Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.51
      1 /*	$NetBSD: pmap.c,v 1.51 2008/01/09 21:12:34 garbled Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *        This product includes software developed by the NetBSD
     23  *        Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*
     42  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     43  * Copyright (C) 1995, 1996 TooLs GmbH.
     44  * All rights reserved.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. All advertising materials mentioning features or use of this software
     55  *    must display the following acknowledgement:
     56  *	This product includes software developed by TooLs GmbH.
     57  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     58  *    derived from this software without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     61  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     62  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     64  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     65  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     66  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     67  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     68  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     69  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.51 2008/01/09 21:12:34 garbled Exp $");
     74 
     75 #include "opt_ppcarch.h"
     76 #include "opt_altivec.h"
     77 #include "opt_pmap.h"
     78 #include <sys/param.h>
     79 #include <sys/malloc.h>
     80 #include <sys/proc.h>
     81 #include <sys/user.h>
     82 #include <sys/pool.h>
     83 #include <sys/queue.h>
     84 #include <sys/device.h>		/* for evcnt */
     85 #include <sys/systm.h>
     86 #include <sys/atomic.h>
     87 
     88 #if __NetBSD_Version__ < 105010000
     89 #include <vm/vm.h>
     90 #include <vm/vm_kern.h>
     91 #define	splvm()		splimp()
     92 #endif
     93 
     94 #include <uvm/uvm.h>
     95 
     96 #include <machine/pcb.h>
     97 #include <machine/powerpc.h>
     98 #include <powerpc/spr.h>
     99 #include <powerpc/oea/sr_601.h>
    100 #include <powerpc/bat.h>
    101 #include <powerpc/stdarg.h>
    102 
    103 #if defined(DEBUG) || defined(PMAPCHECK)
    104 #define	STATIC
    105 #else
    106 #define	STATIC	static
    107 #endif
    108 
    109 #ifdef ALTIVEC
    110 int pmap_use_altivec;
    111 #endif
    112 
    113 volatile struct pteg *pmap_pteg_table;
    114 unsigned int pmap_pteg_cnt;
    115 unsigned int pmap_pteg_mask;
    116 #ifdef PMAP_MEMLIMIT
    117 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    118 #else
    119 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    120 #endif
    121 
    122 struct pmap kernel_pmap_;
    123 unsigned int pmap_pages_stolen;
    124 u_long pmap_pte_valid;
    125 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    126 u_long pmap_pvo_enter_depth;
    127 u_long pmap_pvo_remove_depth;
    128 #endif
    129 
    130 int physmem;
    131 #ifndef MSGBUFADDR
    132 extern paddr_t msgbuf_paddr;
    133 #endif
    134 
    135 static struct mem_region *mem, *avail;
    136 static u_int mem_cnt, avail_cnt;
    137 
    138 #ifdef __HAVE_PMAP_PHYSSEG
    139 /*
    140  * This is a cache of referenced/modified bits.
    141  * Bits herein are shifted by ATTRSHFT.
    142  */
    143 #define	ATTR_SHFT	4
    144 struct pmap_physseg pmap_physseg;
    145 #endif
    146 
    147 /*
    148  * The following structure is aligned to 32 bytes
    149  */
    150 struct pvo_entry {
    151 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    152 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    153 	struct pte pvo_pte;			/* Prebuilt PTE */
    154 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    155 	vaddr_t pvo_vaddr;			/* VA of entry */
    156 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    157 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    158 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    159 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    160 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    161 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    162 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    163 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    164 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    165 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    166 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    167 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    168 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    169 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    170 #define	PVO_REMOVE		6		/* PVO has been removed */
    171 #define	PVO_WHERE_MASK		15
    172 #define	PVO_WHERE_SHFT		8
    173 } __attribute__ ((aligned (32)));
    174 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    175 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    176 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    177 #define	PVO_PTEGIDX_CLR(pvo)	\
    178 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    179 #define	PVO_PTEGIDX_SET(pvo,i)	\
    180 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    181 #define	PVO_WHERE(pvo,w)	\
    182 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    183 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    184 
    185 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    186 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    187 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    188 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    189 
    190 struct pool pmap_pool;		/* pool for pmap structures */
    191 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    192 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    193 
    194 /*
    195  * We keep a cache of unmanaged pages to be used for pvo entries for
    196  * unmanaged pages.
    197  */
    198 struct pvo_page {
    199 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    200 };
    201 SIMPLEQ_HEAD(pvop_head, pvo_page);
    202 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    203 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    204 u_long pmap_upvop_free;
    205 u_long pmap_upvop_maxfree;
    206 u_long pmap_mpvop_free;
    207 u_long pmap_mpvop_maxfree;
    208 
    209 STATIC void *pmap_pool_ualloc(struct pool *, int);
    210 STATIC void *pmap_pool_malloc(struct pool *, int);
    211 
    212 STATIC void pmap_pool_ufree(struct pool *, void *);
    213 STATIC void pmap_pool_mfree(struct pool *, void *);
    214 
    215 static struct pool_allocator pmap_pool_mallocator = {
    216 	.pa_alloc = pmap_pool_malloc,
    217 	.pa_free = pmap_pool_mfree,
    218 	.pa_pagesz = 0,
    219 };
    220 
    221 static struct pool_allocator pmap_pool_uallocator = {
    222 	.pa_alloc = pmap_pool_ualloc,
    223 	.pa_free = pmap_pool_ufree,
    224 	.pa_pagesz = 0,
    225 };
    226 
    227 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    228 void pmap_pte_print(volatile struct pte *);
    229 void pmap_pteg_check(void);
    230 void pmap_pteg_dist(void);
    231 void pmap_print_pte(pmap_t, vaddr_t);
    232 void pmap_print_mmuregs(void);
    233 #endif
    234 
    235 #if defined(DEBUG) || defined(PMAPCHECK)
    236 #ifdef PMAPCHECK
    237 int pmapcheck = 1;
    238 #else
    239 int pmapcheck = 0;
    240 #endif
    241 void pmap_pvo_verify(void);
    242 STATIC void pmap_pvo_check(const struct pvo_entry *);
    243 #define	PMAP_PVO_CHECK(pvo)	 		\
    244 	do {					\
    245 		if (pmapcheck)			\
    246 			pmap_pvo_check(pvo);	\
    247 	} while (0)
    248 #else
    249 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    250 #endif
    251 STATIC int pmap_pte_insert(int, struct pte *);
    252 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    253 	vaddr_t, paddr_t, register_t, int);
    254 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    255 STATIC void pmap_pvo_free(struct pvo_entry *);
    256 STATIC void pmap_pvo_free_list(struct pvo_head *);
    257 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    258 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    259 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    260 STATIC void pvo_set_exec(struct pvo_entry *);
    261 STATIC void pvo_clear_exec(struct pvo_entry *);
    262 
    263 STATIC void tlbia(void);
    264 
    265 STATIC void pmap_release(pmap_t);
    266 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    267 
    268 static uint32_t pmap_pvo_reclaim_nextidx;
    269 #ifdef DEBUG
    270 static int pmap_pvo_reclaim_debugctr;
    271 #endif
    272 
    273 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    274 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    275 
    276 static int pmap_initialized;
    277 
    278 #if defined(DEBUG) || defined(PMAPDEBUG)
    279 #define	PMAPDEBUG_BOOT		0x0001
    280 #define	PMAPDEBUG_PTE		0x0002
    281 #define	PMAPDEBUG_EXEC		0x0008
    282 #define	PMAPDEBUG_PVOENTER	0x0010
    283 #define	PMAPDEBUG_PVOREMOVE	0x0020
    284 #define	PMAPDEBUG_ACTIVATE	0x0100
    285 #define	PMAPDEBUG_CREATE	0x0200
    286 #define	PMAPDEBUG_ENTER		0x1000
    287 #define	PMAPDEBUG_KENTER	0x2000
    288 #define	PMAPDEBUG_KREMOVE	0x4000
    289 #define	PMAPDEBUG_REMOVE	0x8000
    290 
    291 unsigned int pmapdebug = 0;
    292 
    293 # define DPRINTF(x)		printf x
    294 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    295 #else
    296 # define DPRINTF(x)
    297 # define DPRINTFN(n, x)
    298 #endif
    299 
    300 
    301 #ifdef PMAPCOUNTERS
    302 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    303 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    304 
    305 struct evcnt pmap_evcnt_mappings =
    306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    307 	    "pmap", "pages mapped");
    308 struct evcnt pmap_evcnt_unmappings =
    309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    310 	    "pmap", "pages unmapped");
    311 
    312 struct evcnt pmap_evcnt_kernel_mappings =
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    314 	    "pmap", "kernel pages mapped");
    315 struct evcnt pmap_evcnt_kernel_unmappings =
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    317 	    "pmap", "kernel pages unmapped");
    318 
    319 struct evcnt pmap_evcnt_mappings_replaced =
    320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    321 	    "pmap", "page mappings replaced");
    322 
    323 struct evcnt pmap_evcnt_exec_mappings =
    324     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    325 	    "pmap", "exec pages mapped");
    326 struct evcnt pmap_evcnt_exec_cached =
    327     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    328 	    "pmap", "exec pages cached");
    329 
    330 struct evcnt pmap_evcnt_exec_synced =
    331     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    332 	    "pmap", "exec pages synced");
    333 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    335 	    "pmap", "exec pages synced (CM)");
    336 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
    337     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    338 	    "pmap", "exec pages synced (PR)");
    339 
    340 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    341     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    342 	    "pmap", "exec pages uncached (PP)");
    343 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    344     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    345 	    "pmap", "exec pages uncached (CM)");
    346 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    347     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    348 	    "pmap", "exec pages uncached (ZP)");
    349 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    350     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    351 	    "pmap", "exec pages uncached (CP)");
    352 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
    353     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    354 	    "pmap", "exec pages uncached (PR)");
    355 
    356 struct evcnt pmap_evcnt_updates =
    357     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    358 	    "pmap", "updates");
    359 struct evcnt pmap_evcnt_collects =
    360     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    361 	    "pmap", "collects");
    362 struct evcnt pmap_evcnt_copies =
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "copies");
    365 
    366 struct evcnt pmap_evcnt_ptes_spilled =
    367     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    368 	    "pmap", "ptes spilled from overflow");
    369 struct evcnt pmap_evcnt_ptes_unspilled =
    370     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    371 	    "pmap", "ptes not spilled");
    372 struct evcnt pmap_evcnt_ptes_evicted =
    373     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    374 	    "pmap", "ptes evicted");
    375 
    376 struct evcnt pmap_evcnt_ptes_primary[8] = {
    377     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    378 	    "pmap", "ptes added at primary[0]"),
    379     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    380 	    "pmap", "ptes added at primary[1]"),
    381     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    382 	    "pmap", "ptes added at primary[2]"),
    383     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    384 	    "pmap", "ptes added at primary[3]"),
    385 
    386     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    387 	    "pmap", "ptes added at primary[4]"),
    388     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    389 	    "pmap", "ptes added at primary[5]"),
    390     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    391 	    "pmap", "ptes added at primary[6]"),
    392     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    393 	    "pmap", "ptes added at primary[7]"),
    394 };
    395 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    396     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    397 	    "pmap", "ptes added at secondary[0]"),
    398     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    399 	    "pmap", "ptes added at secondary[1]"),
    400     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    401 	    "pmap", "ptes added at secondary[2]"),
    402     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    403 	    "pmap", "ptes added at secondary[3]"),
    404 
    405     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    406 	    "pmap", "ptes added at secondary[4]"),
    407     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    408 	    "pmap", "ptes added at secondary[5]"),
    409     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    410 	    "pmap", "ptes added at secondary[6]"),
    411     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    412 	    "pmap", "ptes added at secondary[7]"),
    413 };
    414 struct evcnt pmap_evcnt_ptes_removed =
    415     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    416 	    "pmap", "ptes removed");
    417 struct evcnt pmap_evcnt_ptes_changed =
    418     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    419 	    "pmap", "ptes changed");
    420 struct evcnt pmap_evcnt_pvos_reclaimed =
    421     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    422 	    "pmap", "pvos reclaimed");
    423 struct evcnt pmap_evcnt_pvos_failed =
    424     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    425 	    "pmap", "pvo allocation failures");
    426 
    427 /*
    428  * From pmap_subr.c
    429  */
    430 extern struct evcnt pmap_evcnt_zeroed_pages;
    431 extern struct evcnt pmap_evcnt_copied_pages;
    432 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    433 
    434 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
    435 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
    436 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
    437 
    438 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
    439 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
    440 
    441 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
    442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
    443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
    444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
    445 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
    446 
    447 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
    448 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
    449 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
    450 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
    451 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
    452 
    453 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
    454 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
    455 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
    456 
    457 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
    458 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
    459 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
    460 
    461 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
    462 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
    463 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
    464 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
    465 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
    466 
    467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
    468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
    469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
    470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
    471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
    472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
    473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
    474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
    475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
    476 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
    477 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
    478 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
    479 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
    480 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
    481 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
    482 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
    483 
    484 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
    485 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
    486 #else
    487 #define	PMAPCOUNT(ev)	((void) 0)
    488 #define	PMAPCOUNT2(ev)	((void) 0)
    489 #endif
    490 
    491 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    492 
    493 /* XXXSL: this needs to be moved to assembler */
    494 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    495 
    496 #define	TLBSYNC()	__asm volatile("tlbsync")
    497 #define	SYNC()		__asm volatile("sync")
    498 #define	EIEIO()		__asm volatile("eieio")
    499 #define	MFMSR()		mfmsr()
    500 #define	MTMSR(psl)	mtmsr(psl)
    501 #define	MFPVR()		mfpvr()
    502 #define	MFSRIN(va)	mfsrin(va)
    503 #define	MFTB()		mfrtcltbl()
    504 
    505 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
    506 static inline register_t
    507 mfsrin(vaddr_t va)
    508 {
    509 	register_t sr;
    510 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    511 	return sr;
    512 }
    513 #endif	/* PPC_OEA*/
    514 
    515 #if defined (PPC_OEA64_BRIDGE)
    516 extern void mfmsr64 (register64_t *result);
    517 #endif /* PPC_OEA64_BRIDGE */
    518 
    519 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    520 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    521 
    522 static inline register_t
    523 pmap_interrupts_off(void)
    524 {
    525 	register_t msr = MFMSR();
    526 	if (msr & PSL_EE)
    527 		MTMSR(msr & ~PSL_EE);
    528 	return msr;
    529 }
    530 
    531 static void
    532 pmap_interrupts_restore(register_t msr)
    533 {
    534 	if (msr & PSL_EE)
    535 		MTMSR(msr);
    536 }
    537 
    538 static inline u_int32_t
    539 mfrtcltbl(void)
    540 {
    541 
    542 	if ((MFPVR() >> 16) == MPC601)
    543 		return (mfrtcl() >> 7);
    544 	else
    545 		return (mftbl());
    546 }
    547 
    548 /*
    549  * These small routines may have to be replaced,
    550  * if/when we support processors other that the 604.
    551  */
    552 
    553 void
    554 tlbia(void)
    555 {
    556 	char *i;
    557 
    558 	SYNC();
    559 #if defined(PPC_OEA)
    560 	/*
    561 	 * Why not use "tlbia"?  Because not all processors implement it.
    562 	 *
    563 	 * This needs to be a per-CPU callback to do the appropriate thing
    564 	 * for the CPU. XXX
    565 	 */
    566 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    567 		TLBIE(i);
    568 		EIEIO();
    569 		SYNC();
    570 	}
    571 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
    572 	printf("Invalidating ALL TLB entries......\n");
    573 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    574 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    575 		TLBIEL(i);
    576 		EIEIO();
    577 		SYNC();
    578 	}
    579 #endif
    580 	TLBSYNC();
    581 	SYNC();
    582 }
    583 
    584 static inline register_t
    585 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    586 {
    587 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
    588 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    589 #else /* PPC_OEA64 */
    590 #if 0
    591 	const struct ste *ste;
    592 	register_t hash;
    593 	int i;
    594 
    595 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    596 
    597 	/*
    598 	 * Try the primary group first
    599 	 */
    600 	ste = pm->pm_stes[hash].stes;
    601 	for (i = 0; i < 8; i++, ste++) {
    602 		if (ste->ste_hi & STE_V) &&
    603 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    604 			return ste;
    605 	}
    606 
    607 	/*
    608 	 * Then the secondary group.
    609 	 */
    610 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    611 	for (i = 0; i < 8; i++, ste++) {
    612 		if (ste->ste_hi & STE_V) &&
    613 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    614 			return addr;
    615 	}
    616 
    617 	return NULL;
    618 #else
    619 	/*
    620 	 * Rather than searching the STE groups for the VSID, we know
    621 	 * how we generate that from the ESID and so do that.
    622 	 */
    623 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    624 #endif
    625 #endif /* PPC_OEA */
    626 }
    627 
    628 static inline register_t
    629 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    630 {
    631 	register_t hash;
    632 
    633 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    634 	return hash & pmap_pteg_mask;
    635 }
    636 
    637 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    638 /*
    639  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    640  * The only bit of magic is that the top 4 bits of the address doesn't
    641  * technically exist in the PTE.  But we know we reserved 4 bits of the
    642  * VSID for it so that's how we get it.
    643  */
    644 static vaddr_t
    645 pmap_pte_to_va(volatile const struct pte *pt)
    646 {
    647 	vaddr_t va;
    648 	uintptr_t ptaddr = (uintptr_t) pt;
    649 
    650 	if (pt->pte_hi & PTE_HID)
    651 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    652 
    653 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    654 #if defined(PPC_OEA)
    655 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    656 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
    657 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    658 #endif
    659 	va <<= ADDR_PIDX_SHFT;
    660 
    661 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    662 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    663 
    664 #if defined(PPC_OEA64)
    665 	/* PPC63 Bits 0-35 */
    666 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    667 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
    668 	/* PPC Bits 0-3 */
    669 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    670 #endif
    671 
    672 	return va;
    673 }
    674 #endif
    675 
    676 static inline struct pvo_head *
    677 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    678 {
    679 #ifdef __HAVE_VM_PAGE_MD
    680 	struct vm_page *pg;
    681 
    682 	pg = PHYS_TO_VM_PAGE(pa);
    683 	if (pg_p != NULL)
    684 		*pg_p = pg;
    685 	if (pg == NULL)
    686 		return &pmap_pvo_unmanaged;
    687 	return &pg->mdpage.mdpg_pvoh;
    688 #endif
    689 #ifdef __HAVE_PMAP_PHYSSEG
    690 	int bank, pg;
    691 
    692 	bank = vm_physseg_find(atop(pa), &pg);
    693 	if (pg_p != NULL)
    694 		*pg_p = pg;
    695 	if (bank == -1)
    696 		return &pmap_pvo_unmanaged;
    697 	return &vm_physmem[bank].pmseg.pvoh[pg];
    698 #endif
    699 }
    700 
    701 static inline struct pvo_head *
    702 vm_page_to_pvoh(struct vm_page *pg)
    703 {
    704 #ifdef __HAVE_VM_PAGE_MD
    705 	return &pg->mdpage.mdpg_pvoh;
    706 #endif
    707 #ifdef __HAVE_PMAP_PHYSSEG
    708 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    709 #endif
    710 }
    711 
    712 
    713 #ifdef __HAVE_PMAP_PHYSSEG
    714 static inline char *
    715 pa_to_attr(paddr_t pa)
    716 {
    717 	int bank, pg;
    718 
    719 	bank = vm_physseg_find(atop(pa), &pg);
    720 	if (bank == -1)
    721 		return NULL;
    722 	return &vm_physmem[bank].pmseg.attrs[pg];
    723 }
    724 #endif
    725 
    726 static inline void
    727 pmap_attr_clear(struct vm_page *pg, int ptebit)
    728 {
    729 #ifdef __HAVE_PMAP_PHYSSEG
    730 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    731 #endif
    732 #ifdef __HAVE_VM_PAGE_MD
    733 	pg->mdpage.mdpg_attrs &= ~ptebit;
    734 #endif
    735 }
    736 
    737 static inline int
    738 pmap_attr_fetch(struct vm_page *pg)
    739 {
    740 #ifdef __HAVE_PMAP_PHYSSEG
    741 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    742 #endif
    743 #ifdef __HAVE_VM_PAGE_MD
    744 	return pg->mdpage.mdpg_attrs;
    745 #endif
    746 }
    747 
    748 static inline void
    749 pmap_attr_save(struct vm_page *pg, int ptebit)
    750 {
    751 #ifdef __HAVE_PMAP_PHYSSEG
    752 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    753 #endif
    754 #ifdef __HAVE_VM_PAGE_MD
    755 	pg->mdpage.mdpg_attrs |= ptebit;
    756 #endif
    757 }
    758 
    759 static inline int
    760 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    761 {
    762 	if (pt->pte_hi == pvo_pt->pte_hi
    763 #if 0
    764 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    765 	        ~(PTE_REF|PTE_CHG)) == 0
    766 #endif
    767 	    )
    768 		return 1;
    769 	return 0;
    770 }
    771 
    772 static inline void
    773 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    774 {
    775 	/*
    776 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    777 	 * only gets set when the real pte is set in memory.
    778 	 *
    779 	 * Note: Don't set the valid bit for correct operation of tlb update.
    780 	 */
    781 #if defined(PPC_OEA)
    782 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    783 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    784 	pt->pte_lo = pte_lo;
    785 #elif defined (PPC_OEA64_BRIDGE)
    786 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    787 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    788 	pt->pte_lo = (u_int64_t) pte_lo;
    789 #elif defined (PPC_OEA64)
    790 #error PPC_OEA64 not supported
    791 #endif /* PPC_OEA */
    792 }
    793 
    794 static inline void
    795 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    796 {
    797 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    798 }
    799 
    800 static inline void
    801 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    802 {
    803 	/*
    804 	 * As shown in Section 7.6.3.2.3
    805 	 */
    806 	pt->pte_lo &= ~ptebit;
    807 	TLBIE(va);
    808 	SYNC();
    809 	EIEIO();
    810 	TLBSYNC();
    811 	SYNC();
    812 }
    813 
    814 static inline void
    815 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    816 {
    817 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    818 	if (pvo_pt->pte_hi & PTE_VALID)
    819 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    820 #endif
    821 	pvo_pt->pte_hi |= PTE_VALID;
    822 
    823 	/*
    824 	 * Update the PTE as defined in section 7.6.3.1
    825 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    826 	 * have been saved so this routine can restore them (if desired).
    827 	 */
    828 	pt->pte_lo = pvo_pt->pte_lo;
    829 	EIEIO();
    830 	pt->pte_hi = pvo_pt->pte_hi;
    831 	TLBSYNC();
    832 	SYNC();
    833 	pmap_pte_valid++;
    834 }
    835 
    836 static inline void
    837 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    838 {
    839 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    840 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    841 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    842 	if ((pt->pte_hi & PTE_VALID) == 0)
    843 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    844 #endif
    845 
    846 	pvo_pt->pte_hi &= ~PTE_VALID;
    847 	/*
    848 	 * Force the ref & chg bits back into the PTEs.
    849 	 */
    850 	SYNC();
    851 	/*
    852 	 * Invalidate the pte ... (Section 7.6.3.3)
    853 	 */
    854 	pt->pte_hi &= ~PTE_VALID;
    855 	SYNC();
    856 	TLBIE(va);
    857 	SYNC();
    858 	EIEIO();
    859 	TLBSYNC();
    860 	SYNC();
    861 	/*
    862 	 * Save the ref & chg bits ...
    863 	 */
    864 	pmap_pte_synch(pt, pvo_pt);
    865 	pmap_pte_valid--;
    866 }
    867 
    868 static inline void
    869 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    870 {
    871 	/*
    872 	 * Invalidate the PTE
    873 	 */
    874 	pmap_pte_unset(pt, pvo_pt, va);
    875 	pmap_pte_set(pt, pvo_pt);
    876 }
    877 
    878 /*
    879  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    880  * (either primary or secondary location).
    881  *
    882  * Note: both the destination and source PTEs must not have PTE_VALID set.
    883  */
    884 
    885 STATIC int
    886 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    887 {
    888 	volatile struct pte *pt;
    889 	int i;
    890 
    891 #if defined(DEBUG)
    892 #if defined (PPC_OEA)
    893 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
    894 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
    895 #elif defined (PPC_OEA64_BRIDGE)
    896 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
    897 		ptegidx, (unsigned long long) pvo_pt->pte_hi,
    898 		(unsigned long long) pvo_pt->pte_lo));
    899 
    900 #endif
    901 #endif
    902 	/*
    903 	 * First try primary hash.
    904 	 */
    905 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    906 		if ((pt->pte_hi & PTE_VALID) == 0) {
    907 			pvo_pt->pte_hi &= ~PTE_HID;
    908 			pmap_pte_set(pt, pvo_pt);
    909 			return i;
    910 		}
    911 	}
    912 
    913 	/*
    914 	 * Now try secondary hash.
    915 	 */
    916 	ptegidx ^= pmap_pteg_mask;
    917 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    918 		if ((pt->pte_hi & PTE_VALID) == 0) {
    919 			pvo_pt->pte_hi |= PTE_HID;
    920 			pmap_pte_set(pt, pvo_pt);
    921 			return i;
    922 		}
    923 	}
    924 	return -1;
    925 }
    926 
    927 /*
    928  * Spill handler.
    929  *
    930  * Tries to spill a page table entry from the overflow area.
    931  * This runs in either real mode (if dealing with a exception spill)
    932  * or virtual mode when dealing with manually spilling one of the
    933  * kernel's pte entries.  In either case, interrupts are already
    934  * disabled.
    935  */
    936 
    937 int
    938 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    939 {
    940 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    941 	struct pvo_entry *pvo;
    942 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    943 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    944 	int ptegidx, i, j;
    945 	volatile struct pteg *pteg;
    946 	volatile struct pte *pt;
    947 
    948 	PMAP_LOCK();
    949 
    950 	ptegidx = va_to_pteg(pm, addr);
    951 
    952 	/*
    953 	 * Have to substitute some entry. Use the primary hash for this.
    954 	 * Use low bits of timebase as random generator.  Make sure we are
    955 	 * not picking a kernel pte for replacement.
    956 	 */
    957 	pteg = &pmap_pteg_table[ptegidx];
    958 	i = MFTB() & 7;
    959 	for (j = 0; j < 8; j++) {
    960 		pt = &pteg->pt[i];
    961 		if ((pt->pte_hi & PTE_VALID) == 0 ||
    962 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    963 				!= KERNEL_VSIDBITS)
    964 			break;
    965 		i = (i + 1) & 7;
    966 	}
    967 	KASSERT(j < 8);
    968 
    969 	source_pvo = NULL;
    970 	victim_pvo = NULL;
    971 	pvoh = &pmap_pvo_table[ptegidx];
    972 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    973 
    974 		/*
    975 		 * We need to find pvo entry for this address...
    976 		 */
    977 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    978 
    979 		/*
    980 		 * If we haven't found the source and we come to a PVO with
    981 		 * a valid PTE, then we know we can't find it because all
    982 		 * evicted PVOs always are first in the list.
    983 		 */
    984 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    985 			break;
    986 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    987 		    addr == PVO_VADDR(pvo)) {
    988 
    989 			/*
    990 			 * Now we have found the entry to be spilled into the
    991 			 * pteg.  Attempt to insert it into the page table.
    992 			 */
    993 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    994 			if (j >= 0) {
    995 				PVO_PTEGIDX_SET(pvo, j);
    996 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    997 				PVO_WHERE(pvo, SPILL_INSERT);
    998 				pvo->pvo_pmap->pm_evictions--;
    999 				PMAPCOUNT(ptes_spilled);
   1000 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1001 				    ? pmap_evcnt_ptes_secondary
   1002 				    : pmap_evcnt_ptes_primary)[j]);
   1003 
   1004 				/*
   1005 				 * Since we keep the evicted entries at the
   1006 				 * from of the PVO list, we need move this
   1007 				 * (now resident) PVO after the evicted
   1008 				 * entries.
   1009 				 */
   1010 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
   1011 
   1012 				/*
   1013 				 * If we don't have to move (either we were the
   1014 				 * last entry or the next entry was valid),
   1015 				 * don't change our position.  Otherwise
   1016 				 * move ourselves to the tail of the queue.
   1017 				 */
   1018 				if (next_pvo != NULL &&
   1019 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
   1020 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
   1021 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1022 				}
   1023 				PMAP_UNLOCK();
   1024 				return 1;
   1025 			}
   1026 			source_pvo = pvo;
   1027 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
   1028 				return 0;
   1029 			}
   1030 			if (victim_pvo != NULL)
   1031 				break;
   1032 		}
   1033 
   1034 		/*
   1035 		 * We also need the pvo entry of the victim we are replacing
   1036 		 * so save the R & C bits of the PTE.
   1037 		 */
   1038 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1039 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1040 			vpvoh = pvoh;			/* *1* */
   1041 			victim_pvo = pvo;
   1042 			if (source_pvo != NULL)
   1043 				break;
   1044 		}
   1045 	}
   1046 
   1047 	if (source_pvo == NULL) {
   1048 		PMAPCOUNT(ptes_unspilled);
   1049 		PMAP_UNLOCK();
   1050 		return 0;
   1051 	}
   1052 
   1053 	if (victim_pvo == NULL) {
   1054 		if ((pt->pte_hi & PTE_HID) == 0)
   1055 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1056 			    "no pvo entry!", pt);
   1057 
   1058 		/*
   1059 		 * If this is a secondary PTE, we need to search
   1060 		 * its primary pvo bucket for the matching PVO.
   1061 		 */
   1062 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1063 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1064 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1065 
   1066 			/*
   1067 			 * We also need the pvo entry of the victim we are
   1068 			 * replacing so save the R & C bits of the PTE.
   1069 			 */
   1070 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1071 				victim_pvo = pvo;
   1072 				break;
   1073 			}
   1074 		}
   1075 		if (victim_pvo == NULL)
   1076 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1077 			    "no pvo entry!", pt);
   1078 	}
   1079 
   1080 	/*
   1081 	 * The victim should be not be a kernel PVO/PTE entry.
   1082 	 */
   1083 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1084 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1085 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1086 
   1087 	/*
   1088 	 * We are invalidating the TLB entry for the EA for the
   1089 	 * we are replacing even though its valid; If we don't
   1090 	 * we lose any ref/chg bit changes contained in the TLB
   1091 	 * entry.
   1092 	 */
   1093 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1094 
   1095 	/*
   1096 	 * To enforce the PVO list ordering constraint that all
   1097 	 * evicted entries should come before all valid entries,
   1098 	 * move the source PVO to the tail of its list and the
   1099 	 * victim PVO to the head of its list (which might not be
   1100 	 * the same list, if the victim was using the secondary hash).
   1101 	 */
   1102 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1103 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1104 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1105 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1106 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1107 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1108 	victim_pvo->pvo_pmap->pm_evictions++;
   1109 	source_pvo->pvo_pmap->pm_evictions--;
   1110 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1111 	PVO_WHERE(source_pvo, SPILL_SET);
   1112 
   1113 	PVO_PTEGIDX_CLR(victim_pvo);
   1114 	PVO_PTEGIDX_SET(source_pvo, i);
   1115 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1116 	PMAPCOUNT(ptes_spilled);
   1117 	PMAPCOUNT(ptes_evicted);
   1118 	PMAPCOUNT(ptes_removed);
   1119 
   1120 	PMAP_PVO_CHECK(victim_pvo);
   1121 	PMAP_PVO_CHECK(source_pvo);
   1122 
   1123 	PMAP_UNLOCK();
   1124 	return 1;
   1125 }
   1126 
   1127 /*
   1128  * Restrict given range to physical memory
   1129  */
   1130 void
   1131 pmap_real_memory(paddr_t *start, psize_t *size)
   1132 {
   1133 	struct mem_region *mp;
   1134 
   1135 	for (mp = mem; mp->size; mp++) {
   1136 		if (*start + *size > mp->start
   1137 		    && *start < mp->start + mp->size) {
   1138 			if (*start < mp->start) {
   1139 				*size -= mp->start - *start;
   1140 				*start = mp->start;
   1141 			}
   1142 			if (*start + *size > mp->start + mp->size)
   1143 				*size = mp->start + mp->size - *start;
   1144 			return;
   1145 		}
   1146 	}
   1147 	*size = 0;
   1148 }
   1149 
   1150 /*
   1151  * Initialize anything else for pmap handling.
   1152  * Called during vm_init().
   1153  */
   1154 void
   1155 pmap_init(void)
   1156 {
   1157 #ifdef __HAVE_PMAP_PHYSSEG
   1158 	struct pvo_tqhead *pvoh;
   1159 	int bank;
   1160 	long sz;
   1161 	char *attr;
   1162 
   1163 	pvoh = pmap_physseg.pvoh;
   1164 	attr = pmap_physseg.attrs;
   1165 	for (bank = 0; bank < vm_nphysseg; bank++) {
   1166 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
   1167 		vm_physmem[bank].pmseg.pvoh = pvoh;
   1168 		vm_physmem[bank].pmseg.attrs = attr;
   1169 		for (; sz > 0; sz--, pvoh++, attr++) {
   1170 			TAILQ_INIT(pvoh);
   1171 			*attr = 0;
   1172 		}
   1173 	}
   1174 #endif
   1175 
   1176 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1177 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1178 	    &pmap_pool_mallocator, IPL_NONE);
   1179 
   1180 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1181 
   1182 	pmap_initialized = 1;
   1183 
   1184 }
   1185 
   1186 /*
   1187  * How much virtual space does the kernel get?
   1188  */
   1189 void
   1190 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1191 {
   1192 	/*
   1193 	 * For now, reserve one segment (minus some overhead) for kernel
   1194 	 * virtual memory
   1195 	 */
   1196 	*start = VM_MIN_KERNEL_ADDRESS;
   1197 	*end = VM_MAX_KERNEL_ADDRESS;
   1198 }
   1199 
   1200 /*
   1201  * Allocate, initialize, and return a new physical map.
   1202  */
   1203 pmap_t
   1204 pmap_create(void)
   1205 {
   1206 	pmap_t pm;
   1207 
   1208 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1209 	memset((void *)pm, 0, sizeof *pm);
   1210 	pmap_pinit(pm);
   1211 
   1212 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1213 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1214 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1215 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1216 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1217 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1218 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1219 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1220 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1221 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1222 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1223 	return pm;
   1224 }
   1225 
   1226 /*
   1227  * Initialize a preallocated and zeroed pmap structure.
   1228  */
   1229 void
   1230 pmap_pinit(pmap_t pm)
   1231 {
   1232 	register_t entropy = MFTB();
   1233 	register_t mask;
   1234 	int i;
   1235 
   1236 	/*
   1237 	 * Allocate some segment registers for this pmap.
   1238 	 */
   1239 	pm->pm_refs = 1;
   1240 	PMAP_LOCK();
   1241 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1242 		static register_t pmap_vsidcontext;
   1243 		register_t hash;
   1244 		unsigned int n;
   1245 
   1246 		/* Create a new value by multiplying by a prime adding in
   1247 		 * entropy from the timebase register.  This is to make the
   1248 		 * VSID more random so that the PT Hash function collides
   1249 		 * less often. (note that the prime causes gcc to do shifts
   1250 		 * instead of a multiply)
   1251 		 */
   1252 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1253 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1254 		if (hash == 0) {		/* 0 is special, avoid it */
   1255 			entropy += 0xbadf00d;
   1256 			continue;
   1257 		}
   1258 		n = hash >> 5;
   1259 		mask = 1L << (hash & (VSID_NBPW-1));
   1260 		hash = pmap_vsidcontext;
   1261 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1262 			/* anything free in this bucket? */
   1263 			if (~pmap_vsid_bitmap[n] == 0) {
   1264 				entropy = hash ^ (hash >> 16);
   1265 				continue;
   1266 			}
   1267 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1268 			mask = 1L << i;
   1269 			hash &= ~(VSID_NBPW-1);
   1270 			hash |= i;
   1271 		}
   1272 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1273 		pmap_vsid_bitmap[n] |= mask;
   1274 		pm->pm_vsid = hash;
   1275 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1276 		for (i = 0; i < 16; i++)
   1277 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1278 			    SR_NOEXEC;
   1279 #endif
   1280 		PMAP_UNLOCK();
   1281 		return;
   1282 	}
   1283 	PMAP_UNLOCK();
   1284 	panic("pmap_pinit: out of segments");
   1285 }
   1286 
   1287 /*
   1288  * Add a reference to the given pmap.
   1289  */
   1290 void
   1291 pmap_reference(pmap_t pm)
   1292 {
   1293 	atomic_inc_uint(&pm->pm_refs);
   1294 }
   1295 
   1296 /*
   1297  * Retire the given pmap from service.
   1298  * Should only be called if the map contains no valid mappings.
   1299  */
   1300 void
   1301 pmap_destroy(pmap_t pm)
   1302 {
   1303 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1304 		pmap_release(pm);
   1305 		pool_put(&pmap_pool, pm);
   1306 	}
   1307 }
   1308 
   1309 /*
   1310  * Release any resources held by the given physical map.
   1311  * Called when a pmap initialized by pmap_pinit is being released.
   1312  */
   1313 void
   1314 pmap_release(pmap_t pm)
   1315 {
   1316 	int idx, mask;
   1317 
   1318 	KASSERT(pm->pm_stats.resident_count == 0);
   1319 	KASSERT(pm->pm_stats.wired_count == 0);
   1320 
   1321 	PMAP_LOCK();
   1322 	if (pm->pm_sr[0] == 0)
   1323 		panic("pmap_release");
   1324 	idx = pm->pm_vsid & (NPMAPS-1);
   1325 	mask = 1 << (idx % VSID_NBPW);
   1326 	idx /= VSID_NBPW;
   1327 
   1328 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1329 	pmap_vsid_bitmap[idx] &= ~mask;
   1330 	PMAP_UNLOCK();
   1331 }
   1332 
   1333 /*
   1334  * Copy the range specified by src_addr/len
   1335  * from the source map to the range dst_addr/len
   1336  * in the destination map.
   1337  *
   1338  * This routine is only advisory and need not do anything.
   1339  */
   1340 void
   1341 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1342 	vsize_t len, vaddr_t src_addr)
   1343 {
   1344 	PMAPCOUNT(copies);
   1345 }
   1346 
   1347 /*
   1348  * Require that all active physical maps contain no
   1349  * incorrect entries NOW.
   1350  */
   1351 void
   1352 pmap_update(struct pmap *pmap)
   1353 {
   1354 	PMAPCOUNT(updates);
   1355 	TLBSYNC();
   1356 }
   1357 
   1358 /*
   1359  * Garbage collects the physical map system for
   1360  * pages which are no longer used.
   1361  * Success need not be guaranteed -- that is, there
   1362  * may well be pages which are not referenced, but
   1363  * others may be collected.
   1364  * Called by the pageout daemon when pages are scarce.
   1365  */
   1366 void
   1367 pmap_collect(pmap_t pm)
   1368 {
   1369 	PMAPCOUNT(collects);
   1370 }
   1371 
   1372 static inline int
   1373 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1374 {
   1375 	int pteidx;
   1376 	/*
   1377 	 * We can find the actual pte entry without searching by
   1378 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1379 	 * and by noticing the HID bit.
   1380 	 */
   1381 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1382 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1383 		pteidx ^= pmap_pteg_mask * 8;
   1384 	return pteidx;
   1385 }
   1386 
   1387 volatile struct pte *
   1388 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1389 {
   1390 	volatile struct pte *pt;
   1391 
   1392 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1393 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1394 		return NULL;
   1395 #endif
   1396 
   1397 	/*
   1398 	 * If we haven't been supplied the ptegidx, calculate it.
   1399 	 */
   1400 	if (pteidx == -1) {
   1401 		int ptegidx;
   1402 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1403 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1404 	}
   1405 
   1406 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1407 
   1408 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1409 	return pt;
   1410 #else
   1411 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1412 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1413 		    "pvo but no valid pte index", pvo);
   1414 	}
   1415 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1416 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1417 		    "pvo but no valid pte", pvo);
   1418 	}
   1419 
   1420 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1421 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1422 #if defined(DEBUG) || defined(PMAPCHECK)
   1423 			pmap_pte_print(pt);
   1424 #endif
   1425 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1426 			    "pmap_pteg_table %p but invalid in pvo",
   1427 			    pvo, pt);
   1428 		}
   1429 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1430 #if defined(DEBUG) || defined(PMAPCHECK)
   1431 			pmap_pte_print(pt);
   1432 #endif
   1433 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1434 			    "not match pte %p in pmap_pteg_table",
   1435 			    pvo, pt);
   1436 		}
   1437 		return pt;
   1438 	}
   1439 
   1440 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1441 #if defined(DEBUG) || defined(PMAPCHECK)
   1442 		pmap_pte_print(pt);
   1443 #endif
   1444 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1445 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1446 	}
   1447 	return NULL;
   1448 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1449 }
   1450 
   1451 struct pvo_entry *
   1452 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1453 {
   1454 	struct pvo_entry *pvo;
   1455 	int ptegidx;
   1456 
   1457 	va &= ~ADDR_POFF;
   1458 	ptegidx = va_to_pteg(pm, va);
   1459 
   1460 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1461 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1462 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1463 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1464 			    "list %#x (%p)", pvo, ptegidx,
   1465 			     &pmap_pvo_table[ptegidx]);
   1466 #endif
   1467 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1468 			if (pteidx_p)
   1469 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1470 			return pvo;
   1471 		}
   1472 	}
   1473 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1474 		panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __func__,
   1475 		(pm == pmap_kernel() ? "kernel" : "user"), va);
   1476 	return NULL;
   1477 }
   1478 
   1479 #if defined(DEBUG) || defined(PMAPCHECK)
   1480 void
   1481 pmap_pvo_check(const struct pvo_entry *pvo)
   1482 {
   1483 	struct pvo_head *pvo_head;
   1484 	struct pvo_entry *pvo0;
   1485 	volatile struct pte *pt;
   1486 	int failed = 0;
   1487 
   1488 	PMAP_LOCK();
   1489 
   1490 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1491 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1492 
   1493 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1494 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1495 		    pvo, pvo->pvo_pmap);
   1496 		failed = 1;
   1497 	}
   1498 
   1499 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1500 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1501 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1502 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1503 		failed = 1;
   1504 	}
   1505 
   1506 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1507 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1508 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1509 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1510 		failed = 1;
   1511 	}
   1512 
   1513 	if (PVO_MANAGED_P(pvo)) {
   1514 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1515 	} else {
   1516 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1517 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1518 			    "on kernel unmanaged list\n", pvo);
   1519 			failed = 1;
   1520 		}
   1521 		pvo_head = &pmap_pvo_kunmanaged;
   1522 	}
   1523 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1524 		if (pvo0 == pvo)
   1525 			break;
   1526 	}
   1527 	if (pvo0 == NULL) {
   1528 		printf("pmap_pvo_check: pvo %p: not present "
   1529 		    "on its vlist head %p\n", pvo, pvo_head);
   1530 		failed = 1;
   1531 	}
   1532 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1533 		printf("pmap_pvo_check: pvo %p: not present "
   1534 		    "on its olist head\n", pvo);
   1535 		failed = 1;
   1536 	}
   1537 	pt = pmap_pvo_to_pte(pvo, -1);
   1538 	if (pt == NULL) {
   1539 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1540 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1541 			    "no PTE\n", pvo);
   1542 			failed = 1;
   1543 		}
   1544 	} else {
   1545 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1546 		    (uintptr_t) pt >=
   1547 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1548 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1549 			    "pteg table\n", pvo, pt);
   1550 			failed = 1;
   1551 		}
   1552 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1553 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1554 			    "no PTE\n", pvo);
   1555 			failed = 1;
   1556 		}
   1557 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1558 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1559 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1560 			failed = 1;
   1561 		}
   1562 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1563 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1564 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1565 			    "%#x/%#x\n", pvo,
   1566 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1567 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1568 			failed = 1;
   1569 		}
   1570 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1571 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1572 			    " doesn't not match PVO's VA %#lx\n",
   1573 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1574 			failed = 1;
   1575 		}
   1576 		if (failed)
   1577 			pmap_pte_print(pt);
   1578 	}
   1579 	if (failed)
   1580 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1581 		    pvo->pvo_pmap);
   1582 
   1583 	PMAP_UNLOCK();
   1584 }
   1585 #endif /* DEBUG || PMAPCHECK */
   1586 
   1587 /*
   1588  * Search the PVO table looking for a non-wired entry.
   1589  * If we find one, remove it and return it.
   1590  */
   1591 
   1592 struct pvo_entry *
   1593 pmap_pvo_reclaim(struct pmap *pm)
   1594 {
   1595 	struct pvo_tqhead *pvoh;
   1596 	struct pvo_entry *pvo;
   1597 	uint32_t idx, endidx;
   1598 
   1599 	endidx = pmap_pvo_reclaim_nextidx;
   1600 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1601 	     idx = (idx + 1) & pmap_pteg_mask) {
   1602 		pvoh = &pmap_pvo_table[idx];
   1603 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1604 			if (!PVO_WIRED_P(pvo)) {
   1605 				pmap_pvo_remove(pvo, -1, NULL);
   1606 				pmap_pvo_reclaim_nextidx = idx;
   1607 				PMAPCOUNT(pvos_reclaimed);
   1608 				return pvo;
   1609 			}
   1610 		}
   1611 	}
   1612 	return NULL;
   1613 }
   1614 
   1615 /*
   1616  * This returns whether this is the first mapping of a page.
   1617  */
   1618 int
   1619 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1620 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1621 {
   1622 	struct pvo_entry *pvo;
   1623 	struct pvo_tqhead *pvoh;
   1624 	register_t msr;
   1625 	int ptegidx;
   1626 	int i;
   1627 	int poolflags = PR_NOWAIT;
   1628 
   1629 	/*
   1630 	 * Compute the PTE Group index.
   1631 	 */
   1632 	va &= ~ADDR_POFF;
   1633 	ptegidx = va_to_pteg(pm, va);
   1634 
   1635 	msr = pmap_interrupts_off();
   1636 
   1637 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1638 	if (pmap_pvo_remove_depth > 0)
   1639 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1640 	if (++pmap_pvo_enter_depth > 1)
   1641 		panic("pmap_pvo_enter: called recursively!");
   1642 #endif
   1643 
   1644 	/*
   1645 	 * Remove any existing mapping for this page.  Reuse the
   1646 	 * pvo entry if there a mapping.
   1647 	 */
   1648 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1649 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1650 #ifdef DEBUG
   1651 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1652 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1653 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1654 			   va < VM_MIN_KERNEL_ADDRESS) {
   1655 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
   1656 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1657 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
   1658 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1659 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1660 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1661 #ifdef DDBX
   1662 				Debugger();
   1663 #endif
   1664 			}
   1665 #endif
   1666 			PMAPCOUNT(mappings_replaced);
   1667 			pmap_pvo_remove(pvo, -1, NULL);
   1668 			break;
   1669 		}
   1670 	}
   1671 
   1672 	/*
   1673 	 * If we aren't overwriting an mapping, try to allocate
   1674 	 */
   1675 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1676 	--pmap_pvo_enter_depth;
   1677 #endif
   1678 	pmap_interrupts_restore(msr);
   1679 	if (pvo) {
   1680 		pmap_pvo_free(pvo);
   1681 	}
   1682 	pvo = pool_get(pl, poolflags);
   1683 
   1684 #ifdef DEBUG
   1685 	/*
   1686 	 * Exercise pmap_pvo_reclaim() a little.
   1687 	 */
   1688 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1689 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1690 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1691 		pool_put(pl, pvo);
   1692 		pvo = NULL;
   1693 	}
   1694 #endif
   1695 
   1696 	msr = pmap_interrupts_off();
   1697 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1698 	++pmap_pvo_enter_depth;
   1699 #endif
   1700 	if (pvo == NULL) {
   1701 		pvo = pmap_pvo_reclaim(pm);
   1702 		if (pvo == NULL) {
   1703 			if ((flags & PMAP_CANFAIL) == 0)
   1704 				panic("pmap_pvo_enter: failed");
   1705 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1706 			pmap_pvo_enter_depth--;
   1707 #endif
   1708 			PMAPCOUNT(pvos_failed);
   1709 			pmap_interrupts_restore(msr);
   1710 			return ENOMEM;
   1711 		}
   1712 	}
   1713 
   1714 	pvo->pvo_vaddr = va;
   1715 	pvo->pvo_pmap = pm;
   1716 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1717 	if (flags & VM_PROT_EXECUTE) {
   1718 		PMAPCOUNT(exec_mappings);
   1719 		pvo_set_exec(pvo);
   1720 	}
   1721 	if (flags & PMAP_WIRED)
   1722 		pvo->pvo_vaddr |= PVO_WIRED;
   1723 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1724 		pvo->pvo_vaddr |= PVO_MANAGED;
   1725 		PMAPCOUNT(mappings);
   1726 	} else {
   1727 		PMAPCOUNT(kernel_mappings);
   1728 	}
   1729 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1730 
   1731 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1732 	if (PVO_WIRED_P(pvo))
   1733 		pvo->pvo_pmap->pm_stats.wired_count++;
   1734 	pvo->pvo_pmap->pm_stats.resident_count++;
   1735 #if defined(DEBUG)
   1736 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1737 		DPRINTFN(PVOENTER,
   1738 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1739 		    pvo, pm, va, pa));
   1740 #endif
   1741 
   1742 	/*
   1743 	 * We hope this succeeds but it isn't required.
   1744 	 */
   1745 	pvoh = &pmap_pvo_table[ptegidx];
   1746 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1747 	if (i >= 0) {
   1748 		PVO_PTEGIDX_SET(pvo, i);
   1749 		PVO_WHERE(pvo, ENTER_INSERT);
   1750 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1751 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1752 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1753 
   1754 	} else {
   1755 		/*
   1756 		 * Since we didn't have room for this entry (which makes it
   1757 		 * and evicted entry), place it at the head of the list.
   1758 		 */
   1759 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1760 		PMAPCOUNT(ptes_evicted);
   1761 		pm->pm_evictions++;
   1762 		/*
   1763 		 * If this is a kernel page, make sure it's active.
   1764 		 */
   1765 		if (pm == pmap_kernel()) {
   1766 			i = pmap_pte_spill(pm, va, false);
   1767 			KASSERT(i);
   1768 		}
   1769 	}
   1770 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1771 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1772 	pmap_pvo_enter_depth--;
   1773 #endif
   1774 	pmap_interrupts_restore(msr);
   1775 	return 0;
   1776 }
   1777 
   1778 void
   1779 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1780 {
   1781 	volatile struct pte *pt;
   1782 	int ptegidx;
   1783 
   1784 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1785 	if (++pmap_pvo_remove_depth > 1)
   1786 		panic("pmap_pvo_remove: called recursively!");
   1787 #endif
   1788 
   1789 	/*
   1790 	 * If we haven't been supplied the ptegidx, calculate it.
   1791 	 */
   1792 	if (pteidx == -1) {
   1793 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1794 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1795 	} else {
   1796 		ptegidx = pteidx >> 3;
   1797 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1798 			ptegidx ^= pmap_pteg_mask;
   1799 	}
   1800 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1801 
   1802 	/*
   1803 	 * If there is an active pte entry, we need to deactivate it
   1804 	 * (and save the ref & chg bits).
   1805 	 */
   1806 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1807 	if (pt != NULL) {
   1808 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1809 		PVO_WHERE(pvo, REMOVE);
   1810 		PVO_PTEGIDX_CLR(pvo);
   1811 		PMAPCOUNT(ptes_removed);
   1812 	} else {
   1813 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1814 		pvo->pvo_pmap->pm_evictions--;
   1815 	}
   1816 
   1817 	/*
   1818 	 * Account for executable mappings.
   1819 	 */
   1820 	if (PVO_EXECUTABLE_P(pvo))
   1821 		pvo_clear_exec(pvo);
   1822 
   1823 	/*
   1824 	 * Update our statistics.
   1825 	 */
   1826 	pvo->pvo_pmap->pm_stats.resident_count--;
   1827 	if (PVO_WIRED_P(pvo))
   1828 		pvo->pvo_pmap->pm_stats.wired_count--;
   1829 
   1830 	/*
   1831 	 * Save the REF/CHG bits into their cache if the page is managed.
   1832 	 */
   1833 	if (PVO_MANAGED_P(pvo)) {
   1834 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1835 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1836 
   1837 		if (pg != NULL) {
   1838 			/*
   1839 			 * If this page was changed and it is mapped exec,
   1840 			 * invalidate it.
   1841 			 */
   1842 			if ((ptelo & PTE_CHG) &&
   1843 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1844 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1845 				if (LIST_EMPTY(pvoh)) {
   1846 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1847 					    "%#lx: clear-exec]\n",
   1848 					    VM_PAGE_TO_PHYS(pg)));
   1849 					pmap_attr_clear(pg, PTE_EXEC);
   1850 					PMAPCOUNT(exec_uncached_pvo_remove);
   1851 				} else {
   1852 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1853 					    "%#lx: syncicache]\n",
   1854 					    VM_PAGE_TO_PHYS(pg)));
   1855 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1856 					    PAGE_SIZE);
   1857 					PMAPCOUNT(exec_synced_pvo_remove);
   1858 				}
   1859 			}
   1860 
   1861 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1862 		}
   1863 		PMAPCOUNT(unmappings);
   1864 	} else {
   1865 		PMAPCOUNT(kernel_unmappings);
   1866 	}
   1867 
   1868 	/*
   1869 	 * Remove the PVO from its lists and return it to the pool.
   1870 	 */
   1871 	LIST_REMOVE(pvo, pvo_vlink);
   1872 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1873 	if (pvol) {
   1874 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1875 	}
   1876 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1877 	pmap_pvo_remove_depth--;
   1878 #endif
   1879 }
   1880 
   1881 void
   1882 pmap_pvo_free(struct pvo_entry *pvo)
   1883 {
   1884 
   1885 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1886 }
   1887 
   1888 void
   1889 pmap_pvo_free_list(struct pvo_head *pvol)
   1890 {
   1891 	struct pvo_entry *pvo, *npvo;
   1892 
   1893 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1894 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1895 		LIST_REMOVE(pvo, pvo_vlink);
   1896 		pmap_pvo_free(pvo);
   1897 	}
   1898 }
   1899 
   1900 /*
   1901  * Mark a mapping as executable.
   1902  * If this is the first executable mapping in the segment,
   1903  * clear the noexec flag.
   1904  */
   1905 STATIC void
   1906 pvo_set_exec(struct pvo_entry *pvo)
   1907 {
   1908 	struct pmap *pm = pvo->pvo_pmap;
   1909 
   1910 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1911 		return;
   1912 	}
   1913 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1914 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1915 	{
   1916 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1917 		if (pm->pm_exec[sr]++ == 0) {
   1918 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1919 		}
   1920 	}
   1921 #endif
   1922 }
   1923 
   1924 /*
   1925  * Mark a mapping as non-executable.
   1926  * If this was the last executable mapping in the segment,
   1927  * set the noexec flag.
   1928  */
   1929 STATIC void
   1930 pvo_clear_exec(struct pvo_entry *pvo)
   1931 {
   1932 	struct pmap *pm = pvo->pvo_pmap;
   1933 
   1934 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1935 		return;
   1936 	}
   1937 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1938 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   1939 	{
   1940 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1941 		if (--pm->pm_exec[sr] == 0) {
   1942 			pm->pm_sr[sr] |= SR_NOEXEC;
   1943 		}
   1944 	}
   1945 #endif
   1946 }
   1947 
   1948 /*
   1949  * Insert physical page at pa into the given pmap at virtual address va.
   1950  */
   1951 int
   1952 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1953 {
   1954 	struct mem_region *mp;
   1955 	struct pvo_head *pvo_head;
   1956 	struct vm_page *pg;
   1957 	struct pool *pl;
   1958 	register_t pte_lo;
   1959 	int error;
   1960 	u_int pvo_flags;
   1961 	u_int was_exec = 0;
   1962 
   1963 	PMAP_LOCK();
   1964 
   1965 	if (__predict_false(!pmap_initialized)) {
   1966 		pvo_head = &pmap_pvo_kunmanaged;
   1967 		pl = &pmap_upvo_pool;
   1968 		pvo_flags = 0;
   1969 		pg = NULL;
   1970 		was_exec = PTE_EXEC;
   1971 	} else {
   1972 		pvo_head = pa_to_pvoh(pa, &pg);
   1973 		pl = &pmap_mpvo_pool;
   1974 		pvo_flags = PVO_MANAGED;
   1975 	}
   1976 
   1977 	DPRINTFN(ENTER,
   1978 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1979 	    pm, va, pa, prot, flags));
   1980 
   1981 	/*
   1982 	 * If this is a managed page, and it's the first reference to the
   1983 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1984 	 */
   1985 	if (pg != NULL)
   1986 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1987 
   1988 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1989 
   1990 	/*
   1991 	 * Assume the page is cache inhibited and access is guarded unless
   1992 	 * it's in our available memory array.  If it is in the memory array,
   1993 	 * asssume it's in memory coherent memory.
   1994 	 */
   1995 	pte_lo = PTE_IG;
   1996 	if ((flags & PMAP_NC) == 0) {
   1997 		for (mp = mem; mp->size; mp++) {
   1998 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1999 				pte_lo = PTE_M;
   2000 				break;
   2001 			}
   2002 		}
   2003 	}
   2004 
   2005 	if (prot & VM_PROT_WRITE)
   2006 		pte_lo |= PTE_BW;
   2007 	else
   2008 		pte_lo |= PTE_BR;
   2009 
   2010 	/*
   2011 	 * If this was in response to a fault, "pre-fault" the PTE's
   2012 	 * changed/referenced bit appropriately.
   2013 	 */
   2014 	if (flags & VM_PROT_WRITE)
   2015 		pte_lo |= PTE_CHG;
   2016 	if (flags & VM_PROT_ALL)
   2017 		pte_lo |= PTE_REF;
   2018 
   2019 	/*
   2020 	 * We need to know if this page can be executable
   2021 	 */
   2022 	flags |= (prot & VM_PROT_EXECUTE);
   2023 
   2024 	/*
   2025 	 * Record mapping for later back-translation and pte spilling.
   2026 	 * This will overwrite any existing mapping.
   2027 	 */
   2028 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   2029 
   2030 	/*
   2031 	 * Flush the real page from the instruction cache if this page is
   2032 	 * mapped executable and cacheable and has not been flushed since
   2033 	 * the last time it was modified.
   2034 	 */
   2035 	if (error == 0 &&
   2036             (flags & VM_PROT_EXECUTE) &&
   2037             (pte_lo & PTE_I) == 0 &&
   2038 	    was_exec == 0) {
   2039 		DPRINTFN(ENTER, (" syncicache"));
   2040 		PMAPCOUNT(exec_synced);
   2041 		pmap_syncicache(pa, PAGE_SIZE);
   2042 		if (pg != NULL) {
   2043 			pmap_attr_save(pg, PTE_EXEC);
   2044 			PMAPCOUNT(exec_cached);
   2045 #if defined(DEBUG) || defined(PMAPDEBUG)
   2046 			if (pmapdebug & PMAPDEBUG_ENTER)
   2047 				printf(" marked-as-exec");
   2048 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2049 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   2050 				    VM_PAGE_TO_PHYS(pg));
   2051 
   2052 #endif
   2053 		}
   2054 	}
   2055 
   2056 	DPRINTFN(ENTER, (": error=%d\n", error));
   2057 
   2058 	PMAP_UNLOCK();
   2059 
   2060 	return error;
   2061 }
   2062 
   2063 void
   2064 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2065 {
   2066 	struct mem_region *mp;
   2067 	register_t pte_lo;
   2068 	int error;
   2069 
   2070 #if defined (PPC_OEA64_BRIDGE)
   2071 	if (va < VM_MIN_KERNEL_ADDRESS)
   2072 		panic("pmap_kenter_pa: attempt to enter "
   2073 		    "non-kernel address %#lx!", va);
   2074 #endif
   2075 
   2076 	DPRINTFN(KENTER,
   2077 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   2078 
   2079 	PMAP_LOCK();
   2080 
   2081 	/*
   2082 	 * Assume the page is cache inhibited and access is guarded unless
   2083 	 * it's in our available memory array.  If it is in the memory array,
   2084 	 * asssume it's in memory coherent memory.
   2085 	 */
   2086 	pte_lo = PTE_IG;
   2087 	if ((prot & PMAP_NC) == 0) {
   2088 		for (mp = mem; mp->size; mp++) {
   2089 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2090 				pte_lo = PTE_M;
   2091 				break;
   2092 			}
   2093 		}
   2094 	}
   2095 
   2096 	if (prot & VM_PROT_WRITE)
   2097 		pte_lo |= PTE_BW;
   2098 	else
   2099 		pte_lo |= PTE_BR;
   2100 
   2101 	/*
   2102 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2103 	 */
   2104 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2105 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2106 
   2107 	if (error != 0)
   2108 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   2109 		      va, pa, error);
   2110 
   2111 	PMAP_UNLOCK();
   2112 }
   2113 
   2114 void
   2115 pmap_kremove(vaddr_t va, vsize_t len)
   2116 {
   2117 	if (va < VM_MIN_KERNEL_ADDRESS)
   2118 		panic("pmap_kremove: attempt to remove "
   2119 		    "non-kernel address %#lx!", va);
   2120 
   2121 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   2122 	pmap_remove(pmap_kernel(), va, va + len);
   2123 }
   2124 
   2125 /*
   2126  * Remove the given range of mapping entries.
   2127  */
   2128 void
   2129 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2130 {
   2131 	struct pvo_head pvol;
   2132 	struct pvo_entry *pvo;
   2133 	register_t msr;
   2134 	int pteidx;
   2135 
   2136 	PMAP_LOCK();
   2137 	LIST_INIT(&pvol);
   2138 	msr = pmap_interrupts_off();
   2139 	for (; va < endva; va += PAGE_SIZE) {
   2140 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2141 		if (pvo != NULL) {
   2142 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2143 		}
   2144 	}
   2145 	pmap_interrupts_restore(msr);
   2146 	pmap_pvo_free_list(&pvol);
   2147 	PMAP_UNLOCK();
   2148 }
   2149 
   2150 /*
   2151  * Get the physical page address for the given pmap/virtual address.
   2152  */
   2153 bool
   2154 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2155 {
   2156 	struct pvo_entry *pvo;
   2157 	register_t msr;
   2158 
   2159 	PMAP_LOCK();
   2160 
   2161 	/*
   2162 	 * If this is a kernel pmap lookup, also check the battable
   2163 	 * and if we get a hit, translate the VA to a PA using the
   2164 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2165 	 * that will wrap back to 0.
   2166 	 */
   2167 	if (pm == pmap_kernel() &&
   2168 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2169 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2170 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2171 #if defined (PPC_OEA)
   2172 		if ((MFPVR() >> 16) != MPC601) {
   2173 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2174 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2175 				register_t batl =
   2176 				    battable[va >> ADDR_SR_SHFT].batl;
   2177 				register_t mask =
   2178 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2179 				if (pap)
   2180 					*pap = (batl & mask) | (va & ~mask);
   2181 				PMAP_UNLOCK();
   2182 				return true;
   2183 			}
   2184 		} else {
   2185 			register_t batu = battable[va >> 23].batu;
   2186 			register_t batl = battable[va >> 23].batl;
   2187 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2188 			if (BAT601_VALID_P(batl) &&
   2189 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2190 				register_t mask =
   2191 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2192 				if (pap)
   2193 					*pap = (batl & mask) | (va & ~mask);
   2194 				PMAP_UNLOCK();
   2195 				return true;
   2196 			} else if (SR601_VALID_P(sr) &&
   2197 				   SR601_PA_MATCH_P(sr, va)) {
   2198 				if (pap)
   2199 					*pap = va;
   2200 				PMAP_UNLOCK();
   2201 				return true;
   2202 			}
   2203 		}
   2204 		PMAP_UNLOCK();
   2205 		return false;
   2206 #elif defined (PPC_OEA64_BRIDGE)
   2207 	panic("%s: pm: %s, va: 0x%08lx\n", __func__,
   2208 		(pm == pmap_kernel() ? "kernel" : "user"), va);
   2209 #elif defined (PPC_OEA64)
   2210 #error PPC_OEA64 not supported
   2211 #endif /* PPC_OEA */
   2212 	}
   2213 
   2214 	msr = pmap_interrupts_off();
   2215 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2216 	if (pvo != NULL) {
   2217 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2218 		if (pap)
   2219 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2220 			    | (va & ADDR_POFF);
   2221 	}
   2222 	pmap_interrupts_restore(msr);
   2223 	PMAP_UNLOCK();
   2224 	return pvo != NULL;
   2225 }
   2226 
   2227 /*
   2228  * Lower the protection on the specified range of this pmap.
   2229  */
   2230 void
   2231 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2232 {
   2233 	struct pvo_entry *pvo;
   2234 	volatile struct pte *pt;
   2235 	register_t msr;
   2236 	int pteidx;
   2237 
   2238 	/*
   2239 	 * Since this routine only downgrades protection, we should
   2240 	 * always be called with at least one bit not set.
   2241 	 */
   2242 	KASSERT(prot != VM_PROT_ALL);
   2243 
   2244 	/*
   2245 	 * If there is no protection, this is equivalent to
   2246 	 * remove the pmap from the pmap.
   2247 	 */
   2248 	if ((prot & VM_PROT_READ) == 0) {
   2249 		pmap_remove(pm, va, endva);
   2250 		return;
   2251 	}
   2252 
   2253 	PMAP_LOCK();
   2254 
   2255 	msr = pmap_interrupts_off();
   2256 	for (; va < endva; va += PAGE_SIZE) {
   2257 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2258 		if (pvo == NULL)
   2259 			continue;
   2260 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2261 
   2262 		/*
   2263 		 * Revoke executable if asked to do so.
   2264 		 */
   2265 		if ((prot & VM_PROT_EXECUTE) == 0)
   2266 			pvo_clear_exec(pvo);
   2267 
   2268 #if 0
   2269 		/*
   2270 		 * If the page is already read-only, no change
   2271 		 * needs to be made.
   2272 		 */
   2273 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2274 			continue;
   2275 #endif
   2276 		/*
   2277 		 * Grab the PTE pointer before we diddle with
   2278 		 * the cached PTE copy.
   2279 		 */
   2280 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2281 		/*
   2282 		 * Change the protection of the page.
   2283 		 */
   2284 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2285 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2286 
   2287 		/*
   2288 		 * If the PVO is in the page table, update
   2289 		 * that pte at well.
   2290 		 */
   2291 		if (pt != NULL) {
   2292 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2293 			PVO_WHERE(pvo, PMAP_PROTECT);
   2294 			PMAPCOUNT(ptes_changed);
   2295 		}
   2296 
   2297 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2298 	}
   2299 	pmap_interrupts_restore(msr);
   2300 	PMAP_UNLOCK();
   2301 }
   2302 
   2303 void
   2304 pmap_unwire(pmap_t pm, vaddr_t va)
   2305 {
   2306 	struct pvo_entry *pvo;
   2307 	register_t msr;
   2308 
   2309 	PMAP_LOCK();
   2310 	msr = pmap_interrupts_off();
   2311 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2312 	if (pvo != NULL) {
   2313 		if (PVO_WIRED_P(pvo)) {
   2314 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2315 			pm->pm_stats.wired_count--;
   2316 		}
   2317 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2318 	}
   2319 	pmap_interrupts_restore(msr);
   2320 	PMAP_UNLOCK();
   2321 }
   2322 
   2323 /*
   2324  * Lower the protection on the specified physical page.
   2325  */
   2326 void
   2327 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2328 {
   2329 	struct pvo_head *pvo_head, pvol;
   2330 	struct pvo_entry *pvo, *next_pvo;
   2331 	volatile struct pte *pt;
   2332 	register_t msr;
   2333 
   2334 	PMAP_LOCK();
   2335 
   2336 	KASSERT(prot != VM_PROT_ALL);
   2337 	LIST_INIT(&pvol);
   2338 	msr = pmap_interrupts_off();
   2339 
   2340 	/*
   2341 	 * When UVM reuses a page, it does a pmap_page_protect with
   2342 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2343 	 * since we know the page will have different contents.
   2344 	 */
   2345 	if ((prot & VM_PROT_READ) == 0) {
   2346 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   2347 		    VM_PAGE_TO_PHYS(pg)));
   2348 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2349 			PMAPCOUNT(exec_uncached_page_protect);
   2350 			pmap_attr_clear(pg, PTE_EXEC);
   2351 		}
   2352 	}
   2353 
   2354 	pvo_head = vm_page_to_pvoh(pg);
   2355 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2356 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2357 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2358 
   2359 		/*
   2360 		 * Downgrading to no mapping at all, we just remove the entry.
   2361 		 */
   2362 		if ((prot & VM_PROT_READ) == 0) {
   2363 			pmap_pvo_remove(pvo, -1, &pvol);
   2364 			continue;
   2365 		}
   2366 
   2367 		/*
   2368 		 * If EXEC permission is being revoked, just clear the
   2369 		 * flag in the PVO.
   2370 		 */
   2371 		if ((prot & VM_PROT_EXECUTE) == 0)
   2372 			pvo_clear_exec(pvo);
   2373 
   2374 		/*
   2375 		 * If this entry is already RO, don't diddle with the
   2376 		 * page table.
   2377 		 */
   2378 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2379 			PMAP_PVO_CHECK(pvo);
   2380 			continue;
   2381 		}
   2382 
   2383 		/*
   2384 		 * Grab the PTE before the we diddle the bits so
   2385 		 * pvo_to_pte can verify the pte contents are as
   2386 		 * expected.
   2387 		 */
   2388 		pt = pmap_pvo_to_pte(pvo, -1);
   2389 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2390 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2391 		if (pt != NULL) {
   2392 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2393 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2394 			PMAPCOUNT(ptes_changed);
   2395 		}
   2396 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2397 	}
   2398 	pmap_interrupts_restore(msr);
   2399 	pmap_pvo_free_list(&pvol);
   2400 
   2401 	PMAP_UNLOCK();
   2402 }
   2403 
   2404 /*
   2405  * Activate the address space for the specified process.  If the process
   2406  * is the current process, load the new MMU context.
   2407  */
   2408 void
   2409 pmap_activate(struct lwp *l)
   2410 {
   2411 	struct pcb *pcb = &l->l_addr->u_pcb;
   2412 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2413 
   2414 	DPRINTFN(ACTIVATE,
   2415 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2416 
   2417 	/*
   2418 	 * XXX Normally performed in cpu_fork().
   2419 	 */
   2420 	pcb->pcb_pm = pmap;
   2421 
   2422 	/*
   2423 	* In theory, the SR registers need only be valid on return
   2424 	* to user space wait to do them there.
   2425 	*/
   2426 	if (l == curlwp) {
   2427 		/* Store pointer to new current pmap. */
   2428 		curpm = pmap;
   2429 	}
   2430 }
   2431 
   2432 /*
   2433  * Deactivate the specified process's address space.
   2434  */
   2435 void
   2436 pmap_deactivate(struct lwp *l)
   2437 {
   2438 }
   2439 
   2440 bool
   2441 pmap_query_bit(struct vm_page *pg, int ptebit)
   2442 {
   2443 	struct pvo_entry *pvo;
   2444 	volatile struct pte *pt;
   2445 	register_t msr;
   2446 
   2447 	PMAP_LOCK();
   2448 
   2449 	if (pmap_attr_fetch(pg) & ptebit) {
   2450 		PMAP_UNLOCK();
   2451 		return true;
   2452 	}
   2453 
   2454 	msr = pmap_interrupts_off();
   2455 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2456 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2457 		/*
   2458 		 * See if we saved the bit off.  If so cache, it and return
   2459 		 * success.
   2460 		 */
   2461 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2462 			pmap_attr_save(pg, ptebit);
   2463 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2464 			pmap_interrupts_restore(msr);
   2465 			PMAP_UNLOCK();
   2466 			return true;
   2467 		}
   2468 	}
   2469 	/*
   2470 	 * No luck, now go thru the hard part of looking at the ptes
   2471 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2472 	 * to the PTEs.
   2473 	 */
   2474 	SYNC();
   2475 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2476 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2477 		/*
   2478 		 * See if this pvo have a valid PTE.  If so, fetch the
   2479 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2480 		 * ptebit is set, cache, it and return success.
   2481 		 */
   2482 		pt = pmap_pvo_to_pte(pvo, -1);
   2483 		if (pt != NULL) {
   2484 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2485 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2486 				pmap_attr_save(pg, ptebit);
   2487 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2488 				pmap_interrupts_restore(msr);
   2489 				PMAP_UNLOCK();
   2490 				return true;
   2491 			}
   2492 		}
   2493 	}
   2494 	pmap_interrupts_restore(msr);
   2495 	PMAP_UNLOCK();
   2496 	return false;
   2497 }
   2498 
   2499 bool
   2500 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2501 {
   2502 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2503 	struct pvo_entry *pvo;
   2504 	volatile struct pte *pt;
   2505 	register_t msr;
   2506 	int rv = 0;
   2507 
   2508 	PMAP_LOCK();
   2509 	msr = pmap_interrupts_off();
   2510 
   2511 	/*
   2512 	 * Fetch the cache value
   2513 	 */
   2514 	rv |= pmap_attr_fetch(pg);
   2515 
   2516 	/*
   2517 	 * Clear the cached value.
   2518 	 */
   2519 	pmap_attr_clear(pg, ptebit);
   2520 
   2521 	/*
   2522 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2523 	 * can reset the right ones).  Note that since the pvo entries and
   2524 	 * list heads are accessed via BAT0 and are never placed in the
   2525 	 * page table, we don't have to worry about further accesses setting
   2526 	 * the REF/CHG bits.
   2527 	 */
   2528 	SYNC();
   2529 
   2530 	/*
   2531 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2532 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2533 	 */
   2534 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2535 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2536 		pt = pmap_pvo_to_pte(pvo, -1);
   2537 		if (pt != NULL) {
   2538 			/*
   2539 			 * Only sync the PTE if the bit we are looking
   2540 			 * for is not already set.
   2541 			 */
   2542 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2543 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2544 			/*
   2545 			 * If the bit we are looking for was already set,
   2546 			 * clear that bit in the pte.
   2547 			 */
   2548 			if (pvo->pvo_pte.pte_lo & ptebit)
   2549 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2550 		}
   2551 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2552 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2553 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2554 	}
   2555 	pmap_interrupts_restore(msr);
   2556 
   2557 	/*
   2558 	 * If we are clearing the modify bit and this page was marked EXEC
   2559 	 * and the user of the page thinks the page was modified, then we
   2560 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2561 	 * bit if it's not mapped.  The page itself might not have the CHG
   2562 	 * bit set if the modification was done via DMA to the page.
   2563 	 */
   2564 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2565 		if (LIST_EMPTY(pvoh)) {
   2566 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2567 			    VM_PAGE_TO_PHYS(pg)));
   2568 			pmap_attr_clear(pg, PTE_EXEC);
   2569 			PMAPCOUNT(exec_uncached_clear_modify);
   2570 		} else {
   2571 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2572 			    VM_PAGE_TO_PHYS(pg)));
   2573 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2574 			PMAPCOUNT(exec_synced_clear_modify);
   2575 		}
   2576 	}
   2577 	PMAP_UNLOCK();
   2578 	return (rv & ptebit) != 0;
   2579 }
   2580 
   2581 void
   2582 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2583 {
   2584 	struct pvo_entry *pvo;
   2585 	size_t offset = va & ADDR_POFF;
   2586 	int s;
   2587 
   2588 	PMAP_LOCK();
   2589 	s = splvm();
   2590 	while (len > 0) {
   2591 		size_t seglen = PAGE_SIZE - offset;
   2592 		if (seglen > len)
   2593 			seglen = len;
   2594 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2595 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2596 			pmap_syncicache(
   2597 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2598 			PMAP_PVO_CHECK(pvo);
   2599 		}
   2600 		va += seglen;
   2601 		len -= seglen;
   2602 		offset = 0;
   2603 	}
   2604 	splx(s);
   2605 	PMAP_UNLOCK();
   2606 }
   2607 
   2608 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2609 void
   2610 pmap_pte_print(volatile struct pte *pt)
   2611 {
   2612 	printf("PTE %p: ", pt);
   2613 
   2614 #if defined(PPC_OEA)
   2615 	/* High word: */
   2616 	printf("0x%08lx: [", pt->pte_hi);
   2617 #elif defined (PPC_OEA64_BRIDGE)
   2618 	printf("0x%016llx: [", pt->pte_hi);
   2619 #else /* PPC_OEA64 */
   2620 	printf("0x%016lx: [", pt->pte_hi);
   2621 #endif /* PPC_OEA */
   2622 
   2623 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2624 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2625 
   2626 #if defined (PPC_OEA)
   2627 	printf("0x%06lx 0x%02lx",
   2628 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2629 	    pt->pte_hi & PTE_API);
   2630 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2631 #elif defined (PPC_OEA64)
   2632 	printf("0x%06lx 0x%02lx",
   2633 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2634 	    pt->pte_hi & PTE_API);
   2635 	printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
   2636 #else
   2637 	/* PPC_OEA64_BRIDGE */
   2638 	printf("0x%06llx 0x%02llx",
   2639 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2640 	    pt->pte_hi & PTE_API);
   2641 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2642 #endif /* PPC_OEA */
   2643 
   2644 	/* Low word: */
   2645 #if defined (PPC_OEA)
   2646 	printf(" 0x%08lx: [", pt->pte_lo);
   2647 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2648 #elif defined (PPC_OEA64)
   2649 	printf(" 0x%016lx: [", pt->pte_lo);
   2650 	printf("0x%012lx... ", pt->pte_lo >> 12);
   2651 #else	/* PPC_OEA64_BRIDGE */
   2652 	printf(" 0x%016llx: [", pt->pte_lo);
   2653 	printf("0x%012llx... ", pt->pte_lo >> 12);
   2654 #endif
   2655 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2656 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2657 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2658 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2659 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2660 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2661 	switch (pt->pte_lo & PTE_PP) {
   2662 	case PTE_BR: printf("br]\n"); break;
   2663 	case PTE_BW: printf("bw]\n"); break;
   2664 	case PTE_SO: printf("so]\n"); break;
   2665 	case PTE_SW: printf("sw]\n"); break;
   2666 	}
   2667 }
   2668 #endif
   2669 
   2670 #if defined(DDB)
   2671 void
   2672 pmap_pteg_check(void)
   2673 {
   2674 	volatile struct pte *pt;
   2675 	int i;
   2676 	int ptegidx;
   2677 	u_int p_valid = 0;
   2678 	u_int s_valid = 0;
   2679 	u_int invalid = 0;
   2680 
   2681 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2682 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2683 			if (pt->pte_hi & PTE_VALID) {
   2684 				if (pt->pte_hi & PTE_HID)
   2685 					s_valid++;
   2686 				else
   2687 				{
   2688 					p_valid++;
   2689 				}
   2690 			} else
   2691 				invalid++;
   2692 		}
   2693 	}
   2694 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2695 		p_valid, p_valid, s_valid, s_valid,
   2696 		invalid, invalid);
   2697 }
   2698 
   2699 void
   2700 pmap_print_mmuregs(void)
   2701 {
   2702 	int i;
   2703 	u_int cpuvers;
   2704 #ifndef PPC_OEA64
   2705 	vaddr_t addr;
   2706 	register_t soft_sr[16];
   2707 #endif
   2708 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2709 	struct bat soft_ibat[4];
   2710 	struct bat soft_dbat[4];
   2711 #endif
   2712 	register_t sdr1;
   2713 
   2714 	cpuvers = MFPVR() >> 16;
   2715 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2716 #ifndef PPC_OEA64
   2717 	addr = 0;
   2718 	for (i = 0; i < 16; i++) {
   2719 		soft_sr[i] = MFSRIN(addr);
   2720 		addr += (1 << ADDR_SR_SHFT);
   2721 	}
   2722 #endif
   2723 
   2724 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2725 	/* read iBAT (601: uBAT) registers */
   2726 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2727 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2728 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2729 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2730 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2731 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2732 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2733 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2734 
   2735 
   2736 	if (cpuvers != MPC601) {
   2737 		/* read dBAT registers */
   2738 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2739 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2740 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2741 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2742 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2743 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2744 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2745 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2746 	}
   2747 #endif
   2748 
   2749 	printf("SDR1:\t0x%lx\n", (long) sdr1);
   2750 #ifndef PPC_OEA64
   2751 	printf("SR[]:\t");
   2752 	for (i = 0; i < 4; i++)
   2753 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2754 	printf("\n\t");
   2755 	for ( ; i < 8; i++)
   2756 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2757 	printf("\n\t");
   2758 	for ( ; i < 12; i++)
   2759 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2760 	printf("\n\t");
   2761 	for ( ; i < 16; i++)
   2762 		printf("0x%08lx,   ", (long) soft_sr[i]);
   2763 	printf("\n");
   2764 #endif
   2765 
   2766 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
   2767 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2768 	for (i = 0; i < 4; i++) {
   2769 		printf("0x%08lx 0x%08lx, ",
   2770 			soft_ibat[i].batu, soft_ibat[i].batl);
   2771 		if (i == 1)
   2772 			printf("\n\t");
   2773 	}
   2774 	if (cpuvers != MPC601) {
   2775 		printf("\ndBAT[]:\t");
   2776 		for (i = 0; i < 4; i++) {
   2777 			printf("0x%08lx 0x%08lx, ",
   2778 				soft_dbat[i].batu, soft_dbat[i].batl);
   2779 			if (i == 1)
   2780 				printf("\n\t");
   2781 		}
   2782 	}
   2783 	printf("\n");
   2784 #endif /* PPC_OEA... */
   2785 }
   2786 
   2787 void
   2788 pmap_print_pte(pmap_t pm, vaddr_t va)
   2789 {
   2790 	struct pvo_entry *pvo;
   2791 	volatile struct pte *pt;
   2792 	int pteidx;
   2793 
   2794 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2795 	if (pvo != NULL) {
   2796 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2797 		if (pt != NULL) {
   2798 #if defined (PPC_OEA) || defined (PPC_OEA64)
   2799 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2800 				va, pt,
   2801 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2802 				pt->pte_hi, pt->pte_lo);
   2803 #else	/* PPC_OEA64_BRIDGE */
   2804 			printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
   2805 				va, pt,
   2806 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2807 				pt->pte_hi, pt->pte_lo);
   2808 #endif
   2809 		} else {
   2810 			printf("No valid PTE found\n");
   2811 		}
   2812 	} else {
   2813 		printf("Address not in pmap\n");
   2814 	}
   2815 }
   2816 
   2817 void
   2818 pmap_pteg_dist(void)
   2819 {
   2820 	struct pvo_entry *pvo;
   2821 	int ptegidx;
   2822 	int depth;
   2823 	int max_depth = 0;
   2824 	unsigned int depths[64];
   2825 
   2826 	memset(depths, 0, sizeof(depths));
   2827 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2828 		depth = 0;
   2829 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2830 			depth++;
   2831 		}
   2832 		if (depth > max_depth)
   2833 			max_depth = depth;
   2834 		if (depth > 63)
   2835 			depth = 63;
   2836 		depths[depth]++;
   2837 	}
   2838 
   2839 	for (depth = 0; depth < 64; depth++) {
   2840 		printf("  [%2d]: %8u", depth, depths[depth]);
   2841 		if ((depth & 3) == 3)
   2842 			printf("\n");
   2843 		if (depth == max_depth)
   2844 			break;
   2845 	}
   2846 	if ((depth & 3) != 3)
   2847 		printf("\n");
   2848 	printf("Max depth found was %d\n", max_depth);
   2849 }
   2850 #endif /* DEBUG */
   2851 
   2852 #if defined(PMAPCHECK) || defined(DEBUG)
   2853 void
   2854 pmap_pvo_verify(void)
   2855 {
   2856 	int ptegidx;
   2857 	int s;
   2858 
   2859 	s = splvm();
   2860 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2861 		struct pvo_entry *pvo;
   2862 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2863 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2864 				panic("pmap_pvo_verify: invalid pvo %p "
   2865 				    "on list %#x", pvo, ptegidx);
   2866 			pmap_pvo_check(pvo);
   2867 		}
   2868 	}
   2869 	splx(s);
   2870 }
   2871 #endif /* PMAPCHECK */
   2872 
   2873 
   2874 void *
   2875 pmap_pool_ualloc(struct pool *pp, int flags)
   2876 {
   2877 	struct pvo_page *pvop;
   2878 
   2879 	if (uvm.page_init_done != true) {
   2880 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2881 	}
   2882 
   2883 	PMAP_LOCK();
   2884 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2885 	if (pvop != NULL) {
   2886 		pmap_upvop_free--;
   2887 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2888 		PMAP_UNLOCK();
   2889 		return pvop;
   2890 	}
   2891 	PMAP_UNLOCK();
   2892 	return pmap_pool_malloc(pp, flags);
   2893 }
   2894 
   2895 void *
   2896 pmap_pool_malloc(struct pool *pp, int flags)
   2897 {
   2898 	struct pvo_page *pvop;
   2899 	struct vm_page *pg;
   2900 
   2901 	PMAP_LOCK();
   2902 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2903 	if (pvop != NULL) {
   2904 		pmap_mpvop_free--;
   2905 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2906 		PMAP_UNLOCK();
   2907 		return pvop;
   2908 	}
   2909 	PMAP_UNLOCK();
   2910  again:
   2911 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2912 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2913 	if (__predict_false(pg == NULL)) {
   2914 		if (flags & PR_WAITOK) {
   2915 			uvm_wait("plpg");
   2916 			goto again;
   2917 		} else {
   2918 			return (0);
   2919 		}
   2920 	}
   2921 	return (void *) VM_PAGE_TO_PHYS(pg);
   2922 }
   2923 
   2924 void
   2925 pmap_pool_ufree(struct pool *pp, void *va)
   2926 {
   2927 	struct pvo_page *pvop;
   2928 #if 0
   2929 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2930 		pmap_pool_mfree(va, size, tag);
   2931 		return;
   2932 	}
   2933 #endif
   2934 	PMAP_LOCK();
   2935 	pvop = va;
   2936 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2937 	pmap_upvop_free++;
   2938 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2939 		pmap_upvop_maxfree = pmap_upvop_free;
   2940 	PMAP_UNLOCK();
   2941 }
   2942 
   2943 void
   2944 pmap_pool_mfree(struct pool *pp, void *va)
   2945 {
   2946 	struct pvo_page *pvop;
   2947 
   2948 	PMAP_LOCK();
   2949 	pvop = va;
   2950 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2951 	pmap_mpvop_free++;
   2952 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2953 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2954 	PMAP_UNLOCK();
   2955 #if 0
   2956 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2957 #endif
   2958 }
   2959 
   2960 /*
   2961  * This routine in bootstraping to steal to-be-managed memory (which will
   2962  * then be unmanaged).  We use it to grab from the first 256MB for our
   2963  * pmap needs and above 256MB for other stuff.
   2964  */
   2965 vaddr_t
   2966 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2967 {
   2968 	vsize_t size;
   2969 	vaddr_t va;
   2970 	paddr_t pa = 0;
   2971 	int npgs, bank;
   2972 	struct vm_physseg *ps;
   2973 
   2974 	if (uvm.page_init_done == true)
   2975 		panic("pmap_steal_memory: called _after_ bootstrap");
   2976 
   2977 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2978 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2979 
   2980 	size = round_page(vsize);
   2981 	npgs = atop(size);
   2982 
   2983 	/*
   2984 	 * PA 0 will never be among those given to UVM so we can use it
   2985 	 * to indicate we couldn't steal any memory.
   2986 	 */
   2987 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2988 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2989 		    ps->avail_end - ps->avail_start >= npgs) {
   2990 			pa = ptoa(ps->avail_start);
   2991 			break;
   2992 		}
   2993 	}
   2994 
   2995 	if (pa == 0)
   2996 		panic("pmap_steal_memory: no approriate memory to steal!");
   2997 
   2998 	ps->avail_start += npgs;
   2999 	ps->start += npgs;
   3000 
   3001 	/*
   3002 	 * If we've used up all the pages in the segment, remove it and
   3003 	 * compact the list.
   3004 	 */
   3005 	if (ps->avail_start == ps->end) {
   3006 		/*
   3007 		 * If this was the last one, then a very bad thing has occurred
   3008 		 */
   3009 		if (--vm_nphysseg == 0)
   3010 			panic("pmap_steal_memory: out of memory!");
   3011 
   3012 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   3013 		for (; bank < vm_nphysseg; bank++, ps++) {
   3014 			ps[0] = ps[1];
   3015 		}
   3016 	}
   3017 
   3018 	va = (vaddr_t) pa;
   3019 	memset((void *) va, 0, size);
   3020 	pmap_pages_stolen += npgs;
   3021 #ifdef DEBUG
   3022 	if (pmapdebug && npgs > 1) {
   3023 		u_int cnt = 0;
   3024 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   3025 			cnt += ps->avail_end - ps->avail_start;
   3026 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   3027 		    npgs, pmap_pages_stolen, cnt);
   3028 	}
   3029 #endif
   3030 
   3031 	return va;
   3032 }
   3033 
   3034 /*
   3035  * Find a chuck of memory with right size and alignment.
   3036  */
   3037 void *
   3038 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   3039 {
   3040 	struct mem_region *mp;
   3041 	paddr_t s, e;
   3042 	int i, j;
   3043 
   3044 	size = round_page(size);
   3045 
   3046 	DPRINTFN(BOOT,
   3047 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   3048 	    size, alignment, at_end));
   3049 
   3050 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   3051 		panic("pmap_boot_find_memory: invalid alignment %lx",
   3052 		    alignment);
   3053 
   3054 	if (at_end) {
   3055 		if (alignment != PAGE_SIZE)
   3056 			panic("pmap_boot_find_memory: invalid ending "
   3057 			    "alignment %lx", alignment);
   3058 
   3059 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3060 			s = mp->start + mp->size - size;
   3061 			if (s >= mp->start && mp->size >= size) {
   3062 				DPRINTFN(BOOT,(": %lx\n", s));
   3063 				DPRINTFN(BOOT,
   3064 				    ("pmap_boot_find_memory: b-avail[%d] start "
   3065 				     "0x%lx size 0x%lx\n", mp - avail,
   3066 				     mp->start, mp->size));
   3067 				mp->size -= size;
   3068 				DPRINTFN(BOOT,
   3069 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3070 				     "0x%lx size 0x%lx\n", mp - avail,
   3071 				     mp->start, mp->size));
   3072 				return (void *) s;
   3073 			}
   3074 		}
   3075 		panic("pmap_boot_find_memory: no available memory");
   3076 	}
   3077 
   3078 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3079 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3080 		e = s + size;
   3081 
   3082 		/*
   3083 		 * Is the calculated region entirely within the region?
   3084 		 */
   3085 		if (s < mp->start || e > mp->start + mp->size)
   3086 			continue;
   3087 
   3088 		DPRINTFN(BOOT,(": %lx\n", s));
   3089 		if (s == mp->start) {
   3090 			/*
   3091 			 * If the block starts at the beginning of region,
   3092 			 * adjust the size & start. (the region may now be
   3093 			 * zero in length)
   3094 			 */
   3095 			DPRINTFN(BOOT,
   3096 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3097 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3098 			mp->start += size;
   3099 			mp->size -= size;
   3100 			DPRINTFN(BOOT,
   3101 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3102 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3103 		} else if (e == mp->start + mp->size) {
   3104 			/*
   3105 			 * If the block starts at the beginning of region,
   3106 			 * adjust only the size.
   3107 			 */
   3108 			DPRINTFN(BOOT,
   3109 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3110 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3111 			mp->size -= size;
   3112 			DPRINTFN(BOOT,
   3113 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3114 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3115 		} else {
   3116 			/*
   3117 			 * Block is in the middle of the region, so we
   3118 			 * have to split it in two.
   3119 			 */
   3120 			for (j = avail_cnt; j > i + 1; j--) {
   3121 				avail[j] = avail[j-1];
   3122 			}
   3123 			DPRINTFN(BOOT,
   3124 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3125 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   3126 			mp[1].start = e;
   3127 			mp[1].size = mp[0].start + mp[0].size - e;
   3128 			mp[0].size = s - mp[0].start;
   3129 			avail_cnt++;
   3130 			for (; i < avail_cnt; i++) {
   3131 				DPRINTFN(BOOT,
   3132 				    ("pmap_boot_find_memory: a-avail[%d] "
   3133 				     "start 0x%lx size 0x%lx\n", i,
   3134 				     avail[i].start, avail[i].size));
   3135 			}
   3136 		}
   3137 		return (void *) s;
   3138 	}
   3139 	panic("pmap_boot_find_memory: not enough memory for "
   3140 	    "%lx/%lx allocation?", size, alignment);
   3141 }
   3142 
   3143 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3144 #if defined (PPC_OEA64_BRIDGE)
   3145 int
   3146 pmap_setup_segment0_map(int use_large_pages, ...)
   3147 {
   3148     vaddr_t va;
   3149 
   3150     register_t pte_lo = 0x0;
   3151     int ptegidx = 0, i = 0;
   3152     struct pte pte;
   3153     va_list ap;
   3154 
   3155     /* Coherent + Supervisor RW, no user access */
   3156     pte_lo = PTE_M;
   3157 
   3158     /* XXXSL
   3159      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3160      * these have to take priority.
   3161      */
   3162     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3163         ptegidx = va_to_pteg(pmap_kernel(), va);
   3164         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3165         i = pmap_pte_insert(ptegidx, &pte);
   3166     }
   3167 
   3168     va_start(ap, use_large_pages);
   3169     while (1) {
   3170         paddr_t pa;
   3171         size_t size;
   3172 
   3173         va = va_arg(ap, vaddr_t);
   3174 
   3175         if (va == 0)
   3176             break;
   3177 
   3178         pa = va_arg(ap, paddr_t);
   3179         size = va_arg(ap, size_t);
   3180 
   3181         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3182 #if 0
   3183 	    printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __func__,  va, pa);
   3184 #endif
   3185             ptegidx = va_to_pteg(pmap_kernel(), va);
   3186             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3187             i = pmap_pte_insert(ptegidx, &pte);
   3188         }
   3189     }
   3190 
   3191     TLBSYNC();
   3192     SYNC();
   3193     return (0);
   3194 }
   3195 #endif /* PPC_OEA64_BRIDGE */
   3196 
   3197 /*
   3198  * This is not part of the defined PMAP interface and is specific to the
   3199  * PowerPC architecture.  This is called during initppc, before the system
   3200  * is really initialized.
   3201  */
   3202 void
   3203 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3204 {
   3205 	struct mem_region *mp, tmp;
   3206 	paddr_t s, e;
   3207 	psize_t size;
   3208 	int i, j;
   3209 
   3210 	/*
   3211 	 * Get memory.
   3212 	 */
   3213 	mem_regions(&mem, &avail);
   3214 #if defined(DEBUG)
   3215 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3216 		printf("pmap_bootstrap: memory configuration:\n");
   3217 		for (mp = mem; mp->size; mp++) {
   3218 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   3219 				mp->start, mp->size);
   3220 		}
   3221 		for (mp = avail; mp->size; mp++) {
   3222 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   3223 				mp->start, mp->size);
   3224 		}
   3225 	}
   3226 #endif
   3227 
   3228 	/*
   3229 	 * Find out how much physical memory we have and in how many chunks.
   3230 	 */
   3231 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3232 		if (mp->start >= pmap_memlimit)
   3233 			continue;
   3234 		if (mp->start + mp->size > pmap_memlimit) {
   3235 			size = pmap_memlimit - mp->start;
   3236 			physmem += btoc(size);
   3237 		} else {
   3238 			physmem += btoc(mp->size);
   3239 		}
   3240 		mem_cnt++;
   3241 	}
   3242 
   3243 	/*
   3244 	 * Count the number of available entries.
   3245 	 */
   3246 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3247 		avail_cnt++;
   3248 
   3249 	/*
   3250 	 * Page align all regions.
   3251 	 */
   3252 	kernelstart = trunc_page(kernelstart);
   3253 	kernelend = round_page(kernelend);
   3254 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3255 		s = round_page(mp->start);
   3256 		mp->size -= (s - mp->start);
   3257 		mp->size = trunc_page(mp->size);
   3258 		mp->start = s;
   3259 		e = mp->start + mp->size;
   3260 
   3261 		DPRINTFN(BOOT,
   3262 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   3263 		    i, mp->start, mp->size));
   3264 
   3265 		/*
   3266 		 * Don't allow the end to run beyond our artificial limit
   3267 		 */
   3268 		if (e > pmap_memlimit)
   3269 			e = pmap_memlimit;
   3270 
   3271 		/*
   3272 		 * Is this region empty or strange?  skip it.
   3273 		 */
   3274 		if (e <= s) {
   3275 			mp->start = 0;
   3276 			mp->size = 0;
   3277 			continue;
   3278 		}
   3279 
   3280 		/*
   3281 		 * Does this overlap the beginning of kernel?
   3282 		 *   Does extend past the end of the kernel?
   3283 		 */
   3284 		else if (s < kernelstart && e > kernelstart) {
   3285 			if (e > kernelend) {
   3286 				avail[avail_cnt].start = kernelend;
   3287 				avail[avail_cnt].size = e - kernelend;
   3288 				avail_cnt++;
   3289 			}
   3290 			mp->size = kernelstart - s;
   3291 		}
   3292 		/*
   3293 		 * Check whether this region overlaps the end of the kernel.
   3294 		 */
   3295 		else if (s < kernelend && e > kernelend) {
   3296 			mp->start = kernelend;
   3297 			mp->size = e - kernelend;
   3298 		}
   3299 		/*
   3300 		 * Look whether this regions is completely inside the kernel.
   3301 		 * Nuke it if it does.
   3302 		 */
   3303 		else if (s >= kernelstart && e <= kernelend) {
   3304 			mp->start = 0;
   3305 			mp->size = 0;
   3306 		}
   3307 		/*
   3308 		 * If the user imposed a memory limit, enforce it.
   3309 		 */
   3310 		else if (s >= pmap_memlimit) {
   3311 			mp->start = -PAGE_SIZE;	/* let's know why */
   3312 			mp->size = 0;
   3313 		}
   3314 		else {
   3315 			mp->start = s;
   3316 			mp->size = e - s;
   3317 		}
   3318 		DPRINTFN(BOOT,
   3319 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   3320 		    i, mp->start, mp->size));
   3321 	}
   3322 
   3323 	/*
   3324 	 * Move (and uncount) all the null return to the end.
   3325 	 */
   3326 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3327 		if (mp->size == 0) {
   3328 			tmp = avail[i];
   3329 			avail[i] = avail[--avail_cnt];
   3330 			avail[avail_cnt] = avail[i];
   3331 		}
   3332 	}
   3333 
   3334 	/*
   3335 	 * (Bubble)sort them into asecnding order.
   3336 	 */
   3337 	for (i = 0; i < avail_cnt; i++) {
   3338 		for (j = i + 1; j < avail_cnt; j++) {
   3339 			if (avail[i].start > avail[j].start) {
   3340 				tmp = avail[i];
   3341 				avail[i] = avail[j];
   3342 				avail[j] = tmp;
   3343 			}
   3344 		}
   3345 	}
   3346 
   3347 	/*
   3348 	 * Make sure they don't overlap.
   3349 	 */
   3350 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3351 		if (mp[0].start + mp[0].size > mp[1].start) {
   3352 			mp[0].size = mp[1].start - mp[0].start;
   3353 		}
   3354 		DPRINTFN(BOOT,
   3355 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3356 		    i, mp->start, mp->size));
   3357 	}
   3358 	DPRINTFN(BOOT,
   3359 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   3360 	    i, mp->start, mp->size));
   3361 
   3362 #ifdef	PTEGCOUNT
   3363 	pmap_pteg_cnt = PTEGCOUNT;
   3364 #else /* PTEGCOUNT */
   3365 
   3366 	pmap_pteg_cnt = 0x1000;
   3367 
   3368 	while (pmap_pteg_cnt < physmem)
   3369 		pmap_pteg_cnt <<= 1;
   3370 
   3371 	pmap_pteg_cnt >>= 1;
   3372 #endif /* PTEGCOUNT */
   3373 
   3374 #ifdef DEBUG
   3375 	DPRINTFN(BOOT,
   3376 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3377 #endif
   3378 
   3379 	/*
   3380 	 * Find suitably aligned memory for PTEG hash table.
   3381 	 */
   3382 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3383 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   3384 
   3385 #ifdef DEBUG
   3386 	DPRINTFN(BOOT,
   3387 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3388 #endif
   3389 
   3390 
   3391 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3392 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3393 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   3394 		    pmap_pteg_table, size);
   3395 #endif
   3396 
   3397 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3398 		pmap_pteg_cnt * sizeof(struct pteg));
   3399 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3400 
   3401 	/*
   3402 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3403 	 * with pages.  So we just steal them before giving them to UVM.
   3404 	 */
   3405 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3406 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3407 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3408 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3409 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   3410 		    pmap_pvo_table, size);
   3411 #endif
   3412 
   3413 	for (i = 0; i < pmap_pteg_cnt; i++)
   3414 		TAILQ_INIT(&pmap_pvo_table[i]);
   3415 
   3416 #ifndef MSGBUFADDR
   3417 	/*
   3418 	 * Allocate msgbuf in high memory.
   3419 	 */
   3420 	msgbuf_paddr =
   3421 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3422 #endif
   3423 
   3424 #ifdef __HAVE_PMAP_PHYSSEG
   3425 	{
   3426 		u_int npgs = 0;
   3427 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   3428 			npgs += btoc(mp->size);
   3429 		size = (sizeof(struct pvo_head) + 1) * npgs;
   3430 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3431 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   3432 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3433 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   3434 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   3435 			    pmap_physseg.pvoh, size);
   3436 #endif
   3437 	}
   3438 #endif
   3439 
   3440 
   3441 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3442 		paddr_t pfstart = atop(mp->start);
   3443 		paddr_t pfend = atop(mp->start + mp->size);
   3444 		if (mp->size == 0)
   3445 			continue;
   3446 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3447 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3448 				VM_FREELIST_FIRST256);
   3449 		} else if (mp->start >= SEGMENT_LENGTH) {
   3450 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3451 				VM_FREELIST_DEFAULT);
   3452 		} else {
   3453 			pfend = atop(SEGMENT_LENGTH);
   3454 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3455 				VM_FREELIST_FIRST256);
   3456 			pfstart = atop(SEGMENT_LENGTH);
   3457 			pfend = atop(mp->start + mp->size);
   3458 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3459 				VM_FREELIST_DEFAULT);
   3460 		}
   3461 	}
   3462 
   3463 	/*
   3464 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3465 	 */
   3466 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3467 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3468 	pmap_vsid_bitmap[0] |= 1;
   3469 
   3470 	/*
   3471 	 * Initialize kernel pmap and hardware.
   3472 	 */
   3473 
   3474 /* PPC_OEA64_BRIDGE does support these instructions */
   3475 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
   3476 	for (i = 0; i < 16; i++) {
   3477  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3478 		__asm volatile ("mtsrin %0,%1"
   3479  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3480 	}
   3481 
   3482 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3483 	__asm volatile ("mtsr %0,%1"
   3484 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3485 #ifdef KERNEL2_SR
   3486 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3487 	__asm volatile ("mtsr %0,%1"
   3488 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3489 #endif
   3490 	for (i = 0; i < 16; i++) {
   3491 		if (iosrtable[i] & SR601_T) {
   3492 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3493 			__asm volatile ("mtsrin %0,%1"
   3494 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3495 		}
   3496 	}
   3497 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
   3498 #if defined (PPC_OEA)
   3499 	__asm volatile ("sync; mtsdr1 %0; isync"
   3500 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3501 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
   3502  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3503  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3504 #endif
   3505 	tlbia();
   3506 
   3507 #ifdef ALTIVEC
   3508 	pmap_use_altivec = cpu_altivec;
   3509 #endif
   3510 
   3511 #ifdef DEBUG
   3512 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3513 		u_int cnt;
   3514 		int bank;
   3515 		char pbuf[9];
   3516 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3517 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3518 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3519 			    bank,
   3520 			    ptoa(vm_physmem[bank].avail_start),
   3521 			    ptoa(vm_physmem[bank].avail_end),
   3522 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3523 		}
   3524 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3525 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3526 		    pbuf, cnt);
   3527 	}
   3528 #endif
   3529 
   3530 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3531 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3532 	    &pmap_pool_uallocator, IPL_NONE);
   3533 
   3534 	pool_setlowat(&pmap_upvo_pool, 252);
   3535 
   3536 	pool_init(&pmap_pool, sizeof(struct pmap),
   3537 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3538 	    IPL_NONE);
   3539 
   3540 #if defined(PMAP_NEED_MAPKERNEL)
   3541 	{
   3542 		extern int etext[], kernel_text[];
   3543 		vaddr_t va, va_etext = (paddr_t) etext;
   3544 		paddr_t pa;
   3545 		register_t sr;
   3546 
   3547 		sr = KERNELN_SEGMENT(kernelstart >> ADDR_SR_SHFT)
   3548 		    |SR_SUKEY|SR_PRKEY;
   3549 
   3550 		va = (vaddr_t) kernel_text;
   3551 
   3552 		for (pa = kernelstart; va < va_etext;
   3553 		     pa += PAGE_SIZE, va += PAGE_SIZE)
   3554 			pmap_enter(pmap_kernel(), va, pa,
   3555 			    VM_PROT_READ|VM_PROT_EXECUTE, 0);
   3556 
   3557 		for (; pa < kernelend;
   3558 		     pa += PAGE_SIZE, va += PAGE_SIZE)
   3559 			pmap_enter(pmap_kernel(), va, pa,
   3560 			    VM_PROT_READ|VM_PROT_WRITE, 0);
   3561 
   3562 		pmap_kernel()->pm_sr[kernelstart >> ADDR_SR_SHFT] = sr;
   3563 		__asm volatile ("mtsrin %0,%1"
   3564  			      :: "r"(sr), "r"(kernelstart));
   3565 	}
   3566 #endif
   3567 }
   3568