Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.45
      1 /*	$NetBSD: pmap.c,v 1.45 2007/02/22 16:57:57 thorpej Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *        This product includes software developed by the NetBSD
     23  *        Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*
     42  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     43  * Copyright (C) 1995, 1996 TooLs GmbH.
     44  * All rights reserved.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. All advertising materials mentioning features or use of this software
     55  *    must display the following acknowledgement:
     56  *	This product includes software developed by TooLs GmbH.
     57  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     58  *    derived from this software without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     61  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     62  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     64  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     65  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     66  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     67  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     68  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     69  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.45 2007/02/22 16:57:57 thorpej Exp $");
     74 
     75 #include "opt_ppcarch.h"
     76 #include "opt_altivec.h"
     77 #include "opt_pmap.h"
     78 #include <sys/param.h>
     79 #include <sys/malloc.h>
     80 #include <sys/proc.h>
     81 #include <sys/user.h>
     82 #include <sys/pool.h>
     83 #include <sys/queue.h>
     84 #include <sys/device.h>		/* for evcnt */
     85 #include <sys/systm.h>
     86 
     87 #if __NetBSD_Version__ < 105010000
     88 #include <vm/vm.h>
     89 #include <vm/vm_kern.h>
     90 #define	splvm()		splimp()
     91 #endif
     92 
     93 #include <uvm/uvm.h>
     94 
     95 #include <machine/pcb.h>
     96 #include <machine/powerpc.h>
     97 #include <powerpc/spr.h>
     98 #include <powerpc/oea/sr_601.h>
     99 #include <powerpc/bat.h>
    100 #include <powerpc/stdarg.h>
    101 
    102 #if defined(DEBUG) || defined(PMAPCHECK)
    103 #define	STATIC
    104 #else
    105 #define	STATIC	static
    106 #endif
    107 
    108 #ifdef ALTIVEC
    109 int pmap_use_altivec;
    110 #endif
    111 
    112 volatile struct pteg *pmap_pteg_table;
    113 unsigned int pmap_pteg_cnt;
    114 unsigned int pmap_pteg_mask;
    115 #ifdef PMAP_MEMLIMIT
    116 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    117 #else
    118 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    119 #endif
    120 
    121 struct pmap kernel_pmap_;
    122 unsigned int pmap_pages_stolen;
    123 u_long pmap_pte_valid;
    124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    125 u_long pmap_pvo_enter_depth;
    126 u_long pmap_pvo_remove_depth;
    127 #endif
    128 
    129 int physmem;
    130 #ifndef MSGBUFADDR
    131 extern paddr_t msgbuf_paddr;
    132 #endif
    133 
    134 static struct mem_region *mem, *avail;
    135 static u_int mem_cnt, avail_cnt;
    136 
    137 #ifdef __HAVE_PMAP_PHYSSEG
    138 /*
    139  * This is a cache of referenced/modified bits.
    140  * Bits herein are shifted by ATTRSHFT.
    141  */
    142 #define	ATTR_SHFT	4
    143 struct pmap_physseg pmap_physseg;
    144 #endif
    145 
    146 /*
    147  * The following structure is aligned to 32 bytes
    148  */
    149 struct pvo_entry {
    150 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    151 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    152 	struct pte pvo_pte;			/* Prebuilt PTE */
    153 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    154 	vaddr_t pvo_vaddr;			/* VA of entry */
    155 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    156 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    157 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    158 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    159 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    160 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    161 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    162 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    163 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    164 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    165 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    166 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    167 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    168 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    169 #define	PVO_REMOVE		6		/* PVO has been removed */
    170 #define	PVO_WHERE_MASK		15
    171 #define	PVO_WHERE_SHFT		8
    172 } __attribute__ ((aligned (32)));
    173 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    174 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    175 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    176 #define	PVO_PTEGIDX_CLR(pvo)	\
    177 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    178 #define	PVO_PTEGIDX_SET(pvo,i)	\
    179 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    180 #define	PVO_WHERE(pvo,w)	\
    181 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    182 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    183 
    184 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    185 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    186 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    187 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    188 
    189 struct pool pmap_pool;		/* pool for pmap structures */
    190 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    191 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    192 
    193 /*
    194  * We keep a cache of unmanaged pages to be used for pvo entries for
    195  * unmanaged pages.
    196  */
    197 struct pvo_page {
    198 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    199 };
    200 SIMPLEQ_HEAD(pvop_head, pvo_page);
    201 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    202 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    203 u_long pmap_upvop_free;
    204 u_long pmap_upvop_maxfree;
    205 u_long pmap_mpvop_free;
    206 u_long pmap_mpvop_maxfree;
    207 
    208 STATIC void *pmap_pool_ualloc(struct pool *, int);
    209 STATIC void *pmap_pool_malloc(struct pool *, int);
    210 
    211 STATIC void pmap_pool_ufree(struct pool *, void *);
    212 STATIC void pmap_pool_mfree(struct pool *, void *);
    213 
    214 static struct pool_allocator pmap_pool_mallocator = {
    215 	.pa_alloc = pmap_pool_malloc,
    216 	.pa_free = pmap_pool_mfree,
    217 	.pa_pagesz = 0,
    218 };
    219 
    220 static struct pool_allocator pmap_pool_uallocator = {
    221 	.pa_alloc = pmap_pool_ualloc,
    222 	.pa_free = pmap_pool_ufree,
    223 	.pa_pagesz = 0,
    224 };
    225 
    226 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    227 void pmap_pte_print(volatile struct pte *);
    228 void pmap_pteg_check(void);
    229 void pmap_pteg_dist(void);
    230 void pmap_print_pte(pmap_t, vaddr_t);
    231 void pmap_print_mmuregs(void);
    232 #endif
    233 
    234 #if defined(DEBUG) || defined(PMAPCHECK)
    235 #ifdef PMAPCHECK
    236 int pmapcheck = 1;
    237 #else
    238 int pmapcheck = 0;
    239 #endif
    240 void pmap_pvo_verify(void);
    241 STATIC void pmap_pvo_check(const struct pvo_entry *);
    242 #define	PMAP_PVO_CHECK(pvo)	 		\
    243 	do {					\
    244 		if (pmapcheck)			\
    245 			pmap_pvo_check(pvo);	\
    246 	} while (0)
    247 #else
    248 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    249 #endif
    250 STATIC int pmap_pte_insert(int, struct pte *);
    251 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    252 	vaddr_t, paddr_t, register_t, int);
    253 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    254 STATIC void pmap_pvo_free(struct pvo_entry *);
    255 STATIC void pmap_pvo_free_list(struct pvo_head *);
    256 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    257 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    258 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    259 STATIC void pvo_set_exec(struct pvo_entry *);
    260 STATIC void pvo_clear_exec(struct pvo_entry *);
    261 
    262 STATIC void tlbia(void);
    263 
    264 STATIC void pmap_release(pmap_t);
    265 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    266 
    267 static uint32_t pmap_pvo_reclaim_nextidx;
    268 #ifdef DEBUG
    269 static int pmap_pvo_reclaim_debugctr;
    270 #endif
    271 
    272 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    273 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    274 
    275 static int pmap_initialized;
    276 
    277 #if defined(DEBUG) || defined(PMAPDEBUG)
    278 #define	PMAPDEBUG_BOOT		0x0001
    279 #define	PMAPDEBUG_PTE		0x0002
    280 #define	PMAPDEBUG_EXEC		0x0008
    281 #define	PMAPDEBUG_PVOENTER	0x0010
    282 #define	PMAPDEBUG_PVOREMOVE	0x0020
    283 #define	PMAPDEBUG_ACTIVATE	0x0100
    284 #define	PMAPDEBUG_CREATE	0x0200
    285 #define	PMAPDEBUG_ENTER		0x1000
    286 #define	PMAPDEBUG_KENTER	0x2000
    287 #define	PMAPDEBUG_KREMOVE	0x4000
    288 #define	PMAPDEBUG_REMOVE	0x8000
    289 
    290 unsigned int pmapdebug = 0;
    291 
    292 # define DPRINTF(x)		printf x
    293 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    294 #else
    295 # define DPRINTF(x)
    296 # define DPRINTFN(n, x)
    297 #endif
    298 
    299 
    300 #ifdef PMAPCOUNTERS
    301 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    302 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    303 
    304 struct evcnt pmap_evcnt_mappings =
    305     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    306 	    "pmap", "pages mapped");
    307 struct evcnt pmap_evcnt_unmappings =
    308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    309 	    "pmap", "pages unmapped");
    310 
    311 struct evcnt pmap_evcnt_kernel_mappings =
    312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    313 	    "pmap", "kernel pages mapped");
    314 struct evcnt pmap_evcnt_kernel_unmappings =
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    316 	    "pmap", "kernel pages unmapped");
    317 
    318 struct evcnt pmap_evcnt_mappings_replaced =
    319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    320 	    "pmap", "page mappings replaced");
    321 
    322 struct evcnt pmap_evcnt_exec_mappings =
    323     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    324 	    "pmap", "exec pages mapped");
    325 struct evcnt pmap_evcnt_exec_cached =
    326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    327 	    "pmap", "exec pages cached");
    328 
    329 struct evcnt pmap_evcnt_exec_synced =
    330     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    331 	    "pmap", "exec pages synced");
    332 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    333     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    334 	    "pmap", "exec pages synced (CM)");
    335 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
    336     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    337 	    "pmap", "exec pages synced (PR)");
    338 
    339 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    340     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    341 	    "pmap", "exec pages uncached (PP)");
    342 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    343     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    344 	    "pmap", "exec pages uncached (CM)");
    345 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    346     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    347 	    "pmap", "exec pages uncached (ZP)");
    348 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    349     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    350 	    "pmap", "exec pages uncached (CP)");
    351 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
    352     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    353 	    "pmap", "exec pages uncached (PR)");
    354 
    355 struct evcnt pmap_evcnt_updates =
    356     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    357 	    "pmap", "updates");
    358 struct evcnt pmap_evcnt_collects =
    359     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    360 	    "pmap", "collects");
    361 struct evcnt pmap_evcnt_copies =
    362     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    363 	    "pmap", "copies");
    364 
    365 struct evcnt pmap_evcnt_ptes_spilled =
    366     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    367 	    "pmap", "ptes spilled from overflow");
    368 struct evcnt pmap_evcnt_ptes_unspilled =
    369     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    370 	    "pmap", "ptes not spilled");
    371 struct evcnt pmap_evcnt_ptes_evicted =
    372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    373 	    "pmap", "ptes evicted");
    374 
    375 struct evcnt pmap_evcnt_ptes_primary[8] = {
    376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377 	    "pmap", "ptes added at primary[0]"),
    378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    379 	    "pmap", "ptes added at primary[1]"),
    380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    381 	    "pmap", "ptes added at primary[2]"),
    382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    383 	    "pmap", "ptes added at primary[3]"),
    384 
    385     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    386 	    "pmap", "ptes added at primary[4]"),
    387     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    388 	    "pmap", "ptes added at primary[5]"),
    389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    390 	    "pmap", "ptes added at primary[6]"),
    391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    392 	    "pmap", "ptes added at primary[7]"),
    393 };
    394 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    395     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    396 	    "pmap", "ptes added at secondary[0]"),
    397     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    398 	    "pmap", "ptes added at secondary[1]"),
    399     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    400 	    "pmap", "ptes added at secondary[2]"),
    401     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    402 	    "pmap", "ptes added at secondary[3]"),
    403 
    404     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    405 	    "pmap", "ptes added at secondary[4]"),
    406     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    407 	    "pmap", "ptes added at secondary[5]"),
    408     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    409 	    "pmap", "ptes added at secondary[6]"),
    410     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    411 	    "pmap", "ptes added at secondary[7]"),
    412 };
    413 struct evcnt pmap_evcnt_ptes_removed =
    414     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    415 	    "pmap", "ptes removed");
    416 struct evcnt pmap_evcnt_ptes_changed =
    417     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    418 	    "pmap", "ptes changed");
    419 struct evcnt pmap_evcnt_pvos_reclaimed =
    420     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    421 	    "pmap", "pvos reclaimed");
    422 struct evcnt pmap_evcnt_pvos_failed =
    423     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    424 	    "pmap", "pvo allocation failures");
    425 
    426 /*
    427  * From pmap_subr.c
    428  */
    429 extern struct evcnt pmap_evcnt_zeroed_pages;
    430 extern struct evcnt pmap_evcnt_copied_pages;
    431 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    432 
    433 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
    434 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
    435 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
    436 
    437 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
    438 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
    439 
    440 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
    441 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
    442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
    443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
    444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
    445 
    446 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
    447 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
    448 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
    449 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
    450 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
    451 
    452 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
    453 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
    454 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
    455 
    456 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
    457 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
    458 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
    459 
    460 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
    461 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
    462 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
    463 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
    464 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
    465 
    466 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
    467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
    468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
    469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
    470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
    471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
    472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
    473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
    474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
    475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
    476 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
    477 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
    478 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
    479 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
    480 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
    481 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
    482 
    483 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
    484 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
    485 #else
    486 #define	PMAPCOUNT(ev)	((void) 0)
    487 #define	PMAPCOUNT2(ev)	((void) 0)
    488 #endif
    489 
    490 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    491 
    492 /* XXXSL: this needs to be moved to assembler */
    493 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    494 
    495 #define	TLBSYNC()	__asm volatile("tlbsync")
    496 #define	SYNC()		__asm volatile("sync")
    497 #define	EIEIO()		__asm volatile("eieio")
    498 #define	MFMSR()		mfmsr()
    499 #define	MTMSR(psl)	mtmsr(psl)
    500 #define	MFPVR()		mfpvr()
    501 #define	MFSRIN(va)	mfsrin(va)
    502 #define	MFTB()		mfrtcltbl()
    503 
    504 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
    505 static inline register_t
    506 mfsrin(vaddr_t va)
    507 {
    508 	register_t sr;
    509 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    510 	return sr;
    511 }
    512 #endif	/* PPC_OEA*/
    513 
    514 #if defined (PPC_OEA64_BRIDGE)
    515 extern void mfmsr64 (register64_t *result);
    516 #endif /* PPC_OEA64_BRIDGE */
    517 
    518 
    519 static inline register_t
    520 pmap_interrupts_off(void)
    521 {
    522 	register_t msr = MFMSR();
    523 	if (msr & PSL_EE)
    524 		MTMSR(msr & ~PSL_EE);
    525 	return msr;
    526 }
    527 
    528 static void
    529 pmap_interrupts_restore(register_t msr)
    530 {
    531 	if (msr & PSL_EE)
    532 		MTMSR(msr);
    533 }
    534 
    535 static inline u_int32_t
    536 mfrtcltbl(void)
    537 {
    538 
    539 	if ((MFPVR() >> 16) == MPC601)
    540 		return (mfrtcl() >> 7);
    541 	else
    542 		return (mftbl());
    543 }
    544 
    545 /*
    546  * These small routines may have to be replaced,
    547  * if/when we support processors other that the 604.
    548  */
    549 
    550 void
    551 tlbia(void)
    552 {
    553 	caddr_t i;
    554 
    555 	SYNC();
    556 #if defined(PPC_OEA)
    557 	/*
    558 	 * Why not use "tlbia"?  Because not all processors implement it.
    559 	 *
    560 	 * This needs to be a per-CPU callback to do the appropriate thing
    561 	 * for the CPU. XXX
    562 	 */
    563 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    564 		TLBIE(i);
    565 		EIEIO();
    566 		SYNC();
    567 	}
    568 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
    569 	printf("Invalidating ALL TLB entries......\n");
    570 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    571 	for (i = 0; i <= (caddr_t)0xFF000; i += 0x00001000) {
    572 		TLBIEL(i);
    573 		EIEIO();
    574 		SYNC();
    575 	}
    576 #endif
    577 	TLBSYNC();
    578 	SYNC();
    579 }
    580 
    581 static inline register_t
    582 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    583 {
    584 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
    585 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    586 #else /* PPC_OEA64 */
    587 #if 0
    588 	const struct ste *ste;
    589 	register_t hash;
    590 	int i;
    591 
    592 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    593 
    594 	/*
    595 	 * Try the primary group first
    596 	 */
    597 	ste = pm->pm_stes[hash].stes;
    598 	for (i = 0; i < 8; i++, ste++) {
    599 		if (ste->ste_hi & STE_V) &&
    600 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    601 			return ste;
    602 	}
    603 
    604 	/*
    605 	 * Then the secondary group.
    606 	 */
    607 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    608 	for (i = 0; i < 8; i++, ste++) {
    609 		if (ste->ste_hi & STE_V) &&
    610 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    611 			return addr;
    612 	}
    613 
    614 	return NULL;
    615 #else
    616 	/*
    617 	 * Rather than searching the STE groups for the VSID, we know
    618 	 * how we generate that from the ESID and so do that.
    619 	 */
    620 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    621 #endif
    622 #endif /* PPC_OEA */
    623 }
    624 
    625 static inline register_t
    626 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    627 {
    628 	register_t hash;
    629 
    630 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    631 	return hash & pmap_pteg_mask;
    632 }
    633 
    634 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    635 /*
    636  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    637  * The only bit of magic is that the top 4 bits of the address doesn't
    638  * technically exist in the PTE.  But we know we reserved 4 bits of the
    639  * VSID for it so that's how we get it.
    640  */
    641 static vaddr_t
    642 pmap_pte_to_va(volatile const struct pte *pt)
    643 {
    644 	vaddr_t va;
    645 	uintptr_t ptaddr = (uintptr_t) pt;
    646 
    647 	if (pt->pte_hi & PTE_HID)
    648 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    649 
    650 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    651 #if defined(PPC_OEA)
    652 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    653 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
    654 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    655 #endif
    656 	va <<= ADDR_PIDX_SHFT;
    657 
    658 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    659 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    660 
    661 #if defined(PPC_OEA64)
    662 	/* PPC63 Bits 0-35 */
    663 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    664 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
    665 	/* PPC Bits 0-3 */
    666 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    667 #endif
    668 
    669 	return va;
    670 }
    671 #endif
    672 
    673 static inline struct pvo_head *
    674 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    675 {
    676 #ifdef __HAVE_VM_PAGE_MD
    677 	struct vm_page *pg;
    678 
    679 	pg = PHYS_TO_VM_PAGE(pa);
    680 	if (pg_p != NULL)
    681 		*pg_p = pg;
    682 	if (pg == NULL)
    683 		return &pmap_pvo_unmanaged;
    684 	return &pg->mdpage.mdpg_pvoh;
    685 #endif
    686 #ifdef __HAVE_PMAP_PHYSSEG
    687 	int bank, pg;
    688 
    689 	bank = vm_physseg_find(atop(pa), &pg);
    690 	if (pg_p != NULL)
    691 		*pg_p = pg;
    692 	if (bank == -1)
    693 		return &pmap_pvo_unmanaged;
    694 	return &vm_physmem[bank].pmseg.pvoh[pg];
    695 #endif
    696 }
    697 
    698 static inline struct pvo_head *
    699 vm_page_to_pvoh(struct vm_page *pg)
    700 {
    701 #ifdef __HAVE_VM_PAGE_MD
    702 	return &pg->mdpage.mdpg_pvoh;
    703 #endif
    704 #ifdef __HAVE_PMAP_PHYSSEG
    705 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    706 #endif
    707 }
    708 
    709 
    710 #ifdef __HAVE_PMAP_PHYSSEG
    711 static inline char *
    712 pa_to_attr(paddr_t pa)
    713 {
    714 	int bank, pg;
    715 
    716 	bank = vm_physseg_find(atop(pa), &pg);
    717 	if (bank == -1)
    718 		return NULL;
    719 	return &vm_physmem[bank].pmseg.attrs[pg];
    720 }
    721 #endif
    722 
    723 static inline void
    724 pmap_attr_clear(struct vm_page *pg, int ptebit)
    725 {
    726 #ifdef __HAVE_PMAP_PHYSSEG
    727 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    728 #endif
    729 #ifdef __HAVE_VM_PAGE_MD
    730 	pg->mdpage.mdpg_attrs &= ~ptebit;
    731 #endif
    732 }
    733 
    734 static inline int
    735 pmap_attr_fetch(struct vm_page *pg)
    736 {
    737 #ifdef __HAVE_PMAP_PHYSSEG
    738 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    739 #endif
    740 #ifdef __HAVE_VM_PAGE_MD
    741 	return pg->mdpage.mdpg_attrs;
    742 #endif
    743 }
    744 
    745 static inline void
    746 pmap_attr_save(struct vm_page *pg, int ptebit)
    747 {
    748 #ifdef __HAVE_PMAP_PHYSSEG
    749 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    750 #endif
    751 #ifdef __HAVE_VM_PAGE_MD
    752 	pg->mdpage.mdpg_attrs |= ptebit;
    753 #endif
    754 }
    755 
    756 static inline int
    757 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    758 {
    759 	if (pt->pte_hi == pvo_pt->pte_hi
    760 #if 0
    761 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    762 	        ~(PTE_REF|PTE_CHG)) == 0
    763 #endif
    764 	    )
    765 		return 1;
    766 	return 0;
    767 }
    768 
    769 static inline void
    770 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    771 {
    772 	/*
    773 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    774 	 * only gets set when the real pte is set in memory.
    775 	 *
    776 	 * Note: Don't set the valid bit for correct operation of tlb update.
    777 	 */
    778 #if defined(PPC_OEA)
    779 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    780 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    781 	pt->pte_lo = pte_lo;
    782 #elif defined (PPC_OEA64_BRIDGE)
    783 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    784 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    785 	pt->pte_lo = (u_int64_t) pte_lo;
    786 #elif defined (PPC_OEA64)
    787 #error PPC_OEA64 not supported
    788 #endif /* PPC_OEA */
    789 }
    790 
    791 static inline void
    792 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    793 {
    794 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    795 }
    796 
    797 static inline void
    798 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    799 {
    800 	/*
    801 	 * As shown in Section 7.6.3.2.3
    802 	 */
    803 	pt->pte_lo &= ~ptebit;
    804 	TLBIE(va);
    805 	SYNC();
    806 	EIEIO();
    807 	TLBSYNC();
    808 	SYNC();
    809 }
    810 
    811 static inline void
    812 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    813 {
    814 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    815 	if (pvo_pt->pte_hi & PTE_VALID)
    816 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    817 #endif
    818 	pvo_pt->pte_hi |= PTE_VALID;
    819 
    820 	/*
    821 	 * Update the PTE as defined in section 7.6.3.1
    822 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    823 	 * have been saved so this routine can restore them (if desired).
    824 	 */
    825 	pt->pte_lo = pvo_pt->pte_lo;
    826 	EIEIO();
    827 	pt->pte_hi = pvo_pt->pte_hi;
    828 	TLBSYNC();
    829 	SYNC();
    830 	pmap_pte_valid++;
    831 }
    832 
    833 static inline void
    834 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    835 {
    836 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    837 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    838 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    839 	if ((pt->pte_hi & PTE_VALID) == 0)
    840 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    841 #endif
    842 
    843 	pvo_pt->pte_hi &= ~PTE_VALID;
    844 	/*
    845 	 * Force the ref & chg bits back into the PTEs.
    846 	 */
    847 	SYNC();
    848 	/*
    849 	 * Invalidate the pte ... (Section 7.6.3.3)
    850 	 */
    851 	pt->pte_hi &= ~PTE_VALID;
    852 	SYNC();
    853 	TLBIE(va);
    854 	SYNC();
    855 	EIEIO();
    856 	TLBSYNC();
    857 	SYNC();
    858 	/*
    859 	 * Save the ref & chg bits ...
    860 	 */
    861 	pmap_pte_synch(pt, pvo_pt);
    862 	pmap_pte_valid--;
    863 }
    864 
    865 static inline void
    866 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    867 {
    868 	/*
    869 	 * Invalidate the PTE
    870 	 */
    871 	pmap_pte_unset(pt, pvo_pt, va);
    872 	pmap_pte_set(pt, pvo_pt);
    873 }
    874 
    875 /*
    876  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    877  * (either primary or secondary location).
    878  *
    879  * Note: both the destination and source PTEs must not have PTE_VALID set.
    880  */
    881 
    882 STATIC int
    883 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    884 {
    885 	volatile struct pte *pt;
    886 	int i;
    887 
    888 #if defined(DEBUG)
    889 #if defined (PPC_OEA)
    890 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    891 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    892 #elif defined (PPC_OEA64_BRIDGE)
    893 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
    894 		ptegidx, (unsigned long long) pvo_pt->pte_hi,
    895 		(unsigned long long) pvo_pt->pte_lo));
    896 
    897 #endif
    898 #endif
    899 	/*
    900 	 * First try primary hash.
    901 	 */
    902 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    903 		if ((pt->pte_hi & PTE_VALID) == 0) {
    904 			pvo_pt->pte_hi &= ~PTE_HID;
    905 			pmap_pte_set(pt, pvo_pt);
    906 			return i;
    907 		}
    908 	}
    909 
    910 	/*
    911 	 * Now try secondary hash.
    912 	 */
    913 	ptegidx ^= pmap_pteg_mask;
    914 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    915 		if ((pt->pte_hi & PTE_VALID) == 0) {
    916 			pvo_pt->pte_hi |= PTE_HID;
    917 			pmap_pte_set(pt, pvo_pt);
    918 			return i;
    919 		}
    920 	}
    921 	return -1;
    922 }
    923 
    924 /*
    925  * Spill handler.
    926  *
    927  * Tries to spill a page table entry from the overflow area.
    928  * This runs in either real mode (if dealing with a exception spill)
    929  * or virtual mode when dealing with manually spilling one of the
    930  * kernel's pte entries.  In either case, interrupts are already
    931  * disabled.
    932  */
    933 
    934 int
    935 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    936 {
    937 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    938 	struct pvo_entry *pvo;
    939 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    940 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    941 	int ptegidx, i, j;
    942 	volatile struct pteg *pteg;
    943 	volatile struct pte *pt;
    944 
    945 	ptegidx = va_to_pteg(pm, addr);
    946 
    947 	/*
    948 	 * Have to substitute some entry. Use the primary hash for this.
    949 	 * Use low bits of timebase as random generator.  Make sure we are
    950 	 * not picking a kernel pte for replacement.
    951 	 */
    952 	pteg = &pmap_pteg_table[ptegidx];
    953 	i = MFTB() & 7;
    954 	for (j = 0; j < 8; j++) {
    955 		pt = &pteg->pt[i];
    956 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    957 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    958 				!= KERNEL_VSIDBITS)
    959 			break;
    960 		i = (i + 1) & 7;
    961 	}
    962 	KASSERT(j < 8);
    963 
    964 	source_pvo = NULL;
    965 	victim_pvo = NULL;
    966 	pvoh = &pmap_pvo_table[ptegidx];
    967 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    968 
    969 		/*
    970 		 * We need to find pvo entry for this address...
    971 		 */
    972 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    973 
    974 		/*
    975 		 * If we haven't found the source and we come to a PVO with
    976 		 * a valid PTE, then we know we can't find it because all
    977 		 * evicted PVOs always are first in the list.
    978 		 */
    979 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    980 			break;
    981 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    982 		    addr == PVO_VADDR(pvo)) {
    983 
    984 			/*
    985 			 * Now we have found the entry to be spilled into the
    986 			 * pteg.  Attempt to insert it into the page table.
    987 			 */
    988 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    989 			if (j >= 0) {
    990 				PVO_PTEGIDX_SET(pvo, j);
    991 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    992 				PVO_WHERE(pvo, SPILL_INSERT);
    993 				pvo->pvo_pmap->pm_evictions--;
    994 				PMAPCOUNT(ptes_spilled);
    995 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    996 				    ? pmap_evcnt_ptes_secondary
    997 				    : pmap_evcnt_ptes_primary)[j]);
    998 
    999 				/*
   1000 				 * Since we keep the evicted entries at the
   1001 				 * from of the PVO list, we need move this
   1002 				 * (now resident) PVO after the evicted
   1003 				 * entries.
   1004 				 */
   1005 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
   1006 
   1007 				/*
   1008 				 * If we don't have to move (either we were the
   1009 				 * last entry or the next entry was valid),
   1010 				 * don't change our position.  Otherwise
   1011 				 * move ourselves to the tail of the queue.
   1012 				 */
   1013 				if (next_pvo != NULL &&
   1014 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
   1015 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
   1016 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1017 				}
   1018 				return 1;
   1019 			}
   1020 			source_pvo = pvo;
   1021 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
   1022 				return 0;
   1023 			}
   1024 			if (victim_pvo != NULL)
   1025 				break;
   1026 		}
   1027 
   1028 		/*
   1029 		 * We also need the pvo entry of the victim we are replacing
   1030 		 * so save the R & C bits of the PTE.
   1031 		 */
   1032 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1033 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1034 			vpvoh = pvoh;			/* *1* */
   1035 			victim_pvo = pvo;
   1036 			if (source_pvo != NULL)
   1037 				break;
   1038 		}
   1039 	}
   1040 
   1041 	if (source_pvo == NULL) {
   1042 		PMAPCOUNT(ptes_unspilled);
   1043 		return 0;
   1044 	}
   1045 
   1046 	if (victim_pvo == NULL) {
   1047 		if ((pt->pte_hi & PTE_HID) == 0)
   1048 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1049 			    "no pvo entry!", pt);
   1050 
   1051 		/*
   1052 		 * If this is a secondary PTE, we need to search
   1053 		 * its primary pvo bucket for the matching PVO.
   1054 		 */
   1055 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1056 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1057 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1058 
   1059 			/*
   1060 			 * We also need the pvo entry of the victim we are
   1061 			 * replacing so save the R & C bits of the PTE.
   1062 			 */
   1063 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1064 				victim_pvo = pvo;
   1065 				break;
   1066 			}
   1067 		}
   1068 		if (victim_pvo == NULL)
   1069 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1070 			    "no pvo entry!", pt);
   1071 	}
   1072 
   1073 	/*
   1074 	 * The victim should be not be a kernel PVO/PTE entry.
   1075 	 */
   1076 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1077 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1078 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1079 
   1080 	/*
   1081 	 * We are invalidating the TLB entry for the EA for the
   1082 	 * we are replacing even though its valid; If we don't
   1083 	 * we lose any ref/chg bit changes contained in the TLB
   1084 	 * entry.
   1085 	 */
   1086 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1087 
   1088 	/*
   1089 	 * To enforce the PVO list ordering constraint that all
   1090 	 * evicted entries should come before all valid entries,
   1091 	 * move the source PVO to the tail of its list and the
   1092 	 * victim PVO to the head of its list (which might not be
   1093 	 * the same list, if the victim was using the secondary hash).
   1094 	 */
   1095 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1096 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1097 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1098 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1099 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1100 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1101 	victim_pvo->pvo_pmap->pm_evictions++;
   1102 	source_pvo->pvo_pmap->pm_evictions--;
   1103 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1104 	PVO_WHERE(source_pvo, SPILL_SET);
   1105 
   1106 	PVO_PTEGIDX_CLR(victim_pvo);
   1107 	PVO_PTEGIDX_SET(source_pvo, i);
   1108 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1109 	PMAPCOUNT(ptes_spilled);
   1110 	PMAPCOUNT(ptes_evicted);
   1111 	PMAPCOUNT(ptes_removed);
   1112 
   1113 	PMAP_PVO_CHECK(victim_pvo);
   1114 	PMAP_PVO_CHECK(source_pvo);
   1115 	return 1;
   1116 }
   1117 
   1118 /*
   1119  * Restrict given range to physical memory
   1120  */
   1121 void
   1122 pmap_real_memory(paddr_t *start, psize_t *size)
   1123 {
   1124 	struct mem_region *mp;
   1125 
   1126 	for (mp = mem; mp->size; mp++) {
   1127 		if (*start + *size > mp->start
   1128 		    && *start < mp->start + mp->size) {
   1129 			if (*start < mp->start) {
   1130 				*size -= mp->start - *start;
   1131 				*start = mp->start;
   1132 			}
   1133 			if (*start + *size > mp->start + mp->size)
   1134 				*size = mp->start + mp->size - *start;
   1135 			return;
   1136 		}
   1137 	}
   1138 	*size = 0;
   1139 }
   1140 
   1141 /*
   1142  * Initialize anything else for pmap handling.
   1143  * Called during vm_init().
   1144  */
   1145 void
   1146 pmap_init(void)
   1147 {
   1148 #ifdef __HAVE_PMAP_PHYSSEG
   1149 	struct pvo_tqhead *pvoh;
   1150 	int bank;
   1151 	long sz;
   1152 	char *attr;
   1153 
   1154 	pvoh = pmap_physseg.pvoh;
   1155 	attr = pmap_physseg.attrs;
   1156 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1157 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1158 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1159 		vm_physmem[bank].pmseg.attrs = attr;
   1160 		for (; sz > 0; sz--, pvoh++, attr++) {
   1161 			TAILQ_INIT(pvoh);
   1162 			*attr = 0;
   1163 		}
   1164 	}
   1165 #endif
   1166 
   1167 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1168 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1169 	    &pmap_pool_mallocator);
   1170 
   1171 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1172 
   1173 	pmap_initialized = 1;
   1174 
   1175 }
   1176 
   1177 /*
   1178  * How much virtual space does the kernel get?
   1179  */
   1180 void
   1181 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1182 {
   1183 	/*
   1184 	 * For now, reserve one segment (minus some overhead) for kernel
   1185 	 * virtual memory
   1186 	 */
   1187 	*start = VM_MIN_KERNEL_ADDRESS;
   1188 	*end = VM_MAX_KERNEL_ADDRESS;
   1189 }
   1190 
   1191 /*
   1192  * Allocate, initialize, and return a new physical map.
   1193  */
   1194 pmap_t
   1195 pmap_create(void)
   1196 {
   1197 	pmap_t pm;
   1198 
   1199 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1200 	memset((caddr_t)pm, 0, sizeof *pm);
   1201 	pmap_pinit(pm);
   1202 
   1203 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1204 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1205 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1206 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1207 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1208 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1209 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1210 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1211 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1212 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1213 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1214 	return pm;
   1215 }
   1216 
   1217 /*
   1218  * Initialize a preallocated and zeroed pmap structure.
   1219  */
   1220 void
   1221 pmap_pinit(pmap_t pm)
   1222 {
   1223 	register_t entropy = MFTB();
   1224 	register_t mask;
   1225 	int i;
   1226 
   1227 	/*
   1228 	 * Allocate some segment registers for this pmap.
   1229 	 */
   1230 	pm->pm_refs = 1;
   1231 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1232 		static register_t pmap_vsidcontext;
   1233 		register_t hash;
   1234 		unsigned int n;
   1235 
   1236 		/* Create a new value by multiplying by a prime adding in
   1237 		 * entropy from the timebase register.  This is to make the
   1238 		 * VSID more random so that the PT Hash function collides
   1239 		 * less often. (note that the prime causes gcc to do shifts
   1240 		 * instead of a multiply)
   1241 		 */
   1242 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1243 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1244 		if (hash == 0) {		/* 0 is special, avoid it */
   1245 			entropy += 0xbadf00d;
   1246 			continue;
   1247 		}
   1248 		n = hash >> 5;
   1249 		mask = 1L << (hash & (VSID_NBPW-1));
   1250 		hash = pmap_vsidcontext;
   1251 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1252 			/* anything free in this bucket? */
   1253 			if (~pmap_vsid_bitmap[n] == 0) {
   1254 				entropy = hash ^ (hash >> 16);
   1255 				continue;
   1256 			}
   1257 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1258 			mask = 1L << i;
   1259 			hash &= ~(VSID_NBPW-1);
   1260 			hash |= i;
   1261 		}
   1262 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1263 		pmap_vsid_bitmap[n] |= mask;
   1264 		pm->pm_vsid = hash;
   1265 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1266 		for (i = 0; i < 16; i++)
   1267 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1268 			    SR_NOEXEC;
   1269 #endif
   1270 		return;
   1271 	}
   1272 	panic("pmap_pinit: out of segments");
   1273 }
   1274 
   1275 /*
   1276  * Add a reference to the given pmap.
   1277  */
   1278 void
   1279 pmap_reference(pmap_t pm)
   1280 {
   1281 	pm->pm_refs++;
   1282 }
   1283 
   1284 /*
   1285  * Retire the given pmap from service.
   1286  * Should only be called if the map contains no valid mappings.
   1287  */
   1288 void
   1289 pmap_destroy(pmap_t pm)
   1290 {
   1291 	if (--pm->pm_refs == 0) {
   1292 		pmap_release(pm);
   1293 		pool_put(&pmap_pool, pm);
   1294 	}
   1295 }
   1296 
   1297 /*
   1298  * Release any resources held by the given physical map.
   1299  * Called when a pmap initialized by pmap_pinit is being released.
   1300  */
   1301 void
   1302 pmap_release(pmap_t pm)
   1303 {
   1304 	int idx, mask;
   1305 
   1306 	KASSERT(pm->pm_stats.resident_count == 0);
   1307 	KASSERT(pm->pm_stats.wired_count == 0);
   1308 
   1309 	if (pm->pm_sr[0] == 0)
   1310 		panic("pmap_release");
   1311 	idx = pm->pm_vsid & (NPMAPS-1);
   1312 	mask = 1 << (idx % VSID_NBPW);
   1313 	idx /= VSID_NBPW;
   1314 
   1315 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1316 	pmap_vsid_bitmap[idx] &= ~mask;
   1317 }
   1318 
   1319 /*
   1320  * Copy the range specified by src_addr/len
   1321  * from the source map to the range dst_addr/len
   1322  * in the destination map.
   1323  *
   1324  * This routine is only advisory and need not do anything.
   1325  */
   1326 void
   1327 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1328 	vsize_t len, vaddr_t src_addr)
   1329 {
   1330 	PMAPCOUNT(copies);
   1331 }
   1332 
   1333 /*
   1334  * Require that all active physical maps contain no
   1335  * incorrect entries NOW.
   1336  */
   1337 void
   1338 pmap_update(struct pmap *pmap)
   1339 {
   1340 	PMAPCOUNT(updates);
   1341 	TLBSYNC();
   1342 }
   1343 
   1344 /*
   1345  * Garbage collects the physical map system for
   1346  * pages which are no longer used.
   1347  * Success need not be guaranteed -- that is, there
   1348  * may well be pages which are not referenced, but
   1349  * others may be collected.
   1350  * Called by the pageout daemon when pages are scarce.
   1351  */
   1352 void
   1353 pmap_collect(pmap_t pm)
   1354 {
   1355 	PMAPCOUNT(collects);
   1356 }
   1357 
   1358 static inline int
   1359 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1360 {
   1361 	int pteidx;
   1362 	/*
   1363 	 * We can find the actual pte entry without searching by
   1364 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1365 	 * and by noticing the HID bit.
   1366 	 */
   1367 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1368 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1369 		pteidx ^= pmap_pteg_mask * 8;
   1370 	return pteidx;
   1371 }
   1372 
   1373 volatile struct pte *
   1374 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1375 {
   1376 	volatile struct pte *pt;
   1377 
   1378 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1379 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1380 		return NULL;
   1381 #endif
   1382 
   1383 	/*
   1384 	 * If we haven't been supplied the ptegidx, calculate it.
   1385 	 */
   1386 	if (pteidx == -1) {
   1387 		int ptegidx;
   1388 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1389 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1390 	}
   1391 
   1392 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1393 
   1394 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1395 	return pt;
   1396 #else
   1397 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1398 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1399 		    "pvo but no valid pte index", pvo);
   1400 	}
   1401 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1402 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1403 		    "pvo but no valid pte", pvo);
   1404 	}
   1405 
   1406 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1407 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1408 #if defined(DEBUG) || defined(PMAPCHECK)
   1409 			pmap_pte_print(pt);
   1410 #endif
   1411 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1412 			    "pmap_pteg_table %p but invalid in pvo",
   1413 			    pvo, pt);
   1414 		}
   1415 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1416 #if defined(DEBUG) || defined(PMAPCHECK)
   1417 			pmap_pte_print(pt);
   1418 #endif
   1419 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1420 			    "not match pte %p in pmap_pteg_table",
   1421 			    pvo, pt);
   1422 		}
   1423 		return pt;
   1424 	}
   1425 
   1426 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1427 #if defined(DEBUG) || defined(PMAPCHECK)
   1428 		pmap_pte_print(pt);
   1429 #endif
   1430 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1431 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1432 	}
   1433 	return NULL;
   1434 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1435 }
   1436 
   1437 struct pvo_entry *
   1438 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1439 {
   1440 	struct pvo_entry *pvo;
   1441 	int ptegidx;
   1442 
   1443 	va &= ~ADDR_POFF;
   1444 	ptegidx = va_to_pteg(pm, va);
   1445 
   1446 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1447 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1448 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1449 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1450 			    "list %#x (%p)", pvo, ptegidx,
   1451 			     &pmap_pvo_table[ptegidx]);
   1452 #endif
   1453 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1454 			if (pteidx_p)
   1455 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1456 			return pvo;
   1457 		}
   1458 	}
   1459 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1460 		panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __FUNCTION__,
   1461 		(pm == pmap_kernel() ? "kernel" : "user"), va);
   1462 	return NULL;
   1463 }
   1464 
   1465 #if defined(DEBUG) || defined(PMAPCHECK)
   1466 void
   1467 pmap_pvo_check(const struct pvo_entry *pvo)
   1468 {
   1469 	struct pvo_head *pvo_head;
   1470 	struct pvo_entry *pvo0;
   1471 	volatile struct pte *pt;
   1472 	int failed = 0;
   1473 
   1474 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1475 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1476 
   1477 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1478 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1479 		    pvo, pvo->pvo_pmap);
   1480 		failed = 1;
   1481 	}
   1482 
   1483 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1484 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1485 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1486 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1487 		failed = 1;
   1488 	}
   1489 
   1490 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1491 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1492 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1493 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1494 		failed = 1;
   1495 	}
   1496 
   1497 	if (PVO_MANAGED_P(pvo)) {
   1498 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1499 	} else {
   1500 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1501 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1502 			    "on kernel unmanaged list\n", pvo);
   1503 			failed = 1;
   1504 		}
   1505 		pvo_head = &pmap_pvo_kunmanaged;
   1506 	}
   1507 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1508 		if (pvo0 == pvo)
   1509 			break;
   1510 	}
   1511 	if (pvo0 == NULL) {
   1512 		printf("pmap_pvo_check: pvo %p: not present "
   1513 		    "on its vlist head %p\n", pvo, pvo_head);
   1514 		failed = 1;
   1515 	}
   1516 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1517 		printf("pmap_pvo_check: pvo %p: not present "
   1518 		    "on its olist head\n", pvo);
   1519 		failed = 1;
   1520 	}
   1521 	pt = pmap_pvo_to_pte(pvo, -1);
   1522 	if (pt == NULL) {
   1523 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1524 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1525 			    "no PTE\n", pvo);
   1526 			failed = 1;
   1527 		}
   1528 	} else {
   1529 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1530 		    (uintptr_t) pt >=
   1531 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1532 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1533 			    "pteg table\n", pvo, pt);
   1534 			failed = 1;
   1535 		}
   1536 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1537 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1538 			    "no PTE\n", pvo);
   1539 			failed = 1;
   1540 		}
   1541 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1542 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1543 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1544 			failed = 1;
   1545 		}
   1546 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1547 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1548 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1549 			    "%#x/%#x\n", pvo,
   1550 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1551 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1552 			failed = 1;
   1553 		}
   1554 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1555 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1556 			    " doesn't not match PVO's VA %#lx\n",
   1557 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1558 			failed = 1;
   1559 		}
   1560 		if (failed)
   1561 			pmap_pte_print(pt);
   1562 	}
   1563 	if (failed)
   1564 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1565 		    pvo->pvo_pmap);
   1566 }
   1567 #endif /* DEBUG || PMAPCHECK */
   1568 
   1569 /*
   1570  * Search the PVO table looking for a non-wired entry.
   1571  * If we find one, remove it and return it.
   1572  */
   1573 
   1574 struct pvo_entry *
   1575 pmap_pvo_reclaim(struct pmap *pm)
   1576 {
   1577 	struct pvo_tqhead *pvoh;
   1578 	struct pvo_entry *pvo;
   1579 	uint32_t idx, endidx;
   1580 
   1581 	endidx = pmap_pvo_reclaim_nextidx;
   1582 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1583 	     idx = (idx + 1) & pmap_pteg_mask) {
   1584 		pvoh = &pmap_pvo_table[idx];
   1585 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1586 			if (!PVO_WIRED_P(pvo)) {
   1587 				pmap_pvo_remove(pvo, -1, NULL);
   1588 				pmap_pvo_reclaim_nextidx = idx;
   1589 				PMAPCOUNT(pvos_reclaimed);
   1590 				return pvo;
   1591 			}
   1592 		}
   1593 	}
   1594 	return NULL;
   1595 }
   1596 
   1597 /*
   1598  * This returns whether this is the first mapping of a page.
   1599  */
   1600 int
   1601 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1602 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1603 {
   1604 	struct pvo_entry *pvo;
   1605 	struct pvo_tqhead *pvoh;
   1606 	register_t msr;
   1607 	int ptegidx;
   1608 	int i;
   1609 	int poolflags = PR_NOWAIT;
   1610 
   1611 	/*
   1612 	 * Compute the PTE Group index.
   1613 	 */
   1614 	va &= ~ADDR_POFF;
   1615 	ptegidx = va_to_pteg(pm, va);
   1616 
   1617 	msr = pmap_interrupts_off();
   1618 
   1619 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1620 	if (pmap_pvo_remove_depth > 0)
   1621 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1622 	if (++pmap_pvo_enter_depth > 1)
   1623 		panic("pmap_pvo_enter: called recursively!");
   1624 #endif
   1625 
   1626 	/*
   1627 	 * Remove any existing mapping for this page.  Reuse the
   1628 	 * pvo entry if there a mapping.
   1629 	 */
   1630 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1631 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1632 #ifdef DEBUG
   1633 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1634 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1635 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1636 			   va < VM_MIN_KERNEL_ADDRESS) {
   1637 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1638 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1639 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1640 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1641 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1642 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1643 #ifdef DDBX
   1644 				Debugger();
   1645 #endif
   1646 			}
   1647 #endif
   1648 			PMAPCOUNT(mappings_replaced);
   1649 			pmap_pvo_remove(pvo, -1, NULL);
   1650 			break;
   1651 		}
   1652 	}
   1653 
   1654 	/*
   1655 	 * If we aren't overwriting an mapping, try to allocate
   1656 	 */
   1657 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1658 	--pmap_pvo_enter_depth;
   1659 #endif
   1660 	pmap_interrupts_restore(msr);
   1661 	if (pvo) {
   1662 		pmap_pvo_free(pvo);
   1663 	}
   1664 	pvo = pool_get(pl, poolflags);
   1665 
   1666 #ifdef DEBUG
   1667 	/*
   1668 	 * Exercise pmap_pvo_reclaim() a little.
   1669 	 */
   1670 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1671 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1672 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1673 		pool_put(pl, pvo);
   1674 		pvo = NULL;
   1675 	}
   1676 #endif
   1677 
   1678 	msr = pmap_interrupts_off();
   1679 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1680 	++pmap_pvo_enter_depth;
   1681 #endif
   1682 	if (pvo == NULL) {
   1683 		pvo = pmap_pvo_reclaim(pm);
   1684 		if (pvo == NULL) {
   1685 			if ((flags & PMAP_CANFAIL) == 0)
   1686 				panic("pmap_pvo_enter: failed");
   1687 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1688 			pmap_pvo_enter_depth--;
   1689 #endif
   1690 			PMAPCOUNT(pvos_failed);
   1691 			pmap_interrupts_restore(msr);
   1692 			return ENOMEM;
   1693 		}
   1694 	}
   1695 
   1696 	pvo->pvo_vaddr = va;
   1697 	pvo->pvo_pmap = pm;
   1698 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1699 	if (flags & VM_PROT_EXECUTE) {
   1700 		PMAPCOUNT(exec_mappings);
   1701 		pvo_set_exec(pvo);
   1702 	}
   1703 	if (flags & PMAP_WIRED)
   1704 		pvo->pvo_vaddr |= PVO_WIRED;
   1705 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1706 		pvo->pvo_vaddr |= PVO_MANAGED;
   1707 		PMAPCOUNT(mappings);
   1708 	} else {
   1709 		PMAPCOUNT(kernel_mappings);
   1710 	}
   1711 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1712 
   1713 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1714 	if (PVO_WIRED_P(pvo))
   1715 		pvo->pvo_pmap->pm_stats.wired_count++;
   1716 	pvo->pvo_pmap->pm_stats.resident_count++;
   1717 #if defined(DEBUG)
   1718 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1719 		DPRINTFN(PVOENTER,
   1720 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1721 		    pvo, pm, va, pa));
   1722 #endif
   1723 
   1724 	/*
   1725 	 * We hope this succeeds but it isn't required.
   1726 	 */
   1727 	pvoh = &pmap_pvo_table[ptegidx];
   1728 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1729 	if (i >= 0) {
   1730 		PVO_PTEGIDX_SET(pvo, i);
   1731 		PVO_WHERE(pvo, ENTER_INSERT);
   1732 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1733 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1734 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1735 
   1736 	} else {
   1737 		/*
   1738 		 * Since we didn't have room for this entry (which makes it
   1739 		 * and evicted entry), place it at the head of the list.
   1740 		 */
   1741 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1742 		PMAPCOUNT(ptes_evicted);
   1743 		pm->pm_evictions++;
   1744 		/*
   1745 		 * If this is a kernel page, make sure it's active.
   1746 		 */
   1747 		if (pm == pmap_kernel()) {
   1748 			i = pmap_pte_spill(pm, va, false);
   1749 			KASSERT(i);
   1750 		}
   1751 	}
   1752 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1753 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1754 	pmap_pvo_enter_depth--;
   1755 #endif
   1756 	pmap_interrupts_restore(msr);
   1757 	return 0;
   1758 }
   1759 
   1760 void
   1761 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1762 {
   1763 	volatile struct pte *pt;
   1764 	int ptegidx;
   1765 
   1766 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1767 	if (++pmap_pvo_remove_depth > 1)
   1768 		panic("pmap_pvo_remove: called recursively!");
   1769 #endif
   1770 
   1771 	/*
   1772 	 * If we haven't been supplied the ptegidx, calculate it.
   1773 	 */
   1774 	if (pteidx == -1) {
   1775 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1776 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1777 	} else {
   1778 		ptegidx = pteidx >> 3;
   1779 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1780 			ptegidx ^= pmap_pteg_mask;
   1781 	}
   1782 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1783 
   1784 	/*
   1785 	 * If there is an active pte entry, we need to deactivate it
   1786 	 * (and save the ref & chg bits).
   1787 	 */
   1788 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1789 	if (pt != NULL) {
   1790 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1791 		PVO_WHERE(pvo, REMOVE);
   1792 		PVO_PTEGIDX_CLR(pvo);
   1793 		PMAPCOUNT(ptes_removed);
   1794 	} else {
   1795 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1796 		pvo->pvo_pmap->pm_evictions--;
   1797 	}
   1798 
   1799 	/*
   1800 	 * Account for executable mappings.
   1801 	 */
   1802 	if (PVO_EXECUTABLE_P(pvo))
   1803 		pvo_clear_exec(pvo);
   1804 
   1805 	/*
   1806 	 * Update our statistics.
   1807 	 */
   1808 	pvo->pvo_pmap->pm_stats.resident_count--;
   1809 	if (PVO_WIRED_P(pvo))
   1810 		pvo->pvo_pmap->pm_stats.wired_count--;
   1811 
   1812 	/*
   1813 	 * Save the REF/CHG bits into their cache if the page is managed.
   1814 	 */
   1815 	if (PVO_MANAGED_P(pvo)) {
   1816 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1817 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1818 
   1819 		if (pg != NULL) {
   1820 			/*
   1821 			 * If this page was changed and it is mapped exec,
   1822 			 * invalidate it.
   1823 			 */
   1824 			if ((ptelo & PTE_CHG) &&
   1825 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1826 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1827 				if (LIST_EMPTY(pvoh)) {
   1828 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1829 					    "%#lx: clear-exec]\n",
   1830 					    VM_PAGE_TO_PHYS(pg)));
   1831 					pmap_attr_clear(pg, PTE_EXEC);
   1832 					PMAPCOUNT(exec_uncached_pvo_remove);
   1833 				} else {
   1834 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1835 					    "%#lx: syncicache]\n",
   1836 					    VM_PAGE_TO_PHYS(pg)));
   1837 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1838 					    PAGE_SIZE);
   1839 					PMAPCOUNT(exec_synced_pvo_remove);
   1840 				}
   1841 			}
   1842 
   1843 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1844 		}
   1845 		PMAPCOUNT(unmappings);
   1846 	} else {
   1847 		PMAPCOUNT(kernel_unmappings);
   1848 	}
   1849 
   1850 	/*
   1851 	 * Remove the PVO from its lists and return it to the pool.
   1852 	 */
   1853 	LIST_REMOVE(pvo, pvo_vlink);
   1854 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1855 	if (pvol) {
   1856 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1857 	}
   1858 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1859 	pmap_pvo_remove_depth--;
   1860 #endif
   1861 }
   1862 
   1863 void
   1864 pmap_pvo_free(struct pvo_entry *pvo)
   1865 {
   1866 
   1867 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1868 }
   1869 
   1870 void
   1871 pmap_pvo_free_list(struct pvo_head *pvol)
   1872 {
   1873 	struct pvo_entry *pvo, *npvo;
   1874 
   1875 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1876 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1877 		LIST_REMOVE(pvo, pvo_vlink);
   1878 		pmap_pvo_free(pvo);
   1879 	}
   1880 }
   1881 
   1882 /*
   1883  * Mark a mapping as executable.
   1884  * If this is the first executable mapping in the segment,
   1885  * clear the noexec flag.
   1886  */
   1887 STATIC void
   1888 pvo_set_exec(struct pvo_entry *pvo)
   1889 {
   1890 	struct pmap *pm = pvo->pvo_pmap;
   1891 
   1892 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1893 		return;
   1894 	}
   1895 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1896 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1897 	{
   1898 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1899 		if (pm->pm_exec[sr]++ == 0) {
   1900 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1901 		}
   1902 	}
   1903 #endif
   1904 }
   1905 
   1906 /*
   1907  * Mark a mapping as non-executable.
   1908  * If this was the last executable mapping in the segment,
   1909  * set the noexec flag.
   1910  */
   1911 STATIC void
   1912 pvo_clear_exec(struct pvo_entry *pvo)
   1913 {
   1914 	struct pmap *pm = pvo->pvo_pmap;
   1915 
   1916 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1917 		return;
   1918 	}
   1919 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1920 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1921 	{
   1922 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1923 		if (--pm->pm_exec[sr] == 0) {
   1924 			pm->pm_sr[sr] |= SR_NOEXEC;
   1925 		}
   1926 	}
   1927 #endif
   1928 }
   1929 
   1930 /*
   1931  * Insert physical page at pa into the given pmap at virtual address va.
   1932  */
   1933 int
   1934 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1935 {
   1936 	struct mem_region *mp;
   1937 	struct pvo_head *pvo_head;
   1938 	struct vm_page *pg;
   1939 	struct pool *pl;
   1940 	register_t pte_lo;
   1941 	int error;
   1942 	u_int pvo_flags;
   1943 	u_int was_exec = 0;
   1944 
   1945 	if (__predict_false(!pmap_initialized)) {
   1946 		pvo_head = &pmap_pvo_kunmanaged;
   1947 		pl = &pmap_upvo_pool;
   1948 		pvo_flags = 0;
   1949 		pg = NULL;
   1950 		was_exec = PTE_EXEC;
   1951 	} else {
   1952 		pvo_head = pa_to_pvoh(pa, &pg);
   1953 		pl = &pmap_mpvo_pool;
   1954 		pvo_flags = PVO_MANAGED;
   1955 	}
   1956 
   1957 	DPRINTFN(ENTER,
   1958 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1959 	    pm, va, pa, prot, flags));
   1960 
   1961 	/*
   1962 	 * If this is a managed page, and it's the first reference to the
   1963 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1964 	 */
   1965 	if (pg != NULL)
   1966 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1967 
   1968 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1969 
   1970 	/*
   1971 	 * Assume the page is cache inhibited and access is guarded unless
   1972 	 * it's in our available memory array.  If it is in the memory array,
   1973 	 * asssume it's in memory coherent memory.
   1974 	 */
   1975 	pte_lo = PTE_IG;
   1976 	if ((flags & PMAP_NC) == 0) {
   1977 		for (mp = mem; mp->size; mp++) {
   1978 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1979 				pte_lo = PTE_M;
   1980 				break;
   1981 			}
   1982 		}
   1983 	}
   1984 
   1985 	if (prot & VM_PROT_WRITE)
   1986 		pte_lo |= PTE_BW;
   1987 	else
   1988 		pte_lo |= PTE_BR;
   1989 
   1990 	/*
   1991 	 * If this was in response to a fault, "pre-fault" the PTE's
   1992 	 * changed/referenced bit appropriately.
   1993 	 */
   1994 	if (flags & VM_PROT_WRITE)
   1995 		pte_lo |= PTE_CHG;
   1996 	if (flags & VM_PROT_ALL)
   1997 		pte_lo |= PTE_REF;
   1998 
   1999 	/*
   2000 	 * We need to know if this page can be executable
   2001 	 */
   2002 	flags |= (prot & VM_PROT_EXECUTE);
   2003 
   2004 	/*
   2005 	 * Record mapping for later back-translation and pte spilling.
   2006 	 * This will overwrite any existing mapping.
   2007 	 */
   2008 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   2009 
   2010 	/*
   2011 	 * Flush the real page from the instruction cache if this page is
   2012 	 * mapped executable and cacheable and has not been flushed since
   2013 	 * the last time it was modified.
   2014 	 */
   2015 	if (error == 0 &&
   2016             (flags & VM_PROT_EXECUTE) &&
   2017             (pte_lo & PTE_I) == 0 &&
   2018 	    was_exec == 0) {
   2019 		DPRINTFN(ENTER, (" syncicache"));
   2020 		PMAPCOUNT(exec_synced);
   2021 		pmap_syncicache(pa, PAGE_SIZE);
   2022 		if (pg != NULL) {
   2023 			pmap_attr_save(pg, PTE_EXEC);
   2024 			PMAPCOUNT(exec_cached);
   2025 #if defined(DEBUG) || defined(PMAPDEBUG)
   2026 			if (pmapdebug & PMAPDEBUG_ENTER)
   2027 				printf(" marked-as-exec");
   2028 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2029 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   2030 				    VM_PAGE_TO_PHYS(pg));
   2031 
   2032 #endif
   2033 		}
   2034 	}
   2035 
   2036 	DPRINTFN(ENTER, (": error=%d\n", error));
   2037 
   2038 	return error;
   2039 }
   2040 
   2041 void
   2042 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2043 {
   2044 	struct mem_region *mp;
   2045 	register_t pte_lo;
   2046 	int error;
   2047 
   2048 #if defined (PPC_OEA64_BRIDGE)
   2049 	if (va < VM_MIN_KERNEL_ADDRESS)
   2050 		panic("pmap_kenter_pa: attempt to enter "
   2051 		    "non-kernel address %#lx!", va);
   2052 #endif
   2053 
   2054 	DPRINTFN(KENTER,
   2055 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   2056 
   2057 	/*
   2058 	 * Assume the page is cache inhibited and access is guarded unless
   2059 	 * it's in our available memory array.  If it is in the memory array,
   2060 	 * asssume it's in memory coherent memory.
   2061 	 */
   2062 	pte_lo = PTE_IG;
   2063 	if ((prot & PMAP_NC) == 0) {
   2064 		for (mp = mem; mp->size; mp++) {
   2065 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2066 				pte_lo = PTE_M;
   2067 				break;
   2068 			}
   2069 		}
   2070 	}
   2071 
   2072 	if (prot & VM_PROT_WRITE)
   2073 		pte_lo |= PTE_BW;
   2074 	else
   2075 		pte_lo |= PTE_BR;
   2076 
   2077 	/*
   2078 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2079 	 */
   2080 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2081 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2082 
   2083 	if (error != 0)
   2084 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   2085 		      va, pa, error);
   2086 }
   2087 
   2088 void
   2089 pmap_kremove(vaddr_t va, vsize_t len)
   2090 {
   2091 	if (va < VM_MIN_KERNEL_ADDRESS)
   2092 		panic("pmap_kremove: attempt to remove "
   2093 		    "non-kernel address %#lx!", va);
   2094 
   2095 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   2096 	pmap_remove(pmap_kernel(), va, va + len);
   2097 }
   2098 
   2099 /*
   2100  * Remove the given range of mapping entries.
   2101  */
   2102 void
   2103 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2104 {
   2105 	struct pvo_head pvol;
   2106 	struct pvo_entry *pvo;
   2107 	register_t msr;
   2108 	int pteidx;
   2109 
   2110 	LIST_INIT(&pvol);
   2111 	msr = pmap_interrupts_off();
   2112 	for (; va < endva; va += PAGE_SIZE) {
   2113 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2114 		if (pvo != NULL) {
   2115 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2116 		}
   2117 	}
   2118 	pmap_interrupts_restore(msr);
   2119 	pmap_pvo_free_list(&pvol);
   2120 }
   2121 
   2122 /*
   2123  * Get the physical page address for the given pmap/virtual address.
   2124  */
   2125 bool
   2126 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2127 {
   2128 	struct pvo_entry *pvo;
   2129 	register_t msr;
   2130 
   2131 
   2132 	/*
   2133 	 * If this is a kernel pmap lookup, also check the battable
   2134 	 * and if we get a hit, translate the VA to a PA using the
   2135 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2136 	 * that will wrap back to 0.
   2137 	 */
   2138 	if (pm == pmap_kernel() &&
   2139 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2140 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2141 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2142 #if defined (PPC_OEA)
   2143 		if ((MFPVR() >> 16) != MPC601) {
   2144 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2145 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2146 				register_t batl =
   2147 				    battable[va >> ADDR_SR_SHFT].batl;
   2148 				register_t mask =
   2149 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2150 				if (pap)
   2151 					*pap = (batl & mask) | (va & ~mask);
   2152 				return true;
   2153 			}
   2154 		} else {
   2155 			register_t batu = battable[va >> 23].batu;
   2156 			register_t batl = battable[va >> 23].batl;
   2157 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2158 			if (BAT601_VALID_P(batl) &&
   2159 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2160 				register_t mask =
   2161 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2162 				if (pap)
   2163 					*pap = (batl & mask) | (va & ~mask);
   2164 				return true;
   2165 			} else if (SR601_VALID_P(sr) &&
   2166 				   SR601_PA_MATCH_P(sr, va)) {
   2167 				if (pap)
   2168 					*pap = va;
   2169 				return true;
   2170 			}
   2171 		}
   2172 		return false;
   2173 #elif defined (PPC_OEA64_BRIDGE)
   2174 	panic("%s: pm: %s, va: 0x%08lx\n", __FUNCTION__,
   2175 		(pm == pmap_kernel() ? "kernel" : "user"), va);
   2176 #elif defined (PPC_OEA64)
   2177 #error PPC_OEA64 not supported
   2178 #endif /* PPC_OEA */
   2179 	}
   2180 
   2181 	msr = pmap_interrupts_off();
   2182 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2183 	if (pvo != NULL) {
   2184 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2185 		if (pap)
   2186 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2187 			    | (va & ADDR_POFF);
   2188 	}
   2189 	pmap_interrupts_restore(msr);
   2190 	return pvo != NULL;
   2191 }
   2192 
   2193 /*
   2194  * Lower the protection on the specified range of this pmap.
   2195  */
   2196 void
   2197 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2198 {
   2199 	struct pvo_entry *pvo;
   2200 	volatile struct pte *pt;
   2201 	register_t msr;
   2202 	int pteidx;
   2203 
   2204 	/*
   2205 	 * Since this routine only downgrades protection, we should
   2206 	 * always be called with at least one bit not set.
   2207 	 */
   2208 	KASSERT(prot != VM_PROT_ALL);
   2209 
   2210 	/*
   2211 	 * If there is no protection, this is equivalent to
   2212 	 * remove the pmap from the pmap.
   2213 	 */
   2214 	if ((prot & VM_PROT_READ) == 0) {
   2215 		pmap_remove(pm, va, endva);
   2216 		return;
   2217 	}
   2218 
   2219 	msr = pmap_interrupts_off();
   2220 	for (; va < endva; va += PAGE_SIZE) {
   2221 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2222 		if (pvo == NULL)
   2223 			continue;
   2224 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2225 
   2226 		/*
   2227 		 * Revoke executable if asked to do so.
   2228 		 */
   2229 		if ((prot & VM_PROT_EXECUTE) == 0)
   2230 			pvo_clear_exec(pvo);
   2231 
   2232 #if 0
   2233 		/*
   2234 		 * If the page is already read-only, no change
   2235 		 * needs to be made.
   2236 		 */
   2237 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2238 			continue;
   2239 #endif
   2240 		/*
   2241 		 * Grab the PTE pointer before we diddle with
   2242 		 * the cached PTE copy.
   2243 		 */
   2244 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2245 		/*
   2246 		 * Change the protection of the page.
   2247 		 */
   2248 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2249 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2250 
   2251 		/*
   2252 		 * If the PVO is in the page table, update
   2253 		 * that pte at well.
   2254 		 */
   2255 		if (pt != NULL) {
   2256 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2257 			PVO_WHERE(pvo, PMAP_PROTECT);
   2258 			PMAPCOUNT(ptes_changed);
   2259 		}
   2260 
   2261 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2262 	}
   2263 	pmap_interrupts_restore(msr);
   2264 }
   2265 
   2266 void
   2267 pmap_unwire(pmap_t pm, vaddr_t va)
   2268 {
   2269 	struct pvo_entry *pvo;
   2270 	register_t msr;
   2271 
   2272 	msr = pmap_interrupts_off();
   2273 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2274 	if (pvo != NULL) {
   2275 		if (PVO_WIRED_P(pvo)) {
   2276 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2277 			pm->pm_stats.wired_count--;
   2278 		}
   2279 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2280 	}
   2281 	pmap_interrupts_restore(msr);
   2282 }
   2283 
   2284 /*
   2285  * Lower the protection on the specified physical page.
   2286  */
   2287 void
   2288 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2289 {
   2290 	struct pvo_head *pvo_head, pvol;
   2291 	struct pvo_entry *pvo, *next_pvo;
   2292 	volatile struct pte *pt;
   2293 	register_t msr;
   2294 
   2295 	KASSERT(prot != VM_PROT_ALL);
   2296 	LIST_INIT(&pvol);
   2297 	msr = pmap_interrupts_off();
   2298 
   2299 	/*
   2300 	 * When UVM reuses a page, it does a pmap_page_protect with
   2301 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2302 	 * since we know the page will have different contents.
   2303 	 */
   2304 	if ((prot & VM_PROT_READ) == 0) {
   2305 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2306 		    VM_PAGE_TO_PHYS(pg)));
   2307 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2308 			PMAPCOUNT(exec_uncached_page_protect);
   2309 			pmap_attr_clear(pg, PTE_EXEC);
   2310 		}
   2311 	}
   2312 
   2313 	pvo_head = vm_page_to_pvoh(pg);
   2314 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2315 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2316 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2317 
   2318 		/*
   2319 		 * Downgrading to no mapping at all, we just remove the entry.
   2320 		 */
   2321 		if ((prot & VM_PROT_READ) == 0) {
   2322 			pmap_pvo_remove(pvo, -1, &pvol);
   2323 			continue;
   2324 		}
   2325 
   2326 		/*
   2327 		 * If EXEC permission is being revoked, just clear the
   2328 		 * flag in the PVO.
   2329 		 */
   2330 		if ((prot & VM_PROT_EXECUTE) == 0)
   2331 			pvo_clear_exec(pvo);
   2332 
   2333 		/*
   2334 		 * If this entry is already RO, don't diddle with the
   2335 		 * page table.
   2336 		 */
   2337 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2338 			PMAP_PVO_CHECK(pvo);
   2339 			continue;
   2340 		}
   2341 
   2342 		/*
   2343 		 * Grab the PTE before the we diddle the bits so
   2344 		 * pvo_to_pte can verify the pte contents are as
   2345 		 * expected.
   2346 		 */
   2347 		pt = pmap_pvo_to_pte(pvo, -1);
   2348 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2349 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2350 		if (pt != NULL) {
   2351 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2352 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2353 			PMAPCOUNT(ptes_changed);
   2354 		}
   2355 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2356 	}
   2357 	pmap_interrupts_restore(msr);
   2358 	pmap_pvo_free_list(&pvol);
   2359 }
   2360 
   2361 /*
   2362  * Activate the address space for the specified process.  If the process
   2363  * is the current process, load the new MMU context.
   2364  */
   2365 void
   2366 pmap_activate(struct lwp *l)
   2367 {
   2368 	struct pcb *pcb = &l->l_addr->u_pcb;
   2369 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2370 
   2371 	DPRINTFN(ACTIVATE,
   2372 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2373 
   2374 	/*
   2375 	 * XXX Normally performed in cpu_fork().
   2376 	 */
   2377 	pcb->pcb_pm = pmap;
   2378 
   2379 	/*
   2380 	* In theory, the SR registers need only be valid on return
   2381 	* to user space wait to do them there.
   2382 	*/
   2383 	if (l == curlwp) {
   2384 		/* Store pointer to new current pmap. */
   2385 		curpm = pmap;
   2386 	}
   2387 }
   2388 
   2389 /*
   2390  * Deactivate the specified process's address space.
   2391  */
   2392 void
   2393 pmap_deactivate(struct lwp *l)
   2394 {
   2395 }
   2396 
   2397 bool
   2398 pmap_query_bit(struct vm_page *pg, int ptebit)
   2399 {
   2400 	struct pvo_entry *pvo;
   2401 	volatile struct pte *pt;
   2402 	register_t msr;
   2403 
   2404 	if (pmap_attr_fetch(pg) & ptebit)
   2405 		return true;
   2406 
   2407 	msr = pmap_interrupts_off();
   2408 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2409 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2410 		/*
   2411 		 * See if we saved the bit off.  If so cache, it and return
   2412 		 * success.
   2413 		 */
   2414 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2415 			pmap_attr_save(pg, ptebit);
   2416 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2417 			pmap_interrupts_restore(msr);
   2418 			return true;
   2419 		}
   2420 	}
   2421 	/*
   2422 	 * No luck, now go thru the hard part of looking at the ptes
   2423 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2424 	 * to the PTEs.
   2425 	 */
   2426 	SYNC();
   2427 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2428 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2429 		/*
   2430 		 * See if this pvo have a valid PTE.  If so, fetch the
   2431 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2432 		 * ptebit is set, cache, it and return success.
   2433 		 */
   2434 		pt = pmap_pvo_to_pte(pvo, -1);
   2435 		if (pt != NULL) {
   2436 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2437 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2438 				pmap_attr_save(pg, ptebit);
   2439 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2440 				pmap_interrupts_restore(msr);
   2441 				return true;
   2442 			}
   2443 		}
   2444 	}
   2445 	pmap_interrupts_restore(msr);
   2446 	return false;
   2447 }
   2448 
   2449 bool
   2450 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2451 {
   2452 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2453 	struct pvo_entry *pvo;
   2454 	volatile struct pte *pt;
   2455 	register_t msr;
   2456 	int rv = 0;
   2457 
   2458 	msr = pmap_interrupts_off();
   2459 
   2460 	/*
   2461 	 * Fetch the cache value
   2462 	 */
   2463 	rv |= pmap_attr_fetch(pg);
   2464 
   2465 	/*
   2466 	 * Clear the cached value.
   2467 	 */
   2468 	pmap_attr_clear(pg, ptebit);
   2469 
   2470 	/*
   2471 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2472 	 * can reset the right ones).  Note that since the pvo entries and
   2473 	 * list heads are accessed via BAT0 and are never placed in the
   2474 	 * page table, we don't have to worry about further accesses setting
   2475 	 * the REF/CHG bits.
   2476 	 */
   2477 	SYNC();
   2478 
   2479 	/*
   2480 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2481 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2482 	 */
   2483 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2484 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2485 		pt = pmap_pvo_to_pte(pvo, -1);
   2486 		if (pt != NULL) {
   2487 			/*
   2488 			 * Only sync the PTE if the bit we are looking
   2489 			 * for is not already set.
   2490 			 */
   2491 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2492 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2493 			/*
   2494 			 * If the bit we are looking for was already set,
   2495 			 * clear that bit in the pte.
   2496 			 */
   2497 			if (pvo->pvo_pte.pte_lo & ptebit)
   2498 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2499 		}
   2500 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2501 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2502 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2503 	}
   2504 	pmap_interrupts_restore(msr);
   2505 
   2506 	/*
   2507 	 * If we are clearing the modify bit and this page was marked EXEC
   2508 	 * and the user of the page thinks the page was modified, then we
   2509 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2510 	 * bit if it's not mapped.  The page itself might not have the CHG
   2511 	 * bit set if the modification was done via DMA to the page.
   2512 	 */
   2513 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2514 		if (LIST_EMPTY(pvoh)) {
   2515 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2516 			    VM_PAGE_TO_PHYS(pg)));
   2517 			pmap_attr_clear(pg, PTE_EXEC);
   2518 			PMAPCOUNT(exec_uncached_clear_modify);
   2519 		} else {
   2520 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2521 			    VM_PAGE_TO_PHYS(pg)));
   2522 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2523 			PMAPCOUNT(exec_synced_clear_modify);
   2524 		}
   2525 	}
   2526 	return (rv & ptebit) != 0;
   2527 }
   2528 
   2529 void
   2530 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2531 {
   2532 	struct pvo_entry *pvo;
   2533 	size_t offset = va & ADDR_POFF;
   2534 	int s;
   2535 
   2536 	s = splvm();
   2537 	while (len > 0) {
   2538 		size_t seglen = PAGE_SIZE - offset;
   2539 		if (seglen > len)
   2540 			seglen = len;
   2541 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2542 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2543 			pmap_syncicache(
   2544 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2545 			PMAP_PVO_CHECK(pvo);
   2546 		}
   2547 		va += seglen;
   2548 		len -= seglen;
   2549 		offset = 0;
   2550 	}
   2551 	splx(s);
   2552 }
   2553 
   2554 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2555 void
   2556 pmap_pte_print(volatile struct pte *pt)
   2557 {
   2558 	printf("PTE %p: ", pt);
   2559 
   2560 #if defined(PPC_OEA)
   2561 	/* High word: */
   2562 	printf("0x%08lx: [", pt->pte_hi);
   2563 #elif defined (PPC_OEA64_BRIDGE)
   2564 	printf("0x%016llx: [", pt->pte_hi);
   2565 #else /* PPC_OEA64 */
   2566 	printf("0x%016lx: [", pt->pte_hi);
   2567 #endif /* PPC_OEA */
   2568 
   2569 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2570 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2571 
   2572 #if defined (PPC_OEA)
   2573 	printf("0x%06lx 0x%02lx",
   2574 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2575 	    pt->pte_hi & PTE_API);
   2576 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2577 #elif defined (PPC_OEA64)
   2578 	printf("0x%06lx 0x%02lx",
   2579 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2580 	    pt->pte_hi & PTE_API);
   2581 	printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
   2582 #else
   2583 	/* PPC_OEA64_BRIDGE */
   2584 	printf("0x%06llx 0x%02llx",
   2585 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2586 	    pt->pte_hi & PTE_API);
   2587 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2588 #endif /* PPC_OEA */
   2589 
   2590 	/* Low word: */
   2591 #if defined (PPC_OEA)
   2592 	printf(" 0x%08lx: [", pt->pte_lo);
   2593 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2594 #elif defined (PPC_OEA64)
   2595 	printf(" 0x%016lx: [", pt->pte_lo);
   2596 	printf("0x%012lx... ", pt->pte_lo >> 12);
   2597 #else	/* PPC_OEA64_BRIDGE */
   2598 	printf(" 0x%016llx: [", pt->pte_lo);
   2599 	printf("0x%012llx... ", pt->pte_lo >> 12);
   2600 #endif
   2601 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2602 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2603 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2604 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2605 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2606 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2607 	switch (pt->pte_lo & PTE_PP) {
   2608 	case PTE_BR: printf("br]\n"); break;
   2609 	case PTE_BW: printf("bw]\n"); break;
   2610 	case PTE_SO: printf("so]\n"); break;
   2611 	case PTE_SW: printf("sw]\n"); break;
   2612 	}
   2613 }
   2614 #endif
   2615 
   2616 #if defined(DDB)
   2617 void
   2618 pmap_pteg_check(void)
   2619 {
   2620 	volatile struct pte *pt;
   2621 	int i;
   2622 	int ptegidx;
   2623 	u_int p_valid = 0;
   2624 	u_int s_valid = 0;
   2625 	u_int invalid = 0;
   2626 
   2627 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2628 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2629 			if (pt->pte_hi & PTE_VALID) {
   2630 				if (pt->pte_hi & PTE_HID)
   2631 					s_valid++;
   2632 				else
   2633 				{
   2634 					p_valid++;
   2635 				}
   2636 			} else
   2637 				invalid++;
   2638 		}
   2639 	}
   2640 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2641 		p_valid, p_valid, s_valid, s_valid,
   2642 		invalid, invalid);
   2643 }
   2644 
   2645 void
   2646 pmap_print_mmuregs(void)
   2647 {
   2648 	int i;
   2649 	u_int cpuvers;
   2650 #ifndef PPC_OEA64
   2651 	vaddr_t addr;
   2652 	register_t soft_sr[16];
   2653 #endif
   2654 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2655 	struct bat soft_ibat[4];
   2656 	struct bat soft_dbat[4];
   2657 #endif
   2658 	register_t sdr1;
   2659 
   2660 	cpuvers = MFPVR() >> 16;
   2661 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2662 #ifndef PPC_OEA64
   2663 	addr = 0;
   2664 	for (i = 0; i < 16; i++) {
   2665 		soft_sr[i] = MFSRIN(addr);
   2666 		addr += (1 << ADDR_SR_SHFT);
   2667 	}
   2668 #endif
   2669 
   2670 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2671 	/* read iBAT (601: uBAT) registers */
   2672 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2673 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2674 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2675 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2676 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2677 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2678 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2679 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2680 
   2681 
   2682 	if (cpuvers != MPC601) {
   2683 		/* read dBAT registers */
   2684 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2685 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2686 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2687 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2688 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2689 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2690 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2691 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2692 	}
   2693 #endif
   2694 
   2695 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2696 #ifndef PPC_OEA64
   2697 	printf("SR[]:\t");
   2698 	for (i = 0; i < 4; i++)
   2699 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2700 	printf("\n\t");
   2701 	for ( ; i < 8; i++)
   2702 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2703 	printf("\n\t");
   2704 	for ( ; i < 12; i++)
   2705 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2706 	printf("\n\t");
   2707 	for ( ; i < 16; i++)
   2708 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2709 	printf("\n");
   2710 #endif
   2711 
   2712 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2713 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2714 	for (i = 0; i < 4; i++) {
   2715 		printf("0x%08lx 0x%08lx, ",
   2716 			soft_ibat[i].batu, soft_ibat[i].batl);
   2717 		if (i == 1)
   2718 			printf("\n\t");
   2719 	}
   2720 	if (cpuvers != MPC601) {
   2721 		printf("\ndBAT[]:\t");
   2722 		for (i = 0; i < 4; i++) {
   2723 			printf("0x%08lx 0x%08lx, ",
   2724 				soft_dbat[i].batu, soft_dbat[i].batl);
   2725 			if (i == 1)
   2726 				printf("\n\t");
   2727 		}
   2728 	}
   2729 	printf("\n");
   2730 #endif /* PPC_OEA... */
   2731 }
   2732 
   2733 void
   2734 pmap_print_pte(pmap_t pm, vaddr_t va)
   2735 {
   2736 	struct pvo_entry *pvo;
   2737 	volatile struct pte *pt;
   2738 	int pteidx;
   2739 
   2740 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2741 	if (pvo != NULL) {
   2742 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2743 		if (pt != NULL) {
   2744 #if defined (PPC_OEA) || defined (PPC_OEA64)
   2745 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2746 				va, pt,
   2747 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2748 				pt->pte_hi, pt->pte_lo);
   2749 #else	/* PPC_OEA64_BRIDGE */
   2750 			printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
   2751 				va, pt,
   2752 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2753 				pt->pte_hi, pt->pte_lo);
   2754 #endif
   2755 		} else {
   2756 			printf("No valid PTE found\n");
   2757 		}
   2758 	} else {
   2759 		printf("Address not in pmap\n");
   2760 	}
   2761 }
   2762 
   2763 void
   2764 pmap_pteg_dist(void)
   2765 {
   2766 	struct pvo_entry *pvo;
   2767 	int ptegidx;
   2768 	int depth;
   2769 	int max_depth = 0;
   2770 	unsigned int depths[64];
   2771 
   2772 	memset(depths, 0, sizeof(depths));
   2773 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2774 		depth = 0;
   2775 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2776 			depth++;
   2777 		}
   2778 		if (depth > max_depth)
   2779 			max_depth = depth;
   2780 		if (depth > 63)
   2781 			depth = 63;
   2782 		depths[depth]++;
   2783 	}
   2784 
   2785 	for (depth = 0; depth < 64; depth++) {
   2786 		printf("  [%2d]: %8u", depth, depths[depth]);
   2787 		if ((depth & 3) == 3)
   2788 			printf("\n");
   2789 		if (depth == max_depth)
   2790 			break;
   2791 	}
   2792 	if ((depth & 3) != 3)
   2793 		printf("\n");
   2794 	printf("Max depth found was %d\n", max_depth);
   2795 }
   2796 #endif /* DEBUG */
   2797 
   2798 #if defined(PMAPCHECK) || defined(DEBUG)
   2799 void
   2800 pmap_pvo_verify(void)
   2801 {
   2802 	int ptegidx;
   2803 	int s;
   2804 
   2805 	s = splvm();
   2806 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2807 		struct pvo_entry *pvo;
   2808 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2809 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2810 				panic("pmap_pvo_verify: invalid pvo %p "
   2811 				    "on list %#x", pvo, ptegidx);
   2812 			pmap_pvo_check(pvo);
   2813 		}
   2814 	}
   2815 	splx(s);
   2816 }
   2817 #endif /* PMAPCHECK */
   2818 
   2819 
   2820 void *
   2821 pmap_pool_ualloc(struct pool *pp, int flags)
   2822 {
   2823 	struct pvo_page *pvop;
   2824 
   2825 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2826 	if (pvop != NULL) {
   2827 		pmap_upvop_free--;
   2828 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2829 		return pvop;
   2830 	}
   2831 	if (uvm.page_init_done != true) {
   2832 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2833 	}
   2834 	return pmap_pool_malloc(pp, flags);
   2835 }
   2836 
   2837 void *
   2838 pmap_pool_malloc(struct pool *pp, int flags)
   2839 {
   2840 	struct pvo_page *pvop;
   2841 	struct vm_page *pg;
   2842 
   2843 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2844 	if (pvop != NULL) {
   2845 		pmap_mpvop_free--;
   2846 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2847 		return pvop;
   2848 	}
   2849  again:
   2850 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2851 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2852 	if (__predict_false(pg == NULL)) {
   2853 		if (flags & PR_WAITOK) {
   2854 			uvm_wait("plpg");
   2855 			goto again;
   2856 		} else {
   2857 			return (0);
   2858 		}
   2859 	}
   2860 	return (void *) VM_PAGE_TO_PHYS(pg);
   2861 }
   2862 
   2863 void
   2864 pmap_pool_ufree(struct pool *pp, void *va)
   2865 {
   2866 	struct pvo_page *pvop;
   2867 #if 0
   2868 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2869 		pmap_pool_mfree(va, size, tag);
   2870 		return;
   2871 	}
   2872 #endif
   2873 	pvop = va;
   2874 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2875 	pmap_upvop_free++;
   2876 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2877 		pmap_upvop_maxfree = pmap_upvop_free;
   2878 }
   2879 
   2880 void
   2881 pmap_pool_mfree(struct pool *pp, void *va)
   2882 {
   2883 	struct pvo_page *pvop;
   2884 
   2885 	pvop = va;
   2886 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2887 	pmap_mpvop_free++;
   2888 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2889 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2890 #if 0
   2891 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2892 #endif
   2893 }
   2894 
   2895 /*
   2896  * This routine in bootstraping to steal to-be-managed memory (which will
   2897  * then be unmanaged).  We use it to grab from the first 256MB for our
   2898  * pmap needs and above 256MB for other stuff.
   2899  */
   2900 vaddr_t
   2901 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2902 {
   2903 	vsize_t size;
   2904 	vaddr_t va;
   2905 	paddr_t pa = 0;
   2906 	int npgs, bank;
   2907 	struct vm_physseg *ps;
   2908 
   2909 	if (uvm.page_init_done == true)
   2910 		panic("pmap_steal_memory: called _after_ bootstrap");
   2911 
   2912 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2913 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2914 
   2915 	size = round_page(vsize);
   2916 	npgs = atop(size);
   2917 
   2918 	/*
   2919 	 * PA 0 will never be among those given to UVM so we can use it
   2920 	 * to indicate we couldn't steal any memory.
   2921 	 */
   2922 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2923 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2924 		    ps->avail_end - ps->avail_start >= npgs) {
   2925 			pa = ptoa(ps->avail_start);
   2926 			break;
   2927 		}
   2928 	}
   2929 
   2930 	if (pa == 0)
   2931 		panic("pmap_steal_memory: no approriate memory to steal!");
   2932 
   2933 	ps->avail_start += npgs;
   2934 	ps->start += npgs;
   2935 
   2936 	/*
   2937 	 * If we've used up all the pages in the segment, remove it and
   2938 	 * compact the list.
   2939 	 */
   2940 	if (ps->avail_start == ps->end) {
   2941 		/*
   2942 		 * If this was the last one, then a very bad thing has occurred
   2943 		 */
   2944 		if (--vm_nphysseg == 0)
   2945 			panic("pmap_steal_memory: out of memory!");
   2946 
   2947 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2948 		for (; bank < vm_nphysseg; bank++, ps++) {
   2949 			ps[0] = ps[1];
   2950 		}
   2951 	}
   2952 
   2953 	va = (vaddr_t) pa;
   2954 	memset((caddr_t) va, 0, size);
   2955 	pmap_pages_stolen += npgs;
   2956 #ifdef DEBUG
   2957 	if (pmapdebug && npgs > 1) {
   2958 		u_int cnt = 0;
   2959 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2960 			cnt += ps->avail_end - ps->avail_start;
   2961 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2962 		    npgs, pmap_pages_stolen, cnt);
   2963 	}
   2964 #endif
   2965 
   2966 	return va;
   2967 }
   2968 
   2969 /*
   2970  * Find a chuck of memory with right size and alignment.
   2971  */
   2972 void *
   2973 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2974 {
   2975 	struct mem_region *mp;
   2976 	paddr_t s, e;
   2977 	int i, j;
   2978 
   2979 	size = round_page(size);
   2980 
   2981 	DPRINTFN(BOOT,
   2982 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2983 	    size, alignment, at_end));
   2984 
   2985 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2986 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2987 		    alignment);
   2988 
   2989 	if (at_end) {
   2990 		if (alignment != PAGE_SIZE)
   2991 			panic("pmap_boot_find_memory: invalid ending "
   2992 			    "alignment %lx", alignment);
   2993 
   2994 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2995 			s = mp->start + mp->size - size;
   2996 			if (s >= mp->start && mp->size >= size) {
   2997 				DPRINTFN(BOOT,(": %lx\n", s));
   2998 				DPRINTFN(BOOT,
   2999 				    ("pmap_boot_find_memory: b-avail[%d] start "
   3000 				     "0x%lx size 0x%lx\n", mp - avail,
   3001 				     mp->start, mp->size));
   3002 				mp->size -= size;
   3003 				DPRINTFN(BOOT,
   3004 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3005 				     "0x%lx size 0x%lx\n", mp - avail,
   3006 				     mp->start, mp->size));
   3007 				return (void *) s;
   3008 			}
   3009 		}
   3010 		panic("pmap_boot_find_memory: no available memory");
   3011 	}
   3012 
   3013 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3014 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3015 		e = s + size;
   3016 
   3017 		/*
   3018 		 * Is the calculated region entirely within the region?
   3019 		 */
   3020 		if (s < mp->start || e > mp->start + mp->size)
   3021 			continue;
   3022 
   3023 		DPRINTFN(BOOT,(": %lx\n", s));
   3024 		if (s == mp->start) {
   3025 			/*
   3026 			 * If the block starts at the beginning of region,
   3027 			 * adjust the size & start. (the region may now be
   3028 			 * zero in length)
   3029 			 */
   3030 			DPRINTFN(BOOT,
   3031 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3032 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3033 			mp->start += size;
   3034 			mp->size -= size;
   3035 			DPRINTFN(BOOT,
   3036 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3037 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3038 		} else if (e == mp->start + mp->size) {
   3039 			/*
   3040 			 * If the block starts at the beginning of region,
   3041 			 * adjust only the size.
   3042 			 */
   3043 			DPRINTFN(BOOT,
   3044 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3045 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3046 			mp->size -= size;
   3047 			DPRINTFN(BOOT,
   3048 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3049 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3050 		} else {
   3051 			/*
   3052 			 * Block is in the middle of the region, so we
   3053 			 * have to split it in two.
   3054 			 */
   3055 			for (j = avail_cnt; j > i + 1; j--) {
   3056 				avail[j] = avail[j-1];
   3057 			}
   3058 			DPRINTFN(BOOT,
   3059 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3060 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3061 			mp[1].start = e;
   3062 			mp[1].size = mp[0].start + mp[0].size - e;
   3063 			mp[0].size = s - mp[0].start;
   3064 			avail_cnt++;
   3065 			for (; i < avail_cnt; i++) {
   3066 				DPRINTFN(BOOT,
   3067 				    ("pmap_boot_find_memory: a-avail[%d] "
   3068 				     "start 0x%lx size 0x%lx\n", i,
   3069 				     avail[i].start, avail[i].size));
   3070 			}
   3071 		}
   3072 		return (void *) s;
   3073 	}
   3074 	panic("pmap_boot_find_memory: not enough memory for "
   3075 	    "%lx/%lx allocation?", size, alignment);
   3076 }
   3077 
   3078 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3079 #if defined (PPC_OEA64_BRIDGE)
   3080 int
   3081 pmap_setup_segment0_map(int use_large_pages, ...)
   3082 {
   3083     vaddr_t va;
   3084 
   3085     register_t pte_lo = 0x0;
   3086     int ptegidx = 0, i = 0;
   3087     struct pte pte;
   3088     va_list ap;
   3089 
   3090     /* Coherent + Supervisor RW, no user access */
   3091     pte_lo = PTE_M;
   3092 
   3093     /* XXXSL
   3094      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3095      * these have to take priority.
   3096      */
   3097     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3098         ptegidx = va_to_pteg(pmap_kernel(), va);
   3099         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3100         i = pmap_pte_insert(ptegidx, &pte);
   3101     }
   3102 
   3103     va_start(ap, use_large_pages);
   3104     while (1) {
   3105         paddr_t pa;
   3106         size_t size;
   3107 
   3108         va = va_arg(ap, vaddr_t);
   3109 
   3110         if (va == 0)
   3111             break;
   3112 
   3113         pa = va_arg(ap, paddr_t);
   3114         size = va_arg(ap, size_t);
   3115 
   3116         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3117 #if 0
   3118 	    printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __FUNCTION__,  va, pa);
   3119 #endif
   3120             ptegidx = va_to_pteg(pmap_kernel(), va);
   3121             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3122             i = pmap_pte_insert(ptegidx, &pte);
   3123         }
   3124     }
   3125 
   3126     TLBSYNC();
   3127     SYNC();
   3128     return (0);
   3129 }
   3130 #endif /* PPC_OEA64_BRIDGE */
   3131 
   3132 /*
   3133  * This is not part of the defined PMAP interface and is specific to the
   3134  * PowerPC architecture.  This is called during initppc, before the system
   3135  * is really initialized.
   3136  */
   3137 void
   3138 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3139 {
   3140 	struct mem_region *mp, tmp;
   3141 	paddr_t s, e;
   3142 	psize_t size;
   3143 	int i, j;
   3144 
   3145 	/*
   3146 	 * Get memory.
   3147 	 */
   3148 	mem_regions(&mem, &avail);
   3149 #if defined(DEBUG)
   3150 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3151 		printf("pmap_bootstrap: memory configuration:\n");
   3152 		for (mp = mem; mp->size; mp++) {
   3153 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   3154 				mp->start, mp->size);
   3155 		}
   3156 		for (mp = avail; mp->size; mp++) {
   3157 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   3158 				mp->start, mp->size);
   3159 		}
   3160 	}
   3161 #endif
   3162 
   3163 	/*
   3164 	 * Find out how much physical memory we have and in how many chunks.
   3165 	 */
   3166 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3167 		if (mp->start >= pmap_memlimit)
   3168 			continue;
   3169 		if (mp->start + mp->size > pmap_memlimit) {
   3170 			size = pmap_memlimit - mp->start;
   3171 			physmem += btoc(size);
   3172 		} else {
   3173 			physmem += btoc(mp->size);
   3174 		}
   3175 		mem_cnt++;
   3176 	}
   3177 
   3178 	/*
   3179 	 * Count the number of available entries.
   3180 	 */
   3181 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3182 		avail_cnt++;
   3183 
   3184 	/*
   3185 	 * Page align all regions.
   3186 	 */
   3187 	kernelstart = trunc_page(kernelstart);
   3188 	kernelend = round_page(kernelend);
   3189 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3190 		s = round_page(mp->start);
   3191 		mp->size -= (s - mp->start);
   3192 		mp->size = trunc_page(mp->size);
   3193 		mp->start = s;
   3194 		e = mp->start + mp->size;
   3195 
   3196 		DPRINTFN(BOOT,
   3197 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   3198 		    i, mp->start, mp->size));
   3199 
   3200 		/*
   3201 		 * Don't allow the end to run beyond our artificial limit
   3202 		 */
   3203 		if (e > pmap_memlimit)
   3204 			e = pmap_memlimit;
   3205 
   3206 		/*
   3207 		 * Is this region empty or strange?  skip it.
   3208 		 */
   3209 		if (e <= s) {
   3210 			mp->start = 0;
   3211 			mp->size = 0;
   3212 			continue;
   3213 		}
   3214 
   3215 		/*
   3216 		 * Does this overlap the beginning of kernel?
   3217 		 *   Does extend past the end of the kernel?
   3218 		 */
   3219 		else if (s < kernelstart && e > kernelstart) {
   3220 			if (e > kernelend) {
   3221 				avail[avail_cnt].start = kernelend;
   3222 				avail[avail_cnt].size = e - kernelend;
   3223 				avail_cnt++;
   3224 			}
   3225 			mp->size = kernelstart - s;
   3226 		}
   3227 		/*
   3228 		 * Check whether this region overlaps the end of the kernel.
   3229 		 */
   3230 		else if (s < kernelend && e > kernelend) {
   3231 			mp->start = kernelend;
   3232 			mp->size = e - kernelend;
   3233 		}
   3234 		/*
   3235 		 * Look whether this regions is completely inside the kernel.
   3236 		 * Nuke it if it does.
   3237 		 */
   3238 		else if (s >= kernelstart && e <= kernelend) {
   3239 			mp->start = 0;
   3240 			mp->size = 0;
   3241 		}
   3242 		/*
   3243 		 * If the user imposed a memory limit, enforce it.
   3244 		 */
   3245 		else if (s >= pmap_memlimit) {
   3246 			mp->start = -PAGE_SIZE;	/* let's know why */
   3247 			mp->size = 0;
   3248 		}
   3249 		else {
   3250 			mp->start = s;
   3251 			mp->size = e - s;
   3252 		}
   3253 		DPRINTFN(BOOT,
   3254 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   3255 		    i, mp->start, mp->size));
   3256 	}
   3257 
   3258 	/*
   3259 	 * Move (and uncount) all the null return to the end.
   3260 	 */
   3261 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3262 		if (mp->size == 0) {
   3263 			tmp = avail[i];
   3264 			avail[i] = avail[--avail_cnt];
   3265 			avail[avail_cnt] = avail[i];
   3266 		}
   3267 	}
   3268 
   3269 	/*
   3270 	 * (Bubble)sort them into asecnding order.
   3271 	 */
   3272 	for (i = 0; i < avail_cnt; i++) {
   3273 		for (j = i + 1; j < avail_cnt; j++) {
   3274 			if (avail[i].start > avail[j].start) {
   3275 				tmp = avail[i];
   3276 				avail[i] = avail[j];
   3277 				avail[j] = tmp;
   3278 			}
   3279 		}
   3280 	}
   3281 
   3282 	/*
   3283 	 * Make sure they don't overlap.
   3284 	 */
   3285 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3286 		if (mp[0].start + mp[0].size > mp[1].start) {
   3287 			mp[0].size = mp[1].start - mp[0].start;
   3288 		}
   3289 		DPRINTFN(BOOT,
   3290 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3291 		    i, mp->start, mp->size));
   3292 	}
   3293 	DPRINTFN(BOOT,
   3294 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3295 	    i, mp->start, mp->size));
   3296 
   3297 #ifdef	PTEGCOUNT
   3298 	pmap_pteg_cnt = PTEGCOUNT;
   3299 #else /* PTEGCOUNT */
   3300 
   3301 	pmap_pteg_cnt = 0x1000;
   3302 
   3303 	while (pmap_pteg_cnt < physmem)
   3304 		pmap_pteg_cnt <<= 1;
   3305 
   3306 	pmap_pteg_cnt >>= 1;
   3307 #endif /* PTEGCOUNT */
   3308 
   3309 #ifdef DEBUG
   3310 	DPRINTFN(BOOT,
   3311 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3312 #endif
   3313 
   3314 	/*
   3315 	 * Find suitably aligned memory for PTEG hash table.
   3316 	 */
   3317 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3318 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3319 
   3320 #ifdef DEBUG
   3321 	DPRINTFN(BOOT,
   3322 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3323 #endif
   3324 
   3325 
   3326 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3327 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3328 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3329 		    pmap_pteg_table, size);
   3330 #endif
   3331 
   3332 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3333 		pmap_pteg_cnt * sizeof(struct pteg));
   3334 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3335 
   3336 	/*
   3337 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3338 	 * with pages.  So we just steal them before giving them to UVM.
   3339 	 */
   3340 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3341 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3342 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3343 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3344 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3345 		    pmap_pvo_table, size);
   3346 #endif
   3347 
   3348 	for (i = 0; i < pmap_pteg_cnt; i++)
   3349 		TAILQ_INIT(&pmap_pvo_table[i]);
   3350 
   3351 #ifndef MSGBUFADDR
   3352 	/*
   3353 	 * Allocate msgbuf in high memory.
   3354 	 */
   3355 	msgbuf_paddr =
   3356 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3357 #endif
   3358 
   3359 #ifdef __HAVE_PMAP_PHYSSEG
   3360 	{
   3361 		u_int npgs = 0;
   3362 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3363 			npgs += btoc(mp->size);
   3364 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3365 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3366 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3367 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3368 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3369 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3370 			    pmap_physseg.pvoh, size);
   3371 #endif
   3372 	}
   3373 #endif
   3374 
   3375 
   3376 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3377 		paddr_t pfstart = atop(mp->start);
   3378 		paddr_t pfend = atop(mp->start + mp->size);
   3379 		if (mp->size == 0)
   3380 			continue;
   3381 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3382 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3383 				VM_FREELIST_FIRST256);
   3384 		} else if (mp->start >= SEGMENT_LENGTH) {
   3385 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3386 				VM_FREELIST_DEFAULT);
   3387 		} else {
   3388 			pfend = atop(SEGMENT_LENGTH);
   3389 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3390 				VM_FREELIST_FIRST256);
   3391 			pfstart = atop(SEGMENT_LENGTH);
   3392 			pfend = atop(mp->start + mp->size);
   3393 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3394 				VM_FREELIST_DEFAULT);
   3395 		}
   3396 	}
   3397 
   3398 	/*
   3399 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3400 	 */
   3401 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3402 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3403 	pmap_vsid_bitmap[0] |= 1;
   3404 
   3405 	/*
   3406 	 * Initialize kernel pmap and hardware.
   3407 	 */
   3408 
   3409 /* PPC_OEA64_BRIDGE does support these instructions */
   3410 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   3411 	for (i = 0; i < 16; i++) {
   3412  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3413 		__asm volatile ("mtsrin %0,%1"
   3414  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3415 	}
   3416 
   3417 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3418 	__asm volatile ("mtsr %0,%1"
   3419 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3420 #ifdef KERNEL2_SR
   3421 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3422 	__asm volatile ("mtsr %0,%1"
   3423 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3424 #endif
   3425 	for (i = 0; i < 16; i++) {
   3426 		if (iosrtable[i] & SR601_T) {
   3427 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3428 			__asm volatile ("mtsrin %0,%1"
   3429 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3430 		}
   3431 	}
   3432 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
   3433 #if defined (PPC_OEA)
   3434 	__asm volatile ("sync; mtsdr1 %0; isync"
   3435 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3436 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
   3437  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3438  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3439 #endif
   3440 	tlbia();
   3441 
   3442 #ifdef ALTIVEC
   3443 	pmap_use_altivec = cpu_altivec;
   3444 #endif
   3445 
   3446 #ifdef DEBUG
   3447 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3448 		u_int cnt;
   3449 		int bank;
   3450 		char pbuf[9];
   3451 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3452 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3453 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3454 			    bank,
   3455 			    ptoa(vm_physmem[bank].avail_start),
   3456 			    ptoa(vm_physmem[bank].avail_end),
   3457 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3458 		}
   3459 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3460 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3461 		    pbuf, cnt);
   3462 	}
   3463 #endif
   3464 
   3465 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3466 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3467 	    &pmap_pool_uallocator);
   3468 
   3469 	pool_setlowat(&pmap_upvo_pool, 252);
   3470 
   3471 	pool_init(&pmap_pool, sizeof(struct pmap),
   3472 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3473 
   3474 #if defined(PMAP_NEED_MAPKERNEL)
   3475 	{
   3476 		extern int etext[], kernel_text[];
   3477 		vaddr_t va, va_etext = (paddr_t) etext;
   3478 		paddr_t pa;
   3479 		register_t sr;
   3480 
   3481 		sr = KERNELN_SEGMENT(kernelstart >> ADDR_SR_SHFT)
   3482 		    |SR_SUKEY|SR_PRKEY;
   3483 
   3484 		va = (vaddr_t) kernel_text;
   3485 
   3486 		for (pa = kernelstart; va < va_etext;
   3487 		     pa += PAGE_SIZE, va += PAGE_SIZE)
   3488 			pmap_enter(pmap_kernel(), va, pa,
   3489 			    VM_PROT_READ|VM_PROT_EXECUTE, 0);
   3490 
   3491 		for (; pa < kernelend;
   3492 		     pa += PAGE_SIZE, va += PAGE_SIZE)
   3493 			pmap_enter(pmap_kernel(), va, pa,
   3494 			    VM_PROT_READ|VM_PROT_WRITE, 0);
   3495 
   3496 		pmap_kernel()->pm_sr[kernelstart >> ADDR_SR_SHFT] = sr;
   3497 		__asm volatile ("mtsrin %0,%1"
   3498  			      :: "r"(sr), "r"(kernelstart));
   3499 	}
   3500 #endif
   3501 }
   3502