pmap.c revision 1.48.30.3 1 /* $NetBSD: pmap.c,v 1.48.30.3 2008/01/19 12:14:41 bouyer Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43 * Copyright (C) 1995, 1996 TooLs GmbH.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by TooLs GmbH.
57 * 4. The name of TooLs GmbH may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.48.30.3 2008/01/19 12:14:41 bouyer Exp $");
74
75 #include "opt_ppcarch.h"
76 #include "opt_altivec.h"
77 #include "opt_pmap.h"
78 #include <sys/param.h>
79 #include <sys/malloc.h>
80 #include <sys/proc.h>
81 #include <sys/user.h>
82 #include <sys/pool.h>
83 #include <sys/queue.h>
84 #include <sys/device.h> /* for evcnt */
85 #include <sys/systm.h>
86 #include <sys/atomic.h>
87
88 #if __NetBSD_Version__ < 105010000
89 #include <vm/vm.h>
90 #include <vm/vm_kern.h>
91 #define splvm() splimp()
92 #endif
93
94 #include <uvm/uvm.h>
95
96 #include <machine/pcb.h>
97 #include <machine/powerpc.h>
98 #include <powerpc/spr.h>
99 #include <powerpc/oea/sr_601.h>
100 #include <powerpc/bat.h>
101 #include <powerpc/stdarg.h>
102
103 #if defined(DEBUG) || defined(PMAPCHECK)
104 #define STATIC
105 #else
106 #define STATIC static
107 #endif
108
109 #ifdef ALTIVEC
110 int pmap_use_altivec;
111 #endif
112
113 volatile struct pteg *pmap_pteg_table;
114 unsigned int pmap_pteg_cnt;
115 unsigned int pmap_pteg_mask;
116 #ifdef PMAP_MEMLIMIT
117 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
118 #else
119 paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
120 #endif
121
122 struct pmap kernel_pmap_;
123 unsigned int pmap_pages_stolen;
124 u_long pmap_pte_valid;
125 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
126 u_long pmap_pvo_enter_depth;
127 u_long pmap_pvo_remove_depth;
128 #endif
129
130 int physmem;
131 #ifndef MSGBUFADDR
132 extern paddr_t msgbuf_paddr;
133 #endif
134
135 static struct mem_region *mem, *avail;
136 static u_int mem_cnt, avail_cnt;
137
138 #ifdef __HAVE_PMAP_PHYSSEG
139 /*
140 * This is a cache of referenced/modified bits.
141 * Bits herein are shifted by ATTRSHFT.
142 */
143 #define ATTR_SHFT 4
144 struct pmap_physseg pmap_physseg;
145 #endif
146
147 /*
148 * The following structure is aligned to 32 bytes
149 */
150 struct pvo_entry {
151 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
152 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
153 struct pte pvo_pte; /* Prebuilt PTE */
154 pmap_t pvo_pmap; /* ptr to owning pmap */
155 vaddr_t pvo_vaddr; /* VA of entry */
156 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
157 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
158 #define PVO_WIRED 0x0010 /* PVO entry is wired */
159 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
160 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
161 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
162 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
163 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
164 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
165 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
166 #define PVO_SPILL_SET 2 /* PVO has been spilled */
167 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
168 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
169 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
170 #define PVO_REMOVE 6 /* PVO has been removed */
171 #define PVO_WHERE_MASK 15
172 #define PVO_WHERE_SHFT 8
173 } __attribute__ ((aligned (32)));
174 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
175 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
176 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
177 #define PVO_PTEGIDX_CLR(pvo) \
178 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
179 #define PVO_PTEGIDX_SET(pvo,i) \
180 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
181 #define PVO_WHERE(pvo,w) \
182 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
183 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
184
185 TAILQ_HEAD(pvo_tqhead, pvo_entry);
186 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
187 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
188 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
189
190 struct pool pmap_pool; /* pool for pmap structures */
191 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
192 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
193
194 /*
195 * We keep a cache of unmanaged pages to be used for pvo entries for
196 * unmanaged pages.
197 */
198 struct pvo_page {
199 SIMPLEQ_ENTRY(pvo_page) pvop_link;
200 };
201 SIMPLEQ_HEAD(pvop_head, pvo_page);
202 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
203 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
204 u_long pmap_upvop_free;
205 u_long pmap_upvop_maxfree;
206 u_long pmap_mpvop_free;
207 u_long pmap_mpvop_maxfree;
208
209 STATIC void *pmap_pool_ualloc(struct pool *, int);
210 STATIC void *pmap_pool_malloc(struct pool *, int);
211
212 STATIC void pmap_pool_ufree(struct pool *, void *);
213 STATIC void pmap_pool_mfree(struct pool *, void *);
214
215 static struct pool_allocator pmap_pool_mallocator = {
216 .pa_alloc = pmap_pool_malloc,
217 .pa_free = pmap_pool_mfree,
218 .pa_pagesz = 0,
219 };
220
221 static struct pool_allocator pmap_pool_uallocator = {
222 .pa_alloc = pmap_pool_ualloc,
223 .pa_free = pmap_pool_ufree,
224 .pa_pagesz = 0,
225 };
226
227 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
228 void pmap_pte_print(volatile struct pte *);
229 void pmap_pteg_check(void);
230 void pmap_pteg_dist(void);
231 void pmap_print_pte(pmap_t, vaddr_t);
232 void pmap_print_mmuregs(void);
233 #endif
234
235 #if defined(DEBUG) || defined(PMAPCHECK)
236 #ifdef PMAPCHECK
237 int pmapcheck = 1;
238 #else
239 int pmapcheck = 0;
240 #endif
241 void pmap_pvo_verify(void);
242 STATIC void pmap_pvo_check(const struct pvo_entry *);
243 #define PMAP_PVO_CHECK(pvo) \
244 do { \
245 if (pmapcheck) \
246 pmap_pvo_check(pvo); \
247 } while (0)
248 #else
249 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
250 #endif
251 STATIC int pmap_pte_insert(int, struct pte *);
252 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
253 vaddr_t, paddr_t, register_t, int);
254 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
255 STATIC void pmap_pvo_free(struct pvo_entry *);
256 STATIC void pmap_pvo_free_list(struct pvo_head *);
257 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
258 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
259 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
260 STATIC void pvo_set_exec(struct pvo_entry *);
261 STATIC void pvo_clear_exec(struct pvo_entry *);
262
263 STATIC void tlbia(void);
264
265 STATIC void pmap_release(pmap_t);
266 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
267
268 static uint32_t pmap_pvo_reclaim_nextidx;
269 #ifdef DEBUG
270 static int pmap_pvo_reclaim_debugctr;
271 #endif
272
273 #define VSID_NBPW (sizeof(uint32_t) * 8)
274 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
275
276 static int pmap_initialized;
277
278 #if defined(DEBUG) || defined(PMAPDEBUG)
279 #define PMAPDEBUG_BOOT 0x0001
280 #define PMAPDEBUG_PTE 0x0002
281 #define PMAPDEBUG_EXEC 0x0008
282 #define PMAPDEBUG_PVOENTER 0x0010
283 #define PMAPDEBUG_PVOREMOVE 0x0020
284 #define PMAPDEBUG_ACTIVATE 0x0100
285 #define PMAPDEBUG_CREATE 0x0200
286 #define PMAPDEBUG_ENTER 0x1000
287 #define PMAPDEBUG_KENTER 0x2000
288 #define PMAPDEBUG_KREMOVE 0x4000
289 #define PMAPDEBUG_REMOVE 0x8000
290
291 unsigned int pmapdebug = 0;
292
293 # define DPRINTF(x) printf x
294 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
295 #else
296 # define DPRINTF(x)
297 # define DPRINTFN(n, x)
298 #endif
299
300
301 #ifdef PMAPCOUNTERS
302 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
303 #define PMAPCOUNT2(ev) ((ev).ev_count++)
304
305 struct evcnt pmap_evcnt_mappings =
306 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
307 "pmap", "pages mapped");
308 struct evcnt pmap_evcnt_unmappings =
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
310 "pmap", "pages unmapped");
311
312 struct evcnt pmap_evcnt_kernel_mappings =
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
314 "pmap", "kernel pages mapped");
315 struct evcnt pmap_evcnt_kernel_unmappings =
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
317 "pmap", "kernel pages unmapped");
318
319 struct evcnt pmap_evcnt_mappings_replaced =
320 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
321 "pmap", "page mappings replaced");
322
323 struct evcnt pmap_evcnt_exec_mappings =
324 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
325 "pmap", "exec pages mapped");
326 struct evcnt pmap_evcnt_exec_cached =
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
328 "pmap", "exec pages cached");
329
330 struct evcnt pmap_evcnt_exec_synced =
331 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
332 "pmap", "exec pages synced");
333 struct evcnt pmap_evcnt_exec_synced_clear_modify =
334 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
335 "pmap", "exec pages synced (CM)");
336 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
337 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
338 "pmap", "exec pages synced (PR)");
339
340 struct evcnt pmap_evcnt_exec_uncached_page_protect =
341 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
342 "pmap", "exec pages uncached (PP)");
343 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
344 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
345 "pmap", "exec pages uncached (CM)");
346 struct evcnt pmap_evcnt_exec_uncached_zero_page =
347 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
348 "pmap", "exec pages uncached (ZP)");
349 struct evcnt pmap_evcnt_exec_uncached_copy_page =
350 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
351 "pmap", "exec pages uncached (CP)");
352 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
353 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
354 "pmap", "exec pages uncached (PR)");
355
356 struct evcnt pmap_evcnt_updates =
357 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
358 "pmap", "updates");
359 struct evcnt pmap_evcnt_collects =
360 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
361 "pmap", "collects");
362 struct evcnt pmap_evcnt_copies =
363 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 "pmap", "copies");
365
366 struct evcnt pmap_evcnt_ptes_spilled =
367 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
368 "pmap", "ptes spilled from overflow");
369 struct evcnt pmap_evcnt_ptes_unspilled =
370 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
371 "pmap", "ptes not spilled");
372 struct evcnt pmap_evcnt_ptes_evicted =
373 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
374 "pmap", "ptes evicted");
375
376 struct evcnt pmap_evcnt_ptes_primary[8] = {
377 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
378 "pmap", "ptes added at primary[0]"),
379 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
380 "pmap", "ptes added at primary[1]"),
381 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
382 "pmap", "ptes added at primary[2]"),
383 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
384 "pmap", "ptes added at primary[3]"),
385
386 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
387 "pmap", "ptes added at primary[4]"),
388 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
389 "pmap", "ptes added at primary[5]"),
390 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
391 "pmap", "ptes added at primary[6]"),
392 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
393 "pmap", "ptes added at primary[7]"),
394 };
395 struct evcnt pmap_evcnt_ptes_secondary[8] = {
396 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
397 "pmap", "ptes added at secondary[0]"),
398 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
399 "pmap", "ptes added at secondary[1]"),
400 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
401 "pmap", "ptes added at secondary[2]"),
402 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
403 "pmap", "ptes added at secondary[3]"),
404
405 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
406 "pmap", "ptes added at secondary[4]"),
407 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
408 "pmap", "ptes added at secondary[5]"),
409 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
410 "pmap", "ptes added at secondary[6]"),
411 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
412 "pmap", "ptes added at secondary[7]"),
413 };
414 struct evcnt pmap_evcnt_ptes_removed =
415 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
416 "pmap", "ptes removed");
417 struct evcnt pmap_evcnt_ptes_changed =
418 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
419 "pmap", "ptes changed");
420 struct evcnt pmap_evcnt_pvos_reclaimed =
421 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
422 "pmap", "pvos reclaimed");
423 struct evcnt pmap_evcnt_pvos_failed =
424 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
425 "pmap", "pvo allocation failures");
426
427 /*
428 * From pmap_subr.c
429 */
430 extern struct evcnt pmap_evcnt_zeroed_pages;
431 extern struct evcnt pmap_evcnt_copied_pages;
432 extern struct evcnt pmap_evcnt_idlezeroed_pages;
433
434 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
435 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
436 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
437
438 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
439 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
440
441 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
445 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
446
447 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
448 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
449 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
450 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
451 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
452
453 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
454 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
455 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
456
457 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
458 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
459 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
460
461 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
462 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
463 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
464 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
465 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
466
467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
476 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
477 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
478 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
479 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
480 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
481 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
482 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
483
484 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
485 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
486 #else
487 #define PMAPCOUNT(ev) ((void) 0)
488 #define PMAPCOUNT2(ev) ((void) 0)
489 #endif
490
491 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
492
493 /* XXXSL: this needs to be moved to assembler */
494 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
495
496 #define TLBSYNC() __asm volatile("tlbsync")
497 #define SYNC() __asm volatile("sync")
498 #define EIEIO() __asm volatile("eieio")
499 #define MFMSR() mfmsr()
500 #define MTMSR(psl) mtmsr(psl)
501 #define MFPVR() mfpvr()
502 #define MFSRIN(va) mfsrin(va)
503 #define MFTB() mfrtcltbl()
504
505 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
506 static inline register_t
507 mfsrin(vaddr_t va)
508 {
509 register_t sr;
510 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
511 return sr;
512 }
513 #endif /* PPC_OEA*/
514
515 #if defined (PPC_OEA64_BRIDGE)
516 extern void mfmsr64 (register64_t *result);
517 #endif /* PPC_OEA64_BRIDGE */
518
519 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
520 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
521
522 static inline register_t
523 pmap_interrupts_off(void)
524 {
525 register_t msr = MFMSR();
526 if (msr & PSL_EE)
527 MTMSR(msr & ~PSL_EE);
528 return msr;
529 }
530
531 static void
532 pmap_interrupts_restore(register_t msr)
533 {
534 if (msr & PSL_EE)
535 MTMSR(msr);
536 }
537
538 static inline u_int32_t
539 mfrtcltbl(void)
540 {
541
542 if ((MFPVR() >> 16) == MPC601)
543 return (mfrtcl() >> 7);
544 else
545 return (mftbl());
546 }
547
548 /*
549 * These small routines may have to be replaced,
550 * if/when we support processors other that the 604.
551 */
552
553 void
554 tlbia(void)
555 {
556 char *i;
557
558 SYNC();
559 #if defined(PPC_OEA)
560 /*
561 * Why not use "tlbia"? Because not all processors implement it.
562 *
563 * This needs to be a per-CPU callback to do the appropriate thing
564 * for the CPU. XXX
565 */
566 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
567 TLBIE(i);
568 EIEIO();
569 SYNC();
570 }
571 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
572 printf("Invalidating ALL TLB entries......\n");
573 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
574 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
575 TLBIEL(i);
576 EIEIO();
577 SYNC();
578 }
579 #endif
580 TLBSYNC();
581 SYNC();
582 }
583
584 static inline register_t
585 va_to_vsid(const struct pmap *pm, vaddr_t addr)
586 {
587 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
588 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
589 #else /* PPC_OEA64 */
590 #if 0
591 const struct ste *ste;
592 register_t hash;
593 int i;
594
595 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
596
597 /*
598 * Try the primary group first
599 */
600 ste = pm->pm_stes[hash].stes;
601 for (i = 0; i < 8; i++, ste++) {
602 if (ste->ste_hi & STE_V) &&
603 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
604 return ste;
605 }
606
607 /*
608 * Then the secondary group.
609 */
610 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
611 for (i = 0; i < 8; i++, ste++) {
612 if (ste->ste_hi & STE_V) &&
613 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
614 return addr;
615 }
616
617 return NULL;
618 #else
619 /*
620 * Rather than searching the STE groups for the VSID, we know
621 * how we generate that from the ESID and so do that.
622 */
623 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
624 #endif
625 #endif /* PPC_OEA */
626 }
627
628 static inline register_t
629 va_to_pteg(const struct pmap *pm, vaddr_t addr)
630 {
631 register_t hash;
632
633 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
634 return hash & pmap_pteg_mask;
635 }
636
637 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
638 /*
639 * Given a PTE in the page table, calculate the VADDR that hashes to it.
640 * The only bit of magic is that the top 4 bits of the address doesn't
641 * technically exist in the PTE. But we know we reserved 4 bits of the
642 * VSID for it so that's how we get it.
643 */
644 static vaddr_t
645 pmap_pte_to_va(volatile const struct pte *pt)
646 {
647 vaddr_t va;
648 uintptr_t ptaddr = (uintptr_t) pt;
649
650 if (pt->pte_hi & PTE_HID)
651 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
652
653 /* PPC Bits 10-19 PPC64 Bits 42-51 */
654 #if defined(PPC_OEA)
655 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
656 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
657 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
658 #endif
659 va <<= ADDR_PIDX_SHFT;
660
661 /* PPC Bits 4-9 PPC64 Bits 36-41 */
662 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
663
664 #if defined(PPC_OEA64)
665 /* PPC63 Bits 0-35 */
666 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
667 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
668 /* PPC Bits 0-3 */
669 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
670 #endif
671
672 return va;
673 }
674 #endif
675
676 static inline struct pvo_head *
677 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
678 {
679 #ifdef __HAVE_VM_PAGE_MD
680 struct vm_page *pg;
681
682 pg = PHYS_TO_VM_PAGE(pa);
683 if (pg_p != NULL)
684 *pg_p = pg;
685 if (pg == NULL)
686 return &pmap_pvo_unmanaged;
687 return &pg->mdpage.mdpg_pvoh;
688 #endif
689 #ifdef __HAVE_PMAP_PHYSSEG
690 int bank, pg;
691
692 bank = vm_physseg_find(atop(pa), &pg);
693 if (pg_p != NULL)
694 *pg_p = pg;
695 if (bank == -1)
696 return &pmap_pvo_unmanaged;
697 return &vm_physmem[bank].pmseg.pvoh[pg];
698 #endif
699 }
700
701 static inline struct pvo_head *
702 vm_page_to_pvoh(struct vm_page *pg)
703 {
704 #ifdef __HAVE_VM_PAGE_MD
705 return &pg->mdpage.mdpg_pvoh;
706 #endif
707 #ifdef __HAVE_PMAP_PHYSSEG
708 return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
709 #endif
710 }
711
712
713 #ifdef __HAVE_PMAP_PHYSSEG
714 static inline char *
715 pa_to_attr(paddr_t pa)
716 {
717 int bank, pg;
718
719 bank = vm_physseg_find(atop(pa), &pg);
720 if (bank == -1)
721 return NULL;
722 return &vm_physmem[bank].pmseg.attrs[pg];
723 }
724 #endif
725
726 static inline void
727 pmap_attr_clear(struct vm_page *pg, int ptebit)
728 {
729 #ifdef __HAVE_PMAP_PHYSSEG
730 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
731 #endif
732 #ifdef __HAVE_VM_PAGE_MD
733 pg->mdpage.mdpg_attrs &= ~ptebit;
734 #endif
735 }
736
737 static inline int
738 pmap_attr_fetch(struct vm_page *pg)
739 {
740 #ifdef __HAVE_PMAP_PHYSSEG
741 return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
742 #endif
743 #ifdef __HAVE_VM_PAGE_MD
744 return pg->mdpage.mdpg_attrs;
745 #endif
746 }
747
748 static inline void
749 pmap_attr_save(struct vm_page *pg, int ptebit)
750 {
751 #ifdef __HAVE_PMAP_PHYSSEG
752 *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
753 #endif
754 #ifdef __HAVE_VM_PAGE_MD
755 pg->mdpage.mdpg_attrs |= ptebit;
756 #endif
757 }
758
759 static inline int
760 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
761 {
762 if (pt->pte_hi == pvo_pt->pte_hi
763 #if 0
764 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
765 ~(PTE_REF|PTE_CHG)) == 0
766 #endif
767 )
768 return 1;
769 return 0;
770 }
771
772 static inline void
773 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
774 {
775 /*
776 * Construct the PTE. Default to IMB initially. Valid bit
777 * only gets set when the real pte is set in memory.
778 *
779 * Note: Don't set the valid bit for correct operation of tlb update.
780 */
781 #if defined(PPC_OEA)
782 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
783 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
784 pt->pte_lo = pte_lo;
785 #elif defined (PPC_OEA64_BRIDGE)
786 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
787 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
788 pt->pte_lo = (u_int64_t) pte_lo;
789 #elif defined (PPC_OEA64)
790 #error PPC_OEA64 not supported
791 #endif /* PPC_OEA */
792 }
793
794 static inline void
795 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
796 {
797 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
798 }
799
800 static inline void
801 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
802 {
803 /*
804 * As shown in Section 7.6.3.2.3
805 */
806 pt->pte_lo &= ~ptebit;
807 TLBIE(va);
808 SYNC();
809 EIEIO();
810 TLBSYNC();
811 SYNC();
812 }
813
814 static inline void
815 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
816 {
817 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
818 if (pvo_pt->pte_hi & PTE_VALID)
819 panic("pte_set: setting an already valid pte %p", pvo_pt);
820 #endif
821 pvo_pt->pte_hi |= PTE_VALID;
822
823 /*
824 * Update the PTE as defined in section 7.6.3.1
825 * Note that the REF/CHG bits are from pvo_pt and thus should
826 * have been saved so this routine can restore them (if desired).
827 */
828 pt->pte_lo = pvo_pt->pte_lo;
829 EIEIO();
830 pt->pte_hi = pvo_pt->pte_hi;
831 TLBSYNC();
832 SYNC();
833 pmap_pte_valid++;
834 }
835
836 static inline void
837 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
838 {
839 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
840 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
841 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
842 if ((pt->pte_hi & PTE_VALID) == 0)
843 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
844 #endif
845
846 pvo_pt->pte_hi &= ~PTE_VALID;
847 /*
848 * Force the ref & chg bits back into the PTEs.
849 */
850 SYNC();
851 /*
852 * Invalidate the pte ... (Section 7.6.3.3)
853 */
854 pt->pte_hi &= ~PTE_VALID;
855 SYNC();
856 TLBIE(va);
857 SYNC();
858 EIEIO();
859 TLBSYNC();
860 SYNC();
861 /*
862 * Save the ref & chg bits ...
863 */
864 pmap_pte_synch(pt, pvo_pt);
865 pmap_pte_valid--;
866 }
867
868 static inline void
869 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
870 {
871 /*
872 * Invalidate the PTE
873 */
874 pmap_pte_unset(pt, pvo_pt, va);
875 pmap_pte_set(pt, pvo_pt);
876 }
877
878 /*
879 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
880 * (either primary or secondary location).
881 *
882 * Note: both the destination and source PTEs must not have PTE_VALID set.
883 */
884
885 STATIC int
886 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
887 {
888 volatile struct pte *pt;
889 int i;
890
891 #if defined(DEBUG)
892 #if defined (PPC_OEA)
893 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
894 ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
895 #elif defined (PPC_OEA64_BRIDGE)
896 DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
897 ptegidx, (unsigned long long) pvo_pt->pte_hi,
898 (unsigned long long) pvo_pt->pte_lo));
899
900 #endif
901 #endif
902 /*
903 * First try primary hash.
904 */
905 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
906 if ((pt->pte_hi & PTE_VALID) == 0) {
907 pvo_pt->pte_hi &= ~PTE_HID;
908 pmap_pte_set(pt, pvo_pt);
909 return i;
910 }
911 }
912
913 /*
914 * Now try secondary hash.
915 */
916 ptegidx ^= pmap_pteg_mask;
917 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
918 if ((pt->pte_hi & PTE_VALID) == 0) {
919 pvo_pt->pte_hi |= PTE_HID;
920 pmap_pte_set(pt, pvo_pt);
921 return i;
922 }
923 }
924 return -1;
925 }
926
927 /*
928 * Spill handler.
929 *
930 * Tries to spill a page table entry from the overflow area.
931 * This runs in either real mode (if dealing with a exception spill)
932 * or virtual mode when dealing with manually spilling one of the
933 * kernel's pte entries. In either case, interrupts are already
934 * disabled.
935 */
936
937 int
938 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
939 {
940 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
941 struct pvo_entry *pvo;
942 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
943 struct pvo_tqhead *pvoh, *vpvoh = NULL;
944 int ptegidx, i, j;
945 volatile struct pteg *pteg;
946 volatile struct pte *pt;
947
948 PMAP_LOCK();
949
950 ptegidx = va_to_pteg(pm, addr);
951
952 /*
953 * Have to substitute some entry. Use the primary hash for this.
954 * Use low bits of timebase as random generator. Make sure we are
955 * not picking a kernel pte for replacement.
956 */
957 pteg = &pmap_pteg_table[ptegidx];
958 i = MFTB() & 7;
959 for (j = 0; j < 8; j++) {
960 pt = &pteg->pt[i];
961 if ((pt->pte_hi & PTE_VALID) == 0 ||
962 VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
963 != KERNEL_VSIDBITS)
964 break;
965 i = (i + 1) & 7;
966 }
967 KASSERT(j < 8);
968
969 source_pvo = NULL;
970 victim_pvo = NULL;
971 pvoh = &pmap_pvo_table[ptegidx];
972 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
973
974 /*
975 * We need to find pvo entry for this address...
976 */
977 PMAP_PVO_CHECK(pvo); /* sanity check */
978
979 /*
980 * If we haven't found the source and we come to a PVO with
981 * a valid PTE, then we know we can't find it because all
982 * evicted PVOs always are first in the list.
983 */
984 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
985 break;
986 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
987 addr == PVO_VADDR(pvo)) {
988
989 /*
990 * Now we have found the entry to be spilled into the
991 * pteg. Attempt to insert it into the page table.
992 */
993 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
994 if (j >= 0) {
995 PVO_PTEGIDX_SET(pvo, j);
996 PMAP_PVO_CHECK(pvo); /* sanity check */
997 PVO_WHERE(pvo, SPILL_INSERT);
998 pvo->pvo_pmap->pm_evictions--;
999 PMAPCOUNT(ptes_spilled);
1000 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1001 ? pmap_evcnt_ptes_secondary
1002 : pmap_evcnt_ptes_primary)[j]);
1003
1004 /*
1005 * Since we keep the evicted entries at the
1006 * from of the PVO list, we need move this
1007 * (now resident) PVO after the evicted
1008 * entries.
1009 */
1010 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
1011
1012 /*
1013 * If we don't have to move (either we were the
1014 * last entry or the next entry was valid),
1015 * don't change our position. Otherwise
1016 * move ourselves to the tail of the queue.
1017 */
1018 if (next_pvo != NULL &&
1019 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
1020 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
1021 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1022 }
1023 PMAP_UNLOCK();
1024 return 1;
1025 }
1026 source_pvo = pvo;
1027 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1028 return 0;
1029 }
1030 if (victim_pvo != NULL)
1031 break;
1032 }
1033
1034 /*
1035 * We also need the pvo entry of the victim we are replacing
1036 * so save the R & C bits of the PTE.
1037 */
1038 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1039 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1040 vpvoh = pvoh; /* *1* */
1041 victim_pvo = pvo;
1042 if (source_pvo != NULL)
1043 break;
1044 }
1045 }
1046
1047 if (source_pvo == NULL) {
1048 PMAPCOUNT(ptes_unspilled);
1049 PMAP_UNLOCK();
1050 return 0;
1051 }
1052
1053 if (victim_pvo == NULL) {
1054 if ((pt->pte_hi & PTE_HID) == 0)
1055 panic("pmap_pte_spill: victim p-pte (%p) has "
1056 "no pvo entry!", pt);
1057
1058 /*
1059 * If this is a secondary PTE, we need to search
1060 * its primary pvo bucket for the matching PVO.
1061 */
1062 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1063 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1064 PMAP_PVO_CHECK(pvo); /* sanity check */
1065
1066 /*
1067 * We also need the pvo entry of the victim we are
1068 * replacing so save the R & C bits of the PTE.
1069 */
1070 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1071 victim_pvo = pvo;
1072 break;
1073 }
1074 }
1075 if (victim_pvo == NULL)
1076 panic("pmap_pte_spill: victim s-pte (%p) has "
1077 "no pvo entry!", pt);
1078 }
1079
1080 /*
1081 * The victim should be not be a kernel PVO/PTE entry.
1082 */
1083 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1084 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1085 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1086
1087 /*
1088 * We are invalidating the TLB entry for the EA for the
1089 * we are replacing even though its valid; If we don't
1090 * we lose any ref/chg bit changes contained in the TLB
1091 * entry.
1092 */
1093 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1094
1095 /*
1096 * To enforce the PVO list ordering constraint that all
1097 * evicted entries should come before all valid entries,
1098 * move the source PVO to the tail of its list and the
1099 * victim PVO to the head of its list (which might not be
1100 * the same list, if the victim was using the secondary hash).
1101 */
1102 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1103 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1104 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1105 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1106 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1107 pmap_pte_set(pt, &source_pvo->pvo_pte);
1108 victim_pvo->pvo_pmap->pm_evictions++;
1109 source_pvo->pvo_pmap->pm_evictions--;
1110 PVO_WHERE(victim_pvo, SPILL_UNSET);
1111 PVO_WHERE(source_pvo, SPILL_SET);
1112
1113 PVO_PTEGIDX_CLR(victim_pvo);
1114 PVO_PTEGIDX_SET(source_pvo, i);
1115 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1116 PMAPCOUNT(ptes_spilled);
1117 PMAPCOUNT(ptes_evicted);
1118 PMAPCOUNT(ptes_removed);
1119
1120 PMAP_PVO_CHECK(victim_pvo);
1121 PMAP_PVO_CHECK(source_pvo);
1122
1123 PMAP_UNLOCK();
1124 return 1;
1125 }
1126
1127 /*
1128 * Restrict given range to physical memory
1129 */
1130 void
1131 pmap_real_memory(paddr_t *start, psize_t *size)
1132 {
1133 struct mem_region *mp;
1134
1135 for (mp = mem; mp->size; mp++) {
1136 if (*start + *size > mp->start
1137 && *start < mp->start + mp->size) {
1138 if (*start < mp->start) {
1139 *size -= mp->start - *start;
1140 *start = mp->start;
1141 }
1142 if (*start + *size > mp->start + mp->size)
1143 *size = mp->start + mp->size - *start;
1144 return;
1145 }
1146 }
1147 *size = 0;
1148 }
1149
1150 /*
1151 * Initialize anything else for pmap handling.
1152 * Called during vm_init().
1153 */
1154 void
1155 pmap_init(void)
1156 {
1157 #ifdef __HAVE_PMAP_PHYSSEG
1158 struct pvo_tqhead *pvoh;
1159 int bank;
1160 long sz;
1161 char *attr;
1162
1163 pvoh = pmap_physseg.pvoh;
1164 attr = pmap_physseg.attrs;
1165 for (bank = 0; bank < vm_nphysseg; bank++) {
1166 sz = vm_physmem[bank].end - vm_physmem[bank].start;
1167 vm_physmem[bank].pmseg.pvoh = pvoh;
1168 vm_physmem[bank].pmseg.attrs = attr;
1169 for (; sz > 0; sz--, pvoh++, attr++) {
1170 TAILQ_INIT(pvoh);
1171 *attr = 0;
1172 }
1173 }
1174 #endif
1175
1176 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1177 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1178 &pmap_pool_mallocator, IPL_NONE);
1179
1180 pool_setlowat(&pmap_mpvo_pool, 1008);
1181
1182 pmap_initialized = 1;
1183
1184 }
1185
1186 /*
1187 * How much virtual space does the kernel get?
1188 */
1189 void
1190 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1191 {
1192 /*
1193 * For now, reserve one segment (minus some overhead) for kernel
1194 * virtual memory
1195 */
1196 *start = VM_MIN_KERNEL_ADDRESS;
1197 *end = VM_MAX_KERNEL_ADDRESS;
1198 }
1199
1200 /*
1201 * Allocate, initialize, and return a new physical map.
1202 */
1203 pmap_t
1204 pmap_create(void)
1205 {
1206 pmap_t pm;
1207
1208 pm = pool_get(&pmap_pool, PR_WAITOK);
1209 memset((void *)pm, 0, sizeof *pm);
1210 pmap_pinit(pm);
1211
1212 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1213 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
1214 "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
1215 (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1216 (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1217 (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1218 (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1219 (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1220 (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1221 (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1222 (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1223 return pm;
1224 }
1225
1226 /*
1227 * Initialize a preallocated and zeroed pmap structure.
1228 */
1229 void
1230 pmap_pinit(pmap_t pm)
1231 {
1232 register_t entropy = MFTB();
1233 register_t mask;
1234 int i;
1235
1236 /*
1237 * Allocate some segment registers for this pmap.
1238 */
1239 pm->pm_refs = 1;
1240 PMAP_LOCK();
1241 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1242 static register_t pmap_vsidcontext;
1243 register_t hash;
1244 unsigned int n;
1245
1246 /* Create a new value by multiplying by a prime adding in
1247 * entropy from the timebase register. This is to make the
1248 * VSID more random so that the PT Hash function collides
1249 * less often. (note that the prime causes gcc to do shifts
1250 * instead of a multiply)
1251 */
1252 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1253 hash = pmap_vsidcontext & (NPMAPS - 1);
1254 if (hash == 0) { /* 0 is special, avoid it */
1255 entropy += 0xbadf00d;
1256 continue;
1257 }
1258 n = hash >> 5;
1259 mask = 1L << (hash & (VSID_NBPW-1));
1260 hash = pmap_vsidcontext;
1261 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1262 /* anything free in this bucket? */
1263 if (~pmap_vsid_bitmap[n] == 0) {
1264 entropy = hash ^ (hash >> 16);
1265 continue;
1266 }
1267 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1268 mask = 1L << i;
1269 hash &= ~(VSID_NBPW-1);
1270 hash |= i;
1271 }
1272 hash &= PTE_VSID >> PTE_VSID_SHFT;
1273 pmap_vsid_bitmap[n] |= mask;
1274 pm->pm_vsid = hash;
1275 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1276 for (i = 0; i < 16; i++)
1277 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1278 SR_NOEXEC;
1279 #endif
1280 PMAP_UNLOCK();
1281 return;
1282 }
1283 PMAP_UNLOCK();
1284 panic("pmap_pinit: out of segments");
1285 }
1286
1287 /*
1288 * Add a reference to the given pmap.
1289 */
1290 void
1291 pmap_reference(pmap_t pm)
1292 {
1293 atomic_inc_uint(&pm->pm_refs);
1294 }
1295
1296 /*
1297 * Retire the given pmap from service.
1298 * Should only be called if the map contains no valid mappings.
1299 */
1300 void
1301 pmap_destroy(pmap_t pm)
1302 {
1303 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1304 pmap_release(pm);
1305 pool_put(&pmap_pool, pm);
1306 }
1307 }
1308
1309 /*
1310 * Release any resources held by the given physical map.
1311 * Called when a pmap initialized by pmap_pinit is being released.
1312 */
1313 void
1314 pmap_release(pmap_t pm)
1315 {
1316 int idx, mask;
1317
1318 KASSERT(pm->pm_stats.resident_count == 0);
1319 KASSERT(pm->pm_stats.wired_count == 0);
1320
1321 PMAP_LOCK();
1322 if (pm->pm_sr[0] == 0)
1323 panic("pmap_release");
1324 idx = pm->pm_vsid & (NPMAPS-1);
1325 mask = 1 << (idx % VSID_NBPW);
1326 idx /= VSID_NBPW;
1327
1328 KASSERT(pmap_vsid_bitmap[idx] & mask);
1329 pmap_vsid_bitmap[idx] &= ~mask;
1330 PMAP_UNLOCK();
1331 }
1332
1333 /*
1334 * Copy the range specified by src_addr/len
1335 * from the source map to the range dst_addr/len
1336 * in the destination map.
1337 *
1338 * This routine is only advisory and need not do anything.
1339 */
1340 void
1341 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1342 vsize_t len, vaddr_t src_addr)
1343 {
1344 PMAPCOUNT(copies);
1345 }
1346
1347 /*
1348 * Require that all active physical maps contain no
1349 * incorrect entries NOW.
1350 */
1351 void
1352 pmap_update(struct pmap *pmap)
1353 {
1354 PMAPCOUNT(updates);
1355 TLBSYNC();
1356 }
1357
1358 /*
1359 * Garbage collects the physical map system for
1360 * pages which are no longer used.
1361 * Success need not be guaranteed -- that is, there
1362 * may well be pages which are not referenced, but
1363 * others may be collected.
1364 * Called by the pageout daemon when pages are scarce.
1365 */
1366 void
1367 pmap_collect(pmap_t pm)
1368 {
1369 PMAPCOUNT(collects);
1370 }
1371
1372 static inline int
1373 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1374 {
1375 int pteidx;
1376 /*
1377 * We can find the actual pte entry without searching by
1378 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1379 * and by noticing the HID bit.
1380 */
1381 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1382 if (pvo->pvo_pte.pte_hi & PTE_HID)
1383 pteidx ^= pmap_pteg_mask * 8;
1384 return pteidx;
1385 }
1386
1387 volatile struct pte *
1388 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1389 {
1390 volatile struct pte *pt;
1391
1392 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1393 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1394 return NULL;
1395 #endif
1396
1397 /*
1398 * If we haven't been supplied the ptegidx, calculate it.
1399 */
1400 if (pteidx == -1) {
1401 int ptegidx;
1402 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1403 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1404 }
1405
1406 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1407
1408 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1409 return pt;
1410 #else
1411 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1412 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1413 "pvo but no valid pte index", pvo);
1414 }
1415 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1416 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1417 "pvo but no valid pte", pvo);
1418 }
1419
1420 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1421 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1422 #if defined(DEBUG) || defined(PMAPCHECK)
1423 pmap_pte_print(pt);
1424 #endif
1425 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1426 "pmap_pteg_table %p but invalid in pvo",
1427 pvo, pt);
1428 }
1429 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1430 #if defined(DEBUG) || defined(PMAPCHECK)
1431 pmap_pte_print(pt);
1432 #endif
1433 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1434 "not match pte %p in pmap_pteg_table",
1435 pvo, pt);
1436 }
1437 return pt;
1438 }
1439
1440 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1441 #if defined(DEBUG) || defined(PMAPCHECK)
1442 pmap_pte_print(pt);
1443 #endif
1444 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1445 "pmap_pteg_table but valid in pvo", pvo, pt);
1446 }
1447 return NULL;
1448 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1449 }
1450
1451 struct pvo_entry *
1452 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1453 {
1454 struct pvo_entry *pvo;
1455 int ptegidx;
1456
1457 va &= ~ADDR_POFF;
1458 ptegidx = va_to_pteg(pm, va);
1459
1460 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1461 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1462 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1463 panic("pmap_pvo_find_va: invalid pvo %p on "
1464 "list %#x (%p)", pvo, ptegidx,
1465 &pmap_pvo_table[ptegidx]);
1466 #endif
1467 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1468 if (pteidx_p)
1469 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1470 return pvo;
1471 }
1472 }
1473 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1474 panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __func__,
1475 (pm == pmap_kernel() ? "kernel" : "user"), va);
1476 return NULL;
1477 }
1478
1479 #if defined(DEBUG) || defined(PMAPCHECK)
1480 void
1481 pmap_pvo_check(const struct pvo_entry *pvo)
1482 {
1483 struct pvo_head *pvo_head;
1484 struct pvo_entry *pvo0;
1485 volatile struct pte *pt;
1486 int failed = 0;
1487
1488 PMAP_LOCK();
1489
1490 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1491 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1492
1493 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1494 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1495 pvo, pvo->pvo_pmap);
1496 failed = 1;
1497 }
1498
1499 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1500 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1501 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1502 pvo, TAILQ_NEXT(pvo, pvo_olink));
1503 failed = 1;
1504 }
1505
1506 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1507 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1508 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1509 pvo, LIST_NEXT(pvo, pvo_vlink));
1510 failed = 1;
1511 }
1512
1513 if (PVO_MANAGED_P(pvo)) {
1514 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1515 } else {
1516 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1517 printf("pmap_pvo_check: pvo %p: non kernel address "
1518 "on kernel unmanaged list\n", pvo);
1519 failed = 1;
1520 }
1521 pvo_head = &pmap_pvo_kunmanaged;
1522 }
1523 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1524 if (pvo0 == pvo)
1525 break;
1526 }
1527 if (pvo0 == NULL) {
1528 printf("pmap_pvo_check: pvo %p: not present "
1529 "on its vlist head %p\n", pvo, pvo_head);
1530 failed = 1;
1531 }
1532 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1533 printf("pmap_pvo_check: pvo %p: not present "
1534 "on its olist head\n", pvo);
1535 failed = 1;
1536 }
1537 pt = pmap_pvo_to_pte(pvo, -1);
1538 if (pt == NULL) {
1539 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1540 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1541 "no PTE\n", pvo);
1542 failed = 1;
1543 }
1544 } else {
1545 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1546 (uintptr_t) pt >=
1547 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1548 printf("pmap_pvo_check: pvo %p: pte %p not in "
1549 "pteg table\n", pvo, pt);
1550 failed = 1;
1551 }
1552 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1553 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1554 "no PTE\n", pvo);
1555 failed = 1;
1556 }
1557 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1558 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1559 "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1560 failed = 1;
1561 }
1562 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1563 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1564 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1565 "%#x/%#x\n", pvo,
1566 (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1567 (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1568 failed = 1;
1569 }
1570 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1571 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1572 " doesn't not match PVO's VA %#lx\n",
1573 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1574 failed = 1;
1575 }
1576 if (failed)
1577 pmap_pte_print(pt);
1578 }
1579 if (failed)
1580 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1581 pvo->pvo_pmap);
1582
1583 PMAP_UNLOCK();
1584 }
1585 #endif /* DEBUG || PMAPCHECK */
1586
1587 /*
1588 * Search the PVO table looking for a non-wired entry.
1589 * If we find one, remove it and return it.
1590 */
1591
1592 struct pvo_entry *
1593 pmap_pvo_reclaim(struct pmap *pm)
1594 {
1595 struct pvo_tqhead *pvoh;
1596 struct pvo_entry *pvo;
1597 uint32_t idx, endidx;
1598
1599 endidx = pmap_pvo_reclaim_nextidx;
1600 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1601 idx = (idx + 1) & pmap_pteg_mask) {
1602 pvoh = &pmap_pvo_table[idx];
1603 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1604 if (!PVO_WIRED_P(pvo)) {
1605 pmap_pvo_remove(pvo, -1, NULL);
1606 pmap_pvo_reclaim_nextidx = idx;
1607 PMAPCOUNT(pvos_reclaimed);
1608 return pvo;
1609 }
1610 }
1611 }
1612 return NULL;
1613 }
1614
1615 /*
1616 * This returns whether this is the first mapping of a page.
1617 */
1618 int
1619 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1620 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1621 {
1622 struct pvo_entry *pvo;
1623 struct pvo_tqhead *pvoh;
1624 register_t msr;
1625 int ptegidx;
1626 int i;
1627 int poolflags = PR_NOWAIT;
1628
1629 /*
1630 * Compute the PTE Group index.
1631 */
1632 va &= ~ADDR_POFF;
1633 ptegidx = va_to_pteg(pm, va);
1634
1635 msr = pmap_interrupts_off();
1636
1637 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1638 if (pmap_pvo_remove_depth > 0)
1639 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1640 if (++pmap_pvo_enter_depth > 1)
1641 panic("pmap_pvo_enter: called recursively!");
1642 #endif
1643
1644 /*
1645 * Remove any existing mapping for this page. Reuse the
1646 * pvo entry if there a mapping.
1647 */
1648 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1649 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1650 #ifdef DEBUG
1651 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1652 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1653 ~(PTE_REF|PTE_CHG)) == 0 &&
1654 va < VM_MIN_KERNEL_ADDRESS) {
1655 printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1656 pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1657 printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1658 (unsigned int) pvo->pvo_pte.pte_hi,
1659 (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1660 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1661 #ifdef DDBX
1662 Debugger();
1663 #endif
1664 }
1665 #endif
1666 PMAPCOUNT(mappings_replaced);
1667 pmap_pvo_remove(pvo, -1, NULL);
1668 break;
1669 }
1670 }
1671
1672 /*
1673 * If we aren't overwriting an mapping, try to allocate
1674 */
1675 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1676 --pmap_pvo_enter_depth;
1677 #endif
1678 pmap_interrupts_restore(msr);
1679 if (pvo) {
1680 pmap_pvo_free(pvo);
1681 }
1682 pvo = pool_get(pl, poolflags);
1683
1684 #ifdef DEBUG
1685 /*
1686 * Exercise pmap_pvo_reclaim() a little.
1687 */
1688 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1689 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1690 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1691 pool_put(pl, pvo);
1692 pvo = NULL;
1693 }
1694 #endif
1695
1696 msr = pmap_interrupts_off();
1697 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1698 ++pmap_pvo_enter_depth;
1699 #endif
1700 if (pvo == NULL) {
1701 pvo = pmap_pvo_reclaim(pm);
1702 if (pvo == NULL) {
1703 if ((flags & PMAP_CANFAIL) == 0)
1704 panic("pmap_pvo_enter: failed");
1705 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1706 pmap_pvo_enter_depth--;
1707 #endif
1708 PMAPCOUNT(pvos_failed);
1709 pmap_interrupts_restore(msr);
1710 return ENOMEM;
1711 }
1712 }
1713
1714 pvo->pvo_vaddr = va;
1715 pvo->pvo_pmap = pm;
1716 pvo->pvo_vaddr &= ~ADDR_POFF;
1717 if (flags & VM_PROT_EXECUTE) {
1718 PMAPCOUNT(exec_mappings);
1719 pvo_set_exec(pvo);
1720 }
1721 if (flags & PMAP_WIRED)
1722 pvo->pvo_vaddr |= PVO_WIRED;
1723 if (pvo_head != &pmap_pvo_kunmanaged) {
1724 pvo->pvo_vaddr |= PVO_MANAGED;
1725 PMAPCOUNT(mappings);
1726 } else {
1727 PMAPCOUNT(kernel_mappings);
1728 }
1729 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1730
1731 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1732 if (PVO_WIRED_P(pvo))
1733 pvo->pvo_pmap->pm_stats.wired_count++;
1734 pvo->pvo_pmap->pm_stats.resident_count++;
1735 #if defined(DEBUG)
1736 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1737 DPRINTFN(PVOENTER,
1738 ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1739 pvo, pm, va, pa));
1740 #endif
1741
1742 /*
1743 * We hope this succeeds but it isn't required.
1744 */
1745 pvoh = &pmap_pvo_table[ptegidx];
1746 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1747 if (i >= 0) {
1748 PVO_PTEGIDX_SET(pvo, i);
1749 PVO_WHERE(pvo, ENTER_INSERT);
1750 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1751 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1752 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1753
1754 } else {
1755 /*
1756 * Since we didn't have room for this entry (which makes it
1757 * and evicted entry), place it at the head of the list.
1758 */
1759 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1760 PMAPCOUNT(ptes_evicted);
1761 pm->pm_evictions++;
1762 /*
1763 * If this is a kernel page, make sure it's active.
1764 */
1765 if (pm == pmap_kernel()) {
1766 i = pmap_pte_spill(pm, va, false);
1767 KASSERT(i);
1768 }
1769 }
1770 PMAP_PVO_CHECK(pvo); /* sanity check */
1771 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1772 pmap_pvo_enter_depth--;
1773 #endif
1774 pmap_interrupts_restore(msr);
1775 return 0;
1776 }
1777
1778 void
1779 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1780 {
1781 volatile struct pte *pt;
1782 int ptegidx;
1783
1784 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1785 if (++pmap_pvo_remove_depth > 1)
1786 panic("pmap_pvo_remove: called recursively!");
1787 #endif
1788
1789 /*
1790 * If we haven't been supplied the ptegidx, calculate it.
1791 */
1792 if (pteidx == -1) {
1793 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1794 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1795 } else {
1796 ptegidx = pteidx >> 3;
1797 if (pvo->pvo_pte.pte_hi & PTE_HID)
1798 ptegidx ^= pmap_pteg_mask;
1799 }
1800 PMAP_PVO_CHECK(pvo); /* sanity check */
1801
1802 /*
1803 * If there is an active pte entry, we need to deactivate it
1804 * (and save the ref & chg bits).
1805 */
1806 pt = pmap_pvo_to_pte(pvo, pteidx);
1807 if (pt != NULL) {
1808 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1809 PVO_WHERE(pvo, REMOVE);
1810 PVO_PTEGIDX_CLR(pvo);
1811 PMAPCOUNT(ptes_removed);
1812 } else {
1813 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1814 pvo->pvo_pmap->pm_evictions--;
1815 }
1816
1817 /*
1818 * Account for executable mappings.
1819 */
1820 if (PVO_EXECUTABLE_P(pvo))
1821 pvo_clear_exec(pvo);
1822
1823 /*
1824 * Update our statistics.
1825 */
1826 pvo->pvo_pmap->pm_stats.resident_count--;
1827 if (PVO_WIRED_P(pvo))
1828 pvo->pvo_pmap->pm_stats.wired_count--;
1829
1830 /*
1831 * Save the REF/CHG bits into their cache if the page is managed.
1832 */
1833 if (PVO_MANAGED_P(pvo)) {
1834 register_t ptelo = pvo->pvo_pte.pte_lo;
1835 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1836
1837 if (pg != NULL) {
1838 /*
1839 * If this page was changed and it is mapped exec,
1840 * invalidate it.
1841 */
1842 if ((ptelo & PTE_CHG) &&
1843 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1844 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1845 if (LIST_EMPTY(pvoh)) {
1846 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1847 "%#lx: clear-exec]\n",
1848 VM_PAGE_TO_PHYS(pg)));
1849 pmap_attr_clear(pg, PTE_EXEC);
1850 PMAPCOUNT(exec_uncached_pvo_remove);
1851 } else {
1852 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1853 "%#lx: syncicache]\n",
1854 VM_PAGE_TO_PHYS(pg)));
1855 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1856 PAGE_SIZE);
1857 PMAPCOUNT(exec_synced_pvo_remove);
1858 }
1859 }
1860
1861 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1862 }
1863 PMAPCOUNT(unmappings);
1864 } else {
1865 PMAPCOUNT(kernel_unmappings);
1866 }
1867
1868 /*
1869 * Remove the PVO from its lists and return it to the pool.
1870 */
1871 LIST_REMOVE(pvo, pvo_vlink);
1872 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1873 if (pvol) {
1874 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1875 }
1876 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1877 pmap_pvo_remove_depth--;
1878 #endif
1879 }
1880
1881 void
1882 pmap_pvo_free(struct pvo_entry *pvo)
1883 {
1884
1885 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1886 }
1887
1888 void
1889 pmap_pvo_free_list(struct pvo_head *pvol)
1890 {
1891 struct pvo_entry *pvo, *npvo;
1892
1893 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1894 npvo = LIST_NEXT(pvo, pvo_vlink);
1895 LIST_REMOVE(pvo, pvo_vlink);
1896 pmap_pvo_free(pvo);
1897 }
1898 }
1899
1900 /*
1901 * Mark a mapping as executable.
1902 * If this is the first executable mapping in the segment,
1903 * clear the noexec flag.
1904 */
1905 STATIC void
1906 pvo_set_exec(struct pvo_entry *pvo)
1907 {
1908 struct pmap *pm = pvo->pvo_pmap;
1909
1910 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1911 return;
1912 }
1913 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1914 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1915 {
1916 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1917 if (pm->pm_exec[sr]++ == 0) {
1918 pm->pm_sr[sr] &= ~SR_NOEXEC;
1919 }
1920 }
1921 #endif
1922 }
1923
1924 /*
1925 * Mark a mapping as non-executable.
1926 * If this was the last executable mapping in the segment,
1927 * set the noexec flag.
1928 */
1929 STATIC void
1930 pvo_clear_exec(struct pvo_entry *pvo)
1931 {
1932 struct pmap *pm = pvo->pvo_pmap;
1933
1934 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1935 return;
1936 }
1937 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1938 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1939 {
1940 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1941 if (--pm->pm_exec[sr] == 0) {
1942 pm->pm_sr[sr] |= SR_NOEXEC;
1943 }
1944 }
1945 #endif
1946 }
1947
1948 /*
1949 * Insert physical page at pa into the given pmap at virtual address va.
1950 */
1951 int
1952 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1953 {
1954 struct mem_region *mp;
1955 struct pvo_head *pvo_head;
1956 struct vm_page *pg;
1957 struct pool *pl;
1958 register_t pte_lo;
1959 int error;
1960 u_int pvo_flags;
1961 u_int was_exec = 0;
1962
1963 PMAP_LOCK();
1964
1965 if (__predict_false(!pmap_initialized)) {
1966 pvo_head = &pmap_pvo_kunmanaged;
1967 pl = &pmap_upvo_pool;
1968 pvo_flags = 0;
1969 pg = NULL;
1970 was_exec = PTE_EXEC;
1971 } else {
1972 pvo_head = pa_to_pvoh(pa, &pg);
1973 pl = &pmap_mpvo_pool;
1974 pvo_flags = PVO_MANAGED;
1975 }
1976
1977 DPRINTFN(ENTER,
1978 ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1979 pm, va, pa, prot, flags));
1980
1981 /*
1982 * If this is a managed page, and it's the first reference to the
1983 * page clear the execness of the page. Otherwise fetch the execness.
1984 */
1985 if (pg != NULL)
1986 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1987
1988 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1989
1990 /*
1991 * Assume the page is cache inhibited and access is guarded unless
1992 * it's in our available memory array. If it is in the memory array,
1993 * asssume it's in memory coherent memory.
1994 */
1995 pte_lo = PTE_IG;
1996 if ((flags & PMAP_NC) == 0) {
1997 for (mp = mem; mp->size; mp++) {
1998 if (pa >= mp->start && pa < mp->start + mp->size) {
1999 pte_lo = PTE_M;
2000 break;
2001 }
2002 }
2003 }
2004
2005 if (prot & VM_PROT_WRITE)
2006 pte_lo |= PTE_BW;
2007 else
2008 pte_lo |= PTE_BR;
2009
2010 /*
2011 * If this was in response to a fault, "pre-fault" the PTE's
2012 * changed/referenced bit appropriately.
2013 */
2014 if (flags & VM_PROT_WRITE)
2015 pte_lo |= PTE_CHG;
2016 if (flags & VM_PROT_ALL)
2017 pte_lo |= PTE_REF;
2018
2019 /*
2020 * We need to know if this page can be executable
2021 */
2022 flags |= (prot & VM_PROT_EXECUTE);
2023
2024 /*
2025 * Record mapping for later back-translation and pte spilling.
2026 * This will overwrite any existing mapping.
2027 */
2028 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
2029
2030 /*
2031 * Flush the real page from the instruction cache if this page is
2032 * mapped executable and cacheable and has not been flushed since
2033 * the last time it was modified.
2034 */
2035 if (error == 0 &&
2036 (flags & VM_PROT_EXECUTE) &&
2037 (pte_lo & PTE_I) == 0 &&
2038 was_exec == 0) {
2039 DPRINTFN(ENTER, (" syncicache"));
2040 PMAPCOUNT(exec_synced);
2041 pmap_syncicache(pa, PAGE_SIZE);
2042 if (pg != NULL) {
2043 pmap_attr_save(pg, PTE_EXEC);
2044 PMAPCOUNT(exec_cached);
2045 #if defined(DEBUG) || defined(PMAPDEBUG)
2046 if (pmapdebug & PMAPDEBUG_ENTER)
2047 printf(" marked-as-exec");
2048 else if (pmapdebug & PMAPDEBUG_EXEC)
2049 printf("[pmap_enter: %#lx: marked-as-exec]\n",
2050 VM_PAGE_TO_PHYS(pg));
2051
2052 #endif
2053 }
2054 }
2055
2056 DPRINTFN(ENTER, (": error=%d\n", error));
2057
2058 PMAP_UNLOCK();
2059
2060 return error;
2061 }
2062
2063 void
2064 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2065 {
2066 struct mem_region *mp;
2067 register_t pte_lo;
2068 int error;
2069
2070 #if defined (PPC_OEA64_BRIDGE)
2071 if (va < VM_MIN_KERNEL_ADDRESS)
2072 panic("pmap_kenter_pa: attempt to enter "
2073 "non-kernel address %#lx!", va);
2074 #endif
2075
2076 DPRINTFN(KENTER,
2077 ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
2078
2079 PMAP_LOCK();
2080
2081 /*
2082 * Assume the page is cache inhibited and access is guarded unless
2083 * it's in our available memory array. If it is in the memory array,
2084 * asssume it's in memory coherent memory.
2085 */
2086 pte_lo = PTE_IG;
2087 if ((prot & PMAP_NC) == 0) {
2088 for (mp = mem; mp->size; mp++) {
2089 if (pa >= mp->start && pa < mp->start + mp->size) {
2090 pte_lo = PTE_M;
2091 break;
2092 }
2093 }
2094 }
2095
2096 if (prot & VM_PROT_WRITE)
2097 pte_lo |= PTE_BW;
2098 else
2099 pte_lo |= PTE_BR;
2100
2101 /*
2102 * We don't care about REF/CHG on PVOs on the unmanaged list.
2103 */
2104 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2105 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2106
2107 if (error != 0)
2108 panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
2109 va, pa, error);
2110
2111 PMAP_UNLOCK();
2112 }
2113
2114 void
2115 pmap_kremove(vaddr_t va, vsize_t len)
2116 {
2117 if (va < VM_MIN_KERNEL_ADDRESS)
2118 panic("pmap_kremove: attempt to remove "
2119 "non-kernel address %#lx!", va);
2120
2121 DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
2122 pmap_remove(pmap_kernel(), va, va + len);
2123 }
2124
2125 /*
2126 * Remove the given range of mapping entries.
2127 */
2128 void
2129 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2130 {
2131 struct pvo_head pvol;
2132 struct pvo_entry *pvo;
2133 register_t msr;
2134 int pteidx;
2135
2136 PMAP_LOCK();
2137 LIST_INIT(&pvol);
2138 msr = pmap_interrupts_off();
2139 for (; va < endva; va += PAGE_SIZE) {
2140 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2141 if (pvo != NULL) {
2142 pmap_pvo_remove(pvo, pteidx, &pvol);
2143 }
2144 }
2145 pmap_interrupts_restore(msr);
2146 pmap_pvo_free_list(&pvol);
2147 PMAP_UNLOCK();
2148 }
2149
2150 /*
2151 * Get the physical page address for the given pmap/virtual address.
2152 */
2153 bool
2154 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2155 {
2156 struct pvo_entry *pvo;
2157 register_t msr;
2158
2159 PMAP_LOCK();
2160
2161 /*
2162 * If this is a kernel pmap lookup, also check the battable
2163 * and if we get a hit, translate the VA to a PA using the
2164 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2165 * that will wrap back to 0.
2166 */
2167 if (pm == pmap_kernel() &&
2168 (va < VM_MIN_KERNEL_ADDRESS ||
2169 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2170 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2171 #if defined (PPC_OEA)
2172 if ((MFPVR() >> 16) != MPC601) {
2173 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2174 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2175 register_t batl =
2176 battable[va >> ADDR_SR_SHFT].batl;
2177 register_t mask =
2178 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2179 if (pap)
2180 *pap = (batl & mask) | (va & ~mask);
2181 PMAP_UNLOCK();
2182 return true;
2183 }
2184 } else {
2185 register_t batu = battable[va >> 23].batu;
2186 register_t batl = battable[va >> 23].batl;
2187 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2188 if (BAT601_VALID_P(batl) &&
2189 BAT601_VA_MATCH_P(batu, batl, va)) {
2190 register_t mask =
2191 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2192 if (pap)
2193 *pap = (batl & mask) | (va & ~mask);
2194 PMAP_UNLOCK();
2195 return true;
2196 } else if (SR601_VALID_P(sr) &&
2197 SR601_PA_MATCH_P(sr, va)) {
2198 if (pap)
2199 *pap = va;
2200 PMAP_UNLOCK();
2201 return true;
2202 }
2203 }
2204 PMAP_UNLOCK();
2205 return false;
2206 #elif defined (PPC_OEA64_BRIDGE)
2207 if (va >= SEGMENT_LENGTH)
2208 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2209 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2210 else {
2211 if (pap)
2212 *pap = va;
2213 PMAP_UNLOCK();
2214 return true;
2215 }
2216 #elif defined (PPC_OEA64)
2217 #error PPC_OEA64 not supported
2218 #endif /* PPC_OEA */
2219 }
2220
2221 msr = pmap_interrupts_off();
2222 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2223 if (pvo != NULL) {
2224 PMAP_PVO_CHECK(pvo); /* sanity check */
2225 if (pap)
2226 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2227 | (va & ADDR_POFF);
2228 }
2229 pmap_interrupts_restore(msr);
2230 PMAP_UNLOCK();
2231 return pvo != NULL;
2232 }
2233
2234 /*
2235 * Lower the protection on the specified range of this pmap.
2236 */
2237 void
2238 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2239 {
2240 struct pvo_entry *pvo;
2241 volatile struct pte *pt;
2242 register_t msr;
2243 int pteidx;
2244
2245 /*
2246 * Since this routine only downgrades protection, we should
2247 * always be called with at least one bit not set.
2248 */
2249 KASSERT(prot != VM_PROT_ALL);
2250
2251 /*
2252 * If there is no protection, this is equivalent to
2253 * remove the pmap from the pmap.
2254 */
2255 if ((prot & VM_PROT_READ) == 0) {
2256 pmap_remove(pm, va, endva);
2257 return;
2258 }
2259
2260 PMAP_LOCK();
2261
2262 msr = pmap_interrupts_off();
2263 for (; va < endva; va += PAGE_SIZE) {
2264 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2265 if (pvo == NULL)
2266 continue;
2267 PMAP_PVO_CHECK(pvo); /* sanity check */
2268
2269 /*
2270 * Revoke executable if asked to do so.
2271 */
2272 if ((prot & VM_PROT_EXECUTE) == 0)
2273 pvo_clear_exec(pvo);
2274
2275 #if 0
2276 /*
2277 * If the page is already read-only, no change
2278 * needs to be made.
2279 */
2280 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2281 continue;
2282 #endif
2283 /*
2284 * Grab the PTE pointer before we diddle with
2285 * the cached PTE copy.
2286 */
2287 pt = pmap_pvo_to_pte(pvo, pteidx);
2288 /*
2289 * Change the protection of the page.
2290 */
2291 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2292 pvo->pvo_pte.pte_lo |= PTE_BR;
2293
2294 /*
2295 * If the PVO is in the page table, update
2296 * that pte at well.
2297 */
2298 if (pt != NULL) {
2299 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2300 PVO_WHERE(pvo, PMAP_PROTECT);
2301 PMAPCOUNT(ptes_changed);
2302 }
2303
2304 PMAP_PVO_CHECK(pvo); /* sanity check */
2305 }
2306 pmap_interrupts_restore(msr);
2307 PMAP_UNLOCK();
2308 }
2309
2310 void
2311 pmap_unwire(pmap_t pm, vaddr_t va)
2312 {
2313 struct pvo_entry *pvo;
2314 register_t msr;
2315
2316 PMAP_LOCK();
2317 msr = pmap_interrupts_off();
2318 pvo = pmap_pvo_find_va(pm, va, NULL);
2319 if (pvo != NULL) {
2320 if (PVO_WIRED_P(pvo)) {
2321 pvo->pvo_vaddr &= ~PVO_WIRED;
2322 pm->pm_stats.wired_count--;
2323 }
2324 PMAP_PVO_CHECK(pvo); /* sanity check */
2325 }
2326 pmap_interrupts_restore(msr);
2327 PMAP_UNLOCK();
2328 }
2329
2330 /*
2331 * Lower the protection on the specified physical page.
2332 */
2333 void
2334 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2335 {
2336 struct pvo_head *pvo_head, pvol;
2337 struct pvo_entry *pvo, *next_pvo;
2338 volatile struct pte *pt;
2339 register_t msr;
2340
2341 PMAP_LOCK();
2342
2343 KASSERT(prot != VM_PROT_ALL);
2344 LIST_INIT(&pvol);
2345 msr = pmap_interrupts_off();
2346
2347 /*
2348 * When UVM reuses a page, it does a pmap_page_protect with
2349 * VM_PROT_NONE. At that point, we can clear the exec flag
2350 * since we know the page will have different contents.
2351 */
2352 if ((prot & VM_PROT_READ) == 0) {
2353 DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2354 VM_PAGE_TO_PHYS(pg)));
2355 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2356 PMAPCOUNT(exec_uncached_page_protect);
2357 pmap_attr_clear(pg, PTE_EXEC);
2358 }
2359 }
2360
2361 pvo_head = vm_page_to_pvoh(pg);
2362 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2363 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2364 PMAP_PVO_CHECK(pvo); /* sanity check */
2365
2366 /*
2367 * Downgrading to no mapping at all, we just remove the entry.
2368 */
2369 if ((prot & VM_PROT_READ) == 0) {
2370 pmap_pvo_remove(pvo, -1, &pvol);
2371 continue;
2372 }
2373
2374 /*
2375 * If EXEC permission is being revoked, just clear the
2376 * flag in the PVO.
2377 */
2378 if ((prot & VM_PROT_EXECUTE) == 0)
2379 pvo_clear_exec(pvo);
2380
2381 /*
2382 * If this entry is already RO, don't diddle with the
2383 * page table.
2384 */
2385 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2386 PMAP_PVO_CHECK(pvo);
2387 continue;
2388 }
2389
2390 /*
2391 * Grab the PTE before the we diddle the bits so
2392 * pvo_to_pte can verify the pte contents are as
2393 * expected.
2394 */
2395 pt = pmap_pvo_to_pte(pvo, -1);
2396 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2397 pvo->pvo_pte.pte_lo |= PTE_BR;
2398 if (pt != NULL) {
2399 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2400 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2401 PMAPCOUNT(ptes_changed);
2402 }
2403 PMAP_PVO_CHECK(pvo); /* sanity check */
2404 }
2405 pmap_interrupts_restore(msr);
2406 pmap_pvo_free_list(&pvol);
2407
2408 PMAP_UNLOCK();
2409 }
2410
2411 /*
2412 * Activate the address space for the specified process. If the process
2413 * is the current process, load the new MMU context.
2414 */
2415 void
2416 pmap_activate(struct lwp *l)
2417 {
2418 struct pcb *pcb = &l->l_addr->u_pcb;
2419 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2420
2421 DPRINTFN(ACTIVATE,
2422 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2423
2424 /*
2425 * XXX Normally performed in cpu_fork().
2426 */
2427 pcb->pcb_pm = pmap;
2428
2429 /*
2430 * In theory, the SR registers need only be valid on return
2431 * to user space wait to do them there.
2432 */
2433 if (l == curlwp) {
2434 /* Store pointer to new current pmap. */
2435 curpm = pmap;
2436 }
2437 }
2438
2439 /*
2440 * Deactivate the specified process's address space.
2441 */
2442 void
2443 pmap_deactivate(struct lwp *l)
2444 {
2445 }
2446
2447 bool
2448 pmap_query_bit(struct vm_page *pg, int ptebit)
2449 {
2450 struct pvo_entry *pvo;
2451 volatile struct pte *pt;
2452 register_t msr;
2453
2454 PMAP_LOCK();
2455
2456 if (pmap_attr_fetch(pg) & ptebit) {
2457 PMAP_UNLOCK();
2458 return true;
2459 }
2460
2461 msr = pmap_interrupts_off();
2462 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2463 PMAP_PVO_CHECK(pvo); /* sanity check */
2464 /*
2465 * See if we saved the bit off. If so cache, it and return
2466 * success.
2467 */
2468 if (pvo->pvo_pte.pte_lo & ptebit) {
2469 pmap_attr_save(pg, ptebit);
2470 PMAP_PVO_CHECK(pvo); /* sanity check */
2471 pmap_interrupts_restore(msr);
2472 PMAP_UNLOCK();
2473 return true;
2474 }
2475 }
2476 /*
2477 * No luck, now go thru the hard part of looking at the ptes
2478 * themselves. Sync so any pending REF/CHG bits are flushed
2479 * to the PTEs.
2480 */
2481 SYNC();
2482 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2483 PMAP_PVO_CHECK(pvo); /* sanity check */
2484 /*
2485 * See if this pvo have a valid PTE. If so, fetch the
2486 * REF/CHG bits from the valid PTE. If the appropriate
2487 * ptebit is set, cache, it and return success.
2488 */
2489 pt = pmap_pvo_to_pte(pvo, -1);
2490 if (pt != NULL) {
2491 pmap_pte_synch(pt, &pvo->pvo_pte);
2492 if (pvo->pvo_pte.pte_lo & ptebit) {
2493 pmap_attr_save(pg, ptebit);
2494 PMAP_PVO_CHECK(pvo); /* sanity check */
2495 pmap_interrupts_restore(msr);
2496 PMAP_UNLOCK();
2497 return true;
2498 }
2499 }
2500 }
2501 pmap_interrupts_restore(msr);
2502 PMAP_UNLOCK();
2503 return false;
2504 }
2505
2506 bool
2507 pmap_clear_bit(struct vm_page *pg, int ptebit)
2508 {
2509 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2510 struct pvo_entry *pvo;
2511 volatile struct pte *pt;
2512 register_t msr;
2513 int rv = 0;
2514
2515 PMAP_LOCK();
2516 msr = pmap_interrupts_off();
2517
2518 /*
2519 * Fetch the cache value
2520 */
2521 rv |= pmap_attr_fetch(pg);
2522
2523 /*
2524 * Clear the cached value.
2525 */
2526 pmap_attr_clear(pg, ptebit);
2527
2528 /*
2529 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2530 * can reset the right ones). Note that since the pvo entries and
2531 * list heads are accessed via BAT0 and are never placed in the
2532 * page table, we don't have to worry about further accesses setting
2533 * the REF/CHG bits.
2534 */
2535 SYNC();
2536
2537 /*
2538 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2539 * valid PTE. If so, clear the ptebit from the valid PTE.
2540 */
2541 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2542 PMAP_PVO_CHECK(pvo); /* sanity check */
2543 pt = pmap_pvo_to_pte(pvo, -1);
2544 if (pt != NULL) {
2545 /*
2546 * Only sync the PTE if the bit we are looking
2547 * for is not already set.
2548 */
2549 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2550 pmap_pte_synch(pt, &pvo->pvo_pte);
2551 /*
2552 * If the bit we are looking for was already set,
2553 * clear that bit in the pte.
2554 */
2555 if (pvo->pvo_pte.pte_lo & ptebit)
2556 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2557 }
2558 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2559 pvo->pvo_pte.pte_lo &= ~ptebit;
2560 PMAP_PVO_CHECK(pvo); /* sanity check */
2561 }
2562 pmap_interrupts_restore(msr);
2563
2564 /*
2565 * If we are clearing the modify bit and this page was marked EXEC
2566 * and the user of the page thinks the page was modified, then we
2567 * need to clean it from the icache if it's mapped or clear the EXEC
2568 * bit if it's not mapped. The page itself might not have the CHG
2569 * bit set if the modification was done via DMA to the page.
2570 */
2571 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2572 if (LIST_EMPTY(pvoh)) {
2573 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2574 VM_PAGE_TO_PHYS(pg)));
2575 pmap_attr_clear(pg, PTE_EXEC);
2576 PMAPCOUNT(exec_uncached_clear_modify);
2577 } else {
2578 DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2579 VM_PAGE_TO_PHYS(pg)));
2580 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2581 PMAPCOUNT(exec_synced_clear_modify);
2582 }
2583 }
2584 PMAP_UNLOCK();
2585 return (rv & ptebit) != 0;
2586 }
2587
2588 void
2589 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2590 {
2591 struct pvo_entry *pvo;
2592 size_t offset = va & ADDR_POFF;
2593 int s;
2594
2595 PMAP_LOCK();
2596 s = splvm();
2597 while (len > 0) {
2598 size_t seglen = PAGE_SIZE - offset;
2599 if (seglen > len)
2600 seglen = len;
2601 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2602 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2603 pmap_syncicache(
2604 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2605 PMAP_PVO_CHECK(pvo);
2606 }
2607 va += seglen;
2608 len -= seglen;
2609 offset = 0;
2610 }
2611 splx(s);
2612 PMAP_UNLOCK();
2613 }
2614
2615 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2616 void
2617 pmap_pte_print(volatile struct pte *pt)
2618 {
2619 printf("PTE %p: ", pt);
2620
2621 #if defined(PPC_OEA)
2622 /* High word: */
2623 printf("0x%08lx: [", pt->pte_hi);
2624 #elif defined (PPC_OEA64_BRIDGE)
2625 printf("0x%016llx: [", pt->pte_hi);
2626 #else /* PPC_OEA64 */
2627 printf("0x%016lx: [", pt->pte_hi);
2628 #endif /* PPC_OEA */
2629
2630 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2631 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2632
2633 #if defined (PPC_OEA)
2634 printf("0x%06lx 0x%02lx",
2635 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2636 pt->pte_hi & PTE_API);
2637 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2638 #elif defined (PPC_OEA64)
2639 printf("0x%06lx 0x%02lx",
2640 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2641 pt->pte_hi & PTE_API);
2642 printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
2643 #else
2644 /* PPC_OEA64_BRIDGE */
2645 printf("0x%06llx 0x%02llx",
2646 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2647 pt->pte_hi & PTE_API);
2648 printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2649 #endif /* PPC_OEA */
2650
2651 /* Low word: */
2652 #if defined (PPC_OEA)
2653 printf(" 0x%08lx: [", pt->pte_lo);
2654 printf("0x%05lx... ", pt->pte_lo >> 12);
2655 #elif defined (PPC_OEA64)
2656 printf(" 0x%016lx: [", pt->pte_lo);
2657 printf("0x%012lx... ", pt->pte_lo >> 12);
2658 #else /* PPC_OEA64_BRIDGE */
2659 printf(" 0x%016llx: [", pt->pte_lo);
2660 printf("0x%012llx... ", pt->pte_lo >> 12);
2661 #endif
2662 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2663 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2664 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2665 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2666 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2667 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2668 switch (pt->pte_lo & PTE_PP) {
2669 case PTE_BR: printf("br]\n"); break;
2670 case PTE_BW: printf("bw]\n"); break;
2671 case PTE_SO: printf("so]\n"); break;
2672 case PTE_SW: printf("sw]\n"); break;
2673 }
2674 }
2675 #endif
2676
2677 #if defined(DDB)
2678 void
2679 pmap_pteg_check(void)
2680 {
2681 volatile struct pte *pt;
2682 int i;
2683 int ptegidx;
2684 u_int p_valid = 0;
2685 u_int s_valid = 0;
2686 u_int invalid = 0;
2687
2688 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2689 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2690 if (pt->pte_hi & PTE_VALID) {
2691 if (pt->pte_hi & PTE_HID)
2692 s_valid++;
2693 else
2694 {
2695 p_valid++;
2696 }
2697 } else
2698 invalid++;
2699 }
2700 }
2701 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2702 p_valid, p_valid, s_valid, s_valid,
2703 invalid, invalid);
2704 }
2705
2706 void
2707 pmap_print_mmuregs(void)
2708 {
2709 int i;
2710 u_int cpuvers;
2711 #ifndef PPC_OEA64
2712 vaddr_t addr;
2713 register_t soft_sr[16];
2714 #endif
2715 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2716 struct bat soft_ibat[4];
2717 struct bat soft_dbat[4];
2718 #endif
2719 register_t sdr1;
2720
2721 cpuvers = MFPVR() >> 16;
2722 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2723 #ifndef PPC_OEA64
2724 addr = 0;
2725 for (i = 0; i < 16; i++) {
2726 soft_sr[i] = MFSRIN(addr);
2727 addr += (1 << ADDR_SR_SHFT);
2728 }
2729 #endif
2730
2731 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2732 /* read iBAT (601: uBAT) registers */
2733 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2734 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2735 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2736 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2737 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2738 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2739 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2740 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2741
2742
2743 if (cpuvers != MPC601) {
2744 /* read dBAT registers */
2745 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2746 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2747 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2748 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2749 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2750 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2751 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2752 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2753 }
2754 #endif
2755
2756 printf("SDR1:\t0x%lx\n", (long) sdr1);
2757 #ifndef PPC_OEA64
2758 printf("SR[]:\t");
2759 for (i = 0; i < 4; i++)
2760 printf("0x%08lx, ", (long) soft_sr[i]);
2761 printf("\n\t");
2762 for ( ; i < 8; i++)
2763 printf("0x%08lx, ", (long) soft_sr[i]);
2764 printf("\n\t");
2765 for ( ; i < 12; i++)
2766 printf("0x%08lx, ", (long) soft_sr[i]);
2767 printf("\n\t");
2768 for ( ; i < 16; i++)
2769 printf("0x%08lx, ", (long) soft_sr[i]);
2770 printf("\n");
2771 #endif
2772
2773 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2774 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2775 for (i = 0; i < 4; i++) {
2776 printf("0x%08lx 0x%08lx, ",
2777 soft_ibat[i].batu, soft_ibat[i].batl);
2778 if (i == 1)
2779 printf("\n\t");
2780 }
2781 if (cpuvers != MPC601) {
2782 printf("\ndBAT[]:\t");
2783 for (i = 0; i < 4; i++) {
2784 printf("0x%08lx 0x%08lx, ",
2785 soft_dbat[i].batu, soft_dbat[i].batl);
2786 if (i == 1)
2787 printf("\n\t");
2788 }
2789 }
2790 printf("\n");
2791 #endif /* PPC_OEA... */
2792 }
2793
2794 void
2795 pmap_print_pte(pmap_t pm, vaddr_t va)
2796 {
2797 struct pvo_entry *pvo;
2798 volatile struct pte *pt;
2799 int pteidx;
2800
2801 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2802 if (pvo != NULL) {
2803 pt = pmap_pvo_to_pte(pvo, pteidx);
2804 if (pt != NULL) {
2805 #if defined (PPC_OEA) || defined (PPC_OEA64)
2806 printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2807 va, pt,
2808 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2809 pt->pte_hi, pt->pte_lo);
2810 #else /* PPC_OEA64_BRIDGE */
2811 printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
2812 va, pt,
2813 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2814 pt->pte_hi, pt->pte_lo);
2815 #endif
2816 } else {
2817 printf("No valid PTE found\n");
2818 }
2819 } else {
2820 printf("Address not in pmap\n");
2821 }
2822 }
2823
2824 void
2825 pmap_pteg_dist(void)
2826 {
2827 struct pvo_entry *pvo;
2828 int ptegidx;
2829 int depth;
2830 int max_depth = 0;
2831 unsigned int depths[64];
2832
2833 memset(depths, 0, sizeof(depths));
2834 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2835 depth = 0;
2836 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2837 depth++;
2838 }
2839 if (depth > max_depth)
2840 max_depth = depth;
2841 if (depth > 63)
2842 depth = 63;
2843 depths[depth]++;
2844 }
2845
2846 for (depth = 0; depth < 64; depth++) {
2847 printf(" [%2d]: %8u", depth, depths[depth]);
2848 if ((depth & 3) == 3)
2849 printf("\n");
2850 if (depth == max_depth)
2851 break;
2852 }
2853 if ((depth & 3) != 3)
2854 printf("\n");
2855 printf("Max depth found was %d\n", max_depth);
2856 }
2857 #endif /* DEBUG */
2858
2859 #if defined(PMAPCHECK) || defined(DEBUG)
2860 void
2861 pmap_pvo_verify(void)
2862 {
2863 int ptegidx;
2864 int s;
2865
2866 s = splvm();
2867 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2868 struct pvo_entry *pvo;
2869 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2870 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2871 panic("pmap_pvo_verify: invalid pvo %p "
2872 "on list %#x", pvo, ptegidx);
2873 pmap_pvo_check(pvo);
2874 }
2875 }
2876 splx(s);
2877 }
2878 #endif /* PMAPCHECK */
2879
2880
2881 void *
2882 pmap_pool_ualloc(struct pool *pp, int flags)
2883 {
2884 struct pvo_page *pvop;
2885
2886 if (uvm.page_init_done != true) {
2887 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2888 }
2889
2890 PMAP_LOCK();
2891 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2892 if (pvop != NULL) {
2893 pmap_upvop_free--;
2894 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2895 PMAP_UNLOCK();
2896 return pvop;
2897 }
2898 PMAP_UNLOCK();
2899 return pmap_pool_malloc(pp, flags);
2900 }
2901
2902 void *
2903 pmap_pool_malloc(struct pool *pp, int flags)
2904 {
2905 struct pvo_page *pvop;
2906 struct vm_page *pg;
2907
2908 PMAP_LOCK();
2909 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2910 if (pvop != NULL) {
2911 pmap_mpvop_free--;
2912 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2913 PMAP_UNLOCK();
2914 return pvop;
2915 }
2916 PMAP_UNLOCK();
2917 again:
2918 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2919 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2920 if (__predict_false(pg == NULL)) {
2921 if (flags & PR_WAITOK) {
2922 uvm_wait("plpg");
2923 goto again;
2924 } else {
2925 return (0);
2926 }
2927 }
2928 return (void *) VM_PAGE_TO_PHYS(pg);
2929 }
2930
2931 void
2932 pmap_pool_ufree(struct pool *pp, void *va)
2933 {
2934 struct pvo_page *pvop;
2935 #if 0
2936 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2937 pmap_pool_mfree(va, size, tag);
2938 return;
2939 }
2940 #endif
2941 PMAP_LOCK();
2942 pvop = va;
2943 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2944 pmap_upvop_free++;
2945 if (pmap_upvop_free > pmap_upvop_maxfree)
2946 pmap_upvop_maxfree = pmap_upvop_free;
2947 PMAP_UNLOCK();
2948 }
2949
2950 void
2951 pmap_pool_mfree(struct pool *pp, void *va)
2952 {
2953 struct pvo_page *pvop;
2954
2955 PMAP_LOCK();
2956 pvop = va;
2957 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2958 pmap_mpvop_free++;
2959 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2960 pmap_mpvop_maxfree = pmap_mpvop_free;
2961 PMAP_UNLOCK();
2962 #if 0
2963 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2964 #endif
2965 }
2966
2967 /*
2968 * This routine in bootstraping to steal to-be-managed memory (which will
2969 * then be unmanaged). We use it to grab from the first 256MB for our
2970 * pmap needs and above 256MB for other stuff.
2971 */
2972 vaddr_t
2973 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2974 {
2975 vsize_t size;
2976 vaddr_t va;
2977 paddr_t pa = 0;
2978 int npgs, bank;
2979 struct vm_physseg *ps;
2980
2981 if (uvm.page_init_done == true)
2982 panic("pmap_steal_memory: called _after_ bootstrap");
2983
2984 *vstartp = VM_MIN_KERNEL_ADDRESS;
2985 *vendp = VM_MAX_KERNEL_ADDRESS;
2986
2987 size = round_page(vsize);
2988 npgs = atop(size);
2989
2990 /*
2991 * PA 0 will never be among those given to UVM so we can use it
2992 * to indicate we couldn't steal any memory.
2993 */
2994 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2995 if (ps->free_list == VM_FREELIST_FIRST256 &&
2996 ps->avail_end - ps->avail_start >= npgs) {
2997 pa = ptoa(ps->avail_start);
2998 break;
2999 }
3000 }
3001
3002 if (pa == 0)
3003 panic("pmap_steal_memory: no approriate memory to steal!");
3004
3005 ps->avail_start += npgs;
3006 ps->start += npgs;
3007
3008 /*
3009 * If we've used up all the pages in the segment, remove it and
3010 * compact the list.
3011 */
3012 if (ps->avail_start == ps->end) {
3013 /*
3014 * If this was the last one, then a very bad thing has occurred
3015 */
3016 if (--vm_nphysseg == 0)
3017 panic("pmap_steal_memory: out of memory!");
3018
3019 printf("pmap_steal_memory: consumed bank %d\n", bank);
3020 for (; bank < vm_nphysseg; bank++, ps++) {
3021 ps[0] = ps[1];
3022 }
3023 }
3024
3025 va = (vaddr_t) pa;
3026 memset((void *) va, 0, size);
3027 pmap_pages_stolen += npgs;
3028 #ifdef DEBUG
3029 if (pmapdebug && npgs > 1) {
3030 u_int cnt = 0;
3031 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
3032 cnt += ps->avail_end - ps->avail_start;
3033 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
3034 npgs, pmap_pages_stolen, cnt);
3035 }
3036 #endif
3037
3038 return va;
3039 }
3040
3041 /*
3042 * Find a chuck of memory with right size and alignment.
3043 */
3044 void *
3045 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
3046 {
3047 struct mem_region *mp;
3048 paddr_t s, e;
3049 int i, j;
3050
3051 size = round_page(size);
3052
3053 DPRINTFN(BOOT,
3054 ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
3055 size, alignment, at_end));
3056
3057 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
3058 panic("pmap_boot_find_memory: invalid alignment %lx",
3059 alignment);
3060
3061 if (at_end) {
3062 if (alignment != PAGE_SIZE)
3063 panic("pmap_boot_find_memory: invalid ending "
3064 "alignment %lx", alignment);
3065
3066 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3067 s = mp->start + mp->size - size;
3068 if (s >= mp->start && mp->size >= size) {
3069 DPRINTFN(BOOT,(": %lx\n", s));
3070 DPRINTFN(BOOT,
3071 ("pmap_boot_find_memory: b-avail[%d] start "
3072 "0x%lx size 0x%lx\n", mp - avail,
3073 mp->start, mp->size));
3074 mp->size -= size;
3075 DPRINTFN(BOOT,
3076 ("pmap_boot_find_memory: a-avail[%d] start "
3077 "0x%lx size 0x%lx\n", mp - avail,
3078 mp->start, mp->size));
3079 return (void *) s;
3080 }
3081 }
3082 panic("pmap_boot_find_memory: no available memory");
3083 }
3084
3085 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3086 s = (mp->start + alignment - 1) & ~(alignment-1);
3087 e = s + size;
3088
3089 /*
3090 * Is the calculated region entirely within the region?
3091 */
3092 if (s < mp->start || e > mp->start + mp->size)
3093 continue;
3094
3095 DPRINTFN(BOOT,(": %lx\n", s));
3096 if (s == mp->start) {
3097 /*
3098 * If the block starts at the beginning of region,
3099 * adjust the size & start. (the region may now be
3100 * zero in length)
3101 */
3102 DPRINTFN(BOOT,
3103 ("pmap_boot_find_memory: b-avail[%d] start "
3104 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3105 mp->start += size;
3106 mp->size -= size;
3107 DPRINTFN(BOOT,
3108 ("pmap_boot_find_memory: a-avail[%d] start "
3109 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3110 } else if (e == mp->start + mp->size) {
3111 /*
3112 * If the block starts at the beginning of region,
3113 * adjust only the size.
3114 */
3115 DPRINTFN(BOOT,
3116 ("pmap_boot_find_memory: b-avail[%d] start "
3117 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3118 mp->size -= size;
3119 DPRINTFN(BOOT,
3120 ("pmap_boot_find_memory: a-avail[%d] start "
3121 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3122 } else {
3123 /*
3124 * Block is in the middle of the region, so we
3125 * have to split it in two.
3126 */
3127 for (j = avail_cnt; j > i + 1; j--) {
3128 avail[j] = avail[j-1];
3129 }
3130 DPRINTFN(BOOT,
3131 ("pmap_boot_find_memory: b-avail[%d] start "
3132 "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3133 mp[1].start = e;
3134 mp[1].size = mp[0].start + mp[0].size - e;
3135 mp[0].size = s - mp[0].start;
3136 avail_cnt++;
3137 for (; i < avail_cnt; i++) {
3138 DPRINTFN(BOOT,
3139 ("pmap_boot_find_memory: a-avail[%d] "
3140 "start 0x%lx size 0x%lx\n", i,
3141 avail[i].start, avail[i].size));
3142 }
3143 }
3144 return (void *) s;
3145 }
3146 panic("pmap_boot_find_memory: not enough memory for "
3147 "%lx/%lx allocation?", size, alignment);
3148 }
3149
3150 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3151 #if defined (PPC_OEA64_BRIDGE)
3152 int
3153 pmap_setup_segment0_map(int use_large_pages, ...)
3154 {
3155 vaddr_t va;
3156
3157 register_t pte_lo = 0x0;
3158 int ptegidx = 0, i = 0;
3159 struct pte pte;
3160 va_list ap;
3161
3162 /* Coherent + Supervisor RW, no user access */
3163 pte_lo = PTE_M;
3164
3165 /* XXXSL
3166 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3167 * these have to take priority.
3168 */
3169 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3170 ptegidx = va_to_pteg(pmap_kernel(), va);
3171 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3172 i = pmap_pte_insert(ptegidx, &pte);
3173 }
3174
3175 va_start(ap, use_large_pages);
3176 while (1) {
3177 paddr_t pa;
3178 size_t size;
3179
3180 va = va_arg(ap, vaddr_t);
3181
3182 if (va == 0)
3183 break;
3184
3185 pa = va_arg(ap, paddr_t);
3186 size = va_arg(ap, size_t);
3187
3188 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3189 #if 0
3190 printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __func__, va, pa);
3191 #endif
3192 ptegidx = va_to_pteg(pmap_kernel(), va);
3193 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3194 i = pmap_pte_insert(ptegidx, &pte);
3195 }
3196 }
3197
3198 TLBSYNC();
3199 SYNC();
3200 return (0);
3201 }
3202 #endif /* PPC_OEA64_BRIDGE */
3203
3204 /*
3205 * This is not part of the defined PMAP interface and is specific to the
3206 * PowerPC architecture. This is called during initppc, before the system
3207 * is really initialized.
3208 */
3209 void
3210 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3211 {
3212 struct mem_region *mp, tmp;
3213 paddr_t s, e;
3214 psize_t size;
3215 int i, j;
3216
3217 /*
3218 * Get memory.
3219 */
3220 mem_regions(&mem, &avail);
3221 #if defined(DEBUG)
3222 if (pmapdebug & PMAPDEBUG_BOOT) {
3223 printf("pmap_bootstrap: memory configuration:\n");
3224 for (mp = mem; mp->size; mp++) {
3225 printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
3226 mp->start, mp->size);
3227 }
3228 for (mp = avail; mp->size; mp++) {
3229 printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
3230 mp->start, mp->size);
3231 }
3232 }
3233 #endif
3234
3235 /*
3236 * Find out how much physical memory we have and in how many chunks.
3237 */
3238 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3239 if (mp->start >= pmap_memlimit)
3240 continue;
3241 if (mp->start + mp->size > pmap_memlimit) {
3242 size = pmap_memlimit - mp->start;
3243 physmem += btoc(size);
3244 } else {
3245 physmem += btoc(mp->size);
3246 }
3247 mem_cnt++;
3248 }
3249
3250 /*
3251 * Count the number of available entries.
3252 */
3253 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3254 avail_cnt++;
3255
3256 /*
3257 * Page align all regions.
3258 */
3259 kernelstart = trunc_page(kernelstart);
3260 kernelend = round_page(kernelend);
3261 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3262 s = round_page(mp->start);
3263 mp->size -= (s - mp->start);
3264 mp->size = trunc_page(mp->size);
3265 mp->start = s;
3266 e = mp->start + mp->size;
3267
3268 DPRINTFN(BOOT,
3269 ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
3270 i, mp->start, mp->size));
3271
3272 /*
3273 * Don't allow the end to run beyond our artificial limit
3274 */
3275 if (e > pmap_memlimit)
3276 e = pmap_memlimit;
3277
3278 /*
3279 * Is this region empty or strange? skip it.
3280 */
3281 if (e <= s) {
3282 mp->start = 0;
3283 mp->size = 0;
3284 continue;
3285 }
3286
3287 /*
3288 * Does this overlap the beginning of kernel?
3289 * Does extend past the end of the kernel?
3290 */
3291 else if (s < kernelstart && e > kernelstart) {
3292 if (e > kernelend) {
3293 avail[avail_cnt].start = kernelend;
3294 avail[avail_cnt].size = e - kernelend;
3295 avail_cnt++;
3296 }
3297 mp->size = kernelstart - s;
3298 }
3299 /*
3300 * Check whether this region overlaps the end of the kernel.
3301 */
3302 else if (s < kernelend && e > kernelend) {
3303 mp->start = kernelend;
3304 mp->size = e - kernelend;
3305 }
3306 /*
3307 * Look whether this regions is completely inside the kernel.
3308 * Nuke it if it does.
3309 */
3310 else if (s >= kernelstart && e <= kernelend) {
3311 mp->start = 0;
3312 mp->size = 0;
3313 }
3314 /*
3315 * If the user imposed a memory limit, enforce it.
3316 */
3317 else if (s >= pmap_memlimit) {
3318 mp->start = -PAGE_SIZE; /* let's know why */
3319 mp->size = 0;
3320 }
3321 else {
3322 mp->start = s;
3323 mp->size = e - s;
3324 }
3325 DPRINTFN(BOOT,
3326 ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3327 i, mp->start, mp->size));
3328 }
3329
3330 /*
3331 * Move (and uncount) all the null return to the end.
3332 */
3333 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3334 if (mp->size == 0) {
3335 tmp = avail[i];
3336 avail[i] = avail[--avail_cnt];
3337 avail[avail_cnt] = avail[i];
3338 }
3339 }
3340
3341 /*
3342 * (Bubble)sort them into asecnding order.
3343 */
3344 for (i = 0; i < avail_cnt; i++) {
3345 for (j = i + 1; j < avail_cnt; j++) {
3346 if (avail[i].start > avail[j].start) {
3347 tmp = avail[i];
3348 avail[i] = avail[j];
3349 avail[j] = tmp;
3350 }
3351 }
3352 }
3353
3354 /*
3355 * Make sure they don't overlap.
3356 */
3357 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3358 if (mp[0].start + mp[0].size > mp[1].start) {
3359 mp[0].size = mp[1].start - mp[0].start;
3360 }
3361 DPRINTFN(BOOT,
3362 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3363 i, mp->start, mp->size));
3364 }
3365 DPRINTFN(BOOT,
3366 ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3367 i, mp->start, mp->size));
3368
3369 #ifdef PTEGCOUNT
3370 pmap_pteg_cnt = PTEGCOUNT;
3371 #else /* PTEGCOUNT */
3372
3373 pmap_pteg_cnt = 0x1000;
3374
3375 while (pmap_pteg_cnt < physmem)
3376 pmap_pteg_cnt <<= 1;
3377
3378 pmap_pteg_cnt >>= 1;
3379 #endif /* PTEGCOUNT */
3380
3381 #ifdef DEBUG
3382 DPRINTFN(BOOT,
3383 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3384 #endif
3385
3386 /*
3387 * Find suitably aligned memory for PTEG hash table.
3388 */
3389 size = pmap_pteg_cnt * sizeof(struct pteg);
3390 pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3391
3392 #ifdef DEBUG
3393 DPRINTFN(BOOT,
3394 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3395 #endif
3396
3397
3398 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3399 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3400 panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3401 pmap_pteg_table, size);
3402 #endif
3403
3404 memset(__UNVOLATILE(pmap_pteg_table), 0,
3405 pmap_pteg_cnt * sizeof(struct pteg));
3406 pmap_pteg_mask = pmap_pteg_cnt - 1;
3407
3408 /*
3409 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3410 * with pages. So we just steal them before giving them to UVM.
3411 */
3412 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3413 pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3414 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3415 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3416 panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3417 pmap_pvo_table, size);
3418 #endif
3419
3420 for (i = 0; i < pmap_pteg_cnt; i++)
3421 TAILQ_INIT(&pmap_pvo_table[i]);
3422
3423 #ifndef MSGBUFADDR
3424 /*
3425 * Allocate msgbuf in high memory.
3426 */
3427 msgbuf_paddr =
3428 (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3429 #endif
3430
3431 #ifdef __HAVE_PMAP_PHYSSEG
3432 {
3433 u_int npgs = 0;
3434 for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3435 npgs += btoc(mp->size);
3436 size = (sizeof(struct pvo_head) + 1) * npgs;
3437 pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3438 pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3439 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3440 if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3441 panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3442 pmap_physseg.pvoh, size);
3443 #endif
3444 }
3445 #endif
3446
3447
3448 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3449 paddr_t pfstart = atop(mp->start);
3450 paddr_t pfend = atop(mp->start + mp->size);
3451 if (mp->size == 0)
3452 continue;
3453 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3454 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3455 VM_FREELIST_FIRST256);
3456 } else if (mp->start >= SEGMENT_LENGTH) {
3457 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3458 VM_FREELIST_DEFAULT);
3459 } else {
3460 pfend = atop(SEGMENT_LENGTH);
3461 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3462 VM_FREELIST_FIRST256);
3463 pfstart = atop(SEGMENT_LENGTH);
3464 pfend = atop(mp->start + mp->size);
3465 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3466 VM_FREELIST_DEFAULT);
3467 }
3468 }
3469
3470 /*
3471 * Make sure kernel vsid is allocated as well as VSID 0.
3472 */
3473 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3474 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3475 pmap_vsid_bitmap[0] |= 1;
3476
3477 /*
3478 * Initialize kernel pmap and hardware.
3479 */
3480
3481 /* PPC_OEA64_BRIDGE does support these instructions */
3482 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
3483 for (i = 0; i < 16; i++) {
3484 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3485 __asm volatile ("mtsrin %0,%1"
3486 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3487 }
3488
3489 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3490 __asm volatile ("mtsr %0,%1"
3491 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3492 #ifdef KERNEL2_SR
3493 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3494 __asm volatile ("mtsr %0,%1"
3495 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3496 #endif
3497 for (i = 0; i < 16; i++) {
3498 if (iosrtable[i] & SR601_T) {
3499 pmap_kernel()->pm_sr[i] = iosrtable[i];
3500 __asm volatile ("mtsrin %0,%1"
3501 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3502 }
3503 }
3504 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
3505 #if defined (PPC_OEA)
3506 __asm volatile ("sync; mtsdr1 %0; isync"
3507 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3508 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
3509 __asm __volatile ("sync; mtsdr1 %0; isync"
3510 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3511 #endif
3512 tlbia();
3513
3514 #ifdef ALTIVEC
3515 pmap_use_altivec = cpu_altivec;
3516 #endif
3517
3518 #ifdef DEBUG
3519 if (pmapdebug & PMAPDEBUG_BOOT) {
3520 u_int cnt;
3521 int bank;
3522 char pbuf[9];
3523 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3524 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3525 printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3526 bank,
3527 ptoa(vm_physmem[bank].avail_start),
3528 ptoa(vm_physmem[bank].avail_end),
3529 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3530 }
3531 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3532 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3533 pbuf, cnt);
3534 }
3535 #endif
3536
3537 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3538 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3539 &pmap_pool_uallocator, IPL_NONE);
3540
3541 pool_setlowat(&pmap_upvo_pool, 252);
3542
3543 pool_init(&pmap_pool, sizeof(struct pmap),
3544 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3545 IPL_NONE);
3546
3547 #if defined(PMAP_NEED_MAPKERNEL)
3548 {
3549 extern int etext[], kernel_text[];
3550 vaddr_t va, va_etext = (paddr_t) etext;
3551 paddr_t pa;
3552 register_t sr;
3553
3554 sr = KERNELN_SEGMENT(kernelstart >> ADDR_SR_SHFT)
3555 |SR_SUKEY|SR_PRKEY;
3556
3557 va = (vaddr_t) kernel_text;
3558
3559 for (pa = kernelstart; va < va_etext;
3560 pa += PAGE_SIZE, va += PAGE_SIZE)
3561 pmap_enter(pmap_kernel(), va, pa,
3562 VM_PROT_READ|VM_PROT_EXECUTE, 0);
3563
3564 for (; pa < kernelend;
3565 pa += PAGE_SIZE, va += PAGE_SIZE)
3566 pmap_enter(pmap_kernel(), va, pa,
3567 VM_PROT_READ|VM_PROT_WRITE, 0);
3568
3569 pmap_kernel()->pm_sr[kernelstart >> ADDR_SR_SHFT] = sr;
3570 __asm volatile ("mtsrin %0,%1"
3571 :: "r"(sr), "r"(kernelstart));
3572 }
3573 #endif
3574 }
3575