pmap.c revision 1.41 1 /* $NetBSD: pmap.c,v 1.41 2006/09/19 20:19:53 matt Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43 * Copyright (C) 1995, 1996 TooLs GmbH.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by TooLs GmbH.
57 * 4. The name of TooLs GmbH may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.41 2006/09/19 20:19:53 matt Exp $");
74
75 #include "opt_ppcarch.h"
76 #include "opt_altivec.h"
77 #include "opt_pmap.h"
78 #include <sys/param.h>
79 #include <sys/malloc.h>
80 #include <sys/proc.h>
81 #include <sys/user.h>
82 #include <sys/pool.h>
83 #include <sys/queue.h>
84 #include <sys/device.h> /* for evcnt */
85 #include <sys/systm.h>
86
87 #if __NetBSD_Version__ < 105010000
88 #include <vm/vm.h>
89 #include <vm/vm_kern.h>
90 #define splvm() splimp()
91 #endif
92
93 #include <uvm/uvm.h>
94
95 #include <machine/pcb.h>
96 #include <machine/powerpc.h>
97 #include <powerpc/spr.h>
98 #include <powerpc/oea/sr_601.h>
99 #include <powerpc/bat.h>
100 #include <powerpc/stdarg.h>
101
102 #if defined(DEBUG) || defined(PMAPCHECK)
103 #define STATIC
104 #else
105 #define STATIC static
106 #endif
107
108 #ifdef ALTIVEC
109 int pmap_use_altivec;
110 #endif
111
112 volatile struct pteg *pmap_pteg_table;
113 unsigned int pmap_pteg_cnt;
114 unsigned int pmap_pteg_mask;
115 #ifdef PMAP_MEMLIMIT
116 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
117 #else
118 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
119 #endif
120
121 struct pmap kernel_pmap_;
122 unsigned int pmap_pages_stolen;
123 u_long pmap_pte_valid;
124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
125 u_long pmap_pvo_enter_depth;
126 u_long pmap_pvo_remove_depth;
127 #endif
128
129 int physmem;
130 #ifndef MSGBUFADDR
131 extern paddr_t msgbuf_paddr;
132 #endif
133
134 static struct mem_region *mem, *avail;
135 static u_int mem_cnt, avail_cnt;
136
137 #ifdef __HAVE_PMAP_PHYSSEG
138 /*
139 * This is a cache of referenced/modified bits.
140 * Bits herein are shifted by ATTRSHFT.
141 */
142 #define ATTR_SHFT 4
143 struct pmap_physseg pmap_physseg;
144 #endif
145
146 /*
147 * The following structure is aligned to 32 bytes
148 */
149 struct pvo_entry {
150 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
151 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
152 struct pte pvo_pte; /* Prebuilt PTE */
153 pmap_t pvo_pmap; /* ptr to owning pmap */
154 vaddr_t pvo_vaddr; /* VA of entry */
155 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
156 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
157 #define PVO_WIRED 0x0010 /* PVO entry is wired */
158 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
159 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
160 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
161 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
162 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
163 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
164 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
165 #define PVO_SPILL_SET 2 /* PVO has been spilled */
166 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
167 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
168 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
169 #define PVO_REMOVE 6 /* PVO has been removed */
170 #define PVO_WHERE_MASK 15
171 #define PVO_WHERE_SHFT 8
172 } __attribute__ ((aligned (32)));
173 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
174 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
175 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
176 #define PVO_PTEGIDX_CLR(pvo) \
177 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
178 #define PVO_PTEGIDX_SET(pvo,i) \
179 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
180 #define PVO_WHERE(pvo,w) \
181 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
182 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
183
184 TAILQ_HEAD(pvo_tqhead, pvo_entry);
185 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
186 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
187 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
188
189 struct pool pmap_pool; /* pool for pmap structures */
190 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
191 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
192
193 /*
194 * We keep a cache of unmanaged pages to be used for pvo entries for
195 * unmanaged pages.
196 */
197 struct pvo_page {
198 SIMPLEQ_ENTRY(pvo_page) pvop_link;
199 };
200 SIMPLEQ_HEAD(pvop_head, pvo_page);
201 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
202 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
203 u_long pmap_upvop_free;
204 u_long pmap_upvop_maxfree;
205 u_long pmap_mpvop_free;
206 u_long pmap_mpvop_maxfree;
207
208 STATIC void *pmap_pool_ualloc(struct pool *, int);
209 STATIC void *pmap_pool_malloc(struct pool *, int);
210
211 STATIC void pmap_pool_ufree(struct pool *, void *);
212 STATIC void pmap_pool_mfree(struct pool *, void *);
213
214 static struct pool_allocator pmap_pool_mallocator = {
215 pmap_pool_malloc, pmap_pool_mfree, 0,
216 };
217
218 static struct pool_allocator pmap_pool_uallocator = {
219 pmap_pool_ualloc, pmap_pool_ufree, 0,
220 };
221
222 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
223 void pmap_pte_print(volatile struct pte *);
224 void pmap_pteg_check(void);
225 void pmap_pteg_dist(void);
226 void pmap_print_pte(pmap_t, vaddr_t);
227 void pmap_print_mmuregs(void);
228 #endif
229
230 #if defined(DEBUG) || defined(PMAPCHECK)
231 #ifdef PMAPCHECK
232 int pmapcheck = 1;
233 #else
234 int pmapcheck = 0;
235 #endif
236 void pmap_pvo_verify(void);
237 STATIC void pmap_pvo_check(const struct pvo_entry *);
238 #define PMAP_PVO_CHECK(pvo) \
239 do { \
240 if (pmapcheck) \
241 pmap_pvo_check(pvo); \
242 } while (0)
243 #else
244 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
245 #endif
246 STATIC int pmap_pte_insert(int, struct pte *);
247 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
248 vaddr_t, paddr_t, register_t, int);
249 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
250 STATIC void pmap_pvo_free(struct pvo_entry *);
251 STATIC void pmap_pvo_free_list(struct pvo_head *);
252 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
253 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
254 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
255 STATIC void pvo_set_exec(struct pvo_entry *);
256 STATIC void pvo_clear_exec(struct pvo_entry *);
257
258 STATIC void tlbia(void);
259
260 STATIC void pmap_release(pmap_t);
261 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
262
263 static uint32_t pmap_pvo_reclaim_nextidx;
264 #ifdef DEBUG
265 static int pmap_pvo_reclaim_debugctr;
266 #endif
267
268 #define VSID_NBPW (sizeof(uint32_t) * 8)
269 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
270
271 static int pmap_initialized;
272
273 #if defined(DEBUG) || defined(PMAPDEBUG)
274 #define PMAPDEBUG_BOOT 0x0001
275 #define PMAPDEBUG_PTE 0x0002
276 #define PMAPDEBUG_EXEC 0x0008
277 #define PMAPDEBUG_PVOENTER 0x0010
278 #define PMAPDEBUG_PVOREMOVE 0x0020
279 #define PMAPDEBUG_ACTIVATE 0x0100
280 #define PMAPDEBUG_CREATE 0x0200
281 #define PMAPDEBUG_ENTER 0x1000
282 #define PMAPDEBUG_KENTER 0x2000
283 #define PMAPDEBUG_KREMOVE 0x4000
284 #define PMAPDEBUG_REMOVE 0x8000
285
286 unsigned int pmapdebug = 0;
287
288 # define DPRINTF(x) printf x
289 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
290 #else
291 # define DPRINTF(x)
292 # define DPRINTFN(n, x)
293 #endif
294
295
296 #ifdef PMAPCOUNTERS
297 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
298 #define PMAPCOUNT2(ev) ((ev).ev_count++)
299
300 struct evcnt pmap_evcnt_mappings =
301 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
302 "pmap", "pages mapped");
303 struct evcnt pmap_evcnt_unmappings =
304 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
305 "pmap", "pages unmapped");
306
307 struct evcnt pmap_evcnt_kernel_mappings =
308 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
309 "pmap", "kernel pages mapped");
310 struct evcnt pmap_evcnt_kernel_unmappings =
311 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
312 "pmap", "kernel pages unmapped");
313
314 struct evcnt pmap_evcnt_mappings_replaced =
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
316 "pmap", "page mappings replaced");
317
318 struct evcnt pmap_evcnt_exec_mappings =
319 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
320 "pmap", "exec pages mapped");
321 struct evcnt pmap_evcnt_exec_cached =
322 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
323 "pmap", "exec pages cached");
324
325 struct evcnt pmap_evcnt_exec_synced =
326 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
327 "pmap", "exec pages synced");
328 struct evcnt pmap_evcnt_exec_synced_clear_modify =
329 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
330 "pmap", "exec pages synced (CM)");
331 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
332 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
333 "pmap", "exec pages synced (PR)");
334
335 struct evcnt pmap_evcnt_exec_uncached_page_protect =
336 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
337 "pmap", "exec pages uncached (PP)");
338 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
339 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
340 "pmap", "exec pages uncached (CM)");
341 struct evcnt pmap_evcnt_exec_uncached_zero_page =
342 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
343 "pmap", "exec pages uncached (ZP)");
344 struct evcnt pmap_evcnt_exec_uncached_copy_page =
345 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
346 "pmap", "exec pages uncached (CP)");
347 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
348 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
349 "pmap", "exec pages uncached (PR)");
350
351 struct evcnt pmap_evcnt_updates =
352 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
353 "pmap", "updates");
354 struct evcnt pmap_evcnt_collects =
355 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
356 "pmap", "collects");
357 struct evcnt pmap_evcnt_copies =
358 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
359 "pmap", "copies");
360
361 struct evcnt pmap_evcnt_ptes_spilled =
362 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
363 "pmap", "ptes spilled from overflow");
364 struct evcnt pmap_evcnt_ptes_unspilled =
365 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 "pmap", "ptes not spilled");
367 struct evcnt pmap_evcnt_ptes_evicted =
368 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
369 "pmap", "ptes evicted");
370
371 struct evcnt pmap_evcnt_ptes_primary[8] = {
372 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 "pmap", "ptes added at primary[0]"),
374 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
375 "pmap", "ptes added at primary[1]"),
376 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
377 "pmap", "ptes added at primary[2]"),
378 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
379 "pmap", "ptes added at primary[3]"),
380
381 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
382 "pmap", "ptes added at primary[4]"),
383 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
384 "pmap", "ptes added at primary[5]"),
385 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
386 "pmap", "ptes added at primary[6]"),
387 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
388 "pmap", "ptes added at primary[7]"),
389 };
390 struct evcnt pmap_evcnt_ptes_secondary[8] = {
391 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 "pmap", "ptes added at secondary[0]"),
393 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
394 "pmap", "ptes added at secondary[1]"),
395 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 "pmap", "ptes added at secondary[2]"),
397 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
398 "pmap", "ptes added at secondary[3]"),
399
400 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
401 "pmap", "ptes added at secondary[4]"),
402 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
403 "pmap", "ptes added at secondary[5]"),
404 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
405 "pmap", "ptes added at secondary[6]"),
406 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
407 "pmap", "ptes added at secondary[7]"),
408 };
409 struct evcnt pmap_evcnt_ptes_removed =
410 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
411 "pmap", "ptes removed");
412 struct evcnt pmap_evcnt_ptes_changed =
413 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
414 "pmap", "ptes changed");
415 struct evcnt pmap_evcnt_pvos_reclaimed =
416 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
417 "pmap", "pvos reclaimed");
418 struct evcnt pmap_evcnt_pvos_failed =
419 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
420 "pmap", "pvo allocation failures");
421
422 /*
423 * From pmap_subr.c
424 */
425 extern struct evcnt pmap_evcnt_zeroed_pages;
426 extern struct evcnt pmap_evcnt_copied_pages;
427 extern struct evcnt pmap_evcnt_idlezeroed_pages;
428
429 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
430 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
431 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
432
433 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
434 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
435
436 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
437 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
438 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
439 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
440 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
441
442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
445 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
446 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
447
448 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
449 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
450 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
451
452 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
453 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
454 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
455
456 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
457 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
458 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
459 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
460 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
461
462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
463 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
464 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
465 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
466 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
476 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
477 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
478
479 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
480 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
481 #else
482 #define PMAPCOUNT(ev) ((void) 0)
483 #define PMAPCOUNT2(ev) ((void) 0)
484 #endif
485
486 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
487
488 /* XXXSL: this needs to be moved to assembler */
489 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
490
491 #define TLBSYNC() __asm volatile("tlbsync")
492 #define SYNC() __asm volatile("sync")
493 #define EIEIO() __asm volatile("eieio")
494 #define MFMSR() mfmsr()
495 #define MTMSR(psl) mtmsr(psl)
496 #define MFPVR() mfpvr()
497 #define MFSRIN(va) mfsrin(va)
498 #define MFTB() mfrtcltbl()
499
500 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
501 static inline register_t
502 mfsrin(vaddr_t va)
503 {
504 register_t sr;
505 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
506 return sr;
507 }
508 #endif /* PPC_OEA*/
509
510 #if defined (PPC_OEA64_BRIDGE)
511 extern void mfmsr64 (register64_t *result);
512 #endif /* PPC_OEA64_BRIDGE */
513
514
515 static inline register_t
516 pmap_interrupts_off(void)
517 {
518 register_t msr = MFMSR();
519 if (msr & PSL_EE)
520 MTMSR(msr & ~PSL_EE);
521 return msr;
522 }
523
524 static void
525 pmap_interrupts_restore(register_t msr)
526 {
527 if (msr & PSL_EE)
528 MTMSR(msr);
529 }
530
531 static inline u_int32_t
532 mfrtcltbl(void)
533 {
534
535 if ((MFPVR() >> 16) == MPC601)
536 return (mfrtcl() >> 7);
537 else
538 return (mftbl());
539 }
540
541 /*
542 * These small routines may have to be replaced,
543 * if/when we support processors other that the 604.
544 */
545
546 void
547 tlbia(void)
548 {
549 caddr_t i;
550
551 SYNC();
552 #if defined(PPC_OEA)
553 /*
554 * Why not use "tlbia"? Because not all processors implement it.
555 *
556 * This needs to be a per-CPU callback to do the appropriate thing
557 * for the CPU. XXX
558 */
559 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
560 TLBIE(i);
561 EIEIO();
562 SYNC();
563 }
564 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
565 printf("Invalidating ALL TLB entries......\n");
566 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
567 for (i = 0; i <= (caddr_t)0xFF000; i += 0x00001000) {
568 TLBIEL(i);
569 EIEIO();
570 SYNC();
571 }
572 #endif
573 TLBSYNC();
574 SYNC();
575 }
576
577 static inline register_t
578 va_to_vsid(const struct pmap *pm, vaddr_t addr)
579 {
580 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
581 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
582 #else /* PPC_OEA64 */
583 #if 0
584 const struct ste *ste;
585 register_t hash;
586 int i;
587
588 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
589
590 /*
591 * Try the primary group first
592 */
593 ste = pm->pm_stes[hash].stes;
594 for (i = 0; i < 8; i++, ste++) {
595 if (ste->ste_hi & STE_V) &&
596 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
597 return ste;
598 }
599
600 /*
601 * Then the secondary group.
602 */
603 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
604 for (i = 0; i < 8; i++, ste++) {
605 if (ste->ste_hi & STE_V) &&
606 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
607 return addr;
608 }
609
610 return NULL;
611 #else
612 /*
613 * Rather than searching the STE groups for the VSID, we know
614 * how we generate that from the ESID and so do that.
615 */
616 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
617 #endif
618 #endif /* PPC_OEA */
619 }
620
621 static inline register_t
622 va_to_pteg(const struct pmap *pm, vaddr_t addr)
623 {
624 register_t hash;
625
626 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
627 return hash & pmap_pteg_mask;
628 }
629
630 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
631 /*
632 * Given a PTE in the page table, calculate the VADDR that hashes to it.
633 * The only bit of magic is that the top 4 bits of the address doesn't
634 * technically exist in the PTE. But we know we reserved 4 bits of the
635 * VSID for it so that's how we get it.
636 */
637 static vaddr_t
638 pmap_pte_to_va(volatile const struct pte *pt)
639 {
640 vaddr_t va;
641 uintptr_t ptaddr = (uintptr_t) pt;
642
643 if (pt->pte_hi & PTE_HID)
644 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
645
646 /* PPC Bits 10-19 PPC64 Bits 42-51 */
647 #if defined(PPC_OEA)
648 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
649 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
650 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
651 #endif
652 va <<= ADDR_PIDX_SHFT;
653
654 /* PPC Bits 4-9 PPC64 Bits 36-41 */
655 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
656
657 #if defined(PPC_OEA64)
658 /* PPC63 Bits 0-35 */
659 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
660 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
661 /* PPC Bits 0-3 */
662 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
663 #endif
664
665 return va;
666 }
667 #endif
668
669 static inline struct pvo_head *
670 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
671 {
672 #ifdef __HAVE_VM_PAGE_MD
673 struct vm_page *pg;
674
675 pg = PHYS_TO_VM_PAGE(pa);
676 if (pg_p != NULL)
677 *pg_p = pg;
678 if (pg == NULL)
679 return &pmap_pvo_unmanaged;
680 return &pg->mdpage.mdpg_pvoh;
681 #endif
682 #ifdef __HAVE_PMAP_PHYSSEG
683 int bank, pg;
684
685 bank = vm_physseg_find(atop(pa), &pg);
686 if (pg_p != NULL)
687 *pg_p = pg;
688 if (bank == -1)
689 return &pmap_pvo_unmanaged;
690 return &vm_physmem[bank].pmseg.pvoh[pg];
691 #endif
692 }
693
694 static inline struct pvo_head *
695 vm_page_to_pvoh(struct vm_page *pg)
696 {
697 #ifdef __HAVE_VM_PAGE_MD
698 return &pg->mdpage.mdpg_pvoh;
699 #endif
700 #ifdef __HAVE_PMAP_PHYSSEG
701 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
702 #endif
703 }
704
705
706 #ifdef __HAVE_PMAP_PHYSSEG
707 static inline char *
708 pa_to_attr(paddr_t pa)
709 {
710 int bank, pg;
711
712 bank = vm_physseg_find(atop(pa), &pg);
713 if (bank == -1)
714 return NULL;
715 return &vm_physmem[bank].pmseg.attrs[pg];
716 }
717 #endif
718
719 static inline void
720 pmap_attr_clear(struct vm_page *pg, int ptebit)
721 {
722 #ifdef __HAVE_PMAP_PHYSSEG
723 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
724 #endif
725 #ifdef __HAVE_VM_PAGE_MD
726 pg->mdpage.mdpg_attrs &= ~ptebit;
727 #endif
728 }
729
730 static inline int
731 pmap_attr_fetch(struct vm_page *pg)
732 {
733 #ifdef __HAVE_PMAP_PHYSSEG
734 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
735 #endif
736 #ifdef __HAVE_VM_PAGE_MD
737 return pg->mdpage.mdpg_attrs;
738 #endif
739 }
740
741 static inline void
742 pmap_attr_save(struct vm_page *pg, int ptebit)
743 {
744 #ifdef __HAVE_PMAP_PHYSSEG
745 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
746 #endif
747 #ifdef __HAVE_VM_PAGE_MD
748 pg->mdpage.mdpg_attrs |= ptebit;
749 #endif
750 }
751
752 static inline int
753 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
754 {
755 if (pt->pte_hi == pvo_pt->pte_hi
756 #if 0
757 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
758 ~(PTE_REF|PTE_CHG)) == 0
759 #endif
760 )
761 return 1;
762 return 0;
763 }
764
765 static inline void
766 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
767 {
768 /*
769 * Construct the PTE. Default to IMB initially. Valid bit
770 * only gets set when the real pte is set in memory.
771 *
772 * Note: Don't set the valid bit for correct operation of tlb update.
773 */
774 #if defined(PPC_OEA)
775 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
776 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
777 pt->pte_lo = pte_lo;
778 #elif defined (PPC_OEA64_BRIDGE)
779 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
780 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
781 pt->pte_lo = (u_int64_t) pte_lo;
782 #elif defined (PPC_OEA64)
783 #error PPC_OEA64 not supported
784 #endif /* PPC_OEA */
785 }
786
787 static inline void
788 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
789 {
790 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
791 }
792
793 static inline void
794 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
795 {
796 /*
797 * As shown in Section 7.6.3.2.3
798 */
799 pt->pte_lo &= ~ptebit;
800 TLBIE(va);
801 SYNC();
802 EIEIO();
803 TLBSYNC();
804 SYNC();
805 }
806
807 static inline void
808 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
809 {
810 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
811 if (pvo_pt->pte_hi & PTE_VALID)
812 panic("pte_set: setting an already valid pte %p", pvo_pt);
813 #endif
814 pvo_pt->pte_hi |= PTE_VALID;
815
816 /*
817 * Update the PTE as defined in section 7.6.3.1
818 * Note that the REF/CHG bits are from pvo_pt and thus should
819 * have been saved so this routine can restore them (if desired).
820 */
821 pt->pte_lo = pvo_pt->pte_lo;
822 EIEIO();
823 pt->pte_hi = pvo_pt->pte_hi;
824 TLBSYNC();
825 SYNC();
826 pmap_pte_valid++;
827 }
828
829 static inline void
830 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
831 {
832 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
833 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
834 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
835 if ((pt->pte_hi & PTE_VALID) == 0)
836 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
837 #endif
838
839 pvo_pt->pte_hi &= ~PTE_VALID;
840 /*
841 * Force the ref & chg bits back into the PTEs.
842 */
843 SYNC();
844 /*
845 * Invalidate the pte ... (Section 7.6.3.3)
846 */
847 pt->pte_hi &= ~PTE_VALID;
848 SYNC();
849 TLBIE(va);
850 SYNC();
851 EIEIO();
852 TLBSYNC();
853 SYNC();
854 /*
855 * Save the ref & chg bits ...
856 */
857 pmap_pte_synch(pt, pvo_pt);
858 pmap_pte_valid--;
859 }
860
861 static inline void
862 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
863 {
864 /*
865 * Invalidate the PTE
866 */
867 pmap_pte_unset(pt, pvo_pt, va);
868 pmap_pte_set(pt, pvo_pt);
869 }
870
871 /*
872 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
873 * (either primary or secondary location).
874 *
875 * Note: both the destination and source PTEs must not have PTE_VALID set.
876 */
877
878 STATIC int
879 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
880 {
881 volatile struct pte *pt;
882 int i;
883
884 #if defined(DEBUG)
885 #if defined (PPC_OEA)
886 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
887 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
888 #elif defined (PPC_OEA64_BRIDGE)
889 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
890 ptegidx, (unsigned long long) pvo_pt->pte_hi,
891 (unsigned long long) pvo_pt->pte_lo));
892
893 #endif
894 #endif
895 /*
896 * First try primary hash.
897 */
898 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
899 if ((pt->pte_hi & PTE_VALID) == 0) {
900 pvo_pt->pte_hi &= ~PTE_HID;
901 pmap_pte_set(pt, pvo_pt);
902 return i;
903 }
904 }
905
906 /*
907 * Now try secondary hash.
908 */
909 ptegidx ^= pmap_pteg_mask;
910 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
911 if ((pt->pte_hi & PTE_VALID) == 0) {
912 pvo_pt->pte_hi |= PTE_HID;
913 pmap_pte_set(pt, pvo_pt);
914 return i;
915 }
916 }
917 return -1;
918 }
919
920 /*
921 * Spill handler.
922 *
923 * Tries to spill a page table entry from the overflow area.
924 * This runs in either real mode (if dealing with a exception spill)
925 * or virtual mode when dealing with manually spilling one of the
926 * kernel's pte entries. In either case, interrupts are already
927 * disabled.
928 */
929
930 int
931 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
932 {
933 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
934 struct pvo_entry *pvo;
935 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
936 struct pvo_tqhead *pvoh, *vpvoh = NULL;
937 int ptegidx, i, j;
938 volatile struct pteg *pteg;
939 volatile struct pte *pt;
940
941 ptegidx = va_to_pteg(pm, addr);
942
943 /*
944 * Have to substitute some entry. Use the primary hash for this.
945 * Use low bits of timebase as random generator. Make sure we are
946 * not picking a kernel pte for replacement.
947 */
948 pteg = &pmap_pteg_table[ptegidx];
949 i = MFTB() & 7;
950 for (j = 0; j < 8; j++) {
951 pt = &pteg->pt[i];
952 if ((pt->pte_hi & PTE_VALID) == 0 ||
953 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
954 != KERNEL_VSIDBITS)
955 break;
956 i = (i + 1) & 7;
957 }
958 KASSERT(j < 8);
959
960 source_pvo = NULL;
961 victim_pvo = NULL;
962 pvoh = &pmap_pvo_table[ptegidx];
963 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
964
965 /*
966 * We need to find pvo entry for this address...
967 */
968 PMAP_PVO_CHECK(pvo); /* sanity check */
969
970 /*
971 * If we haven't found the source and we come to a PVO with
972 * a valid PTE, then we know we can't find it because all
973 * evicted PVOs always are first in the list.
974 */
975 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
976 break;
977 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
978 addr == PVO_VADDR(pvo)) {
979
980 /*
981 * Now we have found the entry to be spilled into the
982 * pteg. Attempt to insert it into the page table.
983 */
984 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
985 if (j >= 0) {
986 PVO_PTEGIDX_SET(pvo, j);
987 PMAP_PVO_CHECK(pvo); /* sanity check */
988 PVO_WHERE(pvo, SPILL_INSERT);
989 pvo->pvo_pmap->pm_evictions--;
990 PMAPCOUNT(ptes_spilled);
991 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
992 ? pmap_evcnt_ptes_secondary
993 : pmap_evcnt_ptes_primary)[j]);
994
995 /*
996 * Since we keep the evicted entries at the
997 * from of the PVO list, we need move this
998 * (now resident) PVO after the evicted
999 * entries.
1000 */
1001 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
1002
1003 /*
1004 * If we don't have to move (either we were the
1005 * last entry or the next entry was valid),
1006 * don't change our position. Otherwise
1007 * move ourselves to the tail of the queue.
1008 */
1009 if (next_pvo != NULL &&
1010 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
1011 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
1012 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1013 }
1014 return 1;
1015 }
1016 source_pvo = pvo;
1017 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1018 return 0;
1019 }
1020 if (victim_pvo != NULL)
1021 break;
1022 }
1023
1024 /*
1025 * We also need the pvo entry of the victim we are replacing
1026 * so save the R & C bits of the PTE.
1027 */
1028 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1029 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1030 vpvoh = pvoh; /* *1* */
1031 victim_pvo = pvo;
1032 if (source_pvo != NULL)
1033 break;
1034 }
1035 }
1036
1037 if (source_pvo == NULL) {
1038 PMAPCOUNT(ptes_unspilled);
1039 return 0;
1040 }
1041
1042 if (victim_pvo == NULL) {
1043 if ((pt->pte_hi & PTE_HID) == 0)
1044 panic("pmap_pte_spill: victim p-pte (%p) has "
1045 "no pvo entry!", pt);
1046
1047 /*
1048 * If this is a secondary PTE, we need to search
1049 * its primary pvo bucket for the matching PVO.
1050 */
1051 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1052 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1053 PMAP_PVO_CHECK(pvo); /* sanity check */
1054
1055 /*
1056 * We also need the pvo entry of the victim we are
1057 * replacing so save the R & C bits of the PTE.
1058 */
1059 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1060 victim_pvo = pvo;
1061 break;
1062 }
1063 }
1064 if (victim_pvo == NULL)
1065 panic("pmap_pte_spill: victim s-pte (%p) has "
1066 "no pvo entry!", pt);
1067 }
1068
1069 /*
1070 * The victim should be not be a kernel PVO/PTE entry.
1071 */
1072 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1073 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1074 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1075
1076 /*
1077 * We are invalidating the TLB entry for the EA for the
1078 * we are replacing even though its valid; If we don't
1079 * we lose any ref/chg bit changes contained in the TLB
1080 * entry.
1081 */
1082 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1083
1084 /*
1085 * To enforce the PVO list ordering constraint that all
1086 * evicted entries should come before all valid entries,
1087 * move the source PVO to the tail of its list and the
1088 * victim PVO to the head of its list (which might not be
1089 * the same list, if the victim was using the secondary hash).
1090 */
1091 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1092 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1093 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1094 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1095 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1096 pmap_pte_set(pt, &source_pvo->pvo_pte);
1097 victim_pvo->pvo_pmap->pm_evictions++;
1098 source_pvo->pvo_pmap->pm_evictions--;
1099 PVO_WHERE(victim_pvo, SPILL_UNSET);
1100 PVO_WHERE(source_pvo, SPILL_SET);
1101
1102 PVO_PTEGIDX_CLR(victim_pvo);
1103 PVO_PTEGIDX_SET(source_pvo, i);
1104 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1105 PMAPCOUNT(ptes_spilled);
1106 PMAPCOUNT(ptes_evicted);
1107 PMAPCOUNT(ptes_removed);
1108
1109 PMAP_PVO_CHECK(victim_pvo);
1110 PMAP_PVO_CHECK(source_pvo);
1111 return 1;
1112 }
1113
1114 /*
1115 * Restrict given range to physical memory
1116 */
1117 void
1118 pmap_real_memory(paddr_t *start, psize_t *size)
1119 {
1120 struct mem_region *mp;
1121
1122 for (mp = mem; mp->size; mp++) {
1123 if (*start + *size > mp->start
1124 && *start < mp->start + mp->size) {
1125 if (*start < mp->start) {
1126 *size -= mp->start - *start;
1127 *start = mp->start;
1128 }
1129 if (*start + *size > mp->start + mp->size)
1130 *size = mp->start + mp->size - *start;
1131 return;
1132 }
1133 }
1134 *size = 0;
1135 }
1136
1137 /*
1138 * Initialize anything else for pmap handling.
1139 * Called during vm_init().
1140 */
1141 void
1142 pmap_init(void)
1143 {
1144 #ifdef __HAVE_PMAP_PHYSSEG
1145 struct pvo_tqhead *pvoh;
1146 int bank;
1147 long sz;
1148 char *attr;
1149
1150 pvoh = pmap_physseg.pvoh;
1151 attr = pmap_physseg.attrs;
1152 for (bank = 0; bank < vm_nphysseg; bank++) {
1153 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1154 vm_physmem[bank].pmseg.pvoh = pvoh;
1155 vm_physmem[bank].pmseg.attrs = attr;
1156 for (; sz > 0; sz--, pvoh++, attr++) {
1157 TAILQ_INIT(pvoh);
1158 *attr = 0;
1159 }
1160 }
1161 #endif
1162
1163 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1164 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1165 &pmap_pool_mallocator);
1166
1167 pool_setlowat(&pmap_mpvo_pool, 1008);
1168
1169 pmap_initialized = 1;
1170
1171 }
1172
1173 /*
1174 * How much virtual space does the kernel get?
1175 */
1176 void
1177 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1178 {
1179 /*
1180 * For now, reserve one segment (minus some overhead) for kernel
1181 * virtual memory
1182 */
1183 *start = VM_MIN_KERNEL_ADDRESS;
1184 *end = VM_MAX_KERNEL_ADDRESS;
1185 }
1186
1187 /*
1188 * Allocate, initialize, and return a new physical map.
1189 */
1190 pmap_t
1191 pmap_create(void)
1192 {
1193 pmap_t pm;
1194
1195 pm = pool_get(&pmap_pool, PR_WAITOK);
1196 memset((caddr_t)pm, 0, sizeof *pm);
1197 pmap_pinit(pm);
1198
1199 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1200 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1201 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1202 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1203 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1204 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1205 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1206 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1207 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1208 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1209 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1210 return pm;
1211 }
1212
1213 /*
1214 * Initialize a preallocated and zeroed pmap structure.
1215 */
1216 void
1217 pmap_pinit(pmap_t pm)
1218 {
1219 register_t entropy = MFTB();
1220 register_t mask;
1221 int i;
1222
1223 /*
1224 * Allocate some segment registers for this pmap.
1225 */
1226 pm->pm_refs = 1;
1227 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1228 static register_t pmap_vsidcontext;
1229 register_t hash;
1230 unsigned int n;
1231
1232 /* Create a new value by multiplying by a prime adding in
1233 * entropy from the timebase register. This is to make the
1234 * VSID more random so that the PT Hash function collides
1235 * less often. (note that the prime causes gcc to do shifts
1236 * instead of a multiply)
1237 */
1238 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1239 hash = pmap_vsidcontext & (NPMAPS - 1);
1240 if (hash == 0) { /* 0 is special, avoid it */
1241 entropy += 0xbadf00d;
1242 continue;
1243 }
1244 n = hash >> 5;
1245 mask = 1L << (hash & (VSID_NBPW-1));
1246 hash = pmap_vsidcontext;
1247 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1248 /* anything free in this bucket? */
1249 if (~pmap_vsid_bitmap[n] == 0) {
1250 entropy = hash ^ (hash >> 16);
1251 continue;
1252 }
1253 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1254 mask = 1L << i;
1255 hash &= ~(VSID_NBPW-1);
1256 hash |= i;
1257 }
1258 hash &= PTE_VSID >> PTE_VSID_SHFT;
1259 pmap_vsid_bitmap[n] |= mask;
1260 pm->pm_vsid = hash;
1261 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1262 for (i = 0; i < 16; i++)
1263 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1264 SR_NOEXEC;
1265 #endif
1266 return;
1267 }
1268 panic("pmap_pinit: out of segments");
1269 }
1270
1271 /*
1272 * Add a reference to the given pmap.
1273 */
1274 void
1275 pmap_reference(pmap_t pm)
1276 {
1277 pm->pm_refs++;
1278 }
1279
1280 /*
1281 * Retire the given pmap from service.
1282 * Should only be called if the map contains no valid mappings.
1283 */
1284 void
1285 pmap_destroy(pmap_t pm)
1286 {
1287 if (--pm->pm_refs == 0) {
1288 pmap_release(pm);
1289 pool_put(&pmap_pool, pm);
1290 }
1291 }
1292
1293 /*
1294 * Release any resources held by the given physical map.
1295 * Called when a pmap initialized by pmap_pinit is being released.
1296 */
1297 void
1298 pmap_release(pmap_t pm)
1299 {
1300 int idx, mask;
1301
1302 KASSERT(pm->pm_stats.resident_count == 0);
1303 KASSERT(pm->pm_stats.wired_count == 0);
1304
1305 if (pm->pm_sr[0] == 0)
1306 panic("pmap_release");
1307 idx = pm->pm_vsid & (NPMAPS-1);
1308 mask = 1 << (idx % VSID_NBPW);
1309 idx /= VSID_NBPW;
1310
1311 KASSERT(pmap_vsid_bitmap[idx] & mask);
1312 pmap_vsid_bitmap[idx] &= ~mask;
1313 }
1314
1315 /*
1316 * Copy the range specified by src_addr/len
1317 * from the source map to the range dst_addr/len
1318 * in the destination map.
1319 *
1320 * This routine is only advisory and need not do anything.
1321 */
1322 void
1323 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1324 vsize_t len, vaddr_t src_addr)
1325 {
1326 PMAPCOUNT(copies);
1327 }
1328
1329 /*
1330 * Require that all active physical maps contain no
1331 * incorrect entries NOW.
1332 */
1333 void
1334 pmap_update(struct pmap *pmap)
1335 {
1336 PMAPCOUNT(updates);
1337 TLBSYNC();
1338 }
1339
1340 /*
1341 * Garbage collects the physical map system for
1342 * pages which are no longer used.
1343 * Success need not be guaranteed -- that is, there
1344 * may well be pages which are not referenced, but
1345 * others may be collected.
1346 * Called by the pageout daemon when pages are scarce.
1347 */
1348 void
1349 pmap_collect(pmap_t pm)
1350 {
1351 PMAPCOUNT(collects);
1352 }
1353
1354 static inline int
1355 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1356 {
1357 int pteidx;
1358 /*
1359 * We can find the actual pte entry without searching by
1360 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1361 * and by noticing the HID bit.
1362 */
1363 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1364 if (pvo->pvo_pte.pte_hi & PTE_HID)
1365 pteidx ^= pmap_pteg_mask * 8;
1366 return pteidx;
1367 }
1368
1369 volatile struct pte *
1370 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1371 {
1372 volatile struct pte *pt;
1373
1374 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1375 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1376 return NULL;
1377 #endif
1378
1379 /*
1380 * If we haven't been supplied the ptegidx, calculate it.
1381 */
1382 if (pteidx == -1) {
1383 int ptegidx;
1384 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1385 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1386 }
1387
1388 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1389
1390 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1391 return pt;
1392 #else
1393 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1394 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1395 "pvo but no valid pte index", pvo);
1396 }
1397 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1398 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1399 "pvo but no valid pte", pvo);
1400 }
1401
1402 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1403 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1404 #if defined(DEBUG) || defined(PMAPCHECK)
1405 pmap_pte_print(pt);
1406 #endif
1407 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1408 "pmap_pteg_table %p but invalid in pvo",
1409 pvo, pt);
1410 }
1411 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1412 #if defined(DEBUG) || defined(PMAPCHECK)
1413 pmap_pte_print(pt);
1414 #endif
1415 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1416 "not match pte %p in pmap_pteg_table",
1417 pvo, pt);
1418 }
1419 return pt;
1420 }
1421
1422 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1423 #if defined(DEBUG) || defined(PMAPCHECK)
1424 pmap_pte_print(pt);
1425 #endif
1426 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1427 "pmap_pteg_table but valid in pvo", pvo, pt);
1428 }
1429 return NULL;
1430 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1431 }
1432
1433 struct pvo_entry *
1434 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1435 {
1436 struct pvo_entry *pvo;
1437 int ptegidx;
1438
1439 va &= ~ADDR_POFF;
1440 ptegidx = va_to_pteg(pm, va);
1441
1442 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1443 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1444 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1445 panic("pmap_pvo_find_va: invalid pvo %p on "
1446 "list %#x (%p)", pvo, ptegidx,
1447 &pmap_pvo_table[ptegidx]);
1448 #endif
1449 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1450 if (pteidx_p)
1451 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1452 return pvo;
1453 }
1454 }
1455 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1456 panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __FUNCTION__,
1457 (pm == pmap_kernel() ? "kernel" : "user"), va);
1458 return NULL;
1459 }
1460
1461 #if defined(DEBUG) || defined(PMAPCHECK)
1462 void
1463 pmap_pvo_check(const struct pvo_entry *pvo)
1464 {
1465 struct pvo_head *pvo_head;
1466 struct pvo_entry *pvo0;
1467 volatile struct pte *pt;
1468 int failed = 0;
1469
1470 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1471 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1472
1473 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1474 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1475 pvo, pvo->pvo_pmap);
1476 failed = 1;
1477 }
1478
1479 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1480 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1481 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1482 pvo, TAILQ_NEXT(pvo, pvo_olink));
1483 failed = 1;
1484 }
1485
1486 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1487 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1488 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1489 pvo, LIST_NEXT(pvo, pvo_vlink));
1490 failed = 1;
1491 }
1492
1493 if (PVO_MANAGED_P(pvo)) {
1494 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1495 } else {
1496 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1497 printf("pmap_pvo_check: pvo %p: non kernel address "
1498 "on kernel unmanaged list\n", pvo);
1499 failed = 1;
1500 }
1501 pvo_head = &pmap_pvo_kunmanaged;
1502 }
1503 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1504 if (pvo0 == pvo)
1505 break;
1506 }
1507 if (pvo0 == NULL) {
1508 printf("pmap_pvo_check: pvo %p: not present "
1509 "on its vlist head %p\n", pvo, pvo_head);
1510 failed = 1;
1511 }
1512 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1513 printf("pmap_pvo_check: pvo %p: not present "
1514 "on its olist head\n", pvo);
1515 failed = 1;
1516 }
1517 pt = pmap_pvo_to_pte(pvo, -1);
1518 if (pt == NULL) {
1519 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1520 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1521 "no PTE\n", pvo);
1522 failed = 1;
1523 }
1524 } else {
1525 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1526 (uintptr_t) pt >=
1527 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1528 printf("pmap_pvo_check: pvo %p: pte %p not in "
1529 "pteg table\n", pvo, pt);
1530 failed = 1;
1531 }
1532 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1533 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1534 "no PTE\n", pvo);
1535 failed = 1;
1536 }
1537 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1538 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1539 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1540 failed = 1;
1541 }
1542 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1543 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1544 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1545 "%#x/%#x\n", pvo,
1546 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1547 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1548 failed = 1;
1549 }
1550 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1551 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1552 " doesn't not match PVO's VA %#lx\n",
1553 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1554 failed = 1;
1555 }
1556 if (failed)
1557 pmap_pte_print(pt);
1558 }
1559 if (failed)
1560 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1561 pvo->pvo_pmap);
1562 }
1563 #endif /* DEBUG || PMAPCHECK */
1564
1565 /*
1566 * Search the PVO table looking for a non-wired entry.
1567 * If we find one, remove it and return it.
1568 */
1569
1570 struct pvo_entry *
1571 pmap_pvo_reclaim(struct pmap *pm)
1572 {
1573 struct pvo_tqhead *pvoh;
1574 struct pvo_entry *pvo;
1575 uint32_t idx, endidx;
1576
1577 endidx = pmap_pvo_reclaim_nextidx;
1578 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1579 idx = (idx + 1) & pmap_pteg_mask) {
1580 pvoh = &pmap_pvo_table[idx];
1581 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1582 if (!PVO_WIRED_P(pvo)) {
1583 pmap_pvo_remove(pvo, -1, NULL);
1584 pmap_pvo_reclaim_nextidx = idx;
1585 PMAPCOUNT(pvos_reclaimed);
1586 return pvo;
1587 }
1588 }
1589 }
1590 return NULL;
1591 }
1592
1593 /*
1594 * This returns whether this is the first mapping of a page.
1595 */
1596 int
1597 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1598 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1599 {
1600 struct pvo_entry *pvo;
1601 struct pvo_tqhead *pvoh;
1602 register_t msr;
1603 int ptegidx;
1604 int i;
1605 int poolflags = PR_NOWAIT;
1606
1607 /*
1608 * Compute the PTE Group index.
1609 */
1610 va &= ~ADDR_POFF;
1611 ptegidx = va_to_pteg(pm, va);
1612
1613 msr = pmap_interrupts_off();
1614
1615 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1616 if (pmap_pvo_remove_depth > 0)
1617 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1618 if (++pmap_pvo_enter_depth > 1)
1619 panic("pmap_pvo_enter: called recursively!");
1620 #endif
1621
1622 /*
1623 * Remove any existing mapping for this page. Reuse the
1624 * pvo entry if there a mapping.
1625 */
1626 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1627 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1628 #ifdef DEBUG
1629 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1630 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1631 ~(PTE_REF|PTE_CHG)) == 0 &&
1632 va < VM_MIN_KERNEL_ADDRESS) {
1633 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1634 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1635 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1636 (unsigned int) pvo->pvo_pte.pte_hi,
1637 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1638 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1639 #ifdef DDBX
1640 Debugger();
1641 #endif
1642 }
1643 #endif
1644 PMAPCOUNT(mappings_replaced);
1645 pmap_pvo_remove(pvo, -1, NULL);
1646 break;
1647 }
1648 }
1649
1650 /*
1651 * If we aren't overwriting an mapping, try to allocate
1652 */
1653 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1654 --pmap_pvo_enter_depth;
1655 #endif
1656 pmap_interrupts_restore(msr);
1657 if (pvo) {
1658 pmap_pvo_free(pvo);
1659 }
1660 pvo = pool_get(pl, poolflags);
1661
1662 #ifdef DEBUG
1663 /*
1664 * Exercise pmap_pvo_reclaim() a little.
1665 */
1666 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1667 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1668 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1669 pool_put(pl, pvo);
1670 pvo = NULL;
1671 }
1672 #endif
1673
1674 msr = pmap_interrupts_off();
1675 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1676 ++pmap_pvo_enter_depth;
1677 #endif
1678 if (pvo == NULL) {
1679 pvo = pmap_pvo_reclaim(pm);
1680 if (pvo == NULL) {
1681 if ((flags & PMAP_CANFAIL) == 0)
1682 panic("pmap_pvo_enter: failed");
1683 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1684 pmap_pvo_enter_depth--;
1685 #endif
1686 PMAPCOUNT(pvos_failed);
1687 pmap_interrupts_restore(msr);
1688 return ENOMEM;
1689 }
1690 }
1691
1692 pvo->pvo_vaddr = va;
1693 pvo->pvo_pmap = pm;
1694 pvo->pvo_vaddr &= ~ADDR_POFF;
1695 if (flags & VM_PROT_EXECUTE) {
1696 PMAPCOUNT(exec_mappings);
1697 pvo_set_exec(pvo);
1698 }
1699 if (flags & PMAP_WIRED)
1700 pvo->pvo_vaddr |= PVO_WIRED;
1701 if (pvo_head != &pmap_pvo_kunmanaged) {
1702 pvo->pvo_vaddr |= PVO_MANAGED;
1703 PMAPCOUNT(mappings);
1704 } else {
1705 PMAPCOUNT(kernel_mappings);
1706 }
1707 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1708
1709 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1710 if (PVO_WIRED_P(pvo))
1711 pvo->pvo_pmap->pm_stats.wired_count++;
1712 pvo->pvo_pmap->pm_stats.resident_count++;
1713 #if defined(DEBUG)
1714 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1715 DPRINTFN(PVOENTER,
1716 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1717 pvo, pm, va, pa));
1718 #endif
1719
1720 /*
1721 * We hope this succeeds but it isn't required.
1722 */
1723 pvoh = &pmap_pvo_table[ptegidx];
1724 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1725 if (i >= 0) {
1726 PVO_PTEGIDX_SET(pvo, i);
1727 PVO_WHERE(pvo, ENTER_INSERT);
1728 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1729 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1730 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1731
1732 } else {
1733 /*
1734 * Since we didn't have room for this entry (which makes it
1735 * and evicted entry), place it at the head of the list.
1736 */
1737 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1738 PMAPCOUNT(ptes_evicted);
1739 pm->pm_evictions++;
1740 /*
1741 * If this is a kernel page, make sure it's active.
1742 */
1743 if (pm == pmap_kernel()) {
1744 i = pmap_pte_spill(pm, va, FALSE);
1745 KASSERT(i);
1746 }
1747 }
1748 PMAP_PVO_CHECK(pvo); /* sanity check */
1749 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1750 pmap_pvo_enter_depth--;
1751 #endif
1752 pmap_interrupts_restore(msr);
1753 return 0;
1754 }
1755
1756 void
1757 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1758 {
1759 volatile struct pte *pt;
1760 int ptegidx;
1761
1762 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1763 if (++pmap_pvo_remove_depth > 1)
1764 panic("pmap_pvo_remove: called recursively!");
1765 #endif
1766
1767 /*
1768 * If we haven't been supplied the ptegidx, calculate it.
1769 */
1770 if (pteidx == -1) {
1771 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1772 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1773 } else {
1774 ptegidx = pteidx >> 3;
1775 if (pvo->pvo_pte.pte_hi & PTE_HID)
1776 ptegidx ^= pmap_pteg_mask;
1777 }
1778 PMAP_PVO_CHECK(pvo); /* sanity check */
1779
1780 /*
1781 * If there is an active pte entry, we need to deactivate it
1782 * (and save the ref & chg bits).
1783 */
1784 pt = pmap_pvo_to_pte(pvo, pteidx);
1785 if (pt != NULL) {
1786 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1787 PVO_WHERE(pvo, REMOVE);
1788 PVO_PTEGIDX_CLR(pvo);
1789 PMAPCOUNT(ptes_removed);
1790 } else {
1791 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1792 pvo->pvo_pmap->pm_evictions--;
1793 }
1794
1795 /*
1796 * Account for executable mappings.
1797 */
1798 if (PVO_EXECUTABLE_P(pvo))
1799 pvo_clear_exec(pvo);
1800
1801 /*
1802 * Update our statistics.
1803 */
1804 pvo->pvo_pmap->pm_stats.resident_count--;
1805 if (PVO_WIRED_P(pvo))
1806 pvo->pvo_pmap->pm_stats.wired_count--;
1807
1808 /*
1809 * Save the REF/CHG bits into their cache if the page is managed.
1810 */
1811 if (PVO_MANAGED_P(pvo)) {
1812 register_t ptelo = pvo->pvo_pte.pte_lo;
1813 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1814
1815 if (pg != NULL) {
1816 /*
1817 * If this page was changed and it is mapped exec,
1818 * invalidate it.
1819 */
1820 if ((ptelo & PTE_CHG) &&
1821 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1822 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1823 if (LIST_EMPTY(pvoh)) {
1824 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1825 "%#lx: clear-exec]\n",
1826 VM_PAGE_TO_PHYS(pg)));
1827 pmap_attr_clear(pg, PTE_EXEC);
1828 PMAPCOUNT(exec_uncached_pvo_remove);
1829 } else {
1830 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1831 "%#lx: syncicache]\n",
1832 VM_PAGE_TO_PHYS(pg)));
1833 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1834 PAGE_SIZE);
1835 PMAPCOUNT(exec_synced_pvo_remove);
1836 }
1837 }
1838
1839 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1840 }
1841 PMAPCOUNT(unmappings);
1842 } else {
1843 PMAPCOUNT(kernel_unmappings);
1844 }
1845
1846 /*
1847 * Remove the PVO from its lists and return it to the pool.
1848 */
1849 LIST_REMOVE(pvo, pvo_vlink);
1850 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1851 if (pvol) {
1852 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1853 }
1854 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1855 pmap_pvo_remove_depth--;
1856 #endif
1857 }
1858
1859 void
1860 pmap_pvo_free(struct pvo_entry *pvo)
1861 {
1862
1863 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1864 }
1865
1866 void
1867 pmap_pvo_free_list(struct pvo_head *pvol)
1868 {
1869 struct pvo_entry *pvo, *npvo;
1870
1871 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1872 npvo = LIST_NEXT(pvo, pvo_vlink);
1873 LIST_REMOVE(pvo, pvo_vlink);
1874 pmap_pvo_free(pvo);
1875 }
1876 }
1877
1878 /*
1879 * Mark a mapping as executable.
1880 * If this is the first executable mapping in the segment,
1881 * clear the noexec flag.
1882 */
1883 STATIC void
1884 pvo_set_exec(struct pvo_entry *pvo)
1885 {
1886 struct pmap *pm = pvo->pvo_pmap;
1887
1888 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1889 return;
1890 }
1891 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1892 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1893 {
1894 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1895 if (pm->pm_exec[sr]++ == 0) {
1896 pm->pm_sr[sr] &= ~SR_NOEXEC;
1897 }
1898 }
1899 #endif
1900 }
1901
1902 /*
1903 * Mark a mapping as non-executable.
1904 * If this was the last executable mapping in the segment,
1905 * set the noexec flag.
1906 */
1907 STATIC void
1908 pvo_clear_exec(struct pvo_entry *pvo)
1909 {
1910 struct pmap *pm = pvo->pvo_pmap;
1911
1912 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1913 return;
1914 }
1915 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1916 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1917 {
1918 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1919 if (--pm->pm_exec[sr] == 0) {
1920 pm->pm_sr[sr] |= SR_NOEXEC;
1921 }
1922 }
1923 #endif
1924 }
1925
1926 /*
1927 * Insert physical page at pa into the given pmap at virtual address va.
1928 */
1929 int
1930 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1931 {
1932 struct mem_region *mp;
1933 struct pvo_head *pvo_head;
1934 struct vm_page *pg;
1935 struct pool *pl;
1936 register_t pte_lo;
1937 int error;
1938 u_int pvo_flags;
1939 u_int was_exec = 0;
1940
1941 if (__predict_false(!pmap_initialized)) {
1942 pvo_head = &pmap_pvo_kunmanaged;
1943 pl = &pmap_upvo_pool;
1944 pvo_flags = 0;
1945 pg = NULL;
1946 was_exec = PTE_EXEC;
1947 } else {
1948 pvo_head = pa_to_pvoh(pa, &pg);
1949 pl = &pmap_mpvo_pool;
1950 pvo_flags = PVO_MANAGED;
1951 }
1952
1953 DPRINTFN(ENTER,
1954 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1955 pm, va, pa, prot, flags));
1956
1957 /*
1958 * If this is a managed page, and it's the first reference to the
1959 * page clear the execness of the page. Otherwise fetch the execness.
1960 */
1961 if (pg != NULL)
1962 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1963
1964 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1965
1966 /*
1967 * Assume the page is cache inhibited and access is guarded unless
1968 * it's in our available memory array. If it is in the memory array,
1969 * asssume it's in memory coherent memory.
1970 */
1971 pte_lo = PTE_IG;
1972 if ((flags & PMAP_NC) == 0) {
1973 for (mp = mem; mp->size; mp++) {
1974 if (pa >= mp->start && pa < mp->start + mp->size) {
1975 pte_lo = PTE_M;
1976 break;
1977 }
1978 }
1979 }
1980
1981 if (prot & VM_PROT_WRITE)
1982 pte_lo |= PTE_BW;
1983 else
1984 pte_lo |= PTE_BR;
1985
1986 /*
1987 * If this was in response to a fault, "pre-fault" the PTE's
1988 * changed/referenced bit appropriately.
1989 */
1990 if (flags & VM_PROT_WRITE)
1991 pte_lo |= PTE_CHG;
1992 if (flags & VM_PROT_ALL)
1993 pte_lo |= PTE_REF;
1994
1995 /*
1996 * We need to know if this page can be executable
1997 */
1998 flags |= (prot & VM_PROT_EXECUTE);
1999
2000 /*
2001 * Record mapping for later back-translation and pte spilling.
2002 * This will overwrite any existing mapping.
2003 */
2004 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
2005
2006 /*
2007 * Flush the real page from the instruction cache if this page is
2008 * mapped executable and cacheable and has not been flushed since
2009 * the last time it was modified.
2010 */
2011 if (error == 0 &&
2012 (flags & VM_PROT_EXECUTE) &&
2013 (pte_lo & PTE_I) == 0 &&
2014 was_exec == 0) {
2015 DPRINTFN(ENTER, (" syncicache"));
2016 PMAPCOUNT(exec_synced);
2017 pmap_syncicache(pa, PAGE_SIZE);
2018 if (pg != NULL) {
2019 pmap_attr_save(pg, PTE_EXEC);
2020 PMAPCOUNT(exec_cached);
2021 #if defined(DEBUG) || defined(PMAPDEBUG)
2022 if (pmapdebug & PMAPDEBUG_ENTER)
2023 printf(" marked-as-exec");
2024 else if (pmapdebug & PMAPDEBUG_EXEC)
2025 printf("[pmap_enter: %#lx: marked-as-exec]\n",
2026 VM_PAGE_TO_PHYS(pg));
2027
2028 #endif
2029 }
2030 }
2031
2032 DPRINTFN(ENTER, (": error=%d\n", error));
2033
2034 return error;
2035 }
2036
2037 void
2038 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2039 {
2040 struct mem_region *mp;
2041 register_t pte_lo;
2042 int error;
2043
2044 #if defined (PPC_OEA64_BRIDGE)
2045 if (va < VM_MIN_KERNEL_ADDRESS)
2046 panic("pmap_kenter_pa: attempt to enter "
2047 "non-kernel address %#lx!", va);
2048 #endif
2049
2050 DPRINTFN(KENTER,
2051 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
2052
2053 /*
2054 * Assume the page is cache inhibited and access is guarded unless
2055 * it's in our available memory array. If it is in the memory array,
2056 * asssume it's in memory coherent memory.
2057 */
2058 pte_lo = PTE_IG;
2059 if ((prot & PMAP_NC) == 0) {
2060 for (mp = mem; mp->size; mp++) {
2061 if (pa >= mp->start && pa < mp->start + mp->size) {
2062 pte_lo = PTE_M;
2063 break;
2064 }
2065 }
2066 }
2067
2068 if (prot & VM_PROT_WRITE)
2069 pte_lo |= PTE_BW;
2070 else
2071 pte_lo |= PTE_BR;
2072
2073 /*
2074 * We don't care about REF/CHG on PVOs on the unmanaged list.
2075 */
2076 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2077 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2078
2079 if (error != 0)
2080 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
2081 va, pa, error);
2082 }
2083
2084 void
2085 pmap_kremove(vaddr_t va, vsize_t len)
2086 {
2087 if (va < VM_MIN_KERNEL_ADDRESS)
2088 panic("pmap_kremove: attempt to remove "
2089 "non-kernel address %#lx!", va);
2090
2091 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
2092 pmap_remove(pmap_kernel(), va, va + len);
2093 }
2094
2095 /*
2096 * Remove the given range of mapping entries.
2097 */
2098 void
2099 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2100 {
2101 struct pvo_head pvol;
2102 struct pvo_entry *pvo;
2103 register_t msr;
2104 int pteidx;
2105
2106 LIST_INIT(&pvol);
2107 msr = pmap_interrupts_off();
2108 for (; va < endva; va += PAGE_SIZE) {
2109 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2110 if (pvo != NULL) {
2111 pmap_pvo_remove(pvo, pteidx, &pvol);
2112 }
2113 }
2114 pmap_interrupts_restore(msr);
2115 pmap_pvo_free_list(&pvol);
2116 }
2117
2118 /*
2119 * Get the physical page address for the given pmap/virtual address.
2120 */
2121 boolean_t
2122 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2123 {
2124 struct pvo_entry *pvo;
2125 register_t msr;
2126
2127
2128 /*
2129 * If this is a kernel pmap lookup, also check the battable
2130 * and if we get a hit, translate the VA to a PA using the
2131 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2132 * that will wrap back to 0.
2133 */
2134 if (pm == pmap_kernel() &&
2135 (va < VM_MIN_KERNEL_ADDRESS ||
2136 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2137 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2138 #if defined (PPC_OEA)
2139 if ((MFPVR() >> 16) != MPC601) {
2140 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2141 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2142 register_t batl =
2143 battable[va >> ADDR_SR_SHFT].batl;
2144 register_t mask =
2145 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2146 if (pap)
2147 *pap = (batl & mask) | (va & ~mask);
2148 return TRUE;
2149 }
2150 } else {
2151 register_t batu = battable[va >> 23].batu;
2152 register_t batl = battable[va >> 23].batl;
2153 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2154 if (BAT601_VALID_P(batl) &&
2155 BAT601_VA_MATCH_P(batu, batl, va)) {
2156 register_t mask =
2157 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2158 if (pap)
2159 *pap = (batl & mask) | (va & ~mask);
2160 return TRUE;
2161 } else if (SR601_VALID_P(sr) &&
2162 SR601_PA_MATCH_P(sr, va)) {
2163 if (pap)
2164 *pap = va;
2165 return TRUE;
2166 }
2167 }
2168 return FALSE;
2169 #elif defined (PPC_OEA64_BRIDGE)
2170 panic("%s: pm: %s, va: 0x%08lx\n", __FUNCTION__,
2171 (pm == pmap_kernel() ? "kernel" : "user"), va);
2172 #elif defined (PPC_OEA64)
2173 #error PPC_OEA64 not supported
2174 #endif /* PPC_OEA */
2175 }
2176
2177 msr = pmap_interrupts_off();
2178 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2179 if (pvo != NULL) {
2180 PMAP_PVO_CHECK(pvo); /* sanity check */
2181 if (pap)
2182 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2183 | (va & ADDR_POFF);
2184 }
2185 pmap_interrupts_restore(msr);
2186 return pvo != NULL;
2187 }
2188
2189 /*
2190 * Lower the protection on the specified range of this pmap.
2191 */
2192 void
2193 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2194 {
2195 struct pvo_entry *pvo;
2196 volatile struct pte *pt;
2197 register_t msr;
2198 int pteidx;
2199
2200 /*
2201 * Since this routine only downgrades protection, we should
2202 * always be called with at least one bit not set.
2203 */
2204 KASSERT(prot != VM_PROT_ALL);
2205
2206 /*
2207 * If there is no protection, this is equivalent to
2208 * remove the pmap from the pmap.
2209 */
2210 if ((prot & VM_PROT_READ) == 0) {
2211 pmap_remove(pm, va, endva);
2212 return;
2213 }
2214
2215 msr = pmap_interrupts_off();
2216 for (; va < endva; va += PAGE_SIZE) {
2217 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2218 if (pvo == NULL)
2219 continue;
2220 PMAP_PVO_CHECK(pvo); /* sanity check */
2221
2222 /*
2223 * Revoke executable if asked to do so.
2224 */
2225 if ((prot & VM_PROT_EXECUTE) == 0)
2226 pvo_clear_exec(pvo);
2227
2228 #if 0
2229 /*
2230 * If the page is already read-only, no change
2231 * needs to be made.
2232 */
2233 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2234 continue;
2235 #endif
2236 /*
2237 * Grab the PTE pointer before we diddle with
2238 * the cached PTE copy.
2239 */
2240 pt = pmap_pvo_to_pte(pvo, pteidx);
2241 /*
2242 * Change the protection of the page.
2243 */
2244 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2245 pvo->pvo_pte.pte_lo |= PTE_BR;
2246
2247 /*
2248 * If the PVO is in the page table, update
2249 * that pte at well.
2250 */
2251 if (pt != NULL) {
2252 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2253 PVO_WHERE(pvo, PMAP_PROTECT);
2254 PMAPCOUNT(ptes_changed);
2255 }
2256
2257 PMAP_PVO_CHECK(pvo); /* sanity check */
2258 }
2259 pmap_interrupts_restore(msr);
2260 }
2261
2262 void
2263 pmap_unwire(pmap_t pm, vaddr_t va)
2264 {
2265 struct pvo_entry *pvo;
2266 register_t msr;
2267
2268 msr = pmap_interrupts_off();
2269 pvo = pmap_pvo_find_va(pm, va, NULL);
2270 if (pvo != NULL) {
2271 if (PVO_WIRED_P(pvo)) {
2272 pvo->pvo_vaddr &= ~PVO_WIRED;
2273 pm->pm_stats.wired_count--;
2274 }
2275 PMAP_PVO_CHECK(pvo); /* sanity check */
2276 }
2277 pmap_interrupts_restore(msr);
2278 }
2279
2280 /*
2281 * Lower the protection on the specified physical page.
2282 */
2283 void
2284 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2285 {
2286 struct pvo_head *pvo_head, pvol;
2287 struct pvo_entry *pvo, *next_pvo;
2288 volatile struct pte *pt;
2289 register_t msr;
2290
2291 KASSERT(prot != VM_PROT_ALL);
2292 LIST_INIT(&pvol);
2293 msr = pmap_interrupts_off();
2294
2295 /*
2296 * When UVM reuses a page, it does a pmap_page_protect with
2297 * VM_PROT_NONE. At that point, we can clear the exec flag
2298 * since we know the page will have different contents.
2299 */
2300 if ((prot & VM_PROT_READ) == 0) {
2301 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2302 VM_PAGE_TO_PHYS(pg)));
2303 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2304 PMAPCOUNT(exec_uncached_page_protect);
2305 pmap_attr_clear(pg, PTE_EXEC);
2306 }
2307 }
2308
2309 pvo_head = vm_page_to_pvoh(pg);
2310 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2311 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2312 PMAP_PVO_CHECK(pvo); /* sanity check */
2313
2314 /*
2315 * Downgrading to no mapping at all, we just remove the entry.
2316 */
2317 if ((prot & VM_PROT_READ) == 0) {
2318 pmap_pvo_remove(pvo, -1, &pvol);
2319 continue;
2320 }
2321
2322 /*
2323 * If EXEC permission is being revoked, just clear the
2324 * flag in the PVO.
2325 */
2326 if ((prot & VM_PROT_EXECUTE) == 0)
2327 pvo_clear_exec(pvo);
2328
2329 /*
2330 * If this entry is already RO, don't diddle with the
2331 * page table.
2332 */
2333 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2334 PMAP_PVO_CHECK(pvo);
2335 continue;
2336 }
2337
2338 /*
2339 * Grab the PTE before the we diddle the bits so
2340 * pvo_to_pte can verify the pte contents are as
2341 * expected.
2342 */
2343 pt = pmap_pvo_to_pte(pvo, -1);
2344 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2345 pvo->pvo_pte.pte_lo |= PTE_BR;
2346 if (pt != NULL) {
2347 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2348 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2349 PMAPCOUNT(ptes_changed);
2350 }
2351 PMAP_PVO_CHECK(pvo); /* sanity check */
2352 }
2353 pmap_interrupts_restore(msr);
2354 pmap_pvo_free_list(&pvol);
2355 }
2356
2357 /*
2358 * Activate the address space for the specified process. If the process
2359 * is the current process, load the new MMU context.
2360 */
2361 void
2362 pmap_activate(struct lwp *l)
2363 {
2364 struct pcb *pcb = &l->l_addr->u_pcb;
2365 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2366
2367 DPRINTFN(ACTIVATE,
2368 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2369
2370 /*
2371 * XXX Normally performed in cpu_fork().
2372 */
2373 pcb->pcb_pm = pmap;
2374
2375 /*
2376 * In theory, the SR registers need only be valid on return
2377 * to user space wait to do them there.
2378 */
2379 if (l == curlwp) {
2380 /* Store pointer to new current pmap. */
2381 curpm = pmap;
2382 }
2383 }
2384
2385 /*
2386 * Deactivate the specified process's address space.
2387 */
2388 void
2389 pmap_deactivate(struct lwp *l)
2390 {
2391 }
2392
2393 boolean_t
2394 pmap_query_bit(struct vm_page *pg, int ptebit)
2395 {
2396 struct pvo_entry *pvo;
2397 volatile struct pte *pt;
2398 register_t msr;
2399
2400 if (pmap_attr_fetch(pg) & ptebit)
2401 return TRUE;
2402
2403 msr = pmap_interrupts_off();
2404 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2405 PMAP_PVO_CHECK(pvo); /* sanity check */
2406 /*
2407 * See if we saved the bit off. If so cache, it and return
2408 * success.
2409 */
2410 if (pvo->pvo_pte.pte_lo & ptebit) {
2411 pmap_attr_save(pg, ptebit);
2412 PMAP_PVO_CHECK(pvo); /* sanity check */
2413 pmap_interrupts_restore(msr);
2414 return TRUE;
2415 }
2416 }
2417 /*
2418 * No luck, now go thru the hard part of looking at the ptes
2419 * themselves. Sync so any pending REF/CHG bits are flushed
2420 * to the PTEs.
2421 */
2422 SYNC();
2423 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2424 PMAP_PVO_CHECK(pvo); /* sanity check */
2425 /*
2426 * See if this pvo have a valid PTE. If so, fetch the
2427 * REF/CHG bits from the valid PTE. If the appropriate
2428 * ptebit is set, cache, it and return success.
2429 */
2430 pt = pmap_pvo_to_pte(pvo, -1);
2431 if (pt != NULL) {
2432 pmap_pte_synch(pt, &pvo->pvo_pte);
2433 if (pvo->pvo_pte.pte_lo & ptebit) {
2434 pmap_attr_save(pg, ptebit);
2435 PMAP_PVO_CHECK(pvo); /* sanity check */
2436 pmap_interrupts_restore(msr);
2437 return TRUE;
2438 }
2439 }
2440 }
2441 pmap_interrupts_restore(msr);
2442 return FALSE;
2443 }
2444
2445 boolean_t
2446 pmap_clear_bit(struct vm_page *pg, int ptebit)
2447 {
2448 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2449 struct pvo_entry *pvo;
2450 volatile struct pte *pt;
2451 register_t msr;
2452 int rv = 0;
2453
2454 msr = pmap_interrupts_off();
2455
2456 /*
2457 * Fetch the cache value
2458 */
2459 rv |= pmap_attr_fetch(pg);
2460
2461 /*
2462 * Clear the cached value.
2463 */
2464 pmap_attr_clear(pg, ptebit);
2465
2466 /*
2467 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2468 * can reset the right ones). Note that since the pvo entries and
2469 * list heads are accessed via BAT0 and are never placed in the
2470 * page table, we don't have to worry about further accesses setting
2471 * the REF/CHG bits.
2472 */
2473 SYNC();
2474
2475 /*
2476 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2477 * valid PTE. If so, clear the ptebit from the valid PTE.
2478 */
2479 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2480 PMAP_PVO_CHECK(pvo); /* sanity check */
2481 pt = pmap_pvo_to_pte(pvo, -1);
2482 if (pt != NULL) {
2483 /*
2484 * Only sync the PTE if the bit we are looking
2485 * for is not already set.
2486 */
2487 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2488 pmap_pte_synch(pt, &pvo->pvo_pte);
2489 /*
2490 * If the bit we are looking for was already set,
2491 * clear that bit in the pte.
2492 */
2493 if (pvo->pvo_pte.pte_lo & ptebit)
2494 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2495 }
2496 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2497 pvo->pvo_pte.pte_lo &= ~ptebit;
2498 PMAP_PVO_CHECK(pvo); /* sanity check */
2499 }
2500 pmap_interrupts_restore(msr);
2501
2502 /*
2503 * If we are clearing the modify bit and this page was marked EXEC
2504 * and the user of the page thinks the page was modified, then we
2505 * need to clean it from the icache if it's mapped or clear the EXEC
2506 * bit if it's not mapped. The page itself might not have the CHG
2507 * bit set if the modification was done via DMA to the page.
2508 */
2509 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2510 if (LIST_EMPTY(pvoh)) {
2511 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2512 VM_PAGE_TO_PHYS(pg)));
2513 pmap_attr_clear(pg, PTE_EXEC);
2514 PMAPCOUNT(exec_uncached_clear_modify);
2515 } else {
2516 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2517 VM_PAGE_TO_PHYS(pg)));
2518 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2519 PMAPCOUNT(exec_synced_clear_modify);
2520 }
2521 }
2522 return (rv & ptebit) != 0;
2523 }
2524
2525 void
2526 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2527 {
2528 struct pvo_entry *pvo;
2529 size_t offset = va & ADDR_POFF;
2530 int s;
2531
2532 s = splvm();
2533 while (len > 0) {
2534 size_t seglen = PAGE_SIZE - offset;
2535 if (seglen > len)
2536 seglen = len;
2537 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2538 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2539 pmap_syncicache(
2540 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2541 PMAP_PVO_CHECK(pvo);
2542 }
2543 va += seglen;
2544 len -= seglen;
2545 offset = 0;
2546 }
2547 splx(s);
2548 }
2549
2550 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2551 void
2552 pmap_pte_print(volatile struct pte *pt)
2553 {
2554 printf("PTE %p: ", pt);
2555
2556 #if defined(PPC_OEA)
2557 /* High word: */
2558 printf("0x%08lx: [", pt->pte_hi);
2559 #elif defined (PPC_OEA64_BRIDGE)
2560 printf("0x%016llx: [", pt->pte_hi);
2561 #else /* PPC_OEA64 */
2562 printf("0x%016lx: [", pt->pte_hi);
2563 #endif /* PPC_OEA */
2564
2565 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2566 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2567
2568 #if defined (PPC_OEA)
2569 printf("0x%06lx 0x%02lx",
2570 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2571 pt->pte_hi & PTE_API);
2572 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2573 #elif defined (PPC_OEA64)
2574 printf("0x%06lx 0x%02lx",
2575 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2576 pt->pte_hi & PTE_API);
2577 printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
2578 #else
2579 /* PPC_OEA64_BRIDGE */
2580 printf("0x%06llx 0x%02llx",
2581 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2582 pt->pte_hi & PTE_API);
2583 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2584 #endif /* PPC_OEA */
2585
2586 /* Low word: */
2587 #if defined (PPC_OEA)
2588 printf(" 0x%08lx: [", pt->pte_lo);
2589 printf("0x%05lx... ", pt->pte_lo >> 12);
2590 #elif defined (PPC_OEA64)
2591 printf(" 0x%016lx: [", pt->pte_lo);
2592 printf("0x%012lx... ", pt->pte_lo >> 12);
2593 #else /* PPC_OEA64_BRIDGE */
2594 printf(" 0x%016llx: [", pt->pte_lo);
2595 printf("0x%012llx... ", pt->pte_lo >> 12);
2596 #endif
2597 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2598 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2599 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2600 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2601 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2602 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2603 switch (pt->pte_lo & PTE_PP) {
2604 case PTE_BR: printf("br]\n"); break;
2605 case PTE_BW: printf("bw]\n"); break;
2606 case PTE_SO: printf("so]\n"); break;
2607 case PTE_SW: printf("sw]\n"); break;
2608 }
2609 }
2610 #endif
2611
2612 #if defined(DDB)
2613 void
2614 pmap_pteg_check(void)
2615 {
2616 volatile struct pte *pt;
2617 int i;
2618 int ptegidx;
2619 u_int p_valid = 0;
2620 u_int s_valid = 0;
2621 u_int invalid = 0;
2622
2623 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2624 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2625 if (pt->pte_hi & PTE_VALID) {
2626 if (pt->pte_hi & PTE_HID)
2627 s_valid++;
2628 else
2629 {
2630 p_valid++;
2631 }
2632 } else
2633 invalid++;
2634 }
2635 }
2636 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2637 p_valid, p_valid, s_valid, s_valid,
2638 invalid, invalid);
2639 }
2640
2641 void
2642 pmap_print_mmuregs(void)
2643 {
2644 int i;
2645 u_int cpuvers;
2646 #ifndef PPC_OEA64
2647 vaddr_t addr;
2648 register_t soft_sr[16];
2649 #endif
2650 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2651 struct bat soft_ibat[4];
2652 struct bat soft_dbat[4];
2653 #endif
2654 register_t sdr1;
2655
2656 cpuvers = MFPVR() >> 16;
2657 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2658 #ifndef PPC_OEA64
2659 addr = 0;
2660 for (i = 0; i < 16; i++) {
2661 soft_sr[i] = MFSRIN(addr);
2662 addr += (1 << ADDR_SR_SHFT);
2663 }
2664 #endif
2665
2666 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2667 /* read iBAT (601: uBAT) registers */
2668 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2669 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2670 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2671 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2672 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2673 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2674 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2675 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2676
2677
2678 if (cpuvers != MPC601) {
2679 /* read dBAT registers */
2680 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2681 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2682 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2683 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2684 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2685 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2686 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2687 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2688 }
2689 #endif
2690
2691 printf("SDR1:\t0x%lx\n", (long) sdr1);
2692 #ifndef PPC_OEA64
2693 printf("SR[]:\t");
2694 for (i = 0; i < 4; i++)
2695 printf("0x%08lx, ", (long) soft_sr[i]);
2696 printf("\n\t");
2697 for ( ; i < 8; i++)
2698 printf("0x%08lx, ", (long) soft_sr[i]);
2699 printf("\n\t");
2700 for ( ; i < 12; i++)
2701 printf("0x%08lx, ", (long) soft_sr[i]);
2702 printf("\n\t");
2703 for ( ; i < 16; i++)
2704 printf("0x%08lx, ", (long) soft_sr[i]);
2705 printf("\n");
2706 #endif
2707
2708 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2709 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2710 for (i = 0; i < 4; i++) {
2711 printf("0x%08lx 0x%08lx, ",
2712 soft_ibat[i].batu, soft_ibat[i].batl);
2713 if (i == 1)
2714 printf("\n\t");
2715 }
2716 if (cpuvers != MPC601) {
2717 printf("\ndBAT[]:\t");
2718 for (i = 0; i < 4; i++) {
2719 printf("0x%08lx 0x%08lx, ",
2720 soft_dbat[i].batu, soft_dbat[i].batl);
2721 if (i == 1)
2722 printf("\n\t");
2723 }
2724 }
2725 printf("\n");
2726 #endif /* PPC_OEA... */
2727 }
2728
2729 void
2730 pmap_print_pte(pmap_t pm, vaddr_t va)
2731 {
2732 struct pvo_entry *pvo;
2733 volatile struct pte *pt;
2734 int pteidx;
2735
2736 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2737 if (pvo != NULL) {
2738 pt = pmap_pvo_to_pte(pvo, pteidx);
2739 if (pt != NULL) {
2740 #if defined (PPC_OEA) || defined (PPC_OEA64)
2741 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2742 va, pt,
2743 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2744 pt->pte_hi, pt->pte_lo);
2745 #else /* PPC_OEA64_BRIDGE */
2746 printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
2747 va, pt,
2748 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2749 pt->pte_hi, pt->pte_lo);
2750 #endif
2751 } else {
2752 printf("No valid PTE found\n");
2753 }
2754 } else {
2755 printf("Address not in pmap\n");
2756 }
2757 }
2758
2759 void
2760 pmap_pteg_dist(void)
2761 {
2762 struct pvo_entry *pvo;
2763 int ptegidx;
2764 int depth;
2765 int max_depth = 0;
2766 unsigned int depths[64];
2767
2768 memset(depths, 0, sizeof(depths));
2769 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2770 depth = 0;
2771 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2772 depth++;
2773 }
2774 if (depth > max_depth)
2775 max_depth = depth;
2776 if (depth > 63)
2777 depth = 63;
2778 depths[depth]++;
2779 }
2780
2781 for (depth = 0; depth < 64; depth++) {
2782 printf(" [%2d]: %8u", depth, depths[depth]);
2783 if ((depth & 3) == 3)
2784 printf("\n");
2785 if (depth == max_depth)
2786 break;
2787 }
2788 if ((depth & 3) != 3)
2789 printf("\n");
2790 printf("Max depth found was %d\n", max_depth);
2791 }
2792 #endif /* DEBUG */
2793
2794 #if defined(PMAPCHECK) || defined(DEBUG)
2795 void
2796 pmap_pvo_verify(void)
2797 {
2798 int ptegidx;
2799 int s;
2800
2801 s = splvm();
2802 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2803 struct pvo_entry *pvo;
2804 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2805 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2806 panic("pmap_pvo_verify: invalid pvo %p "
2807 "on list %#x", pvo, ptegidx);
2808 pmap_pvo_check(pvo);
2809 }
2810 }
2811 splx(s);
2812 }
2813 #endif /* PMAPCHECK */
2814
2815
2816 void *
2817 pmap_pool_ualloc(struct pool *pp, int flags)
2818 {
2819 struct pvo_page *pvop;
2820
2821 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2822 if (pvop != NULL) {
2823 pmap_upvop_free--;
2824 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2825 return pvop;
2826 }
2827 if (uvm.page_init_done != TRUE) {
2828 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2829 }
2830 return pmap_pool_malloc(pp, flags);
2831 }
2832
2833 void *
2834 pmap_pool_malloc(struct pool *pp, int flags)
2835 {
2836 struct pvo_page *pvop;
2837 struct vm_page *pg;
2838
2839 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2840 if (pvop != NULL) {
2841 pmap_mpvop_free--;
2842 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2843 return pvop;
2844 }
2845 again:
2846 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2847 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2848 if (__predict_false(pg == NULL)) {
2849 if (flags & PR_WAITOK) {
2850 uvm_wait("plpg");
2851 goto again;
2852 } else {
2853 return (0);
2854 }
2855 }
2856 return (void *) VM_PAGE_TO_PHYS(pg);
2857 }
2858
2859 void
2860 pmap_pool_ufree(struct pool *pp, void *va)
2861 {
2862 struct pvo_page *pvop;
2863 #if 0
2864 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2865 pmap_pool_mfree(va, size, tag);
2866 return;
2867 }
2868 #endif
2869 pvop = va;
2870 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2871 pmap_upvop_free++;
2872 if (pmap_upvop_free > pmap_upvop_maxfree)
2873 pmap_upvop_maxfree = pmap_upvop_free;
2874 }
2875
2876 void
2877 pmap_pool_mfree(struct pool *pp, void *va)
2878 {
2879 struct pvo_page *pvop;
2880
2881 pvop = va;
2882 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2883 pmap_mpvop_free++;
2884 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2885 pmap_mpvop_maxfree = pmap_mpvop_free;
2886 #if 0
2887 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2888 #endif
2889 }
2890
2891 /*
2892 * This routine in bootstraping to steal to-be-managed memory (which will
2893 * then be unmanaged). We use it to grab from the first 256MB for our
2894 * pmap needs and above 256MB for other stuff.
2895 */
2896 vaddr_t
2897 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2898 {
2899 vsize_t size;
2900 vaddr_t va;
2901 paddr_t pa = 0;
2902 int npgs, bank;
2903 struct vm_physseg *ps;
2904
2905 if (uvm.page_init_done == TRUE)
2906 panic("pmap_steal_memory: called _after_ bootstrap");
2907
2908 *vstartp = VM_MIN_KERNEL_ADDRESS;
2909 *vendp = VM_MAX_KERNEL_ADDRESS;
2910
2911 size = round_page(vsize);
2912 npgs = atop(size);
2913
2914 /*
2915 * PA 0 will never be among those given to UVM so we can use it
2916 * to indicate we couldn't steal any memory.
2917 */
2918 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2919 if (ps->free_list == VM_FREELIST_FIRST256 &&
2920 ps->avail_end - ps->avail_start >= npgs) {
2921 pa = ptoa(ps->avail_start);
2922 break;
2923 }
2924 }
2925
2926 if (pa == 0)
2927 panic("pmap_steal_memory: no approriate memory to steal!");
2928
2929 ps->avail_start += npgs;
2930 ps->start += npgs;
2931
2932 /*
2933 * If we've used up all the pages in the segment, remove it and
2934 * compact the list.
2935 */
2936 if (ps->avail_start == ps->end) {
2937 /*
2938 * If this was the last one, then a very bad thing has occurred
2939 */
2940 if (--vm_nphysseg == 0)
2941 panic("pmap_steal_memory: out of memory!");
2942
2943 printf("pmap_steal_memory: consumed bank %d\n", bank);
2944 for (; bank < vm_nphysseg; bank++, ps++) {
2945 ps[0] = ps[1];
2946 }
2947 }
2948
2949 va = (vaddr_t) pa;
2950 memset((caddr_t) va, 0, size);
2951 pmap_pages_stolen += npgs;
2952 #ifdef DEBUG
2953 if (pmapdebug && npgs > 1) {
2954 u_int cnt = 0;
2955 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2956 cnt += ps->avail_end - ps->avail_start;
2957 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2958 npgs, pmap_pages_stolen, cnt);
2959 }
2960 #endif
2961
2962 return va;
2963 }
2964
2965 /*
2966 * Find a chuck of memory with right size and alignment.
2967 */
2968 void *
2969 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2970 {
2971 struct mem_region *mp;
2972 paddr_t s, e;
2973 int i, j;
2974
2975 size = round_page(size);
2976
2977 DPRINTFN(BOOT,
2978 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2979 size, alignment, at_end));
2980
2981 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2982 panic("pmap_boot_find_memory: invalid alignment %lx",
2983 alignment);
2984
2985 if (at_end) {
2986 if (alignment != PAGE_SIZE)
2987 panic("pmap_boot_find_memory: invalid ending "
2988 "alignment %lx", alignment);
2989
2990 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2991 s = mp->start + mp->size - size;
2992 if (s >= mp->start && mp->size >= size) {
2993 DPRINTFN(BOOT,(": %lx\n", s));
2994 DPRINTFN(BOOT,
2995 ("pmap_boot_find_memory: b-avail[%d] start "
2996 "0x%lx size 0x%lx\n", mp - avail,
2997 mp->start, mp->size));
2998 mp->size -= size;
2999 DPRINTFN(BOOT,
3000 ("pmap_boot_find_memory: a-avail[%d] start "
3001 "0x%lx size 0x%lx\n", mp - avail,
3002 mp->start, mp->size));
3003 return (void *) s;
3004 }
3005 }
3006 panic("pmap_boot_find_memory: no available memory");
3007 }
3008
3009 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3010 s = (mp->start + alignment - 1) & ~(alignment-1);
3011 e = s + size;
3012
3013 /*
3014 * Is the calculated region entirely within the region?
3015 */
3016 if (s < mp->start || e > mp->start + mp->size)
3017 continue;
3018
3019 DPRINTFN(BOOT,(": %lx\n", s));
3020 if (s == mp->start) {
3021 /*
3022 * If the block starts at the beginning of region,
3023 * adjust the size & start. (the region may now be
3024 * zero in length)
3025 */
3026 DPRINTFN(BOOT,
3027 ("pmap_boot_find_memory: b-avail[%d] start "
3028 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3029 mp->start += size;
3030 mp->size -= size;
3031 DPRINTFN(BOOT,
3032 ("pmap_boot_find_memory: a-avail[%d] start "
3033 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3034 } else if (e == mp->start + mp->size) {
3035 /*
3036 * If the block starts at the beginning of region,
3037 * adjust only the size.
3038 */
3039 DPRINTFN(BOOT,
3040 ("pmap_boot_find_memory: b-avail[%d] start "
3041 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3042 mp->size -= size;
3043 DPRINTFN(BOOT,
3044 ("pmap_boot_find_memory: a-avail[%d] start "
3045 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3046 } else {
3047 /*
3048 * Block is in the middle of the region, so we
3049 * have to split it in two.
3050 */
3051 for (j = avail_cnt; j > i + 1; j--) {
3052 avail[j] = avail[j-1];
3053 }
3054 DPRINTFN(BOOT,
3055 ("pmap_boot_find_memory: b-avail[%d] start "
3056 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3057 mp[1].start = e;
3058 mp[1].size = mp[0].start + mp[0].size - e;
3059 mp[0].size = s - mp[0].start;
3060 avail_cnt++;
3061 for (; i < avail_cnt; i++) {
3062 DPRINTFN(BOOT,
3063 ("pmap_boot_find_memory: a-avail[%d] "
3064 "start 0x%lx size 0x%lx\n", i,
3065 avail[i].start, avail[i].size));
3066 }
3067 }
3068 return (void *) s;
3069 }
3070 panic("pmap_boot_find_memory: not enough memory for "
3071 "%lx/%lx allocation?", size, alignment);
3072 }
3073
3074 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3075 #if defined (PPC_OEA64_BRIDGE)
3076 int
3077 pmap_setup_segment0_map(int use_large_pages, ...)
3078 {
3079 vaddr_t va;
3080
3081 register_t pte_lo = 0x0;
3082 int ptegidx = 0, i = 0;
3083 struct pte pte;
3084 va_list ap;
3085
3086 /* Coherent + Supervisor RW, no user access */
3087 pte_lo = PTE_M;
3088
3089 /* XXXSL
3090 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3091 * these have to take priority.
3092 */
3093 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3094 ptegidx = va_to_pteg(pmap_kernel(), va);
3095 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3096 i = pmap_pte_insert(ptegidx, &pte);
3097 }
3098
3099 va_start(ap, use_large_pages);
3100 while (1) {
3101 paddr_t pa;
3102 size_t size;
3103
3104 va = va_arg(ap, vaddr_t);
3105
3106 if (va == 0)
3107 break;
3108
3109 pa = va_arg(ap, paddr_t);
3110 size = va_arg(ap, size_t);
3111
3112 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3113 #if 0
3114 printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __FUNCTION__, va, pa);
3115 #endif
3116 ptegidx = va_to_pteg(pmap_kernel(), va);
3117 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3118 i = pmap_pte_insert(ptegidx, &pte);
3119 }
3120 }
3121
3122 TLBSYNC();
3123 SYNC();
3124 return (0);
3125 }
3126 #endif /* PPC_OEA64_BRIDGE */
3127
3128 /*
3129 * This is not part of the defined PMAP interface and is specific to the
3130 * PowerPC architecture. This is called during initppc, before the system
3131 * is really initialized.
3132 */
3133 void
3134 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3135 {
3136 struct mem_region *mp, tmp;
3137 paddr_t s, e;
3138 psize_t size;
3139 int i, j;
3140
3141 /*
3142 * Get memory.
3143 */
3144 mem_regions(&mem, &avail);
3145 #if defined(DEBUG)
3146 if (pmapdebug & PMAPDEBUG_BOOT) {
3147 printf("pmap_bootstrap: memory configuration:\n");
3148 for (mp = mem; mp->size; mp++) {
3149 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
3150 mp->start, mp->size);
3151 }
3152 for (mp = avail; mp->size; mp++) {
3153 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
3154 mp->start, mp->size);
3155 }
3156 }
3157 #endif
3158
3159 /*
3160 * Find out how much physical memory we have and in how many chunks.
3161 */
3162 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3163 if (mp->start >= pmap_memlimit)
3164 continue;
3165 if (mp->start + mp->size > pmap_memlimit) {
3166 size = pmap_memlimit - mp->start;
3167 physmem += btoc(size);
3168 } else {
3169 physmem += btoc(mp->size);
3170 }
3171 mem_cnt++;
3172 }
3173
3174 /*
3175 * Count the number of available entries.
3176 */
3177 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3178 avail_cnt++;
3179
3180 /*
3181 * Page align all regions.
3182 */
3183 kernelstart = trunc_page(kernelstart);
3184 kernelend = round_page(kernelend);
3185 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3186 s = round_page(mp->start);
3187 mp->size -= (s - mp->start);
3188 mp->size = trunc_page(mp->size);
3189 mp->start = s;
3190 e = mp->start + mp->size;
3191
3192 DPRINTFN(BOOT,
3193 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
3194 i, mp->start, mp->size));
3195
3196 /*
3197 * Don't allow the end to run beyond our artificial limit
3198 */
3199 if (e > pmap_memlimit)
3200 e = pmap_memlimit;
3201
3202 /*
3203 * Is this region empty or strange? skip it.
3204 */
3205 if (e <= s) {
3206 mp->start = 0;
3207 mp->size = 0;
3208 continue;
3209 }
3210
3211 /*
3212 * Does this overlap the beginning of kernel?
3213 * Does extend past the end of the kernel?
3214 */
3215 else if (s < kernelstart && e > kernelstart) {
3216 if (e > kernelend) {
3217 avail[avail_cnt].start = kernelend;
3218 avail[avail_cnt].size = e - kernelend;
3219 avail_cnt++;
3220 }
3221 mp->size = kernelstart - s;
3222 }
3223 /*
3224 * Check whether this region overlaps the end of the kernel.
3225 */
3226 else if (s < kernelend && e > kernelend) {
3227 mp->start = kernelend;
3228 mp->size = e - kernelend;
3229 }
3230 /*
3231 * Look whether this regions is completely inside the kernel.
3232 * Nuke it if it does.
3233 */
3234 else if (s >= kernelstart && e <= kernelend) {
3235 mp->start = 0;
3236 mp->size = 0;
3237 }
3238 /*
3239 * If the user imposed a memory limit, enforce it.
3240 */
3241 else if (s >= pmap_memlimit) {
3242 mp->start = -PAGE_SIZE; /* let's know why */
3243 mp->size = 0;
3244 }
3245 else {
3246 mp->start = s;
3247 mp->size = e - s;
3248 }
3249 DPRINTFN(BOOT,
3250 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3251 i, mp->start, mp->size));
3252 }
3253
3254 /*
3255 * Move (and uncount) all the null return to the end.
3256 */
3257 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3258 if (mp->size == 0) {
3259 tmp = avail[i];
3260 avail[i] = avail[--avail_cnt];
3261 avail[avail_cnt] = avail[i];
3262 }
3263 }
3264
3265 /*
3266 * (Bubble)sort them into asecnding order.
3267 */
3268 for (i = 0; i < avail_cnt; i++) {
3269 for (j = i + 1; j < avail_cnt; j++) {
3270 if (avail[i].start > avail[j].start) {
3271 tmp = avail[i];
3272 avail[i] = avail[j];
3273 avail[j] = tmp;
3274 }
3275 }
3276 }
3277
3278 /*
3279 * Make sure they don't overlap.
3280 */
3281 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3282 if (mp[0].start + mp[0].size > mp[1].start) {
3283 mp[0].size = mp[1].start - mp[0].start;
3284 }
3285 DPRINTFN(BOOT,
3286 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3287 i, mp->start, mp->size));
3288 }
3289 DPRINTFN(BOOT,
3290 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3291 i, mp->start, mp->size));
3292
3293 #ifdef PTEGCOUNT
3294 pmap_pteg_cnt = PTEGCOUNT;
3295 #else /* PTEGCOUNT */
3296
3297 pmap_pteg_cnt = 0x1000;
3298
3299 while (pmap_pteg_cnt < physmem)
3300 pmap_pteg_cnt <<= 1;
3301
3302 pmap_pteg_cnt >>= 1;
3303 #endif /* PTEGCOUNT */
3304
3305 #ifdef DEBUG
3306 DPRINTFN(BOOT,
3307 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3308 #endif
3309
3310 /*
3311 * Find suitably aligned memory for PTEG hash table.
3312 */
3313 size = pmap_pteg_cnt * sizeof(struct pteg);
3314 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3315
3316 #ifdef DEBUG
3317 DPRINTFN(BOOT,
3318 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3319 #endif
3320
3321
3322 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3323 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3324 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3325 pmap_pteg_table, size);
3326 #endif
3327
3328 memset(__UNVOLATILE(pmap_pteg_table), 0,
3329 pmap_pteg_cnt * sizeof(struct pteg));
3330 pmap_pteg_mask = pmap_pteg_cnt - 1;
3331
3332 /*
3333 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3334 * with pages. So we just steal them before giving them to UVM.
3335 */
3336 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3337 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3338 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3339 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3340 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3341 pmap_pvo_table, size);
3342 #endif
3343
3344 for (i = 0; i < pmap_pteg_cnt; i++)
3345 TAILQ_INIT(&pmap_pvo_table[i]);
3346
3347 #ifndef MSGBUFADDR
3348 /*
3349 * Allocate msgbuf in high memory.
3350 */
3351 msgbuf_paddr =
3352 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3353 #endif
3354
3355 #ifdef __HAVE_PMAP_PHYSSEG
3356 {
3357 u_int npgs = 0;
3358 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3359 npgs += btoc(mp->size);
3360 size = (sizeof(struct pvo_head) + 1) * npgs;
3361 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3362 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3363 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3364 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3365 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3366 pmap_physseg.pvoh, size);
3367 #endif
3368 }
3369 #endif
3370
3371
3372 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3373 paddr_t pfstart = atop(mp->start);
3374 paddr_t pfend = atop(mp->start + mp->size);
3375 if (mp->size == 0)
3376 continue;
3377 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3378 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3379 VM_FREELIST_FIRST256);
3380 } else if (mp->start >= SEGMENT_LENGTH) {
3381 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3382 VM_FREELIST_DEFAULT);
3383 } else {
3384 pfend = atop(SEGMENT_LENGTH);
3385 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 VM_FREELIST_FIRST256);
3387 pfstart = atop(SEGMENT_LENGTH);
3388 pfend = atop(mp->start + mp->size);
3389 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3390 VM_FREELIST_DEFAULT);
3391 }
3392 }
3393
3394 /*
3395 * Make sure kernel vsid is allocated as well as VSID 0.
3396 */
3397 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3398 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3399 pmap_vsid_bitmap[0] |= 1;
3400
3401 /*
3402 * Initialize kernel pmap and hardware.
3403 */
3404
3405 /* PPC_OEA64_BRIDGE does support these instructions */
3406 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
3407 for (i = 0; i < 16; i++) {
3408 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3409 __asm volatile ("mtsrin %0,%1"
3410 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3411 }
3412
3413 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3414 __asm volatile ("mtsr %0,%1"
3415 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3416 #ifdef KERNEL2_SR
3417 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3418 __asm volatile ("mtsr %0,%1"
3419 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3420 #endif
3421 for (i = 0; i < 16; i++) {
3422 if (iosrtable[i] & SR601_T) {
3423 pmap_kernel()->pm_sr[i] = iosrtable[i];
3424 __asm volatile ("mtsrin %0,%1"
3425 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3426 }
3427 }
3428 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
3429 #if defined (PPC_OEA)
3430 __asm volatile ("sync; mtsdr1 %0; isync"
3431 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3432 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
3433 __asm __volatile ("sync; mtsdr1 %0; isync"
3434 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3435 #endif
3436 tlbia();
3437
3438 #ifdef ALTIVEC
3439 pmap_use_altivec = cpu_altivec;
3440 #endif
3441
3442 #ifdef DEBUG
3443 if (pmapdebug & PMAPDEBUG_BOOT) {
3444 u_int cnt;
3445 int bank;
3446 char pbuf[9];
3447 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3448 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3449 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3450 bank,
3451 ptoa(vm_physmem[bank].avail_start),
3452 ptoa(vm_physmem[bank].avail_end),
3453 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3454 }
3455 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3456 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3457 pbuf, cnt);
3458 }
3459 #endif
3460
3461 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3462 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3463 &pmap_pool_uallocator);
3464
3465 pool_setlowat(&pmap_upvo_pool, 252);
3466
3467 pool_init(&pmap_pool, sizeof(struct pmap),
3468 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3469
3470 #if defined(PMAP_NEED_MAPKERNEL)
3471 {
3472 extern int etext[], kernel_text[];
3473 vaddr_t va, va_etext = (paddr_t) etext;
3474 paddr_t pa;
3475
3476 va = (vaddr_t) kernel_text;
3477
3478 for (pa = kernelstart; va < va_etext;
3479 pa += PAGE_SIZE, va += PAGE_SIZE)
3480 pmap_enter(pmap_kernel(), va, pa,
3481 VM_PROT_READ|VM_PROT_EXECUTE, 0);
3482
3483 for (; pa < kernelend;
3484 pa += PAGE_SIZE, va += PAGE_SIZE)
3485 pmap_enter(pmap_kernel(), va, pa,
3486 VM_PROT_READ|VM_PROT_WRITE, 0);
3487 }
3488 #endif
3489 }
3490