Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.53
      1 /*	$NetBSD: pmap.c,v 1.53 2008/02/05 18:10:47 garbled Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *        This product includes software developed by the NetBSD
     23  *        Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*
     42  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     43  * Copyright (C) 1995, 1996 TooLs GmbH.
     44  * All rights reserved.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. All advertising materials mentioning features or use of this software
     55  *    must display the following acknowledgement:
     56  *	This product includes software developed by TooLs GmbH.
     57  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     58  *    derived from this software without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     61  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     62  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     64  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     65  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     66  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     67  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     68  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     69  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.53 2008/02/05 18:10:47 garbled Exp $");
     74 
     75 #define	PMAP_NOOPNAMES
     76 
     77 #include "opt_ppcarch.h"
     78 #include "opt_altivec.h"
     79 #include "opt_pmap.h"
     80 #include <sys/param.h>
     81 #include <sys/malloc.h>
     82 #include <sys/proc.h>
     83 #include <sys/user.h>
     84 #include <sys/pool.h>
     85 #include <sys/queue.h>
     86 #include <sys/device.h>		/* for evcnt */
     87 #include <sys/systm.h>
     88 #include <sys/atomic.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/pcb.h>
     93 #include <machine/powerpc.h>
     94 #include <powerpc/spr.h>
     95 #include <powerpc/oea/sr_601.h>
     96 #include <powerpc/bat.h>
     97 #include <powerpc/stdarg.h>
     98 
     99 #ifdef ALTIVEC
    100 int pmap_use_altivec;
    101 #endif
    102 
    103 volatile struct pteg *pmap_pteg_table;
    104 unsigned int pmap_pteg_cnt;
    105 unsigned int pmap_pteg_mask;
    106 #ifdef PMAP_MEMLIMIT
    107 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    108 #else
    109 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    110 #endif
    111 
    112 struct pmap kernel_pmap_;
    113 unsigned int pmap_pages_stolen;
    114 u_long pmap_pte_valid;
    115 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    116 u_long pmap_pvo_enter_depth;
    117 u_long pmap_pvo_remove_depth;
    118 #endif
    119 
    120 int physmem;
    121 #ifndef MSGBUFADDR
    122 extern paddr_t msgbuf_paddr;
    123 #endif
    124 
    125 static struct mem_region *mem, *avail;
    126 static u_int mem_cnt, avail_cnt;
    127 
    128 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    129 # define	PMAP_OEA 1
    130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
    131 #  define	PMAPNAME(name)	pmap_##name
    132 # endif
    133 #endif
    134 
    135 #if defined(PMAP_OEA64)
    136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
    137 #  define	PMAPNAME(name)	pmap_##name
    138 # endif
    139 #endif
    140 
    141 #if defined(PMAP_OEA64_BRIDGE)
    142 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
    143 #  define	PMAPNAME(name)	pmap_##name
    144 # endif
    145 #endif
    146 
    147 #if defined(PMAP_OEA)
    148 #define	_PRIxpte	"lx"
    149 #else
    150 #define	_PRIxpte	PRIx64
    151 #endif
    152 #define	_PRIxpa		"lx"
    153 #define	_PRIxva		"lx"
    154 
    155 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
    156 #if defined(PMAP_OEA)
    157 #define	PMAPNAME(name)	pmap32_##name
    158 #elif defined(PMAP_OEA64)
    159 #define	PMAPNAME(name)	pmap64_##name
    160 #elif defined(PMAP_OEA64_BRIDGE)
    161 #define	PMAPNAME(name)	pmap64bridge_##name
    162 #else
    163 #error unknown variant for pmap
    164 #endif
    165 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
    166 
    167 #if defined(PMAPNAME)
    168 #define	STATIC			static
    169 #define pmap_pte_spill		PMAPNAME(pte_spill)
    170 #define pmap_real_memory	PMAPNAME(real_memory)
    171 #define pmap_init		PMAPNAME(init)
    172 #define pmap_virtual_space	PMAPNAME(virtual_space)
    173 #define pmap_create		PMAPNAME(create)
    174 #define pmap_reference		PMAPNAME(reference)
    175 #define pmap_destroy		PMAPNAME(destroy)
    176 #define pmap_copy		PMAPNAME(copy)
    177 #define pmap_update		PMAPNAME(update)
    178 #define pmap_collect		PMAPNAME(collect)
    179 #define pmap_enter		PMAPNAME(enter)
    180 #define pmap_remove		PMAPNAME(remove)
    181 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    182 #define pmap_kremove		PMAPNAME(kremove)
    183 #define pmap_extract		PMAPNAME(extract)
    184 #define pmap_protect		PMAPNAME(protect)
    185 #define pmap_unwire		PMAPNAME(unwire)
    186 #define pmap_page_protect	PMAPNAME(page_protect)
    187 #define pmap_query_bit		PMAPNAME(query_bit)
    188 #define pmap_clear_bit		PMAPNAME(clear_bit)
    189 
    190 #define pmap_activate		PMAPNAME(activate)
    191 #define pmap_deactivate		PMAPNAME(deactivate)
    192 
    193 #define pmap_pinit		PMAPNAME(pinit)
    194 #define pmap_procwr		PMAPNAME(procwr)
    195 
    196 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    197 #define pmap_pte_print		PMAPNAME(pte_print)
    198 #define pmap_pteg_check		PMAPNAME(pteg_check)
    199 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    200 #define pmap_print_pte		PMAPNAME(print_pte)
    201 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    202 #endif
    203 #if defined(DEBUG) || defined(PMAPCHECK)
    204 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    205 #endif
    206 #define pmap_steal_memory	PMAPNAME(steal_memory)
    207 #define pmap_bootstrap		PMAPNAME(bootstrap)
    208 #else
    209 #define	STATIC			/* nothing */
    210 #endif /* PMAPNAME */
    211 
    212 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    213 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    214 STATIC void pmap_init(void);
    215 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    216 STATIC pmap_t pmap_create(void);
    217 STATIC void pmap_reference(pmap_t);
    218 STATIC void pmap_destroy(pmap_t);
    219 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    220 STATIC void pmap_update(pmap_t);
    221 STATIC void pmap_collect(pmap_t);
    222 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
    223 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    224 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
    225 STATIC void pmap_kremove(vaddr_t, vsize_t);
    226 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    227 
    228 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    229 STATIC void pmap_unwire(pmap_t, vaddr_t);
    230 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    231 STATIC bool pmap_query_bit(struct vm_page *, int);
    232 STATIC bool pmap_clear_bit(struct vm_page *, int);
    233 
    234 STATIC void pmap_activate(struct lwp *);
    235 STATIC void pmap_deactivate(struct lwp *);
    236 
    237 STATIC void pmap_pinit(pmap_t pm);
    238 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    239 
    240 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    241 STATIC void pmap_pte_print(volatile struct pte *);
    242 STATIC void pmap_pteg_check(void);
    243 STATIC void pmap_print_mmuregs(void);
    244 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    245 STATIC void pmap_pteg_dist(void);
    246 #endif
    247 #if defined(DEBUG) || defined(PMAPCHECK)
    248 STATIC void pmap_pvo_verify(void);
    249 #endif
    250 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    251 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    252 
    253 #ifdef PMAPNAME
    254 const struct pmap_ops PMAPNAME(ops) = {
    255 	.pmapop_pte_spill = pmap_pte_spill,
    256 	.pmapop_real_memory = pmap_real_memory,
    257 	.pmapop_init = pmap_init,
    258 	.pmapop_virtual_space = pmap_virtual_space,
    259 	.pmapop_create = pmap_create,
    260 	.pmapop_reference = pmap_reference,
    261 	.pmapop_destroy = pmap_destroy,
    262 	.pmapop_copy = pmap_copy,
    263 	.pmapop_update = pmap_update,
    264 	.pmapop_collect = pmap_collect,
    265 	.pmapop_enter = pmap_enter,
    266 	.pmapop_remove = pmap_remove,
    267 	.pmapop_kenter_pa = pmap_kenter_pa,
    268 	.pmapop_kremove = pmap_kremove,
    269 	.pmapop_extract = pmap_extract,
    270 	.pmapop_protect = pmap_protect,
    271 	.pmapop_unwire = pmap_unwire,
    272 	.pmapop_page_protect = pmap_page_protect,
    273 	.pmapop_query_bit = pmap_query_bit,
    274 	.pmapop_clear_bit = pmap_clear_bit,
    275 	.pmapop_activate = pmap_activate,
    276 	.pmapop_deactivate = pmap_deactivate,
    277 	.pmapop_pinit = pmap_pinit,
    278 	.pmapop_procwr = pmap_procwr,
    279 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    280 	.pmapop_pte_print = pmap_pte_print,
    281 	.pmapop_pteg_check = pmap_pteg_check,
    282 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    283 	.pmapop_print_pte = pmap_print_pte,
    284 	.pmapop_pteg_dist = pmap_pteg_dist,
    285 #else
    286 	.pmapop_pte_print = NULL,
    287 	.pmapop_pteg_check = NULL,
    288 	.pmapop_print_mmuregs = NULL,
    289 	.pmapop_print_pte = NULL,
    290 	.pmapop_pteg_dist = NULL,
    291 #endif
    292 #if defined(DEBUG) || defined(PMAPCHECK)
    293 	.pmapop_pvo_verify = pmap_pvo_verify,
    294 #else
    295 	.pmapop_pvo_verify = NULL,
    296 #endif
    297 	.pmapop_steal_memory = pmap_steal_memory,
    298 	.pmapop_bootstrap = pmap_bootstrap,
    299 };
    300 #endif /* !PMAPNAME */
    301 
    302 /*
    303  * The following structure is aligned to 32 bytes
    304  */
    305 struct pvo_entry {
    306 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    307 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    308 	struct pte pvo_pte;			/* Prebuilt PTE */
    309 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    310 	vaddr_t pvo_vaddr;			/* VA of entry */
    311 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    312 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    313 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    314 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    315 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    316 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    317 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    318 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    319 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    320 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    321 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    322 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    323 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    324 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    325 #define	PVO_REMOVE		6		/* PVO has been removed */
    326 #define	PVO_WHERE_MASK		15
    327 #define	PVO_WHERE_SHFT		8
    328 } __attribute__ ((aligned (32)));
    329 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    330 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    331 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    332 #define	PVO_PTEGIDX_CLR(pvo)	\
    333 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    334 #define	PVO_PTEGIDX_SET(pvo,i)	\
    335 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    336 #define	PVO_WHERE(pvo,w)	\
    337 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    338 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    339 
    340 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    341 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    342 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    343 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    344 
    345 struct pool pmap_pool;		/* pool for pmap structures */
    346 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    347 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    348 
    349 /*
    350  * We keep a cache of unmanaged pages to be used for pvo entries for
    351  * unmanaged pages.
    352  */
    353 struct pvo_page {
    354 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    355 };
    356 SIMPLEQ_HEAD(pvop_head, pvo_page);
    357 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    358 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    359 u_long pmap_upvop_free;
    360 u_long pmap_upvop_maxfree;
    361 u_long pmap_mpvop_free;
    362 u_long pmap_mpvop_maxfree;
    363 
    364 static void *pmap_pool_ualloc(struct pool *, int);
    365 static void *pmap_pool_malloc(struct pool *, int);
    366 
    367 static void pmap_pool_ufree(struct pool *, void *);
    368 static void pmap_pool_mfree(struct pool *, void *);
    369 
    370 static struct pool_allocator pmap_pool_mallocator = {
    371 	.pa_alloc = pmap_pool_malloc,
    372 	.pa_free = pmap_pool_mfree,
    373 	.pa_pagesz = 0,
    374 };
    375 
    376 static struct pool_allocator pmap_pool_uallocator = {
    377 	.pa_alloc = pmap_pool_ualloc,
    378 	.pa_free = pmap_pool_ufree,
    379 	.pa_pagesz = 0,
    380 };
    381 
    382 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    383 void pmap_pte_print(volatile struct pte *);
    384 void pmap_pteg_check(void);
    385 void pmap_pteg_dist(void);
    386 void pmap_print_pte(pmap_t, vaddr_t);
    387 void pmap_print_mmuregs(void);
    388 #endif
    389 
    390 #if defined(DEBUG) || defined(PMAPCHECK)
    391 #ifdef PMAPCHECK
    392 int pmapcheck = 1;
    393 #else
    394 int pmapcheck = 0;
    395 #endif
    396 void pmap_pvo_verify(void);
    397 static void pmap_pvo_check(const struct pvo_entry *);
    398 #define	PMAP_PVO_CHECK(pvo)	 		\
    399 	do {					\
    400 		if (pmapcheck)			\
    401 			pmap_pvo_check(pvo);	\
    402 	} while (0)
    403 #else
    404 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    405 #endif
    406 static int pmap_pte_insert(int, struct pte *);
    407 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    408 	vaddr_t, paddr_t, register_t, int);
    409 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    410 static void pmap_pvo_free(struct pvo_entry *);
    411 static void pmap_pvo_free_list(struct pvo_head *);
    412 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    413 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    414 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    415 static void pvo_set_exec(struct pvo_entry *);
    416 static void pvo_clear_exec(struct pvo_entry *);
    417 
    418 static void tlbia(void);
    419 
    420 static void pmap_release(pmap_t);
    421 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    422 
    423 static uint32_t pmap_pvo_reclaim_nextidx;
    424 #ifdef DEBUG
    425 static int pmap_pvo_reclaim_debugctr;
    426 #endif
    427 
    428 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    429 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    430 
    431 static int pmap_initialized;
    432 
    433 #if defined(DEBUG) || defined(PMAPDEBUG)
    434 #define	PMAPDEBUG_BOOT		0x0001
    435 #define	PMAPDEBUG_PTE		0x0002
    436 #define	PMAPDEBUG_EXEC		0x0008
    437 #define	PMAPDEBUG_PVOENTER	0x0010
    438 #define	PMAPDEBUG_PVOREMOVE	0x0020
    439 #define	PMAPDEBUG_ACTIVATE	0x0100
    440 #define	PMAPDEBUG_CREATE	0x0200
    441 #define	PMAPDEBUG_ENTER		0x1000
    442 #define	PMAPDEBUG_KENTER	0x2000
    443 #define	PMAPDEBUG_KREMOVE	0x4000
    444 #define	PMAPDEBUG_REMOVE	0x8000
    445 
    446 unsigned int pmapdebug = 0;
    447 
    448 # define DPRINTF(x)		printf x
    449 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    450 #else
    451 # define DPRINTF(x)
    452 # define DPRINTFN(n, x)
    453 #endif
    454 
    455 
    456 #ifdef PMAPCOUNTERS
    457 /*
    458  * From pmap_subr.c
    459  */
    460 extern struct evcnt pmap_evcnt_mappings;
    461 extern struct evcnt pmap_evcnt_unmappings;
    462 
    463 extern struct evcnt pmap_evcnt_kernel_mappings;
    464 extern struct evcnt pmap_evcnt_kernel_unmappings;
    465 
    466 extern struct evcnt pmap_evcnt_mappings_replaced;
    467 
    468 extern struct evcnt pmap_evcnt_exec_mappings;
    469 extern struct evcnt pmap_evcnt_exec_cached;
    470 
    471 extern struct evcnt pmap_evcnt_exec_synced;
    472 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    473 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    474 
    475 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    476 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    477 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    478 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    479 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    480 
    481 extern struct evcnt pmap_evcnt_updates;
    482 extern struct evcnt pmap_evcnt_collects;
    483 extern struct evcnt pmap_evcnt_copies;
    484 
    485 extern struct evcnt pmap_evcnt_ptes_spilled;
    486 extern struct evcnt pmap_evcnt_ptes_unspilled;
    487 extern struct evcnt pmap_evcnt_ptes_evicted;
    488 
    489 extern struct evcnt pmap_evcnt_ptes_primary[8];
    490 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    491 extern struct evcnt pmap_evcnt_ptes_removed;
    492 extern struct evcnt pmap_evcnt_ptes_changed;
    493 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    494 extern struct evcnt pmap_evcnt_pvos_failed;
    495 
    496 extern struct evcnt pmap_evcnt_zeroed_pages;
    497 extern struct evcnt pmap_evcnt_copied_pages;
    498 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    499 
    500 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    501 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    502 #else
    503 #define	PMAPCOUNT(ev)	((void) 0)
    504 #define	PMAPCOUNT2(ev)	((void) 0)
    505 #endif
    506 
    507 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    508 
    509 /* XXXSL: this needs to be moved to assembler */
    510 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    511 
    512 #define	TLBSYNC()	__asm volatile("tlbsync")
    513 #define	SYNC()		__asm volatile("sync")
    514 #define	EIEIO()		__asm volatile("eieio")
    515 #define	MFMSR()		mfmsr()
    516 #define	MTMSR(psl)	mtmsr(psl)
    517 #define	MFPVR()		mfpvr()
    518 #define	MFSRIN(va)	mfsrin(va)
    519 #define	MFTB()		mfrtcltbl()
    520 
    521 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    522 static inline register_t
    523 mfsrin(vaddr_t va)
    524 {
    525 	register_t sr;
    526 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    527 	return sr;
    528 }
    529 #endif	/* PMAP_OEA*/
    530 
    531 #if defined (PMAP_OEA64_BRIDGE)
    532 extern void mfmsr64 (register64_t *result);
    533 #endif /* PMAP_OEA64_BRIDGE */
    534 
    535 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    536 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    537 
    538 static inline register_t
    539 pmap_interrupts_off(void)
    540 {
    541 	register_t msr = MFMSR();
    542 	if (msr & PSL_EE)
    543 		MTMSR(msr & ~PSL_EE);
    544 	return msr;
    545 }
    546 
    547 static void
    548 pmap_interrupts_restore(register_t msr)
    549 {
    550 	if (msr & PSL_EE)
    551 		MTMSR(msr);
    552 }
    553 
    554 static inline u_int32_t
    555 mfrtcltbl(void)
    556 {
    557 
    558 	if ((MFPVR() >> 16) == MPC601)
    559 		return (mfrtcl() >> 7);
    560 	else
    561 		return (mftbl());
    562 }
    563 
    564 /*
    565  * These small routines may have to be replaced,
    566  * if/when we support processors other that the 604.
    567  */
    568 
    569 void
    570 tlbia(void)
    571 {
    572 	char *i;
    573 
    574 	SYNC();
    575 #if defined(PMAP_OEA)
    576 	/*
    577 	 * Why not use "tlbia"?  Because not all processors implement it.
    578 	 *
    579 	 * This needs to be a per-CPU callback to do the appropriate thing
    580 	 * for the CPU. XXX
    581 	 */
    582 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    583 		TLBIE(i);
    584 		EIEIO();
    585 		SYNC();
    586 	}
    587 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    588 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    589 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    590 		TLBIEL(i);
    591 		EIEIO();
    592 		SYNC();
    593 	}
    594 #endif
    595 	TLBSYNC();
    596 	SYNC();
    597 }
    598 
    599 static inline register_t
    600 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    601 {
    602 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    603 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    604 #else /* PMAP_OEA64 */
    605 #if 0
    606 	const struct ste *ste;
    607 	register_t hash;
    608 	int i;
    609 
    610 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    611 
    612 	/*
    613 	 * Try the primary group first
    614 	 */
    615 	ste = pm->pm_stes[hash].stes;
    616 	for (i = 0; i < 8; i++, ste++) {
    617 		if (ste->ste_hi & STE_V) &&
    618 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    619 			return ste;
    620 	}
    621 
    622 	/*
    623 	 * Then the secondary group.
    624 	 */
    625 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    626 	for (i = 0; i < 8; i++, ste++) {
    627 		if (ste->ste_hi & STE_V) &&
    628 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    629 			return addr;
    630 	}
    631 
    632 	return NULL;
    633 #else
    634 	/*
    635 	 * Rather than searching the STE groups for the VSID, we know
    636 	 * how we generate that from the ESID and so do that.
    637 	 */
    638 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    639 #endif
    640 #endif /* PMAP_OEA */
    641 }
    642 
    643 static inline register_t
    644 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    645 {
    646 	register_t hash;
    647 
    648 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    649 	return hash & pmap_pteg_mask;
    650 }
    651 
    652 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    653 /*
    654  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    655  * The only bit of magic is that the top 4 bits of the address doesn't
    656  * technically exist in the PTE.  But we know we reserved 4 bits of the
    657  * VSID for it so that's how we get it.
    658  */
    659 static vaddr_t
    660 pmap_pte_to_va(volatile const struct pte *pt)
    661 {
    662 	vaddr_t va;
    663 	uintptr_t ptaddr = (uintptr_t) pt;
    664 
    665 	if (pt->pte_hi & PTE_HID)
    666 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    667 
    668 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    669 #if defined(PMAP_OEA)
    670 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    671 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    672 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    673 #endif
    674 	va <<= ADDR_PIDX_SHFT;
    675 
    676 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    677 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    678 
    679 #if defined(PMAP_OEA64)
    680 	/* PPC63 Bits 0-35 */
    681 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    682 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    683 	/* PPC Bits 0-3 */
    684 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    685 #endif
    686 
    687 	return va;
    688 }
    689 #endif
    690 
    691 static inline struct pvo_head *
    692 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    693 {
    694 	struct vm_page *pg;
    695 
    696 	pg = PHYS_TO_VM_PAGE(pa);
    697 	if (pg_p != NULL)
    698 		*pg_p = pg;
    699 	if (pg == NULL)
    700 		return &pmap_pvo_unmanaged;
    701 	return &pg->mdpage.mdpg_pvoh;
    702 }
    703 
    704 static inline struct pvo_head *
    705 vm_page_to_pvoh(struct vm_page *pg)
    706 {
    707 	return &pg->mdpage.mdpg_pvoh;
    708 }
    709 
    710 
    711 static inline void
    712 pmap_attr_clear(struct vm_page *pg, int ptebit)
    713 {
    714 	pg->mdpage.mdpg_attrs &= ~ptebit;
    715 }
    716 
    717 static inline int
    718 pmap_attr_fetch(struct vm_page *pg)
    719 {
    720 	return pg->mdpage.mdpg_attrs;
    721 }
    722 
    723 static inline void
    724 pmap_attr_save(struct vm_page *pg, int ptebit)
    725 {
    726 	pg->mdpage.mdpg_attrs |= ptebit;
    727 }
    728 
    729 static inline int
    730 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    731 {
    732 	if (pt->pte_hi == pvo_pt->pte_hi
    733 #if 0
    734 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    735 	        ~(PTE_REF|PTE_CHG)) == 0
    736 #endif
    737 	    )
    738 		return 1;
    739 	return 0;
    740 }
    741 
    742 static inline void
    743 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    744 {
    745 	/*
    746 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    747 	 * only gets set when the real pte is set in memory.
    748 	 *
    749 	 * Note: Don't set the valid bit for correct operation of tlb update.
    750 	 */
    751 #if defined(PMAP_OEA)
    752 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    753 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    754 	pt->pte_lo = pte_lo;
    755 #elif defined (PMAP_OEA64_BRIDGE)
    756 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    757 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    758 	pt->pte_lo = (u_int64_t) pte_lo;
    759 #elif defined (PMAP_OEA64)
    760 #error PMAP_OEA64 not supported
    761 #endif /* PMAP_OEA */
    762 }
    763 
    764 static inline void
    765 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    766 {
    767 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    768 }
    769 
    770 static inline void
    771 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    772 {
    773 	/*
    774 	 * As shown in Section 7.6.3.2.3
    775 	 */
    776 	pt->pte_lo &= ~ptebit;
    777 	TLBIE(va);
    778 	SYNC();
    779 	EIEIO();
    780 	TLBSYNC();
    781 	SYNC();
    782 }
    783 
    784 static inline void
    785 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    786 {
    787 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    788 	if (pvo_pt->pte_hi & PTE_VALID)
    789 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    790 #endif
    791 	pvo_pt->pte_hi |= PTE_VALID;
    792 
    793 	/*
    794 	 * Update the PTE as defined in section 7.6.3.1
    795 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    796 	 * have been saved so this routine can restore them (if desired).
    797 	 */
    798 	pt->pte_lo = pvo_pt->pte_lo;
    799 	EIEIO();
    800 	pt->pte_hi = pvo_pt->pte_hi;
    801 	TLBSYNC();
    802 	SYNC();
    803 	pmap_pte_valid++;
    804 }
    805 
    806 static inline void
    807 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    808 {
    809 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    810 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    811 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    812 	if ((pt->pte_hi & PTE_VALID) == 0)
    813 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    814 #endif
    815 
    816 	pvo_pt->pte_hi &= ~PTE_VALID;
    817 	/*
    818 	 * Force the ref & chg bits back into the PTEs.
    819 	 */
    820 	SYNC();
    821 	/*
    822 	 * Invalidate the pte ... (Section 7.6.3.3)
    823 	 */
    824 	pt->pte_hi &= ~PTE_VALID;
    825 	SYNC();
    826 	TLBIE(va);
    827 	SYNC();
    828 	EIEIO();
    829 	TLBSYNC();
    830 	SYNC();
    831 	/*
    832 	 * Save the ref & chg bits ...
    833 	 */
    834 	pmap_pte_synch(pt, pvo_pt);
    835 	pmap_pte_valid--;
    836 }
    837 
    838 static inline void
    839 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    840 {
    841 	/*
    842 	 * Invalidate the PTE
    843 	 */
    844 	pmap_pte_unset(pt, pvo_pt, va);
    845 	pmap_pte_set(pt, pvo_pt);
    846 }
    847 
    848 /*
    849  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    850  * (either primary or secondary location).
    851  *
    852  * Note: both the destination and source PTEs must not have PTE_VALID set.
    853  */
    854 
    855 static int
    856 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    857 {
    858 	volatile struct pte *pt;
    859 	int i;
    860 
    861 #if defined(DEBUG)
    862 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIx64 " %#" _PRIx64 "\n",
    863 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    864 #endif
    865 	/*
    866 	 * First try primary hash.
    867 	 */
    868 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    869 		if ((pt->pte_hi & PTE_VALID) == 0) {
    870 			pvo_pt->pte_hi &= ~PTE_HID;
    871 			pmap_pte_set(pt, pvo_pt);
    872 			return i;
    873 		}
    874 	}
    875 
    876 	/*
    877 	 * Now try secondary hash.
    878 	 */
    879 	ptegidx ^= pmap_pteg_mask;
    880 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    881 		if ((pt->pte_hi & PTE_VALID) == 0) {
    882 			pvo_pt->pte_hi |= PTE_HID;
    883 			pmap_pte_set(pt, pvo_pt);
    884 			return i;
    885 		}
    886 	}
    887 	return -1;
    888 }
    889 
    890 /*
    891  * Spill handler.
    892  *
    893  * Tries to spill a page table entry from the overflow area.
    894  * This runs in either real mode (if dealing with a exception spill)
    895  * or virtual mode when dealing with manually spilling one of the
    896  * kernel's pte entries.  In either case, interrupts are already
    897  * disabled.
    898  */
    899 
    900 int
    901 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    902 {
    903 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    904 	struct pvo_entry *pvo;
    905 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    906 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    907 	int ptegidx, i, j;
    908 	volatile struct pteg *pteg;
    909 	volatile struct pte *pt;
    910 
    911 	PMAP_LOCK();
    912 
    913 	ptegidx = va_to_pteg(pm, addr);
    914 
    915 	/*
    916 	 * Have to substitute some entry. Use the primary hash for this.
    917 	 * Use low bits of timebase as random generator.  Make sure we are
    918 	 * not picking a kernel pte for replacement.
    919 	 */
    920 	pteg = &pmap_pteg_table[ptegidx];
    921 	i = MFTB() & 7;
    922 	for (j = 0; j < 8; j++) {
    923 		pt = &pteg->pt[i];
    924 		if ((pt->pte_hi & PTE_VALID) == 0)
    925 			break;
    926 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    927 				< PHYSMAP_VSIDBITS)
    928 			break;
    929 		i = (i + 1) & 7;
    930 	}
    931 	KASSERT(j < 8);
    932 
    933 	source_pvo = NULL;
    934 	victim_pvo = NULL;
    935 	pvoh = &pmap_pvo_table[ptegidx];
    936 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    937 
    938 		/*
    939 		 * We need to find pvo entry for this address...
    940 		 */
    941 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    942 
    943 		/*
    944 		 * If we haven't found the source and we come to a PVO with
    945 		 * a valid PTE, then we know we can't find it because all
    946 		 * evicted PVOs always are first in the list.
    947 		 */
    948 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    949 			break;
    950 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    951 		    addr == PVO_VADDR(pvo)) {
    952 
    953 			/*
    954 			 * Now we have found the entry to be spilled into the
    955 			 * pteg.  Attempt to insert it into the page table.
    956 			 */
    957 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    958 			if (j >= 0) {
    959 				PVO_PTEGIDX_SET(pvo, j);
    960 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    961 				PVO_WHERE(pvo, SPILL_INSERT);
    962 				pvo->pvo_pmap->pm_evictions--;
    963 				PMAPCOUNT(ptes_spilled);
    964 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    965 				    ? pmap_evcnt_ptes_secondary
    966 				    : pmap_evcnt_ptes_primary)[j]);
    967 
    968 				/*
    969 				 * Since we keep the evicted entries at the
    970 				 * from of the PVO list, we need move this
    971 				 * (now resident) PVO after the evicted
    972 				 * entries.
    973 				 */
    974 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    975 
    976 				/*
    977 				 * If we don't have to move (either we were the
    978 				 * last entry or the next entry was valid),
    979 				 * don't change our position.  Otherwise
    980 				 * move ourselves to the tail of the queue.
    981 				 */
    982 				if (next_pvo != NULL &&
    983 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    984 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    985 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    986 				}
    987 				PMAP_UNLOCK();
    988 				return 1;
    989 			}
    990 			source_pvo = pvo;
    991 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    992 				return 0;
    993 			}
    994 			if (victim_pvo != NULL)
    995 				break;
    996 		}
    997 
    998 		/*
    999 		 * We also need the pvo entry of the victim we are replacing
   1000 		 * so save the R & C bits of the PTE.
   1001 		 */
   1002 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1003 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1004 			vpvoh = pvoh;			/* *1* */
   1005 			victim_pvo = pvo;
   1006 			if (source_pvo != NULL)
   1007 				break;
   1008 		}
   1009 	}
   1010 
   1011 	if (source_pvo == NULL) {
   1012 		PMAPCOUNT(ptes_unspilled);
   1013 		PMAP_UNLOCK();
   1014 		return 0;
   1015 	}
   1016 
   1017 	if (victim_pvo == NULL) {
   1018 		if ((pt->pte_hi & PTE_HID) == 0)
   1019 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1020 			    "no pvo entry!", pt);
   1021 
   1022 		/*
   1023 		 * If this is a secondary PTE, we need to search
   1024 		 * its primary pvo bucket for the matching PVO.
   1025 		 */
   1026 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1027 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1028 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1029 
   1030 			/*
   1031 			 * We also need the pvo entry of the victim we are
   1032 			 * replacing so save the R & C bits of the PTE.
   1033 			 */
   1034 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1035 				victim_pvo = pvo;
   1036 				break;
   1037 			}
   1038 		}
   1039 		if (victim_pvo == NULL)
   1040 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1041 			    "no pvo entry!", pt);
   1042 	}
   1043 
   1044 	/*
   1045 	 * The victim should be not be a kernel PVO/PTE entry.
   1046 	 */
   1047 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1048 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1049 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1050 
   1051 	/*
   1052 	 * We are invalidating the TLB entry for the EA for the
   1053 	 * we are replacing even though its valid; If we don't
   1054 	 * we lose any ref/chg bit changes contained in the TLB
   1055 	 * entry.
   1056 	 */
   1057 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1058 
   1059 	/*
   1060 	 * To enforce the PVO list ordering constraint that all
   1061 	 * evicted entries should come before all valid entries,
   1062 	 * move the source PVO to the tail of its list and the
   1063 	 * victim PVO to the head of its list (which might not be
   1064 	 * the same list, if the victim was using the secondary hash).
   1065 	 */
   1066 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1067 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1068 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1069 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1070 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1071 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1072 	victim_pvo->pvo_pmap->pm_evictions++;
   1073 	source_pvo->pvo_pmap->pm_evictions--;
   1074 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1075 	PVO_WHERE(source_pvo, SPILL_SET);
   1076 
   1077 	PVO_PTEGIDX_CLR(victim_pvo);
   1078 	PVO_PTEGIDX_SET(source_pvo, i);
   1079 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1080 	PMAPCOUNT(ptes_spilled);
   1081 	PMAPCOUNT(ptes_evicted);
   1082 	PMAPCOUNT(ptes_removed);
   1083 
   1084 	PMAP_PVO_CHECK(victim_pvo);
   1085 	PMAP_PVO_CHECK(source_pvo);
   1086 
   1087 	PMAP_UNLOCK();
   1088 	return 1;
   1089 }
   1090 
   1091 /*
   1092  * Restrict given range to physical memory
   1093  */
   1094 void
   1095 pmap_real_memory(paddr_t *start, psize_t *size)
   1096 {
   1097 	struct mem_region *mp;
   1098 
   1099 	for (mp = mem; mp->size; mp++) {
   1100 		if (*start + *size > mp->start
   1101 		    && *start < mp->start + mp->size) {
   1102 			if (*start < mp->start) {
   1103 				*size -= mp->start - *start;
   1104 				*start = mp->start;
   1105 			}
   1106 			if (*start + *size > mp->start + mp->size)
   1107 				*size = mp->start + mp->size - *start;
   1108 			return;
   1109 		}
   1110 	}
   1111 	*size = 0;
   1112 }
   1113 
   1114 /*
   1115  * Initialize anything else for pmap handling.
   1116  * Called during vm_init().
   1117  */
   1118 void
   1119 pmap_init(void)
   1120 {
   1121 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1122 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1123 	    &pmap_pool_mallocator, IPL_NONE);
   1124 
   1125 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1126 
   1127 	pmap_initialized = 1;
   1128 
   1129 }
   1130 
   1131 /*
   1132  * How much virtual space does the kernel get?
   1133  */
   1134 void
   1135 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1136 {
   1137 	/*
   1138 	 * For now, reserve one segment (minus some overhead) for kernel
   1139 	 * virtual memory
   1140 	 */
   1141 	*start = VM_MIN_KERNEL_ADDRESS;
   1142 	*end = VM_MAX_KERNEL_ADDRESS;
   1143 }
   1144 
   1145 /*
   1146  * Allocate, initialize, and return a new physical map.
   1147  */
   1148 pmap_t
   1149 pmap_create(void)
   1150 {
   1151 	pmap_t pm;
   1152 
   1153 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1154 	memset((void *)pm, 0, sizeof *pm);
   1155 	pmap_pinit(pm);
   1156 
   1157 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1158 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
   1159 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
   1160 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
   1161 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
   1162 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
   1163 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
   1164 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
   1165 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
   1166 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
   1167 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
   1168 	return pm;
   1169 }
   1170 
   1171 /*
   1172  * Initialize a preallocated and zeroed pmap structure.
   1173  */
   1174 void
   1175 pmap_pinit(pmap_t pm)
   1176 {
   1177 	register_t entropy = MFTB();
   1178 	register_t mask;
   1179 	int i;
   1180 
   1181 	/*
   1182 	 * Allocate some segment registers for this pmap.
   1183 	 */
   1184 	pm->pm_refs = 1;
   1185 	PMAP_LOCK();
   1186 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1187 		static register_t pmap_vsidcontext;
   1188 		register_t hash;
   1189 		unsigned int n;
   1190 
   1191 		/* Create a new value by multiplying by a prime adding in
   1192 		 * entropy from the timebase register.  This is to make the
   1193 		 * VSID more random so that the PT Hash function collides
   1194 		 * less often. (note that the prime causes gcc to do shifts
   1195 		 * instead of a multiply)
   1196 		 */
   1197 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1198 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1199 		if (hash == 0) {		/* 0 is special, avoid it */
   1200 			entropy += 0xbadf00d;
   1201 			continue;
   1202 		}
   1203 		n = hash >> 5;
   1204 		mask = 1L << (hash & (VSID_NBPW-1));
   1205 		hash = pmap_vsidcontext;
   1206 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1207 			/* anything free in this bucket? */
   1208 			if (~pmap_vsid_bitmap[n] == 0) {
   1209 				entropy = hash ^ (hash >> 16);
   1210 				continue;
   1211 			}
   1212 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1213 			mask = 1L << i;
   1214 			hash &= ~(VSID_NBPW-1);
   1215 			hash |= i;
   1216 		}
   1217 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1218 		pmap_vsid_bitmap[n] |= mask;
   1219 		pm->pm_vsid = hash;
   1220 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1221 		for (i = 0; i < 16; i++)
   1222 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1223 			    SR_NOEXEC;
   1224 #endif
   1225 		PMAP_UNLOCK();
   1226 		return;
   1227 	}
   1228 	PMAP_UNLOCK();
   1229 	panic("pmap_pinit: out of segments");
   1230 }
   1231 
   1232 /*
   1233  * Add a reference to the given pmap.
   1234  */
   1235 void
   1236 pmap_reference(pmap_t pm)
   1237 {
   1238 	atomic_inc_uint(&pm->pm_refs);
   1239 }
   1240 
   1241 /*
   1242  * Retire the given pmap from service.
   1243  * Should only be called if the map contains no valid mappings.
   1244  */
   1245 void
   1246 pmap_destroy(pmap_t pm)
   1247 {
   1248 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1249 		pmap_release(pm);
   1250 		pool_put(&pmap_pool, pm);
   1251 	}
   1252 }
   1253 
   1254 /*
   1255  * Release any resources held by the given physical map.
   1256  * Called when a pmap initialized by pmap_pinit is being released.
   1257  */
   1258 void
   1259 pmap_release(pmap_t pm)
   1260 {
   1261 	int idx, mask;
   1262 
   1263 	KASSERT(pm->pm_stats.resident_count == 0);
   1264 	KASSERT(pm->pm_stats.wired_count == 0);
   1265 
   1266 	PMAP_LOCK();
   1267 	if (pm->pm_sr[0] == 0)
   1268 		panic("pmap_release");
   1269 	idx = pm->pm_vsid & (NPMAPS-1);
   1270 	mask = 1 << (idx % VSID_NBPW);
   1271 	idx /= VSID_NBPW;
   1272 
   1273 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1274 	pmap_vsid_bitmap[idx] &= ~mask;
   1275 	PMAP_UNLOCK();
   1276 }
   1277 
   1278 /*
   1279  * Copy the range specified by src_addr/len
   1280  * from the source map to the range dst_addr/len
   1281  * in the destination map.
   1282  *
   1283  * This routine is only advisory and need not do anything.
   1284  */
   1285 void
   1286 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1287 	vsize_t len, vaddr_t src_addr)
   1288 {
   1289 	PMAPCOUNT(copies);
   1290 }
   1291 
   1292 /*
   1293  * Require that all active physical maps contain no
   1294  * incorrect entries NOW.
   1295  */
   1296 void
   1297 pmap_update(struct pmap *pmap)
   1298 {
   1299 	PMAPCOUNT(updates);
   1300 	TLBSYNC();
   1301 }
   1302 
   1303 /*
   1304  * Garbage collects the physical map system for
   1305  * pages which are no longer used.
   1306  * Success need not be guaranteed -- that is, there
   1307  * may well be pages which are not referenced, but
   1308  * others may be collected.
   1309  * Called by the pageout daemon when pages are scarce.
   1310  */
   1311 void
   1312 pmap_collect(pmap_t pm)
   1313 {
   1314 	PMAPCOUNT(collects);
   1315 }
   1316 
   1317 static inline int
   1318 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1319 {
   1320 	int pteidx;
   1321 	/*
   1322 	 * We can find the actual pte entry without searching by
   1323 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1324 	 * and by noticing the HID bit.
   1325 	 */
   1326 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1327 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1328 		pteidx ^= pmap_pteg_mask * 8;
   1329 	return pteidx;
   1330 }
   1331 
   1332 volatile struct pte *
   1333 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1334 {
   1335 	volatile struct pte *pt;
   1336 
   1337 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1338 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1339 		return NULL;
   1340 #endif
   1341 
   1342 	/*
   1343 	 * If we haven't been supplied the ptegidx, calculate it.
   1344 	 */
   1345 	if (pteidx == -1) {
   1346 		int ptegidx;
   1347 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1348 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1349 	}
   1350 
   1351 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1352 
   1353 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1354 	return pt;
   1355 #else
   1356 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1357 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1358 		    "pvo but no valid pte index", pvo);
   1359 	}
   1360 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1361 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1362 		    "pvo but no valid pte", pvo);
   1363 	}
   1364 
   1365 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1366 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1367 #if defined(DEBUG) || defined(PMAPCHECK)
   1368 			pmap_pte_print(pt);
   1369 #endif
   1370 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1371 			    "pmap_pteg_table %p but invalid in pvo",
   1372 			    pvo, pt);
   1373 		}
   1374 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1375 #if defined(DEBUG) || defined(PMAPCHECK)
   1376 			pmap_pte_print(pt);
   1377 #endif
   1378 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1379 			    "not match pte %p in pmap_pteg_table",
   1380 			    pvo, pt);
   1381 		}
   1382 		return pt;
   1383 	}
   1384 
   1385 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1386 #if defined(DEBUG) || defined(PMAPCHECK)
   1387 		pmap_pte_print(pt);
   1388 #endif
   1389 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1390 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1391 	}
   1392 	return NULL;
   1393 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1394 }
   1395 
   1396 struct pvo_entry *
   1397 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1398 {
   1399 	struct pvo_entry *pvo;
   1400 	int ptegidx;
   1401 
   1402 	va &= ~ADDR_POFF;
   1403 	ptegidx = va_to_pteg(pm, va);
   1404 
   1405 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1406 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1407 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1408 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1409 			    "list %#x (%p)", pvo, ptegidx,
   1410 			     &pmap_pvo_table[ptegidx]);
   1411 #endif
   1412 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1413 			if (pteidx_p)
   1414 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1415 			return pvo;
   1416 		}
   1417 	}
   1418 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1419 		panic("%s: returning NULL for %s pmap, va: 0x%08" _PRIxva "\n",
   1420 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1421 	return NULL;
   1422 }
   1423 
   1424 #if defined(DEBUG) || defined(PMAPCHECK)
   1425 void
   1426 pmap_pvo_check(const struct pvo_entry *pvo)
   1427 {
   1428 	struct pvo_head *pvo_head;
   1429 	struct pvo_entry *pvo0;
   1430 	volatile struct pte *pt;
   1431 	int failed = 0;
   1432 
   1433 	PMAP_LOCK();
   1434 
   1435 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1436 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1437 
   1438 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1439 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1440 		    pvo, pvo->pvo_pmap);
   1441 		failed = 1;
   1442 	}
   1443 
   1444 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1445 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1446 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1447 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1448 		failed = 1;
   1449 	}
   1450 
   1451 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1452 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1453 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1454 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1455 		failed = 1;
   1456 	}
   1457 
   1458 	if (PVO_MANAGED_P(pvo)) {
   1459 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1460 	} else {
   1461 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1462 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1463 			    "on kernel unmanaged list\n", pvo);
   1464 			failed = 1;
   1465 		}
   1466 		pvo_head = &pmap_pvo_kunmanaged;
   1467 	}
   1468 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1469 		if (pvo0 == pvo)
   1470 			break;
   1471 	}
   1472 	if (pvo0 == NULL) {
   1473 		printf("pmap_pvo_check: pvo %p: not present "
   1474 		    "on its vlist head %p\n", pvo, pvo_head);
   1475 		failed = 1;
   1476 	}
   1477 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1478 		printf("pmap_pvo_check: pvo %p: not present "
   1479 		    "on its olist head\n", pvo);
   1480 		failed = 1;
   1481 	}
   1482 	pt = pmap_pvo_to_pte(pvo, -1);
   1483 	if (pt == NULL) {
   1484 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1485 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1486 			    "no PTE\n", pvo);
   1487 			failed = 1;
   1488 		}
   1489 	} else {
   1490 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1491 		    (uintptr_t) pt >=
   1492 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1493 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1494 			    "pteg table\n", pvo, pt);
   1495 			failed = 1;
   1496 		}
   1497 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1498 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1499 			    "no PTE\n", pvo);
   1500 			failed = 1;
   1501 		}
   1502 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1503 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1504 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
   1505 			failed = 1;
   1506 		}
   1507 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1508 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1509 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1510 			    "%#x/%#x\n", pvo,
   1511 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1512 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1513 			failed = 1;
   1514 		}
   1515 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1516 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1517 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1518 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1519 			failed = 1;
   1520 		}
   1521 		if (failed)
   1522 			pmap_pte_print(pt);
   1523 	}
   1524 	if (failed)
   1525 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1526 		    pvo->pvo_pmap);
   1527 
   1528 	PMAP_UNLOCK();
   1529 }
   1530 #endif /* DEBUG || PMAPCHECK */
   1531 
   1532 /*
   1533  * Search the PVO table looking for a non-wired entry.
   1534  * If we find one, remove it and return it.
   1535  */
   1536 
   1537 struct pvo_entry *
   1538 pmap_pvo_reclaim(struct pmap *pm)
   1539 {
   1540 	struct pvo_tqhead *pvoh;
   1541 	struct pvo_entry *pvo;
   1542 	uint32_t idx, endidx;
   1543 
   1544 	endidx = pmap_pvo_reclaim_nextidx;
   1545 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1546 	     idx = (idx + 1) & pmap_pteg_mask) {
   1547 		pvoh = &pmap_pvo_table[idx];
   1548 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1549 			if (!PVO_WIRED_P(pvo)) {
   1550 				pmap_pvo_remove(pvo, -1, NULL);
   1551 				pmap_pvo_reclaim_nextidx = idx;
   1552 				PMAPCOUNT(pvos_reclaimed);
   1553 				return pvo;
   1554 			}
   1555 		}
   1556 	}
   1557 	return NULL;
   1558 }
   1559 
   1560 /*
   1561  * This returns whether this is the first mapping of a page.
   1562  */
   1563 int
   1564 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1565 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1566 {
   1567 	struct pvo_entry *pvo;
   1568 	struct pvo_tqhead *pvoh;
   1569 	register_t msr;
   1570 	int ptegidx;
   1571 	int i;
   1572 	int poolflags = PR_NOWAIT;
   1573 
   1574 	/*
   1575 	 * Compute the PTE Group index.
   1576 	 */
   1577 	va &= ~ADDR_POFF;
   1578 	ptegidx = va_to_pteg(pm, va);
   1579 
   1580 	msr = pmap_interrupts_off();
   1581 
   1582 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1583 	if (pmap_pvo_remove_depth > 0)
   1584 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1585 	if (++pmap_pvo_enter_depth > 1)
   1586 		panic("pmap_pvo_enter: called recursively!");
   1587 #endif
   1588 
   1589 	/*
   1590 	 * Remove any existing mapping for this page.  Reuse the
   1591 	 * pvo entry if there a mapping.
   1592 	 */
   1593 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1594 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1595 #ifdef DEBUG
   1596 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1597 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1598 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1599 			   va < VM_MIN_KERNEL_ADDRESS) {
   1600 				printf("pmap_pvo_enter: pvo %p: dup %" _PRIxpa "/%#" _PRIxpa "\n",
   1601 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
   1602 				printf("pmap_pvo_enter: pte_hi=%" _PRIxpa " sr=%#x\n",
   1603 				    (unsigned int) pvo->pvo_pte.pte_hi,
   1604 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
   1605 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1606 #ifdef DDBX
   1607 				Debugger();
   1608 #endif
   1609 			}
   1610 #endif
   1611 			PMAPCOUNT(mappings_replaced);
   1612 			pmap_pvo_remove(pvo, -1, NULL);
   1613 			break;
   1614 		}
   1615 	}
   1616 
   1617 	/*
   1618 	 * If we aren't overwriting an mapping, try to allocate
   1619 	 */
   1620 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1621 	--pmap_pvo_enter_depth;
   1622 #endif
   1623 	pmap_interrupts_restore(msr);
   1624 	if (pvo) {
   1625 		pmap_pvo_free(pvo);
   1626 	}
   1627 	pvo = pool_get(pl, poolflags);
   1628 
   1629 #ifdef DEBUG
   1630 	/*
   1631 	 * Exercise pmap_pvo_reclaim() a little.
   1632 	 */
   1633 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1634 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1635 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1636 		pool_put(pl, pvo);
   1637 		pvo = NULL;
   1638 	}
   1639 #endif
   1640 
   1641 	msr = pmap_interrupts_off();
   1642 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1643 	++pmap_pvo_enter_depth;
   1644 #endif
   1645 	if (pvo == NULL) {
   1646 		pvo = pmap_pvo_reclaim(pm);
   1647 		if (pvo == NULL) {
   1648 			if ((flags & PMAP_CANFAIL) == 0)
   1649 				panic("pmap_pvo_enter: failed");
   1650 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1651 			pmap_pvo_enter_depth--;
   1652 #endif
   1653 			PMAPCOUNT(pvos_failed);
   1654 			pmap_interrupts_restore(msr);
   1655 			return ENOMEM;
   1656 		}
   1657 	}
   1658 
   1659 	pvo->pvo_vaddr = va;
   1660 	pvo->pvo_pmap = pm;
   1661 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1662 	if (flags & VM_PROT_EXECUTE) {
   1663 		PMAPCOUNT(exec_mappings);
   1664 		pvo_set_exec(pvo);
   1665 	}
   1666 	if (flags & PMAP_WIRED)
   1667 		pvo->pvo_vaddr |= PVO_WIRED;
   1668 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1669 		pvo->pvo_vaddr |= PVO_MANAGED;
   1670 		PMAPCOUNT(mappings);
   1671 	} else {
   1672 		PMAPCOUNT(kernel_mappings);
   1673 	}
   1674 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1675 
   1676 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1677 	if (PVO_WIRED_P(pvo))
   1678 		pvo->pvo_pmap->pm_stats.wired_count++;
   1679 	pvo->pvo_pmap->pm_stats.resident_count++;
   1680 #if defined(DEBUG)
   1681 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1682 		DPRINTFN(PVOENTER,
   1683 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1684 		    pvo, pm, va, pa));
   1685 #endif
   1686 
   1687 	/*
   1688 	 * We hope this succeeds but it isn't required.
   1689 	 */
   1690 	pvoh = &pmap_pvo_table[ptegidx];
   1691 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1692 	if (i >= 0) {
   1693 		PVO_PTEGIDX_SET(pvo, i);
   1694 		PVO_WHERE(pvo, ENTER_INSERT);
   1695 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1696 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1697 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1698 
   1699 	} else {
   1700 		/*
   1701 		 * Since we didn't have room for this entry (which makes it
   1702 		 * and evicted entry), place it at the head of the list.
   1703 		 */
   1704 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1705 		PMAPCOUNT(ptes_evicted);
   1706 		pm->pm_evictions++;
   1707 		/*
   1708 		 * If this is a kernel page, make sure it's active.
   1709 		 */
   1710 		if (pm == pmap_kernel()) {
   1711 			i = pmap_pte_spill(pm, va, false);
   1712 			KASSERT(i);
   1713 		}
   1714 	}
   1715 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1716 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1717 	pmap_pvo_enter_depth--;
   1718 #endif
   1719 	pmap_interrupts_restore(msr);
   1720 	return 0;
   1721 }
   1722 
   1723 static void
   1724 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1725 {
   1726 	volatile struct pte *pt;
   1727 	int ptegidx;
   1728 
   1729 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1730 	if (++pmap_pvo_remove_depth > 1)
   1731 		panic("pmap_pvo_remove: called recursively!");
   1732 #endif
   1733 
   1734 	/*
   1735 	 * If we haven't been supplied the ptegidx, calculate it.
   1736 	 */
   1737 	if (pteidx == -1) {
   1738 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1739 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1740 	} else {
   1741 		ptegidx = pteidx >> 3;
   1742 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1743 			ptegidx ^= pmap_pteg_mask;
   1744 	}
   1745 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1746 
   1747 	/*
   1748 	 * If there is an active pte entry, we need to deactivate it
   1749 	 * (and save the ref & chg bits).
   1750 	 */
   1751 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1752 	if (pt != NULL) {
   1753 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1754 		PVO_WHERE(pvo, REMOVE);
   1755 		PVO_PTEGIDX_CLR(pvo);
   1756 		PMAPCOUNT(ptes_removed);
   1757 	} else {
   1758 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1759 		pvo->pvo_pmap->pm_evictions--;
   1760 	}
   1761 
   1762 	/*
   1763 	 * Account for executable mappings.
   1764 	 */
   1765 	if (PVO_EXECUTABLE_P(pvo))
   1766 		pvo_clear_exec(pvo);
   1767 
   1768 	/*
   1769 	 * Update our statistics.
   1770 	 */
   1771 	pvo->pvo_pmap->pm_stats.resident_count--;
   1772 	if (PVO_WIRED_P(pvo))
   1773 		pvo->pvo_pmap->pm_stats.wired_count--;
   1774 
   1775 	/*
   1776 	 * Save the REF/CHG bits into their cache if the page is managed.
   1777 	 */
   1778 	if (PVO_MANAGED_P(pvo)) {
   1779 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1780 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1781 
   1782 		if (pg != NULL) {
   1783 			/*
   1784 			 * If this page was changed and it is mapped exec,
   1785 			 * invalidate it.
   1786 			 */
   1787 			if ((ptelo & PTE_CHG) &&
   1788 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1789 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1790 				if (LIST_EMPTY(pvoh)) {
   1791 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1792 					    "%#" _PRIxpa ": clear-exec]\n",
   1793 					    VM_PAGE_TO_PHYS(pg)));
   1794 					pmap_attr_clear(pg, PTE_EXEC);
   1795 					PMAPCOUNT(exec_uncached_pvo_remove);
   1796 				} else {
   1797 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1798 					    "%#" _PRIxpa ": syncicache]\n",
   1799 					    VM_PAGE_TO_PHYS(pg)));
   1800 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1801 					    PAGE_SIZE);
   1802 					PMAPCOUNT(exec_synced_pvo_remove);
   1803 				}
   1804 			}
   1805 
   1806 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1807 		}
   1808 		PMAPCOUNT(unmappings);
   1809 	} else {
   1810 		PMAPCOUNT(kernel_unmappings);
   1811 	}
   1812 
   1813 	/*
   1814 	 * Remove the PVO from its lists and return it to the pool.
   1815 	 */
   1816 	LIST_REMOVE(pvo, pvo_vlink);
   1817 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1818 	if (pvol) {
   1819 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1820 	}
   1821 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1822 	pmap_pvo_remove_depth--;
   1823 #endif
   1824 }
   1825 
   1826 void
   1827 pmap_pvo_free(struct pvo_entry *pvo)
   1828 {
   1829 
   1830 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1831 }
   1832 
   1833 void
   1834 pmap_pvo_free_list(struct pvo_head *pvol)
   1835 {
   1836 	struct pvo_entry *pvo, *npvo;
   1837 
   1838 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1839 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1840 		LIST_REMOVE(pvo, pvo_vlink);
   1841 		pmap_pvo_free(pvo);
   1842 	}
   1843 }
   1844 
   1845 /*
   1846  * Mark a mapping as executable.
   1847  * If this is the first executable mapping in the segment,
   1848  * clear the noexec flag.
   1849  */
   1850 static void
   1851 pvo_set_exec(struct pvo_entry *pvo)
   1852 {
   1853 	struct pmap *pm = pvo->pvo_pmap;
   1854 
   1855 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1856 		return;
   1857 	}
   1858 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1859 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1860 	{
   1861 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1862 		if (pm->pm_exec[sr]++ == 0) {
   1863 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1864 		}
   1865 	}
   1866 #endif
   1867 }
   1868 
   1869 /*
   1870  * Mark a mapping as non-executable.
   1871  * If this was the last executable mapping in the segment,
   1872  * set the noexec flag.
   1873  */
   1874 static void
   1875 pvo_clear_exec(struct pvo_entry *pvo)
   1876 {
   1877 	struct pmap *pm = pvo->pvo_pmap;
   1878 
   1879 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1880 		return;
   1881 	}
   1882 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1883 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1884 	{
   1885 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1886 		if (--pm->pm_exec[sr] == 0) {
   1887 			pm->pm_sr[sr] |= SR_NOEXEC;
   1888 		}
   1889 	}
   1890 #endif
   1891 }
   1892 
   1893 /*
   1894  * Insert physical page at pa into the given pmap at virtual address va.
   1895  */
   1896 int
   1897 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1898 {
   1899 	struct mem_region *mp;
   1900 	struct pvo_head *pvo_head;
   1901 	struct vm_page *pg;
   1902 	struct pool *pl;
   1903 	register_t pte_lo;
   1904 	int error;
   1905 	u_int pvo_flags;
   1906 	u_int was_exec = 0;
   1907 
   1908 	PMAP_LOCK();
   1909 
   1910 	if (__predict_false(!pmap_initialized)) {
   1911 		pvo_head = &pmap_pvo_kunmanaged;
   1912 		pl = &pmap_upvo_pool;
   1913 		pvo_flags = 0;
   1914 		pg = NULL;
   1915 		was_exec = PTE_EXEC;
   1916 	} else {
   1917 		pvo_head = pa_to_pvoh(pa, &pg);
   1918 		pl = &pmap_mpvo_pool;
   1919 		pvo_flags = PVO_MANAGED;
   1920 	}
   1921 
   1922 	DPRINTFN(ENTER,
   1923 	    ("pmap_enter(%p, 0x%" _PRIxva ", 0x%" _PRIxpa ", 0x%x, 0x%x):",
   1924 	    pm, va, pa, prot, flags));
   1925 
   1926 	/*
   1927 	 * If this is a managed page, and it's the first reference to the
   1928 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1929 	 */
   1930 	if (pg != NULL)
   1931 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1932 
   1933 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1934 
   1935 	/*
   1936 	 * Assume the page is cache inhibited and access is guarded unless
   1937 	 * it's in our available memory array.  If it is in the memory array,
   1938 	 * asssume it's in memory coherent memory.
   1939 	 */
   1940 	pte_lo = PTE_IG;
   1941 	if ((flags & PMAP_NC) == 0) {
   1942 		for (mp = mem; mp->size; mp++) {
   1943 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1944 				pte_lo = PTE_M;
   1945 				break;
   1946 			}
   1947 		}
   1948 	}
   1949 
   1950 	if (prot & VM_PROT_WRITE)
   1951 		pte_lo |= PTE_BW;
   1952 	else
   1953 		pte_lo |= PTE_BR;
   1954 
   1955 	/*
   1956 	 * If this was in response to a fault, "pre-fault" the PTE's
   1957 	 * changed/referenced bit appropriately.
   1958 	 */
   1959 	if (flags & VM_PROT_WRITE)
   1960 		pte_lo |= PTE_CHG;
   1961 	if (flags & VM_PROT_ALL)
   1962 		pte_lo |= PTE_REF;
   1963 
   1964 	/*
   1965 	 * We need to know if this page can be executable
   1966 	 */
   1967 	flags |= (prot & VM_PROT_EXECUTE);
   1968 
   1969 	/*
   1970 	 * Record mapping for later back-translation and pte spilling.
   1971 	 * This will overwrite any existing mapping.
   1972 	 */
   1973 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1974 
   1975 	/*
   1976 	 * Flush the real page from the instruction cache if this page is
   1977 	 * mapped executable and cacheable and has not been flushed since
   1978 	 * the last time it was modified.
   1979 	 */
   1980 	if (error == 0 &&
   1981             (flags & VM_PROT_EXECUTE) &&
   1982             (pte_lo & PTE_I) == 0 &&
   1983 	    was_exec == 0) {
   1984 		DPRINTFN(ENTER, (" syncicache"));
   1985 		PMAPCOUNT(exec_synced);
   1986 		pmap_syncicache(pa, PAGE_SIZE);
   1987 		if (pg != NULL) {
   1988 			pmap_attr_save(pg, PTE_EXEC);
   1989 			PMAPCOUNT(exec_cached);
   1990 #if defined(DEBUG) || defined(PMAPDEBUG)
   1991 			if (pmapdebug & PMAPDEBUG_ENTER)
   1992 				printf(" marked-as-exec");
   1993 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1994 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1995 				    VM_PAGE_TO_PHYS(pg));
   1996 
   1997 #endif
   1998 		}
   1999 	}
   2000 
   2001 	DPRINTFN(ENTER, (": error=%d\n", error));
   2002 
   2003 	PMAP_UNLOCK();
   2004 
   2005 	return error;
   2006 }
   2007 
   2008 void
   2009 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2010 {
   2011 	struct mem_region *mp;
   2012 	register_t pte_lo;
   2013 	int error;
   2014 
   2015 #if defined (PMAP_OEA64_BRIDGE)
   2016 	if (va < VM_MIN_KERNEL_ADDRESS)
   2017 		panic("pmap_kenter_pa: attempt to enter "
   2018 		    "non-kernel address %#" _PRIxva "!", va);
   2019 #endif
   2020 
   2021 	DPRINTFN(KENTER,
   2022 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2023 
   2024 	PMAP_LOCK();
   2025 
   2026 	/*
   2027 	 * Assume the page is cache inhibited and access is guarded unless
   2028 	 * it's in our available memory array.  If it is in the memory array,
   2029 	 * asssume it's in memory coherent memory.
   2030 	 */
   2031 	pte_lo = PTE_IG;
   2032 	if ((prot & PMAP_NC) == 0) {
   2033 		for (mp = mem; mp->size; mp++) {
   2034 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2035 				pte_lo = PTE_M;
   2036 				break;
   2037 			}
   2038 		}
   2039 	}
   2040 
   2041 	if (prot & VM_PROT_WRITE)
   2042 		pte_lo |= PTE_BW;
   2043 	else
   2044 		pte_lo |= PTE_BR;
   2045 
   2046 	/*
   2047 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2048 	 */
   2049 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2050 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2051 
   2052 	if (error != 0)
   2053 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2054 		      va, pa, error);
   2055 
   2056 	PMAP_UNLOCK();
   2057 }
   2058 
   2059 void
   2060 pmap_kremove(vaddr_t va, vsize_t len)
   2061 {
   2062 	if (va < VM_MIN_KERNEL_ADDRESS)
   2063 		panic("pmap_kremove: attempt to remove "
   2064 		    "non-kernel address %#" _PRIxva "!", va);
   2065 
   2066 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2067 	pmap_remove(pmap_kernel(), va, va + len);
   2068 }
   2069 
   2070 /*
   2071  * Remove the given range of mapping entries.
   2072  */
   2073 void
   2074 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2075 {
   2076 	struct pvo_head pvol;
   2077 	struct pvo_entry *pvo;
   2078 	register_t msr;
   2079 	int pteidx;
   2080 
   2081 	PMAP_LOCK();
   2082 	LIST_INIT(&pvol);
   2083 	msr = pmap_interrupts_off();
   2084 	for (; va < endva; va += PAGE_SIZE) {
   2085 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2086 		if (pvo != NULL) {
   2087 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2088 		}
   2089 	}
   2090 	pmap_interrupts_restore(msr);
   2091 	pmap_pvo_free_list(&pvol);
   2092 	PMAP_UNLOCK();
   2093 }
   2094 
   2095 /*
   2096  * Get the physical page address for the given pmap/virtual address.
   2097  */
   2098 bool
   2099 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2100 {
   2101 	struct pvo_entry *pvo;
   2102 	register_t msr;
   2103 
   2104 	PMAP_LOCK();
   2105 
   2106 	/*
   2107 	 * If this is a kernel pmap lookup, also check the battable
   2108 	 * and if we get a hit, translate the VA to a PA using the
   2109 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2110 	 * that will wrap back to 0.
   2111 	 */
   2112 	if (pm == pmap_kernel() &&
   2113 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2114 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2115 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2116 #if defined (PMAP_OEA)
   2117 		if ((MFPVR() >> 16) != MPC601) {
   2118 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2119 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2120 				register_t batl =
   2121 				    battable[va >> ADDR_SR_SHFT].batl;
   2122 				register_t mask =
   2123 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2124 				if (pap)
   2125 					*pap = (batl & mask) | (va & ~mask);
   2126 				PMAP_UNLOCK();
   2127 				return true;
   2128 			}
   2129 		} else {
   2130 			register_t batu = battable[va >> 23].batu;
   2131 			register_t batl = battable[va >> 23].batl;
   2132 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2133 			if (BAT601_VALID_P(batl) &&
   2134 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2135 				register_t mask =
   2136 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2137 				if (pap)
   2138 					*pap = (batl & mask) | (va & ~mask);
   2139 				PMAP_UNLOCK();
   2140 				return true;
   2141 			} else if (SR601_VALID_P(sr) &&
   2142 				   SR601_PA_MATCH_P(sr, va)) {
   2143 				if (pap)
   2144 					*pap = va;
   2145 				PMAP_UNLOCK();
   2146 				return true;
   2147 			}
   2148 		}
   2149 		return false;
   2150 #elif defined (PMAP_OEA64_BRIDGE)
   2151 	if (va >= SEGMENT_LENGTH)
   2152 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2153 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2154 	else {
   2155 		if (pap)
   2156 			*pap = va;
   2157 			PMAP_UNLOCK();
   2158 			return true;
   2159 	}
   2160 #elif defined (PMAP_OEA64)
   2161 #error PPC_OEA64 not supported
   2162 #endif /* PPC_OEA */
   2163 	}
   2164 
   2165 	msr = pmap_interrupts_off();
   2166 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2167 	if (pvo != NULL) {
   2168 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2169 		if (pap)
   2170 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2171 			    | (va & ADDR_POFF);
   2172 	}
   2173 	pmap_interrupts_restore(msr);
   2174 	PMAP_UNLOCK();
   2175 	return pvo != NULL;
   2176 }
   2177 
   2178 /*
   2179  * Lower the protection on the specified range of this pmap.
   2180  */
   2181 void
   2182 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2183 {
   2184 	struct pvo_entry *pvo;
   2185 	volatile struct pte *pt;
   2186 	register_t msr;
   2187 	int pteidx;
   2188 
   2189 	/*
   2190 	 * Since this routine only downgrades protection, we should
   2191 	 * always be called with at least one bit not set.
   2192 	 */
   2193 	KASSERT(prot != VM_PROT_ALL);
   2194 
   2195 	/*
   2196 	 * If there is no protection, this is equivalent to
   2197 	 * remove the pmap from the pmap.
   2198 	 */
   2199 	if ((prot & VM_PROT_READ) == 0) {
   2200 		pmap_remove(pm, va, endva);
   2201 		return;
   2202 	}
   2203 
   2204 	PMAP_LOCK();
   2205 
   2206 	msr = pmap_interrupts_off();
   2207 	for (; va < endva; va += PAGE_SIZE) {
   2208 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2209 		if (pvo == NULL)
   2210 			continue;
   2211 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2212 
   2213 		/*
   2214 		 * Revoke executable if asked to do so.
   2215 		 */
   2216 		if ((prot & VM_PROT_EXECUTE) == 0)
   2217 			pvo_clear_exec(pvo);
   2218 
   2219 #if 0
   2220 		/*
   2221 		 * If the page is already read-only, no change
   2222 		 * needs to be made.
   2223 		 */
   2224 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2225 			continue;
   2226 #endif
   2227 		/*
   2228 		 * Grab the PTE pointer before we diddle with
   2229 		 * the cached PTE copy.
   2230 		 */
   2231 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2232 		/*
   2233 		 * Change the protection of the page.
   2234 		 */
   2235 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2236 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2237 
   2238 		/*
   2239 		 * If the PVO is in the page table, update
   2240 		 * that pte at well.
   2241 		 */
   2242 		if (pt != NULL) {
   2243 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2244 			PVO_WHERE(pvo, PMAP_PROTECT);
   2245 			PMAPCOUNT(ptes_changed);
   2246 		}
   2247 
   2248 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2249 	}
   2250 	pmap_interrupts_restore(msr);
   2251 	PMAP_UNLOCK();
   2252 }
   2253 
   2254 void
   2255 pmap_unwire(pmap_t pm, vaddr_t va)
   2256 {
   2257 	struct pvo_entry *pvo;
   2258 	register_t msr;
   2259 
   2260 	PMAP_LOCK();
   2261 	msr = pmap_interrupts_off();
   2262 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2263 	if (pvo != NULL) {
   2264 		if (PVO_WIRED_P(pvo)) {
   2265 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2266 			pm->pm_stats.wired_count--;
   2267 		}
   2268 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2269 	}
   2270 	pmap_interrupts_restore(msr);
   2271 	PMAP_UNLOCK();
   2272 }
   2273 
   2274 /*
   2275  * Lower the protection on the specified physical page.
   2276  */
   2277 void
   2278 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2279 {
   2280 	struct pvo_head *pvo_head, pvol;
   2281 	struct pvo_entry *pvo, *next_pvo;
   2282 	volatile struct pte *pt;
   2283 	register_t msr;
   2284 
   2285 	PMAP_LOCK();
   2286 
   2287 	KASSERT(prot != VM_PROT_ALL);
   2288 	LIST_INIT(&pvol);
   2289 	msr = pmap_interrupts_off();
   2290 
   2291 	/*
   2292 	 * When UVM reuses a page, it does a pmap_page_protect with
   2293 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2294 	 * since we know the page will have different contents.
   2295 	 */
   2296 	if ((prot & VM_PROT_READ) == 0) {
   2297 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2298 		    VM_PAGE_TO_PHYS(pg)));
   2299 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2300 			PMAPCOUNT(exec_uncached_page_protect);
   2301 			pmap_attr_clear(pg, PTE_EXEC);
   2302 		}
   2303 	}
   2304 
   2305 	pvo_head = vm_page_to_pvoh(pg);
   2306 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2307 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2308 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2309 
   2310 		/*
   2311 		 * Downgrading to no mapping at all, we just remove the entry.
   2312 		 */
   2313 		if ((prot & VM_PROT_READ) == 0) {
   2314 			pmap_pvo_remove(pvo, -1, &pvol);
   2315 			continue;
   2316 		}
   2317 
   2318 		/*
   2319 		 * If EXEC permission is being revoked, just clear the
   2320 		 * flag in the PVO.
   2321 		 */
   2322 		if ((prot & VM_PROT_EXECUTE) == 0)
   2323 			pvo_clear_exec(pvo);
   2324 
   2325 		/*
   2326 		 * If this entry is already RO, don't diddle with the
   2327 		 * page table.
   2328 		 */
   2329 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2330 			PMAP_PVO_CHECK(pvo);
   2331 			continue;
   2332 		}
   2333 
   2334 		/*
   2335 		 * Grab the PTE before the we diddle the bits so
   2336 		 * pvo_to_pte can verify the pte contents are as
   2337 		 * expected.
   2338 		 */
   2339 		pt = pmap_pvo_to_pte(pvo, -1);
   2340 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2341 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2342 		if (pt != NULL) {
   2343 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2344 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2345 			PMAPCOUNT(ptes_changed);
   2346 		}
   2347 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2348 	}
   2349 	pmap_interrupts_restore(msr);
   2350 	pmap_pvo_free_list(&pvol);
   2351 
   2352 	PMAP_UNLOCK();
   2353 }
   2354 
   2355 /*
   2356  * Activate the address space for the specified process.  If the process
   2357  * is the current process, load the new MMU context.
   2358  */
   2359 void
   2360 pmap_activate(struct lwp *l)
   2361 {
   2362 	struct pcb *pcb = &l->l_addr->u_pcb;
   2363 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2364 
   2365 	DPRINTFN(ACTIVATE,
   2366 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2367 
   2368 	/*
   2369 	 * XXX Normally performed in cpu_fork().
   2370 	 */
   2371 	pcb->pcb_pm = pmap;
   2372 
   2373 	/*
   2374 	* In theory, the SR registers need only be valid on return
   2375 	* to user space wait to do them there.
   2376 	*/
   2377 	if (l == curlwp) {
   2378 		/* Store pointer to new current pmap. */
   2379 		curpm = pmap;
   2380 	}
   2381 }
   2382 
   2383 /*
   2384  * Deactivate the specified process's address space.
   2385  */
   2386 void
   2387 pmap_deactivate(struct lwp *l)
   2388 {
   2389 }
   2390 
   2391 bool
   2392 pmap_query_bit(struct vm_page *pg, int ptebit)
   2393 {
   2394 	struct pvo_entry *pvo;
   2395 	volatile struct pte *pt;
   2396 	register_t msr;
   2397 
   2398 	PMAP_LOCK();
   2399 
   2400 	if (pmap_attr_fetch(pg) & ptebit) {
   2401 		PMAP_UNLOCK();
   2402 		return true;
   2403 	}
   2404 
   2405 	msr = pmap_interrupts_off();
   2406 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2407 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2408 		/*
   2409 		 * See if we saved the bit off.  If so cache, it and return
   2410 		 * success.
   2411 		 */
   2412 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2413 			pmap_attr_save(pg, ptebit);
   2414 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2415 			pmap_interrupts_restore(msr);
   2416 			PMAP_UNLOCK();
   2417 			return true;
   2418 		}
   2419 	}
   2420 	/*
   2421 	 * No luck, now go thru the hard part of looking at the ptes
   2422 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2423 	 * to the PTEs.
   2424 	 */
   2425 	SYNC();
   2426 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2427 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2428 		/*
   2429 		 * See if this pvo have a valid PTE.  If so, fetch the
   2430 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2431 		 * ptebit is set, cache, it and return success.
   2432 		 */
   2433 		pt = pmap_pvo_to_pte(pvo, -1);
   2434 		if (pt != NULL) {
   2435 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2436 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2437 				pmap_attr_save(pg, ptebit);
   2438 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2439 				pmap_interrupts_restore(msr);
   2440 				PMAP_UNLOCK();
   2441 				return true;
   2442 			}
   2443 		}
   2444 	}
   2445 	pmap_interrupts_restore(msr);
   2446 	PMAP_UNLOCK();
   2447 	return false;
   2448 }
   2449 
   2450 bool
   2451 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2452 {
   2453 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2454 	struct pvo_entry *pvo;
   2455 	volatile struct pte *pt;
   2456 	register_t msr;
   2457 	int rv = 0;
   2458 
   2459 	PMAP_LOCK();
   2460 	msr = pmap_interrupts_off();
   2461 
   2462 	/*
   2463 	 * Fetch the cache value
   2464 	 */
   2465 	rv |= pmap_attr_fetch(pg);
   2466 
   2467 	/*
   2468 	 * Clear the cached value.
   2469 	 */
   2470 	pmap_attr_clear(pg, ptebit);
   2471 
   2472 	/*
   2473 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2474 	 * can reset the right ones).  Note that since the pvo entries and
   2475 	 * list heads are accessed via BAT0 and are never placed in the
   2476 	 * page table, we don't have to worry about further accesses setting
   2477 	 * the REF/CHG bits.
   2478 	 */
   2479 	SYNC();
   2480 
   2481 	/*
   2482 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2483 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2484 	 */
   2485 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2486 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2487 		pt = pmap_pvo_to_pte(pvo, -1);
   2488 		if (pt != NULL) {
   2489 			/*
   2490 			 * Only sync the PTE if the bit we are looking
   2491 			 * for is not already set.
   2492 			 */
   2493 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2494 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2495 			/*
   2496 			 * If the bit we are looking for was already set,
   2497 			 * clear that bit in the pte.
   2498 			 */
   2499 			if (pvo->pvo_pte.pte_lo & ptebit)
   2500 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2501 		}
   2502 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2503 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2504 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2505 	}
   2506 	pmap_interrupts_restore(msr);
   2507 
   2508 	/*
   2509 	 * If we are clearing the modify bit and this page was marked EXEC
   2510 	 * and the user of the page thinks the page was modified, then we
   2511 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2512 	 * bit if it's not mapped.  The page itself might not have the CHG
   2513 	 * bit set if the modification was done via DMA to the page.
   2514 	 */
   2515 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2516 		if (LIST_EMPTY(pvoh)) {
   2517 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2518 			    VM_PAGE_TO_PHYS(pg)));
   2519 			pmap_attr_clear(pg, PTE_EXEC);
   2520 			PMAPCOUNT(exec_uncached_clear_modify);
   2521 		} else {
   2522 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2523 			    VM_PAGE_TO_PHYS(pg)));
   2524 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2525 			PMAPCOUNT(exec_synced_clear_modify);
   2526 		}
   2527 	}
   2528 	PMAP_UNLOCK();
   2529 	return (rv & ptebit) != 0;
   2530 }
   2531 
   2532 void
   2533 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2534 {
   2535 	struct pvo_entry *pvo;
   2536 	size_t offset = va & ADDR_POFF;
   2537 	int s;
   2538 
   2539 	PMAP_LOCK();
   2540 	s = splvm();
   2541 	while (len > 0) {
   2542 		size_t seglen = PAGE_SIZE - offset;
   2543 		if (seglen > len)
   2544 			seglen = len;
   2545 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2546 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2547 			pmap_syncicache(
   2548 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2549 			PMAP_PVO_CHECK(pvo);
   2550 		}
   2551 		va += seglen;
   2552 		len -= seglen;
   2553 		offset = 0;
   2554 	}
   2555 	splx(s);
   2556 	PMAP_UNLOCK();
   2557 }
   2558 
   2559 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2560 void
   2561 pmap_pte_print(volatile struct pte *pt)
   2562 {
   2563 	printf("PTE %p: ", pt);
   2564 
   2565 #if defined(PMAP_OEA)
   2566 	/* High word: */
   2567 	printf("0x%08" _PRIxpte ": [", pt->pte_hi);
   2568 #else
   2569 	printf("0x%016" _PRIxpte ": [", pt->pte_hi);
   2570 #endif /* PMAP_OEA */
   2571 
   2572 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2573 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2574 
   2575 	printf("0x%06" _PRIxpte " 0x%02" _PRIxpte "",
   2576 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2577 	    pt->pte_hi & PTE_API);
   2578 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2579 	printf(" (va 0x%08" _PRIxva ")] ", pmap_pte_to_va(pt));
   2580 #else
   2581 	printf(" (va 0x%016" _PRIxva ")] ", pmap_pte_to_va(pt));
   2582 #endif /* PMAP_OEA */
   2583 
   2584 	/* Low word: */
   2585 #if defined (PMAP_OEA)
   2586 	printf(" 0x%08" _PRIxpte ": [", pt->pte_lo);
   2587 	printf("0x%05" _PRIxpte "... ", pt->pte_lo >> 12);
   2588 #else
   2589 	printf(" 0x%016" _PRIxpte ": [", pt->pte_lo);
   2590 	printf("0x%012" _PRIxpte "... ", pt->pte_lo >> 12);
   2591 #endif
   2592 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2593 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2594 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2595 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2596 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2597 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2598 	switch (pt->pte_lo & PTE_PP) {
   2599 	case PTE_BR: printf("br]\n"); break;
   2600 	case PTE_BW: printf("bw]\n"); break;
   2601 	case PTE_SO: printf("so]\n"); break;
   2602 	case PTE_SW: printf("sw]\n"); break;
   2603 	}
   2604 }
   2605 #endif
   2606 
   2607 #if defined(DDB)
   2608 void
   2609 pmap_pteg_check(void)
   2610 {
   2611 	volatile struct pte *pt;
   2612 	int i;
   2613 	int ptegidx;
   2614 	u_int p_valid = 0;
   2615 	u_int s_valid = 0;
   2616 	u_int invalid = 0;
   2617 
   2618 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2619 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2620 			if (pt->pte_hi & PTE_VALID) {
   2621 				if (pt->pte_hi & PTE_HID)
   2622 					s_valid++;
   2623 				else
   2624 				{
   2625 					p_valid++;
   2626 				}
   2627 			} else
   2628 				invalid++;
   2629 		}
   2630 	}
   2631 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2632 		p_valid, p_valid, s_valid, s_valid,
   2633 		invalid, invalid);
   2634 }
   2635 
   2636 void
   2637 pmap_print_mmuregs(void)
   2638 {
   2639 	int i;
   2640 	u_int cpuvers;
   2641 #ifndef PMAP_OEA64
   2642 	vaddr_t addr;
   2643 	register_t soft_sr[16];
   2644 #endif
   2645 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2646 	struct bat soft_ibat[4];
   2647 	struct bat soft_dbat[4];
   2648 #endif
   2649 	paddr_t sdr1;
   2650 
   2651 	cpuvers = MFPVR() >> 16;
   2652 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2653 #ifndef PMAP_OEA64
   2654 	addr = 0;
   2655 	for (i = 0; i < 16; i++) {
   2656 		soft_sr[i] = MFSRIN(addr);
   2657 		addr += (1 << ADDR_SR_SHFT);
   2658 	}
   2659 #endif
   2660 
   2661 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2662 	/* read iBAT (601: uBAT) registers */
   2663 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2664 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2665 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2666 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2667 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2668 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2669 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2670 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2671 
   2672 
   2673 	if (cpuvers != MPC601) {
   2674 		/* read dBAT registers */
   2675 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2676 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2677 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2678 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2679 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2680 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2681 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2682 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2683 	}
   2684 #endif
   2685 
   2686 	printf("SDR1:\t0x%" _PRIxpa "\n", sdr1);
   2687 #ifndef PMAP_OEA64
   2688 	printf("SR[]:\t");
   2689 	for (i = 0; i < 4; i++)
   2690 		printf("0x%08lx,   ", soft_sr[i]);
   2691 	printf("\n\t");
   2692 	for ( ; i < 8; i++)
   2693 		printf("0x%08lx,   ", soft_sr[i]);
   2694 	printf("\n\t");
   2695 	for ( ; i < 12; i++)
   2696 		printf("0x%08lx,   ", soft_sr[i]);
   2697 	printf("\n\t");
   2698 	for ( ; i < 16; i++)
   2699 		printf("0x%08lx,   ", soft_sr[i]);
   2700 	printf("\n");
   2701 #endif
   2702 
   2703 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2704 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2705 	for (i = 0; i < 4; i++) {
   2706 		printf("0x%08lx 0x%08lx, ",
   2707 			soft_ibat[i].batu, soft_ibat[i].batl);
   2708 		if (i == 1)
   2709 			printf("\n\t");
   2710 	}
   2711 	if (cpuvers != MPC601) {
   2712 		printf("\ndBAT[]:\t");
   2713 		for (i = 0; i < 4; i++) {
   2714 			printf("0x%08lx 0x%08lx, ",
   2715 				soft_dbat[i].batu, soft_dbat[i].batl);
   2716 			if (i == 1)
   2717 				printf("\n\t");
   2718 		}
   2719 	}
   2720 	printf("\n");
   2721 #endif /* PMAP_OEA... */
   2722 }
   2723 
   2724 void
   2725 pmap_print_pte(pmap_t pm, vaddr_t va)
   2726 {
   2727 	struct pvo_entry *pvo;
   2728 	volatile struct pte *pt;
   2729 	int pteidx;
   2730 
   2731 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2732 	if (pvo != NULL) {
   2733 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2734 		if (pt != NULL) {
   2735 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2736 				va, pt,
   2737 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2738 				pt->pte_hi, pt->pte_lo);
   2739 		} else {
   2740 			printf("No valid PTE found\n");
   2741 		}
   2742 	} else {
   2743 		printf("Address not in pmap\n");
   2744 	}
   2745 }
   2746 
   2747 void
   2748 pmap_pteg_dist(void)
   2749 {
   2750 	struct pvo_entry *pvo;
   2751 	int ptegidx;
   2752 	int depth;
   2753 	int max_depth = 0;
   2754 	unsigned int depths[64];
   2755 
   2756 	memset(depths, 0, sizeof(depths));
   2757 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2758 		depth = 0;
   2759 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2760 			depth++;
   2761 		}
   2762 		if (depth > max_depth)
   2763 			max_depth = depth;
   2764 		if (depth > 63)
   2765 			depth = 63;
   2766 		depths[depth]++;
   2767 	}
   2768 
   2769 	for (depth = 0; depth < 64; depth++) {
   2770 		printf("  [%2d]: %8u", depth, depths[depth]);
   2771 		if ((depth & 3) == 3)
   2772 			printf("\n");
   2773 		if (depth == max_depth)
   2774 			break;
   2775 	}
   2776 	if ((depth & 3) != 3)
   2777 		printf("\n");
   2778 	printf("Max depth found was %d\n", max_depth);
   2779 }
   2780 #endif /* DEBUG */
   2781 
   2782 #if defined(PMAPCHECK) || defined(DEBUG)
   2783 void
   2784 pmap_pvo_verify(void)
   2785 {
   2786 	int ptegidx;
   2787 	int s;
   2788 
   2789 	s = splvm();
   2790 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2791 		struct pvo_entry *pvo;
   2792 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2793 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2794 				panic("pmap_pvo_verify: invalid pvo %p "
   2795 				    "on list %#x", pvo, ptegidx);
   2796 			pmap_pvo_check(pvo);
   2797 		}
   2798 	}
   2799 	splx(s);
   2800 }
   2801 #endif /* PMAPCHECK */
   2802 
   2803 
   2804 void *
   2805 pmap_pool_ualloc(struct pool *pp, int flags)
   2806 {
   2807 	struct pvo_page *pvop;
   2808 
   2809 	if (uvm.page_init_done != true) {
   2810 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2811 	}
   2812 
   2813 	PMAP_LOCK();
   2814 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2815 	if (pvop != NULL) {
   2816 		pmap_upvop_free--;
   2817 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2818 		PMAP_UNLOCK();
   2819 		return pvop;
   2820 	}
   2821 	PMAP_UNLOCK();
   2822 	return pmap_pool_malloc(pp, flags);
   2823 }
   2824 
   2825 void *
   2826 pmap_pool_malloc(struct pool *pp, int flags)
   2827 {
   2828 	struct pvo_page *pvop;
   2829 	struct vm_page *pg;
   2830 
   2831 	PMAP_LOCK();
   2832 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2833 	if (pvop != NULL) {
   2834 		pmap_mpvop_free--;
   2835 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2836 		PMAP_UNLOCK();
   2837 		return pvop;
   2838 	}
   2839 	PMAP_UNLOCK();
   2840  again:
   2841 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2842 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2843 	if (__predict_false(pg == NULL)) {
   2844 		if (flags & PR_WAITOK) {
   2845 			uvm_wait("plpg");
   2846 			goto again;
   2847 		} else {
   2848 			return (0);
   2849 		}
   2850 	}
   2851 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2852 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2853 }
   2854 
   2855 void
   2856 pmap_pool_ufree(struct pool *pp, void *va)
   2857 {
   2858 	struct pvo_page *pvop;
   2859 #if 0
   2860 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2861 		pmap_pool_mfree(va, size, tag);
   2862 		return;
   2863 	}
   2864 #endif
   2865 	PMAP_LOCK();
   2866 	pvop = va;
   2867 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2868 	pmap_upvop_free++;
   2869 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2870 		pmap_upvop_maxfree = pmap_upvop_free;
   2871 	PMAP_UNLOCK();
   2872 }
   2873 
   2874 void
   2875 pmap_pool_mfree(struct pool *pp, void *va)
   2876 {
   2877 	struct pvo_page *pvop;
   2878 
   2879 	PMAP_LOCK();
   2880 	pvop = va;
   2881 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2882 	pmap_mpvop_free++;
   2883 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2884 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2885 	PMAP_UNLOCK();
   2886 #if 0
   2887 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2888 #endif
   2889 }
   2890 
   2891 /*
   2892  * This routine in bootstraping to steal to-be-managed memory (which will
   2893  * then be unmanaged).  We use it to grab from the first 256MB for our
   2894  * pmap needs and above 256MB for other stuff.
   2895  */
   2896 vaddr_t
   2897 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2898 {
   2899 	vsize_t size;
   2900 	vaddr_t va;
   2901 	paddr_t pa = 0;
   2902 	int npgs, bank;
   2903 	struct vm_physseg *ps;
   2904 
   2905 	if (uvm.page_init_done == true)
   2906 		panic("pmap_steal_memory: called _after_ bootstrap");
   2907 
   2908 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2909 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2910 
   2911 	size = round_page(vsize);
   2912 	npgs = atop(size);
   2913 
   2914 	/*
   2915 	 * PA 0 will never be among those given to UVM so we can use it
   2916 	 * to indicate we couldn't steal any memory.
   2917 	 */
   2918 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2919 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2920 		    ps->avail_end - ps->avail_start >= npgs) {
   2921 			pa = ptoa(ps->avail_start);
   2922 			break;
   2923 		}
   2924 	}
   2925 
   2926 	if (pa == 0)
   2927 		panic("pmap_steal_memory: no approriate memory to steal!");
   2928 
   2929 	ps->avail_start += npgs;
   2930 	ps->start += npgs;
   2931 
   2932 	/*
   2933 	 * If we've used up all the pages in the segment, remove it and
   2934 	 * compact the list.
   2935 	 */
   2936 	if (ps->avail_start == ps->end) {
   2937 		/*
   2938 		 * If this was the last one, then a very bad thing has occurred
   2939 		 */
   2940 		if (--vm_nphysseg == 0)
   2941 			panic("pmap_steal_memory: out of memory!");
   2942 
   2943 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2944 		for (; bank < vm_nphysseg; bank++, ps++) {
   2945 			ps[0] = ps[1];
   2946 		}
   2947 	}
   2948 
   2949 	va = (vaddr_t) pa;
   2950 	memset((void *) va, 0, size);
   2951 	pmap_pages_stolen += npgs;
   2952 #ifdef DEBUG
   2953 	if (pmapdebug && npgs > 1) {
   2954 		u_int cnt = 0;
   2955 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2956 			cnt += ps->avail_end - ps->avail_start;
   2957 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2958 		    npgs, pmap_pages_stolen, cnt);
   2959 	}
   2960 #endif
   2961 
   2962 	return va;
   2963 }
   2964 
   2965 /*
   2966  * Find a chuck of memory with right size and alignment.
   2967  */
   2968 paddr_t
   2969 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2970 {
   2971 	struct mem_region *mp;
   2972 	paddr_t s, e;
   2973 	int i, j;
   2974 
   2975 	size = round_page(size);
   2976 
   2977 	DPRINTFN(BOOT,
   2978 	    ("pmap_boot_find_memory: size=%" _PRIxpa ", alignment=%" _PRIxpa ", at_end=%d",
   2979 	    size, alignment, at_end));
   2980 
   2981 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2982 		panic("pmap_boot_find_memory: invalid alignment %" _PRIxpa,
   2983 		    alignment);
   2984 
   2985 	if (at_end) {
   2986 		if (alignment != PAGE_SIZE)
   2987 			panic("pmap_boot_find_memory: invalid ending "
   2988 			    "alignment %#" _PRIxpa, alignment);
   2989 
   2990 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2991 			s = mp->start + mp->size - size;
   2992 			if (s >= mp->start && mp->size >= size) {
   2993 				DPRINTFN(BOOT,(": %" _PRIxpa "\n", s));
   2994 				DPRINTFN(BOOT,
   2995 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2996 				     "0x%" _PRIxpa " size 0x%" _PRIxpa "\n", mp - avail,
   2997 				     mp->start, mp->size));
   2998 				mp->size -= size;
   2999 				DPRINTFN(BOOT,
   3000 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3001 				     "0x%" _PRIxpa " size 0x%" _PRIxpa "\n", mp - avail,
   3002 				     mp->start, mp->size));
   3003 				return s;
   3004 			}
   3005 		}
   3006 		panic("pmap_boot_find_memory: no available memory");
   3007 	}
   3008 
   3009 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3010 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3011 		e = s + size;
   3012 
   3013 		/*
   3014 		 * Is the calculated region entirely within the region?
   3015 		 */
   3016 		if (s < mp->start || e > mp->start + mp->size)
   3017 			continue;
   3018 
   3019 		DPRINTFN(BOOT,(": %" _PRIxpa "\n", s));
   3020 		if (s == mp->start) {
   3021 			/*
   3022 			 * If the block starts at the beginning of region,
   3023 			 * adjust the size & start. (the region may now be
   3024 			 * zero in length)
   3025 			 */
   3026 			DPRINTFN(BOOT,
   3027 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3028 			     "0x%" _PRIxpa " size 0x%" _PRIxpa "\n", i, mp->start, mp->size));
   3029 			mp->start += size;
   3030 			mp->size -= size;
   3031 			DPRINTFN(BOOT,
   3032 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3033 			     "0x%" _PRIxpa " size 0x%" _PRIxpa "\n", i, mp->start, mp->size));
   3034 		} else if (e == mp->start + mp->size) {
   3035 			/*
   3036 			 * If the block starts at the beginning of region,
   3037 			 * adjust only the size.
   3038 			 */
   3039 			DPRINTFN(BOOT,
   3040 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3041 			     "0x%" _PRIxpa " size 0x%" _PRIxpa "\n", i, mp->start, mp->size));
   3042 			mp->size -= size;
   3043 			DPRINTFN(BOOT,
   3044 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3045 			     "0x%" _PRIxpa " size 0x%" _PRIxpa "\n", i, mp->start, mp->size));
   3046 		} else {
   3047 			/*
   3048 			 * Block is in the middle of the region, so we
   3049 			 * have to split it in two.
   3050 			 */
   3051 			for (j = avail_cnt; j > i + 1; j--) {
   3052 				avail[j] = avail[j-1];
   3053 			}
   3054 			DPRINTFN(BOOT,
   3055 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3056 			     "0x%" _PRIxpa " size 0x%" _PRIxpa "\n", i, mp->start, mp->size));
   3057 			mp[1].start = e;
   3058 			mp[1].size = mp[0].start + mp[0].size - e;
   3059 			mp[0].size = s - mp[0].start;
   3060 			avail_cnt++;
   3061 			for (; i < avail_cnt; i++) {
   3062 				DPRINTFN(BOOT,
   3063 				    ("pmap_boot_find_memory: a-avail[%d] "
   3064 				     "start 0x%" _PRIxpa " size 0x%" _PRIxpa "\n", i,
   3065 				     avail[i].start, avail[i].size));
   3066 			}
   3067 		}
   3068 		KASSERT(s == (uintptr_t) s);
   3069 		return s;
   3070 	}
   3071 	panic("pmap_boot_find_memory: not enough memory for "
   3072 	    "%" _PRIxpa "/%" _PRIxpa " allocation?", size, alignment);
   3073 }
   3074 
   3075 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3076 #if defined (PMAP_OEA64_BRIDGE)
   3077 int
   3078 pmap_setup_segment0_map(int use_large_pages, ...)
   3079 {
   3080     vaddr_t va;
   3081 
   3082     register_t pte_lo = 0x0;
   3083     int ptegidx = 0, i = 0;
   3084     struct pte pte;
   3085     va_list ap;
   3086 
   3087     /* Coherent + Supervisor RW, no user access */
   3088     pte_lo = PTE_M;
   3089 
   3090     /* XXXSL
   3091      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3092      * these have to take priority.
   3093      */
   3094     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3095         ptegidx = va_to_pteg(pmap_kernel(), va);
   3096         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3097         i = pmap_pte_insert(ptegidx, &pte);
   3098     }
   3099 
   3100     va_start(ap, use_large_pages);
   3101     while (1) {
   3102         paddr_t pa;
   3103         size_t size;
   3104 
   3105         va = va_arg(ap, vaddr_t);
   3106 
   3107         if (va == 0)
   3108             break;
   3109 
   3110         pa = va_arg(ap, paddr_t);
   3111         size = va_arg(ap, size_t);
   3112 
   3113         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3114 #if 0
   3115 	    printf("%s: Inserting: va: 0x%08" _PRIxva ", pa: 0x%08" _PRIxpa "\n", __func__,  va, pa);
   3116 #endif
   3117             ptegidx = va_to_pteg(pmap_kernel(), va);
   3118             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3119             i = pmap_pte_insert(ptegidx, &pte);
   3120         }
   3121     }
   3122 
   3123     TLBSYNC();
   3124     SYNC();
   3125     return (0);
   3126 }
   3127 #endif /* PMAP_OEA64_BRIDGE */
   3128 
   3129 /*
   3130  * This is not part of the defined PMAP interface and is specific to the
   3131  * PowerPC architecture.  This is called during initppc, before the system
   3132  * is really initialized.
   3133  */
   3134 void
   3135 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3136 {
   3137 	struct mem_region *mp, tmp;
   3138 	paddr_t s, e;
   3139 	psize_t size;
   3140 	int i, j;
   3141 
   3142 	/*
   3143 	 * Get memory.
   3144 	 */
   3145 	mem_regions(&mem, &avail);
   3146 #if defined(DEBUG)
   3147 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3148 		printf("pmap_bootstrap: memory configuration:\n");
   3149 		for (mp = mem; mp->size; mp++) {
   3150 			printf("pmap_bootstrap: mem start 0x%" _PRIxpa " size 0x%" _PRIxpa "\n",
   3151 				mp->start, mp->size);
   3152 		}
   3153 		for (mp = avail; mp->size; mp++) {
   3154 			printf("pmap_bootstrap: avail start 0x%" _PRIxpa " size 0x%" _PRIxpa "\n",
   3155 				mp->start, mp->size);
   3156 		}
   3157 	}
   3158 #endif
   3159 
   3160 	/*
   3161 	 * Find out how much physical memory we have and in how many chunks.
   3162 	 */
   3163 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3164 		if (mp->start >= pmap_memlimit)
   3165 			continue;
   3166 		if (mp->start + mp->size > pmap_memlimit) {
   3167 			size = pmap_memlimit - mp->start;
   3168 			physmem += btoc(size);
   3169 		} else {
   3170 			physmem += btoc(mp->size);
   3171 		}
   3172 		mem_cnt++;
   3173 	}
   3174 
   3175 	/*
   3176 	 * Count the number of available entries.
   3177 	 */
   3178 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3179 		avail_cnt++;
   3180 
   3181 	/*
   3182 	 * Page align all regions.
   3183 	 */
   3184 	kernelstart = trunc_page(kernelstart);
   3185 	kernelend = round_page(kernelend);
   3186 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3187 		s = round_page(mp->start);
   3188 		mp->size -= (s - mp->start);
   3189 		mp->size = trunc_page(mp->size);
   3190 		mp->start = s;
   3191 		e = mp->start + mp->size;
   3192 
   3193 		DPRINTFN(BOOT,
   3194 		    ("pmap_bootstrap: b-avail[%d] start 0x%" _PRIxpa " size 0x%" _PRIxpa "\n",
   3195 		    i, mp->start, mp->size));
   3196 
   3197 		/*
   3198 		 * Don't allow the end to run beyond our artificial limit
   3199 		 */
   3200 		if (e > pmap_memlimit)
   3201 			e = pmap_memlimit;
   3202 
   3203 		/*
   3204 		 * Is this region empty or strange?  skip it.
   3205 		 */
   3206 		if (e <= s) {
   3207 			mp->start = 0;
   3208 			mp->size = 0;
   3209 			continue;
   3210 		}
   3211 
   3212 		/*
   3213 		 * Does this overlap the beginning of kernel?
   3214 		 *   Does extend past the end of the kernel?
   3215 		 */
   3216 		else if (s < kernelstart && e > kernelstart) {
   3217 			if (e > kernelend) {
   3218 				avail[avail_cnt].start = kernelend;
   3219 				avail[avail_cnt].size = e - kernelend;
   3220 				avail_cnt++;
   3221 			}
   3222 			mp->size = kernelstart - s;
   3223 		}
   3224 		/*
   3225 		 * Check whether this region overlaps the end of the kernel.
   3226 		 */
   3227 		else if (s < kernelend && e > kernelend) {
   3228 			mp->start = kernelend;
   3229 			mp->size = e - kernelend;
   3230 		}
   3231 		/*
   3232 		 * Look whether this regions is completely inside the kernel.
   3233 		 * Nuke it if it does.
   3234 		 */
   3235 		else if (s >= kernelstart && e <= kernelend) {
   3236 			mp->start = 0;
   3237 			mp->size = 0;
   3238 		}
   3239 		/*
   3240 		 * If the user imposed a memory limit, enforce it.
   3241 		 */
   3242 		else if (s >= pmap_memlimit) {
   3243 			mp->start = -PAGE_SIZE;	/* let's know why */
   3244 			mp->size = 0;
   3245 		}
   3246 		else {
   3247 			mp->start = s;
   3248 			mp->size = e - s;
   3249 		}
   3250 		DPRINTFN(BOOT,
   3251 		    ("pmap_bootstrap: a-avail[%d] start 0x%" _PRIxpa " size 0x%" _PRIxpa "\n",
   3252 		    i, mp->start, mp->size));
   3253 	}
   3254 
   3255 	/*
   3256 	 * Move (and uncount) all the null return to the end.
   3257 	 */
   3258 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3259 		if (mp->size == 0) {
   3260 			tmp = avail[i];
   3261 			avail[i] = avail[--avail_cnt];
   3262 			avail[avail_cnt] = avail[i];
   3263 		}
   3264 	}
   3265 
   3266 	/*
   3267 	 * (Bubble)sort them into asecnding order.
   3268 	 */
   3269 	for (i = 0; i < avail_cnt; i++) {
   3270 		for (j = i + 1; j < avail_cnt; j++) {
   3271 			if (avail[i].start > avail[j].start) {
   3272 				tmp = avail[i];
   3273 				avail[i] = avail[j];
   3274 				avail[j] = tmp;
   3275 			}
   3276 		}
   3277 	}
   3278 
   3279 	/*
   3280 	 * Make sure they don't overlap.
   3281 	 */
   3282 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3283 		if (mp[0].start + mp[0].size > mp[1].start) {
   3284 			mp[0].size = mp[1].start - mp[0].start;
   3285 		}
   3286 		DPRINTFN(BOOT,
   3287 		    ("pmap_bootstrap: avail[%d] start 0x%" _PRIxpa " size 0x%" _PRIxpa "\n",
   3288 		    i, mp->start, mp->size));
   3289 	}
   3290 	DPRINTFN(BOOT,
   3291 	    ("pmap_bootstrap: avail[%d] start 0x%" _PRIxpa " size 0x%" _PRIxpa "\n",
   3292 	    i, mp->start, mp->size));
   3293 
   3294 #ifdef	PTEGCOUNT
   3295 	pmap_pteg_cnt = PTEGCOUNT;
   3296 #else /* PTEGCOUNT */
   3297 
   3298 	pmap_pteg_cnt = 0x1000;
   3299 
   3300 	while (pmap_pteg_cnt < physmem)
   3301 		pmap_pteg_cnt <<= 1;
   3302 
   3303 	pmap_pteg_cnt >>= 1;
   3304 #endif /* PTEGCOUNT */
   3305 
   3306 #ifdef DEBUG
   3307 	DPRINTFN(BOOT,
   3308 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3309 #endif
   3310 
   3311 	/*
   3312 	 * Find suitably aligned memory for PTEG hash table.
   3313 	 */
   3314 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3315 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3316 
   3317 #ifdef DEBUG
   3318 	DPRINTFN(BOOT,
   3319 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3320 #endif
   3321 
   3322 
   3323 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3324 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3325 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %" _PRIxpa ") > 256MB",
   3326 		    pmap_pteg_table, size);
   3327 #endif
   3328 
   3329 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3330 		pmap_pteg_cnt * sizeof(struct pteg));
   3331 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3332 
   3333 	/*
   3334 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3335 	 * with pages.  So we just steal them before giving them to UVM.
   3336 	 */
   3337 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3338 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3339 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3340 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3341 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %" _PRIxpa ") > 256MB",
   3342 		    pmap_pvo_table, size);
   3343 #endif
   3344 
   3345 	for (i = 0; i < pmap_pteg_cnt; i++)
   3346 		TAILQ_INIT(&pmap_pvo_table[i]);
   3347 
   3348 #ifndef MSGBUFADDR
   3349 	/*
   3350 	 * Allocate msgbuf in high memory.
   3351 	 */
   3352 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3353 #endif
   3354 
   3355 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3356 		paddr_t pfstart = atop(mp->start);
   3357 		paddr_t pfend = atop(mp->start + mp->size);
   3358 		if (mp->size == 0)
   3359 			continue;
   3360 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3361 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3362 				VM_FREELIST_FIRST256);
   3363 		} else if (mp->start >= SEGMENT_LENGTH) {
   3364 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3365 				VM_FREELIST_DEFAULT);
   3366 		} else {
   3367 			pfend = atop(SEGMENT_LENGTH);
   3368 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3369 				VM_FREELIST_FIRST256);
   3370 			pfstart = atop(SEGMENT_LENGTH);
   3371 			pfend = atop(mp->start + mp->size);
   3372 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3373 				VM_FREELIST_DEFAULT);
   3374 		}
   3375 	}
   3376 
   3377 	/*
   3378 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3379 	 */
   3380 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3381 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3382 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3383 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3384 	pmap_vsid_bitmap[0] |= 1;
   3385 
   3386 	/*
   3387 	 * Initialize kernel pmap and hardware.
   3388 	 */
   3389 
   3390 /* PMAP_OEA64_BRIDGE does support these instructions */
   3391 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3392 	for (i = 0; i < 16; i++) {
   3393  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3394 		__asm volatile ("mtsrin %0,%1"
   3395  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3396 	}
   3397 
   3398 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3399 	__asm volatile ("mtsr %0,%1"
   3400 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3401 #ifdef KERNEL2_SR
   3402 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3403 	__asm volatile ("mtsr %0,%1"
   3404 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3405 #endif
   3406 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3407 #if defined (PMAP_OEA)
   3408 	for (i = 0; i < 16; i++) {
   3409 		if (iosrtable[i] & SR601_T) {
   3410 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3411 			__asm volatile ("mtsrin %0,%1"
   3412 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3413 		}
   3414 	}
   3415 	__asm volatile ("sync; mtsdr1 %0; isync"
   3416 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3417 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3418  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3419  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3420 #endif
   3421 	tlbia();
   3422 
   3423 #ifdef ALTIVEC
   3424 	pmap_use_altivec = cpu_altivec;
   3425 #endif
   3426 
   3427 #ifdef DEBUG
   3428 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3429 		u_int cnt;
   3430 		int bank;
   3431 		char pbuf[9];
   3432 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3433 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3434 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3435 			    bank,
   3436 			    ptoa(vm_physmem[bank].avail_start),
   3437 			    ptoa(vm_physmem[bank].avail_end),
   3438 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3439 		}
   3440 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3441 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3442 		    pbuf, cnt);
   3443 	}
   3444 #endif
   3445 
   3446 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3447 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3448 	    &pmap_pool_uallocator, IPL_NONE);
   3449 
   3450 	pool_setlowat(&pmap_upvo_pool, 252);
   3451 
   3452 	pool_init(&pmap_pool, sizeof(struct pmap),
   3453 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3454 	    IPL_NONE);
   3455 
   3456 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3457 	{
   3458 		struct pmap *pm = pmap_kernel();
   3459 #if 0
   3460 		extern int etext[], kernel_text[];
   3461 		vaddr_t va, va_etext = (paddr_t) etext;
   3462 #endif
   3463 		paddr_t pa, pa_end;
   3464 		register_t sr;
   3465 		struct pte pt;
   3466 		unsigned int ptegidx;
   3467 		int bank;
   3468 
   3469 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3470 		pm->pm_sr[0] = sr;
   3471 
   3472 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3473 			pa_end = ptoa(vm_physmem[bank].avail_end);
   3474 			pa = ptoa(vm_physmem[bank].avail_start);
   3475 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3476 				ptegidx = va_to_pteg(pm, pa);
   3477 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3478 				pmap_pte_insert(ptegidx, &pt);
   3479 			}
   3480 		}
   3481 
   3482 #if 0
   3483 		va = (vaddr_t) kernel_text;
   3484 
   3485 		for (pa = kernelstart; va < va_etext;
   3486 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3487 			ptegidx = va_to_pteg(pm, va);
   3488 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3489 			pmap_pte_insert(ptegidx, &pt);
   3490 		}
   3491 
   3492 		for (; pa < kernelend;
   3493 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3494 			ptegidx = va_to_pteg(pm, va);
   3495 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3496 			pmap_pte_insert(ptegidx, &pt);
   3497 		}
   3498 
   3499 		for (va = 0, pa = 0; va < 0x3000;
   3500 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3501 			ptegidx = va_to_pteg(pm, va);
   3502 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3503 			pmap_pte_insert(ptegidx, &pt);
   3504 		}
   3505 #endif
   3506 
   3507 		__asm volatile ("mtsrin %0,%1"
   3508  			      :: "r"(sr), "r"(kernelstart));
   3509 	}
   3510 #endif
   3511 }
   3512