start = mp->start;
1076 }
1077 if (*start + *size > mp->start + mp->size)
1078 *size = mp->start + mp->size - *start;
1079 return;
1080 }
1081 }
1082 *size = 0;
1083 }
1084
1085 /*
1086 * Initialize anything else for pmap handling.
1087 * Called during vm_init().
1088 */
1089 void
1090 pmap_init(void)
1091 {
1092 #ifdef __HAVE_PMAP_PHYSSEG
1093 struct pvo_tqhead *pvoh;
1094 int bank;
1095 long sz;
1096 char *attr;
1097
1098 pvoh = pmap_physseg.pvoh;
1099 attr = pmap_physseg.attrs;
1100 for (bank = 0; bank < vm_nphysseg; bank++) {
1101 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1102 vm_physmem[bank].pmseg.pvoh = pvoh;
1103 vm_physmem[bank].pmseg.attrs = attr;
1104 for (; sz > 0; sz--, pvoh++, attr++) {
1105 TAILQ_INIT(pvoh);
1106 *attr = 0;
1107 }
1108 }
1109 #endif
1110
1111 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1112 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1113 &pmap_pool_mallocator);
1114
1115 pool_setlowat(&pmap_mpvo_pool, 1008);
1116
1117 pmap_initialized = 1;
1118
1119 }
1120
1121 /*
1122 * How much virtual space does the kernel get?
1123 */
1124 void
1125 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1126 {
1127 /*
1128 * For now, reserve one segment (minus some overhead) for kernel
1129 * virtual memory
1130 */
1131 *start = VM_MIN_KERNEL_ADDRESS;
1132 *end = VM_MAX_KERNEL_ADDRESS;
1133 }
1134
1135 /*
1136 * Allocate, initialize, and return a new physical map.
1137 */
1138 pmap_t
1139 pmap_create(void)
1140 {
1141 pmap_t pm;
1142
1143 pm = pool_get(&pmap_pool, PR_WAITOK);
1144 memset((caddr_t)pm, 0, sizeof *pm);
1145 pmap_pinit(pm);
1146
1147 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1148 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1149 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1150 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1151 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1152 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1153 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1154 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1155 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1156 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1157 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1158 return pm;
1159 }
1160
1161 /*
1162 * Initialize a preallocated and zeroed pmap structure.
1163 */
1164 void
1165 pmap_pinit(pmap_t pm)
1166 {
1167 register_t entropy = MFTB();
1168 register_t mask;
1169 int i;
1170
1171 /*
1172 * Allocate some segment registers for this pmap.
1173 */
1174 pm->pm_refs = 1;
1175 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1176 static register_t pmap_vsidcontext;
1177 register_t hash;
1178 unsigned int n;
1179
1180 /* Create a new value by multiplying by a prime adding in
1181 * entropy from the timebase register. This is to make the
1182 * VSID more random so that the PT Hash function collides
1183 * less often. (note that the prime causes gcc to do shifts
1184 * instead of a multiply)
1185 */
1186 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1187 hash = pmap_vsidcontext & (NPMAPS - 1);
1188 if (hash == 0) { /* 0 is special, avoid it */
1189 entropy += 0xbadf00d;
1190 continue;
1191 }
1192 n = hash >> 5;
1193 mask = 1L << (hash & (VSID_NBPW-1));
1194 hash = pmap_vsidcontext;
1195 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1196 /* anything free in this bucket? */
1197 if (~pmap_vsid_bitmap[n] == 0) {
1198 entropy = hash ^ (hash >> 16);
1199 continue;
1200 }
1201 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1202 mask = 1L << i;
1203 hash &= ~(VSID_NBPW-1);
1204 hash |= i;
1205 }
1206 hash &= PTE_VSID >> PTE_VSID_SHFT;
1207 pmap_vsid_bitmap[n] |= mask;
1208 pm->pm_vsid = hash;
1209 #ifndef PPC_OEA64
1210 for (i = 0; i < 16; i++)
1211 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1212 SR_NOEXEC;
1213 #endif
1214 return;
1215 }
1216 panic("pmap_pinit: out of segments");
1217 }
1218
1219 /*
1220 * Add a reference to the given pmap.
1221 */
1222 void
1223 pmap_reference(pmap_t pm)
1224 {
1225 pm->pm_refs++;
1226 }
1227
1228 /*
1229 * Retire the given pmap from service.
1230 * Should only be called if the map contains no valid mappings.
1231 */
1232 void
1233 pmap_destroy(pmap_t pm)
1234 {
1235 if (--pm->pm_refs == 0) {
1236 pmap_release(pm);
1237 pool_put(&pmap_pool, pm);
1238 }
1239 }
1240
1241 /*
1242 * Release any resources held by the given physical map.
1243 * Called when a pmap initialized by pmap_pinit is being released.
1244 */
1245 void
1246 pmap_release(pmap_t pm)
1247 {
1248 int idx, mask;
1249
1250 if (pm->pm_sr[0] == 0)
1251 panic("pmap_release");
1252 idx = pm->pm_vsid & (NPMAPS-1);
1253 mask = 1 << (idx % VSID_NBPW);
1254 idx /= VSID_NBPW;
1255
1256 KASSERT(pmap_vsid_bitmap[idx] & mask);
1257 pmap_vsid_bitmap[idx] &= ~mask;
1258 }
1259
1260 /*
1261 * Copy the range specified by src_addr/len
1262 * from the source map to the range dst_addr/len
1263 * in the destination map.
1264 *
1265 * This routine is only advisory and need not do anything.
1266 */
1267 void
1268 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1269 vsize_t len, vaddr_t src_addr)
1270 {
1271 PMAPCOUNT(copies);
1272 }
1273
1274 /*
1275 * Require that all active physical maps contain no
1276 * incorrect entries NOW.
1277 */
1278 void
1279 pmap_update(struct pmap *pmap)
1280 {
1281 PMAPCOUNT(updates);
1282 TLBSYNC();
1283 }
1284
1285 /*
1286 * Garbage collects the physical map system for
1287 * pages which are no longer used.
1288 * Success need not be guaranteed -- that is, there
1289 * may well be pages which are not referenced, but
1290 * others may be collected.
1291 * Called by the pageout daemon when pages are scarce.
1292 */
1293 void
1294 pmap_collect(pmap_t pm)
1295 {
1296 PMAPCOUNT(collects);
1297 }
1298
1299 static inline int
1300 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1301 {
1302 int pteidx;
1303 /*
1304 * We can find the actual pte entry without searching by
1305 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1306 * and by noticing the HID bit.
1307 */
1308 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1309 if (pvo->pvo_pte.pte_hi & PTE_HID)
1310 pteidx ^= pmap_pteg_mask * 8;
1311 return pteidx;
1312 }
1313
1314 volatile struct pte *
1315 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1316 {
1317 volatile struct pte *pt;
1318
1319 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1320 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1321 return NULL;
1322 #endif
1323
1324 /*
1325 * If we haven't been supplied the ptegidx, calculate it.
1326 */
1327 if (pteidx == -1) {
1328 int ptegidx;
1329 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1330 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1331 }
1332
1333 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1334
1335 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1336 return pt;
1337 #else
1338 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1339 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1340 "pvo but no valid pte index", pvo);
1341 }
1342 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1343 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1344 "pvo but no valid pte", pvo);
1345 }
1346
1347 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1348 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1349 #if defined(DEBUG) || defined(PMAPCHECK)
1350 pmap_pte_print(pt);
1351 #endif
1352 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1353 "pmap_pteg_table %p but invalid in pvo",
1354 pvo, pt);
1355 }
1356 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1357 #if defined(DEBUG) || defined(PMAPCHECK)
1358 pmap_pte_print(pt);
1359 #endif
1360 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1361 "not match pte %p in pmap_pteg_table",
1362 pvo, pt);
1363 }
1364 return pt;
1365 }
1366
1367 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1368 #if defined(DEBUG) || defined(PMAPCHECK)
1369 pmap_pte_print(pt);
1370 #endif
1371 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1372 "pmap_pteg_table but valid in pvo", pvo, pt);
1373 }
1374 return NULL;
1375 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1376 }
1377
1378 struct pvo_entry *
1379 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1380 {
1381 struct pvo_entry *pvo;
1382 int ptegidx;
1383
1384 va &= ~ADDR_POFF;
1385 ptegidx = va_to_pteg(pm, va);
1386
1387 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1388 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1389 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1390 panic("pmap_pvo_find_va: invalid pvo %p on "
1391 "list %#x (%p)", pvo, ptegidx,
1392 &pmap_pvo_table[ptegidx]);
1393 #endif
1394 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1395 if (pteidx_p)
1396 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1397 return pvo;
1398 }
1399 }
1400 return NULL;
1401 }
1402
1403 #if defined(DEBUG) || defined(PMAPCHECK)
1404 void
1405 pmap_pvo_check(const struct pvo_entry *pvo)
1406 {
1407 struct pvo_head *pvo_head;
1408 struct pvo_entry *pvo0;
1409 volatile struct pte *pt;
1410 int failed = 0;
1411
1412 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1413 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1414
1415 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1416 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1417 pvo, pvo->pvo_pmap);
1418 failed = 1;
1419 }
1420
1421 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1422 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1423 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1424 pvo, TAILQ_NEXT(pvo, pvo_olink));
1425 failed = 1;
1426 }
1427
1428 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1429 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1430 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1431 pvo, LIST_NEXT(pvo, pvo_vlink));
1432 failed = 1;
1433 }
1434
1435 if (pvo->pvo_vaddr & PVO_MANAGED) {
1436 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1437 } else {
1438 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1439 printf("pmap_pvo_check: pvo %p: non kernel address "
1440 "on kernel unmanaged list\n", pvo);
1441 failed = 1;
1442 }
1443 pvo_head = &pmap_pvo_kunmanaged;
1444 }
1445 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1446 if (pvo0 == pvo)
1447 break;
1448 }
1449 if (pvo0 == NULL) {
1450 printf("pmap_pvo_check: pvo %p: not present "
1451 "on its vlist head %p\n", pvo, pvo_head);
1452 failed = 1;
1453 }
1454 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1455 printf("pmap_pvo_check: pvo %p: not present "
1456 "on its olist head\n", pvo);
1457 failed = 1;
1458 }
1459 pt = pmap_pvo_to_pte(pvo, -1);
1460 if (pt == NULL) {
1461 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1462 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1463 "no PTE\n", pvo);
1464 failed = 1;
1465 }
1466 } else {
1467 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1468 (uintptr_t) pt >=
1469 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1470 printf("pmap_pvo_check: pvo %p: pte %p not in "
1471 "pteg table\n", pvo, pt);
1472 failed = 1;
1473 }
1474 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1475 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1476 "no PTE\n", pvo);
1477 failed = 1;
1478 }
1479 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1480 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1481 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1482 failed = 1;
1483 }
1484 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1485 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1486 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1487 "%#x/%#x\n", pvo,
1488 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1489 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1490 failed = 1;
1491 }
1492 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1493 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1494 " doesn't not match PVO's VA %#lx\n",
1495 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1496 failed = 1;
1497 }
1498 if (failed)
1499 pmap_pte_print(pt);
1500 }
1501 if (failed)
1502 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1503 pvo->pvo_pmap);
1504 }
1505 #endif /* DEBUG || PMAPCHECK */
1506
1507 /*
1508 * Search the PVO table looking for a non-wired entry.
1509 * If we find one, remove it and return it.
1510 */
1511
1512 struct pvo_entry *
1513 pmap_pvo_reclaim(struct pmap *pm)
1514 {
1515 struct pvo_tqhead *pvoh;
1516 struct pvo_entry *pvo;
1517 uint32_t idx, endidx;
1518
1519 endidx = pmap_pvo_reclaim_nextidx;
1520 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1521 idx = (idx + 1) & pmap_pteg_mask) {
1522 pvoh = &pmap_pvo_table[idx];
1523 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1524 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
1525 pmap_pvo_remove(pvo, -1, NULL);
1526 pmap_pvo_reclaim_nextidx = idx;
1527 PMAPCOUNT(pvos_reclaimed);
1528 return pvo;
1529 }
1530 }
1531 }
1532 return NULL;
1533 }
1534
1535 /*
1536 * This returns whether this is the first mapping of a page.
1537 */
1538 int
1539 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1540 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1541 {
1542 struct pvo_entry *pvo;
1543 struct pvo_tqhead *pvoh;
1544 register_t msr;
1545 int ptegidx;
1546 int i;
1547 int poolflags = PR_NOWAIT;
1548
1549 /*
1550 * Compute the PTE Group index.
1551 */
1552 va &= ~ADDR_POFF;
1553 ptegidx = va_to_pteg(pm, va);
1554
1555 msr = pmap_interrupts_off();
1556
1557 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1558 if (pmap_pvo_remove_depth > 0)
1559 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1560 if (++pmap_pvo_enter_depth > 1)
1561 panic("pmap_pvo_enter: called recursively!");
1562 #endif
1563
1564 /*
1565 * Remove any existing mapping for this page. Reuse the
1566 * pvo entry if there a mapping.
1567 */
1568 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1569 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1570 #ifdef DEBUG
1571 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1572 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1573 ~(PTE_REF|PTE_CHG)) == 0 &&
1574 va < VM_MIN_KERNEL_ADDRESS) {
1575 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1576 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1577 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1578 (unsigned int) pvo->pvo_pte.pte_hi,
1579 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1580 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1581 #ifdef DDBX
1582 Debugger();
1583 #endif
1584 }
1585 #endif
1586 PMAPCOUNT(mappings_replaced);
1587 pmap_pvo_remove(pvo, -1, NULL);
1588 break;
1589 }
1590 }
1591
1592 /*
1593 * If we aren't overwriting an mapping, try to allocate
1594 */
1595 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1596 --pmap_pvo_enter_depth;
1597 #endif
1598 pmap_interrupts_restore(msr);
1599 if (pvo) {
1600 pmap_pvo_free(pvo);
1601 }
1602 pvo = pool_get(pl, poolflags);
1603
1604 #ifdef DEBUG
1605 /*
1606 * Exercise pmap_pvo_reclaim() a little.
1607 */
1608 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1609 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1610 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1611 pool_put(pl, pvo);
1612 pvo = NULL;
1613 }
1614 #endif
1615
1616 msr = pmap_interrupts_off();
1617 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1618 ++pmap_pvo_enter_depth;
1619 #endif
1620 if (pvo == NULL) {
1621 pvo = pmap_pvo_reclaim(pm);
1622 if (pvo == NULL) {
1623 if ((flags & PMAP_CANFAIL) == 0)
1624 panic("pmap_pvo_enter: failed");
1625 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1626 pmap_pvo_enter_depth--;
1627 #endif
1628 PMAPCOUNT(pvos_failed);
1629 pmap_interrupts_restore(msr);
1630 return ENOMEM;
1631 }
1632 }
1633
1634 pvo->pvo_vaddr = va;
1635 pvo->pvo_pmap = pm;
1636 pvo->pvo_vaddr &= ~ADDR_POFF;
1637 if (flags & VM_PROT_EXECUTE) {
1638 PMAPCOUNT(exec_mappings);
1639 pvo_set_exec(pvo);
1640 }
1641 if (flags & PMAP_WIRED)
1642 pvo->pvo_vaddr |= PVO_WIRED;
1643 if (pvo_head != &pmap_pvo_kunmanaged) {
1644 pvo->pvo_vaddr |= PVO_MANAGED;
1645 PMAPCOUNT(mappings);
1646 } else {
1647 PMAPCOUNT(kernel_mappings);
1648 }
1649 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1650
1651 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1652 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1653 pvo->pvo_pmap->pm_stats.wired_count++;
1654 pvo->pvo_pmap->pm_stats.resident_count++;
1655 #if defined(DEBUG)
1656 if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1657 DPRINTFN(PVOENTER,
1658 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1659 pvo, pm, va, pa));
1660 #endif
1661
1662 /*
1663 * We hope this succeeds but it isn't required.
1664 */
1665 pvoh = &pmap_pvo_table[ptegidx];
1666 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1667 if (i >= 0) {
1668 PVO_PTEGIDX_SET(pvo, i);
1669 PVO_WHERE(pvo, ENTER_INSERT);
1670 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1671 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1672 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1673 } else {
1674 /*
1675 * Since we didn't have room for this entry (which makes it
1676 * and evicted entry), place it at the head of the list.
1677 */
1678 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1679 PMAPCOUNT(ptes_evicted);
1680 pm->pm_evictions++;
1681 /*
1682 * If this is a kernel page, make sure it's active.
1683 */
1684 if (pm == pmap_kernel()) {
1685 i = pmap_pte_spill(pm, va, FALSE);
1686 KASSERT(i);
1687 }
1688 }
1689 PMAP_PVO_CHECK(pvo); /* sanity check */
1690 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1691 pmap_pvo_enter_depth--;
1692 #endif
1693 pmap_interrupts_restore(msr);
1694 return 0;
1695 }
1696
1697 void
1698 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1699 {
1700 volatile struct pte *pt;
1701 int ptegidx;
1702
1703 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1704 if (++pmap_pvo_remove_depth > 1)
1705 panic("pmap_pvo_remove: called recursively!");
1706 #endif
1707
1708 /*
1709 * If we haven't been supplied the ptegidx, calculate it.
1710 */
1711 if (pteidx == -1) {
1712 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1713 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1714 } else {
1715 ptegidx = pteidx >> 3;
1716 if (pvo->pvo_pte.pte_hi & PTE_HID)
1717 ptegidx ^= pmap_pteg_mask;
1718 }
1719 PMAP_PVO_CHECK(pvo); /* sanity check */
1720
1721 /*
1722 * If there is an active pte entry, we need to deactivate it
1723 * (and save the ref & chg bits).
1724 */
1725 pt = pmap_pvo_to_pte(pvo, pteidx);
1726 if (pt != NULL) {
1727 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1728 PVO_WHERE(pvo, REMOVE);
1729 PVO_PTEGIDX_CLR(pvo);
1730 PMAPCOUNT(ptes_removed);
1731 } else {
1732 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1733 pvo->pvo_pmap->pm_evictions--;
1734 }
1735
1736 /*
1737 * Account for executable mappings.
1738 */
1739 if (PVO_ISEXECUTABLE(pvo))
1740 pvo_clear_exec(pvo);
1741
1742 /*
1743 * Update our statistics.
1744 */
1745 pvo->pvo_pmap->pm_stats.resident_count--;
1746 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1747 pvo->pvo_pmap->pm_stats.wired_count--;
1748
1749 /*
1750 * Save the REF/CHG bits into their cache if the page is managed.
1751 */
1752 if (pvo->pvo_vaddr & PVO_MANAGED) {
1753 register_t ptelo = pvo->pvo_pte.pte_lo;
1754 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1755
1756 if (pg != NULL) {
1757 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1758 }
1759 PMAPCOUNT(unmappings);
1760 } else {
1761 PMAPCOUNT(kernel_unmappings);
1762 }
1763
1764 /*
1765 * Remove the PVO from its lists and return it to the pool.
1766 */
1767 LIST_REMOVE(pvo, pvo_vlink);
1768 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1769 if (pvol) {
1770 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1771 }
1772 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1773 pmap_pvo_remove_depth--;
1774 #endif
1775 }
1776
1777 void
1778 pmap_pvo_free(struct pvo_entry *pvo)
1779 {
1780
1781 pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
1782 &pmap_upvo_pool, pvo);
1783 }
1784
1785 void
1786 pmap_pvo_free_list(struct pvo_head *pvol)
1787 {
1788 struct pvo_entry *pvo, *npvo;
1789
1790 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1791 npvo = LIST_NEXT(pvo, pvo_vlink);
1792 LIST_REMOVE(pvo, pvo_vlink);
1793 pmap_pvo_free(pvo);
1794 }
1795 }
1796
1797 /*
1798 * Mark a mapping as executable.
1799 * If this is the first executable mapping in the segment,
1800 * clear the noexec flag.
1801 */
1802 STATIC void
1803 pvo_set_exec(struct pvo_entry *pvo)
1804 {
1805 struct pmap *pm = pvo->pvo_pmap;
1806
1807 if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1808 return;
1809 }
1810 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1811 #ifdef PPC_OEA
1812 {
1813 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1814 if (pm->pm_exec[sr]++ == 0) {
1815 pm->pm_sr[sr] &= ~SR_NOEXEC;
1816 }
1817 }
1818 #endif
1819 }
1820
1821 /*
1822 * Mark a mapping as non-executable.
1823 * If this was the last executable mapping in the segment,
1824 * set the noexec flag.
1825 */
1826 STATIC void
1827 pvo_clear_exec(struct pvo_entry *pvo)
1828 {
1829 struct pmap *pm = pvo->pvo_pmap;
1830
1831 if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1832 return;
1833 }
1834 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1835 #ifdef PPC_OEA
1836 {
1837 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1838 if (--pm->pm_exec[sr] == 0) {
1839 pm->pm_sr[sr] |= SR_NOEXEC;
1840 }
1841 }
1842 #endif
1843 }
1844
1845 /*
1846 * Insert physical page at pa into the given pmap at virtual address va.
1847 */
1848 int
1849 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1850 {
1851 struct mem_region *mp;
1852 struct pvo_head *pvo_head;
1853 struct vm_page *pg;
1854 struct pool *pl;
1855 register_t pte_lo;
1856 int error;
1857 u_int pvo_flags;
1858 u_int was_exec = 0;
1859
1860 if (__predict_false(!pmap_initialized)) {
1861 pvo_head = &pmap_pvo_kunmanaged;
1862 pl = &pmap_upvo_pool;
1863 pvo_flags = 0;
1864 pg = NULL;
1865 was_exec = PTE_EXEC;
1866 } else {
1867 pvo_head = pa_to_pvoh(pa, &pg);
1868 pl = &pmap_mpvo_pool;
1869 pvo_flags = PVO_MANAGED;
1870 }
1871
1872 DPRINTFN(ENTER,
1873 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1874 pm, va, pa, prot, flags));
1875
1876 /*
1877 * If this is a managed page, and it's the first reference to the
1878 * page clear the execness of the page. Otherwise fetch the execness.
1879 */
1880 if (pg != NULL)
1881 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1882
1883 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1884
1885 /*
1886 * Assume the page is cache inhibited and access is guarded unless
1887 * it's in our available memory array. If it is in the memory array,
1888 * asssume it's in memory coherent memory.
1889 */
1890 pte_lo = PTE_IG;
1891 if ((flags & PMAP_NC) == 0) {
1892 for (mp = mem; mp->size; mp++) {
1893 if (pa >= mp->start && pa < mp->start + mp->size) {
1894 pte_lo = PTE_M;
1895 break;
1896 }
1897 }
1898 }
1899
1900 if (prot & VM_PROT_WRITE)
1901 pte_lo |= PTE_BW;
1902 else
1903 pte_lo |= PTE_BR;
1904
1905 /*
1906 * If this was in response to a fault, "pre-fault" the PTE's
1907 * changed/referenced bit appropriately.
1908 */
1909 if (flags & VM_PROT_WRITE)
1910 pte_lo |= PTE_CHG;
1911 if (flags & VM_PROT_ALL)
1912 pte_lo |= PTE_REF;
1913
1914 /*
1915 * We need to know if this page can be executable
1916 */
1917 flags |= (prot & VM_PROT_EXECUTE);
1918
1919 /*
1920 * Record mapping for later back-translation and pte spilling.
1921 * This will overwrite any existing mapping.
1922 */
1923 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1924
1925 /*
1926 * Flush the real page from the instruction cache if this page is
1927 * mapped executable and cacheable and has not been flushed since
1928 * the last time it was modified.
1929 */
1930 if (error == 0 &&
1931 (flags & VM_PROT_EXECUTE) &&
1932 (pte_lo & PTE_I) == 0 &&
1933 was_exec == 0) {
1934 DPRINTFN(ENTER, (" syncicache"));
1935 PMAPCOUNT(exec_synced);
1936 pmap_syncicache(pa, PAGE_SIZE);
1937 if (pg != NULL) {
1938 pmap_attr_save(pg, PTE_EXEC);
1939 PMAPCOUNT(exec_cached);
1940 #if defined(DEBUG) || defined(PMAPDEBUG)
1941 if (pmapdebug & PMAPDEBUG_ENTER)
1942 printf(" marked-as-exec");
1943 else if (pmapdebug & PMAPDEBUG_EXEC)
1944 printf("[pmap_enter: %#lx: marked-as-exec]\n",
1945 VM_PAGE_TO_PHYS(pg));
1946
1947 #endif
1948 }
1949 }
1950
1951 DPRINTFN(ENTER, (": error=%d\n", error));
1952
1953 return error;
1954 }
1955
1956 void
1957 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1958 {
1959 struct mem_region *mp;
1960 register_t pte_lo;
1961 int error;
1962
1963 if (va < VM_MIN_KERNEL_ADDRESS)
1964 panic("pmap_kenter_pa: attempt to enter "
1965 "non-kernel address %#lx!", va);
1966
1967 DPRINTFN(KENTER,
1968 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1969
1970 /*
1971 * Assume the page is cache inhibited and access is guarded unless
1972 * it's in our available memory array. If it is in the memory array,
1973 * asssume it's in memory coherent memory.
1974 */
1975 pte_lo = PTE_IG;
1976 if ((prot & PMAP_NC) == 0) {
1977 for (mp = mem; mp->size; mp++) {
1978 if (pa >= mp->start && pa < mp->start + mp->size) {
1979 pte_lo = PTE_M;
1980 break;
1981 }
1982 }
1983 }
1984
1985 if (prot & VM_PROT_WRITE)
1986 pte_lo |= PTE_BW;
1987 else
1988 pte_lo |= PTE_BR;
1989
1990 /*
1991 * We don't care about REF/CHG on PVOs on the unmanaged list.
1992 */
1993 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1994 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1995
1996 if (error != 0)
1997 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1998 va, pa, error);
1999 }
2000
2001 void
2002 pmap_kremove(vaddr_t va, vsize_t len)
2003 {
2004 if (va < VM_MIN_KERNEL_ADDRESS)
2005 panic("pmap_kremove: attempt to remove "
2006 "non-kernel address %#lx!", va);
2007
2008 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
2009 pmap_remove(pmap_kernel(), va, va + len);
2010 }
2011
2012 /*
2013 * Remove the given range of mapping entries.
2014 */
2015 void
2016 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2017 {
2018 struct pvo_head pvol;
2019 struct pvo_entry *pvo;
2020 register_t msr;
2021 int pteidx;
2022
2023 LIST_INIT(&pvol);
2024 msr = pmap_interrupts_off();
2025 for (; va < endva; va += PAGE_SIZE) {
2026 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2027 if (pvo != NULL) {
2028 pmap_pvo_remove(pvo, pteidx, &pvol);
2029 }
2030 }
2031 pmap_interrupts_restore(msr);
2032 pmap_pvo_free_list(&pvol);
2033 }
2034
2035 /*
2036 * Get the physical page address for the given pmap/virtual address.
2037 */
2038 boolean_t
2039 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2040 {
2041 struct pvo_entry *pvo;
2042 register_t msr;
2043
2044 /*
2045 * If this is a kernel pmap lookup, also check the battable
2046 * and if we get a hit, translate the VA to a PA using the
2047 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2048 * that will wrap back to 0.
2049 */
2050 if (pm == pmap_kernel() &&
2051 (va < VM_MIN_KERNEL_ADDRESS ||
2052 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2053 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2054 if ((MFPVR() >> 16) != MPC601) {
2055 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2056 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2057 register_t batl =
2058 battable[va >> ADDR_SR_SHFT].batl;
2059 register_t mask =
2060 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2061 if (pap)
2062 *pap = (batl & mask) | (va & ~mask);
2063 return TRUE;
2064 }
2065 } else {
2066 register_t batu = battable[va >> 23].batu;
2067 register_t batl = battable[va >> 23].batl;
2068 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2069 if (BAT601_VALID_P(batl) &&
2070 BAT601_VA_MATCH_P(batu, batl, va)) {
2071 register_t mask =
2072 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2073 if (pap)
2074 *pap = (batl & mask) | (va & ~mask);
2075 return TRUE;
2076 } else if (SR601_VALID_P(sr) &&
2077 SR601_PA_MATCH_P(sr, va)) {
2078 if (pap)
2079 *pap = va;
2080 return TRUE;
2081 }
2082 }
2083 return FALSE;
2084 }
2085
2086 msr = pmap_interrupts_off();
2087 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2088 if (pvo != NULL) {
2089 PMAP_PVO_CHECK(pvo); /* sanity check */
2090 if (pap)
2091 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2092 | (va & ADDR_POFF);
2093 }
2094 pmap_interrupts_restore(msr);
2095 return pvo != NULL;
2096 }
2097
2098 /*
2099 * Lower the protection on the specified range of this pmap.
2100 */
2101 void
2102 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2103 {
2104 struct pvo_entry *pvo;
2105 volatile struct pte *pt;
2106 register_t msr;
2107 int pteidx;
2108
2109 /*
2110 * Since this routine only downgrades protection, we should
2111 * always be called with at least one bit not set.
2112 */
2113 KASSERT(prot != VM_PROT_ALL);
2114
2115 /*
2116 * If there is no protection, this is equivalent to
2117 * remove the pmap from the pmap.
2118 */
2119 if ((prot & VM_PROT_READ) == 0) {
2120 pmap_remove(pm, va, endva);
2121 return;
2122 }
2123
2124 msr = pmap_interrupts_off();
2125 for (; va < endva; va += PAGE_SIZE) {
2126 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2127 if (pvo == NULL)
2128 continue;
2129 PMAP_PVO_CHECK(pvo); /* sanity check */
2130
2131 /*
2132 * Revoke executable if asked to do so.
2133 */
2134 if ((prot & VM_PROT_EXECUTE) == 0)
2135 pvo_clear_exec(pvo);
2136
2137 #if 0
2138 /*
2139 * If the page is already read-only, no change
2140 * needs to be made.
2141 */
2142 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2143 continue;
2144 #endif
2145 /*
2146 * Grab the PTE pointer before we diddle with
2147 * the cached PTE copy.
2148 */
2149 pt = pmap_pvo_to_pte(pvo, pteidx);
2150 /*
2151 * Change the protection of the page.
2152 */
2153 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2154 pvo->pvo_pte.pte_lo |= PTE_BR;
2155
2156 /*
2157 * If the PVO is in the page table, update
2158 * that pte at well.
2159 */
2160 if (pt != NULL) {
2161 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2162 PVO_WHERE(pvo, PMAP_PROTECT);
2163 PMAPCOUNT(ptes_changed);
2164 }
2165
2166 PMAP_PVO_CHECK(pvo); /* sanity check */
2167 }
2168 pmap_interrupts_restore(msr);
2169 }
2170
2171 void
2172 pmap_unwire(pmap_t pm, vaddr_t va)
2173 {
2174 struct pvo_entry *pvo;
2175 register_t msr;
2176
2177 msr = pmap_interrupts_off();
2178 pvo = pmap_pvo_find_va(pm, va, NULL);
2179 if (pvo != NULL) {
2180 if (pvo->pvo_vaddr & PVO_WIRED) {
2181 pvo->pvo_vaddr &= ~PVO_WIRED;
2182 pm->pm_stats.wired_count--;
2183 }
2184 PMAP_PVO_CHECK(pvo); /* sanity check */
2185 }
2186 pmap_interrupts_restore(msr);
2187 }
2188
2189 /*
2190 * Lower the protection on the specified physical page.
2191 */
2192 void
2193 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2194 {
2195 struct pvo_head *pvo_head, pvol;
2196 struct pvo_entry *pvo, *next_pvo;
2197 volatile struct pte *pt;
2198 register_t msr;
2199
2200 KASSERT(prot != VM_PROT_ALL);
2201 LIST_INIT(&pvol);
2202 msr = pmap_interrupts_off();
2203
2204 /*
2205 * When UVM reuses a page, it does a pmap_page_protect with
2206 * VM_PROT_NONE. At that point, we can clear the exec flag
2207 * since we know the page will have different contents.
2208 */
2209 if ((prot & VM_PROT_READ) == 0) {
2210 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2211 VM_PAGE_TO_PHYS(pg)));
2212 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2213 PMAPCOUNT(exec_uncached_page_protect);
2214 pmap_attr_clear(pg, PTE_EXEC);
2215 }
2216 }
2217
2218 pvo_head = vm_page_to_pvoh(pg);
2219 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2220 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2221 PMAP_PVO_CHECK(pvo); /* sanity check */
2222
2223 /*
2224 * Downgrading to no mapping at all, we just remove the entry.
2225 */
2226 if ((prot & VM_PROT_READ) == 0) {
2227 pmap_pvo_remove(pvo, -1, &pvol);
2228 continue;
2229 }
2230
2231 /*
2232 * If EXEC permission is being revoked, just clear the
2233 * flag in the PVO.
2234 */
2235 if ((prot & VM_PROT_EXECUTE) == 0)
2236 pvo_clear_exec(pvo);
2237
2238 /*
2239 * If this entry is already RO, don't diddle with the
2240 * page table.
2241 */
2242 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2243 PMAP_PVO_CHECK(pvo);
2244 continue;
2245 }
2246
2247 /*
2248 * Grab the PTE before the we diddle the bits so
2249 * pvo_to_pte can verify the pte contents are as
2250 * expected.
2251 */
2252 pt = pmap_pvo_to_pte(pvo, -1);
2253 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2254 pvo->pvo_pte.pte_lo |= PTE_BR;
2255 if (pt != NULL) {
2256 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2257 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2258 PMAPCOUNT(ptes_changed);
2259 }
2260 PMAP_PVO_CHECK(pvo); /* sanity check */
2261 }
2262 pmap_interrupts_restore(msr);
2263 pmap_pvo_free_list(&pvol);
2264 }
2265
2266 /*
2267 * Activate the address space for the specified process. If the process
2268 * is the current process, load the new MMU context.
2269 */
2270 void
2271 pmap_activate(struct lwp *l)
2272 {
2273 struct pcb *pcb = &l->l_addr->u_pcb;
2274 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2275
2276 DPRINTFN(ACTIVATE,
2277 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2278
2279 /*
2280 * XXX Normally performed in cpu_fork().
2281 */
2282 pcb->pcb_pm = pmap;
2283
2284 /*
2285 * In theory, the SR registers need only be valid on return
2286 * to user space wait to do them there.
2287 */
2288 if (l == curlwp) {
2289 /* Store pointer to new current pmap. */
2290 curpm = pmap;
2291 }
2292 }
2293
2294 /*
2295 * Deactivate the specified process's address space.
2296 */
2297 void
2298 pmap_deactivate(struct lwp *l)
2299 {
2300 }
2301
2302 boolean_t
2303 pmap_query_bit(struct vm_page *pg, int ptebit)
2304 {
2305 struct pvo_entry *pvo;
2306 volatile struct pte *pt;
2307 register_t msr;
2308
2309 if (pmap_attr_fetch(pg) & ptebit)
2310 return TRUE;
2311
2312 msr = pmap_interrupts_off();
2313 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2314 PMAP_PVO_CHECK(pvo); /* sanity check */
2315 /*
2316 * See if we saved the bit off. If so cache, it and return
2317 * success.
2318 */
2319 if (pvo->pvo_pte.pte_lo & ptebit) {
2320 pmap_attr_save(pg, ptebit);
2321 PMAP_PVO_CHECK(pvo); /* sanity check */
2322 pmap_interrupts_restore(msr);
2323 return TRUE;
2324 }
2325 }
2326 /*
2327 * No luck, now go thru the hard part of looking at the ptes
2328 * themselves. Sync so any pending REF/CHG bits are flushed
2329 * to the PTEs.
2330 */
2331 SYNC();
2332 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2333 PMAP_PVO_CHECK(pvo); /* sanity check */
2334 /*
2335 * See if this pvo have a valid PTE. If so, fetch the
2336 * REF/CHG bits from the valid PTE. If the appropriate
2337 * ptebit is set, cache, it and return success.
2338 */
2339 pt = pmap_pvo_to_pte(pvo, -1);
2340 if (pt != NULL) {
2341 pmap_pte_synch(pt, &pvo->pvo_pte);
2342 if (pvo->pvo_pte.pte_lo & ptebit) {
2343 pmap_attr_save(pg, ptebit);
2344 PMAP_PVO_CHECK(pvo); /* sanity check */
2345 pmap_interrupts_restore(msr);
2346 return TRUE;
2347 }
2348 }
2349 }
2350 pmap_interrupts_restore(msr);
2351 return FALSE;
2352 }
2353
2354 boolean_t
2355 pmap_clear_bit(struct vm_page *pg, int ptebit)
2356 {
2357 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2358 struct pvo_entry *pvo;
2359 volatile struct pte *pt;
2360 register_t msr;
2361 int rv = 0;
2362
2363 msr = pmap_interrupts_off();
2364
2365 /*
2366 * Fetch the cache value
2367 */
2368 rv |= pmap_attr_fetch(pg);
2369
2370 /*
2371 * Clear the cached value.
2372 */
2373 pmap_attr_clear(pg, ptebit);
2374
2375 /*
2376 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2377 * can reset the right ones). Note that since the pvo entries and
2378 * list heads are accessed via BAT0 and are never placed in the
2379 * page table, we don't have to worry about further accesses setting
2380 * the REF/CHG bits.
2381 */
2382 SYNC();
2383
2384 /*
2385 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2386 * valid PTE. If so, clear the ptebit from the valid PTE.
2387 */
2388 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2389 PMAP_PVO_CHECK(pvo); /* sanity check */
2390 pt = pmap_pvo_to_pte(pvo, -1);
2391 if (pt != NULL) {
2392 /*
2393 * Only sync the PTE if the bit we are looking
2394 * for is not already set.
2395 */
2396 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2397 pmap_pte_synch(pt, &pvo->pvo_pte);
2398 /*
2399 * If the bit we are looking for was already set,
2400 * clear that bit in the pte.
2401 */
2402 if (pvo->pvo_pte.pte_lo & ptebit)
2403 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2404 }
2405 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2406 pvo->pvo_pte.pte_lo &= ~ptebit;
2407 PMAP_PVO_CHECK(pvo); /* sanity check */
2408 }
2409 pmap_interrupts_restore(msr);
2410
2411 /*
2412 * If we are clearing the modify bit and this page was marked EXEC
2413 * and the user of the page thinks the page was modified, then we
2414 * need to clean it from the icache if it's mapped or clear the EXEC
2415 * bit if it's not mapped. The page itself might not have the CHG
2416 * bit set if the modification was done via DMA to the page.
2417 */
2418 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2419 if (LIST_EMPTY(pvoh)) {
2420 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2421 VM_PAGE_TO_PHYS(pg)));
2422 pmap_attr_clear(pg, PTE_EXEC);
2423 PMAPCOUNT(exec_uncached_clear_modify);
2424 } else {
2425 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2426 VM_PAGE_TO_PHYS(pg)));
2427 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2428 PMAPCOUNT(exec_synced_clear_modify);
2429 }
2430 }
2431 return (rv & ptebit) != 0;
2432 }
2433
2434 void
2435 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2436 {
2437 struct pvo_entry *pvo;
2438 size_t offset = va & ADDR_POFF;
2439 int s;
2440
2441 s = splvm();
2442 while (len > 0) {
2443 size_t seglen = PAGE_SIZE - offset;
2444 if (seglen > len)
2445 seglen = len;
2446 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2447 if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2448 pmap_syncicache(
2449 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2450 PMAP_PVO_CHECK(pvo);
2451 }
2452 va += seglen;
2453 len -= seglen;
2454 offset = 0;
2455 }
2456 splx(s);
2457 }
2458
2459 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2460 void
2461 pmap_pte_print(volatile struct pte *pt)
2462 {
2463 printf("PTE %p: ", pt);
2464 /* High word: */
2465 printf("0x%08lx: [", pt->pte_hi);
2466 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2467 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2468 printf("0x%06lx 0x%02lx",
2469 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2470 pt->pte_hi & PTE_API);
2471 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2472 /* Low word: */
2473 printf(" 0x%08lx: [", pt->pte_lo);
2474 printf("0x%05lx... ", pt->pte_lo >> 12);
2475 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2476 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2477 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2478 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2479 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2480 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2481 switch (pt->pte_lo & PTE_PP) {
2482 case PTE_BR: printf("br]\n"); break;
2483 case PTE_BW: printf("bw]\n"); break;
2484 case PTE_SO: printf("so]\n"); break;
2485 case PTE_SW: printf("sw]\n"); break;
2486 }
2487 }
2488 #endif
2489
2490 #if defined(DDB)
2491 void
2492 pmap_pteg_check(void)
2493 {
2494 volatile struct pte *pt;
2495 int i;
2496 int ptegidx;
2497 u_int p_valid = 0;
2498 u_int s_valid = 0;
2499 u_int invalid = 0;
2500
2501 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2502 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2503 if (pt->pte_hi & PTE_VALID) {
2504 if (pt->pte_hi & PTE_HID)
2505 s_valid++;
2506 else
2507 p_valid++;
2508 } else
2509 invalid++;
2510 }
2511 }
2512 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2513 p_valid, p_valid, s_valid, s_valid,
2514 invalid, invalid);
2515 }
2516
2517 void
2518 pmap_print_mmuregs(void)
2519 {
2520 int i;
2521 u_int cpuvers;
2522 #ifndef PPC_OEA64
2523 vaddr_t addr;
2524 register_t soft_sr[16];
2525 #endif
2526 struct bat soft_ibat[4];
2527 struct bat soft_dbat[4];
2528 register_t sdr1;
2529
2530 cpuvers = MFPVR() >> 16;
2531 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2532 #ifndef PPC_OEA64
2533 addr = 0;
2534 for (i = 0; i < 16; i++) {
2535 soft_sr[i] = MFSRIN(addr);
2536 addr += (1 << ADDR_SR_SHFT);
2537 }
2538 #endif
2539
2540 /* read iBAT (601: uBAT) registers */
2541 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2542 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2543 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2544 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2545 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2546 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2547 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2548 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2549
2550
2551 if (cpuvers != MPC601) {
2552 /* read dBAT registers */
2553 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2554 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2555 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2556 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2557 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2558 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2559 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2560 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2561 }
2562
2563 printf("SDR1:\t0x%lx\n", (long) sdr1);
2564 #ifndef PPC_OEA64
2565 printf("SR[]:\t");
2566 for (i = 0; i < 4; i++)
2567 printf("0x%08lx, ", soft_sr[i]);
2568 printf("\n\t");
2569 for ( ; i < 8; i++)
2570 printf("0x%08lx, ", soft_sr[i]);
2571 printf("\n\t");
2572 for ( ; i < 12; i++)
2573 printf("0x%08lx, ", soft_sr[i]);
2574 printf("\n\t");
2575 for ( ; i < 16; i++)
2576 printf("0x%08lx, ", soft_sr[i]);
2577 printf("\n");
2578 #endif
2579
2580 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2581 for (i = 0; i < 4; i++) {
2582 printf("0x%08lx 0x%08lx, ",
2583 soft_ibat[i].batu, soft_ibat[i].batl);
2584 if (i == 1)
2585 printf("\n\t");
2586 }
2587 if (cpuvers != MPC601) {
2588 printf("\ndBAT[]:\t");
2589 for (i = 0; i < 4; i++) {
2590 printf("0x%08lx 0x%08lx, ",
2591 soft_dbat[i].batu, soft_dbat[i].batl);
2592 if (i == 1)
2593 printf("\n\t");
2594 }
2595 }
2596 printf("\n");
2597 }
2598
2599 void
2600 pmap_print_pte(pmap_t pm, vaddr_t va)
2601 {
2602 struct pvo_entry *pvo;
2603 volatile struct pte *pt;
2604 int pteidx;
2605
2606 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2607 if (pvo != NULL) {
2608 pt = pmap_pvo_to_pte(pvo, pteidx);
2609 if (pt != NULL) {
2610 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2611 va, pt,
2612 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2613 pt->pte_hi, pt->pte_lo);
2614 } else {
2615 printf("No valid PTE found\n");
2616 }
2617 } else {
2618 printf("Address not in pmap\n");
2619 }
2620 }
2621
2622 void
2623 pmap_pteg_dist(void)
2624 {
2625 struct pvo_entry *pvo;
2626 int ptegidx;
2627 int depth;
2628 int max_depth = 0;
2629 unsigned int depths[64];
2630
2631 memset(depths, 0, sizeof(depths));
2632 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2633 depth = 0;
2634 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2635 depth++;
2636 }
2637 if (depth > max_depth)
2638 max_depth = depth;
2639 if (depth > 63)
2640 depth = 63;
2641 depths[depth]++;
2642 }
2643
2644 for (depth = 0; depth < 64; depth++) {
2645 printf(" [%2d]: %8u", depth, depths[depth]);
2646 if ((depth & 3) == 3)
2647 printf("\n");
2648 if (depth == max_depth)
2649 break;
2650 }
2651 if ((depth & 3) != 3)
2652 printf("\n");
2653 printf("Max depth found was %d\n", max_depth);
2654 }
2655 #endif /* DEBUG */
2656
2657 #if defined(PMAPCHECK) || defined(DEBUG)
2658 void
2659 pmap_pvo_verify(void)
2660 {
2661 int ptegidx;
2662 int s;
2663
2664 s = splvm();
2665 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2666 struct pvo_entry *pvo;
2667 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2668 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2669 panic("pmap_pvo_verify: invalid pvo %p "
2670 "on list %#x", pvo, ptegidx);
2671 pmap_pvo_check(pvo);
2672 }
2673 }
2674 splx(s);
2675 }
2676 #endif /* PMAPCHECK */
2677
2678
2679 void *
2680 pmap_pool_ualloc(struct pool *pp, int flags)
2681 {
2682 struct pvo_page *pvop;
2683
2684 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2685 if (pvop != NULL) {
2686 pmap_upvop_free--;
2687 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2688 return pvop;
2689 }
2690 if (uvm.page_init_done != TRUE) {
2691 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2692 }
2693 return pmap_pool_malloc(pp, flags);
2694 }
2695
2696 void *
2697 pmap_pool_malloc(struct pool *pp, int flags)
2698 {
2699 struct pvo_page *pvop;
2700 struct vm_page *pg;
2701
2702 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2703 if (pvop != NULL) {
2704 pmap_mpvop_free--;
2705 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2706 return pvop;
2707 }
2708 again:
2709 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2710 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2711 if (__predict_false(pg == NULL)) {
2712 if (flags & PR_WAITOK) {
2713 uvm_wait("plpg");
2714 goto again;
2715 } else {
2716 return (0);
2717 }
2718 }
2719 return (void *) VM_PAGE_TO_PHYS(pg);
2720 }
2721
2722 void
2723 pmap_pool_ufree(struct pool *pp, void *va)
2724 {
2725 struct pvo_page *pvop;
2726 #if 0
2727 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2728 pmap_pool_mfree(va, size, tag);
2729 return;
2730 }
2731 #endif
2732 pvop = va;
2733 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2734 pmap_upvop_free++;
2735 if (pmap_upvop_free > pmap_upvop_maxfree)
2736 pmap_upvop_maxfree = pmap_upvop_free;
2737 }
2738
2739 void
2740 pmap_pool_mfree(struct pool *pp, void *va)
2741 {
2742 struct pvo_page *pvop;
2743
2744 pvop = va;
2745 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2746 pmap_mpvop_free++;
2747 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2748 pmap_mpvop_maxfree = pmap_mpvop_free;
2749 #if 0
2750 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2751 #endif
2752 }
2753
2754 /*
2755 * This routine in bootstraping to steal to-be-managed memory (which will
2756 * then be unmanaged). We use it to grab from the first 256MB for our
2757 * pmap needs and above 256MB for other stuff.
2758 */
2759 vaddr_t
2760 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2761 {
2762 vsize_t size;
2763 vaddr_t va;
2764 paddr_t pa = 0;
2765 int npgs, bank;
2766 struct vm_physseg *ps;
2767
2768 if (uvm.page_init_done == TRUE)
2769 panic("pmap_steal_memory: called _after_ bootstrap");
2770
2771 *vstartp = VM_MIN_KERNEL_ADDRESS;
2772 *vendp = VM_MAX_KERNEL_ADDRESS;
2773
2774 size = round_page(vsize);
2775 npgs = atop(size);
2776
2777 /*
2778 * PA 0 will never be among those given to UVM so we can use it
2779 * to indicate we couldn't steal any memory.
2780 */
2781 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2782 if (ps->free_list == VM_FREELIST_FIRST256 &&
2783 ps->avail_end - ps->avail_start >= npgs) {
2784 pa = ptoa(ps->avail_start);
2785 break;
2786 }
2787 }
2788
2789 if (pa == 0)
2790 panic("pmap_steal_memory: no approriate memory to steal!");
2791
2792 ps->avail_start += npgs;
2793 ps->start += npgs;
2794
2795 /*
2796 * If we've used up all the pages in the segment, remove it and
2797 * compact the list.
2798 */
2799 if (ps->avail_start == ps->end) {
2800 /*
2801 * If this was the last one, then a very bad thing has occurred
2802 */
2803 if (--vm_nphysseg == 0)
2804 panic("pmap_steal_memory: out of memory!");
2805
2806 printf("pmap_steal_memory: consumed bank %d\n", bank);
2807 for (; bank < vm_nphysseg; bank++, ps++) {
2808 ps[0] = ps[1];
2809 }
2810 }
2811
2812 va = (vaddr_t) pa;
2813 memset((caddr_t) va, 0, size);
2814 pmap_pages_stolen += npgs;
2815 #ifdef DEBUG
2816 if (pmapdebug && npgs > 1) {
2817 u_int cnt = 0;
2818 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2819 cnt += ps->avail_end - ps->avail_start;
2820 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2821 npgs, pmap_pages_stolen, cnt);
2822 }
2823 #endif
2824
2825 return va;
2826 }
2827
2828 /*
2829 * Find a chuck of memory with right size and alignment.
2830 */
2831 void *
2832 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2833 {
2834 struct mem_region *mp;
2835 paddr_t s, e;
2836 int i, j;
2837
2838 size = round_page(size);
2839
2840 DPRINTFN(BOOT,
2841 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2842 size, alignment, at_end));
2843
2844 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2845 panic("pmap_boot_find_memory: invalid alignment %lx",
2846 alignment);
2847
2848 if (at_end) {
2849 if (alignment != PAGE_SIZE)
2850 panic("pmap_boot_find_memory: invalid ending "
2851 "alignment %lx", alignment);
2852
2853 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2854 s = mp->start + mp->size - size;
2855 if (s >= mp->start && mp->size >= size) {
2856 DPRINTFN(BOOT,(": %lx\n", s));
2857 DPRINTFN(BOOT,
2858 ("pmap_boot_find_memory: b-avail[%d] start "
2859 "0x%lx size 0x%lx\n", mp - avail,
2860 mp->start, mp->size));
2861 mp->size -= size;
2862 DPRINTFN(BOOT,
2863 ("pmap_boot_find_memory: a-avail[%d] start "
2864 "0x%lx size 0x%lx\n", mp - avail,
2865 mp->start, mp->size));
2866 return (void *) s;
2867 }
2868 }
2869 panic("pmap_boot_find_memory: no available memory");
2870 }
2871
2872 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2873 s = (mp->start + alignment - 1) & ~(alignment-1);
2874 e = s + size;
2875
2876 /*
2877 * Is the calculated region entirely within the region?
2878 */
2879 if (s < mp->start || e > mp->start + mp->size)
2880 continue;
2881
2882 DPRINTFN(BOOT,(": %lx\n", s));
2883 if (s == mp->start) {
2884 /*
2885 * If the block starts at the beginning of region,
2886 * adjust the size & start. (the region may now be
2887 * zero in length)
2888 */
2889 DPRINTFN(BOOT,
2890 ("pmap_boot_find_memory: b-avail[%d] start "
2891 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2892 mp->start += size;
2893 mp->size -= size;
2894 DPRINTFN(BOOT,
2895 ("pmap_boot_find_memory: a-avail[%d] start "
2896 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2897 } else if (e == mp->start + mp->size) {
2898 /*
2899 * If the block starts at the beginning of region,
2900 * adjust only the size.
2901 */
2902 DPRINTFN(BOOT,
2903 ("pmap_boot_find_memory: b-avail[%d] start "
2904 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2905 mp->size -= size;
2906 DPRINTFN(BOOT,
2907 ("pmap_boot_find_memory: a-avail[%d] start "
2908 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2909 } else {
2910 /*
2911 * Block is in the middle of the region, so we
2912 * have to split it in two.
2913 */
2914 for (j = avail_cnt; j > i + 1; j--) {
2915 avail[j] = avail[j-1];
2916 }
2917 DPRINTFN(BOOT,
2918 ("pmap_boot_find_memory: b-avail[%d] start "
2919 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2920 mp[1].start = e;
2921 mp[1].size = mp[0].start + mp[0].size - e;
2922 mp[0].size = s - mp[0].start;
2923 avail_cnt++;
2924 for (; i < avail_cnt; i++) {
2925 DPRINTFN(BOOT,
2926 ("pmap_boot_find_memory: a-avail[%d] "
2927 "start 0x%lx size 0x%lx\n", i,
2928 avail[i].start, avail[i].size));
2929 }
2930 }
2931 return (void *) s;
2932 }
2933 panic("pmap_boot_find_memory: not enough memory for "
2934 "%lx/%lx allocation?", size, alignment);
2935 }
2936
2937 /*
2938 * This is not part of the defined PMAP interface and is specific to the
2939 * PowerPC architecture. This is called during initppc, before the system
2940 * is really initialized.
2941 */
2942 void
2943 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2944 {
2945 struct mem_region *mp, tmp;
2946 paddr_t s, e;
2947 psize_t size;
2948 int i, j;
2949
2950 /*
2951 * Get memory.
2952 */
2953 mem_regions(&mem, &avail);
2954 #if defined(DEBUG)
2955 if (pmapdebug & PMAPDEBUG_BOOT) {
2956 printf("pmap_bootstrap: memory configuration:\n");
2957 for (mp = mem; mp->size; mp++) {
2958 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2959 mp->start, mp->size);
2960 }
2961 for (mp = avail; mp->size; mp++) {
2962 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2963 mp->start, mp->size);
2964 }
2965 }
2966 #endif
2967
2968 /*
2969 * Find out how much physical memory we have and in how many chunks.
2970 */
2971 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2972 if (mp->start >= pmap_memlimit)
2973 continue;
2974 if (mp->start + mp->size > pmap_memlimit) {
2975 size = pmap_memlimit - mp->start;
2976 physmem += btoc(size);
2977 } else {
2978 physmem += btoc(mp->size);
2979 }
2980 mem_cnt++;
2981 }
2982
2983 /*
2984 * Count the number of available entries.
2985 */
2986 for (avail_cnt = 0, mp = avail; mp->size; mp++)
2987 avail_cnt++;
2988
2989 /*
2990 * Page align all regions.
2991 */
2992 kernelstart = trunc_page(kernelstart);
2993 kernelend = round_page(kernelend);
2994 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2995 s = round_page(mp->start);
2996 mp->size -= (s - mp->start);
2997 mp->size = trunc_page(mp->size);
2998 mp->start = s;
2999 e = mp->start + mp->size;
3000
3001 DPRINTFN(BOOT,
3002 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
3003 i, mp->start, mp->size));
3004
3005 /*
3006 * Don't allow the end to run beyond our artificial limit
3007 */
3008 if (e > pmap_memlimit)
3009 e = pmap_memlimit;
3010
3011 /*
3012 * Is this region empty or strange? skip it.
3013 */
3014 if (e <= s) {
3015 mp->start = 0;
3016 mp->size = 0;
3017 continue;
3018 }
3019
3020 /*
3021 * Does this overlap the beginning of kernel?
3022 * Does extend past the end of the kernel?
3023 */
3024 else if (s < kernelstart && e > kernelstart) {
3025 if (e > kernelend) {
3026 avail[avail_cnt].start = kernelend;
3027 avail[avail_cnt].size = e - kernelend;
3028 avail_cnt++;
3029 }
3030 mp->size = kernelstart - s;
3031 }
3032 /*
3033 * Check whether this region overlaps the end of the kernel.
3034 */
3035 else if (s < kernelend && e > kernelend) {
3036 mp->start = kernelend;
3037 mp->size = e - kernelend;
3038 }
3039 /*
3040 * Look whether this regions is completely inside the kernel.
3041 * Nuke it if it does.
3042 */
3043 else if (s >= kernelstart && e <= kernelend) {
3044 mp->start = 0;
3045 mp->size = 0;
3046 }
3047 /*
3048 * If the user imposed a memory limit, enforce it.
3049 */
3050 else if (s >= pmap_memlimit) {
3051 mp->start = -PAGE_SIZE; /* let's know why */
3052 mp->size = 0;
3053 }
3054 else {
3055 mp->start = s;
3056 mp->size = e - s;
3057 }
3058 DPRINTFN(BOOT,
3059 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3060 i, mp->start, mp->size));
3061 }
3062
3063 /*
3064 * Move (and uncount) all the null return to the end.
3065 */
3066 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3067 if (mp->size == 0) {
3068 tmp = avail[i];
3069 avail[i] = avail[--avail_cnt];
3070 avail[avail_cnt] = avail[i];
3071 }
3072 }
3073
3074 /*
3075 * (Bubble)sort them into asecnding order.
3076 */
3077 for (i = 0; i < avail_cnt; i++) {
3078 for (j = i + 1; j < avail_cnt; j++) {
3079 if (avail[i].start > avail[j].start) {
3080 tmp = avail[i];
3081 avail[i] = avail[j];
3082 avail[j] = tmp;
3083 }
3084 }
3085 }
3086
3087 /*
3088 * Make sure they don't overlap.
3089 */
3090 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3091 if (mp[0].start + mp[0].size > mp[1].start) {
3092 mp[0].size = mp[1].start - mp[0].start;
3093 }
3094 DPRINTFN(BOOT,
3095 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3096 i, mp->start, mp->size));
3097 }
3098 DPRINTFN(BOOT,
3099 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3100 i, mp->start, mp->size));
3101
3102 #ifdef PTEGCOUNT
3103 pmap_pteg_cnt = PTEGCOUNT;
3104 #else /* PTEGCOUNT */
3105 pmap_pteg_cnt = 0x1000;
3106
3107 while (pmap_pteg_cnt < physmem)
3108 pmap_pteg_cnt <<= 1;
3109
3110 pmap_pteg_cnt >>= 1;
3111 #endif /* PTEGCOUNT */
3112
3113 /*
3114 * Find suitably aligned memory for PTEG hash table.
3115 */
3116 size = pmap_pteg_cnt * sizeof(struct pteg);
3117 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3118 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3119 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3120 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3121 pmap_pteg_table, size);
3122 #endif
3123
3124 memset(__UNVOLATILE(pmap_pteg_table), 0,
3125 pmap_pteg_cnt * sizeof(struct pteg));
3126 pmap_pteg_mask = pmap_pteg_cnt - 1;
3127
3128 /*
3129 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3130 * with pages. So we just steal them before giving them to UVM.
3131 */
3132 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3133 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3134 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3135 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3136 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3137 pmap_pvo_table, size);
3138 #endif
3139
3140 for (i = 0; i < pmap_pteg_cnt; i++)
3141 TAILQ_INIT(&pmap_pvo_table[i]);
3142
3143 #ifndef MSGBUFADDR
3144 /*
3145 * Allocate msgbuf in high memory.
3146 */
3147 msgbuf_paddr =
3148 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3149 #endif
3150
3151 #ifdef __HAVE_PMAP_PHYSSEG
3152 {
3153 u_int npgs = 0;
3154 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3155 npgs += btoc(mp->size);
3156 size = (sizeof(struct pvo_head) + 1) * npgs;
3157 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3158 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3159 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3160 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3161 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3162 pmap_physseg.pvoh, size);
3163 #endif
3164 }
3165 #endif
3166
3167 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3168 paddr_t pfstart = atop(mp->start);
3169 paddr_t pfend = atop(mp->start + mp->size);
3170 if (mp->size == 0)
3171 continue;
3172 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3173 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3174 VM_FREELIST_FIRST256);
3175 } else if (mp->start >= SEGMENT_LENGTH) {
3176 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3177 VM_FREELIST_DEFAULT);
3178 } else {
3179 pfend = atop(SEGMENT_LENGTH);
3180 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3181 VM_FREELIST_FIRST256);
3182 pfstart = atop(SEGMENT_LENGTH);
3183 pfend = atop(mp->start + mp->size);
3184 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3185 VM_FREELIST_DEFAULT);
3186 }
3187 }
3188
3189 /*
3190 * Make sure kernel vsid is allocated as well as VSID 0.
3191 */
3192 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3193 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3194 pmap_vsid_bitmap[0] |= 1;
3195
3196 /*
3197 * Initialize kernel pmap and hardware.
3198 */
3199 #ifndef PPC_OEA64
3200 for (i = 0; i < 16; i++) {
3201 pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3202 __asm volatile ("mtsrin %0,%1"
3203 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3204 }
3205
3206 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3207 __asm volatile ("mtsr %0,%1"
3208 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3209 #ifdef KERNEL2_SR
3210 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3211 __asm volatile ("mtsr %0,%1"
3212 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3213 #endif
3214 for (i = 0; i < 16; i++) {
3215 if (iosrtable[i] & SR601_T) {
3216 pmap_kernel()->pm_sr[i] = iosrtable[i];
3217 __asm volatile ("mtsrin %0,%1"
3218 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3219 }
3220 }
3221 #endif /* !PPC_OEA64 */
3222
3223 __asm volatile ("sync; mtsdr1 %0; isync"
3224 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3225 tlbia();
3226
3227 #ifdef ALTIVEC
3228 pmap_use_altivec = cpu_altivec;
3229 #endif
3230
3231 #ifdef DEBUG
3232 if (pmapdebug & PMAPDEBUG_BOOT) {
3233 u_int cnt;
3234 int bank;
3235 char pbuf[9];
3236 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3237 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3238 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3239 bank,
3240 ptoa(vm_physmem[bank].avail_start),
3241 ptoa(vm_physmem[bank].avail_end),
3242 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3243 }
3244 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3245 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3246 pbuf, cnt);
3247 }
3248 #endif
3249
3250 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3251 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3252 &pmap_pool_uallocator);
3253
3254 pool_setlowat(&pmap_upvo_pool, 252);
3255
3256 pool_init(&pmap_pool, sizeof(struct pmap),
3257 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3258 }
3259