pmap.c revision 1.48 1 /* $NetBSD: pmap.c,v 1.48 2007/03/12 18:18:26 ad Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43 * Copyright (C) 1995, 1996 TooLs GmbH.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by TooLs GmbH.
57 * 4. The name of TooLs GmbH may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.48 2007/03/12 18:18:26 ad Exp $");
74
75 #include "opt_ppcarch.h"
76 #include "opt_altivec.h"
77 #include "opt_pmap.h"
78 #include <sys/param.h>
79 #include <sys/malloc.h>
80 #include <sys/proc.h>
81 #include <sys/user.h>
82 #include <sys/pool.h>
83 #include <sys/queue.h>
84 #include <sys/device.h> /* for evcnt */
85 #include <sys/systm.h>
86
87 #if __NetBSD_Version__ < 105010000
88 #include <vm/vm.h>
89 #include <vm/vm_kern.h>
90 #define splvm() splimp()
91 #endif
92
93 #include <uvm/uvm.h>
94
95 #include <machine/pcb.h>
96 #include <machine/powerpc.h>
97 #include <powerpc/spr.h>
98 #include <powerpc/oea/sr_601.h>
99 #include <powerpc/bat.h>
100 #include <powerpc/stdarg.h>
101
102 #if defined(DEBUG) || defined(PMAPCHECK)
103 #define STATIC
104 #else
105 #define STATIC static
106 #endif
107
108 #ifdef ALTIVEC
109 int pmap_use_altivec;
110 #endif
111
112 volatile struct pteg *pmap_pteg_table;
113 unsigned int pmap_pteg_cnt;
114 unsigned int pmap_pteg_mask;
115 #ifdef PMAP_MEMLIMIT
116 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
117 #else
118 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
119 #endif
120
121 struct pmap kernel_pmap_;
122 unsigned int pmap_pages_stolen;
123 u_long pmap_pte_valid;
124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
125 u_long pmap_pvo_enter_depth;
126 u_long pmap_pvo_remove_depth;
127 #endif
128
129 int physmem;
130 #ifndef MSGBUFADDR
131 extern paddr_t msgbuf_paddr;
132 #endif
133
134 static struct mem_region *mem, *avail;
135 static u_int mem_cnt, avail_cnt;
136
137 #ifdef __HAVE_PMAP_PHYSSEG
138 /*
139 * This is a cache of referenced/modified bits.
140 * Bits herein are shifted by ATTRSHFT.
141 */
142 #define ATTR_SHFT 4
143 struct pmap_physseg pmap_physseg;
144 #endif
145
146 /*
147 * The following structure is aligned to 32 bytes
148 */
149 struct pvo_entry {
150 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
151 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
152 struct pte pvo_pte; /* Prebuilt PTE */
153 pmap_t pvo_pmap; /* ptr to owning pmap */
154 vaddr_t pvo_vaddr; /* VA of entry */
155 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
156 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
157 #define PVO_WIRED 0x0010 /* PVO entry is wired */
158 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
159 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
160 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
161 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
162 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
163 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
164 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
165 #define PVO_SPILL_SET 2 /* PVO has been spilled */
166 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
167 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
168 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
169 #define PVO_REMOVE 6 /* PVO has been removed */
170 #define PVO_WHERE_MASK 15
171 #define PVO_WHERE_SHFT 8
172 } __attribute__ ((aligned (32)));
173 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
174 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
175 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
176 #define PVO_PTEGIDX_CLR(pvo) \
177 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
178 #define PVO_PTEGIDX_SET(pvo,i) \
179 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
180 #define PVO_WHERE(pvo,w) \
181 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
182 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
183
184 TAILQ_HEAD(pvo_tqhead, pvo_entry);
185 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
186 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
187 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
188
189 struct pool pmap_pool; /* pool for pmap structures */
190 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
191 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
192
193 /*
194 * We keep a cache of unmanaged pages to be used for pvo entries for
195 * unmanaged pages.
196 */
197 struct pvo_page {
198 SIMPLEQ_ENTRY(pvo_page) pvop_link;
199 };
200 SIMPLEQ_HEAD(pvop_head, pvo_page);
201 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
202 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
203 u_long pmap_upvop_free;
204 u_long pmap_upvop_maxfree;
205 u_long pmap_mpvop_free;
206 u_long pmap_mpvop_maxfree;
207
208 STATIC void *pmap_pool_ualloc(struct pool *, int);
209 STATIC void *pmap_pool_malloc(struct pool *, int);
210
211 STATIC void pmap_pool_ufree(struct pool *, void *);
212 STATIC void pmap_pool_mfree(struct pool *, void *);
213
214 static struct pool_allocator pmap_pool_mallocator = {
215 .pa_alloc = pmap_pool_malloc,
216 .pa_free = pmap_pool_mfree,
217 .pa_pagesz = 0,
218 };
219
220 static struct pool_allocator pmap_pool_uallocator = {
221 .pa_alloc = pmap_pool_ualloc,
222 .pa_free = pmap_pool_ufree,
223 .pa_pagesz = 0,
224 };
225
226 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
227 void pmap_pte_print(volatile struct pte *);
228 void pmap_pteg_check(void);
229 void pmap_pteg_dist(void);
230 void pmap_print_pte(pmap_t, vaddr_t);
231 void pmap_print_mmuregs(void);
232 #endif
233
234 #if defined(DEBUG) || defined(PMAPCHECK)
235 #ifdef PMAPCHECK
236 int pmapcheck = 1;
237 #else
238 int pmapcheck = 0;
239 #endif
240 void pmap_pvo_verify(void);
241 STATIC void pmap_pvo_check(const struct pvo_entry *);
242 #define PMAP_PVO_CHECK(pvo) \
243 do { \
244 if (pmapcheck) \
245 pmap_pvo_check(pvo); \
246 } while (0)
247 #else
248 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
249 #endif
250 STATIC int pmap_pte_insert(int, struct pte *);
251 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
252 vaddr_t, paddr_t, register_t, int);
253 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
254 STATIC void pmap_pvo_free(struct pvo_entry *);
255 STATIC void pmap_pvo_free_list(struct pvo_head *);
256 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
257 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
258 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
259 STATIC void pvo_set_exec(struct pvo_entry *);
260 STATIC void pvo_clear_exec(struct pvo_entry *);
261
262 STATIC void tlbia(void);
263
264 STATIC void pmap_release(pmap_t);
265 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
266
267 static uint32_t pmap_pvo_reclaim_nextidx;
268 #ifdef DEBUG
269 static int pmap_pvo_reclaim_debugctr;
270 #endif
271
272 #define VSID_NBPW (sizeof(uint32_t) * 8)
273 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
274
275 static int pmap_initialized;
276
277 #if defined(DEBUG) || defined(PMAPDEBUG)
278 #define PMAPDEBUG_BOOT 0x0001
279 #define PMAPDEBUG_PTE 0x0002
280 #define PMAPDEBUG_EXEC 0x0008
281 #define PMAPDEBUG_PVOENTER 0x0010
282 #define PMAPDEBUG_PVOREMOVE 0x0020
283 #define PMAPDEBUG_ACTIVATE 0x0100
284 #define PMAPDEBUG_CREATE 0x0200
285 #define PMAPDEBUG_ENTER 0x1000
286 #define PMAPDEBUG_KENTER 0x2000
287 #define PMAPDEBUG_KREMOVE 0x4000
288 #define PMAPDEBUG_REMOVE 0x8000
289
290 unsigned int pmapdebug = 0;
291
292 # define DPRINTF(x) printf x
293 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
294 #else
295 # define DPRINTF(x)
296 # define DPRINTFN(n, x)
297 #endif
298
299
300 #ifdef PMAPCOUNTERS
301 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
302 #define PMAPCOUNT2(ev) ((ev).ev_count++)
303
304 struct evcnt pmap_evcnt_mappings =
305 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
306 "pmap", "pages mapped");
307 struct evcnt pmap_evcnt_unmappings =
308 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
309 "pmap", "pages unmapped");
310
311 struct evcnt pmap_evcnt_kernel_mappings =
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
313 "pmap", "kernel pages mapped");
314 struct evcnt pmap_evcnt_kernel_unmappings =
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
316 "pmap", "kernel pages unmapped");
317
318 struct evcnt pmap_evcnt_mappings_replaced =
319 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
320 "pmap", "page mappings replaced");
321
322 struct evcnt pmap_evcnt_exec_mappings =
323 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
324 "pmap", "exec pages mapped");
325 struct evcnt pmap_evcnt_exec_cached =
326 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
327 "pmap", "exec pages cached");
328
329 struct evcnt pmap_evcnt_exec_synced =
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
331 "pmap", "exec pages synced");
332 struct evcnt pmap_evcnt_exec_synced_clear_modify =
333 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
334 "pmap", "exec pages synced (CM)");
335 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
336 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
337 "pmap", "exec pages synced (PR)");
338
339 struct evcnt pmap_evcnt_exec_uncached_page_protect =
340 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
341 "pmap", "exec pages uncached (PP)");
342 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
343 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
344 "pmap", "exec pages uncached (CM)");
345 struct evcnt pmap_evcnt_exec_uncached_zero_page =
346 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
347 "pmap", "exec pages uncached (ZP)");
348 struct evcnt pmap_evcnt_exec_uncached_copy_page =
349 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
350 "pmap", "exec pages uncached (CP)");
351 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
352 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
353 "pmap", "exec pages uncached (PR)");
354
355 struct evcnt pmap_evcnt_updates =
356 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 "pmap", "updates");
358 struct evcnt pmap_evcnt_collects =
359 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
360 "pmap", "collects");
361 struct evcnt pmap_evcnt_copies =
362 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
363 "pmap", "copies");
364
365 struct evcnt pmap_evcnt_ptes_spilled =
366 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
367 "pmap", "ptes spilled from overflow");
368 struct evcnt pmap_evcnt_ptes_unspilled =
369 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
370 "pmap", "ptes not spilled");
371 struct evcnt pmap_evcnt_ptes_evicted =
372 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 "pmap", "ptes evicted");
374
375 struct evcnt pmap_evcnt_ptes_primary[8] = {
376 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
377 "pmap", "ptes added at primary[0]"),
378 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
379 "pmap", "ptes added at primary[1]"),
380 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 "pmap", "ptes added at primary[2]"),
382 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 "pmap", "ptes added at primary[3]"),
384
385 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
386 "pmap", "ptes added at primary[4]"),
387 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
388 "pmap", "ptes added at primary[5]"),
389 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 "pmap", "ptes added at primary[6]"),
391 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 "pmap", "ptes added at primary[7]"),
393 };
394 struct evcnt pmap_evcnt_ptes_secondary[8] = {
395 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 "pmap", "ptes added at secondary[0]"),
397 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
398 "pmap", "ptes added at secondary[1]"),
399 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
400 "pmap", "ptes added at secondary[2]"),
401 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
402 "pmap", "ptes added at secondary[3]"),
403
404 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
405 "pmap", "ptes added at secondary[4]"),
406 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
407 "pmap", "ptes added at secondary[5]"),
408 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
409 "pmap", "ptes added at secondary[6]"),
410 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
411 "pmap", "ptes added at secondary[7]"),
412 };
413 struct evcnt pmap_evcnt_ptes_removed =
414 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
415 "pmap", "ptes removed");
416 struct evcnt pmap_evcnt_ptes_changed =
417 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
418 "pmap", "ptes changed");
419 struct evcnt pmap_evcnt_pvos_reclaimed =
420 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
421 "pmap", "pvos reclaimed");
422 struct evcnt pmap_evcnt_pvos_failed =
423 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
424 "pmap", "pvo allocation failures");
425
426 /*
427 * From pmap_subr.c
428 */
429 extern struct evcnt pmap_evcnt_zeroed_pages;
430 extern struct evcnt pmap_evcnt_copied_pages;
431 extern struct evcnt pmap_evcnt_idlezeroed_pages;
432
433 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
434 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
435 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
436
437 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
438 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
439
440 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
441 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
445
446 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
447 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
448 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
449 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
450 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
451
452 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
453 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
454 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
455
456 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
457 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
458 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
459
460 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
461 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
462 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
463 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
464 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
465
466 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
476 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
477 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
478 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
479 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
480 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
481 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
482
483 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
484 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
485 #else
486 #define PMAPCOUNT(ev) ((void) 0)
487 #define PMAPCOUNT2(ev) ((void) 0)
488 #endif
489
490 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
491
492 /* XXXSL: this needs to be moved to assembler */
493 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
494
495 #define TLBSYNC() __asm volatile("tlbsync")
496 #define SYNC() __asm volatile("sync")
497 #define EIEIO() __asm volatile("eieio")
498 #define MFMSR() mfmsr()
499 #define MTMSR(psl) mtmsr(psl)
500 #define MFPVR() mfpvr()
501 #define MFSRIN(va) mfsrin(va)
502 #define MFTB() mfrtcltbl()
503
504 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
505 static inline register_t
506 mfsrin(vaddr_t va)
507 {
508 register_t sr;
509 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
510 return sr;
511 }
512 #endif /* PPC_OEA*/
513
514 #if defined (PPC_OEA64_BRIDGE)
515 extern void mfmsr64 (register64_t *result);
516 #endif /* PPC_OEA64_BRIDGE */
517
518
519 static inline register_t
520 pmap_interrupts_off(void)
521 {
522 register_t msr = MFMSR();
523 if (msr & PSL_EE)
524 MTMSR(msr & ~PSL_EE);
525 return msr;
526 }
527
528 static void
529 pmap_interrupts_restore(register_t msr)
530 {
531 if (msr & PSL_EE)
532 MTMSR(msr);
533 }
534
535 static inline u_int32_t
536 mfrtcltbl(void)
537 {
538
539 if ((MFPVR() >> 16) == MPC601)
540 return (mfrtcl() >> 7);
541 else
542 return (mftbl());
543 }
544
545 /*
546 * These small routines may have to be replaced,
547 * if/when we support processors other that the 604.
548 */
549
550 void
551 tlbia(void)
552 {
553 char *i;
554
555 SYNC();
556 #if defined(PPC_OEA)
557 /*
558 * Why not use "tlbia"? Because not all processors implement it.
559 *
560 * This needs to be a per-CPU callback to do the appropriate thing
561 * for the CPU. XXX
562 */
563 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
564 TLBIE(i);
565 EIEIO();
566 SYNC();
567 }
568 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
569 printf("Invalidating ALL TLB entries......\n");
570 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
571 for (i = 0; i <= (void *)0xFF000; i += 0x00001000) {
572 TLBIEL(i);
573 EIEIO();
574 SYNC();
575 }
576 #endif
577 TLBSYNC();
578 SYNC();
579 }
580
581 static inline register_t
582 va_to_vsid(const struct pmap *pm, vaddr_t addr)
583 {
584 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
585 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
586 #else /* PPC_OEA64 */
587 #if 0
588 const struct ste *ste;
589 register_t hash;
590 int i;
591
592 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
593
594 /*
595 * Try the primary group first
596 */
597 ste = pm->pm_stes[hash].stes;
598 for (i = 0; i < 8; i++, ste++) {
599 if (ste->ste_hi & STE_V) &&
600 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
601 return ste;
602 }
603
604 /*
605 * Then the secondary group.
606 */
607 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
608 for (i = 0; i < 8; i++, ste++) {
609 if (ste->ste_hi & STE_V) &&
610 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
611 return addr;
612 }
613
614 return NULL;
615 #else
616 /*
617 * Rather than searching the STE groups for the VSID, we know
618 * how we generate that from the ESID and so do that.
619 */
620 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
621 #endif
622 #endif /* PPC_OEA */
623 }
624
625 static inline register_t
626 va_to_pteg(const struct pmap *pm, vaddr_t addr)
627 {
628 register_t hash;
629
630 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
631 return hash & pmap_pteg_mask;
632 }
633
634 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
635 /*
636 * Given a PTE in the page table, calculate the VADDR that hashes to it.
637 * The only bit of magic is that the top 4 bits of the address doesn't
638 * technically exist in the PTE. But we know we reserved 4 bits of the
639 * VSID for it so that's how we get it.
640 */
641 static vaddr_t
642 pmap_pte_to_va(volatile const struct pte *pt)
643 {
644 vaddr_t va;
645 uintptr_t ptaddr = (uintptr_t) pt;
646
647 if (pt->pte_hi & PTE_HID)
648 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
649
650 /* PPC Bits 10-19 PPC64 Bits 42-51 */
651 #if defined(PPC_OEA)
652 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
653 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
654 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
655 #endif
656 va <<= ADDR_PIDX_SHFT;
657
658 /* PPC Bits 4-9 PPC64 Bits 36-41 */
659 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
660
661 #if defined(PPC_OEA64)
662 /* PPC63 Bits 0-35 */
663 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
664 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
665 /* PPC Bits 0-3 */
666 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
667 #endif
668
669 return va;
670 }
671 #endif
672
673 static inline struct pvo_head *
674 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
675 {
676 #ifdef __HAVE_VM_PAGE_MD
677 struct vm_page *pg;
678
679 pg = PHYS_TO_VM_PAGE(pa);
680 if (pg_p != NULL)
681 *pg_p = pg;
682 if (pg == NULL)
683 return &pmap_pvo_unmanaged;
684 return &pg->mdpage.mdpg_pvoh;
685 #endif
686 #ifdef __HAVE_PMAP_PHYSSEG
687 int bank, pg;
688
689 bank = vm_physseg_find(atop(pa), &pg);
690 if (pg_p != NULL)
691 *pg_p = pg;
692 if (bank == -1)
693 return &pmap_pvo_unmanaged;
694 return &vm_physmem[bank].pmseg.pvoh[pg];
695 #endif
696 }
697
698 static inline struct pvo_head *
699 vm_page_to_pvoh(struct vm_page *pg)
700 {
701 #ifdef __HAVE_VM_PAGE_MD
702 return &pg->mdpage.mdpg_pvoh;
703 #endif
704 #ifdef __HAVE_PMAP_PHYSSEG
705 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
706 #endif
707 }
708
709
710 #ifdef __HAVE_PMAP_PHYSSEG
711 static inline char *
712 pa_to_attr(paddr_t pa)
713 {
714 int bank, pg;
715
716 bank = vm_physseg_find(atop(pa), &pg);
717 if (bank == -1)
718 return NULL;
719 return &vm_physmem[bank].pmseg.attrs[pg];
720 }
721 #endif
722
723 static inline void
724 pmap_attr_clear(struct vm_page *pg, int ptebit)
725 {
726 #ifdef __HAVE_PMAP_PHYSSEG
727 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
728 #endif
729 #ifdef __HAVE_VM_PAGE_MD
730 pg->mdpage.mdpg_attrs &= ~ptebit;
731 #endif
732 }
733
734 static inline int
735 pmap_attr_fetch(struct vm_page *pg)
736 {
737 #ifdef __HAVE_PMAP_PHYSSEG
738 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
739 #endif
740 #ifdef __HAVE_VM_PAGE_MD
741 return pg->mdpage.mdpg_attrs;
742 #endif
743 }
744
745 static inline void
746 pmap_attr_save(struct vm_page *pg, int ptebit)
747 {
748 #ifdef __HAVE_PMAP_PHYSSEG
749 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
750 #endif
751 #ifdef __HAVE_VM_PAGE_MD
752 pg->mdpage.mdpg_attrs |= ptebit;
753 #endif
754 }
755
756 static inline int
757 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
758 {
759 if (pt->pte_hi == pvo_pt->pte_hi
760 #if 0
761 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
762 ~(PTE_REF|PTE_CHG)) == 0
763 #endif
764 )
765 return 1;
766 return 0;
767 }
768
769 static inline void
770 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
771 {
772 /*
773 * Construct the PTE. Default to IMB initially. Valid bit
774 * only gets set when the real pte is set in memory.
775 *
776 * Note: Don't set the valid bit for correct operation of tlb update.
777 */
778 #if defined(PPC_OEA)
779 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
780 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
781 pt->pte_lo = pte_lo;
782 #elif defined (PPC_OEA64_BRIDGE)
783 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
784 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
785 pt->pte_lo = (u_int64_t) pte_lo;
786 #elif defined (PPC_OEA64)
787 #error PPC_OEA64 not supported
788 #endif /* PPC_OEA */
789 }
790
791 static inline void
792 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
793 {
794 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
795 }
796
797 static inline void
798 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
799 {
800 /*
801 * As shown in Section 7.6.3.2.3
802 */
803 pt->pte_lo &= ~ptebit;
804 TLBIE(va);
805 SYNC();
806 EIEIO();
807 TLBSYNC();
808 SYNC();
809 }
810
811 static inline void
812 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
813 {
814 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
815 if (pvo_pt->pte_hi & PTE_VALID)
816 panic("pte_set: setting an already valid pte %p", pvo_pt);
817 #endif
818 pvo_pt->pte_hi |= PTE_VALID;
819
820 /*
821 * Update the PTE as defined in section 7.6.3.1
822 * Note that the REF/CHG bits are from pvo_pt and thus should
823 * have been saved so this routine can restore them (if desired).
824 */
825 pt->pte_lo = pvo_pt->pte_lo;
826 EIEIO();
827 pt->pte_hi = pvo_pt->pte_hi;
828 TLBSYNC();
829 SYNC();
830 pmap_pte_valid++;
831 }
832
833 static inline void
834 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
835 {
836 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
837 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
838 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
839 if ((pt->pte_hi & PTE_VALID) == 0)
840 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
841 #endif
842
843 pvo_pt->pte_hi &= ~PTE_VALID;
844 /*
845 * Force the ref & chg bits back into the PTEs.
846 */
847 SYNC();
848 /*
849 * Invalidate the pte ... (Section 7.6.3.3)
850 */
851 pt->pte_hi &= ~PTE_VALID;
852 SYNC();
853 TLBIE(va);
854 SYNC();
855 EIEIO();
856 TLBSYNC();
857 SYNC();
858 /*
859 * Save the ref & chg bits ...
860 */
861 pmap_pte_synch(pt, pvo_pt);
862 pmap_pte_valid--;
863 }
864
865 static inline void
866 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
867 {
868 /*
869 * Invalidate the PTE
870 */
871 pmap_pte_unset(pt, pvo_pt, va);
872 pmap_pte_set(pt, pvo_pt);
873 }
874
875 /*
876 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
877 * (either primary or secondary location).
878 *
879 * Note: both the destination and source PTEs must not have PTE_VALID set.
880 */
881
882 STATIC int
883 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
884 {
885 volatile struct pte *pt;
886 int i;
887
888 #if defined(DEBUG)
889 #if defined (PPC_OEA)
890 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
891 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
892 #elif defined (PPC_OEA64_BRIDGE)
893 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
894 ptegidx, (unsigned long long) pvo_pt->pte_hi,
895 (unsigned long long) pvo_pt->pte_lo));
896
897 #endif
898 #endif
899 /*
900 * First try primary hash.
901 */
902 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
903 if ((pt->pte_hi & PTE_VALID) == 0) {
904 pvo_pt->pte_hi &= ~PTE_HID;
905 pmap_pte_set(pt, pvo_pt);
906 return i;
907 }
908 }
909
910 /*
911 * Now try secondary hash.
912 */
913 ptegidx ^= pmap_pteg_mask;
914 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
915 if ((pt->pte_hi & PTE_VALID) == 0) {
916 pvo_pt->pte_hi |= PTE_HID;
917 pmap_pte_set(pt, pvo_pt);
918 return i;
919 }
920 }
921 return -1;
922 }
923
924 /*
925 * Spill handler.
926 *
927 * Tries to spill a page table entry from the overflow area.
928 * This runs in either real mode (if dealing with a exception spill)
929 * or virtual mode when dealing with manually spilling one of the
930 * kernel's pte entries. In either case, interrupts are already
931 * disabled.
932 */
933
934 int
935 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
936 {
937 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
938 struct pvo_entry *pvo;
939 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
940 struct pvo_tqhead *pvoh, *vpvoh = NULL;
941 int ptegidx, i, j;
942 volatile struct pteg *pteg;
943 volatile struct pte *pt;
944
945 ptegidx = va_to_pteg(pm, addr);
946
947 /*
948 * Have to substitute some entry. Use the primary hash for this.
949 * Use low bits of timebase as random generator. Make sure we are
950 * not picking a kernel pte for replacement.
951 */
952 pteg = &pmap_pteg_table[ptegidx];
953 i = MFTB() & 7;
954 for (j = 0; j < 8; j++) {
955 pt = &pteg->pt[i];
956 if ((pt->pte_hi & PTE_VALID) == 0 ||
957 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
958 != KERNEL_VSIDBITS)
959 break;
960 i = (i + 1) & 7;
961 }
962 KASSERT(j < 8);
963
964 source_pvo = NULL;
965 victim_pvo = NULL;
966 pvoh = &pmap_pvo_table[ptegidx];
967 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
968
969 /*
970 * We need to find pvo entry for this address...
971 */
972 PMAP_PVO_CHECK(pvo); /* sanity check */
973
974 /*
975 * If we haven't found the source and we come to a PVO with
976 * a valid PTE, then we know we can't find it because all
977 * evicted PVOs always are first in the list.
978 */
979 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
980 break;
981 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
982 addr == PVO_VADDR(pvo)) {
983
984 /*
985 * Now we have found the entry to be spilled into the
986 * pteg. Attempt to insert it into the page table.
987 */
988 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
989 if (j >= 0) {
990 PVO_PTEGIDX_SET(pvo, j);
991 PMAP_PVO_CHECK(pvo); /* sanity check */
992 PVO_WHERE(pvo, SPILL_INSERT);
993 pvo->pvo_pmap->pm_evictions--;
994 PMAPCOUNT(ptes_spilled);
995 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
996 ? pmap_evcnt_ptes_secondary
997 : pmap_evcnt_ptes_primary)[j]);
998
999 /*
1000 * Since we keep the evicted entries at the
1001 * from of the PVO list, we need move this
1002 * (now resident) PVO after the evicted
1003 * entries.
1004 */
1005 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
1006
1007 /*
1008 * If we don't have to move (either we were the
1009 * last entry or the next entry was valid),
1010 * don't change our position. Otherwise
1011 * move ourselves to the tail of the queue.
1012 */
1013 if (next_pvo != NULL &&
1014 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
1015 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
1016 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1017 }
1018 return 1;
1019 }
1020 source_pvo = pvo;
1021 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1022 return 0;
1023 }
1024 if (victim_pvo != NULL)
1025 break;
1026 }
1027
1028 /*
1029 * We also need the pvo entry of the victim we are replacing
1030 * so save the R & C bits of the PTE.
1031 */
1032 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1033 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1034 vpvoh = pvoh; /* *1* */
1035 victim_pvo = pvo;
1036 if (source_pvo != NULL)
1037 break;
1038 }
1039 }
1040
1041 if (source_pvo == NULL) {
1042 PMAPCOUNT(ptes_unspilled);
1043 return 0;
1044 }
1045
1046 if (victim_pvo == NULL) {
1047 if ((pt->pte_hi & PTE_HID) == 0)
1048 panic("pmap_pte_spill: victim p-pte (%p) has "
1049 "no pvo entry!", pt);
1050
1051 /*
1052 * If this is a secondary PTE, we need to search
1053 * its primary pvo bucket for the matching PVO.
1054 */
1055 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1056 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1057 PMAP_PVO_CHECK(pvo); /* sanity check */
1058
1059 /*
1060 * We also need the pvo entry of the victim we are
1061 * replacing so save the R & C bits of the PTE.
1062 */
1063 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1064 victim_pvo = pvo;
1065 break;
1066 }
1067 }
1068 if (victim_pvo == NULL)
1069 panic("pmap_pte_spill: victim s-pte (%p) has "
1070 "no pvo entry!", pt);
1071 }
1072
1073 /*
1074 * The victim should be not be a kernel PVO/PTE entry.
1075 */
1076 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1077 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1078 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1079
1080 /*
1081 * We are invalidating the TLB entry for the EA for the
1082 * we are replacing even though its valid; If we don't
1083 * we lose any ref/chg bit changes contained in the TLB
1084 * entry.
1085 */
1086 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1087
1088 /*
1089 * To enforce the PVO list ordering constraint that all
1090 * evicted entries should come before all valid entries,
1091 * move the source PVO to the tail of its list and the
1092 * victim PVO to the head of its list (which might not be
1093 * the same list, if the victim was using the secondary hash).
1094 */
1095 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1096 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1097 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1098 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1099 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1100 pmap_pte_set(pt, &source_pvo->pvo_pte);
1101 victim_pvo->pvo_pmap->pm_evictions++;
1102 source_pvo->pvo_pmap->pm_evictions--;
1103 PVO_WHERE(victim_pvo, SPILL_UNSET);
1104 PVO_WHERE(source_pvo, SPILL_SET);
1105
1106 PVO_PTEGIDX_CLR(victim_pvo);
1107 PVO_PTEGIDX_SET(source_pvo, i);
1108 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1109 PMAPCOUNT(ptes_spilled);
1110 PMAPCOUNT(ptes_evicted);
1111 PMAPCOUNT(ptes_removed);
1112
1113 PMAP_PVO_CHECK(victim_pvo);
1114 PMAP_PVO_CHECK(source_pvo);
1115 return 1;
1116 }
1117
1118 /*
1119 * Restrict given range to physical memory
1120 */
1121 void
1122 pmap_real_memory(paddr_t *start, psize_t *size)
1123 {
1124 struct mem_region *mp;
1125
1126 for (mp = mem; mp->size; mp++) {
1127 if (*start + *size > mp->start
1128 && *start < mp->start + mp->size) {
1129 if (*start < mp->start) {
1130 *size -= mp->start - *start;
1131 *start = mp->start;
1132 }
1133 if (*start + *size > mp->start + mp->size)
1134 *size = mp->start + mp->size - *start;
1135 return;
1136 }
1137 }
1138 *size = 0;
1139 }
1140
1141 /*
1142 * Initialize anything else for pmap handling.
1143 * Called during vm_init().
1144 */
1145 void
1146 pmap_init(void)
1147 {
1148 #ifdef __HAVE_PMAP_PHYSSEG
1149 struct pvo_tqhead *pvoh;
1150 int bank;
1151 long sz;
1152 char *attr;
1153
1154 pvoh = pmap_physseg.pvoh;
1155 attr = pmap_physseg.attrs;
1156 for (bank = 0; bank < vm_nphysseg; bank++) {
1157 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1158 vm_physmem[bank].pmseg.pvoh = pvoh;
1159 vm_physmem[bank].pmseg.attrs = attr;
1160 for (; sz > 0; sz--, pvoh++, attr++) {
1161 TAILQ_INIT(pvoh);
1162 *attr = 0;
1163 }
1164 }
1165 #endif
1166
1167 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1168 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1169 &pmap_pool_mallocator, IPL_NONE);
1170
1171 pool_setlowat(&pmap_mpvo_pool, 1008);
1172
1173 pmap_initialized = 1;
1174
1175 }
1176
1177 /*
1178 * How much virtual space does the kernel get?
1179 */
1180 void
1181 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1182 {
1183 /*
1184 * For now, reserve one segment (minus some overhead) for kernel
1185 * virtual memory
1186 */
1187 *start = VM_MIN_KERNEL_ADDRESS;
1188 *end = VM_MAX_KERNEL_ADDRESS;
1189 }
1190
1191 /*
1192 * Allocate, initialize, and return a new physical map.
1193 */
1194 pmap_t
1195 pmap_create(void)
1196 {
1197 pmap_t pm;
1198
1199 pm = pool_get(&pmap_pool, PR_WAITOK);
1200 memset((void *)pm, 0, sizeof *pm);
1201 pmap_pinit(pm);
1202
1203 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1204 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1205 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1206 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1207 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1208 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1209 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1210 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1211 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1212 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1213 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1214 return pm;
1215 }
1216
1217 /*
1218 * Initialize a preallocated and zeroed pmap structure.
1219 */
1220 void
1221 pmap_pinit(pmap_t pm)
1222 {
1223 register_t entropy = MFTB();
1224 register_t mask;
1225 int i;
1226
1227 /*
1228 * Allocate some segment registers for this pmap.
1229 */
1230 pm->pm_refs = 1;
1231 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1232 static register_t pmap_vsidcontext;
1233 register_t hash;
1234 unsigned int n;
1235
1236 /* Create a new value by multiplying by a prime adding in
1237 * entropy from the timebase register. This is to make the
1238 * VSID more random so that the PT Hash function collides
1239 * less often. (note that the prime causes gcc to do shifts
1240 * instead of a multiply)
1241 */
1242 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1243 hash = pmap_vsidcontext & (NPMAPS - 1);
1244 if (hash == 0) { /* 0 is special, avoid it */
1245 entropy += 0xbadf00d;
1246 continue;
1247 }
1248 n = hash >> 5;
1249 mask = 1L << (hash & (VSID_NBPW-1));
1250 hash = pmap_vsidcontext;
1251 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1252 /* anything free in this bucket? */
1253 if (~pmap_vsid_bitmap[n] == 0) {
1254 entropy = hash ^ (hash >> 16);
1255 continue;
1256 }
1257 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1258 mask = 1L << i;
1259 hash &= ~(VSID_NBPW-1);
1260 hash |= i;
1261 }
1262 hash &= PTE_VSID >> PTE_VSID_SHFT;
1263 pmap_vsid_bitmap[n] |= mask;
1264 pm->pm_vsid = hash;
1265 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1266 for (i = 0; i < 16; i++)
1267 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1268 SR_NOEXEC;
1269 #endif
1270 return;
1271 }
1272 panic("pmap_pinit: out of segments");
1273 }
1274
1275 /*
1276 * Add a reference to the given pmap.
1277 */
1278 void
1279 pmap_reference(pmap_t pm)
1280 {
1281 pm->pm_refs++;
1282 }
1283
1284 /*
1285 * Retire the given pmap from service.
1286 * Should only be called if the map contains no valid mappings.
1287 */
1288 void
1289 pmap_destroy(pmap_t pm)
1290 {
1291 if (--pm->pm_refs == 0) {
1292 pmap_release(pm);
1293 pool_put(&pmap_pool, pm);
1294 }
1295 }
1296
1297 /*
1298 * Release any resources held by the given physical map.
1299 * Called when a pmap initialized by pmap_pinit is being released.
1300 */
1301 void
1302 pmap_release(pmap_t pm)
1303 {
1304 int idx, mask;
1305
1306 KASSERT(pm->pm_stats.resident_count == 0);
1307 KASSERT(pm->pm_stats.wired_count == 0);
1308
1309 if (pm->pm_sr[0] == 0)
1310 panic("pmap_release");
1311 idx = pm->pm_vsid & (NPMAPS-1);
1312 mask = 1 << (idx % VSID_NBPW);
1313 idx /= VSID_NBPW;
1314
1315 KASSERT(pmap_vsid_bitmap[idx] & mask);
1316 pmap_vsid_bitmap[idx] &= ~mask;
1317 }
1318
1319 /*
1320 * Copy the range specified by src_addr/len
1321 * from the source map to the range dst_addr/len
1322 * in the destination map.
1323 *
1324 * This routine is only advisory and need not do anything.
1325 */
1326 void
1327 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1328 vsize_t len, vaddr_t src_addr)
1329 {
1330 PMAPCOUNT(copies);
1331 }
1332
1333 /*
1334 * Require that all active physical maps contain no
1335 * incorrect entries NOW.
1336 */
1337 void
1338 pmap_update(struct pmap *pmap)
1339 {
1340 PMAPCOUNT(updates);
1341 TLBSYNC();
1342 }
1343
1344 /*
1345 * Garbage collects the physical map system for
1346 * pages which are no longer used.
1347 * Success need not be guaranteed -- that is, there
1348 * may well be pages which are not referenced, but
1349 * others may be collected.
1350 * Called by the pageout daemon when pages are scarce.
1351 */
1352 void
1353 pmap_collect(pmap_t pm)
1354 {
1355 PMAPCOUNT(collects);
1356 }
1357
1358 static inline int
1359 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1360 {
1361 int pteidx;
1362 /*
1363 * We can find the actual pte entry without searching by
1364 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1365 * and by noticing the HID bit.
1366 */
1367 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1368 if (pvo->pvo_pte.pte_hi & PTE_HID)
1369 pteidx ^= pmap_pteg_mask * 8;
1370 return pteidx;
1371 }
1372
1373 volatile struct pte *
1374 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1375 {
1376 volatile struct pte *pt;
1377
1378 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1379 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1380 return NULL;
1381 #endif
1382
1383 /*
1384 * If we haven't been supplied the ptegidx, calculate it.
1385 */
1386 if (pteidx == -1) {
1387 int ptegidx;
1388 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1389 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1390 }
1391
1392 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1393
1394 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1395 return pt;
1396 #else
1397 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1398 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1399 "pvo but no valid pte index", pvo);
1400 }
1401 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1402 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1403 "pvo but no valid pte", pvo);
1404 }
1405
1406 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1407 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1408 #if defined(DEBUG) || defined(PMAPCHECK)
1409 pmap_pte_print(pt);
1410 #endif
1411 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1412 "pmap_pteg_table %p but invalid in pvo",
1413 pvo, pt);
1414 }
1415 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1416 #if defined(DEBUG) || defined(PMAPCHECK)
1417 pmap_pte_print(pt);
1418 #endif
1419 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1420 "not match pte %p in pmap_pteg_table",
1421 pvo, pt);
1422 }
1423 return pt;
1424 }
1425
1426 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1427 #if defined(DEBUG) || defined(PMAPCHECK)
1428 pmap_pte_print(pt);
1429 #endif
1430 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1431 "pmap_pteg_table but valid in pvo", pvo, pt);
1432 }
1433 return NULL;
1434 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1435 }
1436
1437 struct pvo_entry *
1438 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1439 {
1440 struct pvo_entry *pvo;
1441 int ptegidx;
1442
1443 va &= ~ADDR_POFF;
1444 ptegidx = va_to_pteg(pm, va);
1445
1446 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1447 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1448 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1449 panic("pmap_pvo_find_va: invalid pvo %p on "
1450 "list %#x (%p)", pvo, ptegidx,
1451 &pmap_pvo_table[ptegidx]);
1452 #endif
1453 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1454 if (pteidx_p)
1455 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1456 return pvo;
1457 }
1458 }
1459 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1460 panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __FUNCTION__,
1461 (pm == pmap_kernel() ? "kernel" : "user"), va);
1462 return NULL;
1463 }
1464
1465 #if defined(DEBUG) || defined(PMAPCHECK)
1466 void
1467 pmap_pvo_check(const struct pvo_entry *pvo)
1468 {
1469 struct pvo_head *pvo_head;
1470 struct pvo_entry *pvo0;
1471 volatile struct pte *pt;
1472 int failed = 0;
1473
1474 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1475 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1476
1477 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1478 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1479 pvo, pvo->pvo_pmap);
1480 failed = 1;
1481 }
1482
1483 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1484 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1485 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1486 pvo, TAILQ_NEXT(pvo, pvo_olink));
1487 failed = 1;
1488 }
1489
1490 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1491 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1492 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1493 pvo, LIST_NEXT(pvo, pvo_vlink));
1494 failed = 1;
1495 }
1496
1497 if (PVO_MANAGED_P(pvo)) {
1498 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1499 } else {
1500 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1501 printf("pmap_pvo_check: pvo %p: non kernel address "
1502 "on kernel unmanaged list\n", pvo);
1503 failed = 1;
1504 }
1505 pvo_head = &pmap_pvo_kunmanaged;
1506 }
1507 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1508 if (pvo0 == pvo)
1509 break;
1510 }
1511 if (pvo0 == NULL) {
1512 printf("pmap_pvo_check: pvo %p: not present "
1513 "on its vlist head %p\n", pvo, pvo_head);
1514 failed = 1;
1515 }
1516 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1517 printf("pmap_pvo_check: pvo %p: not present "
1518 "on its olist head\n", pvo);
1519 failed = 1;
1520 }
1521 pt = pmap_pvo_to_pte(pvo, -1);
1522 if (pt == NULL) {
1523 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1524 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1525 "no PTE\n", pvo);
1526 failed = 1;
1527 }
1528 } else {
1529 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1530 (uintptr_t) pt >=
1531 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1532 printf("pmap_pvo_check: pvo %p: pte %p not in "
1533 "pteg table\n", pvo, pt);
1534 failed = 1;
1535 }
1536 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1537 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1538 "no PTE\n", pvo);
1539 failed = 1;
1540 }
1541 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1542 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1543 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1544 failed = 1;
1545 }
1546 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1547 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1548 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1549 "%#x/%#x\n", pvo,
1550 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1551 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1552 failed = 1;
1553 }
1554 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1555 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1556 " doesn't not match PVO's VA %#lx\n",
1557 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1558 failed = 1;
1559 }
1560 if (failed)
1561 pmap_pte_print(pt);
1562 }
1563 if (failed)
1564 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1565 pvo->pvo_pmap);
1566 }
1567 #endif /* DEBUG || PMAPCHECK */
1568
1569 /*
1570 * Search the PVO table looking for a non-wired entry.
1571 * If we find one, remove it and return it.
1572 */
1573
1574 struct pvo_entry *
1575 pmap_pvo_reclaim(struct pmap *pm)
1576 {
1577 struct pvo_tqhead *pvoh;
1578 struct pvo_entry *pvo;
1579 uint32_t idx, endidx;
1580
1581 endidx = pmap_pvo_reclaim_nextidx;
1582 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1583 idx = (idx + 1) & pmap_pteg_mask) {
1584 pvoh = &pmap_pvo_table[idx];
1585 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1586 if (!PVO_WIRED_P(pvo)) {
1587 pmap_pvo_remove(pvo, -1, NULL);
1588 pmap_pvo_reclaim_nextidx = idx;
1589 PMAPCOUNT(pvos_reclaimed);
1590 return pvo;
1591 }
1592 }
1593 }
1594 return NULL;
1595 }
1596
1597 /*
1598 * This returns whether this is the first mapping of a page.
1599 */
1600 int
1601 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1602 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1603 {
1604 struct pvo_entry *pvo;
1605 struct pvo_tqhead *pvoh;
1606 register_t msr;
1607 int ptegidx;
1608 int i;
1609 int poolflags = PR_NOWAIT;
1610
1611 /*
1612 * Compute the PTE Group index.
1613 */
1614 va &= ~ADDR_POFF;
1615 ptegidx = va_to_pteg(pm, va);
1616
1617 msr = pmap_interrupts_off();
1618
1619 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1620 if (pmap_pvo_remove_depth > 0)
1621 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1622 if (++pmap_pvo_enter_depth > 1)
1623 panic("pmap_pvo_enter: called recursively!");
1624 #endif
1625
1626 /*
1627 * Remove any existing mapping for this page. Reuse the
1628 * pvo entry if there a mapping.
1629 */
1630 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1631 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1632 #ifdef DEBUG
1633 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1634 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1635 ~(PTE_REF|PTE_CHG)) == 0 &&
1636 va < VM_MIN_KERNEL_ADDRESS) {
1637 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1638 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1639 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1640 (unsigned int) pvo->pvo_pte.pte_hi,
1641 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1642 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1643 #ifdef DDBX
1644 Debugger();
1645 #endif
1646 }
1647 #endif
1648 PMAPCOUNT(mappings_replaced);
1649 pmap_pvo_remove(pvo, -1, NULL);
1650 break;
1651 }
1652 }
1653
1654 /*
1655 * If we aren't overwriting an mapping, try to allocate
1656 */
1657 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1658 --pmap_pvo_enter_depth;
1659 #endif
1660 pmap_interrupts_restore(msr);
1661 if (pvo) {
1662 pmap_pvo_free(pvo);
1663 }
1664 pvo = pool_get(pl, poolflags);
1665
1666 #ifdef DEBUG
1667 /*
1668 * Exercise pmap_pvo_reclaim() a little.
1669 */
1670 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1671 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1672 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1673 pool_put(pl, pvo);
1674 pvo = NULL;
1675 }
1676 #endif
1677
1678 msr = pmap_interrupts_off();
1679 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1680 ++pmap_pvo_enter_depth;
1681 #endif
1682 if (pvo == NULL) {
1683 pvo = pmap_pvo_reclaim(pm);
1684 if (pvo == NULL) {
1685 if ((flags & PMAP_CANFAIL) == 0)
1686 panic("pmap_pvo_enter: failed");
1687 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1688 pmap_pvo_enter_depth--;
1689 #endif
1690 PMAPCOUNT(pvos_failed);
1691 pmap_interrupts_restore(msr);
1692 return ENOMEM;
1693 }
1694 }
1695
1696 pvo->pvo_vaddr = va;
1697 pvo->pvo_pmap = pm;
1698 pvo->pvo_vaddr &= ~ADDR_POFF;
1699 if (flags & VM_PROT_EXECUTE) {
1700 PMAPCOUNT(exec_mappings);
1701 pvo_set_exec(pvo);
1702 }
1703 if (flags & PMAP_WIRED)
1704 pvo->pvo_vaddr |= PVO_WIRED;
1705 if (pvo_head != &pmap_pvo_kunmanaged) {
1706 pvo->pvo_vaddr |= PVO_MANAGED;
1707 PMAPCOUNT(mappings);
1708 } else {
1709 PMAPCOUNT(kernel_mappings);
1710 }
1711 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1712
1713 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1714 if (PVO_WIRED_P(pvo))
1715 pvo->pvo_pmap->pm_stats.wired_count++;
1716 pvo->pvo_pmap->pm_stats.resident_count++;
1717 #if defined(DEBUG)
1718 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1719 DPRINTFN(PVOENTER,
1720 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1721 pvo, pm, va, pa));
1722 #endif
1723
1724 /*
1725 * We hope this succeeds but it isn't required.
1726 */
1727 pvoh = &pmap_pvo_table[ptegidx];
1728 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1729 if (i >= 0) {
1730 PVO_PTEGIDX_SET(pvo, i);
1731 PVO_WHERE(pvo, ENTER_INSERT);
1732 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1733 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1734 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1735
1736 } else {
1737 /*
1738 * Since we didn't have room for this entry (which makes it
1739 * and evicted entry), place it at the head of the list.
1740 */
1741 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1742 PMAPCOUNT(ptes_evicted);
1743 pm->pm_evictions++;
1744 /*
1745 * If this is a kernel page, make sure it's active.
1746 */
1747 if (pm == pmap_kernel()) {
1748 i = pmap_pte_spill(pm, va, false);
1749 KASSERT(i);
1750 }
1751 }
1752 PMAP_PVO_CHECK(pvo); /* sanity check */
1753 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1754 pmap_pvo_enter_depth--;
1755 #endif
1756 pmap_interrupts_restore(msr);
1757 return 0;
1758 }
1759
1760 void
1761 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1762 {
1763 volatile struct pte *pt;
1764 int ptegidx;
1765
1766 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1767 if (++pmap_pvo_remove_depth > 1)
1768 panic("pmap_pvo_remove: called recursively!");
1769 #endif
1770
1771 /*
1772 * If we haven't been supplied the ptegidx, calculate it.
1773 */
1774 if (pteidx == -1) {
1775 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1776 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1777 } else {
1778 ptegidx = pteidx >> 3;
1779 if (pvo->pvo_pte.pte_hi & PTE_HID)
1780 ptegidx ^= pmap_pteg_mask;
1781 }
1782 PMAP_PVO_CHECK(pvo); /* sanity check */
1783
1784 /*
1785 * If there is an active pte entry, we need to deactivate it
1786 * (and save the ref & chg bits).
1787 */
1788 pt = pmap_pvo_to_pte(pvo, pteidx);
1789 if (pt != NULL) {
1790 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1791 PVO_WHERE(pvo, REMOVE);
1792 PVO_PTEGIDX_CLR(pvo);
1793 PMAPCOUNT(ptes_removed);
1794 } else {
1795 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1796 pvo->pvo_pmap->pm_evictions--;
1797 }
1798
1799 /*
1800 * Account for executable mappings.
1801 */
1802 if (PVO_EXECUTABLE_P(pvo))
1803 pvo_clear_exec(pvo);
1804
1805 /*
1806 * Update our statistics.
1807 */
1808 pvo->pvo_pmap->pm_stats.resident_count--;
1809 if (PVO_WIRED_P(pvo))
1810 pvo->pvo_pmap->pm_stats.wired_count--;
1811
1812 /*
1813 * Save the REF/CHG bits into their cache if the page is managed.
1814 */
1815 if (PVO_MANAGED_P(pvo)) {
1816 register_t ptelo = pvo->pvo_pte.pte_lo;
1817 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1818
1819 if (pg != NULL) {
1820 /*
1821 * If this page was changed and it is mapped exec,
1822 * invalidate it.
1823 */
1824 if ((ptelo & PTE_CHG) &&
1825 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1826 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1827 if (LIST_EMPTY(pvoh)) {
1828 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1829 "%#lx: clear-exec]\n",
1830 VM_PAGE_TO_PHYS(pg)));
1831 pmap_attr_clear(pg, PTE_EXEC);
1832 PMAPCOUNT(exec_uncached_pvo_remove);
1833 } else {
1834 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1835 "%#lx: syncicache]\n",
1836 VM_PAGE_TO_PHYS(pg)));
1837 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1838 PAGE_SIZE);
1839 PMAPCOUNT(exec_synced_pvo_remove);
1840 }
1841 }
1842
1843 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1844 }
1845 PMAPCOUNT(unmappings);
1846 } else {
1847 PMAPCOUNT(kernel_unmappings);
1848 }
1849
1850 /*
1851 * Remove the PVO from its lists and return it to the pool.
1852 */
1853 LIST_REMOVE(pvo, pvo_vlink);
1854 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1855 if (pvol) {
1856 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1857 }
1858 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1859 pmap_pvo_remove_depth--;
1860 #endif
1861 }
1862
1863 void
1864 pmap_pvo_free(struct pvo_entry *pvo)
1865 {
1866
1867 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1868 }
1869
1870 void
1871 pmap_pvo_free_list(struct pvo_head *pvol)
1872 {
1873 struct pvo_entry *pvo, *npvo;
1874
1875 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1876 npvo = LIST_NEXT(pvo, pvo_vlink);
1877 LIST_REMOVE(pvo, pvo_vlink);
1878 pmap_pvo_free(pvo);
1879 }
1880 }
1881
1882 /*
1883 * Mark a mapping as executable.
1884 * If this is the first executable mapping in the segment,
1885 * clear the noexec flag.
1886 */
1887 STATIC void
1888 pvo_set_exec(struct pvo_entry *pvo)
1889 {
1890 struct pmap *pm = pvo->pvo_pmap;
1891
1892 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1893 return;
1894 }
1895 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1896 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1897 {
1898 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1899 if (pm->pm_exec[sr]++ == 0) {
1900 pm->pm_sr[sr] &= ~SR_NOEXEC;
1901 }
1902 }
1903 #endif
1904 }
1905
1906 /*
1907 * Mark a mapping as non-executable.
1908 * If this was the last executable mapping in the segment,
1909 * set the noexec flag.
1910 */
1911 STATIC void
1912 pvo_clear_exec(struct pvo_entry *pvo)
1913 {
1914 struct pmap *pm = pvo->pvo_pmap;
1915
1916 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1917 return;
1918 }
1919 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1920 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1921 {
1922 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1923 if (--pm->pm_exec[sr] == 0) {
1924 pm->pm_sr[sr] |= SR_NOEXEC;
1925 }
1926 }
1927 #endif
1928 }
1929
1930 /*
1931 * Insert physical page at pa into the given pmap at virtual address va.
1932 */
1933 int
1934 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1935 {
1936 struct mem_region *mp;
1937 struct pvo_head *pvo_head;
1938 struct vm_page *pg;
1939 struct pool *pl;
1940 register_t pte_lo;
1941 int error;
1942 u_int pvo_flags;
1943 u_int was_exec = 0;
1944
1945 if (__predict_false(!pmap_initialized)) {
1946 pvo_head = &pmap_pvo_kunmanaged;
1947 pl = &pmap_upvo_pool;
1948 pvo_flags = 0;
1949 pg = NULL;
1950 was_exec = PTE_EXEC;
1951 } else {
1952 pvo_head = pa_to_pvoh(pa, &pg);
1953 pl = &pmap_mpvo_pool;
1954 pvo_flags = PVO_MANAGED;
1955 }
1956
1957 DPRINTFN(ENTER,
1958 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1959 pm, va, pa, prot, flags));
1960
1961 /*
1962 * If this is a managed page, and it's the first reference to the
1963 * page clear the execness of the page. Otherwise fetch the execness.
1964 */
1965 if (pg != NULL)
1966 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1967
1968 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1969
1970 /*
1971 * Assume the page is cache inhibited and access is guarded unless
1972 * it's in our available memory array. If it is in the memory array,
1973 * asssume it's in memory coherent memory.
1974 */
1975 pte_lo = PTE_IG;
1976 if ((flags & PMAP_NC) == 0) {
1977 for (mp = mem; mp->size; mp++) {
1978 if (pa >= mp->start && pa < mp->start + mp->size) {
1979 pte_lo = PTE_M;
1980 break;
1981 }
1982 }
1983 }
1984
1985 if (prot & VM_PROT_WRITE)
1986 pte_lo |= PTE_BW;
1987 else
1988 pte_lo |= PTE_BR;
1989
1990 /*
1991 * If this was in response to a fault, "pre-fault" the PTE's
1992 * changed/referenced bit appropriately.
1993 */
1994 if (flags & VM_PROT_WRITE)
1995 pte_lo |= PTE_CHG;
1996 if (flags & VM_PROT_ALL)
1997 pte_lo |= PTE_REF;
1998
1999 /*
2000 * We need to know if this page can be executable
2001 */
2002 flags |= (prot & VM_PROT_EXECUTE);
2003
2004 /*
2005 * Record mapping for later back-translation and pte spilling.
2006 * This will overwrite any existing mapping.
2007 */
2008 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
2009
2010 /*
2011 * Flush the real page from the instruction cache if this page is
2012 * mapped executable and cacheable and has not been flushed since
2013 * the last time it was modified.
2014 */
2015 if (error == 0 &&
2016 (flags & VM_PROT_EXECUTE) &&
2017 (pte_lo & PTE_I) == 0 &&
2018 was_exec == 0) {
2019 DPRINTFN(ENTER, (" syncicache"));
2020 PMAPCOUNT(exec_synced);
2021 pmap_syncicache(pa, PAGE_SIZE);
2022 if (pg != NULL) {
2023 pmap_attr_save(pg, PTE_EXEC);
2024 PMAPCOUNT(exec_cached);
2025 #if defined(DEBUG) || defined(PMAPDEBUG)
2026 if (pmapdebug & PMAPDEBUG_ENTER)
2027 printf(" marked-as-exec");
2028 else if (pmapdebug & PMAPDEBUG_EXEC)
2029 printf("[pmap_enter: %#lx: marked-as-exec]\n",
2030 VM_PAGE_TO_PHYS(pg));
2031
2032 #endif
2033 }
2034 }
2035
2036 DPRINTFN(ENTER, (": error=%d\n", error));
2037
2038 return error;
2039 }
2040
2041 void
2042 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2043 {
2044 struct mem_region *mp;
2045 register_t pte_lo;
2046 int error;
2047
2048 #if defined (PPC_OEA64_BRIDGE)
2049 if (va < VM_MIN_KERNEL_ADDRESS)
2050 panic("pmap_kenter_pa: attempt to enter "
2051 "non-kernel address %#lx!", va);
2052 #endif
2053
2054 DPRINTFN(KENTER,
2055 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
2056
2057 /*
2058 * Assume the page is cache inhibited and access is guarded unless
2059 * it's in our available memory array. If it is in the memory array,
2060 * asssume it's in memory coherent memory.
2061 */
2062 pte_lo = PTE_IG;
2063 if ((prot & PMAP_NC) == 0) {
2064 for (mp = mem; mp->size; mp++) {
2065 if (pa >= mp->start && pa < mp->start + mp->size) {
2066 pte_lo = PTE_M;
2067 break;
2068 }
2069 }
2070 }
2071
2072 if (prot & VM_PROT_WRITE)
2073 pte_lo |= PTE_BW;
2074 else
2075 pte_lo |= PTE_BR;
2076
2077 /*
2078 * We don't care about REF/CHG on PVOs on the unmanaged list.
2079 */
2080 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2081 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2082
2083 if (error != 0)
2084 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
2085 va, pa, error);
2086 }
2087
2088 void
2089 pmap_kremove(vaddr_t va, vsize_t len)
2090 {
2091 if (va < VM_MIN_KERNEL_ADDRESS)
2092 panic("pmap_kremove: attempt to remove "
2093 "non-kernel address %#lx!", va);
2094
2095 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
2096 pmap_remove(pmap_kernel(), va, va + len);
2097 }
2098
2099 /*
2100 * Remove the given range of mapping entries.
2101 */
2102 void
2103 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2104 {
2105 struct pvo_head pvol;
2106 struct pvo_entry *pvo;
2107 register_t msr;
2108 int pteidx;
2109
2110 LIST_INIT(&pvol);
2111 msr = pmap_interrupts_off();
2112 for (; va < endva; va += PAGE_SIZE) {
2113 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2114 if (pvo != NULL) {
2115 pmap_pvo_remove(pvo, pteidx, &pvol);
2116 }
2117 }
2118 pmap_interrupts_restore(msr);
2119 pmap_pvo_free_list(&pvol);
2120 }
2121
2122 /*
2123 * Get the physical page address for the given pmap/virtual address.
2124 */
2125 bool
2126 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2127 {
2128 struct pvo_entry *pvo;
2129 register_t msr;
2130
2131
2132 /*
2133 * If this is a kernel pmap lookup, also check the battable
2134 * and if we get a hit, translate the VA to a PA using the
2135 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2136 * that will wrap back to 0.
2137 */
2138 if (pm == pmap_kernel() &&
2139 (va < VM_MIN_KERNEL_ADDRESS ||
2140 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2141 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2142 #if defined (PPC_OEA)
2143 if ((MFPVR() >> 16) != MPC601) {
2144 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2145 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2146 register_t batl =
2147 battable[va >> ADDR_SR_SHFT].batl;
2148 register_t mask =
2149 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2150 if (pap)
2151 *pap = (batl & mask) | (va & ~mask);
2152 return true;
2153 }
2154 } else {
2155 register_t batu = battable[va >> 23].batu;
2156 register_t batl = battable[va >> 23].batl;
2157 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2158 if (BAT601_VALID_P(batl) &&
2159 BAT601_VA_MATCH_P(batu, batl, va)) {
2160 register_t mask =
2161 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2162 if (pap)
2163 *pap = (batl & mask) | (va & ~mask);
2164 return true;
2165 } else if (SR601_VALID_P(sr) &&
2166 SR601_PA_MATCH_P(sr, va)) {
2167 if (pap)
2168 *pap = va;
2169 return true;
2170 }
2171 }
2172 return false;
2173 #elif defined (PPC_OEA64_BRIDGE)
2174 panic("%s: pm: %s, va: 0x%08lx\n", __FUNCTION__,
2175 (pm == pmap_kernel() ? "kernel" : "user"), va);
2176 #elif defined (PPC_OEA64)
2177 #error PPC_OEA64 not supported
2178 #endif /* PPC_OEA */
2179 }
2180
2181 msr = pmap_interrupts_off();
2182 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2183 if (pvo != NULL) {
2184 PMAP_PVO_CHECK(pvo); /* sanity check */
2185 if (pap)
2186 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2187 | (va & ADDR_POFF);
2188 }
2189 pmap_interrupts_restore(msr);
2190 return pvo != NULL;
2191 }
2192
2193 /*
2194 * Lower the protection on the specified range of this pmap.
2195 */
2196 void
2197 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2198 {
2199 struct pvo_entry *pvo;
2200 volatile struct pte *pt;
2201 register_t msr;
2202 int pteidx;
2203
2204 /*
2205 * Since this routine only downgrades protection, we should
2206 * always be called with at least one bit not set.
2207 */
2208 KASSERT(prot != VM_PROT_ALL);
2209
2210 /*
2211 * If there is no protection, this is equivalent to
2212 * remove the pmap from the pmap.
2213 */
2214 if ((prot & VM_PROT_READ) == 0) {
2215 pmap_remove(pm, va, endva);
2216 return;
2217 }
2218
2219 msr = pmap_interrupts_off();
2220 for (; va < endva; va += PAGE_SIZE) {
2221 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2222 if (pvo == NULL)
2223 continue;
2224 PMAP_PVO_CHECK(pvo); /* sanity check */
2225
2226 /*
2227 * Revoke executable if asked to do so.
2228 */
2229 if ((prot & VM_PROT_EXECUTE) == 0)
2230 pvo_clear_exec(pvo);
2231
2232 #if 0
2233 /*
2234 * If the page is already read-only, no change
2235 * needs to be made.
2236 */
2237 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2238 continue;
2239 #endif
2240 /*
2241 * Grab the PTE pointer before we diddle with
2242 * the cached PTE copy.
2243 */
2244 pt = pmap_pvo_to_pte(pvo, pteidx);
2245 /*
2246 * Change the protection of the page.
2247 */
2248 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2249 pvo->pvo_pte.pte_lo |= PTE_BR;
2250
2251 /*
2252 * If the PVO is in the page table, update
2253 * that pte at well.
2254 */
2255 if (pt != NULL) {
2256 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2257 PVO_WHERE(pvo, PMAP_PROTECT);
2258 PMAPCOUNT(ptes_changed);
2259 }
2260
2261 PMAP_PVO_CHECK(pvo); /* sanity check */
2262 }
2263 pmap_interrupts_restore(msr);
2264 }
2265
2266 void
2267 pmap_unwire(pmap_t pm, vaddr_t va)
2268 {
2269 struct pvo_entry *pvo;
2270 register_t msr;
2271
2272 msr = pmap_interrupts_off();
2273 pvo = pmap_pvo_find_va(pm, va, NULL);
2274 if (pvo != NULL) {
2275 if (PVO_WIRED_P(pvo)) {
2276 pvo->pvo_vaddr &= ~PVO_WIRED;
2277 pm->pm_stats.wired_count--;
2278 }
2279 PMAP_PVO_CHECK(pvo); /* sanity check */
2280 }
2281 pmap_interrupts_restore(msr);
2282 }
2283
2284 /*
2285 * Lower the protection on the specified physical page.
2286 */
2287 void
2288 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2289 {
2290 struct pvo_head *pvo_head, pvol;
2291 struct pvo_entry *pvo, *next_pvo;
2292 volatile struct pte *pt;
2293 register_t msr;
2294
2295 KASSERT(prot != VM_PROT_ALL);
2296 LIST_INIT(&pvol);
2297 msr = pmap_interrupts_off();
2298
2299 /*
2300 * When UVM reuses a page, it does a pmap_page_protect with
2301 * VM_PROT_NONE. At that point, we can clear the exec flag
2302 * since we know the page will have different contents.
2303 */
2304 if ((prot & VM_PROT_READ) == 0) {
2305 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2306 VM_PAGE_TO_PHYS(pg)));
2307 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2308 PMAPCOUNT(exec_uncached_page_protect);
2309 pmap_attr_clear(pg, PTE_EXEC);
2310 }
2311 }
2312
2313 pvo_head = vm_page_to_pvoh(pg);
2314 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2315 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2316 PMAP_PVO_CHECK(pvo); /* sanity check */
2317
2318 /*
2319 * Downgrading to no mapping at all, we just remove the entry.
2320 */
2321 if ((prot & VM_PROT_READ) == 0) {
2322 pmap_pvo_remove(pvo, -1, &pvol);
2323 continue;
2324 }
2325
2326 /*
2327 * If EXEC permission is being revoked, just clear the
2328 * flag in the PVO.
2329 */
2330 if ((prot & VM_PROT_EXECUTE) == 0)
2331 pvo_clear_exec(pvo);
2332
2333 /*
2334 * If this entry is already RO, don't diddle with the
2335 * page table.
2336 */
2337 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2338 PMAP_PVO_CHECK(pvo);
2339 continue;
2340 }
2341
2342 /*
2343 * Grab the PTE before the we diddle the bits so
2344 * pvo_to_pte can verify the pte contents are as
2345 * expected.
2346 */
2347 pt = pmap_pvo_to_pte(pvo, -1);
2348 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2349 pvo->pvo_pte.pte_lo |= PTE_BR;
2350 if (pt != NULL) {
2351 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2352 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2353 PMAPCOUNT(ptes_changed);
2354 }
2355 PMAP_PVO_CHECK(pvo); /* sanity check */
2356 }
2357 pmap_interrupts_restore(msr);
2358 pmap_pvo_free_list(&pvol);
2359 }
2360
2361 /*
2362 * Activate the address space for the specified process. If the process
2363 * is the current process, load the new MMU context.
2364 */
2365 void
2366 pmap_activate(struct lwp *l)
2367 {
2368 struct pcb *pcb = &l->l_addr->u_pcb;
2369 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2370
2371 DPRINTFN(ACTIVATE,
2372 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2373
2374 /*
2375 * XXX Normally performed in cpu_fork().
2376 */
2377 pcb->pcb_pm = pmap;
2378
2379 /*
2380 * In theory, the SR registers need only be valid on return
2381 * to user space wait to do them there.
2382 */
2383 if (l == curlwp) {
2384 /* Store pointer to new current pmap. */
2385 curpm = pmap;
2386 }
2387 }
2388
2389 /*
2390 * Deactivate the specified process's address space.
2391 */
2392 void
2393 pmap_deactivate(struct lwp *l)
2394 {
2395 }
2396
2397 bool
2398 pmap_query_bit(struct vm_page *pg, int ptebit)
2399 {
2400 struct pvo_entry *pvo;
2401 volatile struct pte *pt;
2402 register_t msr;
2403
2404 if (pmap_attr_fetch(pg) & ptebit)
2405 return true;
2406
2407 msr = pmap_interrupts_off();
2408 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2409 PMAP_PVO_CHECK(pvo); /* sanity check */
2410 /*
2411 * See if we saved the bit off. If so cache, it and return
2412 * success.
2413 */
2414 if (pvo->pvo_pte.pte_lo & ptebit) {
2415 pmap_attr_save(pg, ptebit);
2416 PMAP_PVO_CHECK(pvo); /* sanity check */
2417 pmap_interrupts_restore(msr);
2418 return true;
2419 }
2420 }
2421 /*
2422 * No luck, now go thru the hard part of looking at the ptes
2423 * themselves. Sync so any pending REF/CHG bits are flushed
2424 * to the PTEs.
2425 */
2426 SYNC();
2427 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2428 PMAP_PVO_CHECK(pvo); /* sanity check */
2429 /*
2430 * See if this pvo have a valid PTE. If so, fetch the
2431 * REF/CHG bits from the valid PTE. If the appropriate
2432 * ptebit is set, cache, it and return success.
2433 */
2434 pt = pmap_pvo_to_pte(pvo, -1);
2435 if (pt != NULL) {
2436 pmap_pte_synch(pt, &pvo->pvo_pte);
2437 if (pvo->pvo_pte.pte_lo & ptebit) {
2438 pmap_attr_save(pg, ptebit);
2439 PMAP_PVO_CHECK(pvo); /* sanity check */
2440 pmap_interrupts_restore(msr);
2441 return true;
2442 }
2443 }
2444 }
2445 pmap_interrupts_restore(msr);
2446 return false;
2447 }
2448
2449 bool
2450 pmap_clear_bit(struct vm_page *pg, int ptebit)
2451 {
2452 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2453 struct pvo_entry *pvo;
2454 volatile struct pte *pt;
2455 register_t msr;
2456 int rv = 0;
2457
2458 msr = pmap_interrupts_off();
2459
2460 /*
2461 * Fetch the cache value
2462 */
2463 rv |= pmap_attr_fetch(pg);
2464
2465 /*
2466 * Clear the cached value.
2467 */
2468 pmap_attr_clear(pg, ptebit);
2469
2470 /*
2471 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2472 * can reset the right ones). Note that since the pvo entries and
2473 * list heads are accessed via BAT0 and are never placed in the
2474 * page table, we don't have to worry about further accesses setting
2475 * the REF/CHG bits.
2476 */
2477 SYNC();
2478
2479 /*
2480 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2481 * valid PTE. If so, clear the ptebit from the valid PTE.
2482 */
2483 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2484 PMAP_PVO_CHECK(pvo); /* sanity check */
2485 pt = pmap_pvo_to_pte(pvo, -1);
2486 if (pt != NULL) {
2487 /*
2488 * Only sync the PTE if the bit we are looking
2489 * for is not already set.
2490 */
2491 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2492 pmap_pte_synch(pt, &pvo->pvo_pte);
2493 /*
2494 * If the bit we are looking for was already set,
2495 * clear that bit in the pte.
2496 */
2497 if (pvo->pvo_pte.pte_lo & ptebit)
2498 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2499 }
2500 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2501 pvo->pvo_pte.pte_lo &= ~ptebit;
2502 PMAP_PVO_CHECK(pvo); /* sanity check */
2503 }
2504 pmap_interrupts_restore(msr);
2505
2506 /*
2507 * If we are clearing the modify bit and this page was marked EXEC
2508 * and the user of the page thinks the page was modified, then we
2509 * need to clean it from the icache if it's mapped or clear the EXEC
2510 * bit if it's not mapped. The page itself might not have the CHG
2511 * bit set if the modification was done via DMA to the page.
2512 */
2513 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2514 if (LIST_EMPTY(pvoh)) {
2515 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2516 VM_PAGE_TO_PHYS(pg)));
2517 pmap_attr_clear(pg, PTE_EXEC);
2518 PMAPCOUNT(exec_uncached_clear_modify);
2519 } else {
2520 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2521 VM_PAGE_TO_PHYS(pg)));
2522 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2523 PMAPCOUNT(exec_synced_clear_modify);
2524 }
2525 }
2526 return (rv & ptebit) != 0;
2527 }
2528
2529 void
2530 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2531 {
2532 struct pvo_entry *pvo;
2533 size_t offset = va & ADDR_POFF;
2534 int s;
2535
2536 s = splvm();
2537 while (len > 0) {
2538 size_t seglen = PAGE_SIZE - offset;
2539 if (seglen > len)
2540 seglen = len;
2541 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2542 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2543 pmap_syncicache(
2544 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2545 PMAP_PVO_CHECK(pvo);
2546 }
2547 va += seglen;
2548 len -= seglen;
2549 offset = 0;
2550 }
2551 splx(s);
2552 }
2553
2554 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2555 void
2556 pmap_pte_print(volatile struct pte *pt)
2557 {
2558 printf("PTE %p: ", pt);
2559
2560 #if defined(PPC_OEA)
2561 /* High word: */
2562 printf("0x%08lx: [", pt->pte_hi);
2563 #elif defined (PPC_OEA64_BRIDGE)
2564 printf("0x%016llx: [", pt->pte_hi);
2565 #else /* PPC_OEA64 */
2566 printf("0x%016lx: [", pt->pte_hi);
2567 #endif /* PPC_OEA */
2568
2569 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2570 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2571
2572 #if defined (PPC_OEA)
2573 printf("0x%06lx 0x%02lx",
2574 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2575 pt->pte_hi & PTE_API);
2576 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2577 #elif defined (PPC_OEA64)
2578 printf("0x%06lx 0x%02lx",
2579 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2580 pt->pte_hi & PTE_API);
2581 printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
2582 #else
2583 /* PPC_OEA64_BRIDGE */
2584 printf("0x%06llx 0x%02llx",
2585 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2586 pt->pte_hi & PTE_API);
2587 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2588 #endif /* PPC_OEA */
2589
2590 /* Low word: */
2591 #if defined (PPC_OEA)
2592 printf(" 0x%08lx: [", pt->pte_lo);
2593 printf("0x%05lx... ", pt->pte_lo >> 12);
2594 #elif defined (PPC_OEA64)
2595 printf(" 0x%016lx: [", pt->pte_lo);
2596 printf("0x%012lx... ", pt->pte_lo >> 12);
2597 #else /* PPC_OEA64_BRIDGE */
2598 printf(" 0x%016llx: [", pt->pte_lo);
2599 printf("0x%012llx... ", pt->pte_lo >> 12);
2600 #endif
2601 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2602 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2603 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2604 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2605 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2606 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2607 switch (pt->pte_lo & PTE_PP) {
2608 case PTE_BR: printf("br]\n"); break;
2609 case PTE_BW: printf("bw]\n"); break;
2610 case PTE_SO: printf("so]\n"); break;
2611 case PTE_SW: printf("sw]\n"); break;
2612 }
2613 }
2614 #endif
2615
2616 #if defined(DDB)
2617 void
2618 pmap_pteg_check(void)
2619 {
2620 volatile struct pte *pt;
2621 int i;
2622 int ptegidx;
2623 u_int p_valid = 0;
2624 u_int s_valid = 0;
2625 u_int invalid = 0;
2626
2627 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2628 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2629 if (pt->pte_hi & PTE_VALID) {
2630 if (pt->pte_hi & PTE_HID)
2631 s_valid++;
2632 else
2633 {
2634 p_valid++;
2635 }
2636 } else
2637 invalid++;
2638 }
2639 }
2640 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2641 p_valid, p_valid, s_valid, s_valid,
2642 invalid, invalid);
2643 }
2644
2645 void
2646 pmap_print_mmuregs(void)
2647 {
2648 int i;
2649 u_int cpuvers;
2650 #ifndef PPC_OEA64
2651 vaddr_t addr;
2652 register_t soft_sr[16];
2653 #endif
2654 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2655 struct bat soft_ibat[4];
2656 struct bat soft_dbat[4];
2657 #endif
2658 register_t sdr1;
2659
2660 cpuvers = MFPVR() >> 16;
2661 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2662 #ifndef PPC_OEA64
2663 addr = 0;
2664 for (i = 0; i < 16; i++) {
2665 soft_sr[i] = MFSRIN(addr);
2666 addr += (1 << ADDR_SR_SHFT);
2667 }
2668 #endif
2669
2670 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2671 /* read iBAT (601: uBAT) registers */
2672 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2673 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2674 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2675 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2676 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2677 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2678 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2679 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2680
2681
2682 if (cpuvers != MPC601) {
2683 /* read dBAT registers */
2684 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2685 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2686 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2687 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2688 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2689 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2690 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2691 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2692 }
2693 #endif
2694
2695 printf("SDR1:\t0x%lx\n", (long) sdr1);
2696 #ifndef PPC_OEA64
2697 printf("SR[]:\t");
2698 for (i = 0; i < 4; i++)
2699 printf("0x%08lx, ", (long) soft_sr[i]);
2700 printf("\n\t");
2701 for ( ; i < 8; i++)
2702 printf("0x%08lx, ", (long) soft_sr[i]);
2703 printf("\n\t");
2704 for ( ; i < 12; i++)
2705 printf("0x%08lx, ", (long) soft_sr[i]);
2706 printf("\n\t");
2707 for ( ; i < 16; i++)
2708 printf("0x%08lx, ", (long) soft_sr[i]);
2709 printf("\n");
2710 #endif
2711
2712 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2713 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2714 for (i = 0; i < 4; i++) {
2715 printf("0x%08lx 0x%08lx, ",
2716 soft_ibat[i].batu, soft_ibat[i].batl);
2717 if (i == 1)
2718 printf("\n\t");
2719 }
2720 if (cpuvers != MPC601) {
2721 printf("\ndBAT[]:\t");
2722 for (i = 0; i < 4; i++) {
2723 printf("0x%08lx 0x%08lx, ",
2724 soft_dbat[i].batu, soft_dbat[i].batl);
2725 if (i == 1)
2726 printf("\n\t");
2727 }
2728 }
2729 printf("\n");
2730 #endif /* PPC_OEA... */
2731 }
2732
2733 void
2734 pmap_print_pte(pmap_t pm, vaddr_t va)
2735 {
2736 struct pvo_entry *pvo;
2737 volatile struct pte *pt;
2738 int pteidx;
2739
2740 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2741 if (pvo != NULL) {
2742 pt = pmap_pvo_to_pte(pvo, pteidx);
2743 if (pt != NULL) {
2744 #if defined (PPC_OEA) || defined (PPC_OEA64)
2745 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2746 va, pt,
2747 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2748 pt->pte_hi, pt->pte_lo);
2749 #else /* PPC_OEA64_BRIDGE */
2750 printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
2751 va, pt,
2752 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2753 pt->pte_hi, pt->pte_lo);
2754 #endif
2755 } else {
2756 printf("No valid PTE found\n");
2757 }
2758 } else {
2759 printf("Address not in pmap\n");
2760 }
2761 }
2762
2763 void
2764 pmap_pteg_dist(void)
2765 {
2766 struct pvo_entry *pvo;
2767 int ptegidx;
2768 int depth;
2769 int max_depth = 0;
2770 unsigned int depths[64];
2771
2772 memset(depths, 0, sizeof(depths));
2773 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2774 depth = 0;
2775 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2776 depth++;
2777 }
2778 if (depth > max_depth)
2779 max_depth = depth;
2780 if (depth > 63)
2781 depth = 63;
2782 depths[depth]++;
2783 }
2784
2785 for (depth = 0; depth < 64; depth++) {
2786 printf(" [%2d]: %8u", depth, depths[depth]);
2787 if ((depth & 3) == 3)
2788 printf("\n");
2789 if (depth == max_depth)
2790 break;
2791 }
2792 if ((depth & 3) != 3)
2793 printf("\n");
2794 printf("Max depth found was %d\n", max_depth);
2795 }
2796 #endif /* DEBUG */
2797
2798 #if defined(PMAPCHECK) || defined(DEBUG)
2799 void
2800 pmap_pvo_verify(void)
2801 {
2802 int ptegidx;
2803 int s;
2804
2805 s = splvm();
2806 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2807 struct pvo_entry *pvo;
2808 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2809 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2810 panic("pmap_pvo_verify: invalid pvo %p "
2811 "on list %#x", pvo, ptegidx);
2812 pmap_pvo_check(pvo);
2813 }
2814 }
2815 splx(s);
2816 }
2817 #endif /* PMAPCHECK */
2818
2819
2820 void *
2821 pmap_pool_ualloc(struct pool *pp, int flags)
2822 {
2823 struct pvo_page *pvop;
2824
2825 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2826 if (pvop != NULL) {
2827 pmap_upvop_free--;
2828 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2829 return pvop;
2830 }
2831 if (uvm.page_init_done != true) {
2832 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2833 }
2834 return pmap_pool_malloc(pp, flags);
2835 }
2836
2837 void *
2838 pmap_pool_malloc(struct pool *pp, int flags)
2839 {
2840 struct pvo_page *pvop;
2841 struct vm_page *pg;
2842
2843 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2844 if (pvop != NULL) {
2845 pmap_mpvop_free--;
2846 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2847 return pvop;
2848 }
2849 again:
2850 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2851 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2852 if (__predict_false(pg == NULL)) {
2853 if (flags & PR_WAITOK) {
2854 uvm_wait("plpg");
2855 goto again;
2856 } else {
2857 return (0);
2858 }
2859 }
2860 return (void *) VM_PAGE_TO_PHYS(pg);
2861 }
2862
2863 void
2864 pmap_pool_ufree(struct pool *pp, void *va)
2865 {
2866 struct pvo_page *pvop;
2867 #if 0
2868 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2869 pmap_pool_mfree(va, size, tag);
2870 return;
2871 }
2872 #endif
2873 pvop = va;
2874 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2875 pmap_upvop_free++;
2876 if (pmap_upvop_free > pmap_upvop_maxfree)
2877 pmap_upvop_maxfree = pmap_upvop_free;
2878 }
2879
2880 void
2881 pmap_pool_mfree(struct pool *pp, void *va)
2882 {
2883 struct pvo_page *pvop;
2884
2885 pvop = va;
2886 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2887 pmap_mpvop_free++;
2888 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2889 pmap_mpvop_maxfree = pmap_mpvop_free;
2890 #if 0
2891 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2892 #endif
2893 }
2894
2895 /*
2896 * This routine in bootstraping to steal to-be-managed memory (which will
2897 * then be unmanaged). We use it to grab from the first 256MB for our
2898 * pmap needs and above 256MB for other stuff.
2899 */
2900 vaddr_t
2901 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2902 {
2903 vsize_t size;
2904 vaddr_t va;
2905 paddr_t pa = 0;
2906 int npgs, bank;
2907 struct vm_physseg *ps;
2908
2909 if (uvm.page_init_done == true)
2910 panic("pmap_steal_memory: called _after_ bootstrap");
2911
2912 *vstartp = VM_MIN_KERNEL_ADDRESS;
2913 *vendp = VM_MAX_KERNEL_ADDRESS;
2914
2915 size = round_page(vsize);
2916 npgs = atop(size);
2917
2918 /*
2919 * PA 0 will never be among those given to UVM so we can use it
2920 * to indicate we couldn't steal any memory.
2921 */
2922 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2923 if (ps->free_list == VM_FREELIST_FIRST256 &&
2924 ps->avail_end - ps->avail_start >= npgs) {
2925 pa = ptoa(ps->avail_start);
2926 break;
2927 }
2928 }
2929
2930 if (pa == 0)
2931 panic("pmap_steal_memory: no approriate memory to steal!");
2932
2933 ps->avail_start += npgs;
2934 ps->start += npgs;
2935
2936 /*
2937 * If we've used up all the pages in the segment, remove it and
2938 * compact the list.
2939 */
2940 if (ps->avail_start == ps->end) {
2941 /*
2942 * If this was the last one, then a very bad thing has occurred
2943 */
2944 if (--vm_nphysseg == 0)
2945 panic("pmap_steal_memory: out of memory!");
2946
2947 printf("pmap_steal_memory: consumed bank %d\n", bank);
2948 for (; bank < vm_nphysseg; bank++, ps++) {
2949 ps[0] = ps[1];
2950 }
2951 }
2952
2953 va = (vaddr_t) pa;
2954 memset((void *) va, 0, size);
2955 pmap_pages_stolen += npgs;
2956 #ifdef DEBUG
2957 if (pmapdebug && npgs > 1) {
2958 u_int cnt = 0;
2959 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2960 cnt += ps->avail_end - ps->avail_start;
2961 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2962 npgs, pmap_pages_stolen, cnt);
2963 }
2964 #endif
2965
2966 return va;
2967 }
2968
2969 /*
2970 * Find a chuck of memory with right size and alignment.
2971 */
2972 void *
2973 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2974 {
2975 struct mem_region *mp;
2976 paddr_t s, e;
2977 int i, j;
2978
2979 size = round_page(size);
2980
2981 DPRINTFN(BOOT,
2982 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2983 size, alignment, at_end));
2984
2985 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2986 panic("pmap_boot_find_memory: invalid alignment %lx",
2987 alignment);
2988
2989 if (at_end) {
2990 if (alignment != PAGE_SIZE)
2991 panic("pmap_boot_find_memory: invalid ending "
2992 "alignment %lx", alignment);
2993
2994 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2995 s = mp->start + mp->size - size;
2996 if (s >= mp->start && mp->size >= size) {
2997 DPRINTFN(BOOT,(": %lx\n", s));
2998 DPRINTFN(BOOT,
2999 ("pmap_boot_find_memory: b-avail[%d] start "
3000 "0x%lx size 0x%lx\n", mp - avail,
3001 mp->start, mp->size));
3002 mp->size -= size;
3003 DPRINTFN(BOOT,
3004 ("pmap_boot_find_memory: a-avail[%d] start "
3005 "0x%lx size 0x%lx\n", mp - avail,
3006 mp->start, mp->size));
3007 return (void *) s;
3008 }
3009 }
3010 panic("pmap_boot_find_memory: no available memory");
3011 }
3012
3013 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3014 s = (mp->start + alignment - 1) & ~(alignment-1);
3015 e = s + size;
3016
3017 /*
3018 * Is the calculated region entirely within the region?
3019 */
3020 if (s < mp->start || e > mp->start + mp->size)
3021 continue;
3022
3023 DPRINTFN(BOOT,(": %lx\n", s));
3024 if (s == mp->start) {
3025 /*
3026 * If the block starts at the beginning of region,
3027 * adjust the size & start. (the region may now be
3028 * zero in length)
3029 */
3030 DPRINTFN(BOOT,
3031 ("pmap_boot_find_memory: b-avail[%d] start "
3032 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3033 mp->start += size;
3034 mp->size -= size;
3035 DPRINTFN(BOOT,
3036 ("pmap_boot_find_memory: a-avail[%d] start "
3037 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3038 } else if (e == mp->start + mp->size) {
3039 /*
3040 * If the block starts at the beginning of region,
3041 * adjust only the size.
3042 */
3043 DPRINTFN(BOOT,
3044 ("pmap_boot_find_memory: b-avail[%d] start "
3045 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3046 mp->size -= size;
3047 DPRINTFN(BOOT,
3048 ("pmap_boot_find_memory: a-avail[%d] start "
3049 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3050 } else {
3051 /*
3052 * Block is in the middle of the region, so we
3053 * have to split it in two.
3054 */
3055 for (j = avail_cnt; j > i + 1; j--) {
3056 avail[j] = avail[j-1];
3057 }
3058 DPRINTFN(BOOT,
3059 ("pmap_boot_find_memory: b-avail[%d] start "
3060 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3061 mp[1].start = e;
3062 mp[1].size = mp[0].start + mp[0].size - e;
3063 mp[0].size = s - mp[0].start;
3064 avail_cnt++;
3065 for (; i < avail_cnt; i++) {
3066 DPRINTFN(BOOT,
3067 ("pmap_boot_find_memory: a-avail[%d] "
3068 "start 0x%lx size 0x%lx\n", i,
3069 avail[i].start, avail[i].size));
3070 }
3071 }
3072 return (void *) s;
3073 }
3074 panic("pmap_boot_find_memory: not enough memory for "
3075 "%lx/%lx allocation?", size, alignment);
3076 }
3077
3078 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3079 #if defined (PPC_OEA64_BRIDGE)
3080 int
3081 pmap_setup_segment0_map(int use_large_pages, ...)
3082 {
3083 vaddr_t va;
3084
3085 register_t pte_lo = 0x0;
3086 int ptegidx = 0, i = 0;
3087 struct pte pte;
3088 va_list ap;
3089
3090 /* Coherent + Supervisor RW, no user access */
3091 pte_lo = PTE_M;
3092
3093 /* XXXSL
3094 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3095 * these have to take priority.
3096 */
3097 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3098 ptegidx = va_to_pteg(pmap_kernel(), va);
3099 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3100 i = pmap_pte_insert(ptegidx, &pte);
3101 }
3102
3103 va_start(ap, use_large_pages);
3104 while (1) {
3105 paddr_t pa;
3106 size_t size;
3107
3108 va = va_arg(ap, vaddr_t);
3109
3110 if (va == 0)
3111 break;
3112
3113 pa = va_arg(ap, paddr_t);
3114 size = va_arg(ap, size_t);
3115
3116 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3117 #if 0
3118 printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __FUNCTION__, va, pa);
3119 #endif
3120 ptegidx = va_to_pteg(pmap_kernel(), va);
3121 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3122 i = pmap_pte_insert(ptegidx, &pte);
3123 }
3124 }
3125
3126 TLBSYNC();
3127 SYNC();
3128 return (0);
3129 }
3130 #endif /* PPC_OEA64_BRIDGE */
3131
3132 /*
3133 * This is not part of the defined PMAP interface and is specific to the
3134 * PowerPC architecture. This is called during initppc, before the system
3135 * is really initialized.
3136 */
3137 void
3138 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3139 {
3140 struct mem_region *mp, tmp;
3141 paddr_t s, e;
3142 psize_t size;
3143 int i, j;
3144
3145 /*
3146 * Get memory.
3147 */
3148 mem_regions(&mem, &avail);
3149 #if defined(DEBUG)
3150 if (pmapdebug & PMAPDEBUG_BOOT) {
3151 printf("pmap_bootstrap: memory configuration:\n");
3152 for (mp = mem; mp->size; mp++) {
3153 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
3154 mp->start, mp->size);
3155 }
3156 for (mp = avail; mp->size; mp++) {
3157 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
3158 mp->start, mp->size);
3159 }
3160 }
3161 #endif
3162
3163 /*
3164 * Find out how much physical memory we have and in how many chunks.
3165 */
3166 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3167 if (mp->start >= pmap_memlimit)
3168 continue;
3169 if (mp->start + mp->size > pmap_memlimit) {
3170 size = pmap_memlimit - mp->start;
3171 physmem += btoc(size);
3172 } else {
3173 physmem += btoc(mp->size);
3174 }
3175 mem_cnt++;
3176 }
3177
3178 /*
3179 * Count the number of available entries.
3180 */
3181 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3182 avail_cnt++;
3183
3184 /*
3185 * Page align all regions.
3186 */
3187 kernelstart = trunc_page(kernelstart);
3188 kernelend = round_page(kernelend);
3189 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3190 s = round_page(mp->start);
3191 mp->size -= (s - mp->start);
3192 mp->size = trunc_page(mp->size);
3193 mp->start = s;
3194 e = mp->start + mp->size;
3195
3196 DPRINTFN(BOOT,
3197 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
3198 i, mp->start, mp->size));
3199
3200 /*
3201 * Don't allow the end to run beyond our artificial limit
3202 */
3203 if (e > pmap_memlimit)
3204 e = pmap_memlimit;
3205
3206 /*
3207 * Is this region empty or strange? skip it.
3208 */
3209 if (e <= s) {
3210 mp->start = 0;
3211 mp->size = 0;
3212 continue;
3213 }
3214
3215 /*
3216 * Does this overlap the beginning of kernel?
3217 * Does extend past the end of the kernel?
3218 */
3219 else if (s < kernelstart && e > kernelstart) {
3220 if (e > kernelend) {
3221 avail[avail_cnt].start = kernelend;
3222 avail[avail_cnt].size = e - kernelend;
3223 avail_cnt++;
3224 }
3225 mp->size = kernelstart - s;
3226 }
3227 /*
3228 * Check whether this region overlaps the end of the kernel.
3229 */
3230 else if (s < kernelend && e > kernelend) {
3231 mp->start = kernelend;
3232 mp->size = e - kernelend;
3233 }
3234 /*
3235 * Look whether this regions is completely inside the kernel.
3236 * Nuke it if it does.
3237 */
3238 else if (s >= kernelstart && e <= kernelend) {
3239 mp->start = 0;
3240 mp->size = 0;
3241 }
3242 /*
3243 * If the user imposed a memory limit, enforce it.
3244 */
3245 else if (s >= pmap_memlimit) {
3246 mp->start = -PAGE_SIZE; /* let's know why */
3247 mp->size = 0;
3248 }
3249 else {
3250 mp->start = s;
3251 mp->size = e - s;
3252 }
3253 DPRINTFN(BOOT,
3254 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3255 i, mp->start, mp->size));
3256 }
3257
3258 /*
3259 * Move (and uncount) all the null return to the end.
3260 */
3261 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3262 if (mp->size == 0) {
3263 tmp = avail[i];
3264 avail[i] = avail[--avail_cnt];
3265 avail[avail_cnt] = avail[i];
3266 }
3267 }
3268
3269 /*
3270 * (Bubble)sort them into asecnding order.
3271 */
3272 for (i = 0; i < avail_cnt; i++) {
3273 for (j = i + 1; j < avail_cnt; j++) {
3274 if (avail[i].start > avail[j].start) {
3275 tmp = avail[i];
3276 avail[i] = avail[j];
3277 avail[j] = tmp;
3278 }
3279 }
3280 }
3281
3282 /*
3283 * Make sure they don't overlap.
3284 */
3285 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3286 if (mp[0].start + mp[0].size > mp[1].start) {
3287 mp[0].size = mp[1].start - mp[0].start;
3288 }
3289 DPRINTFN(BOOT,
3290 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3291 i, mp->start, mp->size));
3292 }
3293 DPRINTFN(BOOT,
3294 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3295 i, mp->start, mp->size));
3296
3297 #ifdef PTEGCOUNT
3298 pmap_pteg_cnt = PTEGCOUNT;
3299 #else /* PTEGCOUNT */
3300
3301 pmap_pteg_cnt = 0x1000;
3302
3303 while (pmap_pteg_cnt < physmem)
3304 pmap_pteg_cnt <<= 1;
3305
3306 pmap_pteg_cnt >>= 1;
3307 #endif /* PTEGCOUNT */
3308
3309 #ifdef DEBUG
3310 DPRINTFN(BOOT,
3311 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3312 #endif
3313
3314 /*
3315 * Find suitably aligned memory for PTEG hash table.
3316 */
3317 size = pmap_pteg_cnt * sizeof(struct pteg);
3318 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3319
3320 #ifdef DEBUG
3321 DPRINTFN(BOOT,
3322 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3323 #endif
3324
3325
3326 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3327 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3328 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3329 pmap_pteg_table, size);
3330 #endif
3331
3332 memset(__UNVOLATILE(pmap_pteg_table), 0,
3333 pmap_pteg_cnt * sizeof(struct pteg));
3334 pmap_pteg_mask = pmap_pteg_cnt - 1;
3335
3336 /*
3337 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3338 * with pages. So we just steal them before giving them to UVM.
3339 */
3340 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3341 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3342 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3343 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3344 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3345 pmap_pvo_table, size);
3346 #endif
3347
3348 for (i = 0; i < pmap_pteg_cnt; i++)
3349 TAILQ_INIT(&pmap_pvo_table[i]);
3350
3351 #ifndef MSGBUFADDR
3352 /*
3353 * Allocate msgbuf in high memory.
3354 */
3355 msgbuf_paddr =
3356 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3357 #endif
3358
3359 #ifdef __HAVE_PMAP_PHYSSEG
3360 {
3361 u_int npgs = 0;
3362 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3363 npgs += btoc(mp->size);
3364 size = (sizeof(struct pvo_head) + 1) * npgs;
3365 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3366 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3367 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3368 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3369 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3370 pmap_physseg.pvoh, size);
3371 #endif
3372 }
3373 #endif
3374
3375
3376 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3377 paddr_t pfstart = atop(mp->start);
3378 paddr_t pfend = atop(mp->start + mp->size);
3379 if (mp->size == 0)
3380 continue;
3381 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3382 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3383 VM_FREELIST_FIRST256);
3384 } else if (mp->start >= SEGMENT_LENGTH) {
3385 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 VM_FREELIST_DEFAULT);
3387 } else {
3388 pfend = atop(SEGMENT_LENGTH);
3389 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3390 VM_FREELIST_FIRST256);
3391 pfstart = atop(SEGMENT_LENGTH);
3392 pfend = atop(mp->start + mp->size);
3393 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3394 VM_FREELIST_DEFAULT);
3395 }
3396 }
3397
3398 /*
3399 * Make sure kernel vsid is allocated as well as VSID 0.
3400 */
3401 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3402 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3403 pmap_vsid_bitmap[0] |= 1;
3404
3405 /*
3406 * Initialize kernel pmap and hardware.
3407 */
3408
3409 /* PPC_OEA64_BRIDGE does support these instructions */
3410 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
3411 for (i = 0; i < 16; i++) {
3412 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3413 __asm volatile ("mtsrin %0,%1"
3414 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3415 }
3416
3417 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3418 __asm volatile ("mtsr %0,%1"
3419 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3420 #ifdef KERNEL2_SR
3421 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3422 __asm volatile ("mtsr %0,%1"
3423 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3424 #endif
3425 for (i = 0; i < 16; i++) {
3426 if (iosrtable[i] & SR601_T) {
3427 pmap_kernel()->pm_sr[i] = iosrtable[i];
3428 __asm volatile ("mtsrin %0,%1"
3429 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3430 }
3431 }
3432 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
3433 #if defined (PPC_OEA)
3434 __asm volatile ("sync; mtsdr1 %0; isync"
3435 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3436 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
3437 __asm __volatile ("sync; mtsdr1 %0; isync"
3438 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3439 #endif
3440 tlbia();
3441
3442 #ifdef ALTIVEC
3443 pmap_use_altivec = cpu_altivec;
3444 #endif
3445
3446 #ifdef DEBUG
3447 if (pmapdebug & PMAPDEBUG_BOOT) {
3448 u_int cnt;
3449 int bank;
3450 char pbuf[9];
3451 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3452 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3453 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3454 bank,
3455 ptoa(vm_physmem[bank].avail_start),
3456 ptoa(vm_physmem[bank].avail_end),
3457 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3458 }
3459 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3460 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3461 pbuf, cnt);
3462 }
3463 #endif
3464
3465 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3466 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3467 &pmap_pool_uallocator, IPL_NONE);
3468
3469 pool_setlowat(&pmap_upvo_pool, 252);
3470
3471 pool_init(&pmap_pool, sizeof(struct pmap),
3472 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3473 IPL_NONE);
3474
3475 #if defined(PMAP_NEED_MAPKERNEL)
3476 {
3477 extern int etext[], kernel_text[];
3478 vaddr_t va, va_etext = (paddr_t) etext;
3479 paddr_t pa;
3480 register_t sr;
3481
3482 sr = KERNELN_SEGMENT(kernelstart >> ADDR_SR_SHFT)
3483 |SR_SUKEY|SR_PRKEY;
3484
3485 va = (vaddr_t) kernel_text;
3486
3487 for (pa = kernelstart; va < va_etext;
3488 pa += PAGE_SIZE, va += PAGE_SIZE)
3489 pmap_enter(pmap_kernel(), va, pa,
3490 VM_PROT_READ|VM_PROT_EXECUTE, 0);
3491
3492 for (; pa < kernelend;
3493 pa += PAGE_SIZE, va += PAGE_SIZE)
3494 pmap_enter(pmap_kernel(), va, pa,
3495 VM_PROT_READ|VM_PROT_WRITE, 0);
3496
3497 pmap_kernel()->pm_sr[kernelstart >> ADDR_SR_SHFT] = sr;
3498 __asm volatile ("mtsrin %0,%1"
3499 :: "r"(sr), "r"(kernelstart));
3500 }
3501 #endif
3502 }
3503