Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.41
      1 /*	$NetBSD: pmap.c,v 1.41 2006/09/19 20:19:53 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *        This product includes software developed by the NetBSD
     23  *        Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*
     42  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     43  * Copyright (C) 1995, 1996 TooLs GmbH.
     44  * All rights reserved.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. All advertising materials mentioning features or use of this software
     55  *    must display the following acknowledgement:
     56  *	This product includes software developed by TooLs GmbH.
     57  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     58  *    derived from this software without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     61  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     62  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     64  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     65  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     66  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     67  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     68  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     69  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.41 2006/09/19 20:19:53 matt Exp $");
     74 
     75 #include "opt_ppcarch.h"
     76 #include "opt_altivec.h"
     77 #include "opt_pmap.h"
     78 #include <sys/param.h>
     79 #include <sys/malloc.h>
     80 #include <sys/proc.h>
     81 #include <sys/user.h>
     82 #include <sys/pool.h>
     83 #include <sys/queue.h>
     84 #include <sys/device.h>		/* for evcnt */
     85 #include <sys/systm.h>
     86 
     87 #if __NetBSD_Version__ < 105010000
     88 #include <vm/vm.h>
     89 #include <vm/vm_kern.h>
     90 #define	splvm()		splimp()
     91 #endif
     92 
     93 #include <uvm/uvm.h>
     94 
     95 #include <machine/pcb.h>
     96 #include <machine/powerpc.h>
     97 #include <powerpc/spr.h>
     98 #include <powerpc/oea/sr_601.h>
     99 #include <powerpc/bat.h>
    100 #include <powerpc/stdarg.h>
    101 
    102 #if defined(DEBUG) || defined(PMAPCHECK)
    103 #define	STATIC
    104 #else
    105 #define	STATIC	static
    106 #endif
    107 
    108 #ifdef ALTIVEC
    109 int pmap_use_altivec;
    110 #endif
    111 
    112 volatile struct pteg *pmap_pteg_table;
    113 unsigned int pmap_pteg_cnt;
    114 unsigned int pmap_pteg_mask;
    115 #ifdef PMAP_MEMLIMIT
    116 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    117 #else
    118 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    119 #endif
    120 
    121 struct pmap kernel_pmap_;
    122 unsigned int pmap_pages_stolen;
    123 u_long pmap_pte_valid;
    124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    125 u_long pmap_pvo_enter_depth;
    126 u_long pmap_pvo_remove_depth;
    127 #endif
    128 
    129 int physmem;
    130 #ifndef MSGBUFADDR
    131 extern paddr_t msgbuf_paddr;
    132 #endif
    133 
    134 static struct mem_region *mem, *avail;
    135 static u_int mem_cnt, avail_cnt;
    136 
    137 #ifdef __HAVE_PMAP_PHYSSEG
    138 /*
    139  * This is a cache of referenced/modified bits.
    140  * Bits herein are shifted by ATTRSHFT.
    141  */
    142 #define	ATTR_SHFT	4
    143 struct pmap_physseg pmap_physseg;
    144 #endif
    145 
    146 /*
    147  * The following structure is aligned to 32 bytes
    148  */
    149 struct pvo_entry {
    150 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    151 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    152 	struct pte pvo_pte;			/* Prebuilt PTE */
    153 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    154 	vaddr_t pvo_vaddr;			/* VA of entry */
    155 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    156 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    157 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    158 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    159 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    160 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    161 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    162 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    163 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    164 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    165 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    166 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    167 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    168 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    169 #define	PVO_REMOVE		6		/* PVO has been removed */
    170 #define	PVO_WHERE_MASK		15
    171 #define	PVO_WHERE_SHFT		8
    172 } __attribute__ ((aligned (32)));
    173 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    174 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    175 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    176 #define	PVO_PTEGIDX_CLR(pvo)	\
    177 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    178 #define	PVO_PTEGIDX_SET(pvo,i)	\
    179 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    180 #define	PVO_WHERE(pvo,w)	\
    181 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    182 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    183 
    184 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    185 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    186 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    187 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    188 
    189 struct pool pmap_pool;		/* pool for pmap structures */
    190 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    191 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    192 
    193 /*
    194  * We keep a cache of unmanaged pages to be used for pvo entries for
    195  * unmanaged pages.
    196  */
    197 struct pvo_page {
    198 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    199 };
    200 SIMPLEQ_HEAD(pvop_head, pvo_page);
    201 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    202 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    203 u_long pmap_upvop_free;
    204 u_long pmap_upvop_maxfree;
    205 u_long pmap_mpvop_free;
    206 u_long pmap_mpvop_maxfree;
    207 
    208 STATIC void *pmap_pool_ualloc(struct pool *, int);
    209 STATIC void *pmap_pool_malloc(struct pool *, int);
    210 
    211 STATIC void pmap_pool_ufree(struct pool *, void *);
    212 STATIC void pmap_pool_mfree(struct pool *, void *);
    213 
    214 static struct pool_allocator pmap_pool_mallocator = {
    215 	pmap_pool_malloc, pmap_pool_mfree, 0,
    216 };
    217 
    218 static struct pool_allocator pmap_pool_uallocator = {
    219 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    220 };
    221 
    222 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    223 void pmap_pte_print(volatile struct pte *);
    224 void pmap_pteg_check(void);
    225 void pmap_pteg_dist(void);
    226 void pmap_print_pte(pmap_t, vaddr_t);
    227 void pmap_print_mmuregs(void);
    228 #endif
    229 
    230 #if defined(DEBUG) || defined(PMAPCHECK)
    231 #ifdef PMAPCHECK
    232 int pmapcheck = 1;
    233 #else
    234 int pmapcheck = 0;
    235 #endif
    236 void pmap_pvo_verify(void);
    237 STATIC void pmap_pvo_check(const struct pvo_entry *);
    238 #define	PMAP_PVO_CHECK(pvo)	 		\
    239 	do {					\
    240 		if (pmapcheck)			\
    241 			pmap_pvo_check(pvo);	\
    242 	} while (0)
    243 #else
    244 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    245 #endif
    246 STATIC int pmap_pte_insert(int, struct pte *);
    247 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    248 	vaddr_t, paddr_t, register_t, int);
    249 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    250 STATIC void pmap_pvo_free(struct pvo_entry *);
    251 STATIC void pmap_pvo_free_list(struct pvo_head *);
    252 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    253 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    254 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    255 STATIC void pvo_set_exec(struct pvo_entry *);
    256 STATIC void pvo_clear_exec(struct pvo_entry *);
    257 
    258 STATIC void tlbia(void);
    259 
    260 STATIC void pmap_release(pmap_t);
    261 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    262 
    263 static uint32_t pmap_pvo_reclaim_nextidx;
    264 #ifdef DEBUG
    265 static int pmap_pvo_reclaim_debugctr;
    266 #endif
    267 
    268 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    269 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    270 
    271 static int pmap_initialized;
    272 
    273 #if defined(DEBUG) || defined(PMAPDEBUG)
    274 #define	PMAPDEBUG_BOOT		0x0001
    275 #define	PMAPDEBUG_PTE		0x0002
    276 #define	PMAPDEBUG_EXEC		0x0008
    277 #define	PMAPDEBUG_PVOENTER	0x0010
    278 #define	PMAPDEBUG_PVOREMOVE	0x0020
    279 #define	PMAPDEBUG_ACTIVATE	0x0100
    280 #define	PMAPDEBUG_CREATE	0x0200
    281 #define	PMAPDEBUG_ENTER		0x1000
    282 #define	PMAPDEBUG_KENTER	0x2000
    283 #define	PMAPDEBUG_KREMOVE	0x4000
    284 #define	PMAPDEBUG_REMOVE	0x8000
    285 
    286 unsigned int pmapdebug = 0;
    287 
    288 # define DPRINTF(x)		printf x
    289 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    290 #else
    291 # define DPRINTF(x)
    292 # define DPRINTFN(n, x)
    293 #endif
    294 
    295 
    296 #ifdef PMAPCOUNTERS
    297 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    298 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    299 
    300 struct evcnt pmap_evcnt_mappings =
    301     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    302 	    "pmap", "pages mapped");
    303 struct evcnt pmap_evcnt_unmappings =
    304     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    305 	    "pmap", "pages unmapped");
    306 
    307 struct evcnt pmap_evcnt_kernel_mappings =
    308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    309 	    "pmap", "kernel pages mapped");
    310 struct evcnt pmap_evcnt_kernel_unmappings =
    311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    312 	    "pmap", "kernel pages unmapped");
    313 
    314 struct evcnt pmap_evcnt_mappings_replaced =
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    316 	    "pmap", "page mappings replaced");
    317 
    318 struct evcnt pmap_evcnt_exec_mappings =
    319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    320 	    "pmap", "exec pages mapped");
    321 struct evcnt pmap_evcnt_exec_cached =
    322     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    323 	    "pmap", "exec pages cached");
    324 
    325 struct evcnt pmap_evcnt_exec_synced =
    326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    327 	    "pmap", "exec pages synced");
    328 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    330 	    "pmap", "exec pages synced (CM)");
    331 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
    332     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    333 	    "pmap", "exec pages synced (PR)");
    334 
    335 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    336     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    337 	    "pmap", "exec pages uncached (PP)");
    338 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    339     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    340 	    "pmap", "exec pages uncached (CM)");
    341 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    342     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    343 	    "pmap", "exec pages uncached (ZP)");
    344 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    345     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    346 	    "pmap", "exec pages uncached (CP)");
    347 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
    348     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    349 	    "pmap", "exec pages uncached (PR)");
    350 
    351 struct evcnt pmap_evcnt_updates =
    352     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    353 	    "pmap", "updates");
    354 struct evcnt pmap_evcnt_collects =
    355     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    356 	    "pmap", "collects");
    357 struct evcnt pmap_evcnt_copies =
    358     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    359 	    "pmap", "copies");
    360 
    361 struct evcnt pmap_evcnt_ptes_spilled =
    362     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    363 	    "pmap", "ptes spilled from overflow");
    364 struct evcnt pmap_evcnt_ptes_unspilled =
    365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366 	    "pmap", "ptes not spilled");
    367 struct evcnt pmap_evcnt_ptes_evicted =
    368     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    369 	    "pmap", "ptes evicted");
    370 
    371 struct evcnt pmap_evcnt_ptes_primary[8] = {
    372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373 	    "pmap", "ptes added at primary[0]"),
    374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    375 	    "pmap", "ptes added at primary[1]"),
    376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377 	    "pmap", "ptes added at primary[2]"),
    378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379 	    "pmap", "ptes added at primary[3]"),
    380 
    381     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    382 	    "pmap", "ptes added at primary[4]"),
    383     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    384 	    "pmap", "ptes added at primary[5]"),
    385     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    386 	    "pmap", "ptes added at primary[6]"),
    387     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    388 	    "pmap", "ptes added at primary[7]"),
    389 };
    390 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes added at secondary[0]"),
    393     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    394 	    "pmap", "ptes added at secondary[1]"),
    395     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    396 	    "pmap", "ptes added at secondary[2]"),
    397     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    398 	    "pmap", "ptes added at secondary[3]"),
    399 
    400     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    401 	    "pmap", "ptes added at secondary[4]"),
    402     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    403 	    "pmap", "ptes added at secondary[5]"),
    404     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    405 	    "pmap", "ptes added at secondary[6]"),
    406     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    407 	    "pmap", "ptes added at secondary[7]"),
    408 };
    409 struct evcnt pmap_evcnt_ptes_removed =
    410     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    411 	    "pmap", "ptes removed");
    412 struct evcnt pmap_evcnt_ptes_changed =
    413     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    414 	    "pmap", "ptes changed");
    415 struct evcnt pmap_evcnt_pvos_reclaimed =
    416     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    417 	    "pmap", "pvos reclaimed");
    418 struct evcnt pmap_evcnt_pvos_failed =
    419     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    420 	    "pmap", "pvo allocation failures");
    421 
    422 /*
    423  * From pmap_subr.c
    424  */
    425 extern struct evcnt pmap_evcnt_zeroed_pages;
    426 extern struct evcnt pmap_evcnt_copied_pages;
    427 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    428 
    429 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
    430 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
    431 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
    432 
    433 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
    434 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
    435 
    436 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
    437 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
    438 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
    439 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
    440 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
    441 
    442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
    443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
    444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
    445 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
    446 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
    447 
    448 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
    449 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
    450 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
    451 
    452 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
    453 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
    454 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
    455 
    456 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
    457 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
    458 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
    459 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
    460 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
    461 
    462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
    463 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
    464 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
    465 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
    466 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
    467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
    468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
    469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
    470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
    471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
    472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
    473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
    474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
    475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
    476 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
    477 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
    478 
    479 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
    480 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
    481 #else
    482 #define	PMAPCOUNT(ev)	((void) 0)
    483 #define	PMAPCOUNT2(ev)	((void) 0)
    484 #endif
    485 
    486 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    487 
    488 /* XXXSL: this needs to be moved to assembler */
    489 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    490 
    491 #define	TLBSYNC()	__asm volatile("tlbsync")
    492 #define	SYNC()		__asm volatile("sync")
    493 #define	EIEIO()		__asm volatile("eieio")
    494 #define	MFMSR()		mfmsr()
    495 #define	MTMSR(psl)	mtmsr(psl)
    496 #define	MFPVR()		mfpvr()
    497 #define	MFSRIN(va)	mfsrin(va)
    498 #define	MFTB()		mfrtcltbl()
    499 
    500 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
    501 static inline register_t
    502 mfsrin(vaddr_t va)
    503 {
    504 	register_t sr;
    505 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    506 	return sr;
    507 }
    508 #endif	/* PPC_OEA*/
    509 
    510 #if defined (PPC_OEA64_BRIDGE)
    511 extern void mfmsr64 (register64_t *result);
    512 #endif /* PPC_OEA64_BRIDGE */
    513 
    514 
    515 static inline register_t
    516 pmap_interrupts_off(void)
    517 {
    518 	register_t msr = MFMSR();
    519 	if (msr & PSL_EE)
    520 		MTMSR(msr & ~PSL_EE);
    521 	return msr;
    522 }
    523 
    524 static void
    525 pmap_interrupts_restore(register_t msr)
    526 {
    527 	if (msr & PSL_EE)
    528 		MTMSR(msr);
    529 }
    530 
    531 static inline u_int32_t
    532 mfrtcltbl(void)
    533 {
    534 
    535 	if ((MFPVR() >> 16) == MPC601)
    536 		return (mfrtcl() >> 7);
    537 	else
    538 		return (mftbl());
    539 }
    540 
    541 /*
    542  * These small routines may have to be replaced,
    543  * if/when we support processors other that the 604.
    544  */
    545 
    546 void
    547 tlbia(void)
    548 {
    549 	caddr_t i;
    550 
    551 	SYNC();
    552 #if defined(PPC_OEA)
    553 	/*
    554 	 * Why not use "tlbia"?  Because not all processors implement it.
    555 	 *
    556 	 * This needs to be a per-CPU callback to do the appropriate thing
    557 	 * for the CPU. XXX
    558 	 */
    559 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    560 		TLBIE(i);
    561 		EIEIO();
    562 		SYNC();
    563 	}
    564 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
    565 	printf("Invalidating ALL TLB entries......\n");
    566 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    567 	for (i = 0; i <= (caddr_t)0xFF000; i += 0x00001000) {
    568 		TLBIEL(i);
    569 		EIEIO();
    570 		SYNC();
    571 	}
    572 #endif
    573 	TLBSYNC();
    574 	SYNC();
    575 }
    576 
    577 static inline register_t
    578 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    579 {
    580 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
    581 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    582 #else /* PPC_OEA64 */
    583 #if 0
    584 	const struct ste *ste;
    585 	register_t hash;
    586 	int i;
    587 
    588 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    589 
    590 	/*
    591 	 * Try the primary group first
    592 	 */
    593 	ste = pm->pm_stes[hash].stes;
    594 	for (i = 0; i < 8; i++, ste++) {
    595 		if (ste->ste_hi & STE_V) &&
    596 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    597 			return ste;
    598 	}
    599 
    600 	/*
    601 	 * Then the secondary group.
    602 	 */
    603 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    604 	for (i = 0; i < 8; i++, ste++) {
    605 		if (ste->ste_hi & STE_V) &&
    606 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    607 			return addr;
    608 	}
    609 
    610 	return NULL;
    611 #else
    612 	/*
    613 	 * Rather than searching the STE groups for the VSID, we know
    614 	 * how we generate that from the ESID and so do that.
    615 	 */
    616 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    617 #endif
    618 #endif /* PPC_OEA */
    619 }
    620 
    621 static inline register_t
    622 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    623 {
    624 	register_t hash;
    625 
    626 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    627 	return hash & pmap_pteg_mask;
    628 }
    629 
    630 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    631 /*
    632  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    633  * The only bit of magic is that the top 4 bits of the address doesn't
    634  * technically exist in the PTE.  But we know we reserved 4 bits of the
    635  * VSID for it so that's how we get it.
    636  */
    637 static vaddr_t
    638 pmap_pte_to_va(volatile const struct pte *pt)
    639 {
    640 	vaddr_t va;
    641 	uintptr_t ptaddr = (uintptr_t) pt;
    642 
    643 	if (pt->pte_hi & PTE_HID)
    644 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    645 
    646 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    647 #if defined(PPC_OEA)
    648 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    649 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
    650 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    651 #endif
    652 	va <<= ADDR_PIDX_SHFT;
    653 
    654 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    655 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    656 
    657 #if defined(PPC_OEA64)
    658 	/* PPC63 Bits 0-35 */
    659 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    660 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
    661 	/* PPC Bits 0-3 */
    662 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    663 #endif
    664 
    665 	return va;
    666 }
    667 #endif
    668 
    669 static inline struct pvo_head *
    670 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    671 {
    672 #ifdef __HAVE_VM_PAGE_MD
    673 	struct vm_page *pg;
    674 
    675 	pg = PHYS_TO_VM_PAGE(pa);
    676 	if (pg_p != NULL)
    677 		*pg_p = pg;
    678 	if (pg == NULL)
    679 		return &pmap_pvo_unmanaged;
    680 	return &pg->mdpage.mdpg_pvoh;
    681 #endif
    682 #ifdef __HAVE_PMAP_PHYSSEG
    683 	int bank, pg;
    684 
    685 	bank = vm_physseg_find(atop(pa), &pg);
    686 	if (pg_p != NULL)
    687 		*pg_p = pg;
    688 	if (bank == -1)
    689 		return &pmap_pvo_unmanaged;
    690 	return &vm_physmem[bank].pmseg.pvoh[pg];
    691 #endif
    692 }
    693 
    694 static inline struct pvo_head *
    695 vm_page_to_pvoh(struct vm_page *pg)
    696 {
    697 #ifdef __HAVE_VM_PAGE_MD
    698 	return &pg->mdpage.mdpg_pvoh;
    699 #endif
    700 #ifdef __HAVE_PMAP_PHYSSEG
    701 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    702 #endif
    703 }
    704 
    705 
    706 #ifdef __HAVE_PMAP_PHYSSEG
    707 static inline char *
    708 pa_to_attr(paddr_t pa)
    709 {
    710 	int bank, pg;
    711 
    712 	bank = vm_physseg_find(atop(pa), &pg);
    713 	if (bank == -1)
    714 		return NULL;
    715 	return &vm_physmem[bank].pmseg.attrs[pg];
    716 }
    717 #endif
    718 
    719 static inline void
    720 pmap_attr_clear(struct vm_page *pg, int ptebit)
    721 {
    722 #ifdef __HAVE_PMAP_PHYSSEG
    723 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    724 #endif
    725 #ifdef __HAVE_VM_PAGE_MD
    726 	pg->mdpage.mdpg_attrs &= ~ptebit;
    727 #endif
    728 }
    729 
    730 static inline int
    731 pmap_attr_fetch(struct vm_page *pg)
    732 {
    733 #ifdef __HAVE_PMAP_PHYSSEG
    734 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    735 #endif
    736 #ifdef __HAVE_VM_PAGE_MD
    737 	return pg->mdpage.mdpg_attrs;
    738 #endif
    739 }
    740 
    741 static inline void
    742 pmap_attr_save(struct vm_page *pg, int ptebit)
    743 {
    744 #ifdef __HAVE_PMAP_PHYSSEG
    745 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    746 #endif
    747 #ifdef __HAVE_VM_PAGE_MD
    748 	pg->mdpage.mdpg_attrs |= ptebit;
    749 #endif
    750 }
    751 
    752 static inline int
    753 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    754 {
    755 	if (pt->pte_hi == pvo_pt->pte_hi
    756 #if 0
    757 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    758 	        ~(PTE_REF|PTE_CHG)) == 0
    759 #endif
    760 	    )
    761 		return 1;
    762 	return 0;
    763 }
    764 
    765 static inline void
    766 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    767 {
    768 	/*
    769 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    770 	 * only gets set when the real pte is set in memory.
    771 	 *
    772 	 * Note: Don't set the valid bit for correct operation of tlb update.
    773 	 */
    774 #if defined(PPC_OEA)
    775 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    776 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    777 	pt->pte_lo = pte_lo;
    778 #elif defined (PPC_OEA64_BRIDGE)
    779 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    780 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    781 	pt->pte_lo = (u_int64_t) pte_lo;
    782 #elif defined (PPC_OEA64)
    783 #error PPC_OEA64 not supported
    784 #endif /* PPC_OEA */
    785 }
    786 
    787 static inline void
    788 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    789 {
    790 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    791 }
    792 
    793 static inline void
    794 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    795 {
    796 	/*
    797 	 * As shown in Section 7.6.3.2.3
    798 	 */
    799 	pt->pte_lo &= ~ptebit;
    800 	TLBIE(va);
    801 	SYNC();
    802 	EIEIO();
    803 	TLBSYNC();
    804 	SYNC();
    805 }
    806 
    807 static inline void
    808 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    809 {
    810 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    811 	if (pvo_pt->pte_hi & PTE_VALID)
    812 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    813 #endif
    814 	pvo_pt->pte_hi |= PTE_VALID;
    815 
    816 	/*
    817 	 * Update the PTE as defined in section 7.6.3.1
    818 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    819 	 * have been saved so this routine can restore them (if desired).
    820 	 */
    821 	pt->pte_lo = pvo_pt->pte_lo;
    822 	EIEIO();
    823 	pt->pte_hi = pvo_pt->pte_hi;
    824 	TLBSYNC();
    825 	SYNC();
    826 	pmap_pte_valid++;
    827 }
    828 
    829 static inline void
    830 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    831 {
    832 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    833 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    834 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    835 	if ((pt->pte_hi & PTE_VALID) == 0)
    836 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    837 #endif
    838 
    839 	pvo_pt->pte_hi &= ~PTE_VALID;
    840 	/*
    841 	 * Force the ref & chg bits back into the PTEs.
    842 	 */
    843 	SYNC();
    844 	/*
    845 	 * Invalidate the pte ... (Section 7.6.3.3)
    846 	 */
    847 	pt->pte_hi &= ~PTE_VALID;
    848 	SYNC();
    849 	TLBIE(va);
    850 	SYNC();
    851 	EIEIO();
    852 	TLBSYNC();
    853 	SYNC();
    854 	/*
    855 	 * Save the ref & chg bits ...
    856 	 */
    857 	pmap_pte_synch(pt, pvo_pt);
    858 	pmap_pte_valid--;
    859 }
    860 
    861 static inline void
    862 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    863 {
    864 	/*
    865 	 * Invalidate the PTE
    866 	 */
    867 	pmap_pte_unset(pt, pvo_pt, va);
    868 	pmap_pte_set(pt, pvo_pt);
    869 }
    870 
    871 /*
    872  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    873  * (either primary or secondary location).
    874  *
    875  * Note: both the destination and source PTEs must not have PTE_VALID set.
    876  */
    877 
    878 STATIC int
    879 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    880 {
    881 	volatile struct pte *pt;
    882 	int i;
    883 
    884 #if defined(DEBUG)
    885 #if defined (PPC_OEA)
    886 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    887 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    888 #elif defined (PPC_OEA64_BRIDGE)
    889 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
    890 		ptegidx, (unsigned long long) pvo_pt->pte_hi,
    891 		(unsigned long long) pvo_pt->pte_lo));
    892 
    893 #endif
    894 #endif
    895 	/*
    896 	 * First try primary hash.
    897 	 */
    898 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    899 		if ((pt->pte_hi & PTE_VALID) == 0) {
    900 			pvo_pt->pte_hi &= ~PTE_HID;
    901 			pmap_pte_set(pt, pvo_pt);
    902 			return i;
    903 		}
    904 	}
    905 
    906 	/*
    907 	 * Now try secondary hash.
    908 	 */
    909 	ptegidx ^= pmap_pteg_mask;
    910 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    911 		if ((pt->pte_hi & PTE_VALID) == 0) {
    912 			pvo_pt->pte_hi |= PTE_HID;
    913 			pmap_pte_set(pt, pvo_pt);
    914 			return i;
    915 		}
    916 	}
    917 	return -1;
    918 }
    919 
    920 /*
    921  * Spill handler.
    922  *
    923  * Tries to spill a page table entry from the overflow area.
    924  * This runs in either real mode (if dealing with a exception spill)
    925  * or virtual mode when dealing with manually spilling one of the
    926  * kernel's pte entries.  In either case, interrupts are already
    927  * disabled.
    928  */
    929 
    930 int
    931 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
    932 {
    933 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    934 	struct pvo_entry *pvo;
    935 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    936 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    937 	int ptegidx, i, j;
    938 	volatile struct pteg *pteg;
    939 	volatile struct pte *pt;
    940 
    941 	ptegidx = va_to_pteg(pm, addr);
    942 
    943 	/*
    944 	 * Have to substitute some entry. Use the primary hash for this.
    945 	 * Use low bits of timebase as random generator.  Make sure we are
    946 	 * not picking a kernel pte for replacement.
    947 	 */
    948 	pteg = &pmap_pteg_table[ptegidx];
    949 	i = MFTB() & 7;
    950 	for (j = 0; j < 8; j++) {
    951 		pt = &pteg->pt[i];
    952 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    953 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    954 				!= KERNEL_VSIDBITS)
    955 			break;
    956 		i = (i + 1) & 7;
    957 	}
    958 	KASSERT(j < 8);
    959 
    960 	source_pvo = NULL;
    961 	victim_pvo = NULL;
    962 	pvoh = &pmap_pvo_table[ptegidx];
    963 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    964 
    965 		/*
    966 		 * We need to find pvo entry for this address...
    967 		 */
    968 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    969 
    970 		/*
    971 		 * If we haven't found the source and we come to a PVO with
    972 		 * a valid PTE, then we know we can't find it because all
    973 		 * evicted PVOs always are first in the list.
    974 		 */
    975 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    976 			break;
    977 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    978 		    addr == PVO_VADDR(pvo)) {
    979 
    980 			/*
    981 			 * Now we have found the entry to be spilled into the
    982 			 * pteg.  Attempt to insert it into the page table.
    983 			 */
    984 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    985 			if (j >= 0) {
    986 				PVO_PTEGIDX_SET(pvo, j);
    987 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    988 				PVO_WHERE(pvo, SPILL_INSERT);
    989 				pvo->pvo_pmap->pm_evictions--;
    990 				PMAPCOUNT(ptes_spilled);
    991 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    992 				    ? pmap_evcnt_ptes_secondary
    993 				    : pmap_evcnt_ptes_primary)[j]);
    994 
    995 				/*
    996 				 * Since we keep the evicted entries at the
    997 				 * from of the PVO list, we need move this
    998 				 * (now resident) PVO after the evicted
    999 				 * entries.
   1000 				 */
   1001 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
   1002 
   1003 				/*
   1004 				 * If we don't have to move (either we were the
   1005 				 * last entry or the next entry was valid),
   1006 				 * don't change our position.  Otherwise
   1007 				 * move ourselves to the tail of the queue.
   1008 				 */
   1009 				if (next_pvo != NULL &&
   1010 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
   1011 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
   1012 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1013 				}
   1014 				return 1;
   1015 			}
   1016 			source_pvo = pvo;
   1017 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
   1018 				return 0;
   1019 			}
   1020 			if (victim_pvo != NULL)
   1021 				break;
   1022 		}
   1023 
   1024 		/*
   1025 		 * We also need the pvo entry of the victim we are replacing
   1026 		 * so save the R & C bits of the PTE.
   1027 		 */
   1028 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1029 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1030 			vpvoh = pvoh;			/* *1* */
   1031 			victim_pvo = pvo;
   1032 			if (source_pvo != NULL)
   1033 				break;
   1034 		}
   1035 	}
   1036 
   1037 	if (source_pvo == NULL) {
   1038 		PMAPCOUNT(ptes_unspilled);
   1039 		return 0;
   1040 	}
   1041 
   1042 	if (victim_pvo == NULL) {
   1043 		if ((pt->pte_hi & PTE_HID) == 0)
   1044 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1045 			    "no pvo entry!", pt);
   1046 
   1047 		/*
   1048 		 * If this is a secondary PTE, we need to search
   1049 		 * its primary pvo bucket for the matching PVO.
   1050 		 */
   1051 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1052 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1053 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1054 
   1055 			/*
   1056 			 * We also need the pvo entry of the victim we are
   1057 			 * replacing so save the R & C bits of the PTE.
   1058 			 */
   1059 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1060 				victim_pvo = pvo;
   1061 				break;
   1062 			}
   1063 		}
   1064 		if (victim_pvo == NULL)
   1065 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1066 			    "no pvo entry!", pt);
   1067 	}
   1068 
   1069 	/*
   1070 	 * The victim should be not be a kernel PVO/PTE entry.
   1071 	 */
   1072 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1073 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1074 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1075 
   1076 	/*
   1077 	 * We are invalidating the TLB entry for the EA for the
   1078 	 * we are replacing even though its valid; If we don't
   1079 	 * we lose any ref/chg bit changes contained in the TLB
   1080 	 * entry.
   1081 	 */
   1082 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1083 
   1084 	/*
   1085 	 * To enforce the PVO list ordering constraint that all
   1086 	 * evicted entries should come before all valid entries,
   1087 	 * move the source PVO to the tail of its list and the
   1088 	 * victim PVO to the head of its list (which might not be
   1089 	 * the same list, if the victim was using the secondary hash).
   1090 	 */
   1091 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1092 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1093 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1094 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1095 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1096 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1097 	victim_pvo->pvo_pmap->pm_evictions++;
   1098 	source_pvo->pvo_pmap->pm_evictions--;
   1099 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1100 	PVO_WHERE(source_pvo, SPILL_SET);
   1101 
   1102 	PVO_PTEGIDX_CLR(victim_pvo);
   1103 	PVO_PTEGIDX_SET(source_pvo, i);
   1104 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1105 	PMAPCOUNT(ptes_spilled);
   1106 	PMAPCOUNT(ptes_evicted);
   1107 	PMAPCOUNT(ptes_removed);
   1108 
   1109 	PMAP_PVO_CHECK(victim_pvo);
   1110 	PMAP_PVO_CHECK(source_pvo);
   1111 	return 1;
   1112 }
   1113 
   1114 /*
   1115  * Restrict given range to physical memory
   1116  */
   1117 void
   1118 pmap_real_memory(paddr_t *start, psize_t *size)
   1119 {
   1120 	struct mem_region *mp;
   1121 
   1122 	for (mp = mem; mp->size; mp++) {
   1123 		if (*start + *size > mp->start
   1124 		    && *start < mp->start + mp->size) {
   1125 			if (*start < mp->start) {
   1126 				*size -= mp->start - *start;
   1127 				*start = mp->start;
   1128 			}
   1129 			if (*start + *size > mp->start + mp->size)
   1130 				*size = mp->start + mp->size - *start;
   1131 			return;
   1132 		}
   1133 	}
   1134 	*size = 0;
   1135 }
   1136 
   1137 /*
   1138  * Initialize anything else for pmap handling.
   1139  * Called during vm_init().
   1140  */
   1141 void
   1142 pmap_init(void)
   1143 {
   1144 #ifdef __HAVE_PMAP_PHYSSEG
   1145 	struct pvo_tqhead *pvoh;
   1146 	int bank;
   1147 	long sz;
   1148 	char *attr;
   1149 
   1150 	pvoh = pmap_physseg.pvoh;
   1151 	attr = pmap_physseg.attrs;
   1152 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1153 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1154 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1155 		vm_physmem[bank].pmseg.attrs = attr;
   1156 		for (; sz > 0; sz--, pvoh++, attr++) {
   1157 			TAILQ_INIT(pvoh);
   1158 			*attr = 0;
   1159 		}
   1160 	}
   1161 #endif
   1162 
   1163 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1164 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1165 	    &pmap_pool_mallocator);
   1166 
   1167 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1168 
   1169 	pmap_initialized = 1;
   1170 
   1171 }
   1172 
   1173 /*
   1174  * How much virtual space does the kernel get?
   1175  */
   1176 void
   1177 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1178 {
   1179 	/*
   1180 	 * For now, reserve one segment (minus some overhead) for kernel
   1181 	 * virtual memory
   1182 	 */
   1183 	*start = VM_MIN_KERNEL_ADDRESS;
   1184 	*end = VM_MAX_KERNEL_ADDRESS;
   1185 }
   1186 
   1187 /*
   1188  * Allocate, initialize, and return a new physical map.
   1189  */
   1190 pmap_t
   1191 pmap_create(void)
   1192 {
   1193 	pmap_t pm;
   1194 
   1195 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1196 	memset((caddr_t)pm, 0, sizeof *pm);
   1197 	pmap_pinit(pm);
   1198 
   1199 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1200 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1201 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1202 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1203 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1204 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1205 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1206 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1207 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1208 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1209 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1210 	return pm;
   1211 }
   1212 
   1213 /*
   1214  * Initialize a preallocated and zeroed pmap structure.
   1215  */
   1216 void
   1217 pmap_pinit(pmap_t pm)
   1218 {
   1219 	register_t entropy = MFTB();
   1220 	register_t mask;
   1221 	int i;
   1222 
   1223 	/*
   1224 	 * Allocate some segment registers for this pmap.
   1225 	 */
   1226 	pm->pm_refs = 1;
   1227 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1228 		static register_t pmap_vsidcontext;
   1229 		register_t hash;
   1230 		unsigned int n;
   1231 
   1232 		/* Create a new value by multiplying by a prime adding in
   1233 		 * entropy from the timebase register.  This is to make the
   1234 		 * VSID more random so that the PT Hash function collides
   1235 		 * less often. (note that the prime causes gcc to do shifts
   1236 		 * instead of a multiply)
   1237 		 */
   1238 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1239 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1240 		if (hash == 0) {		/* 0 is special, avoid it */
   1241 			entropy += 0xbadf00d;
   1242 			continue;
   1243 		}
   1244 		n = hash >> 5;
   1245 		mask = 1L << (hash & (VSID_NBPW-1));
   1246 		hash = pmap_vsidcontext;
   1247 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1248 			/* anything free in this bucket? */
   1249 			if (~pmap_vsid_bitmap[n] == 0) {
   1250 				entropy = hash ^ (hash >> 16);
   1251 				continue;
   1252 			}
   1253 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1254 			mask = 1L << i;
   1255 			hash &= ~(VSID_NBPW-1);
   1256 			hash |= i;
   1257 		}
   1258 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1259 		pmap_vsid_bitmap[n] |= mask;
   1260 		pm->pm_vsid = hash;
   1261 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1262 		for (i = 0; i < 16; i++)
   1263 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1264 			    SR_NOEXEC;
   1265 #endif
   1266 		return;
   1267 	}
   1268 	panic("pmap_pinit: out of segments");
   1269 }
   1270 
   1271 /*
   1272  * Add a reference to the given pmap.
   1273  */
   1274 void
   1275 pmap_reference(pmap_t pm)
   1276 {
   1277 	pm->pm_refs++;
   1278 }
   1279 
   1280 /*
   1281  * Retire the given pmap from service.
   1282  * Should only be called if the map contains no valid mappings.
   1283  */
   1284 void
   1285 pmap_destroy(pmap_t pm)
   1286 {
   1287 	if (--pm->pm_refs == 0) {
   1288 		pmap_release(pm);
   1289 		pool_put(&pmap_pool, pm);
   1290 	}
   1291 }
   1292 
   1293 /*
   1294  * Release any resources held by the given physical map.
   1295  * Called when a pmap initialized by pmap_pinit is being released.
   1296  */
   1297 void
   1298 pmap_release(pmap_t pm)
   1299 {
   1300 	int idx, mask;
   1301 
   1302 	KASSERT(pm->pm_stats.resident_count == 0);
   1303 	KASSERT(pm->pm_stats.wired_count == 0);
   1304 
   1305 	if (pm->pm_sr[0] == 0)
   1306 		panic("pmap_release");
   1307 	idx = pm->pm_vsid & (NPMAPS-1);
   1308 	mask = 1 << (idx % VSID_NBPW);
   1309 	idx /= VSID_NBPW;
   1310 
   1311 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1312 	pmap_vsid_bitmap[idx] &= ~mask;
   1313 }
   1314 
   1315 /*
   1316  * Copy the range specified by src_addr/len
   1317  * from the source map to the range dst_addr/len
   1318  * in the destination map.
   1319  *
   1320  * This routine is only advisory and need not do anything.
   1321  */
   1322 void
   1323 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1324 	vsize_t len, vaddr_t src_addr)
   1325 {
   1326 	PMAPCOUNT(copies);
   1327 }
   1328 
   1329 /*
   1330  * Require that all active physical maps contain no
   1331  * incorrect entries NOW.
   1332  */
   1333 void
   1334 pmap_update(struct pmap *pmap)
   1335 {
   1336 	PMAPCOUNT(updates);
   1337 	TLBSYNC();
   1338 }
   1339 
   1340 /*
   1341  * Garbage collects the physical map system for
   1342  * pages which are no longer used.
   1343  * Success need not be guaranteed -- that is, there
   1344  * may well be pages which are not referenced, but
   1345  * others may be collected.
   1346  * Called by the pageout daemon when pages are scarce.
   1347  */
   1348 void
   1349 pmap_collect(pmap_t pm)
   1350 {
   1351 	PMAPCOUNT(collects);
   1352 }
   1353 
   1354 static inline int
   1355 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1356 {
   1357 	int pteidx;
   1358 	/*
   1359 	 * We can find the actual pte entry without searching by
   1360 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1361 	 * and by noticing the HID bit.
   1362 	 */
   1363 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1364 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1365 		pteidx ^= pmap_pteg_mask * 8;
   1366 	return pteidx;
   1367 }
   1368 
   1369 volatile struct pte *
   1370 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1371 {
   1372 	volatile struct pte *pt;
   1373 
   1374 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1375 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1376 		return NULL;
   1377 #endif
   1378 
   1379 	/*
   1380 	 * If we haven't been supplied the ptegidx, calculate it.
   1381 	 */
   1382 	if (pteidx == -1) {
   1383 		int ptegidx;
   1384 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1385 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1386 	}
   1387 
   1388 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1389 
   1390 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1391 	return pt;
   1392 #else
   1393 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1394 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1395 		    "pvo but no valid pte index", pvo);
   1396 	}
   1397 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1398 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1399 		    "pvo but no valid pte", pvo);
   1400 	}
   1401 
   1402 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1403 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1404 #if defined(DEBUG) || defined(PMAPCHECK)
   1405 			pmap_pte_print(pt);
   1406 #endif
   1407 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1408 			    "pmap_pteg_table %p but invalid in pvo",
   1409 			    pvo, pt);
   1410 		}
   1411 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1412 #if defined(DEBUG) || defined(PMAPCHECK)
   1413 			pmap_pte_print(pt);
   1414 #endif
   1415 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1416 			    "not match pte %p in pmap_pteg_table",
   1417 			    pvo, pt);
   1418 		}
   1419 		return pt;
   1420 	}
   1421 
   1422 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1423 #if defined(DEBUG) || defined(PMAPCHECK)
   1424 		pmap_pte_print(pt);
   1425 #endif
   1426 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1427 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1428 	}
   1429 	return NULL;
   1430 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1431 }
   1432 
   1433 struct pvo_entry *
   1434 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1435 {
   1436 	struct pvo_entry *pvo;
   1437 	int ptegidx;
   1438 
   1439 	va &= ~ADDR_POFF;
   1440 	ptegidx = va_to_pteg(pm, va);
   1441 
   1442 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1443 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1444 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1445 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1446 			    "list %#x (%p)", pvo, ptegidx,
   1447 			     &pmap_pvo_table[ptegidx]);
   1448 #endif
   1449 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1450 			if (pteidx_p)
   1451 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1452 			return pvo;
   1453 		}
   1454 	}
   1455 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1456 		panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __FUNCTION__,
   1457 		(pm == pmap_kernel() ? "kernel" : "user"), va);
   1458 	return NULL;
   1459 }
   1460 
   1461 #if defined(DEBUG) || defined(PMAPCHECK)
   1462 void
   1463 pmap_pvo_check(const struct pvo_entry *pvo)
   1464 {
   1465 	struct pvo_head *pvo_head;
   1466 	struct pvo_entry *pvo0;
   1467 	volatile struct pte *pt;
   1468 	int failed = 0;
   1469 
   1470 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1471 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1472 
   1473 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1474 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1475 		    pvo, pvo->pvo_pmap);
   1476 		failed = 1;
   1477 	}
   1478 
   1479 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1480 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1481 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1482 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1483 		failed = 1;
   1484 	}
   1485 
   1486 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1487 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1488 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1489 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1490 		failed = 1;
   1491 	}
   1492 
   1493 	if (PVO_MANAGED_P(pvo)) {
   1494 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1495 	} else {
   1496 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1497 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1498 			    "on kernel unmanaged list\n", pvo);
   1499 			failed = 1;
   1500 		}
   1501 		pvo_head = &pmap_pvo_kunmanaged;
   1502 	}
   1503 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1504 		if (pvo0 == pvo)
   1505 			break;
   1506 	}
   1507 	if (pvo0 == NULL) {
   1508 		printf("pmap_pvo_check: pvo %p: not present "
   1509 		    "on its vlist head %p\n", pvo, pvo_head);
   1510 		failed = 1;
   1511 	}
   1512 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1513 		printf("pmap_pvo_check: pvo %p: not present "
   1514 		    "on its olist head\n", pvo);
   1515 		failed = 1;
   1516 	}
   1517 	pt = pmap_pvo_to_pte(pvo, -1);
   1518 	if (pt == NULL) {
   1519 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1520 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1521 			    "no PTE\n", pvo);
   1522 			failed = 1;
   1523 		}
   1524 	} else {
   1525 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1526 		    (uintptr_t) pt >=
   1527 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1528 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1529 			    "pteg table\n", pvo, pt);
   1530 			failed = 1;
   1531 		}
   1532 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1533 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1534 			    "no PTE\n", pvo);
   1535 			failed = 1;
   1536 		}
   1537 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1538 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1539 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1540 			failed = 1;
   1541 		}
   1542 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1543 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1544 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1545 			    "%#x/%#x\n", pvo,
   1546 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1547 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1548 			failed = 1;
   1549 		}
   1550 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1551 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1552 			    " doesn't not match PVO's VA %#lx\n",
   1553 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1554 			failed = 1;
   1555 		}
   1556 		if (failed)
   1557 			pmap_pte_print(pt);
   1558 	}
   1559 	if (failed)
   1560 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1561 		    pvo->pvo_pmap);
   1562 }
   1563 #endif /* DEBUG || PMAPCHECK */
   1564 
   1565 /*
   1566  * Search the PVO table looking for a non-wired entry.
   1567  * If we find one, remove it and return it.
   1568  */
   1569 
   1570 struct pvo_entry *
   1571 pmap_pvo_reclaim(struct pmap *pm)
   1572 {
   1573 	struct pvo_tqhead *pvoh;
   1574 	struct pvo_entry *pvo;
   1575 	uint32_t idx, endidx;
   1576 
   1577 	endidx = pmap_pvo_reclaim_nextidx;
   1578 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1579 	     idx = (idx + 1) & pmap_pteg_mask) {
   1580 		pvoh = &pmap_pvo_table[idx];
   1581 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1582 			if (!PVO_WIRED_P(pvo)) {
   1583 				pmap_pvo_remove(pvo, -1, NULL);
   1584 				pmap_pvo_reclaim_nextidx = idx;
   1585 				PMAPCOUNT(pvos_reclaimed);
   1586 				return pvo;
   1587 			}
   1588 		}
   1589 	}
   1590 	return NULL;
   1591 }
   1592 
   1593 /*
   1594  * This returns whether this is the first mapping of a page.
   1595  */
   1596 int
   1597 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1598 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1599 {
   1600 	struct pvo_entry *pvo;
   1601 	struct pvo_tqhead *pvoh;
   1602 	register_t msr;
   1603 	int ptegidx;
   1604 	int i;
   1605 	int poolflags = PR_NOWAIT;
   1606 
   1607 	/*
   1608 	 * Compute the PTE Group index.
   1609 	 */
   1610 	va &= ~ADDR_POFF;
   1611 	ptegidx = va_to_pteg(pm, va);
   1612 
   1613 	msr = pmap_interrupts_off();
   1614 
   1615 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1616 	if (pmap_pvo_remove_depth > 0)
   1617 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1618 	if (++pmap_pvo_enter_depth > 1)
   1619 		panic("pmap_pvo_enter: called recursively!");
   1620 #endif
   1621 
   1622 	/*
   1623 	 * Remove any existing mapping for this page.  Reuse the
   1624 	 * pvo entry if there a mapping.
   1625 	 */
   1626 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1627 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1628 #ifdef DEBUG
   1629 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1630 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1631 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1632 			   va < VM_MIN_KERNEL_ADDRESS) {
   1633 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1634 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1635 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1636 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1637 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1638 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1639 #ifdef DDBX
   1640 				Debugger();
   1641 #endif
   1642 			}
   1643 #endif
   1644 			PMAPCOUNT(mappings_replaced);
   1645 			pmap_pvo_remove(pvo, -1, NULL);
   1646 			break;
   1647 		}
   1648 	}
   1649 
   1650 	/*
   1651 	 * If we aren't overwriting an mapping, try to allocate
   1652 	 */
   1653 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1654 	--pmap_pvo_enter_depth;
   1655 #endif
   1656 	pmap_interrupts_restore(msr);
   1657 	if (pvo) {
   1658 		pmap_pvo_free(pvo);
   1659 	}
   1660 	pvo = pool_get(pl, poolflags);
   1661 
   1662 #ifdef DEBUG
   1663 	/*
   1664 	 * Exercise pmap_pvo_reclaim() a little.
   1665 	 */
   1666 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1667 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1668 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1669 		pool_put(pl, pvo);
   1670 		pvo = NULL;
   1671 	}
   1672 #endif
   1673 
   1674 	msr = pmap_interrupts_off();
   1675 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1676 	++pmap_pvo_enter_depth;
   1677 #endif
   1678 	if (pvo == NULL) {
   1679 		pvo = pmap_pvo_reclaim(pm);
   1680 		if (pvo == NULL) {
   1681 			if ((flags & PMAP_CANFAIL) == 0)
   1682 				panic("pmap_pvo_enter: failed");
   1683 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1684 			pmap_pvo_enter_depth--;
   1685 #endif
   1686 			PMAPCOUNT(pvos_failed);
   1687 			pmap_interrupts_restore(msr);
   1688 			return ENOMEM;
   1689 		}
   1690 	}
   1691 
   1692 	pvo->pvo_vaddr = va;
   1693 	pvo->pvo_pmap = pm;
   1694 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1695 	if (flags & VM_PROT_EXECUTE) {
   1696 		PMAPCOUNT(exec_mappings);
   1697 		pvo_set_exec(pvo);
   1698 	}
   1699 	if (flags & PMAP_WIRED)
   1700 		pvo->pvo_vaddr |= PVO_WIRED;
   1701 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1702 		pvo->pvo_vaddr |= PVO_MANAGED;
   1703 		PMAPCOUNT(mappings);
   1704 	} else {
   1705 		PMAPCOUNT(kernel_mappings);
   1706 	}
   1707 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1708 
   1709 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1710 	if (PVO_WIRED_P(pvo))
   1711 		pvo->pvo_pmap->pm_stats.wired_count++;
   1712 	pvo->pvo_pmap->pm_stats.resident_count++;
   1713 #if defined(DEBUG)
   1714 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1715 		DPRINTFN(PVOENTER,
   1716 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1717 		    pvo, pm, va, pa));
   1718 #endif
   1719 
   1720 	/*
   1721 	 * We hope this succeeds but it isn't required.
   1722 	 */
   1723 	pvoh = &pmap_pvo_table[ptegidx];
   1724 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1725 	if (i >= 0) {
   1726 		PVO_PTEGIDX_SET(pvo, i);
   1727 		PVO_WHERE(pvo, ENTER_INSERT);
   1728 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1729 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1730 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1731 
   1732 	} else {
   1733 		/*
   1734 		 * Since we didn't have room for this entry (which makes it
   1735 		 * and evicted entry), place it at the head of the list.
   1736 		 */
   1737 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1738 		PMAPCOUNT(ptes_evicted);
   1739 		pm->pm_evictions++;
   1740 		/*
   1741 		 * If this is a kernel page, make sure it's active.
   1742 		 */
   1743 		if (pm == pmap_kernel()) {
   1744 			i = pmap_pte_spill(pm, va, FALSE);
   1745 			KASSERT(i);
   1746 		}
   1747 	}
   1748 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1749 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1750 	pmap_pvo_enter_depth--;
   1751 #endif
   1752 	pmap_interrupts_restore(msr);
   1753 	return 0;
   1754 }
   1755 
   1756 void
   1757 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1758 {
   1759 	volatile struct pte *pt;
   1760 	int ptegidx;
   1761 
   1762 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1763 	if (++pmap_pvo_remove_depth > 1)
   1764 		panic("pmap_pvo_remove: called recursively!");
   1765 #endif
   1766 
   1767 	/*
   1768 	 * If we haven't been supplied the ptegidx, calculate it.
   1769 	 */
   1770 	if (pteidx == -1) {
   1771 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1772 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1773 	} else {
   1774 		ptegidx = pteidx >> 3;
   1775 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1776 			ptegidx ^= pmap_pteg_mask;
   1777 	}
   1778 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1779 
   1780 	/*
   1781 	 * If there is an active pte entry, we need to deactivate it
   1782 	 * (and save the ref & chg bits).
   1783 	 */
   1784 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1785 	if (pt != NULL) {
   1786 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1787 		PVO_WHERE(pvo, REMOVE);
   1788 		PVO_PTEGIDX_CLR(pvo);
   1789 		PMAPCOUNT(ptes_removed);
   1790 	} else {
   1791 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1792 		pvo->pvo_pmap->pm_evictions--;
   1793 	}
   1794 
   1795 	/*
   1796 	 * Account for executable mappings.
   1797 	 */
   1798 	if (PVO_EXECUTABLE_P(pvo))
   1799 		pvo_clear_exec(pvo);
   1800 
   1801 	/*
   1802 	 * Update our statistics.
   1803 	 */
   1804 	pvo->pvo_pmap->pm_stats.resident_count--;
   1805 	if (PVO_WIRED_P(pvo))
   1806 		pvo->pvo_pmap->pm_stats.wired_count--;
   1807 
   1808 	/*
   1809 	 * Save the REF/CHG bits into their cache if the page is managed.
   1810 	 */
   1811 	if (PVO_MANAGED_P(pvo)) {
   1812 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1813 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1814 
   1815 		if (pg != NULL) {
   1816 			/*
   1817 			 * If this page was changed and it is mapped exec,
   1818 			 * invalidate it.
   1819 			 */
   1820 			if ((ptelo & PTE_CHG) &&
   1821 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1822 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1823 				if (LIST_EMPTY(pvoh)) {
   1824 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1825 					    "%#lx: clear-exec]\n",
   1826 					    VM_PAGE_TO_PHYS(pg)));
   1827 					pmap_attr_clear(pg, PTE_EXEC);
   1828 					PMAPCOUNT(exec_uncached_pvo_remove);
   1829 				} else {
   1830 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1831 					    "%#lx: syncicache]\n",
   1832 					    VM_PAGE_TO_PHYS(pg)));
   1833 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1834 					    PAGE_SIZE);
   1835 					PMAPCOUNT(exec_synced_pvo_remove);
   1836 				}
   1837 			}
   1838 
   1839 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1840 		}
   1841 		PMAPCOUNT(unmappings);
   1842 	} else {
   1843 		PMAPCOUNT(kernel_unmappings);
   1844 	}
   1845 
   1846 	/*
   1847 	 * Remove the PVO from its lists and return it to the pool.
   1848 	 */
   1849 	LIST_REMOVE(pvo, pvo_vlink);
   1850 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1851 	if (pvol) {
   1852 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1853 	}
   1854 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1855 	pmap_pvo_remove_depth--;
   1856 #endif
   1857 }
   1858 
   1859 void
   1860 pmap_pvo_free(struct pvo_entry *pvo)
   1861 {
   1862 
   1863 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1864 }
   1865 
   1866 void
   1867 pmap_pvo_free_list(struct pvo_head *pvol)
   1868 {
   1869 	struct pvo_entry *pvo, *npvo;
   1870 
   1871 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1872 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1873 		LIST_REMOVE(pvo, pvo_vlink);
   1874 		pmap_pvo_free(pvo);
   1875 	}
   1876 }
   1877 
   1878 /*
   1879  * Mark a mapping as executable.
   1880  * If this is the first executable mapping in the segment,
   1881  * clear the noexec flag.
   1882  */
   1883 STATIC void
   1884 pvo_set_exec(struct pvo_entry *pvo)
   1885 {
   1886 	struct pmap *pm = pvo->pvo_pmap;
   1887 
   1888 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1889 		return;
   1890 	}
   1891 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1892 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1893 	{
   1894 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1895 		if (pm->pm_exec[sr]++ == 0) {
   1896 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1897 		}
   1898 	}
   1899 #endif
   1900 }
   1901 
   1902 /*
   1903  * Mark a mapping as non-executable.
   1904  * If this was the last executable mapping in the segment,
   1905  * set the noexec flag.
   1906  */
   1907 STATIC void
   1908 pvo_clear_exec(struct pvo_entry *pvo)
   1909 {
   1910 	struct pmap *pm = pvo->pvo_pmap;
   1911 
   1912 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1913 		return;
   1914 	}
   1915 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1916 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1917 	{
   1918 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1919 		if (--pm->pm_exec[sr] == 0) {
   1920 			pm->pm_sr[sr] |= SR_NOEXEC;
   1921 		}
   1922 	}
   1923 #endif
   1924 }
   1925 
   1926 /*
   1927  * Insert physical page at pa into the given pmap at virtual address va.
   1928  */
   1929 int
   1930 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1931 {
   1932 	struct mem_region *mp;
   1933 	struct pvo_head *pvo_head;
   1934 	struct vm_page *pg;
   1935 	struct pool *pl;
   1936 	register_t pte_lo;
   1937 	int error;
   1938 	u_int pvo_flags;
   1939 	u_int was_exec = 0;
   1940 
   1941 	if (__predict_false(!pmap_initialized)) {
   1942 		pvo_head = &pmap_pvo_kunmanaged;
   1943 		pl = &pmap_upvo_pool;
   1944 		pvo_flags = 0;
   1945 		pg = NULL;
   1946 		was_exec = PTE_EXEC;
   1947 	} else {
   1948 		pvo_head = pa_to_pvoh(pa, &pg);
   1949 		pl = &pmap_mpvo_pool;
   1950 		pvo_flags = PVO_MANAGED;
   1951 	}
   1952 
   1953 	DPRINTFN(ENTER,
   1954 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1955 	    pm, va, pa, prot, flags));
   1956 
   1957 	/*
   1958 	 * If this is a managed page, and it's the first reference to the
   1959 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1960 	 */
   1961 	if (pg != NULL)
   1962 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1963 
   1964 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1965 
   1966 	/*
   1967 	 * Assume the page is cache inhibited and access is guarded unless
   1968 	 * it's in our available memory array.  If it is in the memory array,
   1969 	 * asssume it's in memory coherent memory.
   1970 	 */
   1971 	pte_lo = PTE_IG;
   1972 	if ((flags & PMAP_NC) == 0) {
   1973 		for (mp = mem; mp->size; mp++) {
   1974 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1975 				pte_lo = PTE_M;
   1976 				break;
   1977 			}
   1978 		}
   1979 	}
   1980 
   1981 	if (prot & VM_PROT_WRITE)
   1982 		pte_lo |= PTE_BW;
   1983 	else
   1984 		pte_lo |= PTE_BR;
   1985 
   1986 	/*
   1987 	 * If this was in response to a fault, "pre-fault" the PTE's
   1988 	 * changed/referenced bit appropriately.
   1989 	 */
   1990 	if (flags & VM_PROT_WRITE)
   1991 		pte_lo |= PTE_CHG;
   1992 	if (flags & VM_PROT_ALL)
   1993 		pte_lo |= PTE_REF;
   1994 
   1995 	/*
   1996 	 * We need to know if this page can be executable
   1997 	 */
   1998 	flags |= (prot & VM_PROT_EXECUTE);
   1999 
   2000 	/*
   2001 	 * Record mapping for later back-translation and pte spilling.
   2002 	 * This will overwrite any existing mapping.
   2003 	 */
   2004 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   2005 
   2006 	/*
   2007 	 * Flush the real page from the instruction cache if this page is
   2008 	 * mapped executable and cacheable and has not been flushed since
   2009 	 * the last time it was modified.
   2010 	 */
   2011 	if (error == 0 &&
   2012             (flags & VM_PROT_EXECUTE) &&
   2013             (pte_lo & PTE_I) == 0 &&
   2014 	    was_exec == 0) {
   2015 		DPRINTFN(ENTER, (" syncicache"));
   2016 		PMAPCOUNT(exec_synced);
   2017 		pmap_syncicache(pa, PAGE_SIZE);
   2018 		if (pg != NULL) {
   2019 			pmap_attr_save(pg, PTE_EXEC);
   2020 			PMAPCOUNT(exec_cached);
   2021 #if defined(DEBUG) || defined(PMAPDEBUG)
   2022 			if (pmapdebug & PMAPDEBUG_ENTER)
   2023 				printf(" marked-as-exec");
   2024 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2025 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   2026 				    VM_PAGE_TO_PHYS(pg));
   2027 
   2028 #endif
   2029 		}
   2030 	}
   2031 
   2032 	DPRINTFN(ENTER, (": error=%d\n", error));
   2033 
   2034 	return error;
   2035 }
   2036 
   2037 void
   2038 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2039 {
   2040 	struct mem_region *mp;
   2041 	register_t pte_lo;
   2042 	int error;
   2043 
   2044 #if defined (PPC_OEA64_BRIDGE)
   2045 	if (va < VM_MIN_KERNEL_ADDRESS)
   2046 		panic("pmap_kenter_pa: attempt to enter "
   2047 		    "non-kernel address %#lx!", va);
   2048 #endif
   2049 
   2050 	DPRINTFN(KENTER,
   2051 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   2052 
   2053 	/*
   2054 	 * Assume the page is cache inhibited and access is guarded unless
   2055 	 * it's in our available memory array.  If it is in the memory array,
   2056 	 * asssume it's in memory coherent memory.
   2057 	 */
   2058 	pte_lo = PTE_IG;
   2059 	if ((prot & PMAP_NC) == 0) {
   2060 		for (mp = mem; mp->size; mp++) {
   2061 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2062 				pte_lo = PTE_M;
   2063 				break;
   2064 			}
   2065 		}
   2066 	}
   2067 
   2068 	if (prot & VM_PROT_WRITE)
   2069 		pte_lo |= PTE_BW;
   2070 	else
   2071 		pte_lo |= PTE_BR;
   2072 
   2073 	/*
   2074 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2075 	 */
   2076 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2077 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2078 
   2079 	if (error != 0)
   2080 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   2081 		      va, pa, error);
   2082 }
   2083 
   2084 void
   2085 pmap_kremove(vaddr_t va, vsize_t len)
   2086 {
   2087 	if (va < VM_MIN_KERNEL_ADDRESS)
   2088 		panic("pmap_kremove: attempt to remove "
   2089 		    "non-kernel address %#lx!", va);
   2090 
   2091 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   2092 	pmap_remove(pmap_kernel(), va, va + len);
   2093 }
   2094 
   2095 /*
   2096  * Remove the given range of mapping entries.
   2097  */
   2098 void
   2099 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2100 {
   2101 	struct pvo_head pvol;
   2102 	struct pvo_entry *pvo;
   2103 	register_t msr;
   2104 	int pteidx;
   2105 
   2106 	LIST_INIT(&pvol);
   2107 	msr = pmap_interrupts_off();
   2108 	for (; va < endva; va += PAGE_SIZE) {
   2109 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2110 		if (pvo != NULL) {
   2111 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2112 		}
   2113 	}
   2114 	pmap_interrupts_restore(msr);
   2115 	pmap_pvo_free_list(&pvol);
   2116 }
   2117 
   2118 /*
   2119  * Get the physical page address for the given pmap/virtual address.
   2120  */
   2121 boolean_t
   2122 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2123 {
   2124 	struct pvo_entry *pvo;
   2125 	register_t msr;
   2126 
   2127 
   2128 	/*
   2129 	 * If this is a kernel pmap lookup, also check the battable
   2130 	 * and if we get a hit, translate the VA to a PA using the
   2131 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2132 	 * that will wrap back to 0.
   2133 	 */
   2134 	if (pm == pmap_kernel() &&
   2135 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2136 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2137 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2138 #if defined (PPC_OEA)
   2139 		if ((MFPVR() >> 16) != MPC601) {
   2140 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2141 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2142 				register_t batl =
   2143 				    battable[va >> ADDR_SR_SHFT].batl;
   2144 				register_t mask =
   2145 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2146 				if (pap)
   2147 					*pap = (batl & mask) | (va & ~mask);
   2148 				return TRUE;
   2149 			}
   2150 		} else {
   2151 			register_t batu = battable[va >> 23].batu;
   2152 			register_t batl = battable[va >> 23].batl;
   2153 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2154 			if (BAT601_VALID_P(batl) &&
   2155 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2156 				register_t mask =
   2157 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2158 				if (pap)
   2159 					*pap = (batl & mask) | (va & ~mask);
   2160 				return TRUE;
   2161 			} else if (SR601_VALID_P(sr) &&
   2162 				   SR601_PA_MATCH_P(sr, va)) {
   2163 				if (pap)
   2164 					*pap = va;
   2165 				return TRUE;
   2166 			}
   2167 		}
   2168 		return FALSE;
   2169 #elif defined (PPC_OEA64_BRIDGE)
   2170 	panic("%s: pm: %s, va: 0x%08lx\n", __FUNCTION__,
   2171 		(pm == pmap_kernel() ? "kernel" : "user"), va);
   2172 #elif defined (PPC_OEA64)
   2173 #error PPC_OEA64 not supported
   2174 #endif /* PPC_OEA */
   2175 	}
   2176 
   2177 	msr = pmap_interrupts_off();
   2178 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2179 	if (pvo != NULL) {
   2180 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2181 		if (pap)
   2182 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2183 			    | (va & ADDR_POFF);
   2184 	}
   2185 	pmap_interrupts_restore(msr);
   2186 	return pvo != NULL;
   2187 }
   2188 
   2189 /*
   2190  * Lower the protection on the specified range of this pmap.
   2191  */
   2192 void
   2193 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2194 {
   2195 	struct pvo_entry *pvo;
   2196 	volatile struct pte *pt;
   2197 	register_t msr;
   2198 	int pteidx;
   2199 
   2200 	/*
   2201 	 * Since this routine only downgrades protection, we should
   2202 	 * always be called with at least one bit not set.
   2203 	 */
   2204 	KASSERT(prot != VM_PROT_ALL);
   2205 
   2206 	/*
   2207 	 * If there is no protection, this is equivalent to
   2208 	 * remove the pmap from the pmap.
   2209 	 */
   2210 	if ((prot & VM_PROT_READ) == 0) {
   2211 		pmap_remove(pm, va, endva);
   2212 		return;
   2213 	}
   2214 
   2215 	msr = pmap_interrupts_off();
   2216 	for (; va < endva; va += PAGE_SIZE) {
   2217 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2218 		if (pvo == NULL)
   2219 			continue;
   2220 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2221 
   2222 		/*
   2223 		 * Revoke executable if asked to do so.
   2224 		 */
   2225 		if ((prot & VM_PROT_EXECUTE) == 0)
   2226 			pvo_clear_exec(pvo);
   2227 
   2228 #if 0
   2229 		/*
   2230 		 * If the page is already read-only, no change
   2231 		 * needs to be made.
   2232 		 */
   2233 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2234 			continue;
   2235 #endif
   2236 		/*
   2237 		 * Grab the PTE pointer before we diddle with
   2238 		 * the cached PTE copy.
   2239 		 */
   2240 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2241 		/*
   2242 		 * Change the protection of the page.
   2243 		 */
   2244 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2245 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2246 
   2247 		/*
   2248 		 * If the PVO is in the page table, update
   2249 		 * that pte at well.
   2250 		 */
   2251 		if (pt != NULL) {
   2252 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2253 			PVO_WHERE(pvo, PMAP_PROTECT);
   2254 			PMAPCOUNT(ptes_changed);
   2255 		}
   2256 
   2257 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2258 	}
   2259 	pmap_interrupts_restore(msr);
   2260 }
   2261 
   2262 void
   2263 pmap_unwire(pmap_t pm, vaddr_t va)
   2264 {
   2265 	struct pvo_entry *pvo;
   2266 	register_t msr;
   2267 
   2268 	msr = pmap_interrupts_off();
   2269 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2270 	if (pvo != NULL) {
   2271 		if (PVO_WIRED_P(pvo)) {
   2272 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2273 			pm->pm_stats.wired_count--;
   2274 		}
   2275 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2276 	}
   2277 	pmap_interrupts_restore(msr);
   2278 }
   2279 
   2280 /*
   2281  * Lower the protection on the specified physical page.
   2282  */
   2283 void
   2284 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2285 {
   2286 	struct pvo_head *pvo_head, pvol;
   2287 	struct pvo_entry *pvo, *next_pvo;
   2288 	volatile struct pte *pt;
   2289 	register_t msr;
   2290 
   2291 	KASSERT(prot != VM_PROT_ALL);
   2292 	LIST_INIT(&pvol);
   2293 	msr = pmap_interrupts_off();
   2294 
   2295 	/*
   2296 	 * When UVM reuses a page, it does a pmap_page_protect with
   2297 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2298 	 * since we know the page will have different contents.
   2299 	 */
   2300 	if ((prot & VM_PROT_READ) == 0) {
   2301 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2302 		    VM_PAGE_TO_PHYS(pg)));
   2303 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2304 			PMAPCOUNT(exec_uncached_page_protect);
   2305 			pmap_attr_clear(pg, PTE_EXEC);
   2306 		}
   2307 	}
   2308 
   2309 	pvo_head = vm_page_to_pvoh(pg);
   2310 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2311 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2312 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2313 
   2314 		/*
   2315 		 * Downgrading to no mapping at all, we just remove the entry.
   2316 		 */
   2317 		if ((prot & VM_PROT_READ) == 0) {
   2318 			pmap_pvo_remove(pvo, -1, &pvol);
   2319 			continue;
   2320 		}
   2321 
   2322 		/*
   2323 		 * If EXEC permission is being revoked, just clear the
   2324 		 * flag in the PVO.
   2325 		 */
   2326 		if ((prot & VM_PROT_EXECUTE) == 0)
   2327 			pvo_clear_exec(pvo);
   2328 
   2329 		/*
   2330 		 * If this entry is already RO, don't diddle with the
   2331 		 * page table.
   2332 		 */
   2333 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2334 			PMAP_PVO_CHECK(pvo);
   2335 			continue;
   2336 		}
   2337 
   2338 		/*
   2339 		 * Grab the PTE before the we diddle the bits so
   2340 		 * pvo_to_pte can verify the pte contents are as
   2341 		 * expected.
   2342 		 */
   2343 		pt = pmap_pvo_to_pte(pvo, -1);
   2344 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2345 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2346 		if (pt != NULL) {
   2347 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2348 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2349 			PMAPCOUNT(ptes_changed);
   2350 		}
   2351 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2352 	}
   2353 	pmap_interrupts_restore(msr);
   2354 	pmap_pvo_free_list(&pvol);
   2355 }
   2356 
   2357 /*
   2358  * Activate the address space for the specified process.  If the process
   2359  * is the current process, load the new MMU context.
   2360  */
   2361 void
   2362 pmap_activate(struct lwp *l)
   2363 {
   2364 	struct pcb *pcb = &l->l_addr->u_pcb;
   2365 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2366 
   2367 	DPRINTFN(ACTIVATE,
   2368 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2369 
   2370 	/*
   2371 	 * XXX Normally performed in cpu_fork().
   2372 	 */
   2373 	pcb->pcb_pm = pmap;
   2374 
   2375 	/*
   2376 	* In theory, the SR registers need only be valid on return
   2377 	* to user space wait to do them there.
   2378 	*/
   2379 	if (l == curlwp) {
   2380 		/* Store pointer to new current pmap. */
   2381 		curpm = pmap;
   2382 	}
   2383 }
   2384 
   2385 /*
   2386  * Deactivate the specified process's address space.
   2387  */
   2388 void
   2389 pmap_deactivate(struct lwp *l)
   2390 {
   2391 }
   2392 
   2393 boolean_t
   2394 pmap_query_bit(struct vm_page *pg, int ptebit)
   2395 {
   2396 	struct pvo_entry *pvo;
   2397 	volatile struct pte *pt;
   2398 	register_t msr;
   2399 
   2400 	if (pmap_attr_fetch(pg) & ptebit)
   2401 		return TRUE;
   2402 
   2403 	msr = pmap_interrupts_off();
   2404 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2405 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2406 		/*
   2407 		 * See if we saved the bit off.  If so cache, it and return
   2408 		 * success.
   2409 		 */
   2410 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2411 			pmap_attr_save(pg, ptebit);
   2412 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2413 			pmap_interrupts_restore(msr);
   2414 			return TRUE;
   2415 		}
   2416 	}
   2417 	/*
   2418 	 * No luck, now go thru the hard part of looking at the ptes
   2419 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2420 	 * to the PTEs.
   2421 	 */
   2422 	SYNC();
   2423 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2424 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2425 		/*
   2426 		 * See if this pvo have a valid PTE.  If so, fetch the
   2427 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2428 		 * ptebit is set, cache, it and return success.
   2429 		 */
   2430 		pt = pmap_pvo_to_pte(pvo, -1);
   2431 		if (pt != NULL) {
   2432 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2433 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2434 				pmap_attr_save(pg, ptebit);
   2435 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2436 				pmap_interrupts_restore(msr);
   2437 				return TRUE;
   2438 			}
   2439 		}
   2440 	}
   2441 	pmap_interrupts_restore(msr);
   2442 	return FALSE;
   2443 }
   2444 
   2445 boolean_t
   2446 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2447 {
   2448 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2449 	struct pvo_entry *pvo;
   2450 	volatile struct pte *pt;
   2451 	register_t msr;
   2452 	int rv = 0;
   2453 
   2454 	msr = pmap_interrupts_off();
   2455 
   2456 	/*
   2457 	 * Fetch the cache value
   2458 	 */
   2459 	rv |= pmap_attr_fetch(pg);
   2460 
   2461 	/*
   2462 	 * Clear the cached value.
   2463 	 */
   2464 	pmap_attr_clear(pg, ptebit);
   2465 
   2466 	/*
   2467 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2468 	 * can reset the right ones).  Note that since the pvo entries and
   2469 	 * list heads are accessed via BAT0 and are never placed in the
   2470 	 * page table, we don't have to worry about further accesses setting
   2471 	 * the REF/CHG bits.
   2472 	 */
   2473 	SYNC();
   2474 
   2475 	/*
   2476 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2477 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2478 	 */
   2479 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2480 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2481 		pt = pmap_pvo_to_pte(pvo, -1);
   2482 		if (pt != NULL) {
   2483 			/*
   2484 			 * Only sync the PTE if the bit we are looking
   2485 			 * for is not already set.
   2486 			 */
   2487 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2488 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2489 			/*
   2490 			 * If the bit we are looking for was already set,
   2491 			 * clear that bit in the pte.
   2492 			 */
   2493 			if (pvo->pvo_pte.pte_lo & ptebit)
   2494 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2495 		}
   2496 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2497 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2498 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2499 	}
   2500 	pmap_interrupts_restore(msr);
   2501 
   2502 	/*
   2503 	 * If we are clearing the modify bit and this page was marked EXEC
   2504 	 * and the user of the page thinks the page was modified, then we
   2505 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2506 	 * bit if it's not mapped.  The page itself might not have the CHG
   2507 	 * bit set if the modification was done via DMA to the page.
   2508 	 */
   2509 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2510 		if (LIST_EMPTY(pvoh)) {
   2511 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2512 			    VM_PAGE_TO_PHYS(pg)));
   2513 			pmap_attr_clear(pg, PTE_EXEC);
   2514 			PMAPCOUNT(exec_uncached_clear_modify);
   2515 		} else {
   2516 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2517 			    VM_PAGE_TO_PHYS(pg)));
   2518 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2519 			PMAPCOUNT(exec_synced_clear_modify);
   2520 		}
   2521 	}
   2522 	return (rv & ptebit) != 0;
   2523 }
   2524 
   2525 void
   2526 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2527 {
   2528 	struct pvo_entry *pvo;
   2529 	size_t offset = va & ADDR_POFF;
   2530 	int s;
   2531 
   2532 	s = splvm();
   2533 	while (len > 0) {
   2534 		size_t seglen = PAGE_SIZE - offset;
   2535 		if (seglen > len)
   2536 			seglen = len;
   2537 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2538 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2539 			pmap_syncicache(
   2540 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2541 			PMAP_PVO_CHECK(pvo);
   2542 		}
   2543 		va += seglen;
   2544 		len -= seglen;
   2545 		offset = 0;
   2546 	}
   2547 	splx(s);
   2548 }
   2549 
   2550 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2551 void
   2552 pmap_pte_print(volatile struct pte *pt)
   2553 {
   2554 	printf("PTE %p: ", pt);
   2555 
   2556 #if defined(PPC_OEA)
   2557 	/* High word: */
   2558 	printf("0x%08lx: [", pt->pte_hi);
   2559 #elif defined (PPC_OEA64_BRIDGE)
   2560 	printf("0x%016llx: [", pt->pte_hi);
   2561 #else /* PPC_OEA64 */
   2562 	printf("0x%016lx: [", pt->pte_hi);
   2563 #endif /* PPC_OEA */
   2564 
   2565 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2566 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2567 
   2568 #if defined (PPC_OEA)
   2569 	printf("0x%06lx 0x%02lx",
   2570 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2571 	    pt->pte_hi & PTE_API);
   2572 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2573 #elif defined (PPC_OEA64)
   2574 	printf("0x%06lx 0x%02lx",
   2575 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2576 	    pt->pte_hi & PTE_API);
   2577 	printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
   2578 #else
   2579 	/* PPC_OEA64_BRIDGE */
   2580 	printf("0x%06llx 0x%02llx",
   2581 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2582 	    pt->pte_hi & PTE_API);
   2583 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2584 #endif /* PPC_OEA */
   2585 
   2586 	/* Low word: */
   2587 #if defined (PPC_OEA)
   2588 	printf(" 0x%08lx: [", pt->pte_lo);
   2589 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2590 #elif defined (PPC_OEA64)
   2591 	printf(" 0x%016lx: [", pt->pte_lo);
   2592 	printf("0x%012lx... ", pt->pte_lo >> 12);
   2593 #else	/* PPC_OEA64_BRIDGE */
   2594 	printf(" 0x%016llx: [", pt->pte_lo);
   2595 	printf("0x%012llx... ", pt->pte_lo >> 12);
   2596 #endif
   2597 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2598 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2599 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2600 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2601 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2602 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2603 	switch (pt->pte_lo & PTE_PP) {
   2604 	case PTE_BR: printf("br]\n"); break;
   2605 	case PTE_BW: printf("bw]\n"); break;
   2606 	case PTE_SO: printf("so]\n"); break;
   2607 	case PTE_SW: printf("sw]\n"); break;
   2608 	}
   2609 }
   2610 #endif
   2611 
   2612 #if defined(DDB)
   2613 void
   2614 pmap_pteg_check(void)
   2615 {
   2616 	volatile struct pte *pt;
   2617 	int i;
   2618 	int ptegidx;
   2619 	u_int p_valid = 0;
   2620 	u_int s_valid = 0;
   2621 	u_int invalid = 0;
   2622 
   2623 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2624 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2625 			if (pt->pte_hi & PTE_VALID) {
   2626 				if (pt->pte_hi & PTE_HID)
   2627 					s_valid++;
   2628 				else
   2629 				{
   2630 					p_valid++;
   2631 				}
   2632 			} else
   2633 				invalid++;
   2634 		}
   2635 	}
   2636 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2637 		p_valid, p_valid, s_valid, s_valid,
   2638 		invalid, invalid);
   2639 }
   2640 
   2641 void
   2642 pmap_print_mmuregs(void)
   2643 {
   2644 	int i;
   2645 	u_int cpuvers;
   2646 #ifndef PPC_OEA64
   2647 	vaddr_t addr;
   2648 	register_t soft_sr[16];
   2649 #endif
   2650 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2651 	struct bat soft_ibat[4];
   2652 	struct bat soft_dbat[4];
   2653 #endif
   2654 	register_t sdr1;
   2655 
   2656 	cpuvers = MFPVR() >> 16;
   2657 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2658 #ifndef PPC_OEA64
   2659 	addr = 0;
   2660 	for (i = 0; i < 16; i++) {
   2661 		soft_sr[i] = MFSRIN(addr);
   2662 		addr += (1 << ADDR_SR_SHFT);
   2663 	}
   2664 #endif
   2665 
   2666 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2667 	/* read iBAT (601: uBAT) registers */
   2668 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2669 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2670 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2671 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2672 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2673 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2674 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2675 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2676 
   2677 
   2678 	if (cpuvers != MPC601) {
   2679 		/* read dBAT registers */
   2680 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2681 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2682 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2683 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2684 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2685 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2686 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2687 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2688 	}
   2689 #endif
   2690 
   2691 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2692 #ifndef PPC_OEA64
   2693 	printf("SR[]:\t");
   2694 	for (i = 0; i < 4; i++)
   2695 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2696 	printf("\n\t");
   2697 	for ( ; i < 8; i++)
   2698 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2699 	printf("\n\t");
   2700 	for ( ; i < 12; i++)
   2701 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2702 	printf("\n\t");
   2703 	for ( ; i < 16; i++)
   2704 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2705 	printf("\n");
   2706 #endif
   2707 
   2708 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2709 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2710 	for (i = 0; i < 4; i++) {
   2711 		printf("0x%08lx 0x%08lx, ",
   2712 			soft_ibat[i].batu, soft_ibat[i].batl);
   2713 		if (i == 1)
   2714 			printf("\n\t");
   2715 	}
   2716 	if (cpuvers != MPC601) {
   2717 		printf("\ndBAT[]:\t");
   2718 		for (i = 0; i < 4; i++) {
   2719 			printf("0x%08lx 0x%08lx, ",
   2720 				soft_dbat[i].batu, soft_dbat[i].batl);
   2721 			if (i == 1)
   2722 				printf("\n\t");
   2723 		}
   2724 	}
   2725 	printf("\n");
   2726 #endif /* PPC_OEA... */
   2727 }
   2728 
   2729 void
   2730 pmap_print_pte(pmap_t pm, vaddr_t va)
   2731 {
   2732 	struct pvo_entry *pvo;
   2733 	volatile struct pte *pt;
   2734 	int pteidx;
   2735 
   2736 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2737 	if (pvo != NULL) {
   2738 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2739 		if (pt != NULL) {
   2740 #if defined (PPC_OEA) || defined (PPC_OEA64)
   2741 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2742 				va, pt,
   2743 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2744 				pt->pte_hi, pt->pte_lo);
   2745 #else	/* PPC_OEA64_BRIDGE */
   2746 			printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
   2747 				va, pt,
   2748 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2749 				pt->pte_hi, pt->pte_lo);
   2750 #endif
   2751 		} else {
   2752 			printf("No valid PTE found\n");
   2753 		}
   2754 	} else {
   2755 		printf("Address not in pmap\n");
   2756 	}
   2757 }
   2758 
   2759 void
   2760 pmap_pteg_dist(void)
   2761 {
   2762 	struct pvo_entry *pvo;
   2763 	int ptegidx;
   2764 	int depth;
   2765 	int max_depth = 0;
   2766 	unsigned int depths[64];
   2767 
   2768 	memset(depths, 0, sizeof(depths));
   2769 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2770 		depth = 0;
   2771 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2772 			depth++;
   2773 		}
   2774 		if (depth > max_depth)
   2775 			max_depth = depth;
   2776 		if (depth > 63)
   2777 			depth = 63;
   2778 		depths[depth]++;
   2779 	}
   2780 
   2781 	for (depth = 0; depth < 64; depth++) {
   2782 		printf("  [%2d]: %8u", depth, depths[depth]);
   2783 		if ((depth & 3) == 3)
   2784 			printf("\n");
   2785 		if (depth == max_depth)
   2786 			break;
   2787 	}
   2788 	if ((depth & 3) != 3)
   2789 		printf("\n");
   2790 	printf("Max depth found was %d\n", max_depth);
   2791 }
   2792 #endif /* DEBUG */
   2793 
   2794 #if defined(PMAPCHECK) || defined(DEBUG)
   2795 void
   2796 pmap_pvo_verify(void)
   2797 {
   2798 	int ptegidx;
   2799 	int s;
   2800 
   2801 	s = splvm();
   2802 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2803 		struct pvo_entry *pvo;
   2804 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2805 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2806 				panic("pmap_pvo_verify: invalid pvo %p "
   2807 				    "on list %#x", pvo, ptegidx);
   2808 			pmap_pvo_check(pvo);
   2809 		}
   2810 	}
   2811 	splx(s);
   2812 }
   2813 #endif /* PMAPCHECK */
   2814 
   2815 
   2816 void *
   2817 pmap_pool_ualloc(struct pool *pp, int flags)
   2818 {
   2819 	struct pvo_page *pvop;
   2820 
   2821 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2822 	if (pvop != NULL) {
   2823 		pmap_upvop_free--;
   2824 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2825 		return pvop;
   2826 	}
   2827 	if (uvm.page_init_done != TRUE) {
   2828 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2829 	}
   2830 	return pmap_pool_malloc(pp, flags);
   2831 }
   2832 
   2833 void *
   2834 pmap_pool_malloc(struct pool *pp, int flags)
   2835 {
   2836 	struct pvo_page *pvop;
   2837 	struct vm_page *pg;
   2838 
   2839 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2840 	if (pvop != NULL) {
   2841 		pmap_mpvop_free--;
   2842 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2843 		return pvop;
   2844 	}
   2845  again:
   2846 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2847 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2848 	if (__predict_false(pg == NULL)) {
   2849 		if (flags & PR_WAITOK) {
   2850 			uvm_wait("plpg");
   2851 			goto again;
   2852 		} else {
   2853 			return (0);
   2854 		}
   2855 	}
   2856 	return (void *) VM_PAGE_TO_PHYS(pg);
   2857 }
   2858 
   2859 void
   2860 pmap_pool_ufree(struct pool *pp, void *va)
   2861 {
   2862 	struct pvo_page *pvop;
   2863 #if 0
   2864 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2865 		pmap_pool_mfree(va, size, tag);
   2866 		return;
   2867 	}
   2868 #endif
   2869 	pvop = va;
   2870 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2871 	pmap_upvop_free++;
   2872 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2873 		pmap_upvop_maxfree = pmap_upvop_free;
   2874 }
   2875 
   2876 void
   2877 pmap_pool_mfree(struct pool *pp, void *va)
   2878 {
   2879 	struct pvo_page *pvop;
   2880 
   2881 	pvop = va;
   2882 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2883 	pmap_mpvop_free++;
   2884 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2885 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2886 #if 0
   2887 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2888 #endif
   2889 }
   2890 
   2891 /*
   2892  * This routine in bootstraping to steal to-be-managed memory (which will
   2893  * then be unmanaged).  We use it to grab from the first 256MB for our
   2894  * pmap needs and above 256MB for other stuff.
   2895  */
   2896 vaddr_t
   2897 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2898 {
   2899 	vsize_t size;
   2900 	vaddr_t va;
   2901 	paddr_t pa = 0;
   2902 	int npgs, bank;
   2903 	struct vm_physseg *ps;
   2904 
   2905 	if (uvm.page_init_done == TRUE)
   2906 		panic("pmap_steal_memory: called _after_ bootstrap");
   2907 
   2908 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2909 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2910 
   2911 	size = round_page(vsize);
   2912 	npgs = atop(size);
   2913 
   2914 	/*
   2915 	 * PA 0 will never be among those given to UVM so we can use it
   2916 	 * to indicate we couldn't steal any memory.
   2917 	 */
   2918 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2919 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2920 		    ps->avail_end - ps->avail_start >= npgs) {
   2921 			pa = ptoa(ps->avail_start);
   2922 			break;
   2923 		}
   2924 	}
   2925 
   2926 	if (pa == 0)
   2927 		panic("pmap_steal_memory: no approriate memory to steal!");
   2928 
   2929 	ps->avail_start += npgs;
   2930 	ps->start += npgs;
   2931 
   2932 	/*
   2933 	 * If we've used up all the pages in the segment, remove it and
   2934 	 * compact the list.
   2935 	 */
   2936 	if (ps->avail_start == ps->end) {
   2937 		/*
   2938 		 * If this was the last one, then a very bad thing has occurred
   2939 		 */
   2940 		if (--vm_nphysseg == 0)
   2941 			panic("pmap_steal_memory: out of memory!");
   2942 
   2943 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2944 		for (; bank < vm_nphysseg; bank++, ps++) {
   2945 			ps[0] = ps[1];
   2946 		}
   2947 	}
   2948 
   2949 	va = (vaddr_t) pa;
   2950 	memset((caddr_t) va, 0, size);
   2951 	pmap_pages_stolen += npgs;
   2952 #ifdef DEBUG
   2953 	if (pmapdebug && npgs > 1) {
   2954 		u_int cnt = 0;
   2955 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2956 			cnt += ps->avail_end - ps->avail_start;
   2957 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2958 		    npgs, pmap_pages_stolen, cnt);
   2959 	}
   2960 #endif
   2961 
   2962 	return va;
   2963 }
   2964 
   2965 /*
   2966  * Find a chuck of memory with right size and alignment.
   2967  */
   2968 void *
   2969 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2970 {
   2971 	struct mem_region *mp;
   2972 	paddr_t s, e;
   2973 	int i, j;
   2974 
   2975 	size = round_page(size);
   2976 
   2977 	DPRINTFN(BOOT,
   2978 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2979 	    size, alignment, at_end));
   2980 
   2981 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2982 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2983 		    alignment);
   2984 
   2985 	if (at_end) {
   2986 		if (alignment != PAGE_SIZE)
   2987 			panic("pmap_boot_find_memory: invalid ending "
   2988 			    "alignment %lx", alignment);
   2989 
   2990 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2991 			s = mp->start + mp->size - size;
   2992 			if (s >= mp->start && mp->size >= size) {
   2993 				DPRINTFN(BOOT,(": %lx\n", s));
   2994 				DPRINTFN(BOOT,
   2995 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2996 				     "0x%lx size 0x%lx\n", mp - avail,
   2997 				     mp->start, mp->size));
   2998 				mp->size -= size;
   2999 				DPRINTFN(BOOT,
   3000 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3001 				     "0x%lx size 0x%lx\n", mp - avail,
   3002 				     mp->start, mp->size));
   3003 				return (void *) s;
   3004 			}
   3005 		}
   3006 		panic("pmap_boot_find_memory: no available memory");
   3007 	}
   3008 
   3009 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3010 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3011 		e = s + size;
   3012 
   3013 		/*
   3014 		 * Is the calculated region entirely within the region?
   3015 		 */
   3016 		if (s < mp->start || e > mp->start + mp->size)
   3017 			continue;
   3018 
   3019 		DPRINTFN(BOOT,(": %lx\n", s));
   3020 		if (s == mp->start) {
   3021 			/*
   3022 			 * If the block starts at the beginning of region,
   3023 			 * adjust the size & start. (the region may now be
   3024 			 * zero in length)
   3025 			 */
   3026 			DPRINTFN(BOOT,
   3027 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3028 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3029 			mp->start += size;
   3030 			mp->size -= size;
   3031 			DPRINTFN(BOOT,
   3032 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3033 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3034 		} else if (e == mp->start + mp->size) {
   3035 			/*
   3036 			 * If the block starts at the beginning of region,
   3037 			 * adjust only the size.
   3038 			 */
   3039 			DPRINTFN(BOOT,
   3040 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3041 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3042 			mp->size -= size;
   3043 			DPRINTFN(BOOT,
   3044 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3045 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3046 		} else {
   3047 			/*
   3048 			 * Block is in the middle of the region, so we
   3049 			 * have to split it in two.
   3050 			 */
   3051 			for (j = avail_cnt; j > i + 1; j--) {
   3052 				avail[j] = avail[j-1];
   3053 			}
   3054 			DPRINTFN(BOOT,
   3055 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3056 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3057 			mp[1].start = e;
   3058 			mp[1].size = mp[0].start + mp[0].size - e;
   3059 			mp[0].size = s - mp[0].start;
   3060 			avail_cnt++;
   3061 			for (; i < avail_cnt; i++) {
   3062 				DPRINTFN(BOOT,
   3063 				    ("pmap_boot_find_memory: a-avail[%d] "
   3064 				     "start 0x%lx size 0x%lx\n", i,
   3065 				     avail[i].start, avail[i].size));
   3066 			}
   3067 		}
   3068 		return (void *) s;
   3069 	}
   3070 	panic("pmap_boot_find_memory: not enough memory for "
   3071 	    "%lx/%lx allocation?", size, alignment);
   3072 }
   3073 
   3074 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3075 #if defined (PPC_OEA64_BRIDGE)
   3076 int
   3077 pmap_setup_segment0_map(int use_large_pages, ...)
   3078 {
   3079     vaddr_t va;
   3080 
   3081     register_t pte_lo = 0x0;
   3082     int ptegidx = 0, i = 0;
   3083     struct pte pte;
   3084     va_list ap;
   3085 
   3086     /* Coherent + Supervisor RW, no user access */
   3087     pte_lo = PTE_M;
   3088 
   3089     /* XXXSL
   3090      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3091      * these have to take priority.
   3092      */
   3093     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3094         ptegidx = va_to_pteg(pmap_kernel(), va);
   3095         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3096         i = pmap_pte_insert(ptegidx, &pte);
   3097     }
   3098 
   3099     va_start(ap, use_large_pages);
   3100     while (1) {
   3101         paddr_t pa;
   3102         size_t size;
   3103 
   3104         va = va_arg(ap, vaddr_t);
   3105 
   3106         if (va == 0)
   3107             break;
   3108 
   3109         pa = va_arg(ap, paddr_t);
   3110         size = va_arg(ap, size_t);
   3111 
   3112         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3113 #if 0
   3114 	    printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __FUNCTION__,  va, pa);
   3115 #endif
   3116             ptegidx = va_to_pteg(pmap_kernel(), va);
   3117             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3118             i = pmap_pte_insert(ptegidx, &pte);
   3119         }
   3120     }
   3121 
   3122     TLBSYNC();
   3123     SYNC();
   3124     return (0);
   3125 }
   3126 #endif /* PPC_OEA64_BRIDGE */
   3127 
   3128 /*
   3129  * This is not part of the defined PMAP interface and is specific to the
   3130  * PowerPC architecture.  This is called during initppc, before the system
   3131  * is really initialized.
   3132  */
   3133 void
   3134 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3135 {
   3136 	struct mem_region *mp, tmp;
   3137 	paddr_t s, e;
   3138 	psize_t size;
   3139 	int i, j;
   3140 
   3141 	/*
   3142 	 * Get memory.
   3143 	 */
   3144 	mem_regions(&mem, &avail);
   3145 #if defined(DEBUG)
   3146 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3147 		printf("pmap_bootstrap: memory configuration:\n");
   3148 		for (mp = mem; mp->size; mp++) {
   3149 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   3150 				mp->start, mp->size);
   3151 		}
   3152 		for (mp = avail; mp->size; mp++) {
   3153 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   3154 				mp->start, mp->size);
   3155 		}
   3156 	}
   3157 #endif
   3158 
   3159 	/*
   3160 	 * Find out how much physical memory we have and in how many chunks.
   3161 	 */
   3162 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3163 		if (mp->start >= pmap_memlimit)
   3164 			continue;
   3165 		if (mp->start + mp->size > pmap_memlimit) {
   3166 			size = pmap_memlimit - mp->start;
   3167 			physmem += btoc(size);
   3168 		} else {
   3169 			physmem += btoc(mp->size);
   3170 		}
   3171 		mem_cnt++;
   3172 	}
   3173 
   3174 	/*
   3175 	 * Count the number of available entries.
   3176 	 */
   3177 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3178 		avail_cnt++;
   3179 
   3180 	/*
   3181 	 * Page align all regions.
   3182 	 */
   3183 	kernelstart = trunc_page(kernelstart);
   3184 	kernelend = round_page(kernelend);
   3185 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3186 		s = round_page(mp->start);
   3187 		mp->size -= (s - mp->start);
   3188 		mp->size = trunc_page(mp->size);
   3189 		mp->start = s;
   3190 		e = mp->start + mp->size;
   3191 
   3192 		DPRINTFN(BOOT,
   3193 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   3194 		    i, mp->start, mp->size));
   3195 
   3196 		/*
   3197 		 * Don't allow the end to run beyond our artificial limit
   3198 		 */
   3199 		if (e > pmap_memlimit)
   3200 			e = pmap_memlimit;
   3201 
   3202 		/*
   3203 		 * Is this region empty or strange?  skip it.
   3204 		 */
   3205 		if (e <= s) {
   3206 			mp->start = 0;
   3207 			mp->size = 0;
   3208 			continue;
   3209 		}
   3210 
   3211 		/*
   3212 		 * Does this overlap the beginning of kernel?
   3213 		 *   Does extend past the end of the kernel?
   3214 		 */
   3215 		else if (s < kernelstart && e > kernelstart) {
   3216 			if (e > kernelend) {
   3217 				avail[avail_cnt].start = kernelend;
   3218 				avail[avail_cnt].size = e - kernelend;
   3219 				avail_cnt++;
   3220 			}
   3221 			mp->size = kernelstart - s;
   3222 		}
   3223 		/*
   3224 		 * Check whether this region overlaps the end of the kernel.
   3225 		 */
   3226 		else if (s < kernelend && e > kernelend) {
   3227 			mp->start = kernelend;
   3228 			mp->size = e - kernelend;
   3229 		}
   3230 		/*
   3231 		 * Look whether this regions is completely inside the kernel.
   3232 		 * Nuke it if it does.
   3233 		 */
   3234 		else if (s >= kernelstart && e <= kernelend) {
   3235 			mp->start = 0;
   3236 			mp->size = 0;
   3237 		}
   3238 		/*
   3239 		 * If the user imposed a memory limit, enforce it.
   3240 		 */
   3241 		else if (s >= pmap_memlimit) {
   3242 			mp->start = -PAGE_SIZE;	/* let's know why */
   3243 			mp->size = 0;
   3244 		}
   3245 		else {
   3246 			mp->start = s;
   3247 			mp->size = e - s;
   3248 		}
   3249 		DPRINTFN(BOOT,
   3250 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   3251 		    i, mp->start, mp->size));
   3252 	}
   3253 
   3254 	/*
   3255 	 * Move (and uncount) all the null return to the end.
   3256 	 */
   3257 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3258 		if (mp->size == 0) {
   3259 			tmp = avail[i];
   3260 			avail[i] = avail[--avail_cnt];
   3261 			avail[avail_cnt] = avail[i];
   3262 		}
   3263 	}
   3264 
   3265 	/*
   3266 	 * (Bubble)sort them into asecnding order.
   3267 	 */
   3268 	for (i = 0; i < avail_cnt; i++) {
   3269 		for (j = i + 1; j < avail_cnt; j++) {
   3270 			if (avail[i].start > avail[j].start) {
   3271 				tmp = avail[i];
   3272 				avail[i] = avail[j];
   3273 				avail[j] = tmp;
   3274 			}
   3275 		}
   3276 	}
   3277 
   3278 	/*
   3279 	 * Make sure they don't overlap.
   3280 	 */
   3281 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3282 		if (mp[0].start + mp[0].size > mp[1].start) {
   3283 			mp[0].size = mp[1].start - mp[0].start;
   3284 		}
   3285 		DPRINTFN(BOOT,
   3286 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3287 		    i, mp->start, mp->size));
   3288 	}
   3289 	DPRINTFN(BOOT,
   3290 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3291 	    i, mp->start, mp->size));
   3292 
   3293 #ifdef	PTEGCOUNT
   3294 	pmap_pteg_cnt = PTEGCOUNT;
   3295 #else /* PTEGCOUNT */
   3296 
   3297 	pmap_pteg_cnt = 0x1000;
   3298 
   3299 	while (pmap_pteg_cnt < physmem)
   3300 		pmap_pteg_cnt <<= 1;
   3301 
   3302 	pmap_pteg_cnt >>= 1;
   3303 #endif /* PTEGCOUNT */
   3304 
   3305 #ifdef DEBUG
   3306 	DPRINTFN(BOOT,
   3307 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3308 #endif
   3309 
   3310 	/*
   3311 	 * Find suitably aligned memory for PTEG hash table.
   3312 	 */
   3313 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3314 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3315 
   3316 #ifdef DEBUG
   3317 	DPRINTFN(BOOT,
   3318 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3319 #endif
   3320 
   3321 
   3322 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3323 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3324 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3325 		    pmap_pteg_table, size);
   3326 #endif
   3327 
   3328 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3329 		pmap_pteg_cnt * sizeof(struct pteg));
   3330 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3331 
   3332 	/*
   3333 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3334 	 * with pages.  So we just steal them before giving them to UVM.
   3335 	 */
   3336 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3337 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3338 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3339 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3340 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3341 		    pmap_pvo_table, size);
   3342 #endif
   3343 
   3344 	for (i = 0; i < pmap_pteg_cnt; i++)
   3345 		TAILQ_INIT(&pmap_pvo_table[i]);
   3346 
   3347 #ifndef MSGBUFADDR
   3348 	/*
   3349 	 * Allocate msgbuf in high memory.
   3350 	 */
   3351 	msgbuf_paddr =
   3352 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3353 #endif
   3354 
   3355 #ifdef __HAVE_PMAP_PHYSSEG
   3356 	{
   3357 		u_int npgs = 0;
   3358 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3359 			npgs += btoc(mp->size);
   3360 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3361 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3362 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3363 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3364 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3365 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3366 			    pmap_physseg.pvoh, size);
   3367 #endif
   3368 	}
   3369 #endif
   3370 
   3371 
   3372 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3373 		paddr_t pfstart = atop(mp->start);
   3374 		paddr_t pfend = atop(mp->start + mp->size);
   3375 		if (mp->size == 0)
   3376 			continue;
   3377 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3378 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3379 				VM_FREELIST_FIRST256);
   3380 		} else if (mp->start >= SEGMENT_LENGTH) {
   3381 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3382 				VM_FREELIST_DEFAULT);
   3383 		} else {
   3384 			pfend = atop(SEGMENT_LENGTH);
   3385 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3386 				VM_FREELIST_FIRST256);
   3387 			pfstart = atop(SEGMENT_LENGTH);
   3388 			pfend = atop(mp->start + mp->size);
   3389 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3390 				VM_FREELIST_DEFAULT);
   3391 		}
   3392 	}
   3393 
   3394 	/*
   3395 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3396 	 */
   3397 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3398 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3399 	pmap_vsid_bitmap[0] |= 1;
   3400 
   3401 	/*
   3402 	 * Initialize kernel pmap and hardware.
   3403 	 */
   3404 
   3405 /* PPC_OEA64_BRIDGE does support these instructions */
   3406 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   3407 	for (i = 0; i < 16; i++) {
   3408  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3409 		__asm volatile ("mtsrin %0,%1"
   3410  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3411 	}
   3412 
   3413 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3414 	__asm volatile ("mtsr %0,%1"
   3415 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3416 #ifdef KERNEL2_SR
   3417 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3418 	__asm volatile ("mtsr %0,%1"
   3419 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3420 #endif
   3421 	for (i = 0; i < 16; i++) {
   3422 		if (iosrtable[i] & SR601_T) {
   3423 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3424 			__asm volatile ("mtsrin %0,%1"
   3425 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3426 		}
   3427 	}
   3428 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
   3429 #if defined (PPC_OEA)
   3430 	__asm volatile ("sync; mtsdr1 %0; isync"
   3431 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3432 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
   3433  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3434  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3435 #endif
   3436 	tlbia();
   3437 
   3438 #ifdef ALTIVEC
   3439 	pmap_use_altivec = cpu_altivec;
   3440 #endif
   3441 
   3442 #ifdef DEBUG
   3443 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3444 		u_int cnt;
   3445 		int bank;
   3446 		char pbuf[9];
   3447 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3448 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3449 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3450 			    bank,
   3451 			    ptoa(vm_physmem[bank].avail_start),
   3452 			    ptoa(vm_physmem[bank].avail_end),
   3453 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3454 		}
   3455 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3456 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3457 		    pbuf, cnt);
   3458 	}
   3459 #endif
   3460 
   3461 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3462 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3463 	    &pmap_pool_uallocator);
   3464 
   3465 	pool_setlowat(&pmap_upvo_pool, 252);
   3466 
   3467 	pool_init(&pmap_pool, sizeof(struct pmap),
   3468 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3469 
   3470 #if defined(PMAP_NEED_MAPKERNEL)
   3471 	{
   3472 		extern int etext[], kernel_text[];
   3473 		vaddr_t va, va_etext = (paddr_t) etext;
   3474 		paddr_t pa;
   3475 
   3476 		va = (vaddr_t) kernel_text;
   3477 
   3478 		for (pa = kernelstart; va < va_etext;
   3479 		     pa += PAGE_SIZE, va += PAGE_SIZE)
   3480 			pmap_enter(pmap_kernel(), va, pa,
   3481 			    VM_PROT_READ|VM_PROT_EXECUTE, 0);
   3482 
   3483 		for (; pa < kernelend;
   3484 		     pa += PAGE_SIZE, va += PAGE_SIZE)
   3485 			pmap_enter(pmap_kernel(), va, pa,
   3486 			    VM_PROT_READ|VM_PROT_WRITE, 0);
   3487 	}
   3488 #endif
   3489 }
   3490