pmap.c revision 1.38 1 /* $NetBSD: pmap.c,v 1.38 2006/08/05 21:26:49 sanjayl Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43 * Copyright (C) 1995, 1996 TooLs GmbH.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by TooLs GmbH.
57 * 4. The name of TooLs GmbH may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.38 2006/08/05 21:26:49 sanjayl Exp $");
74
75 #include "opt_ppcarch.h"
76 #include "opt_altivec.h"
77 #include "opt_pmap.h"
78 #include <sys/param.h>
79 #include <sys/malloc.h>
80 #include <sys/proc.h>
81 #include <sys/user.h>
82 #include <sys/pool.h>
83 #include <sys/queue.h>
84 #include <sys/device.h> /* for evcnt */
85 #include <sys/systm.h>
86
87 #if __NetBSD_Version__ < 105010000
88 #include <vm/vm.h>
89 #include <vm/vm_kern.h>
90 #define splvm() splimp()
91 #endif
92
93 #include <uvm/uvm.h>
94
95 #include <machine/pcb.h>
96 #include <machine/powerpc.h>
97 #include <powerpc/spr.h>
98 #include <powerpc/oea/sr_601.h>
99 #include <powerpc/bat.h>
100 #include <powerpc/stdarg.h>
101
102 #if defined(DEBUG) || defined(PMAPCHECK)
103 #define STATIC
104 #else
105 #define STATIC static
106 #endif
107
108 #ifdef ALTIVEC
109 int pmap_use_altivec;
110 #endif
111
112 volatile struct pteg *pmap_pteg_table;
113 unsigned int pmap_pteg_cnt;
114 unsigned int pmap_pteg_mask;
115 #ifdef PMAP_MEMLIMIT
116 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
117 #else
118 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
119 #endif
120
121 struct pmap kernel_pmap_;
122 unsigned int pmap_pages_stolen;
123 u_long pmap_pte_valid;
124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
125 u_long pmap_pvo_enter_depth;
126 u_long pmap_pvo_remove_depth;
127 #endif
128
129 int physmem;
130 #ifndef MSGBUFADDR
131 extern paddr_t msgbuf_paddr;
132 #endif
133
134 static struct mem_region *mem, *avail;
135 static u_int mem_cnt, avail_cnt;
136
137 #ifdef __HAVE_PMAP_PHYSSEG
138 /*
139 * This is a cache of referenced/modified bits.
140 * Bits herein are shifted by ATTRSHFT.
141 */
142 #define ATTR_SHFT 4
143 struct pmap_physseg pmap_physseg;
144 #endif
145
146 /*
147 * The following structure is aligned to 32 bytes
148 */
149 struct pvo_entry {
150 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
151 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
152 struct pte pvo_pte; /* Prebuilt PTE */
153 pmap_t pvo_pmap; /* ptr to owning pmap */
154 vaddr_t pvo_vaddr; /* VA of entry */
155 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
156 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
157 #define PVO_WIRED 0x0010 /* PVO entry is wired */
158 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
159 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
160 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
161 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
162 #define PVO_SPILL_SET 2 /* PVO has been spilled */
163 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
164 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
165 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
166 #define PVO_REMOVE 6 /* PVO has been removed */
167 #define PVO_WHERE_MASK 15
168 #define PVO_WHERE_SHFT 8
169 } __attribute__ ((aligned (32)));
170 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
171 #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
172 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
173 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
174 #define PVO_PTEGIDX_CLR(pvo) \
175 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
176 #define PVO_PTEGIDX_SET(pvo,i) \
177 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
178 #define PVO_WHERE(pvo,w) \
179 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
180 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
181
182 TAILQ_HEAD(pvo_tqhead, pvo_entry);
183 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
184 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
185 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
186
187 struct pool pmap_pool; /* pool for pmap structures */
188 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
189 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
190
191 /*
192 * We keep a cache of unmanaged pages to be used for pvo entries for
193 * unmanaged pages.
194 */
195 struct pvo_page {
196 SIMPLEQ_ENTRY(pvo_page) pvop_link;
197 };
198 SIMPLEQ_HEAD(pvop_head, pvo_page);
199 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
200 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
201 u_long pmap_upvop_free;
202 u_long pmap_upvop_maxfree;
203 u_long pmap_mpvop_free;
204 u_long pmap_mpvop_maxfree;
205
206 STATIC void *pmap_pool_ualloc(struct pool *, int);
207 STATIC void *pmap_pool_malloc(struct pool *, int);
208
209 STATIC void pmap_pool_ufree(struct pool *, void *);
210 STATIC void pmap_pool_mfree(struct pool *, void *);
211
212 static struct pool_allocator pmap_pool_mallocator = {
213 pmap_pool_malloc, pmap_pool_mfree, 0,
214 };
215
216 static struct pool_allocator pmap_pool_uallocator = {
217 pmap_pool_ualloc, pmap_pool_ufree, 0,
218 };
219
220 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
221 void pmap_pte_print(volatile struct pte *);
222 void pmap_pteg_check(void);
223 void pmap_pteg_dist(void);
224 void pmap_print_pte(pmap_t, vaddr_t);
225 void pmap_print_mmuregs(void);
226 #endif
227
228 #if defined(DEBUG) || defined(PMAPCHECK)
229 #ifdef PMAPCHECK
230 int pmapcheck = 1;
231 #else
232 int pmapcheck = 0;
233 #endif
234 void pmap_pvo_verify(void);
235 STATIC void pmap_pvo_check(const struct pvo_entry *);
236 #define PMAP_PVO_CHECK(pvo) \
237 do { \
238 if (pmapcheck) \
239 pmap_pvo_check(pvo); \
240 } while (0)
241 #else
242 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
243 #endif
244 STATIC int pmap_pte_insert(int, struct pte *);
245 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
246 vaddr_t, paddr_t, register_t, int);
247 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
248 STATIC void pmap_pvo_free(struct pvo_entry *);
249 STATIC void pmap_pvo_free_list(struct pvo_head *);
250 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
251 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
252 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
253 STATIC void pvo_set_exec(struct pvo_entry *);
254 STATIC void pvo_clear_exec(struct pvo_entry *);
255
256 STATIC void tlbia(void);
257
258 STATIC void pmap_release(pmap_t);
259 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
260
261 static uint32_t pmap_pvo_reclaim_nextidx;
262 #ifdef DEBUG
263 static int pmap_pvo_reclaim_debugctr;
264 #endif
265
266 #define VSID_NBPW (sizeof(uint32_t) * 8)
267 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
268
269 static int pmap_initialized;
270
271 #if defined(DEBUG) || defined(PMAPDEBUG)
272 #define PMAPDEBUG_BOOT 0x0001
273 #define PMAPDEBUG_PTE 0x0002
274 #define PMAPDEBUG_EXEC 0x0008
275 #define PMAPDEBUG_PVOENTER 0x0010
276 #define PMAPDEBUG_PVOREMOVE 0x0020
277 #define PMAPDEBUG_ACTIVATE 0x0100
278 #define PMAPDEBUG_CREATE 0x0200
279 #define PMAPDEBUG_ENTER 0x1000
280 #define PMAPDEBUG_KENTER 0x2000
281 #define PMAPDEBUG_KREMOVE 0x4000
282 #define PMAPDEBUG_REMOVE 0x8000
283
284 unsigned int pmapdebug = 0;
285
286 # define DPRINTF(x) printf x
287 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
288 #else
289 # define DPRINTF(x)
290 # define DPRINTFN(n, x)
291 #endif
292
293
294 #ifdef PMAPCOUNTERS
295 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
296 #define PMAPCOUNT2(ev) ((ev).ev_count++)
297
298 struct evcnt pmap_evcnt_mappings =
299 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
300 "pmap", "pages mapped");
301 struct evcnt pmap_evcnt_unmappings =
302 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
303 "pmap", "pages unmapped");
304
305 struct evcnt pmap_evcnt_kernel_mappings =
306 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
307 "pmap", "kernel pages mapped");
308 struct evcnt pmap_evcnt_kernel_unmappings =
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
310 "pmap", "kernel pages unmapped");
311
312 struct evcnt pmap_evcnt_mappings_replaced =
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
314 "pmap", "page mappings replaced");
315
316 struct evcnt pmap_evcnt_exec_mappings =
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
318 "pmap", "exec pages mapped");
319 struct evcnt pmap_evcnt_exec_cached =
320 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
321 "pmap", "exec pages cached");
322
323 struct evcnt pmap_evcnt_exec_synced =
324 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
325 "pmap", "exec pages synced");
326 struct evcnt pmap_evcnt_exec_synced_clear_modify =
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
328 "pmap", "exec pages synced (CM)");
329 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
331 "pmap", "exec pages synced (PR)");
332
333 struct evcnt pmap_evcnt_exec_uncached_page_protect =
334 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
335 "pmap", "exec pages uncached (PP)");
336 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
337 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
338 "pmap", "exec pages uncached (CM)");
339 struct evcnt pmap_evcnt_exec_uncached_zero_page =
340 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
341 "pmap", "exec pages uncached (ZP)");
342 struct evcnt pmap_evcnt_exec_uncached_copy_page =
343 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
344 "pmap", "exec pages uncached (CP)");
345 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
346 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
347 "pmap", "exec pages uncached (PR)");
348
349 struct evcnt pmap_evcnt_updates =
350 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
351 "pmap", "updates");
352 struct evcnt pmap_evcnt_collects =
353 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
354 "pmap", "collects");
355 struct evcnt pmap_evcnt_copies =
356 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 "pmap", "copies");
358
359 struct evcnt pmap_evcnt_ptes_spilled =
360 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
361 "pmap", "ptes spilled from overflow");
362 struct evcnt pmap_evcnt_ptes_unspilled =
363 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 "pmap", "ptes not spilled");
365 struct evcnt pmap_evcnt_ptes_evicted =
366 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
367 "pmap", "ptes evicted");
368
369 struct evcnt pmap_evcnt_ptes_primary[8] = {
370 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
371 "pmap", "ptes added at primary[0]"),
372 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 "pmap", "ptes added at primary[1]"),
374 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
375 "pmap", "ptes added at primary[2]"),
376 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
377 "pmap", "ptes added at primary[3]"),
378
379 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
380 "pmap", "ptes added at primary[4]"),
381 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
382 "pmap", "ptes added at primary[5]"),
383 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
384 "pmap", "ptes added at primary[6]"),
385 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
386 "pmap", "ptes added at primary[7]"),
387 };
388 struct evcnt pmap_evcnt_ptes_secondary[8] = {
389 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 "pmap", "ptes added at secondary[0]"),
391 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 "pmap", "ptes added at secondary[1]"),
393 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
394 "pmap", "ptes added at secondary[2]"),
395 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 "pmap", "ptes added at secondary[3]"),
397
398 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
399 "pmap", "ptes added at secondary[4]"),
400 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
401 "pmap", "ptes added at secondary[5]"),
402 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
403 "pmap", "ptes added at secondary[6]"),
404 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
405 "pmap", "ptes added at secondary[7]"),
406 };
407 struct evcnt pmap_evcnt_ptes_removed =
408 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
409 "pmap", "ptes removed");
410 struct evcnt pmap_evcnt_ptes_changed =
411 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
412 "pmap", "ptes changed");
413 struct evcnt pmap_evcnt_pvos_reclaimed =
414 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
415 "pmap", "pvos reclaimed");
416 struct evcnt pmap_evcnt_pvos_failed =
417 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
418 "pmap", "pvo allocation failures");
419
420 /*
421 * From pmap_subr.c
422 */
423 extern struct evcnt pmap_evcnt_zeroed_pages;
424 extern struct evcnt pmap_evcnt_copied_pages;
425 extern struct evcnt pmap_evcnt_idlezeroed_pages;
426
427 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
428 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
429 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
430
431 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
432 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
433
434 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
435 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
436 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
437 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
438 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
439
440 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
441 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
445
446 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
447 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
448 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
449
450 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
451 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
452 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
453
454 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
455 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
456 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
457 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
458 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
459
460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
463 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
464 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
465 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
466 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
476
477 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
478 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
479 #else
480 #define PMAPCOUNT(ev) ((void) 0)
481 #define PMAPCOUNT2(ev) ((void) 0)
482 #endif
483
484 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
485
486 /* XXXSL: this needs to be moved to assembler */
487 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
488
489 #define TLBSYNC() __asm volatile("tlbsync")
490 #define SYNC() __asm volatile("sync")
491 #define EIEIO() __asm volatile("eieio")
492 #define MFMSR() mfmsr()
493 #define MTMSR(psl) mtmsr(psl)
494 #define MFPVR() mfpvr()
495 #define MFSRIN(va) mfsrin(va)
496 #define MFTB() mfrtcltbl()
497
498 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
499 static inline register_t
500 mfsrin(vaddr_t va)
501 {
502 register_t sr;
503 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
504 return sr;
505 }
506 #endif /* PPC_OEA*/
507
508 #if defined (PPC_OEA64_BRIDGE)
509 extern void mfmsr64 (register64_t *result);
510 #endif /* PPC_OEA64_BRIDGE */
511
512
513 static inline register_t
514 pmap_interrupts_off(void)
515 {
516 register_t msr = MFMSR();
517 if (msr & PSL_EE)
518 MTMSR(msr & ~PSL_EE);
519 return msr;
520 }
521
522 static void
523 pmap_interrupts_restore(register_t msr)
524 {
525 if (msr & PSL_EE)
526 MTMSR(msr);
527 }
528
529 static inline u_int32_t
530 mfrtcltbl(void)
531 {
532
533 if ((MFPVR() >> 16) == MPC601)
534 return (mfrtcl() >> 7);
535 else
536 return (mftbl());
537 }
538
539 /*
540 * These small routines may have to be replaced,
541 * if/when we support processors other that the 604.
542 */
543
544 void
545 tlbia(void)
546 {
547 caddr_t i;
548
549 SYNC();
550 #if defined(PPC_OEA)
551 /*
552 * Why not use "tlbia"? Because not all processors implement it.
553 *
554 * This needs to be a per-CPU callback to do the appropriate thing
555 * for the CPU. XXX
556 */
557 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
558 TLBIE(i);
559 EIEIO();
560 SYNC();
561 }
562 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
563 printf("Invalidating ALL TLB entries......\n");
564 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
565 for (i = 0; i <= (caddr_t)0xFF000; i += 0x00001000) {
566 TLBIEL(i);
567 EIEIO();
568 SYNC();
569 }
570 #endif
571 TLBSYNC();
572 SYNC();
573 }
574
575 static inline register_t
576 va_to_vsid(const struct pmap *pm, vaddr_t addr)
577 {
578 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
579 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
580 #else /* PPC_OEA64 */
581 #if 0
582 const struct ste *ste;
583 register_t hash;
584 int i;
585
586 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
587
588 /*
589 * Try the primary group first
590 */
591 ste = pm->pm_stes[hash].stes;
592 for (i = 0; i < 8; i++, ste++) {
593 if (ste->ste_hi & STE_V) &&
594 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
595 return ste;
596 }
597
598 /*
599 * Then the secondary group.
600 */
601 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
602 for (i = 0; i < 8; i++, ste++) {
603 if (ste->ste_hi & STE_V) &&
604 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
605 return addr;
606 }
607
608 return NULL;
609 #else
610 /*
611 * Rather than searching the STE groups for the VSID, we know
612 * how we generate that from the ESID and so do that.
613 */
614 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
615 #endif
616 #endif /* PPC_OEA */
617 }
618
619 static inline register_t
620 va_to_pteg(const struct pmap *pm, vaddr_t addr)
621 {
622 register_t hash;
623
624 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
625 return hash & pmap_pteg_mask;
626 }
627
628 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
629 /*
630 * Given a PTE in the page table, calculate the VADDR that hashes to it.
631 * The only bit of magic is that the top 4 bits of the address doesn't
632 * technically exist in the PTE. But we know we reserved 4 bits of the
633 * VSID for it so that's how we get it.
634 */
635 static vaddr_t
636 pmap_pte_to_va(volatile const struct pte *pt)
637 {
638 vaddr_t va;
639 uintptr_t ptaddr = (uintptr_t) pt;
640
641 if (pt->pte_hi & PTE_HID)
642 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
643
644 /* PPC Bits 10-19 PPC64 Bits 42-51 */
645 #if defined(PPC_OEA)
646 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
647 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
648 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
649 #endif
650 va <<= ADDR_PIDX_SHFT;
651
652 /* PPC Bits 4-9 PPC64 Bits 36-41 */
653 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
654
655 #if defined(PPC_OEA64)
656 /* PPC63 Bits 0-35 */
657 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
658 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
659 /* PPC Bits 0-3 */
660 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
661 #endif
662
663 return va;
664 }
665 #endif
666
667 static inline struct pvo_head *
668 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
669 {
670 #ifdef __HAVE_VM_PAGE_MD
671 struct vm_page *pg;
672
673 pg = PHYS_TO_VM_PAGE(pa);
674 if (pg_p != NULL)
675 *pg_p = pg;
676 if (pg == NULL)
677 return &pmap_pvo_unmanaged;
678 return &pg->mdpage.mdpg_pvoh;
679 #endif
680 #ifdef __HAVE_PMAP_PHYSSEG
681 int bank, pg;
682
683 bank = vm_physseg_find(atop(pa), &pg);
684 if (pg_p != NULL)
685 *pg_p = pg;
686 if (bank == -1)
687 return &pmap_pvo_unmanaged;
688 return &vm_physmem[bank].pmseg.pvoh[pg];
689 #endif
690 }
691
692 static inline struct pvo_head *
693 vm_page_to_pvoh(struct vm_page *pg)
694 {
695 #ifdef __HAVE_VM_PAGE_MD
696 return &pg->mdpage.mdpg_pvoh;
697 #endif
698 #ifdef __HAVE_PMAP_PHYSSEG
699 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
700 #endif
701 }
702
703
704 #ifdef __HAVE_PMAP_PHYSSEG
705 static inline char *
706 pa_to_attr(paddr_t pa)
707 {
708 int bank, pg;
709
710 bank = vm_physseg_find(atop(pa), &pg);
711 if (bank == -1)
712 return NULL;
713 return &vm_physmem[bank].pmseg.attrs[pg];
714 }
715 #endif
716
717 static inline void
718 pmap_attr_clear(struct vm_page *pg, int ptebit)
719 {
720 #ifdef __HAVE_PMAP_PHYSSEG
721 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
722 #endif
723 #ifdef __HAVE_VM_PAGE_MD
724 pg->mdpage.mdpg_attrs &= ~ptebit;
725 #endif
726 }
727
728 static inline int
729 pmap_attr_fetch(struct vm_page *pg)
730 {
731 #ifdef __HAVE_PMAP_PHYSSEG
732 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
733 #endif
734 #ifdef __HAVE_VM_PAGE_MD
735 return pg->mdpage.mdpg_attrs;
736 #endif
737 }
738
739 static inline void
740 pmap_attr_save(struct vm_page *pg, int ptebit)
741 {
742 #ifdef __HAVE_PMAP_PHYSSEG
743 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
744 #endif
745 #ifdef __HAVE_VM_PAGE_MD
746 pg->mdpage.mdpg_attrs |= ptebit;
747 #endif
748 }
749
750 static inline int
751 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
752 {
753 if (pt->pte_hi == pvo_pt->pte_hi
754 #if 0
755 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
756 ~(PTE_REF|PTE_CHG)) == 0
757 #endif
758 )
759 return 1;
760 return 0;
761 }
762
763 static inline void
764 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
765 {
766 /*
767 * Construct the PTE. Default to IMB initially. Valid bit
768 * only gets set when the real pte is set in memory.
769 *
770 * Note: Don't set the valid bit for correct operation of tlb update.
771 */
772 #if defined(PPC_OEA)
773 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
774 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
775 pt->pte_lo = pte_lo;
776 #elif defined (PPC_OEA64_BRIDGE)
777 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
778 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
779 pt->pte_lo = (u_int64_t) pte_lo;
780 #elif defined (PPC_OEA64)
781 #error PPC_OEA64 not supported
782 #endif /* PPC_OEA */
783 }
784
785 static inline void
786 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
787 {
788 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
789 }
790
791 static inline void
792 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
793 {
794 /*
795 * As shown in Section 7.6.3.2.3
796 */
797 pt->pte_lo &= ~ptebit;
798 TLBIE(va);
799 SYNC();
800 EIEIO();
801 TLBSYNC();
802 SYNC();
803 }
804
805 static inline void
806 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
807 {
808 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
809 if (pvo_pt->pte_hi & PTE_VALID)
810 panic("pte_set: setting an already valid pte %p", pvo_pt);
811 #endif
812 pvo_pt->pte_hi |= PTE_VALID;
813
814 /*
815 * Update the PTE as defined in section 7.6.3.1
816 * Note that the REF/CHG bits are from pvo_pt and thus should
817 * have been saved so this routine can restore them (if desired).
818 */
819 pt->pte_lo = pvo_pt->pte_lo;
820 EIEIO();
821 pt->pte_hi = pvo_pt->pte_hi;
822 TLBSYNC();
823 SYNC();
824 pmap_pte_valid++;
825 }
826
827 static inline void
828 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
829 {
830 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
831 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
832 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
833 if ((pt->pte_hi & PTE_VALID) == 0)
834 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
835 #endif
836
837 pvo_pt->pte_hi &= ~PTE_VALID;
838 /*
839 * Force the ref & chg bits back into the PTEs.
840 */
841 SYNC();
842 /*
843 * Invalidate the pte ... (Section 7.6.3.3)
844 */
845 pt->pte_hi &= ~PTE_VALID;
846 SYNC();
847 TLBIE(va);
848 SYNC();
849 EIEIO();
850 TLBSYNC();
851 SYNC();
852 /*
853 * Save the ref & chg bits ...
854 */
855 pmap_pte_synch(pt, pvo_pt);
856 pmap_pte_valid--;
857 }
858
859 static inline void
860 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
861 {
862 /*
863 * Invalidate the PTE
864 */
865 pmap_pte_unset(pt, pvo_pt, va);
866 pmap_pte_set(pt, pvo_pt);
867 }
868
869 /*
870 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
871 * (either primary or secondary location).
872 *
873 * Note: both the destination and source PTEs must not have PTE_VALID set.
874 */
875
876 STATIC int
877 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
878 {
879 volatile struct pte *pt;
880 int i;
881
882 #if defined(DEBUG)
883 #if defined (PPC_OEA)
884 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
885 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
886 #elif defined (PPC_OEA64_BRIDGE)
887 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
888 ptegidx, (unsigned long long) pvo_pt->pte_hi,
889 (unsigned long long) pvo_pt->pte_lo));
890
891 #endif
892 #endif
893 /*
894 * First try primary hash.
895 */
896 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
897 if ((pt->pte_hi & PTE_VALID) == 0) {
898 pvo_pt->pte_hi &= ~PTE_HID;
899 pmap_pte_set(pt, pvo_pt);
900 return i;
901 }
902 }
903
904 /*
905 * Now try secondary hash.
906 */
907 ptegidx ^= pmap_pteg_mask;
908 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
909 if ((pt->pte_hi & PTE_VALID) == 0) {
910 pvo_pt->pte_hi |= PTE_HID;
911 pmap_pte_set(pt, pvo_pt);
912 return i;
913 }
914 }
915 return -1;
916 }
917
918 /*
919 * Spill handler.
920 *
921 * Tries to spill a page table entry from the overflow area.
922 * This runs in either real mode (if dealing with a exception spill)
923 * or virtual mode when dealing with manually spilling one of the
924 * kernel's pte entries. In either case, interrupts are already
925 * disabled.
926 */
927
928 int
929 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
930 {
931 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
932 struct pvo_entry *pvo;
933 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
934 struct pvo_tqhead *pvoh, *vpvoh = NULL;
935 int ptegidx, i, j;
936 volatile struct pteg *pteg;
937 volatile struct pte *pt;
938
939 ptegidx = va_to_pteg(pm, addr);
940
941 /*
942 * Have to substitute some entry. Use the primary hash for this.
943 * Use low bits of timebase as random generator. Make sure we are
944 * not picking a kernel pte for replacement.
945 */
946 pteg = &pmap_pteg_table[ptegidx];
947 i = MFTB() & 7;
948 for (j = 0; j < 8; j++) {
949 pt = &pteg->pt[i];
950 if ((pt->pte_hi & PTE_VALID) == 0 ||
951 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
952 != KERNEL_VSIDBITS)
953 break;
954 i = (i + 1) & 7;
955 }
956 KASSERT(j < 8);
957
958 source_pvo = NULL;
959 victim_pvo = NULL;
960 pvoh = &pmap_pvo_table[ptegidx];
961 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
962
963 /*
964 * We need to find pvo entry for this address...
965 */
966 PMAP_PVO_CHECK(pvo); /* sanity check */
967
968 /*
969 * If we haven't found the source and we come to a PVO with
970 * a valid PTE, then we know we can't find it because all
971 * evicted PVOs always are first in the list.
972 */
973 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
974 break;
975 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
976 addr == PVO_VADDR(pvo)) {
977
978 /*
979 * Now we have found the entry to be spilled into the
980 * pteg. Attempt to insert it into the page table.
981 */
982 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
983 if (j >= 0) {
984 PVO_PTEGIDX_SET(pvo, j);
985 PMAP_PVO_CHECK(pvo); /* sanity check */
986 PVO_WHERE(pvo, SPILL_INSERT);
987 pvo->pvo_pmap->pm_evictions--;
988 PMAPCOUNT(ptes_spilled);
989 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
990 ? pmap_evcnt_ptes_secondary
991 : pmap_evcnt_ptes_primary)[j]);
992
993 /*
994 * Since we keep the evicted entries at the
995 * from of the PVO list, we need move this
996 * (now resident) PVO after the evicted
997 * entries.
998 */
999 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
1000
1001 /*
1002 * If we don't have to move (either we were the
1003 * last entry or the next entry was valid),
1004 * don't change our position. Otherwise
1005 * move ourselves to the tail of the queue.
1006 */
1007 if (next_pvo != NULL &&
1008 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
1009 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
1010 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1011 }
1012 return 1;
1013 }
1014 source_pvo = pvo;
1015 if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
1016 return 0;
1017 }
1018 if (victim_pvo != NULL)
1019 break;
1020 }
1021
1022 /*
1023 * We also need the pvo entry of the victim we are replacing
1024 * so save the R & C bits of the PTE.
1025 */
1026 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1027 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1028 vpvoh = pvoh; /* *1* */
1029 victim_pvo = pvo;
1030 if (source_pvo != NULL)
1031 break;
1032 }
1033 }
1034
1035 if (source_pvo == NULL) {
1036 PMAPCOUNT(ptes_unspilled);
1037 return 0;
1038 }
1039
1040 if (victim_pvo == NULL) {
1041 if ((pt->pte_hi & PTE_HID) == 0)
1042 panic("pmap_pte_spill: victim p-pte (%p) has "
1043 "no pvo entry!", pt);
1044
1045 /*
1046 * If this is a secondary PTE, we need to search
1047 * its primary pvo bucket for the matching PVO.
1048 */
1049 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1050 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1051 PMAP_PVO_CHECK(pvo); /* sanity check */
1052
1053 /*
1054 * We also need the pvo entry of the victim we are
1055 * replacing so save the R & C bits of the PTE.
1056 */
1057 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1058 victim_pvo = pvo;
1059 break;
1060 }
1061 }
1062 if (victim_pvo == NULL)
1063 panic("pmap_pte_spill: victim s-pte (%p) has "
1064 "no pvo entry!", pt);
1065 }
1066
1067 /*
1068 * The victim should be not be a kernel PVO/PTE entry.
1069 */
1070 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1071 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1072 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1073
1074 /*
1075 * We are invalidating the TLB entry for the EA for the
1076 * we are replacing even though its valid; If we don't
1077 * we lose any ref/chg bit changes contained in the TLB
1078 * entry.
1079 */
1080 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1081
1082 /*
1083 * To enforce the PVO list ordering constraint that all
1084 * evicted entries should come before all valid entries,
1085 * move the source PVO to the tail of its list and the
1086 * victim PVO to the head of its list (which might not be
1087 * the same list, if the victim was using the secondary hash).
1088 */
1089 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1090 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1091 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1092 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1093 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1094 pmap_pte_set(pt, &source_pvo->pvo_pte);
1095 victim_pvo->pvo_pmap->pm_evictions++;
1096 source_pvo->pvo_pmap->pm_evictions--;
1097 PVO_WHERE(victim_pvo, SPILL_UNSET);
1098 PVO_WHERE(source_pvo, SPILL_SET);
1099
1100 PVO_PTEGIDX_CLR(victim_pvo);
1101 PVO_PTEGIDX_SET(source_pvo, i);
1102 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1103 PMAPCOUNT(ptes_spilled);
1104 PMAPCOUNT(ptes_evicted);
1105 PMAPCOUNT(ptes_removed);
1106
1107 PMAP_PVO_CHECK(victim_pvo);
1108 PMAP_PVO_CHECK(source_pvo);
1109 return 1;
1110 }
1111
1112 /*
1113 * Restrict given range to physical memory
1114 */
1115 void
1116 pmap_real_memory(paddr_t *start, psize_t *size)
1117 {
1118 struct mem_region *mp;
1119
1120 for (mp = mem; mp->size; mp++) {
1121 if (*start + *size > mp->start
1122 && *start < mp->start + mp->size) {
1123 if (*start < mp->start) {
1124 *size -= mp->start - *start;
1125 *start = mp->start;
1126 }
1127 if (*start + *size > mp->start + mp->size)
1128 *size = mp->start + mp->size - *start;
1129 return;
1130 }
1131 }
1132 *size = 0;
1133 }
1134
1135 /*
1136 * Initialize anything else for pmap handling.
1137 * Called during vm_init().
1138 */
1139 void
1140 pmap_init(void)
1141 {
1142 #ifdef __HAVE_PMAP_PHYSSEG
1143 struct pvo_tqhead *pvoh;
1144 int bank;
1145 long sz;
1146 char *attr;
1147
1148 pvoh = pmap_physseg.pvoh;
1149 attr = pmap_physseg.attrs;
1150 for (bank = 0; bank < vm_nphysseg; bank++) {
1151 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1152 vm_physmem[bank].pmseg.pvoh = pvoh;
1153 vm_physmem[bank].pmseg.attrs = attr;
1154 for (; sz > 0; sz--, pvoh++, attr++) {
1155 TAILQ_INIT(pvoh);
1156 *attr = 0;
1157 }
1158 }
1159 #endif
1160
1161 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1162 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1163 &pmap_pool_mallocator);
1164
1165 pool_setlowat(&pmap_mpvo_pool, 1008);
1166
1167 pmap_initialized = 1;
1168
1169 }
1170
1171 /*
1172 * How much virtual space does the kernel get?
1173 */
1174 void
1175 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1176 {
1177 /*
1178 * For now, reserve one segment (minus some overhead) for kernel
1179 * virtual memory
1180 */
1181 *start = VM_MIN_KERNEL_ADDRESS;
1182 *end = VM_MAX_KERNEL_ADDRESS;
1183 }
1184
1185 /*
1186 * Allocate, initialize, and return a new physical map.
1187 */
1188 pmap_t
1189 pmap_create(void)
1190 {
1191 pmap_t pm;
1192
1193 pm = pool_get(&pmap_pool, PR_WAITOK);
1194 memset((caddr_t)pm, 0, sizeof *pm);
1195 pmap_pinit(pm);
1196
1197 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1198 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1199 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1200 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1201 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1202 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1203 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1204 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1205 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1206 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1207 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1208 return pm;
1209 }
1210
1211 /*
1212 * Initialize a preallocated and zeroed pmap structure.
1213 */
1214 void
1215 pmap_pinit(pmap_t pm)
1216 {
1217 register_t entropy = MFTB();
1218 register_t mask;
1219 int i;
1220
1221 /*
1222 * Allocate some segment registers for this pmap.
1223 */
1224 pm->pm_refs = 1;
1225 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1226 static register_t pmap_vsidcontext;
1227 register_t hash;
1228 unsigned int n;
1229
1230 /* Create a new value by multiplying by a prime adding in
1231 * entropy from the timebase register. This is to make the
1232 * VSID more random so that the PT Hash function collides
1233 * less often. (note that the prime causes gcc to do shifts
1234 * instead of a multiply)
1235 */
1236 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1237 hash = pmap_vsidcontext & (NPMAPS - 1);
1238 if (hash == 0) { /* 0 is special, avoid it */
1239 entropy += 0xbadf00d;
1240 continue;
1241 }
1242 n = hash >> 5;
1243 mask = 1L << (hash & (VSID_NBPW-1));
1244 hash = pmap_vsidcontext;
1245 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1246 /* anything free in this bucket? */
1247 if (~pmap_vsid_bitmap[n] == 0) {
1248 entropy = hash ^ (hash >> 16);
1249 continue;
1250 }
1251 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1252 mask = 1L << i;
1253 hash &= ~(VSID_NBPW-1);
1254 hash |= i;
1255 }
1256 hash &= PTE_VSID >> PTE_VSID_SHFT;
1257 pmap_vsid_bitmap[n] |= mask;
1258 pm->pm_vsid = hash;
1259 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1260 for (i = 0; i < 16; i++)
1261 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1262 SR_NOEXEC;
1263 #endif
1264 return;
1265 }
1266 panic("pmap_pinit: out of segments");
1267 }
1268
1269 /*
1270 * Add a reference to the given pmap.
1271 */
1272 void
1273 pmap_reference(pmap_t pm)
1274 {
1275 pm->pm_refs++;
1276 }
1277
1278 /*
1279 * Retire the given pmap from service.
1280 * Should only be called if the map contains no valid mappings.
1281 */
1282 void
1283 pmap_destroy(pmap_t pm)
1284 {
1285 if (--pm->pm_refs == 0) {
1286 pmap_release(pm);
1287 pool_put(&pmap_pool, pm);
1288 }
1289 }
1290
1291 /*
1292 * Release any resources held by the given physical map.
1293 * Called when a pmap initialized by pmap_pinit is being released.
1294 */
1295 void
1296 pmap_release(pmap_t pm)
1297 {
1298 int idx, mask;
1299
1300 if (pm->pm_sr[0] == 0)
1301 panic("pmap_release");
1302 idx = pm->pm_vsid & (NPMAPS-1);
1303 mask = 1 << (idx % VSID_NBPW);
1304 idx /= VSID_NBPW;
1305
1306 KASSERT(pmap_vsid_bitmap[idx] & mask);
1307 pmap_vsid_bitmap[idx] &= ~mask;
1308 }
1309
1310 /*
1311 * Copy the range specified by src_addr/len
1312 * from the source map to the range dst_addr/len
1313 * in the destination map.
1314 *
1315 * This routine is only advisory and need not do anything.
1316 */
1317 void
1318 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1319 vsize_t len, vaddr_t src_addr)
1320 {
1321 PMAPCOUNT(copies);
1322 }
1323
1324 /*
1325 * Require that all active physical maps contain no
1326 * incorrect entries NOW.
1327 */
1328 void
1329 pmap_update(struct pmap *pmap)
1330 {
1331 PMAPCOUNT(updates);
1332 TLBSYNC();
1333 }
1334
1335 /*
1336 * Garbage collects the physical map system for
1337 * pages which are no longer used.
1338 * Success need not be guaranteed -- that is, there
1339 * may well be pages which are not referenced, but
1340 * others may be collected.
1341 * Called by the pageout daemon when pages are scarce.
1342 */
1343 void
1344 pmap_collect(pmap_t pm)
1345 {
1346 PMAPCOUNT(collects);
1347 }
1348
1349 static inline int
1350 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1351 {
1352 int pteidx;
1353 /*
1354 * We can find the actual pte entry without searching by
1355 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1356 * and by noticing the HID bit.
1357 */
1358 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1359 if (pvo->pvo_pte.pte_hi & PTE_HID)
1360 pteidx ^= pmap_pteg_mask * 8;
1361 return pteidx;
1362 }
1363
1364 volatile struct pte *
1365 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1366 {
1367 volatile struct pte *pt;
1368
1369 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1370 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1371 return NULL;
1372 #endif
1373
1374 /*
1375 * If we haven't been supplied the ptegidx, calculate it.
1376 */
1377 if (pteidx == -1) {
1378 int ptegidx;
1379 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1380 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1381 }
1382
1383 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1384
1385 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1386 return pt;
1387 #else
1388 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1389 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1390 "pvo but no valid pte index", pvo);
1391 }
1392 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1393 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1394 "pvo but no valid pte", pvo);
1395 }
1396
1397 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1398 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1399 #if defined(DEBUG) || defined(PMAPCHECK)
1400 pmap_pte_print(pt);
1401 #endif
1402 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1403 "pmap_pteg_table %p but invalid in pvo",
1404 pvo, pt);
1405 }
1406 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1407 #if defined(DEBUG) || defined(PMAPCHECK)
1408 pmap_pte_print(pt);
1409 #endif
1410 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1411 "not match pte %p in pmap_pteg_table",
1412 pvo, pt);
1413 }
1414 return pt;
1415 }
1416
1417 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1418 #if defined(DEBUG) || defined(PMAPCHECK)
1419 pmap_pte_print(pt);
1420 #endif
1421 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1422 "pmap_pteg_table but valid in pvo", pvo, pt);
1423 }
1424 return NULL;
1425 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1426 }
1427
1428 struct pvo_entry *
1429 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1430 {
1431 struct pvo_entry *pvo;
1432 int ptegidx;
1433
1434 va &= ~ADDR_POFF;
1435 ptegidx = va_to_pteg(pm, va);
1436
1437 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1438 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1439 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1440 panic("pmap_pvo_find_va: invalid pvo %p on "
1441 "list %#x (%p)", pvo, ptegidx,
1442 &pmap_pvo_table[ptegidx]);
1443 #endif
1444 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1445 if (pteidx_p)
1446 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1447 return pvo;
1448 }
1449 }
1450 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1451 panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __FUNCTION__,
1452 (pm == pmap_kernel() ? "kernel" : "user"), va);
1453 return NULL;
1454 }
1455
1456 #if defined(DEBUG) || defined(PMAPCHECK)
1457 void
1458 pmap_pvo_check(const struct pvo_entry *pvo)
1459 {
1460 struct pvo_head *pvo_head;
1461 struct pvo_entry *pvo0;
1462 volatile struct pte *pt;
1463 int failed = 0;
1464
1465 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1466 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1467
1468 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1469 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1470 pvo, pvo->pvo_pmap);
1471 failed = 1;
1472 }
1473
1474 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1475 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1476 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1477 pvo, TAILQ_NEXT(pvo, pvo_olink));
1478 failed = 1;
1479 }
1480
1481 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1482 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1483 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1484 pvo, LIST_NEXT(pvo, pvo_vlink));
1485 failed = 1;
1486 }
1487
1488 if (pvo->pvo_vaddr & PVO_MANAGED) {
1489 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1490 } else {
1491 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1492 printf("pmap_pvo_check: pvo %p: non kernel address "
1493 "on kernel unmanaged list\n", pvo);
1494 failed = 1;
1495 }
1496 pvo_head = &pmap_pvo_kunmanaged;
1497 }
1498 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1499 if (pvo0 == pvo)
1500 break;
1501 }
1502 if (pvo0 == NULL) {
1503 printf("pmap_pvo_check: pvo %p: not present "
1504 "on its vlist head %p\n", pvo, pvo_head);
1505 failed = 1;
1506 }
1507 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1508 printf("pmap_pvo_check: pvo %p: not present "
1509 "on its olist head\n", pvo);
1510 failed = 1;
1511 }
1512 pt = pmap_pvo_to_pte(pvo, -1);
1513 if (pt == NULL) {
1514 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1515 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1516 "no PTE\n", pvo);
1517 failed = 1;
1518 }
1519 } else {
1520 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1521 (uintptr_t) pt >=
1522 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1523 printf("pmap_pvo_check: pvo %p: pte %p not in "
1524 "pteg table\n", pvo, pt);
1525 failed = 1;
1526 }
1527 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1528 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1529 "no PTE\n", pvo);
1530 failed = 1;
1531 }
1532 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1533 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1534 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1535 failed = 1;
1536 }
1537 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1538 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1539 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1540 "%#x/%#x\n", pvo,
1541 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1542 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1543 failed = 1;
1544 }
1545 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1546 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1547 " doesn't not match PVO's VA %#lx\n",
1548 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1549 failed = 1;
1550 }
1551 if (failed)
1552 pmap_pte_print(pt);
1553 }
1554 if (failed)
1555 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1556 pvo->pvo_pmap);
1557 }
1558 #endif /* DEBUG || PMAPCHECK */
1559
1560 /*
1561 * Search the PVO table looking for a non-wired entry.
1562 * If we find one, remove it and return it.
1563 */
1564
1565 struct pvo_entry *
1566 pmap_pvo_reclaim(struct pmap *pm)
1567 {
1568 struct pvo_tqhead *pvoh;
1569 struct pvo_entry *pvo;
1570 uint32_t idx, endidx;
1571
1572 endidx = pmap_pvo_reclaim_nextidx;
1573 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1574 idx = (idx + 1) & pmap_pteg_mask) {
1575 pvoh = &pmap_pvo_table[idx];
1576 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1577 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
1578 pmap_pvo_remove(pvo, -1, NULL);
1579 pmap_pvo_reclaim_nextidx = idx;
1580 PMAPCOUNT(pvos_reclaimed);
1581 return pvo;
1582 }
1583 }
1584 }
1585 return NULL;
1586 }
1587
1588 /*
1589 * This returns whether this is the first mapping of a page.
1590 */
1591 int
1592 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1593 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1594 {
1595 struct pvo_entry *pvo;
1596 struct pvo_tqhead *pvoh;
1597 register_t msr;
1598 int ptegidx;
1599 int i;
1600 int poolflags = PR_NOWAIT;
1601
1602 /*
1603 * Compute the PTE Group index.
1604 */
1605 va &= ~ADDR_POFF;
1606 ptegidx = va_to_pteg(pm, va);
1607
1608 msr = pmap_interrupts_off();
1609
1610 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1611 if (pmap_pvo_remove_depth > 0)
1612 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1613 if (++pmap_pvo_enter_depth > 1)
1614 panic("pmap_pvo_enter: called recursively!");
1615 #endif
1616
1617 /*
1618 * Remove any existing mapping for this page. Reuse the
1619 * pvo entry if there a mapping.
1620 */
1621 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1622 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1623 #ifdef DEBUG
1624 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1625 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1626 ~(PTE_REF|PTE_CHG)) == 0 &&
1627 va < VM_MIN_KERNEL_ADDRESS) {
1628 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1629 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1630 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1631 (unsigned int) pvo->pvo_pte.pte_hi,
1632 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1633 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1634 #ifdef DDBX
1635 Debugger();
1636 #endif
1637 }
1638 #endif
1639 PMAPCOUNT(mappings_replaced);
1640 pmap_pvo_remove(pvo, -1, NULL);
1641 break;
1642 }
1643 }
1644
1645 /*
1646 * If we aren't overwriting an mapping, try to allocate
1647 */
1648 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1649 --pmap_pvo_enter_depth;
1650 #endif
1651 pmap_interrupts_restore(msr);
1652 if (pvo) {
1653 pmap_pvo_free(pvo);
1654 }
1655 pvo = pool_get(pl, poolflags);
1656
1657 #ifdef DEBUG
1658 /*
1659 * Exercise pmap_pvo_reclaim() a little.
1660 */
1661 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1662 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1663 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1664 pool_put(pl, pvo);
1665 pvo = NULL;
1666 }
1667 #endif
1668
1669 msr = pmap_interrupts_off();
1670 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1671 ++pmap_pvo_enter_depth;
1672 #endif
1673 if (pvo == NULL) {
1674 pvo = pmap_pvo_reclaim(pm);
1675 if (pvo == NULL) {
1676 if ((flags & PMAP_CANFAIL) == 0)
1677 panic("pmap_pvo_enter: failed");
1678 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1679 pmap_pvo_enter_depth--;
1680 #endif
1681 PMAPCOUNT(pvos_failed);
1682 pmap_interrupts_restore(msr);
1683 return ENOMEM;
1684 }
1685 }
1686
1687 pvo->pvo_vaddr = va;
1688 pvo->pvo_pmap = pm;
1689 pvo->pvo_vaddr &= ~ADDR_POFF;
1690 if (flags & VM_PROT_EXECUTE) {
1691 PMAPCOUNT(exec_mappings);
1692 pvo_set_exec(pvo);
1693 }
1694 if (flags & PMAP_WIRED)
1695 pvo->pvo_vaddr |= PVO_WIRED;
1696 if (pvo_head != &pmap_pvo_kunmanaged) {
1697 pvo->pvo_vaddr |= PVO_MANAGED;
1698 PMAPCOUNT(mappings);
1699 } else {
1700 PMAPCOUNT(kernel_mappings);
1701 }
1702 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1703
1704 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1705 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1706 pvo->pvo_pmap->pm_stats.wired_count++;
1707 pvo->pvo_pmap->pm_stats.resident_count++;
1708 #if defined(DEBUG)
1709 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1710 DPRINTFN(PVOENTER,
1711 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1712 pvo, pm, va, pa));
1713 #endif
1714
1715 /*
1716 * We hope this succeeds but it isn't required.
1717 */
1718 pvoh = &pmap_pvo_table[ptegidx];
1719 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1720 if (i >= 0) {
1721 PVO_PTEGIDX_SET(pvo, i);
1722 PVO_WHERE(pvo, ENTER_INSERT);
1723 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1724 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1725 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1726
1727 } else {
1728 /*
1729 * Since we didn't have room for this entry (which makes it
1730 * and evicted entry), place it at the head of the list.
1731 */
1732 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1733 PMAPCOUNT(ptes_evicted);
1734 pm->pm_evictions++;
1735 /*
1736 * If this is a kernel page, make sure it's active.
1737 */
1738 if (pm == pmap_kernel()) {
1739 i = pmap_pte_spill(pm, va, FALSE);
1740 KASSERT(i);
1741 }
1742 }
1743 PMAP_PVO_CHECK(pvo); /* sanity check */
1744 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1745 pmap_pvo_enter_depth--;
1746 #endif
1747 pmap_interrupts_restore(msr);
1748 return 0;
1749 }
1750
1751 void
1752 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1753 {
1754 volatile struct pte *pt;
1755 int ptegidx;
1756
1757 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1758 if (++pmap_pvo_remove_depth > 1)
1759 panic("pmap_pvo_remove: called recursively!");
1760 #endif
1761
1762 /*
1763 * If we haven't been supplied the ptegidx, calculate it.
1764 */
1765 if (pteidx == -1) {
1766 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1767 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1768 } else {
1769 ptegidx = pteidx >> 3;
1770 if (pvo->pvo_pte.pte_hi & PTE_HID)
1771 ptegidx ^= pmap_pteg_mask;
1772 }
1773 PMAP_PVO_CHECK(pvo); /* sanity check */
1774
1775 /*
1776 * If there is an active pte entry, we need to deactivate it
1777 * (and save the ref & chg bits).
1778 */
1779 pt = pmap_pvo_to_pte(pvo, pteidx);
1780 if (pt != NULL) {
1781 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1782 PVO_WHERE(pvo, REMOVE);
1783 PVO_PTEGIDX_CLR(pvo);
1784 PMAPCOUNT(ptes_removed);
1785 } else {
1786 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1787 pvo->pvo_pmap->pm_evictions--;
1788 }
1789
1790 /*
1791 * Account for executable mappings.
1792 */
1793 if (PVO_ISEXECUTABLE(pvo))
1794 pvo_clear_exec(pvo);
1795
1796 /*
1797 * Update our statistics.
1798 */
1799 pvo->pvo_pmap->pm_stats.resident_count--;
1800 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1801 pvo->pvo_pmap->pm_stats.wired_count--;
1802
1803 /*
1804 * Save the REF/CHG bits into their cache if the page is managed.
1805 */
1806 if (pvo->pvo_vaddr & PVO_MANAGED) {
1807 register_t ptelo = pvo->pvo_pte.pte_lo;
1808 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1809
1810 if (pg != NULL) {
1811 /*
1812 * If this page was changed and it is mapped exec,
1813 * invalidate it.
1814 */
1815 if ((ptelo & PTE_CHG) &&
1816 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1817 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1818 if (LIST_EMPTY(pvoh)) {
1819 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1820 "%#lx: clear-exec]\n",
1821 VM_PAGE_TO_PHYS(pg)));
1822 pmap_attr_clear(pg, PTE_EXEC);
1823 PMAPCOUNT(exec_uncached_pvo_remove);
1824 } else {
1825 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1826 "%#lx: syncicache]\n",
1827 VM_PAGE_TO_PHYS(pg)));
1828 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1829 PAGE_SIZE);
1830 PMAPCOUNT(exec_synced_pvo_remove);
1831 }
1832 }
1833
1834 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1835 }
1836 PMAPCOUNT(unmappings);
1837 } else {
1838 PMAPCOUNT(kernel_unmappings);
1839 }
1840
1841 /*
1842 * Remove the PVO from its lists and return it to the pool.
1843 */
1844 LIST_REMOVE(pvo, pvo_vlink);
1845 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1846 if (pvol) {
1847 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1848 }
1849 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1850 pmap_pvo_remove_depth--;
1851 #endif
1852 }
1853
1854 void
1855 pmap_pvo_free(struct pvo_entry *pvo)
1856 {
1857
1858 pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
1859 &pmap_upvo_pool, pvo);
1860 }
1861
1862 void
1863 pmap_pvo_free_list(struct pvo_head *pvol)
1864 {
1865 struct pvo_entry *pvo, *npvo;
1866
1867 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1868 npvo = LIST_NEXT(pvo, pvo_vlink);
1869 LIST_REMOVE(pvo, pvo_vlink);
1870 pmap_pvo_free(pvo);
1871 }
1872 }
1873
1874 /*
1875 * Mark a mapping as executable.
1876 * If this is the first executable mapping in the segment,
1877 * clear the noexec flag.
1878 */
1879 STATIC void
1880 pvo_set_exec(struct pvo_entry *pvo)
1881 {
1882 struct pmap *pm = pvo->pvo_pmap;
1883
1884 if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1885 return;
1886 }
1887 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1888 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1889 {
1890 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1891 if (pm->pm_exec[sr]++ == 0) {
1892 pm->pm_sr[sr] &= ~SR_NOEXEC;
1893 }
1894 }
1895 #endif
1896 }
1897
1898 /*
1899 * Mark a mapping as non-executable.
1900 * If this was the last executable mapping in the segment,
1901 * set the noexec flag.
1902 */
1903 STATIC void
1904 pvo_clear_exec(struct pvo_entry *pvo)
1905 {
1906 struct pmap *pm = pvo->pvo_pmap;
1907
1908 if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1909 return;
1910 }
1911 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1912 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1913 {
1914 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1915 if (--pm->pm_exec[sr] == 0) {
1916 pm->pm_sr[sr] |= SR_NOEXEC;
1917 }
1918 }
1919 #endif
1920 }
1921
1922 /*
1923 * Insert physical page at pa into the given pmap at virtual address va.
1924 */
1925 int
1926 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1927 {
1928 struct mem_region *mp;
1929 struct pvo_head *pvo_head;
1930 struct vm_page *pg;
1931 struct pool *pl;
1932 register_t pte_lo;
1933 int error;
1934 u_int pvo_flags;
1935 u_int was_exec = 0;
1936
1937 if (__predict_false(!pmap_initialized)) {
1938 pvo_head = &pmap_pvo_kunmanaged;
1939 pl = &pmap_upvo_pool;
1940 pvo_flags = 0;
1941 pg = NULL;
1942 was_exec = PTE_EXEC;
1943 } else {
1944 pvo_head = pa_to_pvoh(pa, &pg);
1945 pl = &pmap_mpvo_pool;
1946 pvo_flags = PVO_MANAGED;
1947 }
1948
1949 DPRINTFN(ENTER,
1950 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1951 pm, va, pa, prot, flags));
1952
1953 /*
1954 * If this is a managed page, and it's the first reference to the
1955 * page clear the execness of the page. Otherwise fetch the execness.
1956 */
1957 if (pg != NULL)
1958 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1959
1960 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1961
1962 /*
1963 * Assume the page is cache inhibited and access is guarded unless
1964 * it's in our available memory array. If it is in the memory array,
1965 * asssume it's in memory coherent memory.
1966 */
1967 pte_lo = PTE_IG;
1968 if ((flags & PMAP_NC) == 0) {
1969 for (mp = mem; mp->size; mp++) {
1970 if (pa >= mp->start && pa < mp->start + mp->size) {
1971 pte_lo = PTE_M;
1972 break;
1973 }
1974 }
1975 }
1976
1977 if (prot & VM_PROT_WRITE)
1978 pte_lo |= PTE_BW;
1979 else
1980 pte_lo |= PTE_BR;
1981
1982 /*
1983 * If this was in response to a fault, "pre-fault" the PTE's
1984 * changed/referenced bit appropriately.
1985 */
1986 if (flags & VM_PROT_WRITE)
1987 pte_lo |= PTE_CHG;
1988 if (flags & VM_PROT_ALL)
1989 pte_lo |= PTE_REF;
1990
1991 /*
1992 * We need to know if this page can be executable
1993 */
1994 flags |= (prot & VM_PROT_EXECUTE);
1995
1996 /*
1997 * Record mapping for later back-translation and pte spilling.
1998 * This will overwrite any existing mapping.
1999 */
2000 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
2001
2002 /*
2003 * Flush the real page from the instruction cache if this page is
2004 * mapped executable and cacheable and has not been flushed since
2005 * the last time it was modified.
2006 */
2007 if (error == 0 &&
2008 (flags & VM_PROT_EXECUTE) &&
2009 (pte_lo & PTE_I) == 0 &&
2010 was_exec == 0) {
2011 DPRINTFN(ENTER, (" syncicache"));
2012 PMAPCOUNT(exec_synced);
2013 pmap_syncicache(pa, PAGE_SIZE);
2014 if (pg != NULL) {
2015 pmap_attr_save(pg, PTE_EXEC);
2016 PMAPCOUNT(exec_cached);
2017 #if defined(DEBUG) || defined(PMAPDEBUG)
2018 if (pmapdebug & PMAPDEBUG_ENTER)
2019 printf(" marked-as-exec");
2020 else if (pmapdebug & PMAPDEBUG_EXEC)
2021 printf("[pmap_enter: %#lx: marked-as-exec]\n",
2022 VM_PAGE_TO_PHYS(pg));
2023
2024 #endif
2025 }
2026 }
2027
2028 DPRINTFN(ENTER, (": error=%d\n", error));
2029
2030 return error;
2031 }
2032
2033 void
2034 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2035 {
2036 struct mem_region *mp;
2037 register_t pte_lo;
2038 int error;
2039
2040 #if defined (PPC_OEA64_BRIDGE)
2041 if (va < VM_MIN_KERNEL_ADDRESS)
2042 panic("pmap_kenter_pa: attempt to enter "
2043 "non-kernel address %#lx!", va);
2044 #endif
2045
2046 DPRINTFN(KENTER,
2047 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
2048
2049 /*
2050 * Assume the page is cache inhibited and access is guarded unless
2051 * it's in our available memory array. If it is in the memory array,
2052 * asssume it's in memory coherent memory.
2053 */
2054 pte_lo = PTE_IG;
2055 if ((prot & PMAP_NC) == 0) {
2056 for (mp = mem; mp->size; mp++) {
2057 if (pa >= mp->start && pa < mp->start + mp->size) {
2058 pte_lo = PTE_M;
2059 break;
2060 }
2061 }
2062 }
2063
2064 if (prot & VM_PROT_WRITE)
2065 pte_lo |= PTE_BW;
2066 else
2067 pte_lo |= PTE_BR;
2068
2069 /*
2070 * We don't care about REF/CHG on PVOs on the unmanaged list.
2071 */
2072 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2073 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2074
2075 if (error != 0)
2076 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
2077 va, pa, error);
2078 }
2079
2080 void
2081 pmap_kremove(vaddr_t va, vsize_t len)
2082 {
2083 if (va < VM_MIN_KERNEL_ADDRESS)
2084 panic("pmap_kremove: attempt to remove "
2085 "non-kernel address %#lx!", va);
2086
2087 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
2088 pmap_remove(pmap_kernel(), va, va + len);
2089 }
2090
2091 /*
2092 * Remove the given range of mapping entries.
2093 */
2094 void
2095 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2096 {
2097 struct pvo_head pvol;
2098 struct pvo_entry *pvo;
2099 register_t msr;
2100 int pteidx;
2101
2102 LIST_INIT(&pvol);
2103 msr = pmap_interrupts_off();
2104 for (; va < endva; va += PAGE_SIZE) {
2105 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2106 if (pvo != NULL) {
2107 pmap_pvo_remove(pvo, pteidx, &pvol);
2108 }
2109 }
2110 pmap_interrupts_restore(msr);
2111 pmap_pvo_free_list(&pvol);
2112 }
2113
2114 /*
2115 * Get the physical page address for the given pmap/virtual address.
2116 */
2117 boolean_t
2118 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2119 {
2120 struct pvo_entry *pvo;
2121 register_t msr;
2122
2123
2124 /*
2125 * If this is a kernel pmap lookup, also check the battable
2126 * and if we get a hit, translate the VA to a PA using the
2127 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2128 * that will wrap back to 0.
2129 */
2130 if (pm == pmap_kernel() &&
2131 (va < VM_MIN_KERNEL_ADDRESS ||
2132 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2133 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2134 #if defined (PPC_OEA)
2135 if ((MFPVR() >> 16) != MPC601) {
2136 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2137 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2138 register_t batl =
2139 battable[va >> ADDR_SR_SHFT].batl;
2140 register_t mask =
2141 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2142 if (pap)
2143 *pap = (batl & mask) | (va & ~mask);
2144 return TRUE;
2145 }
2146 } else {
2147 register_t batu = battable[va >> 23].batu;
2148 register_t batl = battable[va >> 23].batl;
2149 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2150 if (BAT601_VALID_P(batl) &&
2151 BAT601_VA_MATCH_P(batu, batl, va)) {
2152 register_t mask =
2153 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2154 if (pap)
2155 *pap = (batl & mask) | (va & ~mask);
2156 return TRUE;
2157 } else if (SR601_VALID_P(sr) &&
2158 SR601_PA_MATCH_P(sr, va)) {
2159 if (pap)
2160 *pap = va;
2161 return TRUE;
2162 }
2163 }
2164 return FALSE;
2165 #elif defined (PPC_OEA64_BRIDGE)
2166 panic("%s: pm: %s, va: 0x%08lx\n", __FUNCTION__,
2167 (pm == pmap_kernel() ? "kernel" : "user"), va);
2168 #elif defined (PPC_OEA64)
2169 #error PPC_OEA64 not supported
2170 #endif /* PPC_OEA */
2171 }
2172
2173 msr = pmap_interrupts_off();
2174 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2175 if (pvo != NULL) {
2176 PMAP_PVO_CHECK(pvo); /* sanity check */
2177 if (pap)
2178 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2179 | (va & ADDR_POFF);
2180 }
2181 pmap_interrupts_restore(msr);
2182 return pvo != NULL;
2183 }
2184
2185 /*
2186 * Lower the protection on the specified range of this pmap.
2187 */
2188 void
2189 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2190 {
2191 struct pvo_entry *pvo;
2192 volatile struct pte *pt;
2193 register_t msr;
2194 int pteidx;
2195
2196 /*
2197 * Since this routine only downgrades protection, we should
2198 * always be called with at least one bit not set.
2199 */
2200 KASSERT(prot != VM_PROT_ALL);
2201
2202 /*
2203 * If there is no protection, this is equivalent to
2204 * remove the pmap from the pmap.
2205 */
2206 if ((prot & VM_PROT_READ) == 0) {
2207 pmap_remove(pm, va, endva);
2208 return;
2209 }
2210
2211 msr = pmap_interrupts_off();
2212 for (; va < endva; va += PAGE_SIZE) {
2213 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2214 if (pvo == NULL)
2215 continue;
2216 PMAP_PVO_CHECK(pvo); /* sanity check */
2217
2218 /*
2219 * Revoke executable if asked to do so.
2220 */
2221 if ((prot & VM_PROT_EXECUTE) == 0)
2222 pvo_clear_exec(pvo);
2223
2224 #if 0
2225 /*
2226 * If the page is already read-only, no change
2227 * needs to be made.
2228 */
2229 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2230 continue;
2231 #endif
2232 /*
2233 * Grab the PTE pointer before we diddle with
2234 * the cached PTE copy.
2235 */
2236 pt = pmap_pvo_to_pte(pvo, pteidx);
2237 /*
2238 * Change the protection of the page.
2239 */
2240 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2241 pvo->pvo_pte.pte_lo |= PTE_BR;
2242
2243 /*
2244 * If the PVO is in the page table, update
2245 * that pte at well.
2246 */
2247 if (pt != NULL) {
2248 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2249 PVO_WHERE(pvo, PMAP_PROTECT);
2250 PMAPCOUNT(ptes_changed);
2251 }
2252
2253 PMAP_PVO_CHECK(pvo); /* sanity check */
2254 }
2255 pmap_interrupts_restore(msr);
2256 }
2257
2258 void
2259 pmap_unwire(pmap_t pm, vaddr_t va)
2260 {
2261 struct pvo_entry *pvo;
2262 register_t msr;
2263
2264 msr = pmap_interrupts_off();
2265 pvo = pmap_pvo_find_va(pm, va, NULL);
2266 if (pvo != NULL) {
2267 if (pvo->pvo_vaddr & PVO_WIRED) {
2268 pvo->pvo_vaddr &= ~PVO_WIRED;
2269 pm->pm_stats.wired_count--;
2270 }
2271 PMAP_PVO_CHECK(pvo); /* sanity check */
2272 }
2273 pmap_interrupts_restore(msr);
2274 }
2275
2276 /*
2277 * Lower the protection on the specified physical page.
2278 */
2279 void
2280 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2281 {
2282 struct pvo_head *pvo_head, pvol;
2283 struct pvo_entry *pvo, *next_pvo;
2284 volatile struct pte *pt;
2285 register_t msr;
2286
2287 KASSERT(prot != VM_PROT_ALL);
2288 LIST_INIT(&pvol);
2289 msr = pmap_interrupts_off();
2290
2291 /*
2292 * When UVM reuses a page, it does a pmap_page_protect with
2293 * VM_PROT_NONE. At that point, we can clear the exec flag
2294 * since we know the page will have different contents.
2295 */
2296 if ((prot & VM_PROT_READ) == 0) {
2297 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2298 VM_PAGE_TO_PHYS(pg)));
2299 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2300 PMAPCOUNT(exec_uncached_page_protect);
2301 pmap_attr_clear(pg, PTE_EXEC);
2302 }
2303 }
2304
2305 pvo_head = vm_page_to_pvoh(pg);
2306 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2307 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2308 PMAP_PVO_CHECK(pvo); /* sanity check */
2309
2310 /*
2311 * Downgrading to no mapping at all, we just remove the entry.
2312 */
2313 if ((prot & VM_PROT_READ) == 0) {
2314 pmap_pvo_remove(pvo, -1, &pvol);
2315 continue;
2316 }
2317
2318 /*
2319 * If EXEC permission is being revoked, just clear the
2320 * flag in the PVO.
2321 */
2322 if ((prot & VM_PROT_EXECUTE) == 0)
2323 pvo_clear_exec(pvo);
2324
2325 /*
2326 * If this entry is already RO, don't diddle with the
2327 * page table.
2328 */
2329 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2330 PMAP_PVO_CHECK(pvo);
2331 continue;
2332 }
2333
2334 /*
2335 * Grab the PTE before the we diddle the bits so
2336 * pvo_to_pte can verify the pte contents are as
2337 * expected.
2338 */
2339 pt = pmap_pvo_to_pte(pvo, -1);
2340 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2341 pvo->pvo_pte.pte_lo |= PTE_BR;
2342 if (pt != NULL) {
2343 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2344 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2345 PMAPCOUNT(ptes_changed);
2346 }
2347 PMAP_PVO_CHECK(pvo); /* sanity check */
2348 }
2349 pmap_interrupts_restore(msr);
2350 pmap_pvo_free_list(&pvol);
2351 }
2352
2353 /*
2354 * Activate the address space for the specified process. If the process
2355 * is the current process, load the new MMU context.
2356 */
2357 void
2358 pmap_activate(struct lwp *l)
2359 {
2360 struct pcb *pcb = &l->l_addr->u_pcb;
2361 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2362
2363 DPRINTFN(ACTIVATE,
2364 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2365
2366 /*
2367 * XXX Normally performed in cpu_fork().
2368 */
2369 pcb->pcb_pm = pmap;
2370
2371 /*
2372 * In theory, the SR registers need only be valid on return
2373 * to user space wait to do them there.
2374 */
2375 if (l == curlwp) {
2376 /* Store pointer to new current pmap. */
2377 curpm = pmap;
2378 }
2379 }
2380
2381 /*
2382 * Deactivate the specified process's address space.
2383 */
2384 void
2385 pmap_deactivate(struct lwp *l)
2386 {
2387 }
2388
2389 boolean_t
2390 pmap_query_bit(struct vm_page *pg, int ptebit)
2391 {
2392 struct pvo_entry *pvo;
2393 volatile struct pte *pt;
2394 register_t msr;
2395
2396 if (pmap_attr_fetch(pg) & ptebit)
2397 return TRUE;
2398
2399 msr = pmap_interrupts_off();
2400 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2401 PMAP_PVO_CHECK(pvo); /* sanity check */
2402 /*
2403 * See if we saved the bit off. If so cache, it and return
2404 * success.
2405 */
2406 if (pvo->pvo_pte.pte_lo & ptebit) {
2407 pmap_attr_save(pg, ptebit);
2408 PMAP_PVO_CHECK(pvo); /* sanity check */
2409 pmap_interrupts_restore(msr);
2410 return TRUE;
2411 }
2412 }
2413 /*
2414 * No luck, now go thru the hard part of looking at the ptes
2415 * themselves. Sync so any pending REF/CHG bits are flushed
2416 * to the PTEs.
2417 */
2418 SYNC();
2419 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2420 PMAP_PVO_CHECK(pvo); /* sanity check */
2421 /*
2422 * See if this pvo have a valid PTE. If so, fetch the
2423 * REF/CHG bits from the valid PTE. If the appropriate
2424 * ptebit is set, cache, it and return success.
2425 */
2426 pt = pmap_pvo_to_pte(pvo, -1);
2427 if (pt != NULL) {
2428 pmap_pte_synch(pt, &pvo->pvo_pte);
2429 if (pvo->pvo_pte.pte_lo & ptebit) {
2430 pmap_attr_save(pg, ptebit);
2431 PMAP_PVO_CHECK(pvo); /* sanity check */
2432 pmap_interrupts_restore(msr);
2433 return TRUE;
2434 }
2435 }
2436 }
2437 pmap_interrupts_restore(msr);
2438 return FALSE;
2439 }
2440
2441 boolean_t
2442 pmap_clear_bit(struct vm_page *pg, int ptebit)
2443 {
2444 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2445 struct pvo_entry *pvo;
2446 volatile struct pte *pt;
2447 register_t msr;
2448 int rv = 0;
2449
2450 msr = pmap_interrupts_off();
2451
2452 /*
2453 * Fetch the cache value
2454 */
2455 rv |= pmap_attr_fetch(pg);
2456
2457 /*
2458 * Clear the cached value.
2459 */
2460 pmap_attr_clear(pg, ptebit);
2461
2462 /*
2463 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2464 * can reset the right ones). Note that since the pvo entries and
2465 * list heads are accessed via BAT0 and are never placed in the
2466 * page table, we don't have to worry about further accesses setting
2467 * the REF/CHG bits.
2468 */
2469 SYNC();
2470
2471 /*
2472 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2473 * valid PTE. If so, clear the ptebit from the valid PTE.
2474 */
2475 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2476 PMAP_PVO_CHECK(pvo); /* sanity check */
2477 pt = pmap_pvo_to_pte(pvo, -1);
2478 if (pt != NULL) {
2479 /*
2480 * Only sync the PTE if the bit we are looking
2481 * for is not already set.
2482 */
2483 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2484 pmap_pte_synch(pt, &pvo->pvo_pte);
2485 /*
2486 * If the bit we are looking for was already set,
2487 * clear that bit in the pte.
2488 */
2489 if (pvo->pvo_pte.pte_lo & ptebit)
2490 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2491 }
2492 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2493 pvo->pvo_pte.pte_lo &= ~ptebit;
2494 PMAP_PVO_CHECK(pvo); /* sanity check */
2495 }
2496 pmap_interrupts_restore(msr);
2497
2498 /*
2499 * If we are clearing the modify bit and this page was marked EXEC
2500 * and the user of the page thinks the page was modified, then we
2501 * need to clean it from the icache if it's mapped or clear the EXEC
2502 * bit if it's not mapped. The page itself might not have the CHG
2503 * bit set if the modification was done via DMA to the page.
2504 */
2505 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2506 if (LIST_EMPTY(pvoh)) {
2507 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2508 VM_PAGE_TO_PHYS(pg)));
2509 pmap_attr_clear(pg, PTE_EXEC);
2510 PMAPCOUNT(exec_uncached_clear_modify);
2511 } else {
2512 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2513 VM_PAGE_TO_PHYS(pg)));
2514 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2515 PMAPCOUNT(exec_synced_clear_modify);
2516 }
2517 }
2518 return (rv & ptebit) != 0;
2519 }
2520
2521 void
2522 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2523 {
2524 struct pvo_entry *pvo;
2525 size_t offset = va & ADDR_POFF;
2526 int s;
2527
2528 s = splvm();
2529 while (len > 0) {
2530 size_t seglen = PAGE_SIZE - offset;
2531 if (seglen > len)
2532 seglen = len;
2533 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2534 if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2535 pmap_syncicache(
2536 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2537 PMAP_PVO_CHECK(pvo);
2538 }
2539 va += seglen;
2540 len -= seglen;
2541 offset = 0;
2542 }
2543 splx(s);
2544 }
2545
2546 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2547 void
2548 pmap_pte_print(volatile struct pte *pt)
2549 {
2550 printf("PTE %p: ", pt);
2551
2552 #if defined(PPC_OEA)
2553 /* High word: */
2554 printf("0x%08lx: [", pt->pte_hi);
2555 #elif defined (PPC_OEA64_BRIDGE)
2556 printf("0x%016llx: [", pt->pte_hi);
2557 #else /* PPC_OEA64 */
2558 printf("0x%016lx: [", pt->pte_hi);
2559 #endif /* PPC_OEA */
2560
2561 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2562 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2563
2564 #if defined (PPC_OEA)
2565 printf("0x%06lx 0x%02lx",
2566 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2567 pt->pte_hi & PTE_API);
2568 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2569 #elif defined (PPC_OEA64)
2570 printf("0x%06lx 0x%02lx",
2571 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2572 pt->pte_hi & PTE_API);
2573 printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
2574 #else
2575 /* PPC_OEA64_BRIDGE */
2576 printf("0x%06llx 0x%02llx",
2577 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2578 pt->pte_hi & PTE_API);
2579 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2580 #endif /* PPC_OEA */
2581
2582 /* Low word: */
2583 #if defined (PPC_OEA)
2584 printf(" 0x%08lx: [", pt->pte_lo);
2585 printf("0x%05lx... ", pt->pte_lo >> 12);
2586 #elif defined (PPC_OEA64)
2587 printf(" 0x%016lx: [", pt->pte_lo);
2588 printf("0x%012lx... ", pt->pte_lo >> 12);
2589 #else /* PPC_OEA64_BRIDGE */
2590 printf(" 0x%016llx: [", pt->pte_lo);
2591 printf("0x%012llx... ", pt->pte_lo >> 12);
2592 #endif
2593 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2594 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2595 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2596 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2597 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2598 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2599 switch (pt->pte_lo & PTE_PP) {
2600 case PTE_BR: printf("br]\n"); break;
2601 case PTE_BW: printf("bw]\n"); break;
2602 case PTE_SO: printf("so]\n"); break;
2603 case PTE_SW: printf("sw]\n"); break;
2604 }
2605 }
2606 #endif
2607
2608 #if defined(DDB)
2609 void
2610 pmap_pteg_check(void)
2611 {
2612 volatile struct pte *pt;
2613 int i;
2614 int ptegidx;
2615 u_int p_valid = 0;
2616 u_int s_valid = 0;
2617 u_int invalid = 0;
2618
2619 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2620 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2621 if (pt->pte_hi & PTE_VALID) {
2622 if (pt->pte_hi & PTE_HID)
2623 s_valid++;
2624 else
2625 {
2626 p_valid++;
2627 }
2628 } else
2629 invalid++;
2630 }
2631 }
2632 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2633 p_valid, p_valid, s_valid, s_valid,
2634 invalid, invalid);
2635 }
2636
2637 void
2638 pmap_print_mmuregs(void)
2639 {
2640 int i;
2641 u_int cpuvers;
2642 #ifndef PPC_OEA64
2643 vaddr_t addr;
2644 register_t soft_sr[16];
2645 #endif
2646 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2647 struct bat soft_ibat[4];
2648 struct bat soft_dbat[4];
2649 #endif
2650 register_t sdr1;
2651
2652 cpuvers = MFPVR() >> 16;
2653 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2654 #ifndef PPC_OEA64
2655 addr = 0;
2656 for (i = 0; i < 16; i++) {
2657 soft_sr[i] = MFSRIN(addr);
2658 addr += (1 << ADDR_SR_SHFT);
2659 }
2660 #endif
2661
2662 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2663 /* read iBAT (601: uBAT) registers */
2664 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2665 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2666 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2667 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2668 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2669 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2670 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2671 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2672
2673
2674 if (cpuvers != MPC601) {
2675 /* read dBAT registers */
2676 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2677 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2678 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2679 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2680 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2681 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2682 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2683 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2684 }
2685 #endif
2686
2687 printf("SDR1:\t0x%lx\n", (long) sdr1);
2688 #ifndef PPC_OEA64
2689 printf("SR[]:\t");
2690 for (i = 0; i < 4; i++)
2691 printf("0x%08lx, ", (long) soft_sr[i]);
2692 printf("\n\t");
2693 for ( ; i < 8; i++)
2694 printf("0x%08lx, ", (long) soft_sr[i]);
2695 printf("\n\t");
2696 for ( ; i < 12; i++)
2697 printf("0x%08lx, ", (long) soft_sr[i]);
2698 printf("\n\t");
2699 for ( ; i < 16; i++)
2700 printf("0x%08lx, ", (long) soft_sr[i]);
2701 printf("\n");
2702 #endif
2703
2704 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2705 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2706 for (i = 0; i < 4; i++) {
2707 printf("0x%08lx 0x%08lx, ",
2708 soft_ibat[i].batu, soft_ibat[i].batl);
2709 if (i == 1)
2710 printf("\n\t");
2711 }
2712 if (cpuvers != MPC601) {
2713 printf("\ndBAT[]:\t");
2714 for (i = 0; i < 4; i++) {
2715 printf("0x%08lx 0x%08lx, ",
2716 soft_dbat[i].batu, soft_dbat[i].batl);
2717 if (i == 1)
2718 printf("\n\t");
2719 }
2720 }
2721 printf("\n");
2722 #endif /* PPC_OEA... */
2723 }
2724
2725 void
2726 pmap_print_pte(pmap_t pm, vaddr_t va)
2727 {
2728 struct pvo_entry *pvo;
2729 volatile struct pte *pt;
2730 int pteidx;
2731
2732 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2733 if (pvo != NULL) {
2734 pt = pmap_pvo_to_pte(pvo, pteidx);
2735 if (pt != NULL) {
2736 #if defined (PPC_OEA) || defined (PPC_OEA64)
2737 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2738 va, pt,
2739 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2740 pt->pte_hi, pt->pte_lo);
2741 #else /* PPC_OEA64_BRIDGE */
2742 printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
2743 va, pt,
2744 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2745 pt->pte_hi, pt->pte_lo);
2746 #endif
2747 } else {
2748 printf("No valid PTE found\n");
2749 }
2750 } else {
2751 printf("Address not in pmap\n");
2752 }
2753 }
2754
2755 void
2756 pmap_pteg_dist(void)
2757 {
2758 struct pvo_entry *pvo;
2759 int ptegidx;
2760 int depth;
2761 int max_depth = 0;
2762 unsigned int depths[64];
2763
2764 memset(depths, 0, sizeof(depths));
2765 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2766 depth = 0;
2767 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2768 depth++;
2769 }
2770 if (depth > max_depth)
2771 max_depth = depth;
2772 if (depth > 63)
2773 depth = 63;
2774 depths[depth]++;
2775 }
2776
2777 for (depth = 0; depth < 64; depth++) {
2778 printf(" [%2d]: %8u", depth, depths[depth]);
2779 if ((depth & 3) == 3)
2780 printf("\n");
2781 if (depth == max_depth)
2782 break;
2783 }
2784 if ((depth & 3) != 3)
2785 printf("\n");
2786 printf("Max depth found was %d\n", max_depth);
2787 }
2788 #endif /* DEBUG */
2789
2790 #if defined(PMAPCHECK) || defined(DEBUG)
2791 void
2792 pmap_pvo_verify(void)
2793 {
2794 int ptegidx;
2795 int s;
2796
2797 s = splvm();
2798 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2799 struct pvo_entry *pvo;
2800 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2801 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2802 panic("pmap_pvo_verify: invalid pvo %p "
2803 "on list %#x", pvo, ptegidx);
2804 pmap_pvo_check(pvo);
2805 }
2806 }
2807 splx(s);
2808 }
2809 #endif /* PMAPCHECK */
2810
2811
2812 void *
2813 pmap_pool_ualloc(struct pool *pp, int flags)
2814 {
2815 struct pvo_page *pvop;
2816
2817 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2818 if (pvop != NULL) {
2819 pmap_upvop_free--;
2820 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2821 return pvop;
2822 }
2823 if (uvm.page_init_done != TRUE) {
2824 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2825 }
2826 return pmap_pool_malloc(pp, flags);
2827 }
2828
2829 void *
2830 pmap_pool_malloc(struct pool *pp, int flags)
2831 {
2832 struct pvo_page *pvop;
2833 struct vm_page *pg;
2834
2835 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2836 if (pvop != NULL) {
2837 pmap_mpvop_free--;
2838 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2839 return pvop;
2840 }
2841 again:
2842 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2843 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2844 if (__predict_false(pg == NULL)) {
2845 if (flags & PR_WAITOK) {
2846 uvm_wait("plpg");
2847 goto again;
2848 } else {
2849 return (0);
2850 }
2851 }
2852 return (void *) VM_PAGE_TO_PHYS(pg);
2853 }
2854
2855 void
2856 pmap_pool_ufree(struct pool *pp, void *va)
2857 {
2858 struct pvo_page *pvop;
2859 #if 0
2860 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2861 pmap_pool_mfree(va, size, tag);
2862 return;
2863 }
2864 #endif
2865 pvop = va;
2866 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2867 pmap_upvop_free++;
2868 if (pmap_upvop_free > pmap_upvop_maxfree)
2869 pmap_upvop_maxfree = pmap_upvop_free;
2870 }
2871
2872 void
2873 pmap_pool_mfree(struct pool *pp, void *va)
2874 {
2875 struct pvo_page *pvop;
2876
2877 pvop = va;
2878 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2879 pmap_mpvop_free++;
2880 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2881 pmap_mpvop_maxfree = pmap_mpvop_free;
2882 #if 0
2883 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2884 #endif
2885 }
2886
2887 /*
2888 * This routine in bootstraping to steal to-be-managed memory (which will
2889 * then be unmanaged). We use it to grab from the first 256MB for our
2890 * pmap needs and above 256MB for other stuff.
2891 */
2892 vaddr_t
2893 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2894 {
2895 vsize_t size;
2896 vaddr_t va;
2897 paddr_t pa = 0;
2898 int npgs, bank;
2899 struct vm_physseg *ps;
2900
2901 if (uvm.page_init_done == TRUE)
2902 panic("pmap_steal_memory: called _after_ bootstrap");
2903
2904 *vstartp = VM_MIN_KERNEL_ADDRESS;
2905 *vendp = VM_MAX_KERNEL_ADDRESS;
2906
2907 size = round_page(vsize);
2908 npgs = atop(size);
2909
2910 /*
2911 * PA 0 will never be among those given to UVM so we can use it
2912 * to indicate we couldn't steal any memory.
2913 */
2914 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2915 if (ps->free_list == VM_FREELIST_FIRST256 &&
2916 ps->avail_end - ps->avail_start >= npgs) {
2917 pa = ptoa(ps->avail_start);
2918 break;
2919 }
2920 }
2921
2922 if (pa == 0)
2923 panic("pmap_steal_memory: no approriate memory to steal!");
2924
2925 ps->avail_start += npgs;
2926 ps->start += npgs;
2927
2928 /*
2929 * If we've used up all the pages in the segment, remove it and
2930 * compact the list.
2931 */
2932 if (ps->avail_start == ps->end) {
2933 /*
2934 * If this was the last one, then a very bad thing has occurred
2935 */
2936 if (--vm_nphysseg == 0)
2937 panic("pmap_steal_memory: out of memory!");
2938
2939 printf("pmap_steal_memory: consumed bank %d\n", bank);
2940 for (; bank < vm_nphysseg; bank++, ps++) {
2941 ps[0] = ps[1];
2942 }
2943 }
2944
2945 va = (vaddr_t) pa;
2946 memset((caddr_t) va, 0, size);
2947 pmap_pages_stolen += npgs;
2948 #ifdef DEBUG
2949 if (pmapdebug && npgs > 1) {
2950 u_int cnt = 0;
2951 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2952 cnt += ps->avail_end - ps->avail_start;
2953 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2954 npgs, pmap_pages_stolen, cnt);
2955 }
2956 #endif
2957
2958 return va;
2959 }
2960
2961 /*
2962 * Find a chuck of memory with right size and alignment.
2963 */
2964 void *
2965 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2966 {
2967 struct mem_region *mp;
2968 paddr_t s, e;
2969 int i, j;
2970
2971 size = round_page(size);
2972
2973 DPRINTFN(BOOT,
2974 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2975 size, alignment, at_end));
2976
2977 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2978 panic("pmap_boot_find_memory: invalid alignment %lx",
2979 alignment);
2980
2981 if (at_end) {
2982 if (alignment != PAGE_SIZE)
2983 panic("pmap_boot_find_memory: invalid ending "
2984 "alignment %lx", alignment);
2985
2986 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2987 s = mp->start + mp->size - size;
2988 if (s >= mp->start && mp->size >= size) {
2989 DPRINTFN(BOOT,(": %lx\n", s));
2990 DPRINTFN(BOOT,
2991 ("pmap_boot_find_memory: b-avail[%d] start "
2992 "0x%lx size 0x%lx\n", mp - avail,
2993 mp->start, mp->size));
2994 mp->size -= size;
2995 DPRINTFN(BOOT,
2996 ("pmap_boot_find_memory: a-avail[%d] start "
2997 "0x%lx size 0x%lx\n", mp - avail,
2998 mp->start, mp->size));
2999 return (void *) s;
3000 }
3001 }
3002 panic("pmap_boot_find_memory: no available memory");
3003 }
3004
3005 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3006 s = (mp->start + alignment - 1) & ~(alignment-1);
3007 e = s + size;
3008
3009 /*
3010 * Is the calculated region entirely within the region?
3011 */
3012 if (s < mp->start || e > mp->start + mp->size)
3013 continue;
3014
3015 DPRINTFN(BOOT,(": %lx\n", s));
3016 if (s == mp->start) {
3017 /*
3018 * If the block starts at the beginning of region,
3019 * adjust the size & start. (the region may now be
3020 * zero in length)
3021 */
3022 DPRINTFN(BOOT,
3023 ("pmap_boot_find_memory: b-avail[%d] start "
3024 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3025 mp->start += size;
3026 mp->size -= size;
3027 DPRINTFN(BOOT,
3028 ("pmap_boot_find_memory: a-avail[%d] start "
3029 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3030 } else if (e == mp->start + mp->size) {
3031 /*
3032 * If the block starts at the beginning of region,
3033 * adjust only the size.
3034 */
3035 DPRINTFN(BOOT,
3036 ("pmap_boot_find_memory: b-avail[%d] start "
3037 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3038 mp->size -= size;
3039 DPRINTFN(BOOT,
3040 ("pmap_boot_find_memory: a-avail[%d] start "
3041 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3042 } else {
3043 /*
3044 * Block is in the middle of the region, so we
3045 * have to split it in two.
3046 */
3047 for (j = avail_cnt; j > i + 1; j--) {
3048 avail[j] = avail[j-1];
3049 }
3050 DPRINTFN(BOOT,
3051 ("pmap_boot_find_memory: b-avail[%d] start "
3052 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3053 mp[1].start = e;
3054 mp[1].size = mp[0].start + mp[0].size - e;
3055 mp[0].size = s - mp[0].start;
3056 avail_cnt++;
3057 for (; i < avail_cnt; i++) {
3058 DPRINTFN(BOOT,
3059 ("pmap_boot_find_memory: a-avail[%d] "
3060 "start 0x%lx size 0x%lx\n", i,
3061 avail[i].start, avail[i].size));
3062 }
3063 }
3064 return (void *) s;
3065 }
3066 panic("pmap_boot_find_memory: not enough memory for "
3067 "%lx/%lx allocation?", size, alignment);
3068 }
3069
3070 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3071 #if defined (PPC_OEA64_BRIDGE)
3072 int
3073 pmap_setup_segment0_map(int use_large_pages, ...)
3074 {
3075 vaddr_t va;
3076
3077 register_t pte_lo = 0x0;
3078 int ptegidx = 0, i = 0;
3079 struct pte pte;
3080 va_list ap;
3081
3082 /* Coherent + Supervisor RW, no user access */
3083 pte_lo = PTE_M;
3084
3085 /* XXXSL
3086 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3087 * these have to take priority.
3088 */
3089 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3090 ptegidx = va_to_pteg(pmap_kernel(), va);
3091 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3092 i = pmap_pte_insert(ptegidx, &pte);
3093 }
3094
3095 va_start(ap, use_large_pages);
3096 while (1) {
3097 paddr_t pa;
3098 size_t size;
3099
3100 va = va_arg(ap, vaddr_t);
3101
3102 if (va == 0)
3103 break;
3104
3105 pa = va_arg(ap, paddr_t);
3106 size = va_arg(ap, size_t);
3107
3108 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3109 #if 0
3110 printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __FUNCTION__, va, pa);
3111 #endif
3112 ptegidx = va_to_pteg(pmap_kernel(), va);
3113 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3114 i = pmap_pte_insert(ptegidx, &pte);
3115 }
3116 }
3117
3118 TLBSYNC();
3119 SYNC();
3120 return (0);
3121 }
3122 #endif /* PPC_OEA64_BRIDGE */
3123
3124 /*
3125 * This is not part of the defined PMAP interface and is specific to the
3126 * PowerPC architecture. This is called during initppc, before the system
3127 * is really initialized.
3128 */
3129 void
3130 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3131 {
3132 struct mem_region *mp, tmp;
3133 paddr_t s, e;
3134 psize_t size;
3135 int i, j;
3136
3137 /*
3138 * Get memory.
3139 */
3140 mem_regions(&mem, &avail);
3141 #if defined(DEBUG)
3142 if (pmapdebug & PMAPDEBUG_BOOT) {
3143 printf("pmap_bootstrap: memory configuration:\n");
3144 for (mp = mem; mp->size; mp++) {
3145 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
3146 mp->start, mp->size);
3147 }
3148 for (mp = avail; mp->size; mp++) {
3149 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
3150 mp->start, mp->size);
3151 }
3152 }
3153 #endif
3154
3155 /*
3156 * Find out how much physical memory we have and in how many chunks.
3157 */
3158 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3159 if (mp->start >= pmap_memlimit)
3160 continue;
3161 if (mp->start + mp->size > pmap_memlimit) {
3162 size = pmap_memlimit - mp->start;
3163 physmem += btoc(size);
3164 } else {
3165 physmem += btoc(mp->size);
3166 }
3167 mem_cnt++;
3168 }
3169
3170 /*
3171 * Count the number of available entries.
3172 */
3173 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3174 avail_cnt++;
3175
3176 /*
3177 * Page align all regions.
3178 */
3179 kernelstart = trunc_page(kernelstart);
3180 kernelend = round_page(kernelend);
3181 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3182 s = round_page(mp->start);
3183 mp->size -= (s - mp->start);
3184 mp->size = trunc_page(mp->size);
3185 mp->start = s;
3186 e = mp->start + mp->size;
3187
3188 DPRINTFN(BOOT,
3189 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
3190 i, mp->start, mp->size));
3191
3192 /*
3193 * Don't allow the end to run beyond our artificial limit
3194 */
3195 if (e > pmap_memlimit)
3196 e = pmap_memlimit;
3197
3198 /*
3199 * Is this region empty or strange? skip it.
3200 */
3201 if (e <= s) {
3202 mp->start = 0;
3203 mp->size = 0;
3204 continue;
3205 }
3206
3207 /*
3208 * Does this overlap the beginning of kernel?
3209 * Does extend past the end of the kernel?
3210 */
3211 else if (s < kernelstart && e > kernelstart) {
3212 if (e > kernelend) {
3213 avail[avail_cnt].start = kernelend;
3214 avail[avail_cnt].size = e - kernelend;
3215 avail_cnt++;
3216 }
3217 mp->size = kernelstart - s;
3218 }
3219 /*
3220 * Check whether this region overlaps the end of the kernel.
3221 */
3222 else if (s < kernelend && e > kernelend) {
3223 mp->start = kernelend;
3224 mp->size = e - kernelend;
3225 }
3226 /*
3227 * Look whether this regions is completely inside the kernel.
3228 * Nuke it if it does.
3229 */
3230 else if (s >= kernelstart && e <= kernelend) {
3231 mp->start = 0;
3232 mp->size = 0;
3233 }
3234 /*
3235 * If the user imposed a memory limit, enforce it.
3236 */
3237 else if (s >= pmap_memlimit) {
3238 mp->start = -PAGE_SIZE; /* let's know why */
3239 mp->size = 0;
3240 }
3241 else {
3242 mp->start = s;
3243 mp->size = e - s;
3244 }
3245 DPRINTFN(BOOT,
3246 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3247 i, mp->start, mp->size));
3248 }
3249
3250 /*
3251 * Move (and uncount) all the null return to the end.
3252 */
3253 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3254 if (mp->size == 0) {
3255 tmp = avail[i];
3256 avail[i] = avail[--avail_cnt];
3257 avail[avail_cnt] = avail[i];
3258 }
3259 }
3260
3261 /*
3262 * (Bubble)sort them into asecnding order.
3263 */
3264 for (i = 0; i < avail_cnt; i++) {
3265 for (j = i + 1; j < avail_cnt; j++) {
3266 if (avail[i].start > avail[j].start) {
3267 tmp = avail[i];
3268 avail[i] = avail[j];
3269 avail[j] = tmp;
3270 }
3271 }
3272 }
3273
3274 /*
3275 * Make sure they don't overlap.
3276 */
3277 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3278 if (mp[0].start + mp[0].size > mp[1].start) {
3279 mp[0].size = mp[1].start - mp[0].start;
3280 }
3281 DPRINTFN(BOOT,
3282 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3283 i, mp->start, mp->size));
3284 }
3285 DPRINTFN(BOOT,
3286 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3287 i, mp->start, mp->size));
3288
3289 #ifdef PTEGCOUNT
3290 pmap_pteg_cnt = PTEGCOUNT;
3291 #else /* PTEGCOUNT */
3292
3293 pmap_pteg_cnt = 0x1000;
3294
3295 while (pmap_pteg_cnt < physmem)
3296 pmap_pteg_cnt <<= 1;
3297
3298 pmap_pteg_cnt >>= 1;
3299 #endif /* PTEGCOUNT */
3300
3301 #ifdef DEBUG
3302 DPRINTFN(BOOT,
3303 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3304 #endif
3305
3306 /*
3307 * Find suitably aligned memory for PTEG hash table.
3308 */
3309 size = pmap_pteg_cnt * sizeof(struct pteg);
3310 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3311
3312 #ifdef DEBUG
3313 DPRINTFN(BOOT,
3314 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3315 #endif
3316
3317
3318 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3319 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3320 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3321 pmap_pteg_table, size);
3322 #endif
3323
3324 memset(__UNVOLATILE(pmap_pteg_table), 0,
3325 pmap_pteg_cnt * sizeof(struct pteg));
3326 pmap_pteg_mask = pmap_pteg_cnt - 1;
3327
3328 /*
3329 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3330 * with pages. So we just steal them before giving them to UVM.
3331 */
3332 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3333 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3334 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3335 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3336 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3337 pmap_pvo_table, size);
3338 #endif
3339
3340 for (i = 0; i < pmap_pteg_cnt; i++)
3341 TAILQ_INIT(&pmap_pvo_table[i]);
3342
3343 #ifndef MSGBUFADDR
3344 /*
3345 * Allocate msgbuf in high memory.
3346 */
3347 msgbuf_paddr =
3348 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3349 #endif
3350
3351 #ifdef __HAVE_PMAP_PHYSSEG
3352 {
3353 u_int npgs = 0;
3354 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3355 npgs += btoc(mp->size);
3356 size = (sizeof(struct pvo_head) + 1) * npgs;
3357 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3358 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3359 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3360 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3361 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3362 pmap_physseg.pvoh, size);
3363 #endif
3364 }
3365 #endif
3366
3367
3368 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3369 paddr_t pfstart = atop(mp->start);
3370 paddr_t pfend = atop(mp->start + mp->size);
3371 if (mp->size == 0)
3372 continue;
3373 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3374 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3375 VM_FREELIST_FIRST256);
3376 } else if (mp->start >= SEGMENT_LENGTH) {
3377 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3378 VM_FREELIST_DEFAULT);
3379 } else {
3380 pfend = atop(SEGMENT_LENGTH);
3381 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3382 VM_FREELIST_FIRST256);
3383 pfstart = atop(SEGMENT_LENGTH);
3384 pfend = atop(mp->start + mp->size);
3385 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 VM_FREELIST_DEFAULT);
3387 }
3388 }
3389 printf("Done calling uvm_page_physload()\n");
3390
3391 /*
3392 * Make sure kernel vsid is allocated as well as VSID 0.
3393 */
3394 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3395 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3396 pmap_vsid_bitmap[0] |= 1;
3397
3398 /*
3399 * Initialize kernel pmap and hardware.
3400 */
3401
3402 /* PPC_OEA64_BRIDGE does support these instructions */
3403 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
3404 for (i = 0; i < 16; i++) {
3405 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3406 __asm volatile ("mtsrin %0,%1"
3407 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3408 }
3409
3410 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3411 __asm volatile ("mtsr %0,%1"
3412 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3413 #ifdef KERNEL2_SR
3414 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3415 __asm volatile ("mtsr %0,%1"
3416 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3417 #endif
3418 for (i = 0; i < 16; i++) {
3419 if (iosrtable[i] & SR601_T) {
3420 pmap_kernel()->pm_sr[i] = iosrtable[i];
3421 __asm volatile ("mtsrin %0,%1"
3422 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3423 }
3424 }
3425 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
3426 #if defined (PPC_OEA)
3427 __asm volatile ("sync; mtsdr1 %0; isync"
3428 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3429 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
3430 __asm __volatile ("sync; mtsdr1 %0; isync"
3431 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3432 #endif
3433 tlbia();
3434
3435 #ifdef ALTIVEC
3436 pmap_use_altivec = cpu_altivec;
3437 #endif
3438
3439 #ifdef DEBUG
3440 if (pmapdebug & PMAPDEBUG_BOOT) {
3441 u_int cnt;
3442 int bank;
3443 char pbuf[9];
3444 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3445 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3446 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3447 bank,
3448 ptoa(vm_physmem[bank].avail_start),
3449 ptoa(vm_physmem[bank].avail_end),
3450 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3451 }
3452 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3453 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3454 pbuf, cnt);
3455 }
3456 #endif
3457
3458 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3459 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3460 &pmap_pool_uallocator);
3461
3462 pool_setlowat(&pmap_upvo_pool, 252);
3463
3464 pool_init(&pmap_pool, sizeof(struct pmap),
3465 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3466 }
3467