Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.38
      1 /*	$NetBSD: pmap.c,v 1.38 2006/08/05 21:26:49 sanjayl Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *        This product includes software developed by the NetBSD
     23  *        Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*
     42  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     43  * Copyright (C) 1995, 1996 TooLs GmbH.
     44  * All rights reserved.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. All advertising materials mentioning features or use of this software
     55  *    must display the following acknowledgement:
     56  *	This product includes software developed by TooLs GmbH.
     57  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     58  *    derived from this software without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     61  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     62  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     64  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     65  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     66  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     67  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     68  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     69  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.38 2006/08/05 21:26:49 sanjayl Exp $");
     74 
     75 #include "opt_ppcarch.h"
     76 #include "opt_altivec.h"
     77 #include "opt_pmap.h"
     78 #include <sys/param.h>
     79 #include <sys/malloc.h>
     80 #include <sys/proc.h>
     81 #include <sys/user.h>
     82 #include <sys/pool.h>
     83 #include <sys/queue.h>
     84 #include <sys/device.h>		/* for evcnt */
     85 #include <sys/systm.h>
     86 
     87 #if __NetBSD_Version__ < 105010000
     88 #include <vm/vm.h>
     89 #include <vm/vm_kern.h>
     90 #define	splvm()		splimp()
     91 #endif
     92 
     93 #include <uvm/uvm.h>
     94 
     95 #include <machine/pcb.h>
     96 #include <machine/powerpc.h>
     97 #include <powerpc/spr.h>
     98 #include <powerpc/oea/sr_601.h>
     99 #include <powerpc/bat.h>
    100 #include <powerpc/stdarg.h>
    101 
    102 #if defined(DEBUG) || defined(PMAPCHECK)
    103 #define	STATIC
    104 #else
    105 #define	STATIC	static
    106 #endif
    107 
    108 #ifdef ALTIVEC
    109 int pmap_use_altivec;
    110 #endif
    111 
    112 volatile struct pteg *pmap_pteg_table;
    113 unsigned int pmap_pteg_cnt;
    114 unsigned int pmap_pteg_mask;
    115 #ifdef PMAP_MEMLIMIT
    116 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    117 #else
    118 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    119 #endif
    120 
    121 struct pmap kernel_pmap_;
    122 unsigned int pmap_pages_stolen;
    123 u_long pmap_pte_valid;
    124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    125 u_long pmap_pvo_enter_depth;
    126 u_long pmap_pvo_remove_depth;
    127 #endif
    128 
    129 int physmem;
    130 #ifndef MSGBUFADDR
    131 extern paddr_t msgbuf_paddr;
    132 #endif
    133 
    134 static struct mem_region *mem, *avail;
    135 static u_int mem_cnt, avail_cnt;
    136 
    137 #ifdef __HAVE_PMAP_PHYSSEG
    138 /*
    139  * This is a cache of referenced/modified bits.
    140  * Bits herein are shifted by ATTRSHFT.
    141  */
    142 #define	ATTR_SHFT	4
    143 struct pmap_physseg pmap_physseg;
    144 #endif
    145 
    146 /*
    147  * The following structure is aligned to 32 bytes
    148  */
    149 struct pvo_entry {
    150 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    151 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    152 	struct pte pvo_pte;			/* Prebuilt PTE */
    153 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    154 	vaddr_t pvo_vaddr;			/* VA of entry */
    155 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    156 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    157 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    158 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    159 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    160 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    161 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    162 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    163 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    164 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    165 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    166 #define	PVO_REMOVE		6		/* PVO has been removed */
    167 #define	PVO_WHERE_MASK		15
    168 #define	PVO_WHERE_SHFT		8
    169 } __attribute__ ((aligned (32)));
    170 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    171 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    172 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    173 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    174 #define	PVO_PTEGIDX_CLR(pvo)	\
    175 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    176 #define	PVO_PTEGIDX_SET(pvo,i)	\
    177 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    178 #define	PVO_WHERE(pvo,w)	\
    179 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    180 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    181 
    182 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    183 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    184 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    185 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    186 
    187 struct pool pmap_pool;		/* pool for pmap structures */
    188 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    189 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    190 
    191 /*
    192  * We keep a cache of unmanaged pages to be used for pvo entries for
    193  * unmanaged pages.
    194  */
    195 struct pvo_page {
    196 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    197 };
    198 SIMPLEQ_HEAD(pvop_head, pvo_page);
    199 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    200 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    201 u_long pmap_upvop_free;
    202 u_long pmap_upvop_maxfree;
    203 u_long pmap_mpvop_free;
    204 u_long pmap_mpvop_maxfree;
    205 
    206 STATIC void *pmap_pool_ualloc(struct pool *, int);
    207 STATIC void *pmap_pool_malloc(struct pool *, int);
    208 
    209 STATIC void pmap_pool_ufree(struct pool *, void *);
    210 STATIC void pmap_pool_mfree(struct pool *, void *);
    211 
    212 static struct pool_allocator pmap_pool_mallocator = {
    213 	pmap_pool_malloc, pmap_pool_mfree, 0,
    214 };
    215 
    216 static struct pool_allocator pmap_pool_uallocator = {
    217 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    218 };
    219 
    220 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    221 void pmap_pte_print(volatile struct pte *);
    222 void pmap_pteg_check(void);
    223 void pmap_pteg_dist(void);
    224 void pmap_print_pte(pmap_t, vaddr_t);
    225 void pmap_print_mmuregs(void);
    226 #endif
    227 
    228 #if defined(DEBUG) || defined(PMAPCHECK)
    229 #ifdef PMAPCHECK
    230 int pmapcheck = 1;
    231 #else
    232 int pmapcheck = 0;
    233 #endif
    234 void pmap_pvo_verify(void);
    235 STATIC void pmap_pvo_check(const struct pvo_entry *);
    236 #define	PMAP_PVO_CHECK(pvo)	 		\
    237 	do {					\
    238 		if (pmapcheck)			\
    239 			pmap_pvo_check(pvo);	\
    240 	} while (0)
    241 #else
    242 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    243 #endif
    244 STATIC int pmap_pte_insert(int, struct pte *);
    245 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    246 	vaddr_t, paddr_t, register_t, int);
    247 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    248 STATIC void pmap_pvo_free(struct pvo_entry *);
    249 STATIC void pmap_pvo_free_list(struct pvo_head *);
    250 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    251 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    252 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    253 STATIC void pvo_set_exec(struct pvo_entry *);
    254 STATIC void pvo_clear_exec(struct pvo_entry *);
    255 
    256 STATIC void tlbia(void);
    257 
    258 STATIC void pmap_release(pmap_t);
    259 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    260 
    261 static uint32_t pmap_pvo_reclaim_nextidx;
    262 #ifdef DEBUG
    263 static int pmap_pvo_reclaim_debugctr;
    264 #endif
    265 
    266 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    267 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    268 
    269 static int pmap_initialized;
    270 
    271 #if defined(DEBUG) || defined(PMAPDEBUG)
    272 #define	PMAPDEBUG_BOOT		0x0001
    273 #define	PMAPDEBUG_PTE		0x0002
    274 #define	PMAPDEBUG_EXEC		0x0008
    275 #define	PMAPDEBUG_PVOENTER	0x0010
    276 #define	PMAPDEBUG_PVOREMOVE	0x0020
    277 #define	PMAPDEBUG_ACTIVATE	0x0100
    278 #define	PMAPDEBUG_CREATE	0x0200
    279 #define	PMAPDEBUG_ENTER		0x1000
    280 #define	PMAPDEBUG_KENTER	0x2000
    281 #define	PMAPDEBUG_KREMOVE	0x4000
    282 #define	PMAPDEBUG_REMOVE	0x8000
    283 
    284 unsigned int pmapdebug = 0;
    285 
    286 # define DPRINTF(x)		printf x
    287 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    288 #else
    289 # define DPRINTF(x)
    290 # define DPRINTFN(n, x)
    291 #endif
    292 
    293 
    294 #ifdef PMAPCOUNTERS
    295 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    296 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    297 
    298 struct evcnt pmap_evcnt_mappings =
    299     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    300 	    "pmap", "pages mapped");
    301 struct evcnt pmap_evcnt_unmappings =
    302     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    303 	    "pmap", "pages unmapped");
    304 
    305 struct evcnt pmap_evcnt_kernel_mappings =
    306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    307 	    "pmap", "kernel pages mapped");
    308 struct evcnt pmap_evcnt_kernel_unmappings =
    309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    310 	    "pmap", "kernel pages unmapped");
    311 
    312 struct evcnt pmap_evcnt_mappings_replaced =
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    314 	    "pmap", "page mappings replaced");
    315 
    316 struct evcnt pmap_evcnt_exec_mappings =
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    318 	    "pmap", "exec pages mapped");
    319 struct evcnt pmap_evcnt_exec_cached =
    320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    321 	    "pmap", "exec pages cached");
    322 
    323 struct evcnt pmap_evcnt_exec_synced =
    324     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    325 	    "pmap", "exec pages synced");
    326 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    327     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    328 	    "pmap", "exec pages synced (CM)");
    329 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
    330     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    331 	    "pmap", "exec pages synced (PR)");
    332 
    333 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    335 	    "pmap", "exec pages uncached (PP)");
    336 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    337     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    338 	    "pmap", "exec pages uncached (CM)");
    339 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    340     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    341 	    "pmap", "exec pages uncached (ZP)");
    342 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    343     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    344 	    "pmap", "exec pages uncached (CP)");
    345 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
    346     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    347 	    "pmap", "exec pages uncached (PR)");
    348 
    349 struct evcnt pmap_evcnt_updates =
    350     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    351 	    "pmap", "updates");
    352 struct evcnt pmap_evcnt_collects =
    353     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    354 	    "pmap", "collects");
    355 struct evcnt pmap_evcnt_copies =
    356     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    357 	    "pmap", "copies");
    358 
    359 struct evcnt pmap_evcnt_ptes_spilled =
    360     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    361 	    "pmap", "ptes spilled from overflow");
    362 struct evcnt pmap_evcnt_ptes_unspilled =
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "ptes not spilled");
    365 struct evcnt pmap_evcnt_ptes_evicted =
    366     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    367 	    "pmap", "ptes evicted");
    368 
    369 struct evcnt pmap_evcnt_ptes_primary[8] = {
    370     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    371 	    "pmap", "ptes added at primary[0]"),
    372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373 	    "pmap", "ptes added at primary[1]"),
    374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    375 	    "pmap", "ptes added at primary[2]"),
    376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377 	    "pmap", "ptes added at primary[3]"),
    378 
    379     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    380 	    "pmap", "ptes added at primary[4]"),
    381     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    382 	    "pmap", "ptes added at primary[5]"),
    383     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    384 	    "pmap", "ptes added at primary[6]"),
    385     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    386 	    "pmap", "ptes added at primary[7]"),
    387 };
    388 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    390 	    "pmap", "ptes added at secondary[0]"),
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes added at secondary[1]"),
    393     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    394 	    "pmap", "ptes added at secondary[2]"),
    395     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    396 	    "pmap", "ptes added at secondary[3]"),
    397 
    398     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    399 	    "pmap", "ptes added at secondary[4]"),
    400     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    401 	    "pmap", "ptes added at secondary[5]"),
    402     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    403 	    "pmap", "ptes added at secondary[6]"),
    404     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    405 	    "pmap", "ptes added at secondary[7]"),
    406 };
    407 struct evcnt pmap_evcnt_ptes_removed =
    408     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    409 	    "pmap", "ptes removed");
    410 struct evcnt pmap_evcnt_ptes_changed =
    411     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    412 	    "pmap", "ptes changed");
    413 struct evcnt pmap_evcnt_pvos_reclaimed =
    414     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    415 	    "pmap", "pvos reclaimed");
    416 struct evcnt pmap_evcnt_pvos_failed =
    417     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    418 	    "pmap", "pvo allocation failures");
    419 
    420 /*
    421  * From pmap_subr.c
    422  */
    423 extern struct evcnt pmap_evcnt_zeroed_pages;
    424 extern struct evcnt pmap_evcnt_copied_pages;
    425 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    426 
    427 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
    428 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
    429 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
    430 
    431 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
    432 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
    433 
    434 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
    435 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
    436 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
    437 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
    438 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
    439 
    440 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
    441 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
    442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
    443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
    444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
    445 
    446 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
    447 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
    448 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
    449 
    450 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
    451 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
    452 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
    453 
    454 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
    455 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
    456 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
    457 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
    458 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
    459 
    460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
    461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
    462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
    463 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
    464 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
    465 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
    466 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
    467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
    468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
    469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
    470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
    471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
    472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
    473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
    474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
    475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
    476 
    477 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
    478 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
    479 #else
    480 #define	PMAPCOUNT(ev)	((void) 0)
    481 #define	PMAPCOUNT2(ev)	((void) 0)
    482 #endif
    483 
    484 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    485 
    486 /* XXXSL: this needs to be moved to assembler */
    487 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    488 
    489 #define	TLBSYNC()	__asm volatile("tlbsync")
    490 #define	SYNC()		__asm volatile("sync")
    491 #define	EIEIO()		__asm volatile("eieio")
    492 #define	MFMSR()		mfmsr()
    493 #define	MTMSR(psl)	mtmsr(psl)
    494 #define	MFPVR()		mfpvr()
    495 #define	MFSRIN(va)	mfsrin(va)
    496 #define	MFTB()		mfrtcltbl()
    497 
    498 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
    499 static inline register_t
    500 mfsrin(vaddr_t va)
    501 {
    502 	register_t sr;
    503 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    504 	return sr;
    505 }
    506 #endif	/* PPC_OEA*/
    507 
    508 #if defined (PPC_OEA64_BRIDGE)
    509 extern void mfmsr64 (register64_t *result);
    510 #endif /* PPC_OEA64_BRIDGE */
    511 
    512 
    513 static inline register_t
    514 pmap_interrupts_off(void)
    515 {
    516 	register_t msr = MFMSR();
    517 	if (msr & PSL_EE)
    518 		MTMSR(msr & ~PSL_EE);
    519 	return msr;
    520 }
    521 
    522 static void
    523 pmap_interrupts_restore(register_t msr)
    524 {
    525 	if (msr & PSL_EE)
    526 		MTMSR(msr);
    527 }
    528 
    529 static inline u_int32_t
    530 mfrtcltbl(void)
    531 {
    532 
    533 	if ((MFPVR() >> 16) == MPC601)
    534 		return (mfrtcl() >> 7);
    535 	else
    536 		return (mftbl());
    537 }
    538 
    539 /*
    540  * These small routines may have to be replaced,
    541  * if/when we support processors other that the 604.
    542  */
    543 
    544 void
    545 tlbia(void)
    546 {
    547 	caddr_t i;
    548 
    549 	SYNC();
    550 #if defined(PPC_OEA)
    551 	/*
    552 	 * Why not use "tlbia"?  Because not all processors implement it.
    553 	 *
    554 	 * This needs to be a per-CPU callback to do the appropriate thing
    555 	 * for the CPU. XXX
    556 	 */
    557 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    558 		TLBIE(i);
    559 		EIEIO();
    560 		SYNC();
    561 	}
    562 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
    563 	printf("Invalidating ALL TLB entries......\n");
    564 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    565 	for (i = 0; i <= (caddr_t)0xFF000; i += 0x00001000) {
    566 		TLBIEL(i);
    567 		EIEIO();
    568 		SYNC();
    569 	}
    570 #endif
    571 	TLBSYNC();
    572 	SYNC();
    573 }
    574 
    575 static inline register_t
    576 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    577 {
    578 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
    579 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    580 #else /* PPC_OEA64 */
    581 #if 0
    582 	const struct ste *ste;
    583 	register_t hash;
    584 	int i;
    585 
    586 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    587 
    588 	/*
    589 	 * Try the primary group first
    590 	 */
    591 	ste = pm->pm_stes[hash].stes;
    592 	for (i = 0; i < 8; i++, ste++) {
    593 		if (ste->ste_hi & STE_V) &&
    594 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    595 			return ste;
    596 	}
    597 
    598 	/*
    599 	 * Then the secondary group.
    600 	 */
    601 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    602 	for (i = 0; i < 8; i++, ste++) {
    603 		if (ste->ste_hi & STE_V) &&
    604 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    605 			return addr;
    606 	}
    607 
    608 	return NULL;
    609 #else
    610 	/*
    611 	 * Rather than searching the STE groups for the VSID, we know
    612 	 * how we generate that from the ESID and so do that.
    613 	 */
    614 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    615 #endif
    616 #endif /* PPC_OEA */
    617 }
    618 
    619 static inline register_t
    620 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    621 {
    622 	register_t hash;
    623 
    624 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    625 	return hash & pmap_pteg_mask;
    626 }
    627 
    628 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    629 /*
    630  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    631  * The only bit of magic is that the top 4 bits of the address doesn't
    632  * technically exist in the PTE.  But we know we reserved 4 bits of the
    633  * VSID for it so that's how we get it.
    634  */
    635 static vaddr_t
    636 pmap_pte_to_va(volatile const struct pte *pt)
    637 {
    638 	vaddr_t va;
    639 	uintptr_t ptaddr = (uintptr_t) pt;
    640 
    641 	if (pt->pte_hi & PTE_HID)
    642 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    643 
    644 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    645 #if defined(PPC_OEA)
    646 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    647 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
    648 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    649 #endif
    650 	va <<= ADDR_PIDX_SHFT;
    651 
    652 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    653 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    654 
    655 #if defined(PPC_OEA64)
    656 	/* PPC63 Bits 0-35 */
    657 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    658 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
    659 	/* PPC Bits 0-3 */
    660 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    661 #endif
    662 
    663 	return va;
    664 }
    665 #endif
    666 
    667 static inline struct pvo_head *
    668 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    669 {
    670 #ifdef __HAVE_VM_PAGE_MD
    671 	struct vm_page *pg;
    672 
    673 	pg = PHYS_TO_VM_PAGE(pa);
    674 	if (pg_p != NULL)
    675 		*pg_p = pg;
    676 	if (pg == NULL)
    677 		return &pmap_pvo_unmanaged;
    678 	return &pg->mdpage.mdpg_pvoh;
    679 #endif
    680 #ifdef __HAVE_PMAP_PHYSSEG
    681 	int bank, pg;
    682 
    683 	bank = vm_physseg_find(atop(pa), &pg);
    684 	if (pg_p != NULL)
    685 		*pg_p = pg;
    686 	if (bank == -1)
    687 		return &pmap_pvo_unmanaged;
    688 	return &vm_physmem[bank].pmseg.pvoh[pg];
    689 #endif
    690 }
    691 
    692 static inline struct pvo_head *
    693 vm_page_to_pvoh(struct vm_page *pg)
    694 {
    695 #ifdef __HAVE_VM_PAGE_MD
    696 	return &pg->mdpage.mdpg_pvoh;
    697 #endif
    698 #ifdef __HAVE_PMAP_PHYSSEG
    699 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    700 #endif
    701 }
    702 
    703 
    704 #ifdef __HAVE_PMAP_PHYSSEG
    705 static inline char *
    706 pa_to_attr(paddr_t pa)
    707 {
    708 	int bank, pg;
    709 
    710 	bank = vm_physseg_find(atop(pa), &pg);
    711 	if (bank == -1)
    712 		return NULL;
    713 	return &vm_physmem[bank].pmseg.attrs[pg];
    714 }
    715 #endif
    716 
    717 static inline void
    718 pmap_attr_clear(struct vm_page *pg, int ptebit)
    719 {
    720 #ifdef __HAVE_PMAP_PHYSSEG
    721 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    722 #endif
    723 #ifdef __HAVE_VM_PAGE_MD
    724 	pg->mdpage.mdpg_attrs &= ~ptebit;
    725 #endif
    726 }
    727 
    728 static inline int
    729 pmap_attr_fetch(struct vm_page *pg)
    730 {
    731 #ifdef __HAVE_PMAP_PHYSSEG
    732 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    733 #endif
    734 #ifdef __HAVE_VM_PAGE_MD
    735 	return pg->mdpage.mdpg_attrs;
    736 #endif
    737 }
    738 
    739 static inline void
    740 pmap_attr_save(struct vm_page *pg, int ptebit)
    741 {
    742 #ifdef __HAVE_PMAP_PHYSSEG
    743 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    744 #endif
    745 #ifdef __HAVE_VM_PAGE_MD
    746 	pg->mdpage.mdpg_attrs |= ptebit;
    747 #endif
    748 }
    749 
    750 static inline int
    751 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    752 {
    753 	if (pt->pte_hi == pvo_pt->pte_hi
    754 #if 0
    755 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    756 	        ~(PTE_REF|PTE_CHG)) == 0
    757 #endif
    758 	    )
    759 		return 1;
    760 	return 0;
    761 }
    762 
    763 static inline void
    764 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    765 {
    766 	/*
    767 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    768 	 * only gets set when the real pte is set in memory.
    769 	 *
    770 	 * Note: Don't set the valid bit for correct operation of tlb update.
    771 	 */
    772 #if defined(PPC_OEA)
    773 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    774 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    775 	pt->pte_lo = pte_lo;
    776 #elif defined (PPC_OEA64_BRIDGE)
    777 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    778 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    779 	pt->pte_lo = (u_int64_t) pte_lo;
    780 #elif defined (PPC_OEA64)
    781 #error PPC_OEA64 not supported
    782 #endif /* PPC_OEA */
    783 }
    784 
    785 static inline void
    786 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    787 {
    788 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    789 }
    790 
    791 static inline void
    792 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    793 {
    794 	/*
    795 	 * As shown in Section 7.6.3.2.3
    796 	 */
    797 	pt->pte_lo &= ~ptebit;
    798 	TLBIE(va);
    799 	SYNC();
    800 	EIEIO();
    801 	TLBSYNC();
    802 	SYNC();
    803 }
    804 
    805 static inline void
    806 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    807 {
    808 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    809 	if (pvo_pt->pte_hi & PTE_VALID)
    810 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    811 #endif
    812 	pvo_pt->pte_hi |= PTE_VALID;
    813 
    814 	/*
    815 	 * Update the PTE as defined in section 7.6.3.1
    816 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    817 	 * have been saved so this routine can restore them (if desired).
    818 	 */
    819 	pt->pte_lo = pvo_pt->pte_lo;
    820 	EIEIO();
    821 	pt->pte_hi = pvo_pt->pte_hi;
    822 	TLBSYNC();
    823 	SYNC();
    824 	pmap_pte_valid++;
    825 }
    826 
    827 static inline void
    828 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    829 {
    830 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    831 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    832 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    833 	if ((pt->pte_hi & PTE_VALID) == 0)
    834 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    835 #endif
    836 
    837 	pvo_pt->pte_hi &= ~PTE_VALID;
    838 	/*
    839 	 * Force the ref & chg bits back into the PTEs.
    840 	 */
    841 	SYNC();
    842 	/*
    843 	 * Invalidate the pte ... (Section 7.6.3.3)
    844 	 */
    845 	pt->pte_hi &= ~PTE_VALID;
    846 	SYNC();
    847 	TLBIE(va);
    848 	SYNC();
    849 	EIEIO();
    850 	TLBSYNC();
    851 	SYNC();
    852 	/*
    853 	 * Save the ref & chg bits ...
    854 	 */
    855 	pmap_pte_synch(pt, pvo_pt);
    856 	pmap_pte_valid--;
    857 }
    858 
    859 static inline void
    860 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    861 {
    862 	/*
    863 	 * Invalidate the PTE
    864 	 */
    865 	pmap_pte_unset(pt, pvo_pt, va);
    866 	pmap_pte_set(pt, pvo_pt);
    867 }
    868 
    869 /*
    870  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    871  * (either primary or secondary location).
    872  *
    873  * Note: both the destination and source PTEs must not have PTE_VALID set.
    874  */
    875 
    876 STATIC int
    877 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    878 {
    879 	volatile struct pte *pt;
    880 	int i;
    881 
    882 #if defined(DEBUG)
    883 #if defined (PPC_OEA)
    884 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    885 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    886 #elif defined (PPC_OEA64_BRIDGE)
    887 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
    888 		ptegidx, (unsigned long long) pvo_pt->pte_hi,
    889 		(unsigned long long) pvo_pt->pte_lo));
    890 
    891 #endif
    892 #endif
    893 	/*
    894 	 * First try primary hash.
    895 	 */
    896 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    897 		if ((pt->pte_hi & PTE_VALID) == 0) {
    898 			pvo_pt->pte_hi &= ~PTE_HID;
    899 			pmap_pte_set(pt, pvo_pt);
    900 			return i;
    901 		}
    902 	}
    903 
    904 	/*
    905 	 * Now try secondary hash.
    906 	 */
    907 	ptegidx ^= pmap_pteg_mask;
    908 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    909 		if ((pt->pte_hi & PTE_VALID) == 0) {
    910 			pvo_pt->pte_hi |= PTE_HID;
    911 			pmap_pte_set(pt, pvo_pt);
    912 			return i;
    913 		}
    914 	}
    915 	return -1;
    916 }
    917 
    918 /*
    919  * Spill handler.
    920  *
    921  * Tries to spill a page table entry from the overflow area.
    922  * This runs in either real mode (if dealing with a exception spill)
    923  * or virtual mode when dealing with manually spilling one of the
    924  * kernel's pte entries.  In either case, interrupts are already
    925  * disabled.
    926  */
    927 
    928 int
    929 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    930 {
    931 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    932 	struct pvo_entry *pvo;
    933 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    934 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    935 	int ptegidx, i, j;
    936 	volatile struct pteg *pteg;
    937 	volatile struct pte *pt;
    938 
    939 	ptegidx = va_to_pteg(pm, addr);
    940 
    941 	/*
    942 	 * Have to substitute some entry. Use the primary hash for this.
    943 	 * Use low bits of timebase as random generator.  Make sure we are
    944 	 * not picking a kernel pte for replacement.
    945 	 */
    946 	pteg = &pmap_pteg_table[ptegidx];
    947 	i = MFTB() & 7;
    948 	for (j = 0; j < 8; j++) {
    949 		pt = &pteg->pt[i];
    950 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    951 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    952 				!= KERNEL_VSIDBITS)
    953 			break;
    954 		i = (i + 1) & 7;
    955 	}
    956 	KASSERT(j < 8);
    957 
    958 	source_pvo = NULL;
    959 	victim_pvo = NULL;
    960 	pvoh = &pmap_pvo_table[ptegidx];
    961 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    962 
    963 		/*
    964 		 * We need to find pvo entry for this address...
    965 		 */
    966 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    967 
    968 		/*
    969 		 * If we haven't found the source and we come to a PVO with
    970 		 * a valid PTE, then we know we can't find it because all
    971 		 * evicted PVOs always are first in the list.
    972 		 */
    973 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    974 			break;
    975 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    976 		    addr == PVO_VADDR(pvo)) {
    977 
    978 			/*
    979 			 * Now we have found the entry to be spilled into the
    980 			 * pteg.  Attempt to insert it into the page table.
    981 			 */
    982 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    983 			if (j >= 0) {
    984 				PVO_PTEGIDX_SET(pvo, j);
    985 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    986 				PVO_WHERE(pvo, SPILL_INSERT);
    987 				pvo->pvo_pmap->pm_evictions--;
    988 				PMAPCOUNT(ptes_spilled);
    989 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    990 				    ? pmap_evcnt_ptes_secondary
    991 				    : pmap_evcnt_ptes_primary)[j]);
    992 
    993 				/*
    994 				 * Since we keep the evicted entries at the
    995 				 * from of the PVO list, we need move this
    996 				 * (now resident) PVO after the evicted
    997 				 * entries.
    998 				 */
    999 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
   1000 
   1001 				/*
   1002 				 * If we don't have to move (either we were the
   1003 				 * last entry or the next entry was valid),
   1004 				 * don't change our position.  Otherwise
   1005 				 * move ourselves to the tail of the queue.
   1006 				 */
   1007 				if (next_pvo != NULL &&
   1008 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
   1009 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
   1010 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1011 				}
   1012 				return 1;
   1013 			}
   1014 			source_pvo = pvo;
   1015 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
   1016 				return 0;
   1017 			}
   1018 			if (victim_pvo != NULL)
   1019 				break;
   1020 		}
   1021 
   1022 		/*
   1023 		 * We also need the pvo entry of the victim we are replacing
   1024 		 * so save the R & C bits of the PTE.
   1025 		 */
   1026 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1027 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1028 			vpvoh = pvoh;			/* *1* */
   1029 			victim_pvo = pvo;
   1030 			if (source_pvo != NULL)
   1031 				break;
   1032 		}
   1033 	}
   1034 
   1035 	if (source_pvo == NULL) {
   1036 		PMAPCOUNT(ptes_unspilled);
   1037 		return 0;
   1038 	}
   1039 
   1040 	if (victim_pvo == NULL) {
   1041 		if ((pt->pte_hi & PTE_HID) == 0)
   1042 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1043 			    "no pvo entry!", pt);
   1044 
   1045 		/*
   1046 		 * If this is a secondary PTE, we need to search
   1047 		 * its primary pvo bucket for the matching PVO.
   1048 		 */
   1049 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1050 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1051 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1052 
   1053 			/*
   1054 			 * We also need the pvo entry of the victim we are
   1055 			 * replacing so save the R & C bits of the PTE.
   1056 			 */
   1057 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1058 				victim_pvo = pvo;
   1059 				break;
   1060 			}
   1061 		}
   1062 		if (victim_pvo == NULL)
   1063 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1064 			    "no pvo entry!", pt);
   1065 	}
   1066 
   1067 	/*
   1068 	 * The victim should be not be a kernel PVO/PTE entry.
   1069 	 */
   1070 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1071 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1072 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1073 
   1074 	/*
   1075 	 * We are invalidating the TLB entry for the EA for the
   1076 	 * we are replacing even though its valid; If we don't
   1077 	 * we lose any ref/chg bit changes contained in the TLB
   1078 	 * entry.
   1079 	 */
   1080 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1081 
   1082 	/*
   1083 	 * To enforce the PVO list ordering constraint that all
   1084 	 * evicted entries should come before all valid entries,
   1085 	 * move the source PVO to the tail of its list and the
   1086 	 * victim PVO to the head of its list (which might not be
   1087 	 * the same list, if the victim was using the secondary hash).
   1088 	 */
   1089 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1090 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1091 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1092 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1093 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1094 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1095 	victim_pvo->pvo_pmap->pm_evictions++;
   1096 	source_pvo->pvo_pmap->pm_evictions--;
   1097 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1098 	PVO_WHERE(source_pvo, SPILL_SET);
   1099 
   1100 	PVO_PTEGIDX_CLR(victim_pvo);
   1101 	PVO_PTEGIDX_SET(source_pvo, i);
   1102 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1103 	PMAPCOUNT(ptes_spilled);
   1104 	PMAPCOUNT(ptes_evicted);
   1105 	PMAPCOUNT(ptes_removed);
   1106 
   1107 	PMAP_PVO_CHECK(victim_pvo);
   1108 	PMAP_PVO_CHECK(source_pvo);
   1109 	return 1;
   1110 }
   1111 
   1112 /*
   1113  * Restrict given range to physical memory
   1114  */
   1115 void
   1116 pmap_real_memory(paddr_t *start, psize_t *size)
   1117 {
   1118 	struct mem_region *mp;
   1119 
   1120 	for (mp = mem; mp->size; mp++) {
   1121 		if (*start + *size > mp->start
   1122 		    && *start < mp->start + mp->size) {
   1123 			if (*start < mp->start) {
   1124 				*size -= mp->start - *start;
   1125 				*start = mp->start;
   1126 			}
   1127 			if (*start + *size > mp->start + mp->size)
   1128 				*size = mp->start + mp->size - *start;
   1129 			return;
   1130 		}
   1131 	}
   1132 	*size = 0;
   1133 }
   1134 
   1135 /*
   1136  * Initialize anything else for pmap handling.
   1137  * Called during vm_init().
   1138  */
   1139 void
   1140 pmap_init(void)
   1141 {
   1142 #ifdef __HAVE_PMAP_PHYSSEG
   1143 	struct pvo_tqhead *pvoh;
   1144 	int bank;
   1145 	long sz;
   1146 	char *attr;
   1147 
   1148 	pvoh = pmap_physseg.pvoh;
   1149 	attr = pmap_physseg.attrs;
   1150 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1151 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1152 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1153 		vm_physmem[bank].pmseg.attrs = attr;
   1154 		for (; sz > 0; sz--, pvoh++, attr++) {
   1155 			TAILQ_INIT(pvoh);
   1156 			*attr = 0;
   1157 		}
   1158 	}
   1159 #endif
   1160 
   1161 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1162 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1163 	    &pmap_pool_mallocator);
   1164 
   1165 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1166 
   1167 	pmap_initialized = 1;
   1168 
   1169 }
   1170 
   1171 /*
   1172  * How much virtual space does the kernel get?
   1173  */
   1174 void
   1175 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1176 {
   1177 	/*
   1178 	 * For now, reserve one segment (minus some overhead) for kernel
   1179 	 * virtual memory
   1180 	 */
   1181 	*start = VM_MIN_KERNEL_ADDRESS;
   1182 	*end = VM_MAX_KERNEL_ADDRESS;
   1183 }
   1184 
   1185 /*
   1186  * Allocate, initialize, and return a new physical map.
   1187  */
   1188 pmap_t
   1189 pmap_create(void)
   1190 {
   1191 	pmap_t pm;
   1192 
   1193 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1194 	memset((caddr_t)pm, 0, sizeof *pm);
   1195 	pmap_pinit(pm);
   1196 
   1197 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1198 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1199 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1200 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1201 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1202 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1203 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1204 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1205 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1206 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1207 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1208 	return pm;
   1209 }
   1210 
   1211 /*
   1212  * Initialize a preallocated and zeroed pmap structure.
   1213  */
   1214 void
   1215 pmap_pinit(pmap_t pm)
   1216 {
   1217 	register_t entropy = MFTB();
   1218 	register_t mask;
   1219 	int i;
   1220 
   1221 	/*
   1222 	 * Allocate some segment registers for this pmap.
   1223 	 */
   1224 	pm->pm_refs = 1;
   1225 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1226 		static register_t pmap_vsidcontext;
   1227 		register_t hash;
   1228 		unsigned int n;
   1229 
   1230 		/* Create a new value by multiplying by a prime adding in
   1231 		 * entropy from the timebase register.  This is to make the
   1232 		 * VSID more random so that the PT Hash function collides
   1233 		 * less often. (note that the prime causes gcc to do shifts
   1234 		 * instead of a multiply)
   1235 		 */
   1236 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1237 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1238 		if (hash == 0) {		/* 0 is special, avoid it */
   1239 			entropy += 0xbadf00d;
   1240 			continue;
   1241 		}
   1242 		n = hash >> 5;
   1243 		mask = 1L << (hash & (VSID_NBPW-1));
   1244 		hash = pmap_vsidcontext;
   1245 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1246 			/* anything free in this bucket? */
   1247 			if (~pmap_vsid_bitmap[n] == 0) {
   1248 				entropy = hash ^ (hash >> 16);
   1249 				continue;
   1250 			}
   1251 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1252 			mask = 1L << i;
   1253 			hash &= ~(VSID_NBPW-1);
   1254 			hash |= i;
   1255 		}
   1256 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1257 		pmap_vsid_bitmap[n] |= mask;
   1258 		pm->pm_vsid = hash;
   1259 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1260 		for (i = 0; i < 16; i++)
   1261 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1262 			    SR_NOEXEC;
   1263 #endif
   1264 		return;
   1265 	}
   1266 	panic("pmap_pinit: out of segments");
   1267 }
   1268 
   1269 /*
   1270  * Add a reference to the given pmap.
   1271  */
   1272 void
   1273 pmap_reference(pmap_t pm)
   1274 {
   1275 	pm->pm_refs++;
   1276 }
   1277 
   1278 /*
   1279  * Retire the given pmap from service.
   1280  * Should only be called if the map contains no valid mappings.
   1281  */
   1282 void
   1283 pmap_destroy(pmap_t pm)
   1284 {
   1285 	if (--pm->pm_refs == 0) {
   1286 		pmap_release(pm);
   1287 		pool_put(&pmap_pool, pm);
   1288 	}
   1289 }
   1290 
   1291 /*
   1292  * Release any resources held by the given physical map.
   1293  * Called when a pmap initialized by pmap_pinit is being released.
   1294  */
   1295 void
   1296 pmap_release(pmap_t pm)
   1297 {
   1298 	int idx, mask;
   1299 
   1300 	if (pm->pm_sr[0] == 0)
   1301 		panic("pmap_release");
   1302 	idx = pm->pm_vsid & (NPMAPS-1);
   1303 	mask = 1 << (idx % VSID_NBPW);
   1304 	idx /= VSID_NBPW;
   1305 
   1306 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1307 	pmap_vsid_bitmap[idx] &= ~mask;
   1308 }
   1309 
   1310 /*
   1311  * Copy the range specified by src_addr/len
   1312  * from the source map to the range dst_addr/len
   1313  * in the destination map.
   1314  *
   1315  * This routine is only advisory and need not do anything.
   1316  */
   1317 void
   1318 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1319 	vsize_t len, vaddr_t src_addr)
   1320 {
   1321 	PMAPCOUNT(copies);
   1322 }
   1323 
   1324 /*
   1325  * Require that all active physical maps contain no
   1326  * incorrect entries NOW.
   1327  */
   1328 void
   1329 pmap_update(struct pmap *pmap)
   1330 {
   1331 	PMAPCOUNT(updates);
   1332 	TLBSYNC();
   1333 }
   1334 
   1335 /*
   1336  * Garbage collects the physical map system for
   1337  * pages which are no longer used.
   1338  * Success need not be guaranteed -- that is, there
   1339  * may well be pages which are not referenced, but
   1340  * others may be collected.
   1341  * Called by the pageout daemon when pages are scarce.
   1342  */
   1343 void
   1344 pmap_collect(pmap_t pm)
   1345 {
   1346 	PMAPCOUNT(collects);
   1347 }
   1348 
   1349 static inline int
   1350 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1351 {
   1352 	int pteidx;
   1353 	/*
   1354 	 * We can find the actual pte entry without searching by
   1355 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1356 	 * and by noticing the HID bit.
   1357 	 */
   1358 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1359 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1360 		pteidx ^= pmap_pteg_mask * 8;
   1361 	return pteidx;
   1362 }
   1363 
   1364 volatile struct pte *
   1365 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1366 {
   1367 	volatile struct pte *pt;
   1368 
   1369 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1370 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1371 		return NULL;
   1372 #endif
   1373 
   1374 	/*
   1375 	 * If we haven't been supplied the ptegidx, calculate it.
   1376 	 */
   1377 	if (pteidx == -1) {
   1378 		int ptegidx;
   1379 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1380 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1381 	}
   1382 
   1383 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1384 
   1385 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1386 	return pt;
   1387 #else
   1388 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1389 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1390 		    "pvo but no valid pte index", pvo);
   1391 	}
   1392 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1393 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1394 		    "pvo but no valid pte", pvo);
   1395 	}
   1396 
   1397 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1398 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1399 #if defined(DEBUG) || defined(PMAPCHECK)
   1400 			pmap_pte_print(pt);
   1401 #endif
   1402 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1403 			    "pmap_pteg_table %p but invalid in pvo",
   1404 			    pvo, pt);
   1405 		}
   1406 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1407 #if defined(DEBUG) || defined(PMAPCHECK)
   1408 			pmap_pte_print(pt);
   1409 #endif
   1410 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1411 			    "not match pte %p in pmap_pteg_table",
   1412 			    pvo, pt);
   1413 		}
   1414 		return pt;
   1415 	}
   1416 
   1417 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1418 #if defined(DEBUG) || defined(PMAPCHECK)
   1419 		pmap_pte_print(pt);
   1420 #endif
   1421 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1422 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1423 	}
   1424 	return NULL;
   1425 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1426 }
   1427 
   1428 struct pvo_entry *
   1429 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1430 {
   1431 	struct pvo_entry *pvo;
   1432 	int ptegidx;
   1433 
   1434 	va &= ~ADDR_POFF;
   1435 	ptegidx = va_to_pteg(pm, va);
   1436 
   1437 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1438 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1439 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1440 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1441 			    "list %#x (%p)", pvo, ptegidx,
   1442 			     &pmap_pvo_table[ptegidx]);
   1443 #endif
   1444 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1445 			if (pteidx_p)
   1446 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1447 			return pvo;
   1448 		}
   1449 	}
   1450 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1451 		panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __FUNCTION__,
   1452 		(pm == pmap_kernel() ? "kernel" : "user"), va);
   1453 	return NULL;
   1454 }
   1455 
   1456 #if defined(DEBUG) || defined(PMAPCHECK)
   1457 void
   1458 pmap_pvo_check(const struct pvo_entry *pvo)
   1459 {
   1460 	struct pvo_head *pvo_head;
   1461 	struct pvo_entry *pvo0;
   1462 	volatile struct pte *pt;
   1463 	int failed = 0;
   1464 
   1465 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1466 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1467 
   1468 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1469 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1470 		    pvo, pvo->pvo_pmap);
   1471 		failed = 1;
   1472 	}
   1473 
   1474 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1475 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1476 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1477 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1478 		failed = 1;
   1479 	}
   1480 
   1481 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1482 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1483 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1484 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1485 		failed = 1;
   1486 	}
   1487 
   1488 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1489 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1490 	} else {
   1491 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1492 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1493 			    "on kernel unmanaged list\n", pvo);
   1494 			failed = 1;
   1495 		}
   1496 		pvo_head = &pmap_pvo_kunmanaged;
   1497 	}
   1498 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1499 		if (pvo0 == pvo)
   1500 			break;
   1501 	}
   1502 	if (pvo0 == NULL) {
   1503 		printf("pmap_pvo_check: pvo %p: not present "
   1504 		    "on its vlist head %p\n", pvo, pvo_head);
   1505 		failed = 1;
   1506 	}
   1507 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1508 		printf("pmap_pvo_check: pvo %p: not present "
   1509 		    "on its olist head\n", pvo);
   1510 		failed = 1;
   1511 	}
   1512 	pt = pmap_pvo_to_pte(pvo, -1);
   1513 	if (pt == NULL) {
   1514 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1515 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1516 			    "no PTE\n", pvo);
   1517 			failed = 1;
   1518 		}
   1519 	} else {
   1520 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1521 		    (uintptr_t) pt >=
   1522 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1523 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1524 			    "pteg table\n", pvo, pt);
   1525 			failed = 1;
   1526 		}
   1527 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1528 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1529 			    "no PTE\n", pvo);
   1530 			failed = 1;
   1531 		}
   1532 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1533 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1534 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1535 			failed = 1;
   1536 		}
   1537 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1538 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1539 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1540 			    "%#x/%#x\n", pvo,
   1541 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1542 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1543 			failed = 1;
   1544 		}
   1545 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1546 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1547 			    " doesn't not match PVO's VA %#lx\n",
   1548 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1549 			failed = 1;
   1550 		}
   1551 		if (failed)
   1552 			pmap_pte_print(pt);
   1553 	}
   1554 	if (failed)
   1555 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1556 		    pvo->pvo_pmap);
   1557 }
   1558 #endif /* DEBUG || PMAPCHECK */
   1559 
   1560 /*
   1561  * Search the PVO table looking for a non-wired entry.
   1562  * If we find one, remove it and return it.
   1563  */
   1564 
   1565 struct pvo_entry *
   1566 pmap_pvo_reclaim(struct pmap *pm)
   1567 {
   1568 	struct pvo_tqhead *pvoh;
   1569 	struct pvo_entry *pvo;
   1570 	uint32_t idx, endidx;
   1571 
   1572 	endidx = pmap_pvo_reclaim_nextidx;
   1573 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1574 	     idx = (idx + 1) & pmap_pteg_mask) {
   1575 		pvoh = &pmap_pvo_table[idx];
   1576 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1577 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
   1578 				pmap_pvo_remove(pvo, -1, NULL);
   1579 				pmap_pvo_reclaim_nextidx = idx;
   1580 				PMAPCOUNT(pvos_reclaimed);
   1581 				return pvo;
   1582 			}
   1583 		}
   1584 	}
   1585 	return NULL;
   1586 }
   1587 
   1588 /*
   1589  * This returns whether this is the first mapping of a page.
   1590  */
   1591 int
   1592 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1593 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1594 {
   1595 	struct pvo_entry *pvo;
   1596 	struct pvo_tqhead *pvoh;
   1597 	register_t msr;
   1598 	int ptegidx;
   1599 	int i;
   1600 	int poolflags = PR_NOWAIT;
   1601 
   1602 	/*
   1603 	 * Compute the PTE Group index.
   1604 	 */
   1605 	va &= ~ADDR_POFF;
   1606 	ptegidx = va_to_pteg(pm, va);
   1607 
   1608 	msr = pmap_interrupts_off();
   1609 
   1610 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1611 	if (pmap_pvo_remove_depth > 0)
   1612 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1613 	if (++pmap_pvo_enter_depth > 1)
   1614 		panic("pmap_pvo_enter: called recursively!");
   1615 #endif
   1616 
   1617 	/*
   1618 	 * Remove any existing mapping for this page.  Reuse the
   1619 	 * pvo entry if there a mapping.
   1620 	 */
   1621 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1622 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1623 #ifdef DEBUG
   1624 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1625 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1626 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1627 			   va < VM_MIN_KERNEL_ADDRESS) {
   1628 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1629 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1630 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1631 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1632 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1633 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1634 #ifdef DDBX
   1635 				Debugger();
   1636 #endif
   1637 			}
   1638 #endif
   1639 			PMAPCOUNT(mappings_replaced);
   1640 			pmap_pvo_remove(pvo, -1, NULL);
   1641 			break;
   1642 		}
   1643 	}
   1644 
   1645 	/*
   1646 	 * If we aren't overwriting an mapping, try to allocate
   1647 	 */
   1648 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1649 	--pmap_pvo_enter_depth;
   1650 #endif
   1651 	pmap_interrupts_restore(msr);
   1652 	if (pvo) {
   1653 		pmap_pvo_free(pvo);
   1654 	}
   1655 	pvo = pool_get(pl, poolflags);
   1656 
   1657 #ifdef DEBUG
   1658 	/*
   1659 	 * Exercise pmap_pvo_reclaim() a little.
   1660 	 */
   1661 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1662 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1663 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1664 		pool_put(pl, pvo);
   1665 		pvo = NULL;
   1666 	}
   1667 #endif
   1668 
   1669 	msr = pmap_interrupts_off();
   1670 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1671 	++pmap_pvo_enter_depth;
   1672 #endif
   1673 	if (pvo == NULL) {
   1674 		pvo = pmap_pvo_reclaim(pm);
   1675 		if (pvo == NULL) {
   1676 			if ((flags & PMAP_CANFAIL) == 0)
   1677 				panic("pmap_pvo_enter: failed");
   1678 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1679 			pmap_pvo_enter_depth--;
   1680 #endif
   1681 			PMAPCOUNT(pvos_failed);
   1682 			pmap_interrupts_restore(msr);
   1683 			return ENOMEM;
   1684 		}
   1685 	}
   1686 
   1687 	pvo->pvo_vaddr = va;
   1688 	pvo->pvo_pmap = pm;
   1689 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1690 	if (flags & VM_PROT_EXECUTE) {
   1691 		PMAPCOUNT(exec_mappings);
   1692 		pvo_set_exec(pvo);
   1693 	}
   1694 	if (flags & PMAP_WIRED)
   1695 		pvo->pvo_vaddr |= PVO_WIRED;
   1696 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1697 		pvo->pvo_vaddr |= PVO_MANAGED;
   1698 		PMAPCOUNT(mappings);
   1699 	} else {
   1700 		PMAPCOUNT(kernel_mappings);
   1701 	}
   1702 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1703 
   1704 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1705 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1706 		pvo->pvo_pmap->pm_stats.wired_count++;
   1707 	pvo->pvo_pmap->pm_stats.resident_count++;
   1708 #if defined(DEBUG)
   1709 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1710 		DPRINTFN(PVOENTER,
   1711 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1712 		    pvo, pm, va, pa));
   1713 #endif
   1714 
   1715 	/*
   1716 	 * We hope this succeeds but it isn't required.
   1717 	 */
   1718 	pvoh = &pmap_pvo_table[ptegidx];
   1719 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1720 	if (i >= 0) {
   1721 		PVO_PTEGIDX_SET(pvo, i);
   1722 		PVO_WHERE(pvo, ENTER_INSERT);
   1723 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1724 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1725 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1726 
   1727 	} else {
   1728 		/*
   1729 		 * Since we didn't have room for this entry (which makes it
   1730 		 * and evicted entry), place it at the head of the list.
   1731 		 */
   1732 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1733 		PMAPCOUNT(ptes_evicted);
   1734 		pm->pm_evictions++;
   1735 		/*
   1736 		 * If this is a kernel page, make sure it's active.
   1737 		 */
   1738 		if (pm == pmap_kernel()) {
   1739 			i = pmap_pte_spill(pm, va, FALSE);
   1740 			KASSERT(i);
   1741 		}
   1742 	}
   1743 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1744 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1745 	pmap_pvo_enter_depth--;
   1746 #endif
   1747 	pmap_interrupts_restore(msr);
   1748 	return 0;
   1749 }
   1750 
   1751 void
   1752 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1753 {
   1754 	volatile struct pte *pt;
   1755 	int ptegidx;
   1756 
   1757 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1758 	if (++pmap_pvo_remove_depth > 1)
   1759 		panic("pmap_pvo_remove: called recursively!");
   1760 #endif
   1761 
   1762 	/*
   1763 	 * If we haven't been supplied the ptegidx, calculate it.
   1764 	 */
   1765 	if (pteidx == -1) {
   1766 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1767 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1768 	} else {
   1769 		ptegidx = pteidx >> 3;
   1770 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1771 			ptegidx ^= pmap_pteg_mask;
   1772 	}
   1773 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1774 
   1775 	/*
   1776 	 * If there is an active pte entry, we need to deactivate it
   1777 	 * (and save the ref & chg bits).
   1778 	 */
   1779 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1780 	if (pt != NULL) {
   1781 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1782 		PVO_WHERE(pvo, REMOVE);
   1783 		PVO_PTEGIDX_CLR(pvo);
   1784 		PMAPCOUNT(ptes_removed);
   1785 	} else {
   1786 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1787 		pvo->pvo_pmap->pm_evictions--;
   1788 	}
   1789 
   1790 	/*
   1791 	 * Account for executable mappings.
   1792 	 */
   1793 	if (PVO_ISEXECUTABLE(pvo))
   1794 		pvo_clear_exec(pvo);
   1795 
   1796 	/*
   1797 	 * Update our statistics.
   1798 	 */
   1799 	pvo->pvo_pmap->pm_stats.resident_count--;
   1800 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1801 		pvo->pvo_pmap->pm_stats.wired_count--;
   1802 
   1803 	/*
   1804 	 * Save the REF/CHG bits into their cache if the page is managed.
   1805 	 */
   1806 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1807 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1808 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1809 
   1810 		if (pg != NULL) {
   1811 			/*
   1812 			 * If this page was changed and it is mapped exec,
   1813 			 * invalidate it.
   1814 			 */
   1815 			if ((ptelo & PTE_CHG) &&
   1816 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1817 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1818 				if (LIST_EMPTY(pvoh)) {
   1819 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1820 					    "%#lx: clear-exec]\n",
   1821 					    VM_PAGE_TO_PHYS(pg)));
   1822 					pmap_attr_clear(pg, PTE_EXEC);
   1823 					PMAPCOUNT(exec_uncached_pvo_remove);
   1824 				} else {
   1825 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1826 					    "%#lx: syncicache]\n",
   1827 					    VM_PAGE_TO_PHYS(pg)));
   1828 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1829 					    PAGE_SIZE);
   1830 					PMAPCOUNT(exec_synced_pvo_remove);
   1831 				}
   1832 			}
   1833 
   1834 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1835 		}
   1836 		PMAPCOUNT(unmappings);
   1837 	} else {
   1838 		PMAPCOUNT(kernel_unmappings);
   1839 	}
   1840 
   1841 	/*
   1842 	 * Remove the PVO from its lists and return it to the pool.
   1843 	 */
   1844 	LIST_REMOVE(pvo, pvo_vlink);
   1845 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1846 	if (pvol) {
   1847 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1848 	}
   1849 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1850 	pmap_pvo_remove_depth--;
   1851 #endif
   1852 }
   1853 
   1854 void
   1855 pmap_pvo_free(struct pvo_entry *pvo)
   1856 {
   1857 
   1858 	pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
   1859 		 &pmap_upvo_pool, pvo);
   1860 }
   1861 
   1862 void
   1863 pmap_pvo_free_list(struct pvo_head *pvol)
   1864 {
   1865 	struct pvo_entry *pvo, *npvo;
   1866 
   1867 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1868 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1869 		LIST_REMOVE(pvo, pvo_vlink);
   1870 		pmap_pvo_free(pvo);
   1871 	}
   1872 }
   1873 
   1874 /*
   1875  * Mark a mapping as executable.
   1876  * If this is the first executable mapping in the segment,
   1877  * clear the noexec flag.
   1878  */
   1879 STATIC void
   1880 pvo_set_exec(struct pvo_entry *pvo)
   1881 {
   1882 	struct pmap *pm = pvo->pvo_pmap;
   1883 
   1884 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
   1885 		return;
   1886 	}
   1887 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1888 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1889 	{
   1890 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1891 		if (pm->pm_exec[sr]++ == 0) {
   1892 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1893 		}
   1894 	}
   1895 #endif
   1896 }
   1897 
   1898 /*
   1899  * Mark a mapping as non-executable.
   1900  * If this was the last executable mapping in the segment,
   1901  * set the noexec flag.
   1902  */
   1903 STATIC void
   1904 pvo_clear_exec(struct pvo_entry *pvo)
   1905 {
   1906 	struct pmap *pm = pvo->pvo_pmap;
   1907 
   1908 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
   1909 		return;
   1910 	}
   1911 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1912 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1913 	{
   1914 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1915 		if (--pm->pm_exec[sr] == 0) {
   1916 			pm->pm_sr[sr] |= SR_NOEXEC;
   1917 		}
   1918 	}
   1919 #endif
   1920 }
   1921 
   1922 /*
   1923  * Insert physical page at pa into the given pmap at virtual address va.
   1924  */
   1925 int
   1926 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1927 {
   1928 	struct mem_region *mp;
   1929 	struct pvo_head *pvo_head;
   1930 	struct vm_page *pg;
   1931 	struct pool *pl;
   1932 	register_t pte_lo;
   1933 	int error;
   1934 	u_int pvo_flags;
   1935 	u_int was_exec = 0;
   1936 
   1937 	if (__predict_false(!pmap_initialized)) {
   1938 		pvo_head = &pmap_pvo_kunmanaged;
   1939 		pl = &pmap_upvo_pool;
   1940 		pvo_flags = 0;
   1941 		pg = NULL;
   1942 		was_exec = PTE_EXEC;
   1943 	} else {
   1944 		pvo_head = pa_to_pvoh(pa, &pg);
   1945 		pl = &pmap_mpvo_pool;
   1946 		pvo_flags = PVO_MANAGED;
   1947 	}
   1948 
   1949 	DPRINTFN(ENTER,
   1950 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1951 	    pm, va, pa, prot, flags));
   1952 
   1953 	/*
   1954 	 * If this is a managed page, and it's the first reference to the
   1955 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1956 	 */
   1957 	if (pg != NULL)
   1958 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1959 
   1960 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1961 
   1962 	/*
   1963 	 * Assume the page is cache inhibited and access is guarded unless
   1964 	 * it's in our available memory array.  If it is in the memory array,
   1965 	 * asssume it's in memory coherent memory.
   1966 	 */
   1967 	pte_lo = PTE_IG;
   1968 	if ((flags & PMAP_NC) == 0) {
   1969 		for (mp = mem; mp->size; mp++) {
   1970 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1971 				pte_lo = PTE_M;
   1972 				break;
   1973 			}
   1974 		}
   1975 	}
   1976 
   1977 	if (prot & VM_PROT_WRITE)
   1978 		pte_lo |= PTE_BW;
   1979 	else
   1980 		pte_lo |= PTE_BR;
   1981 
   1982 	/*
   1983 	 * If this was in response to a fault, "pre-fault" the PTE's
   1984 	 * changed/referenced bit appropriately.
   1985 	 */
   1986 	if (flags & VM_PROT_WRITE)
   1987 		pte_lo |= PTE_CHG;
   1988 	if (flags & VM_PROT_ALL)
   1989 		pte_lo |= PTE_REF;
   1990 
   1991 	/*
   1992 	 * We need to know if this page can be executable
   1993 	 */
   1994 	flags |= (prot & VM_PROT_EXECUTE);
   1995 
   1996 	/*
   1997 	 * Record mapping for later back-translation and pte spilling.
   1998 	 * This will overwrite any existing mapping.
   1999 	 */
   2000 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   2001 
   2002 	/*
   2003 	 * Flush the real page from the instruction cache if this page is
   2004 	 * mapped executable and cacheable and has not been flushed since
   2005 	 * the last time it was modified.
   2006 	 */
   2007 	if (error == 0 &&
   2008             (flags & VM_PROT_EXECUTE) &&
   2009             (pte_lo & PTE_I) == 0 &&
   2010 	    was_exec == 0) {
   2011 		DPRINTFN(ENTER, (" syncicache"));
   2012 		PMAPCOUNT(exec_synced);
   2013 		pmap_syncicache(pa, PAGE_SIZE);
   2014 		if (pg != NULL) {
   2015 			pmap_attr_save(pg, PTE_EXEC);
   2016 			PMAPCOUNT(exec_cached);
   2017 #if defined(DEBUG) || defined(PMAPDEBUG)
   2018 			if (pmapdebug & PMAPDEBUG_ENTER)
   2019 				printf(" marked-as-exec");
   2020 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2021 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   2022 				    VM_PAGE_TO_PHYS(pg));
   2023 
   2024 #endif
   2025 		}
   2026 	}
   2027 
   2028 	DPRINTFN(ENTER, (": error=%d\n", error));
   2029 
   2030 	return error;
   2031 }
   2032 
   2033 void
   2034 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2035 {
   2036 	struct mem_region *mp;
   2037 	register_t pte_lo;
   2038 	int error;
   2039 
   2040 #if defined (PPC_OEA64_BRIDGE)
   2041 	if (va < VM_MIN_KERNEL_ADDRESS)
   2042 		panic("pmap_kenter_pa: attempt to enter "
   2043 		    "non-kernel address %#lx!", va);
   2044 #endif
   2045 
   2046 	DPRINTFN(KENTER,
   2047 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   2048 
   2049 	/*
   2050 	 * Assume the page is cache inhibited and access is guarded unless
   2051 	 * it's in our available memory array.  If it is in the memory array,
   2052 	 * asssume it's in memory coherent memory.
   2053 	 */
   2054 	pte_lo = PTE_IG;
   2055 	if ((prot & PMAP_NC) == 0) {
   2056 		for (mp = mem; mp->size; mp++) {
   2057 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2058 				pte_lo = PTE_M;
   2059 				break;
   2060 			}
   2061 		}
   2062 	}
   2063 
   2064 	if (prot & VM_PROT_WRITE)
   2065 		pte_lo |= PTE_BW;
   2066 	else
   2067 		pte_lo |= PTE_BR;
   2068 
   2069 	/*
   2070 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2071 	 */
   2072 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2073 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2074 
   2075 	if (error != 0)
   2076 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   2077 		      va, pa, error);
   2078 }
   2079 
   2080 void
   2081 pmap_kremove(vaddr_t va, vsize_t len)
   2082 {
   2083 	if (va < VM_MIN_KERNEL_ADDRESS)
   2084 		panic("pmap_kremove: attempt to remove "
   2085 		    "non-kernel address %#lx!", va);
   2086 
   2087 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   2088 	pmap_remove(pmap_kernel(), va, va + len);
   2089 }
   2090 
   2091 /*
   2092  * Remove the given range of mapping entries.
   2093  */
   2094 void
   2095 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2096 {
   2097 	struct pvo_head pvol;
   2098 	struct pvo_entry *pvo;
   2099 	register_t msr;
   2100 	int pteidx;
   2101 
   2102 	LIST_INIT(&pvol);
   2103 	msr = pmap_interrupts_off();
   2104 	for (; va < endva; va += PAGE_SIZE) {
   2105 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2106 		if (pvo != NULL) {
   2107 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2108 		}
   2109 	}
   2110 	pmap_interrupts_restore(msr);
   2111 	pmap_pvo_free_list(&pvol);
   2112 }
   2113 
   2114 /*
   2115  * Get the physical page address for the given pmap/virtual address.
   2116  */
   2117 boolean_t
   2118 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2119 {
   2120 	struct pvo_entry *pvo;
   2121 	register_t msr;
   2122 
   2123 
   2124 	/*
   2125 	 * If this is a kernel pmap lookup, also check the battable
   2126 	 * and if we get a hit, translate the VA to a PA using the
   2127 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2128 	 * that will wrap back to 0.
   2129 	 */
   2130 	if (pm == pmap_kernel() &&
   2131 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2132 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2133 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2134 #if defined (PPC_OEA)
   2135 		if ((MFPVR() >> 16) != MPC601) {
   2136 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2137 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2138 				register_t batl =
   2139 				    battable[va >> ADDR_SR_SHFT].batl;
   2140 				register_t mask =
   2141 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2142 				if (pap)
   2143 					*pap = (batl & mask) | (va & ~mask);
   2144 				return TRUE;
   2145 			}
   2146 		} else {
   2147 			register_t batu = battable[va >> 23].batu;
   2148 			register_t batl = battable[va >> 23].batl;
   2149 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2150 			if (BAT601_VALID_P(batl) &&
   2151 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2152 				register_t mask =
   2153 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2154 				if (pap)
   2155 					*pap = (batl & mask) | (va & ~mask);
   2156 				return TRUE;
   2157 			} else if (SR601_VALID_P(sr) &&
   2158 				   SR601_PA_MATCH_P(sr, va)) {
   2159 				if (pap)
   2160 					*pap = va;
   2161 				return TRUE;
   2162 			}
   2163 		}
   2164 		return FALSE;
   2165 #elif defined (PPC_OEA64_BRIDGE)
   2166 	panic("%s: pm: %s, va: 0x%08lx\n", __FUNCTION__,
   2167 		(pm == pmap_kernel() ? "kernel" : "user"), va);
   2168 #elif defined (PPC_OEA64)
   2169 #error PPC_OEA64 not supported
   2170 #endif /* PPC_OEA */
   2171 	}
   2172 
   2173 	msr = pmap_interrupts_off();
   2174 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2175 	if (pvo != NULL) {
   2176 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2177 		if (pap)
   2178 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2179 			    | (va & ADDR_POFF);
   2180 	}
   2181 	pmap_interrupts_restore(msr);
   2182 	return pvo != NULL;
   2183 }
   2184 
   2185 /*
   2186  * Lower the protection on the specified range of this pmap.
   2187  */
   2188 void
   2189 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2190 {
   2191 	struct pvo_entry *pvo;
   2192 	volatile struct pte *pt;
   2193 	register_t msr;
   2194 	int pteidx;
   2195 
   2196 	/*
   2197 	 * Since this routine only downgrades protection, we should
   2198 	 * always be called with at least one bit not set.
   2199 	 */
   2200 	KASSERT(prot != VM_PROT_ALL);
   2201 
   2202 	/*
   2203 	 * If there is no protection, this is equivalent to
   2204 	 * remove the pmap from the pmap.
   2205 	 */
   2206 	if ((prot & VM_PROT_READ) == 0) {
   2207 		pmap_remove(pm, va, endva);
   2208 		return;
   2209 	}
   2210 
   2211 	msr = pmap_interrupts_off();
   2212 	for (; va < endva; va += PAGE_SIZE) {
   2213 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2214 		if (pvo == NULL)
   2215 			continue;
   2216 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2217 
   2218 		/*
   2219 		 * Revoke executable if asked to do so.
   2220 		 */
   2221 		if ((prot & VM_PROT_EXECUTE) == 0)
   2222 			pvo_clear_exec(pvo);
   2223 
   2224 #if 0
   2225 		/*
   2226 		 * If the page is already read-only, no change
   2227 		 * needs to be made.
   2228 		 */
   2229 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2230 			continue;
   2231 #endif
   2232 		/*
   2233 		 * Grab the PTE pointer before we diddle with
   2234 		 * the cached PTE copy.
   2235 		 */
   2236 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2237 		/*
   2238 		 * Change the protection of the page.
   2239 		 */
   2240 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2241 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2242 
   2243 		/*
   2244 		 * If the PVO is in the page table, update
   2245 		 * that pte at well.
   2246 		 */
   2247 		if (pt != NULL) {
   2248 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2249 			PVO_WHERE(pvo, PMAP_PROTECT);
   2250 			PMAPCOUNT(ptes_changed);
   2251 		}
   2252 
   2253 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2254 	}
   2255 	pmap_interrupts_restore(msr);
   2256 }
   2257 
   2258 void
   2259 pmap_unwire(pmap_t pm, vaddr_t va)
   2260 {
   2261 	struct pvo_entry *pvo;
   2262 	register_t msr;
   2263 
   2264 	msr = pmap_interrupts_off();
   2265 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2266 	if (pvo != NULL) {
   2267 		if (pvo->pvo_vaddr & PVO_WIRED) {
   2268 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2269 			pm->pm_stats.wired_count--;
   2270 		}
   2271 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2272 	}
   2273 	pmap_interrupts_restore(msr);
   2274 }
   2275 
   2276 /*
   2277  * Lower the protection on the specified physical page.
   2278  */
   2279 void
   2280 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2281 {
   2282 	struct pvo_head *pvo_head, pvol;
   2283 	struct pvo_entry *pvo, *next_pvo;
   2284 	volatile struct pte *pt;
   2285 	register_t msr;
   2286 
   2287 	KASSERT(prot != VM_PROT_ALL);
   2288 	LIST_INIT(&pvol);
   2289 	msr = pmap_interrupts_off();
   2290 
   2291 	/*
   2292 	 * When UVM reuses a page, it does a pmap_page_protect with
   2293 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2294 	 * since we know the page will have different contents.
   2295 	 */
   2296 	if ((prot & VM_PROT_READ) == 0) {
   2297 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2298 		    VM_PAGE_TO_PHYS(pg)));
   2299 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2300 			PMAPCOUNT(exec_uncached_page_protect);
   2301 			pmap_attr_clear(pg, PTE_EXEC);
   2302 		}
   2303 	}
   2304 
   2305 	pvo_head = vm_page_to_pvoh(pg);
   2306 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2307 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2308 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2309 
   2310 		/*
   2311 		 * Downgrading to no mapping at all, we just remove the entry.
   2312 		 */
   2313 		if ((prot & VM_PROT_READ) == 0) {
   2314 			pmap_pvo_remove(pvo, -1, &pvol);
   2315 			continue;
   2316 		}
   2317 
   2318 		/*
   2319 		 * If EXEC permission is being revoked, just clear the
   2320 		 * flag in the PVO.
   2321 		 */
   2322 		if ((prot & VM_PROT_EXECUTE) == 0)
   2323 			pvo_clear_exec(pvo);
   2324 
   2325 		/*
   2326 		 * If this entry is already RO, don't diddle with the
   2327 		 * page table.
   2328 		 */
   2329 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2330 			PMAP_PVO_CHECK(pvo);
   2331 			continue;
   2332 		}
   2333 
   2334 		/*
   2335 		 * Grab the PTE before the we diddle the bits so
   2336 		 * pvo_to_pte can verify the pte contents are as
   2337 		 * expected.
   2338 		 */
   2339 		pt = pmap_pvo_to_pte(pvo, -1);
   2340 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2341 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2342 		if (pt != NULL) {
   2343 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2344 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2345 			PMAPCOUNT(ptes_changed);
   2346 		}
   2347 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2348 	}
   2349 	pmap_interrupts_restore(msr);
   2350 	pmap_pvo_free_list(&pvol);
   2351 }
   2352 
   2353 /*
   2354  * Activate the address space for the specified process.  If the process
   2355  * is the current process, load the new MMU context.
   2356  */
   2357 void
   2358 pmap_activate(struct lwp *l)
   2359 {
   2360 	struct pcb *pcb = &l->l_addr->u_pcb;
   2361 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2362 
   2363 	DPRINTFN(ACTIVATE,
   2364 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2365 
   2366 	/*
   2367 	 * XXX Normally performed in cpu_fork().
   2368 	 */
   2369 	pcb->pcb_pm = pmap;
   2370 
   2371 	/*
   2372 	* In theory, the SR registers need only be valid on return
   2373 	* to user space wait to do them there.
   2374 	*/
   2375 	if (l == curlwp) {
   2376 		/* Store pointer to new current pmap. */
   2377 		curpm = pmap;
   2378 	}
   2379 }
   2380 
   2381 /*
   2382  * Deactivate the specified process's address space.
   2383  */
   2384 void
   2385 pmap_deactivate(struct lwp *l)
   2386 {
   2387 }
   2388 
   2389 boolean_t
   2390 pmap_query_bit(struct vm_page *pg, int ptebit)
   2391 {
   2392 	struct pvo_entry *pvo;
   2393 	volatile struct pte *pt;
   2394 	register_t msr;
   2395 
   2396 	if (pmap_attr_fetch(pg) & ptebit)
   2397 		return TRUE;
   2398 
   2399 	msr = pmap_interrupts_off();
   2400 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2401 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2402 		/*
   2403 		 * See if we saved the bit off.  If so cache, it and return
   2404 		 * success.
   2405 		 */
   2406 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2407 			pmap_attr_save(pg, ptebit);
   2408 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2409 			pmap_interrupts_restore(msr);
   2410 			return TRUE;
   2411 		}
   2412 	}
   2413 	/*
   2414 	 * No luck, now go thru the hard part of looking at the ptes
   2415 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2416 	 * to the PTEs.
   2417 	 */
   2418 	SYNC();
   2419 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2420 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2421 		/*
   2422 		 * See if this pvo have a valid PTE.  If so, fetch the
   2423 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2424 		 * ptebit is set, cache, it and return success.
   2425 		 */
   2426 		pt = pmap_pvo_to_pte(pvo, -1);
   2427 		if (pt != NULL) {
   2428 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2429 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2430 				pmap_attr_save(pg, ptebit);
   2431 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2432 				pmap_interrupts_restore(msr);
   2433 				return TRUE;
   2434 			}
   2435 		}
   2436 	}
   2437 	pmap_interrupts_restore(msr);
   2438 	return FALSE;
   2439 }
   2440 
   2441 boolean_t
   2442 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2443 {
   2444 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2445 	struct pvo_entry *pvo;
   2446 	volatile struct pte *pt;
   2447 	register_t msr;
   2448 	int rv = 0;
   2449 
   2450 	msr = pmap_interrupts_off();
   2451 
   2452 	/*
   2453 	 * Fetch the cache value
   2454 	 */
   2455 	rv |= pmap_attr_fetch(pg);
   2456 
   2457 	/*
   2458 	 * Clear the cached value.
   2459 	 */
   2460 	pmap_attr_clear(pg, ptebit);
   2461 
   2462 	/*
   2463 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2464 	 * can reset the right ones).  Note that since the pvo entries and
   2465 	 * list heads are accessed via BAT0 and are never placed in the
   2466 	 * page table, we don't have to worry about further accesses setting
   2467 	 * the REF/CHG bits.
   2468 	 */
   2469 	SYNC();
   2470 
   2471 	/*
   2472 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2473 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2474 	 */
   2475 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2476 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2477 		pt = pmap_pvo_to_pte(pvo, -1);
   2478 		if (pt != NULL) {
   2479 			/*
   2480 			 * Only sync the PTE if the bit we are looking
   2481 			 * for is not already set.
   2482 			 */
   2483 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2484 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2485 			/*
   2486 			 * If the bit we are looking for was already set,
   2487 			 * clear that bit in the pte.
   2488 			 */
   2489 			if (pvo->pvo_pte.pte_lo & ptebit)
   2490 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2491 		}
   2492 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2493 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2494 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2495 	}
   2496 	pmap_interrupts_restore(msr);
   2497 
   2498 	/*
   2499 	 * If we are clearing the modify bit and this page was marked EXEC
   2500 	 * and the user of the page thinks the page was modified, then we
   2501 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2502 	 * bit if it's not mapped.  The page itself might not have the CHG
   2503 	 * bit set if the modification was done via DMA to the page.
   2504 	 */
   2505 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2506 		if (LIST_EMPTY(pvoh)) {
   2507 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2508 			    VM_PAGE_TO_PHYS(pg)));
   2509 			pmap_attr_clear(pg, PTE_EXEC);
   2510 			PMAPCOUNT(exec_uncached_clear_modify);
   2511 		} else {
   2512 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2513 			    VM_PAGE_TO_PHYS(pg)));
   2514 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2515 			PMAPCOUNT(exec_synced_clear_modify);
   2516 		}
   2517 	}
   2518 	return (rv & ptebit) != 0;
   2519 }
   2520 
   2521 void
   2522 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2523 {
   2524 	struct pvo_entry *pvo;
   2525 	size_t offset = va & ADDR_POFF;
   2526 	int s;
   2527 
   2528 	s = splvm();
   2529 	while (len > 0) {
   2530 		size_t seglen = PAGE_SIZE - offset;
   2531 		if (seglen > len)
   2532 			seglen = len;
   2533 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2534 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2535 			pmap_syncicache(
   2536 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2537 			PMAP_PVO_CHECK(pvo);
   2538 		}
   2539 		va += seglen;
   2540 		len -= seglen;
   2541 		offset = 0;
   2542 	}
   2543 	splx(s);
   2544 }
   2545 
   2546 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2547 void
   2548 pmap_pte_print(volatile struct pte *pt)
   2549 {
   2550 	printf("PTE %p: ", pt);
   2551 
   2552 #if defined(PPC_OEA)
   2553 	/* High word: */
   2554 	printf("0x%08lx: [", pt->pte_hi);
   2555 #elif defined (PPC_OEA64_BRIDGE)
   2556 	printf("0x%016llx: [", pt->pte_hi);
   2557 #else /* PPC_OEA64 */
   2558 	printf("0x%016lx: [", pt->pte_hi);
   2559 #endif /* PPC_OEA */
   2560 
   2561 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2562 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2563 
   2564 #if defined (PPC_OEA)
   2565 	printf("0x%06lx 0x%02lx",
   2566 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2567 	    pt->pte_hi & PTE_API);
   2568 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2569 #elif defined (PPC_OEA64)
   2570 	printf("0x%06lx 0x%02lx",
   2571 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2572 	    pt->pte_hi & PTE_API);
   2573 	printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
   2574 #else
   2575 	/* PPC_OEA64_BRIDGE */
   2576 	printf("0x%06llx 0x%02llx",
   2577 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2578 	    pt->pte_hi & PTE_API);
   2579 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2580 #endif /* PPC_OEA */
   2581 
   2582 	/* Low word: */
   2583 #if defined (PPC_OEA)
   2584 	printf(" 0x%08lx: [", pt->pte_lo);
   2585 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2586 #elif defined (PPC_OEA64)
   2587 	printf(" 0x%016lx: [", pt->pte_lo);
   2588 	printf("0x%012lx... ", pt->pte_lo >> 12);
   2589 #else	/* PPC_OEA64_BRIDGE */
   2590 	printf(" 0x%016llx: [", pt->pte_lo);
   2591 	printf("0x%012llx... ", pt->pte_lo >> 12);
   2592 #endif
   2593 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2594 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2595 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2596 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2597 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2598 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2599 	switch (pt->pte_lo & PTE_PP) {
   2600 	case PTE_BR: printf("br]\n"); break;
   2601 	case PTE_BW: printf("bw]\n"); break;
   2602 	case PTE_SO: printf("so]\n"); break;
   2603 	case PTE_SW: printf("sw]\n"); break;
   2604 	}
   2605 }
   2606 #endif
   2607 
   2608 #if defined(DDB)
   2609 void
   2610 pmap_pteg_check(void)
   2611 {
   2612 	volatile struct pte *pt;
   2613 	int i;
   2614 	int ptegidx;
   2615 	u_int p_valid = 0;
   2616 	u_int s_valid = 0;
   2617 	u_int invalid = 0;
   2618 
   2619 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2620 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2621 			if (pt->pte_hi & PTE_VALID) {
   2622 				if (pt->pte_hi & PTE_HID)
   2623 					s_valid++;
   2624 				else
   2625 				{
   2626 					p_valid++;
   2627 				}
   2628 			} else
   2629 				invalid++;
   2630 		}
   2631 	}
   2632 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2633 		p_valid, p_valid, s_valid, s_valid,
   2634 		invalid, invalid);
   2635 }
   2636 
   2637 void
   2638 pmap_print_mmuregs(void)
   2639 {
   2640 	int i;
   2641 	u_int cpuvers;
   2642 #ifndef PPC_OEA64
   2643 	vaddr_t addr;
   2644 	register_t soft_sr[16];
   2645 #endif
   2646 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2647 	struct bat soft_ibat[4];
   2648 	struct bat soft_dbat[4];
   2649 #endif
   2650 	register_t sdr1;
   2651 
   2652 	cpuvers = MFPVR() >> 16;
   2653 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2654 #ifndef PPC_OEA64
   2655 	addr = 0;
   2656 	for (i = 0; i < 16; i++) {
   2657 		soft_sr[i] = MFSRIN(addr);
   2658 		addr += (1 << ADDR_SR_SHFT);
   2659 	}
   2660 #endif
   2661 
   2662 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2663 	/* read iBAT (601: uBAT) registers */
   2664 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2665 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2666 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2667 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2668 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2669 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2670 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2671 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2672 
   2673 
   2674 	if (cpuvers != MPC601) {
   2675 		/* read dBAT registers */
   2676 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2677 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2678 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2679 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2680 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2681 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2682 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2683 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2684 	}
   2685 #endif
   2686 
   2687 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2688 #ifndef PPC_OEA64
   2689 	printf("SR[]:\t");
   2690 	for (i = 0; i < 4; i++)
   2691 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2692 	printf("\n\t");
   2693 	for ( ; i < 8; i++)
   2694 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2695 	printf("\n\t");
   2696 	for ( ; i < 12; i++)
   2697 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2698 	printf("\n\t");
   2699 	for ( ; i < 16; i++)
   2700 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2701 	printf("\n");
   2702 #endif
   2703 
   2704 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2705 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2706 	for (i = 0; i < 4; i++) {
   2707 		printf("0x%08lx 0x%08lx, ",
   2708 			soft_ibat[i].batu, soft_ibat[i].batl);
   2709 		if (i == 1)
   2710 			printf("\n\t");
   2711 	}
   2712 	if (cpuvers != MPC601) {
   2713 		printf("\ndBAT[]:\t");
   2714 		for (i = 0; i < 4; i++) {
   2715 			printf("0x%08lx 0x%08lx, ",
   2716 				soft_dbat[i].batu, soft_dbat[i].batl);
   2717 			if (i == 1)
   2718 				printf("\n\t");
   2719 		}
   2720 	}
   2721 	printf("\n");
   2722 #endif /* PPC_OEA... */
   2723 }
   2724 
   2725 void
   2726 pmap_print_pte(pmap_t pm, vaddr_t va)
   2727 {
   2728 	struct pvo_entry *pvo;
   2729 	volatile struct pte *pt;
   2730 	int pteidx;
   2731 
   2732 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2733 	if (pvo != NULL) {
   2734 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2735 		if (pt != NULL) {
   2736 #if defined (PPC_OEA) || defined (PPC_OEA64)
   2737 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2738 				va, pt,
   2739 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2740 				pt->pte_hi, pt->pte_lo);
   2741 #else	/* PPC_OEA64_BRIDGE */
   2742 			printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
   2743 				va, pt,
   2744 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2745 				pt->pte_hi, pt->pte_lo);
   2746 #endif
   2747 		} else {
   2748 			printf("No valid PTE found\n");
   2749 		}
   2750 	} else {
   2751 		printf("Address not in pmap\n");
   2752 	}
   2753 }
   2754 
   2755 void
   2756 pmap_pteg_dist(void)
   2757 {
   2758 	struct pvo_entry *pvo;
   2759 	int ptegidx;
   2760 	int depth;
   2761 	int max_depth = 0;
   2762 	unsigned int depths[64];
   2763 
   2764 	memset(depths, 0, sizeof(depths));
   2765 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2766 		depth = 0;
   2767 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2768 			depth++;
   2769 		}
   2770 		if (depth > max_depth)
   2771 			max_depth = depth;
   2772 		if (depth > 63)
   2773 			depth = 63;
   2774 		depths[depth]++;
   2775 	}
   2776 
   2777 	for (depth = 0; depth < 64; depth++) {
   2778 		printf("  [%2d]: %8u", depth, depths[depth]);
   2779 		if ((depth & 3) == 3)
   2780 			printf("\n");
   2781 		if (depth == max_depth)
   2782 			break;
   2783 	}
   2784 	if ((depth & 3) != 3)
   2785 		printf("\n");
   2786 	printf("Max depth found was %d\n", max_depth);
   2787 }
   2788 #endif /* DEBUG */
   2789 
   2790 #if defined(PMAPCHECK) || defined(DEBUG)
   2791 void
   2792 pmap_pvo_verify(void)
   2793 {
   2794 	int ptegidx;
   2795 	int s;
   2796 
   2797 	s = splvm();
   2798 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2799 		struct pvo_entry *pvo;
   2800 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2801 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2802 				panic("pmap_pvo_verify: invalid pvo %p "
   2803 				    "on list %#x", pvo, ptegidx);
   2804 			pmap_pvo_check(pvo);
   2805 		}
   2806 	}
   2807 	splx(s);
   2808 }
   2809 #endif /* PMAPCHECK */
   2810 
   2811 
   2812 void *
   2813 pmap_pool_ualloc(struct pool *pp, int flags)
   2814 {
   2815 	struct pvo_page *pvop;
   2816 
   2817 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2818 	if (pvop != NULL) {
   2819 		pmap_upvop_free--;
   2820 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2821 		return pvop;
   2822 	}
   2823 	if (uvm.page_init_done != TRUE) {
   2824 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2825 	}
   2826 	return pmap_pool_malloc(pp, flags);
   2827 }
   2828 
   2829 void *
   2830 pmap_pool_malloc(struct pool *pp, int flags)
   2831 {
   2832 	struct pvo_page *pvop;
   2833 	struct vm_page *pg;
   2834 
   2835 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2836 	if (pvop != NULL) {
   2837 		pmap_mpvop_free--;
   2838 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2839 		return pvop;
   2840 	}
   2841  again:
   2842 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2843 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2844 	if (__predict_false(pg == NULL)) {
   2845 		if (flags & PR_WAITOK) {
   2846 			uvm_wait("plpg");
   2847 			goto again;
   2848 		} else {
   2849 			return (0);
   2850 		}
   2851 	}
   2852 	return (void *) VM_PAGE_TO_PHYS(pg);
   2853 }
   2854 
   2855 void
   2856 pmap_pool_ufree(struct pool *pp, void *va)
   2857 {
   2858 	struct pvo_page *pvop;
   2859 #if 0
   2860 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2861 		pmap_pool_mfree(va, size, tag);
   2862 		return;
   2863 	}
   2864 #endif
   2865 	pvop = va;
   2866 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2867 	pmap_upvop_free++;
   2868 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2869 		pmap_upvop_maxfree = pmap_upvop_free;
   2870 }
   2871 
   2872 void
   2873 pmap_pool_mfree(struct pool *pp, void *va)
   2874 {
   2875 	struct pvo_page *pvop;
   2876 
   2877 	pvop = va;
   2878 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2879 	pmap_mpvop_free++;
   2880 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2881 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2882 #if 0
   2883 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2884 #endif
   2885 }
   2886 
   2887 /*
   2888  * This routine in bootstraping to steal to-be-managed memory (which will
   2889  * then be unmanaged).  We use it to grab from the first 256MB for our
   2890  * pmap needs and above 256MB for other stuff.
   2891  */
   2892 vaddr_t
   2893 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2894 {
   2895 	vsize_t size;
   2896 	vaddr_t va;
   2897 	paddr_t pa = 0;
   2898 	int npgs, bank;
   2899 	struct vm_physseg *ps;
   2900 
   2901 	if (uvm.page_init_done == TRUE)
   2902 		panic("pmap_steal_memory: called _after_ bootstrap");
   2903 
   2904 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2905 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2906 
   2907 	size = round_page(vsize);
   2908 	npgs = atop(size);
   2909 
   2910 	/*
   2911 	 * PA 0 will never be among those given to UVM so we can use it
   2912 	 * to indicate we couldn't steal any memory.
   2913 	 */
   2914 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2915 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2916 		    ps->avail_end - ps->avail_start >= npgs) {
   2917 			pa = ptoa(ps->avail_start);
   2918 			break;
   2919 		}
   2920 	}
   2921 
   2922 	if (pa == 0)
   2923 		panic("pmap_steal_memory: no approriate memory to steal!");
   2924 
   2925 	ps->avail_start += npgs;
   2926 	ps->start += npgs;
   2927 
   2928 	/*
   2929 	 * If we've used up all the pages in the segment, remove it and
   2930 	 * compact the list.
   2931 	 */
   2932 	if (ps->avail_start == ps->end) {
   2933 		/*
   2934 		 * If this was the last one, then a very bad thing has occurred
   2935 		 */
   2936 		if (--vm_nphysseg == 0)
   2937 			panic("pmap_steal_memory: out of memory!");
   2938 
   2939 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2940 		for (; bank < vm_nphysseg; bank++, ps++) {
   2941 			ps[0] = ps[1];
   2942 		}
   2943 	}
   2944 
   2945 	va = (vaddr_t) pa;
   2946 	memset((caddr_t) va, 0, size);
   2947 	pmap_pages_stolen += npgs;
   2948 #ifdef DEBUG
   2949 	if (pmapdebug && npgs > 1) {
   2950 		u_int cnt = 0;
   2951 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2952 			cnt += ps->avail_end - ps->avail_start;
   2953 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2954 		    npgs, pmap_pages_stolen, cnt);
   2955 	}
   2956 #endif
   2957 
   2958 	return va;
   2959 }
   2960 
   2961 /*
   2962  * Find a chuck of memory with right size and alignment.
   2963  */
   2964 void *
   2965 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2966 {
   2967 	struct mem_region *mp;
   2968 	paddr_t s, e;
   2969 	int i, j;
   2970 
   2971 	size = round_page(size);
   2972 
   2973 	DPRINTFN(BOOT,
   2974 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2975 	    size, alignment, at_end));
   2976 
   2977 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2978 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2979 		    alignment);
   2980 
   2981 	if (at_end) {
   2982 		if (alignment != PAGE_SIZE)
   2983 			panic("pmap_boot_find_memory: invalid ending "
   2984 			    "alignment %lx", alignment);
   2985 
   2986 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2987 			s = mp->start + mp->size - size;
   2988 			if (s >= mp->start && mp->size >= size) {
   2989 				DPRINTFN(BOOT,(": %lx\n", s));
   2990 				DPRINTFN(BOOT,
   2991 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2992 				     "0x%lx size 0x%lx\n", mp - avail,
   2993 				     mp->start, mp->size));
   2994 				mp->size -= size;
   2995 				DPRINTFN(BOOT,
   2996 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2997 				     "0x%lx size 0x%lx\n", mp - avail,
   2998 				     mp->start, mp->size));
   2999 				return (void *) s;
   3000 			}
   3001 		}
   3002 		panic("pmap_boot_find_memory: no available memory");
   3003 	}
   3004 
   3005 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3006 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3007 		e = s + size;
   3008 
   3009 		/*
   3010 		 * Is the calculated region entirely within the region?
   3011 		 */
   3012 		if (s < mp->start || e > mp->start + mp->size)
   3013 			continue;
   3014 
   3015 		DPRINTFN(BOOT,(": %lx\n", s));
   3016 		if (s == mp->start) {
   3017 			/*
   3018 			 * If the block starts at the beginning of region,
   3019 			 * adjust the size & start. (the region may now be
   3020 			 * zero in length)
   3021 			 */
   3022 			DPRINTFN(BOOT,
   3023 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3024 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3025 			mp->start += size;
   3026 			mp->size -= size;
   3027 			DPRINTFN(BOOT,
   3028 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3029 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3030 		} else if (e == mp->start + mp->size) {
   3031 			/*
   3032 			 * If the block starts at the beginning of region,
   3033 			 * adjust only the size.
   3034 			 */
   3035 			DPRINTFN(BOOT,
   3036 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3037 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3038 			mp->size -= size;
   3039 			DPRINTFN(BOOT,
   3040 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3041 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3042 		} else {
   3043 			/*
   3044 			 * Block is in the middle of the region, so we
   3045 			 * have to split it in two.
   3046 			 */
   3047 			for (j = avail_cnt; j > i + 1; j--) {
   3048 				avail[j] = avail[j-1];
   3049 			}
   3050 			DPRINTFN(BOOT,
   3051 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3052 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3053 			mp[1].start = e;
   3054 			mp[1].size = mp[0].start + mp[0].size - e;
   3055 			mp[0].size = s - mp[0].start;
   3056 			avail_cnt++;
   3057 			for (; i < avail_cnt; i++) {
   3058 				DPRINTFN(BOOT,
   3059 				    ("pmap_boot_find_memory: a-avail[%d] "
   3060 				     "start 0x%lx size 0x%lx\n", i,
   3061 				     avail[i].start, avail[i].size));
   3062 			}
   3063 		}
   3064 		return (void *) s;
   3065 	}
   3066 	panic("pmap_boot_find_memory: not enough memory for "
   3067 	    "%lx/%lx allocation?", size, alignment);
   3068 }
   3069 
   3070 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3071 #if defined (PPC_OEA64_BRIDGE)
   3072 int
   3073 pmap_setup_segment0_map(int use_large_pages, ...)
   3074 {
   3075     vaddr_t va;
   3076 
   3077     register_t pte_lo = 0x0;
   3078     int ptegidx = 0, i = 0;
   3079     struct pte pte;
   3080     va_list ap;
   3081 
   3082     /* Coherent + Supervisor RW, no user access */
   3083     pte_lo = PTE_M;
   3084 
   3085     /* XXXSL
   3086      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3087      * these have to take priority.
   3088      */
   3089     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3090         ptegidx = va_to_pteg(pmap_kernel(), va);
   3091         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3092         i = pmap_pte_insert(ptegidx, &pte);
   3093     }
   3094 
   3095     va_start(ap, use_large_pages);
   3096     while (1) {
   3097         paddr_t pa;
   3098         size_t size;
   3099 
   3100         va = va_arg(ap, vaddr_t);
   3101 
   3102         if (va == 0)
   3103             break;
   3104 
   3105         pa = va_arg(ap, paddr_t);
   3106         size = va_arg(ap, size_t);
   3107 
   3108         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3109 #if 0
   3110 	    printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __FUNCTION__,  va, pa);
   3111 #endif
   3112             ptegidx = va_to_pteg(pmap_kernel(), va);
   3113             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3114             i = pmap_pte_insert(ptegidx, &pte);
   3115         }
   3116     }
   3117 
   3118     TLBSYNC();
   3119     SYNC();
   3120     return (0);
   3121 }
   3122 #endif /* PPC_OEA64_BRIDGE */
   3123 
   3124 /*
   3125  * This is not part of the defined PMAP interface and is specific to the
   3126  * PowerPC architecture.  This is called during initppc, before the system
   3127  * is really initialized.
   3128  */
   3129 void
   3130 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3131 {
   3132 	struct mem_region *mp, tmp;
   3133 	paddr_t s, e;
   3134 	psize_t size;
   3135 	int i, j;
   3136 
   3137 	/*
   3138 	 * Get memory.
   3139 	 */
   3140 	mem_regions(&mem, &avail);
   3141 #if defined(DEBUG)
   3142 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3143 		printf("pmap_bootstrap: memory configuration:\n");
   3144 		for (mp = mem; mp->size; mp++) {
   3145 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   3146 				mp->start, mp->size);
   3147 		}
   3148 		for (mp = avail; mp->size; mp++) {
   3149 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   3150 				mp->start, mp->size);
   3151 		}
   3152 	}
   3153 #endif
   3154 
   3155 	/*
   3156 	 * Find out how much physical memory we have and in how many chunks.
   3157 	 */
   3158 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3159 		if (mp->start >= pmap_memlimit)
   3160 			continue;
   3161 		if (mp->start + mp->size > pmap_memlimit) {
   3162 			size = pmap_memlimit - mp->start;
   3163 			physmem += btoc(size);
   3164 		} else {
   3165 			physmem += btoc(mp->size);
   3166 		}
   3167 		mem_cnt++;
   3168 	}
   3169 
   3170 	/*
   3171 	 * Count the number of available entries.
   3172 	 */
   3173 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3174 		avail_cnt++;
   3175 
   3176 	/*
   3177 	 * Page align all regions.
   3178 	 */
   3179 	kernelstart = trunc_page(kernelstart);
   3180 	kernelend = round_page(kernelend);
   3181 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3182 		s = round_page(mp->start);
   3183 		mp->size -= (s - mp->start);
   3184 		mp->size = trunc_page(mp->size);
   3185 		mp->start = s;
   3186 		e = mp->start + mp->size;
   3187 
   3188 		DPRINTFN(BOOT,
   3189 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   3190 		    i, mp->start, mp->size));
   3191 
   3192 		/*
   3193 		 * Don't allow the end to run beyond our artificial limit
   3194 		 */
   3195 		if (e > pmap_memlimit)
   3196 			e = pmap_memlimit;
   3197 
   3198 		/*
   3199 		 * Is this region empty or strange?  skip it.
   3200 		 */
   3201 		if (e <= s) {
   3202 			mp->start = 0;
   3203 			mp->size = 0;
   3204 			continue;
   3205 		}
   3206 
   3207 		/*
   3208 		 * Does this overlap the beginning of kernel?
   3209 		 *   Does extend past the end of the kernel?
   3210 		 */
   3211 		else if (s < kernelstart && e > kernelstart) {
   3212 			if (e > kernelend) {
   3213 				avail[avail_cnt].start = kernelend;
   3214 				avail[avail_cnt].size = e - kernelend;
   3215 				avail_cnt++;
   3216 			}
   3217 			mp->size = kernelstart - s;
   3218 		}
   3219 		/*
   3220 		 * Check whether this region overlaps the end of the kernel.
   3221 		 */
   3222 		else if (s < kernelend && e > kernelend) {
   3223 			mp->start = kernelend;
   3224 			mp->size = e - kernelend;
   3225 		}
   3226 		/*
   3227 		 * Look whether this regions is completely inside the kernel.
   3228 		 * Nuke it if it does.
   3229 		 */
   3230 		else if (s >= kernelstart && e <= kernelend) {
   3231 			mp->start = 0;
   3232 			mp->size = 0;
   3233 		}
   3234 		/*
   3235 		 * If the user imposed a memory limit, enforce it.
   3236 		 */
   3237 		else if (s >= pmap_memlimit) {
   3238 			mp->start = -PAGE_SIZE;	/* let's know why */
   3239 			mp->size = 0;
   3240 		}
   3241 		else {
   3242 			mp->start = s;
   3243 			mp->size = e - s;
   3244 		}
   3245 		DPRINTFN(BOOT,
   3246 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   3247 		    i, mp->start, mp->size));
   3248 	}
   3249 
   3250 	/*
   3251 	 * Move (and uncount) all the null return to the end.
   3252 	 */
   3253 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3254 		if (mp->size == 0) {
   3255 			tmp = avail[i];
   3256 			avail[i] = avail[--avail_cnt];
   3257 			avail[avail_cnt] = avail[i];
   3258 		}
   3259 	}
   3260 
   3261 	/*
   3262 	 * (Bubble)sort them into asecnding order.
   3263 	 */
   3264 	for (i = 0; i < avail_cnt; i++) {
   3265 		for (j = i + 1; j < avail_cnt; j++) {
   3266 			if (avail[i].start > avail[j].start) {
   3267 				tmp = avail[i];
   3268 				avail[i] = avail[j];
   3269 				avail[j] = tmp;
   3270 			}
   3271 		}
   3272 	}
   3273 
   3274 	/*
   3275 	 * Make sure they don't overlap.
   3276 	 */
   3277 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3278 		if (mp[0].start + mp[0].size > mp[1].start) {
   3279 			mp[0].size = mp[1].start - mp[0].start;
   3280 		}
   3281 		DPRINTFN(BOOT,
   3282 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3283 		    i, mp->start, mp->size));
   3284 	}
   3285 	DPRINTFN(BOOT,
   3286 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3287 	    i, mp->start, mp->size));
   3288 
   3289 #ifdef	PTEGCOUNT
   3290 	pmap_pteg_cnt = PTEGCOUNT;
   3291 #else /* PTEGCOUNT */
   3292 
   3293 	pmap_pteg_cnt = 0x1000;
   3294 
   3295 	while (pmap_pteg_cnt < physmem)
   3296 		pmap_pteg_cnt <<= 1;
   3297 
   3298 	pmap_pteg_cnt >>= 1;
   3299 #endif /* PTEGCOUNT */
   3300 
   3301 #ifdef DEBUG
   3302 	DPRINTFN(BOOT,
   3303 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3304 #endif
   3305 
   3306 	/*
   3307 	 * Find suitably aligned memory for PTEG hash table.
   3308 	 */
   3309 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3310 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3311 
   3312 #ifdef DEBUG
   3313 	DPRINTFN(BOOT,
   3314 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3315 #endif
   3316 
   3317 
   3318 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3319 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3320 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3321 		    pmap_pteg_table, size);
   3322 #endif
   3323 
   3324 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3325 		pmap_pteg_cnt * sizeof(struct pteg));
   3326 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3327 
   3328 	/*
   3329 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3330 	 * with pages.  So we just steal them before giving them to UVM.
   3331 	 */
   3332 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3333 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3334 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3335 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3336 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3337 		    pmap_pvo_table, size);
   3338 #endif
   3339 
   3340 	for (i = 0; i < pmap_pteg_cnt; i++)
   3341 		TAILQ_INIT(&pmap_pvo_table[i]);
   3342 
   3343 #ifndef MSGBUFADDR
   3344 	/*
   3345 	 * Allocate msgbuf in high memory.
   3346 	 */
   3347 	msgbuf_paddr =
   3348 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3349 #endif
   3350 
   3351 #ifdef __HAVE_PMAP_PHYSSEG
   3352 	{
   3353 		u_int npgs = 0;
   3354 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3355 			npgs += btoc(mp->size);
   3356 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3357 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3358 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3359 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3360 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3361 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3362 			    pmap_physseg.pvoh, size);
   3363 #endif
   3364 	}
   3365 #endif
   3366 
   3367 
   3368 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3369 		paddr_t pfstart = atop(mp->start);
   3370 		paddr_t pfend = atop(mp->start + mp->size);
   3371 		if (mp->size == 0)
   3372 			continue;
   3373 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3374 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3375 				VM_FREELIST_FIRST256);
   3376 		} else if (mp->start >= SEGMENT_LENGTH) {
   3377 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3378 				VM_FREELIST_DEFAULT);
   3379 		} else {
   3380 			pfend = atop(SEGMENT_LENGTH);
   3381 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3382 				VM_FREELIST_FIRST256);
   3383 			pfstart = atop(SEGMENT_LENGTH);
   3384 			pfend = atop(mp->start + mp->size);
   3385 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3386 				VM_FREELIST_DEFAULT);
   3387 		}
   3388 	}
   3389 	printf("Done calling uvm_page_physload()\n");
   3390 
   3391 	/*
   3392 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3393 	 */
   3394 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3395 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3396 	pmap_vsid_bitmap[0] |= 1;
   3397 
   3398 	/*
   3399 	 * Initialize kernel pmap and hardware.
   3400 	 */
   3401 
   3402 /* PPC_OEA64_BRIDGE does support these instructions */
   3403 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   3404 	for (i = 0; i < 16; i++) {
   3405  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3406 		__asm volatile ("mtsrin %0,%1"
   3407  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3408 	}
   3409 
   3410 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3411 	__asm volatile ("mtsr %0,%1"
   3412 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3413 #ifdef KERNEL2_SR
   3414 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3415 	__asm volatile ("mtsr %0,%1"
   3416 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3417 #endif
   3418 	for (i = 0; i < 16; i++) {
   3419 		if (iosrtable[i] & SR601_T) {
   3420 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3421 			__asm volatile ("mtsrin %0,%1"
   3422 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3423 		}
   3424 	}
   3425 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
   3426 #if defined (PPC_OEA)
   3427 	__asm volatile ("sync; mtsdr1 %0; isync"
   3428 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3429 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
   3430  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3431  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3432 #endif
   3433 	tlbia();
   3434 
   3435 #ifdef ALTIVEC
   3436 	pmap_use_altivec = cpu_altivec;
   3437 #endif
   3438 
   3439 #ifdef DEBUG
   3440 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3441 		u_int cnt;
   3442 		int bank;
   3443 		char pbuf[9];
   3444 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3445 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3446 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3447 			    bank,
   3448 			    ptoa(vm_physmem[bank].avail_start),
   3449 			    ptoa(vm_physmem[bank].avail_end),
   3450 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3451 		}
   3452 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3453 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3454 		    pbuf, cnt);
   3455 	}
   3456 #endif
   3457 
   3458 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3459 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3460 	    &pmap_pool_uallocator);
   3461 
   3462 	pool_setlowat(&pmap_upvo_pool, 252);
   3463 
   3464 	pool_init(&pmap_pool, sizeof(struct pmap),
   3465 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3466 }
   3467