Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.54
      1 /*	$NetBSD: pmap.c,v 1.54 2008/02/05 22:15:30 mlelstv Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *        This product includes software developed by the NetBSD
     23  *        Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*
     42  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     43  * Copyright (C) 1995, 1996 TooLs GmbH.
     44  * All rights reserved.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. All advertising materials mentioning features or use of this software
     55  *    must display the following acknowledgement:
     56  *	This product includes software developed by TooLs GmbH.
     57  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     58  *    derived from this software without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     61  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     62  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     64  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     65  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     66  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     67  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     68  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     69  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.54 2008/02/05 22:15:30 mlelstv Exp $");
     74 
     75 #define	PMAP_NOOPNAMES
     76 
     77 #include "opt_ppcarch.h"
     78 #include "opt_altivec.h"
     79 #include "opt_pmap.h"
     80 #include <sys/param.h>
     81 #include <sys/malloc.h>
     82 #include <sys/proc.h>
     83 #include <sys/user.h>
     84 #include <sys/pool.h>
     85 #include <sys/queue.h>
     86 #include <sys/device.h>		/* for evcnt */
     87 #include <sys/systm.h>
     88 #include <sys/atomic.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/pcb.h>
     93 #include <machine/powerpc.h>
     94 #include <powerpc/spr.h>
     95 #include <powerpc/oea/sr_601.h>
     96 #include <powerpc/bat.h>
     97 #include <powerpc/stdarg.h>
     98 
     99 #ifdef ALTIVEC
    100 int pmap_use_altivec;
    101 #endif
    102 
    103 volatile struct pteg *pmap_pteg_table;
    104 unsigned int pmap_pteg_cnt;
    105 unsigned int pmap_pteg_mask;
    106 #ifdef PMAP_MEMLIMIT
    107 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    108 #else
    109 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    110 #endif
    111 
    112 struct pmap kernel_pmap_;
    113 unsigned int pmap_pages_stolen;
    114 u_long pmap_pte_valid;
    115 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    116 u_long pmap_pvo_enter_depth;
    117 u_long pmap_pvo_remove_depth;
    118 #endif
    119 
    120 int physmem;
    121 #ifndef MSGBUFADDR
    122 extern paddr_t msgbuf_paddr;
    123 #endif
    124 
    125 static struct mem_region *mem, *avail;
    126 static u_int mem_cnt, avail_cnt;
    127 
    128 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    129 # define	PMAP_OEA 1
    130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
    131 #  define	PMAPNAME(name)	pmap_##name
    132 # endif
    133 #endif
    134 
    135 #if defined(PMAP_OEA64)
    136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
    137 #  define	PMAPNAME(name)	pmap_##name
    138 # endif
    139 #endif
    140 
    141 #if defined(PMAP_OEA64_BRIDGE)
    142 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
    143 #  define	PMAPNAME(name)	pmap_##name
    144 # endif
    145 #endif
    146 
    147 #if defined(PMAP_OEA)
    148 #define	_PRIxpte	"lx"
    149 #else
    150 #define	_PRIxpte	PRIx64
    151 #endif
    152 #define	_PRIxpa		"lx"
    153 #define	_PRIxva		"lx"
    154 #define	_PRIsr  	"lx"
    155 
    156 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
    157 #if defined(PMAP_OEA)
    158 #define	PMAPNAME(name)	pmap32_##name
    159 #elif defined(PMAP_OEA64)
    160 #define	PMAPNAME(name)	pmap64_##name
    161 #elif defined(PMAP_OEA64_BRIDGE)
    162 #define	PMAPNAME(name)	pmap64bridge_##name
    163 #else
    164 #error unknown variant for pmap
    165 #endif
    166 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
    167 
    168 #if defined(PMAPNAME)
    169 #define	STATIC			static
    170 #define pmap_pte_spill		PMAPNAME(pte_spill)
    171 #define pmap_real_memory	PMAPNAME(real_memory)
    172 #define pmap_init		PMAPNAME(init)
    173 #define pmap_virtual_space	PMAPNAME(virtual_space)
    174 #define pmap_create		PMAPNAME(create)
    175 #define pmap_reference		PMAPNAME(reference)
    176 #define pmap_destroy		PMAPNAME(destroy)
    177 #define pmap_copy		PMAPNAME(copy)
    178 #define pmap_update		PMAPNAME(update)
    179 #define pmap_collect		PMAPNAME(collect)
    180 #define pmap_enter		PMAPNAME(enter)
    181 #define pmap_remove		PMAPNAME(remove)
    182 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    183 #define pmap_kremove		PMAPNAME(kremove)
    184 #define pmap_extract		PMAPNAME(extract)
    185 #define pmap_protect		PMAPNAME(protect)
    186 #define pmap_unwire		PMAPNAME(unwire)
    187 #define pmap_page_protect	PMAPNAME(page_protect)
    188 #define pmap_query_bit		PMAPNAME(query_bit)
    189 #define pmap_clear_bit		PMAPNAME(clear_bit)
    190 
    191 #define pmap_activate		PMAPNAME(activate)
    192 #define pmap_deactivate		PMAPNAME(deactivate)
    193 
    194 #define pmap_pinit		PMAPNAME(pinit)
    195 #define pmap_procwr		PMAPNAME(procwr)
    196 
    197 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    198 #define pmap_pte_print		PMAPNAME(pte_print)
    199 #define pmap_pteg_check		PMAPNAME(pteg_check)
    200 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    201 #define pmap_print_pte		PMAPNAME(print_pte)
    202 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    203 #endif
    204 #if defined(DEBUG) || defined(PMAPCHECK)
    205 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    206 #endif
    207 #define pmap_steal_memory	PMAPNAME(steal_memory)
    208 #define pmap_bootstrap		PMAPNAME(bootstrap)
    209 #else
    210 #define	STATIC			/* nothing */
    211 #endif /* PMAPNAME */
    212 
    213 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    214 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    215 STATIC void pmap_init(void);
    216 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    217 STATIC pmap_t pmap_create(void);
    218 STATIC void pmap_reference(pmap_t);
    219 STATIC void pmap_destroy(pmap_t);
    220 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    221 STATIC void pmap_update(pmap_t);
    222 STATIC void pmap_collect(pmap_t);
    223 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
    224 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    225 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
    226 STATIC void pmap_kremove(vaddr_t, vsize_t);
    227 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    228 
    229 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    230 STATIC void pmap_unwire(pmap_t, vaddr_t);
    231 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    232 STATIC bool pmap_query_bit(struct vm_page *, int);
    233 STATIC bool pmap_clear_bit(struct vm_page *, int);
    234 
    235 STATIC void pmap_activate(struct lwp *);
    236 STATIC void pmap_deactivate(struct lwp *);
    237 
    238 STATIC void pmap_pinit(pmap_t pm);
    239 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    240 
    241 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    242 STATIC void pmap_pte_print(volatile struct pte *);
    243 STATIC void pmap_pteg_check(void);
    244 STATIC void pmap_print_mmuregs(void);
    245 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    246 STATIC void pmap_pteg_dist(void);
    247 #endif
    248 #if defined(DEBUG) || defined(PMAPCHECK)
    249 STATIC void pmap_pvo_verify(void);
    250 #endif
    251 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    252 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    253 
    254 #ifdef PMAPNAME
    255 const struct pmap_ops PMAPNAME(ops) = {
    256 	.pmapop_pte_spill = pmap_pte_spill,
    257 	.pmapop_real_memory = pmap_real_memory,
    258 	.pmapop_init = pmap_init,
    259 	.pmapop_virtual_space = pmap_virtual_space,
    260 	.pmapop_create = pmap_create,
    261 	.pmapop_reference = pmap_reference,
    262 	.pmapop_destroy = pmap_destroy,
    263 	.pmapop_copy = pmap_copy,
    264 	.pmapop_update = pmap_update,
    265 	.pmapop_collect = pmap_collect,
    266 	.pmapop_enter = pmap_enter,
    267 	.pmapop_remove = pmap_remove,
    268 	.pmapop_kenter_pa = pmap_kenter_pa,
    269 	.pmapop_kremove = pmap_kremove,
    270 	.pmapop_extract = pmap_extract,
    271 	.pmapop_protect = pmap_protect,
    272 	.pmapop_unwire = pmap_unwire,
    273 	.pmapop_page_protect = pmap_page_protect,
    274 	.pmapop_query_bit = pmap_query_bit,
    275 	.pmapop_clear_bit = pmap_clear_bit,
    276 	.pmapop_activate = pmap_activate,
    277 	.pmapop_deactivate = pmap_deactivate,
    278 	.pmapop_pinit = pmap_pinit,
    279 	.pmapop_procwr = pmap_procwr,
    280 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    281 	.pmapop_pte_print = pmap_pte_print,
    282 	.pmapop_pteg_check = pmap_pteg_check,
    283 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    284 	.pmapop_print_pte = pmap_print_pte,
    285 	.pmapop_pteg_dist = pmap_pteg_dist,
    286 #else
    287 	.pmapop_pte_print = NULL,
    288 	.pmapop_pteg_check = NULL,
    289 	.pmapop_print_mmuregs = NULL,
    290 	.pmapop_print_pte = NULL,
    291 	.pmapop_pteg_dist = NULL,
    292 #endif
    293 #if defined(DEBUG) || defined(PMAPCHECK)
    294 	.pmapop_pvo_verify = pmap_pvo_verify,
    295 #else
    296 	.pmapop_pvo_verify = NULL,
    297 #endif
    298 	.pmapop_steal_memory = pmap_steal_memory,
    299 	.pmapop_bootstrap = pmap_bootstrap,
    300 };
    301 #endif /* !PMAPNAME */
    302 
    303 /*
    304  * The following structure is aligned to 32 bytes
    305  */
    306 struct pvo_entry {
    307 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    308 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    309 	struct pte pvo_pte;			/* Prebuilt PTE */
    310 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    311 	vaddr_t pvo_vaddr;			/* VA of entry */
    312 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    313 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    314 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    315 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    316 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    317 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    318 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    319 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    320 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    321 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    322 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    323 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    324 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    325 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    326 #define	PVO_REMOVE		6		/* PVO has been removed */
    327 #define	PVO_WHERE_MASK		15
    328 #define	PVO_WHERE_SHFT		8
    329 } __attribute__ ((aligned (32)));
    330 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    331 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    332 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    333 #define	PVO_PTEGIDX_CLR(pvo)	\
    334 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    335 #define	PVO_PTEGIDX_SET(pvo,i)	\
    336 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    337 #define	PVO_WHERE(pvo,w)	\
    338 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    339 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    340 
    341 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    342 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    343 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    344 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    345 
    346 struct pool pmap_pool;		/* pool for pmap structures */
    347 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    348 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    349 
    350 /*
    351  * We keep a cache of unmanaged pages to be used for pvo entries for
    352  * unmanaged pages.
    353  */
    354 struct pvo_page {
    355 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    356 };
    357 SIMPLEQ_HEAD(pvop_head, pvo_page);
    358 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    359 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    360 u_long pmap_upvop_free;
    361 u_long pmap_upvop_maxfree;
    362 u_long pmap_mpvop_free;
    363 u_long pmap_mpvop_maxfree;
    364 
    365 static void *pmap_pool_ualloc(struct pool *, int);
    366 static void *pmap_pool_malloc(struct pool *, int);
    367 
    368 static void pmap_pool_ufree(struct pool *, void *);
    369 static void pmap_pool_mfree(struct pool *, void *);
    370 
    371 static struct pool_allocator pmap_pool_mallocator = {
    372 	.pa_alloc = pmap_pool_malloc,
    373 	.pa_free = pmap_pool_mfree,
    374 	.pa_pagesz = 0,
    375 };
    376 
    377 static struct pool_allocator pmap_pool_uallocator = {
    378 	.pa_alloc = pmap_pool_ualloc,
    379 	.pa_free = pmap_pool_ufree,
    380 	.pa_pagesz = 0,
    381 };
    382 
    383 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    384 void pmap_pte_print(volatile struct pte *);
    385 void pmap_pteg_check(void);
    386 void pmap_pteg_dist(void);
    387 void pmap_print_pte(pmap_t, vaddr_t);
    388 void pmap_print_mmuregs(void);
    389 #endif
    390 
    391 #if defined(DEBUG) || defined(PMAPCHECK)
    392 #ifdef PMAPCHECK
    393 int pmapcheck = 1;
    394 #else
    395 int pmapcheck = 0;
    396 #endif
    397 void pmap_pvo_verify(void);
    398 static void pmap_pvo_check(const struct pvo_entry *);
    399 #define	PMAP_PVO_CHECK(pvo)	 		\
    400 	do {					\
    401 		if (pmapcheck)			\
    402 			pmap_pvo_check(pvo);	\
    403 	} while (0)
    404 #else
    405 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    406 #endif
    407 static int pmap_pte_insert(int, struct pte *);
    408 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    409 	vaddr_t, paddr_t, register_t, int);
    410 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    411 static void pmap_pvo_free(struct pvo_entry *);
    412 static void pmap_pvo_free_list(struct pvo_head *);
    413 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    414 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    415 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    416 static void pvo_set_exec(struct pvo_entry *);
    417 static void pvo_clear_exec(struct pvo_entry *);
    418 
    419 static void tlbia(void);
    420 
    421 static void pmap_release(pmap_t);
    422 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    423 
    424 static uint32_t pmap_pvo_reclaim_nextidx;
    425 #ifdef DEBUG
    426 static int pmap_pvo_reclaim_debugctr;
    427 #endif
    428 
    429 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    430 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    431 
    432 static int pmap_initialized;
    433 
    434 #if defined(DEBUG) || defined(PMAPDEBUG)
    435 #define	PMAPDEBUG_BOOT		0x0001
    436 #define	PMAPDEBUG_PTE		0x0002
    437 #define	PMAPDEBUG_EXEC		0x0008
    438 #define	PMAPDEBUG_PVOENTER	0x0010
    439 #define	PMAPDEBUG_PVOREMOVE	0x0020
    440 #define	PMAPDEBUG_ACTIVATE	0x0100
    441 #define	PMAPDEBUG_CREATE	0x0200
    442 #define	PMAPDEBUG_ENTER		0x1000
    443 #define	PMAPDEBUG_KENTER	0x2000
    444 #define	PMAPDEBUG_KREMOVE	0x4000
    445 #define	PMAPDEBUG_REMOVE	0x8000
    446 
    447 unsigned int pmapdebug = 0;
    448 
    449 # define DPRINTF(x)		printf x
    450 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    451 #else
    452 # define DPRINTF(x)
    453 # define DPRINTFN(n, x)
    454 #endif
    455 
    456 
    457 #ifdef PMAPCOUNTERS
    458 /*
    459  * From pmap_subr.c
    460  */
    461 extern struct evcnt pmap_evcnt_mappings;
    462 extern struct evcnt pmap_evcnt_unmappings;
    463 
    464 extern struct evcnt pmap_evcnt_kernel_mappings;
    465 extern struct evcnt pmap_evcnt_kernel_unmappings;
    466 
    467 extern struct evcnt pmap_evcnt_mappings_replaced;
    468 
    469 extern struct evcnt pmap_evcnt_exec_mappings;
    470 extern struct evcnt pmap_evcnt_exec_cached;
    471 
    472 extern struct evcnt pmap_evcnt_exec_synced;
    473 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    474 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    475 
    476 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    477 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    478 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    479 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    480 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    481 
    482 extern struct evcnt pmap_evcnt_updates;
    483 extern struct evcnt pmap_evcnt_collects;
    484 extern struct evcnt pmap_evcnt_copies;
    485 
    486 extern struct evcnt pmap_evcnt_ptes_spilled;
    487 extern struct evcnt pmap_evcnt_ptes_unspilled;
    488 extern struct evcnt pmap_evcnt_ptes_evicted;
    489 
    490 extern struct evcnt pmap_evcnt_ptes_primary[8];
    491 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    492 extern struct evcnt pmap_evcnt_ptes_removed;
    493 extern struct evcnt pmap_evcnt_ptes_changed;
    494 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    495 extern struct evcnt pmap_evcnt_pvos_failed;
    496 
    497 extern struct evcnt pmap_evcnt_zeroed_pages;
    498 extern struct evcnt pmap_evcnt_copied_pages;
    499 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    500 
    501 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    502 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    503 #else
    504 #define	PMAPCOUNT(ev)	((void) 0)
    505 #define	PMAPCOUNT2(ev)	((void) 0)
    506 #endif
    507 
    508 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    509 
    510 /* XXXSL: this needs to be moved to assembler */
    511 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    512 
    513 #define	TLBSYNC()	__asm volatile("tlbsync")
    514 #define	SYNC()		__asm volatile("sync")
    515 #define	EIEIO()		__asm volatile("eieio")
    516 #define	MFMSR()		mfmsr()
    517 #define	MTMSR(psl)	mtmsr(psl)
    518 #define	MFPVR()		mfpvr()
    519 #define	MFSRIN(va)	mfsrin(va)
    520 #define	MFTB()		mfrtcltbl()
    521 
    522 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    523 static inline register_t
    524 mfsrin(vaddr_t va)
    525 {
    526 	register_t sr;
    527 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    528 	return sr;
    529 }
    530 #endif	/* PMAP_OEA*/
    531 
    532 #if defined (PMAP_OEA64_BRIDGE)
    533 extern void mfmsr64 (register64_t *result);
    534 #endif /* PMAP_OEA64_BRIDGE */
    535 
    536 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    537 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    538 
    539 static inline register_t
    540 pmap_interrupts_off(void)
    541 {
    542 	register_t msr = MFMSR();
    543 	if (msr & PSL_EE)
    544 		MTMSR(msr & ~PSL_EE);
    545 	return msr;
    546 }
    547 
    548 static void
    549 pmap_interrupts_restore(register_t msr)
    550 {
    551 	if (msr & PSL_EE)
    552 		MTMSR(msr);
    553 }
    554 
    555 static inline u_int32_t
    556 mfrtcltbl(void)
    557 {
    558 
    559 	if ((MFPVR() >> 16) == MPC601)
    560 		return (mfrtcl() >> 7);
    561 	else
    562 		return (mftbl());
    563 }
    564 
    565 /*
    566  * These small routines may have to be replaced,
    567  * if/when we support processors other that the 604.
    568  */
    569 
    570 void
    571 tlbia(void)
    572 {
    573 	char *i;
    574 
    575 	SYNC();
    576 #if defined(PMAP_OEA)
    577 	/*
    578 	 * Why not use "tlbia"?  Because not all processors implement it.
    579 	 *
    580 	 * This needs to be a per-CPU callback to do the appropriate thing
    581 	 * for the CPU. XXX
    582 	 */
    583 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    584 		TLBIE(i);
    585 		EIEIO();
    586 		SYNC();
    587 	}
    588 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    589 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    590 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    591 		TLBIEL(i);
    592 		EIEIO();
    593 		SYNC();
    594 	}
    595 #endif
    596 	TLBSYNC();
    597 	SYNC();
    598 }
    599 
    600 static inline register_t
    601 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    602 {
    603 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    604 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    605 #else /* PMAP_OEA64 */
    606 #if 0
    607 	const struct ste *ste;
    608 	register_t hash;
    609 	int i;
    610 
    611 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    612 
    613 	/*
    614 	 * Try the primary group first
    615 	 */
    616 	ste = pm->pm_stes[hash].stes;
    617 	for (i = 0; i < 8; i++, ste++) {
    618 		if (ste->ste_hi & STE_V) &&
    619 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    620 			return ste;
    621 	}
    622 
    623 	/*
    624 	 * Then the secondary group.
    625 	 */
    626 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    627 	for (i = 0; i < 8; i++, ste++) {
    628 		if (ste->ste_hi & STE_V) &&
    629 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    630 			return addr;
    631 	}
    632 
    633 	return NULL;
    634 #else
    635 	/*
    636 	 * Rather than searching the STE groups for the VSID, we know
    637 	 * how we generate that from the ESID and so do that.
    638 	 */
    639 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    640 #endif
    641 #endif /* PMAP_OEA */
    642 }
    643 
    644 static inline register_t
    645 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    646 {
    647 	register_t hash;
    648 
    649 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    650 	return hash & pmap_pteg_mask;
    651 }
    652 
    653 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    654 /*
    655  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    656  * The only bit of magic is that the top 4 bits of the address doesn't
    657  * technically exist in the PTE.  But we know we reserved 4 bits of the
    658  * VSID for it so that's how we get it.
    659  */
    660 static vaddr_t
    661 pmap_pte_to_va(volatile const struct pte *pt)
    662 {
    663 	vaddr_t va;
    664 	uintptr_t ptaddr = (uintptr_t) pt;
    665 
    666 	if (pt->pte_hi & PTE_HID)
    667 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    668 
    669 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    670 #if defined(PMAP_OEA)
    671 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    672 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    673 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    674 #endif
    675 	va <<= ADDR_PIDX_SHFT;
    676 
    677 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    678 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    679 
    680 #if defined(PMAP_OEA64)
    681 	/* PPC63 Bits 0-35 */
    682 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    683 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    684 	/* PPC Bits 0-3 */
    685 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    686 #endif
    687 
    688 	return va;
    689 }
    690 #endif
    691 
    692 static inline struct pvo_head *
    693 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    694 {
    695 	struct vm_page *pg;
    696 
    697 	pg = PHYS_TO_VM_PAGE(pa);
    698 	if (pg_p != NULL)
    699 		*pg_p = pg;
    700 	if (pg == NULL)
    701 		return &pmap_pvo_unmanaged;
    702 	return &pg->mdpage.mdpg_pvoh;
    703 }
    704 
    705 static inline struct pvo_head *
    706 vm_page_to_pvoh(struct vm_page *pg)
    707 {
    708 	return &pg->mdpage.mdpg_pvoh;
    709 }
    710 
    711 
    712 static inline void
    713 pmap_attr_clear(struct vm_page *pg, int ptebit)
    714 {
    715 	pg->mdpage.mdpg_attrs &= ~ptebit;
    716 }
    717 
    718 static inline int
    719 pmap_attr_fetch(struct vm_page *pg)
    720 {
    721 	return pg->mdpage.mdpg_attrs;
    722 }
    723 
    724 static inline void
    725 pmap_attr_save(struct vm_page *pg, int ptebit)
    726 {
    727 	pg->mdpage.mdpg_attrs |= ptebit;
    728 }
    729 
    730 static inline int
    731 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    732 {
    733 	if (pt->pte_hi == pvo_pt->pte_hi
    734 #if 0
    735 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    736 	        ~(PTE_REF|PTE_CHG)) == 0
    737 #endif
    738 	    )
    739 		return 1;
    740 	return 0;
    741 }
    742 
    743 static inline void
    744 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    745 {
    746 	/*
    747 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    748 	 * only gets set when the real pte is set in memory.
    749 	 *
    750 	 * Note: Don't set the valid bit for correct operation of tlb update.
    751 	 */
    752 #if defined(PMAP_OEA)
    753 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    754 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    755 	pt->pte_lo = pte_lo;
    756 #elif defined (PMAP_OEA64_BRIDGE)
    757 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    758 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    759 	pt->pte_lo = (u_int64_t) pte_lo;
    760 #elif defined (PMAP_OEA64)
    761 #error PMAP_OEA64 not supported
    762 #endif /* PMAP_OEA */
    763 }
    764 
    765 static inline void
    766 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    767 {
    768 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    769 }
    770 
    771 static inline void
    772 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    773 {
    774 	/*
    775 	 * As shown in Section 7.6.3.2.3
    776 	 */
    777 	pt->pte_lo &= ~ptebit;
    778 	TLBIE(va);
    779 	SYNC();
    780 	EIEIO();
    781 	TLBSYNC();
    782 	SYNC();
    783 }
    784 
    785 static inline void
    786 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    787 {
    788 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    789 	if (pvo_pt->pte_hi & PTE_VALID)
    790 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    791 #endif
    792 	pvo_pt->pte_hi |= PTE_VALID;
    793 
    794 	/*
    795 	 * Update the PTE as defined in section 7.6.3.1
    796 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    797 	 * have been saved so this routine can restore them (if desired).
    798 	 */
    799 	pt->pte_lo = pvo_pt->pte_lo;
    800 	EIEIO();
    801 	pt->pte_hi = pvo_pt->pte_hi;
    802 	TLBSYNC();
    803 	SYNC();
    804 	pmap_pte_valid++;
    805 }
    806 
    807 static inline void
    808 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    809 {
    810 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    811 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    812 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    813 	if ((pt->pte_hi & PTE_VALID) == 0)
    814 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    815 #endif
    816 
    817 	pvo_pt->pte_hi &= ~PTE_VALID;
    818 	/*
    819 	 * Force the ref & chg bits back into the PTEs.
    820 	 */
    821 	SYNC();
    822 	/*
    823 	 * Invalidate the pte ... (Section 7.6.3.3)
    824 	 */
    825 	pt->pte_hi &= ~PTE_VALID;
    826 	SYNC();
    827 	TLBIE(va);
    828 	SYNC();
    829 	EIEIO();
    830 	TLBSYNC();
    831 	SYNC();
    832 	/*
    833 	 * Save the ref & chg bits ...
    834 	 */
    835 	pmap_pte_synch(pt, pvo_pt);
    836 	pmap_pte_valid--;
    837 }
    838 
    839 static inline void
    840 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    841 {
    842 	/*
    843 	 * Invalidate the PTE
    844 	 */
    845 	pmap_pte_unset(pt, pvo_pt, va);
    846 	pmap_pte_set(pt, pvo_pt);
    847 }
    848 
    849 /*
    850  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    851  * (either primary or secondary location).
    852  *
    853  * Note: both the destination and source PTEs must not have PTE_VALID set.
    854  */
    855 
    856 static int
    857 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    858 {
    859 	volatile struct pte *pt;
    860 	int i;
    861 
    862 #if defined(DEBUG)
    863 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    864 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    865 #endif
    866 	/*
    867 	 * First try primary hash.
    868 	 */
    869 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    870 		if ((pt->pte_hi & PTE_VALID) == 0) {
    871 			pvo_pt->pte_hi &= ~PTE_HID;
    872 			pmap_pte_set(pt, pvo_pt);
    873 			return i;
    874 		}
    875 	}
    876 
    877 	/*
    878 	 * Now try secondary hash.
    879 	 */
    880 	ptegidx ^= pmap_pteg_mask;
    881 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    882 		if ((pt->pte_hi & PTE_VALID) == 0) {
    883 			pvo_pt->pte_hi |= PTE_HID;
    884 			pmap_pte_set(pt, pvo_pt);
    885 			return i;
    886 		}
    887 	}
    888 	return -1;
    889 }
    890 
    891 /*
    892  * Spill handler.
    893  *
    894  * Tries to spill a page table entry from the overflow area.
    895  * This runs in either real mode (if dealing with a exception spill)
    896  * or virtual mode when dealing with manually spilling one of the
    897  * kernel's pte entries.  In either case, interrupts are already
    898  * disabled.
    899  */
    900 
    901 int
    902 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    903 {
    904 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    905 	struct pvo_entry *pvo;
    906 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    907 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    908 	int ptegidx, i, j;
    909 	volatile struct pteg *pteg;
    910 	volatile struct pte *pt;
    911 
    912 	PMAP_LOCK();
    913 
    914 	ptegidx = va_to_pteg(pm, addr);
    915 
    916 	/*
    917 	 * Have to substitute some entry. Use the primary hash for this.
    918 	 * Use low bits of timebase as random generator.  Make sure we are
    919 	 * not picking a kernel pte for replacement.
    920 	 */
    921 	pteg = &pmap_pteg_table[ptegidx];
    922 	i = MFTB() & 7;
    923 	for (j = 0; j < 8; j++) {
    924 		pt = &pteg->pt[i];
    925 		if ((pt->pte_hi & PTE_VALID) == 0)
    926 			break;
    927 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    928 				< PHYSMAP_VSIDBITS)
    929 			break;
    930 		i = (i + 1) & 7;
    931 	}
    932 	KASSERT(j < 8);
    933 
    934 	source_pvo = NULL;
    935 	victim_pvo = NULL;
    936 	pvoh = &pmap_pvo_table[ptegidx];
    937 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    938 
    939 		/*
    940 		 * We need to find pvo entry for this address...
    941 		 */
    942 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    943 
    944 		/*
    945 		 * If we haven't found the source and we come to a PVO with
    946 		 * a valid PTE, then we know we can't find it because all
    947 		 * evicted PVOs always are first in the list.
    948 		 */
    949 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    950 			break;
    951 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    952 		    addr == PVO_VADDR(pvo)) {
    953 
    954 			/*
    955 			 * Now we have found the entry to be spilled into the
    956 			 * pteg.  Attempt to insert it into the page table.
    957 			 */
    958 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    959 			if (j >= 0) {
    960 				PVO_PTEGIDX_SET(pvo, j);
    961 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    962 				PVO_WHERE(pvo, SPILL_INSERT);
    963 				pvo->pvo_pmap->pm_evictions--;
    964 				PMAPCOUNT(ptes_spilled);
    965 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    966 				    ? pmap_evcnt_ptes_secondary
    967 				    : pmap_evcnt_ptes_primary)[j]);
    968 
    969 				/*
    970 				 * Since we keep the evicted entries at the
    971 				 * from of the PVO list, we need move this
    972 				 * (now resident) PVO after the evicted
    973 				 * entries.
    974 				 */
    975 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    976 
    977 				/*
    978 				 * If we don't have to move (either we were the
    979 				 * last entry or the next entry was valid),
    980 				 * don't change our position.  Otherwise
    981 				 * move ourselves to the tail of the queue.
    982 				 */
    983 				if (next_pvo != NULL &&
    984 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    985 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    986 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    987 				}
    988 				PMAP_UNLOCK();
    989 				return 1;
    990 			}
    991 			source_pvo = pvo;
    992 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    993 				return 0;
    994 			}
    995 			if (victim_pvo != NULL)
    996 				break;
    997 		}
    998 
    999 		/*
   1000 		 * We also need the pvo entry of the victim we are replacing
   1001 		 * so save the R & C bits of the PTE.
   1002 		 */
   1003 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1004 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1005 			vpvoh = pvoh;			/* *1* */
   1006 			victim_pvo = pvo;
   1007 			if (source_pvo != NULL)
   1008 				break;
   1009 		}
   1010 	}
   1011 
   1012 	if (source_pvo == NULL) {
   1013 		PMAPCOUNT(ptes_unspilled);
   1014 		PMAP_UNLOCK();
   1015 		return 0;
   1016 	}
   1017 
   1018 	if (victim_pvo == NULL) {
   1019 		if ((pt->pte_hi & PTE_HID) == 0)
   1020 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1021 			    "no pvo entry!", pt);
   1022 
   1023 		/*
   1024 		 * If this is a secondary PTE, we need to search
   1025 		 * its primary pvo bucket for the matching PVO.
   1026 		 */
   1027 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1028 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1029 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1030 
   1031 			/*
   1032 			 * We also need the pvo entry of the victim we are
   1033 			 * replacing so save the R & C bits of the PTE.
   1034 			 */
   1035 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1036 				victim_pvo = pvo;
   1037 				break;
   1038 			}
   1039 		}
   1040 		if (victim_pvo == NULL)
   1041 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1042 			    "no pvo entry!", pt);
   1043 	}
   1044 
   1045 	/*
   1046 	 * The victim should be not be a kernel PVO/PTE entry.
   1047 	 */
   1048 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1049 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1050 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1051 
   1052 	/*
   1053 	 * We are invalidating the TLB entry for the EA for the
   1054 	 * we are replacing even though its valid; If we don't
   1055 	 * we lose any ref/chg bit changes contained in the TLB
   1056 	 * entry.
   1057 	 */
   1058 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1059 
   1060 	/*
   1061 	 * To enforce the PVO list ordering constraint that all
   1062 	 * evicted entries should come before all valid entries,
   1063 	 * move the source PVO to the tail of its list and the
   1064 	 * victim PVO to the head of its list (which might not be
   1065 	 * the same list, if the victim was using the secondary hash).
   1066 	 */
   1067 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1068 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1069 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1070 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1071 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1072 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1073 	victim_pvo->pvo_pmap->pm_evictions++;
   1074 	source_pvo->pvo_pmap->pm_evictions--;
   1075 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1076 	PVO_WHERE(source_pvo, SPILL_SET);
   1077 
   1078 	PVO_PTEGIDX_CLR(victim_pvo);
   1079 	PVO_PTEGIDX_SET(source_pvo, i);
   1080 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1081 	PMAPCOUNT(ptes_spilled);
   1082 	PMAPCOUNT(ptes_evicted);
   1083 	PMAPCOUNT(ptes_removed);
   1084 
   1085 	PMAP_PVO_CHECK(victim_pvo);
   1086 	PMAP_PVO_CHECK(source_pvo);
   1087 
   1088 	PMAP_UNLOCK();
   1089 	return 1;
   1090 }
   1091 
   1092 /*
   1093  * Restrict given range to physical memory
   1094  */
   1095 void
   1096 pmap_real_memory(paddr_t *start, psize_t *size)
   1097 {
   1098 	struct mem_region *mp;
   1099 
   1100 	for (mp = mem; mp->size; mp++) {
   1101 		if (*start + *size > mp->start
   1102 		    && *start < mp->start + mp->size) {
   1103 			if (*start < mp->start) {
   1104 				*size -= mp->start - *start;
   1105 				*start = mp->start;
   1106 			}
   1107 			if (*start + *size > mp->start + mp->size)
   1108 				*size = mp->start + mp->size - *start;
   1109 			return;
   1110 		}
   1111 	}
   1112 	*size = 0;
   1113 }
   1114 
   1115 /*
   1116  * Initialize anything else for pmap handling.
   1117  * Called during vm_init().
   1118  */
   1119 void
   1120 pmap_init(void)
   1121 {
   1122 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1123 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1124 	    &pmap_pool_mallocator, IPL_NONE);
   1125 
   1126 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1127 
   1128 	pmap_initialized = 1;
   1129 
   1130 }
   1131 
   1132 /*
   1133  * How much virtual space does the kernel get?
   1134  */
   1135 void
   1136 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1137 {
   1138 	/*
   1139 	 * For now, reserve one segment (minus some overhead) for kernel
   1140 	 * virtual memory
   1141 	 */
   1142 	*start = VM_MIN_KERNEL_ADDRESS;
   1143 	*end = VM_MAX_KERNEL_ADDRESS;
   1144 }
   1145 
   1146 /*
   1147  * Allocate, initialize, and return a new physical map.
   1148  */
   1149 pmap_t
   1150 pmap_create(void)
   1151 {
   1152 	pmap_t pm;
   1153 
   1154 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1155 	memset((void *)pm, 0, sizeof *pm);
   1156 	pmap_pinit(pm);
   1157 
   1158 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1159 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1160 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1161 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1162 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1163 	    pm,
   1164 	    pm->pm_sr[0], pm->pm_sr[1],
   1165 	    pm->pm_sr[2], pm->pm_sr[3],
   1166 	    pm->pm_sr[4], pm->pm_sr[5],
   1167 	    pm->pm_sr[6], pm->pm_sr[7],
   1168 	    pm->pm_sr[8], pm->pm_sr[9],
   1169 	    pm->pm_sr[10], pm->pm_sr[11],
   1170 	    pm->pm_sr[12], pm->pm_sr[13],
   1171 	    pm->pm_sr[14], pm->pm_sr[15]));
   1172 	return pm;
   1173 }
   1174 
   1175 /*
   1176  * Initialize a preallocated and zeroed pmap structure.
   1177  */
   1178 void
   1179 pmap_pinit(pmap_t pm)
   1180 {
   1181 	register_t entropy = MFTB();
   1182 	register_t mask;
   1183 	int i;
   1184 
   1185 	/*
   1186 	 * Allocate some segment registers for this pmap.
   1187 	 */
   1188 	pm->pm_refs = 1;
   1189 	PMAP_LOCK();
   1190 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1191 		static register_t pmap_vsidcontext;
   1192 		register_t hash;
   1193 		unsigned int n;
   1194 
   1195 		/* Create a new value by multiplying by a prime adding in
   1196 		 * entropy from the timebase register.  This is to make the
   1197 		 * VSID more random so that the PT Hash function collides
   1198 		 * less often. (note that the prime causes gcc to do shifts
   1199 		 * instead of a multiply)
   1200 		 */
   1201 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1202 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1203 		if (hash == 0) {		/* 0 is special, avoid it */
   1204 			entropy += 0xbadf00d;
   1205 			continue;
   1206 		}
   1207 		n = hash >> 5;
   1208 		mask = 1L << (hash & (VSID_NBPW-1));
   1209 		hash = pmap_vsidcontext;
   1210 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1211 			/* anything free in this bucket? */
   1212 			if (~pmap_vsid_bitmap[n] == 0) {
   1213 				entropy = hash ^ (hash >> 16);
   1214 				continue;
   1215 			}
   1216 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1217 			mask = 1L << i;
   1218 			hash &= ~(VSID_NBPW-1);
   1219 			hash |= i;
   1220 		}
   1221 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1222 		pmap_vsid_bitmap[n] |= mask;
   1223 		pm->pm_vsid = hash;
   1224 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1225 		for (i = 0; i < 16; i++)
   1226 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1227 			    SR_NOEXEC;
   1228 #endif
   1229 		PMAP_UNLOCK();
   1230 		return;
   1231 	}
   1232 	PMAP_UNLOCK();
   1233 	panic("pmap_pinit: out of segments");
   1234 }
   1235 
   1236 /*
   1237  * Add a reference to the given pmap.
   1238  */
   1239 void
   1240 pmap_reference(pmap_t pm)
   1241 {
   1242 	atomic_inc_uint(&pm->pm_refs);
   1243 }
   1244 
   1245 /*
   1246  * Retire the given pmap from service.
   1247  * Should only be called if the map contains no valid mappings.
   1248  */
   1249 void
   1250 pmap_destroy(pmap_t pm)
   1251 {
   1252 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1253 		pmap_release(pm);
   1254 		pool_put(&pmap_pool, pm);
   1255 	}
   1256 }
   1257 
   1258 /*
   1259  * Release any resources held by the given physical map.
   1260  * Called when a pmap initialized by pmap_pinit is being released.
   1261  */
   1262 void
   1263 pmap_release(pmap_t pm)
   1264 {
   1265 	int idx, mask;
   1266 
   1267 	KASSERT(pm->pm_stats.resident_count == 0);
   1268 	KASSERT(pm->pm_stats.wired_count == 0);
   1269 
   1270 	PMAP_LOCK();
   1271 	if (pm->pm_sr[0] == 0)
   1272 		panic("pmap_release");
   1273 	idx = pm->pm_vsid & (NPMAPS-1);
   1274 	mask = 1 << (idx % VSID_NBPW);
   1275 	idx /= VSID_NBPW;
   1276 
   1277 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1278 	pmap_vsid_bitmap[idx] &= ~mask;
   1279 	PMAP_UNLOCK();
   1280 }
   1281 
   1282 /*
   1283  * Copy the range specified by src_addr/len
   1284  * from the source map to the range dst_addr/len
   1285  * in the destination map.
   1286  *
   1287  * This routine is only advisory and need not do anything.
   1288  */
   1289 void
   1290 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1291 	vsize_t len, vaddr_t src_addr)
   1292 {
   1293 	PMAPCOUNT(copies);
   1294 }
   1295 
   1296 /*
   1297  * Require that all active physical maps contain no
   1298  * incorrect entries NOW.
   1299  */
   1300 void
   1301 pmap_update(struct pmap *pmap)
   1302 {
   1303 	PMAPCOUNT(updates);
   1304 	TLBSYNC();
   1305 }
   1306 
   1307 /*
   1308  * Garbage collects the physical map system for
   1309  * pages which are no longer used.
   1310  * Success need not be guaranteed -- that is, there
   1311  * may well be pages which are not referenced, but
   1312  * others may be collected.
   1313  * Called by the pageout daemon when pages are scarce.
   1314  */
   1315 void
   1316 pmap_collect(pmap_t pm)
   1317 {
   1318 	PMAPCOUNT(collects);
   1319 }
   1320 
   1321 static inline int
   1322 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1323 {
   1324 	int pteidx;
   1325 	/*
   1326 	 * We can find the actual pte entry without searching by
   1327 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1328 	 * and by noticing the HID bit.
   1329 	 */
   1330 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1331 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1332 		pteidx ^= pmap_pteg_mask * 8;
   1333 	return pteidx;
   1334 }
   1335 
   1336 volatile struct pte *
   1337 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1338 {
   1339 	volatile struct pte *pt;
   1340 
   1341 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1342 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1343 		return NULL;
   1344 #endif
   1345 
   1346 	/*
   1347 	 * If we haven't been supplied the ptegidx, calculate it.
   1348 	 */
   1349 	if (pteidx == -1) {
   1350 		int ptegidx;
   1351 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1352 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1353 	}
   1354 
   1355 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1356 
   1357 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1358 	return pt;
   1359 #else
   1360 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1361 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1362 		    "pvo but no valid pte index", pvo);
   1363 	}
   1364 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1365 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1366 		    "pvo but no valid pte", pvo);
   1367 	}
   1368 
   1369 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1370 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1371 #if defined(DEBUG) || defined(PMAPCHECK)
   1372 			pmap_pte_print(pt);
   1373 #endif
   1374 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1375 			    "pmap_pteg_table %p but invalid in pvo",
   1376 			    pvo, pt);
   1377 		}
   1378 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1379 #if defined(DEBUG) || defined(PMAPCHECK)
   1380 			pmap_pte_print(pt);
   1381 #endif
   1382 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1383 			    "not match pte %p in pmap_pteg_table",
   1384 			    pvo, pt);
   1385 		}
   1386 		return pt;
   1387 	}
   1388 
   1389 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1390 #if defined(DEBUG) || defined(PMAPCHECK)
   1391 		pmap_pte_print(pt);
   1392 #endif
   1393 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1394 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1395 	}
   1396 	return NULL;
   1397 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1398 }
   1399 
   1400 struct pvo_entry *
   1401 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1402 {
   1403 	struct pvo_entry *pvo;
   1404 	int ptegidx;
   1405 
   1406 	va &= ~ADDR_POFF;
   1407 	ptegidx = va_to_pteg(pm, va);
   1408 
   1409 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1410 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1411 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1412 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1413 			    "list %#x (%p)", pvo, ptegidx,
   1414 			     &pmap_pvo_table[ptegidx]);
   1415 #endif
   1416 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1417 			if (pteidx_p)
   1418 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1419 			return pvo;
   1420 		}
   1421 	}
   1422 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1423 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1424 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1425 	return NULL;
   1426 }
   1427 
   1428 #if defined(DEBUG) || defined(PMAPCHECK)
   1429 void
   1430 pmap_pvo_check(const struct pvo_entry *pvo)
   1431 {
   1432 	struct pvo_head *pvo_head;
   1433 	struct pvo_entry *pvo0;
   1434 	volatile struct pte *pt;
   1435 	int failed = 0;
   1436 
   1437 	PMAP_LOCK();
   1438 
   1439 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1440 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1441 
   1442 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1443 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1444 		    pvo, pvo->pvo_pmap);
   1445 		failed = 1;
   1446 	}
   1447 
   1448 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1449 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1450 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1451 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1452 		failed = 1;
   1453 	}
   1454 
   1455 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1456 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1457 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1458 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1459 		failed = 1;
   1460 	}
   1461 
   1462 	if (PVO_MANAGED_P(pvo)) {
   1463 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1464 	} else {
   1465 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1466 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1467 			    "on kernel unmanaged list\n", pvo);
   1468 			failed = 1;
   1469 		}
   1470 		pvo_head = &pmap_pvo_kunmanaged;
   1471 	}
   1472 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1473 		if (pvo0 == pvo)
   1474 			break;
   1475 	}
   1476 	if (pvo0 == NULL) {
   1477 		printf("pmap_pvo_check: pvo %p: not present "
   1478 		    "on its vlist head %p\n", pvo, pvo_head);
   1479 		failed = 1;
   1480 	}
   1481 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1482 		printf("pmap_pvo_check: pvo %p: not present "
   1483 		    "on its olist head\n", pvo);
   1484 		failed = 1;
   1485 	}
   1486 	pt = pmap_pvo_to_pte(pvo, -1);
   1487 	if (pt == NULL) {
   1488 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1489 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1490 			    "no PTE\n", pvo);
   1491 			failed = 1;
   1492 		}
   1493 	} else {
   1494 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1495 		    (uintptr_t) pt >=
   1496 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1497 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1498 			    "pteg table\n", pvo, pt);
   1499 			failed = 1;
   1500 		}
   1501 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1502 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1503 			    "no PTE\n", pvo);
   1504 			failed = 1;
   1505 		}
   1506 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1507 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1508 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1509 			    pvo->pvo_pte.pte_hi,
   1510 			    pt->pte_hi);
   1511 			failed = 1;
   1512 		}
   1513 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1514 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1515 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1516 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1517 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1518 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1519 			failed = 1;
   1520 		}
   1521 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1522 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1523 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1524 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1525 			failed = 1;
   1526 		}
   1527 		if (failed)
   1528 			pmap_pte_print(pt);
   1529 	}
   1530 	if (failed)
   1531 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1532 		    pvo->pvo_pmap);
   1533 
   1534 	PMAP_UNLOCK();
   1535 }
   1536 #endif /* DEBUG || PMAPCHECK */
   1537 
   1538 /*
   1539  * Search the PVO table looking for a non-wired entry.
   1540  * If we find one, remove it and return it.
   1541  */
   1542 
   1543 struct pvo_entry *
   1544 pmap_pvo_reclaim(struct pmap *pm)
   1545 {
   1546 	struct pvo_tqhead *pvoh;
   1547 	struct pvo_entry *pvo;
   1548 	uint32_t idx, endidx;
   1549 
   1550 	endidx = pmap_pvo_reclaim_nextidx;
   1551 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1552 	     idx = (idx + 1) & pmap_pteg_mask) {
   1553 		pvoh = &pmap_pvo_table[idx];
   1554 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1555 			if (!PVO_WIRED_P(pvo)) {
   1556 				pmap_pvo_remove(pvo, -1, NULL);
   1557 				pmap_pvo_reclaim_nextidx = idx;
   1558 				PMAPCOUNT(pvos_reclaimed);
   1559 				return pvo;
   1560 			}
   1561 		}
   1562 	}
   1563 	return NULL;
   1564 }
   1565 
   1566 /*
   1567  * This returns whether this is the first mapping of a page.
   1568  */
   1569 int
   1570 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1571 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1572 {
   1573 	struct pvo_entry *pvo;
   1574 	struct pvo_tqhead *pvoh;
   1575 	register_t msr;
   1576 	int ptegidx;
   1577 	int i;
   1578 	int poolflags = PR_NOWAIT;
   1579 
   1580 	/*
   1581 	 * Compute the PTE Group index.
   1582 	 */
   1583 	va &= ~ADDR_POFF;
   1584 	ptegidx = va_to_pteg(pm, va);
   1585 
   1586 	msr = pmap_interrupts_off();
   1587 
   1588 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1589 	if (pmap_pvo_remove_depth > 0)
   1590 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1591 	if (++pmap_pvo_enter_depth > 1)
   1592 		panic("pmap_pvo_enter: called recursively!");
   1593 #endif
   1594 
   1595 	/*
   1596 	 * Remove any existing mapping for this page.  Reuse the
   1597 	 * pvo entry if there a mapping.
   1598 	 */
   1599 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1600 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1601 #ifdef DEBUG
   1602 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1603 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1604 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1605 			   va < VM_MIN_KERNEL_ADDRESS) {
   1606 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpa "/%#" _PRIxpa "\n",
   1607 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1608 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpa " sr=%#" _PRIsr "\n",
   1609 				    pvo->pvo_pte.pte_hi,
   1610 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1611 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1612 #ifdef DDBX
   1613 				Debugger();
   1614 #endif
   1615 			}
   1616 #endif
   1617 			PMAPCOUNT(mappings_replaced);
   1618 			pmap_pvo_remove(pvo, -1, NULL);
   1619 			break;
   1620 		}
   1621 	}
   1622 
   1623 	/*
   1624 	 * If we aren't overwriting an mapping, try to allocate
   1625 	 */
   1626 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1627 	--pmap_pvo_enter_depth;
   1628 #endif
   1629 	pmap_interrupts_restore(msr);
   1630 	if (pvo) {
   1631 		pmap_pvo_free(pvo);
   1632 	}
   1633 	pvo = pool_get(pl, poolflags);
   1634 
   1635 #ifdef DEBUG
   1636 	/*
   1637 	 * Exercise pmap_pvo_reclaim() a little.
   1638 	 */
   1639 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1640 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1641 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1642 		pool_put(pl, pvo);
   1643 		pvo = NULL;
   1644 	}
   1645 #endif
   1646 
   1647 	msr = pmap_interrupts_off();
   1648 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1649 	++pmap_pvo_enter_depth;
   1650 #endif
   1651 	if (pvo == NULL) {
   1652 		pvo = pmap_pvo_reclaim(pm);
   1653 		if (pvo == NULL) {
   1654 			if ((flags & PMAP_CANFAIL) == 0)
   1655 				panic("pmap_pvo_enter: failed");
   1656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1657 			pmap_pvo_enter_depth--;
   1658 #endif
   1659 			PMAPCOUNT(pvos_failed);
   1660 			pmap_interrupts_restore(msr);
   1661 			return ENOMEM;
   1662 		}
   1663 	}
   1664 
   1665 	pvo->pvo_vaddr = va;
   1666 	pvo->pvo_pmap = pm;
   1667 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1668 	if (flags & VM_PROT_EXECUTE) {
   1669 		PMAPCOUNT(exec_mappings);
   1670 		pvo_set_exec(pvo);
   1671 	}
   1672 	if (flags & PMAP_WIRED)
   1673 		pvo->pvo_vaddr |= PVO_WIRED;
   1674 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1675 		pvo->pvo_vaddr |= PVO_MANAGED;
   1676 		PMAPCOUNT(mappings);
   1677 	} else {
   1678 		PMAPCOUNT(kernel_mappings);
   1679 	}
   1680 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1681 
   1682 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1683 	if (PVO_WIRED_P(pvo))
   1684 		pvo->pvo_pmap->pm_stats.wired_count++;
   1685 	pvo->pvo_pmap->pm_stats.resident_count++;
   1686 #if defined(DEBUG)
   1687 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1688 		DPRINTFN(PVOENTER,
   1689 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1690 		    pvo, pm, va, pa));
   1691 #endif
   1692 
   1693 	/*
   1694 	 * We hope this succeeds but it isn't required.
   1695 	 */
   1696 	pvoh = &pmap_pvo_table[ptegidx];
   1697 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1698 	if (i >= 0) {
   1699 		PVO_PTEGIDX_SET(pvo, i);
   1700 		PVO_WHERE(pvo, ENTER_INSERT);
   1701 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1702 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1703 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1704 
   1705 	} else {
   1706 		/*
   1707 		 * Since we didn't have room for this entry (which makes it
   1708 		 * and evicted entry), place it at the head of the list.
   1709 		 */
   1710 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1711 		PMAPCOUNT(ptes_evicted);
   1712 		pm->pm_evictions++;
   1713 		/*
   1714 		 * If this is a kernel page, make sure it's active.
   1715 		 */
   1716 		if (pm == pmap_kernel()) {
   1717 			i = pmap_pte_spill(pm, va, false);
   1718 			KASSERT(i);
   1719 		}
   1720 	}
   1721 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1722 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1723 	pmap_pvo_enter_depth--;
   1724 #endif
   1725 	pmap_interrupts_restore(msr);
   1726 	return 0;
   1727 }
   1728 
   1729 static void
   1730 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1731 {
   1732 	volatile struct pte *pt;
   1733 	int ptegidx;
   1734 
   1735 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1736 	if (++pmap_pvo_remove_depth > 1)
   1737 		panic("pmap_pvo_remove: called recursively!");
   1738 #endif
   1739 
   1740 	/*
   1741 	 * If we haven't been supplied the ptegidx, calculate it.
   1742 	 */
   1743 	if (pteidx == -1) {
   1744 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1745 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1746 	} else {
   1747 		ptegidx = pteidx >> 3;
   1748 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1749 			ptegidx ^= pmap_pteg_mask;
   1750 	}
   1751 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1752 
   1753 	/*
   1754 	 * If there is an active pte entry, we need to deactivate it
   1755 	 * (and save the ref & chg bits).
   1756 	 */
   1757 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1758 	if (pt != NULL) {
   1759 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1760 		PVO_WHERE(pvo, REMOVE);
   1761 		PVO_PTEGIDX_CLR(pvo);
   1762 		PMAPCOUNT(ptes_removed);
   1763 	} else {
   1764 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1765 		pvo->pvo_pmap->pm_evictions--;
   1766 	}
   1767 
   1768 	/*
   1769 	 * Account for executable mappings.
   1770 	 */
   1771 	if (PVO_EXECUTABLE_P(pvo))
   1772 		pvo_clear_exec(pvo);
   1773 
   1774 	/*
   1775 	 * Update our statistics.
   1776 	 */
   1777 	pvo->pvo_pmap->pm_stats.resident_count--;
   1778 	if (PVO_WIRED_P(pvo))
   1779 		pvo->pvo_pmap->pm_stats.wired_count--;
   1780 
   1781 	/*
   1782 	 * Save the REF/CHG bits into their cache if the page is managed.
   1783 	 */
   1784 	if (PVO_MANAGED_P(pvo)) {
   1785 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1786 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1787 
   1788 		if (pg != NULL) {
   1789 			/*
   1790 			 * If this page was changed and it is mapped exec,
   1791 			 * invalidate it.
   1792 			 */
   1793 			if ((ptelo & PTE_CHG) &&
   1794 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1795 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1796 				if (LIST_EMPTY(pvoh)) {
   1797 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1798 					    "%#" _PRIxpa ": clear-exec]\n",
   1799 					    VM_PAGE_TO_PHYS(pg)));
   1800 					pmap_attr_clear(pg, PTE_EXEC);
   1801 					PMAPCOUNT(exec_uncached_pvo_remove);
   1802 				} else {
   1803 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1804 					    "%#" _PRIxpa ": syncicache]\n",
   1805 					    VM_PAGE_TO_PHYS(pg)));
   1806 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1807 					    PAGE_SIZE);
   1808 					PMAPCOUNT(exec_synced_pvo_remove);
   1809 				}
   1810 			}
   1811 
   1812 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1813 		}
   1814 		PMAPCOUNT(unmappings);
   1815 	} else {
   1816 		PMAPCOUNT(kernel_unmappings);
   1817 	}
   1818 
   1819 	/*
   1820 	 * Remove the PVO from its lists and return it to the pool.
   1821 	 */
   1822 	LIST_REMOVE(pvo, pvo_vlink);
   1823 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1824 	if (pvol) {
   1825 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1826 	}
   1827 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1828 	pmap_pvo_remove_depth--;
   1829 #endif
   1830 }
   1831 
   1832 void
   1833 pmap_pvo_free(struct pvo_entry *pvo)
   1834 {
   1835 
   1836 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1837 }
   1838 
   1839 void
   1840 pmap_pvo_free_list(struct pvo_head *pvol)
   1841 {
   1842 	struct pvo_entry *pvo, *npvo;
   1843 
   1844 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1845 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1846 		LIST_REMOVE(pvo, pvo_vlink);
   1847 		pmap_pvo_free(pvo);
   1848 	}
   1849 }
   1850 
   1851 /*
   1852  * Mark a mapping as executable.
   1853  * If this is the first executable mapping in the segment,
   1854  * clear the noexec flag.
   1855  */
   1856 static void
   1857 pvo_set_exec(struct pvo_entry *pvo)
   1858 {
   1859 	struct pmap *pm = pvo->pvo_pmap;
   1860 
   1861 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1862 		return;
   1863 	}
   1864 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1865 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1866 	{
   1867 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1868 		if (pm->pm_exec[sr]++ == 0) {
   1869 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1870 		}
   1871 	}
   1872 #endif
   1873 }
   1874 
   1875 /*
   1876  * Mark a mapping as non-executable.
   1877  * If this was the last executable mapping in the segment,
   1878  * set the noexec flag.
   1879  */
   1880 static void
   1881 pvo_clear_exec(struct pvo_entry *pvo)
   1882 {
   1883 	struct pmap *pm = pvo->pvo_pmap;
   1884 
   1885 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1886 		return;
   1887 	}
   1888 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1889 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1890 	{
   1891 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1892 		if (--pm->pm_exec[sr] == 0) {
   1893 			pm->pm_sr[sr] |= SR_NOEXEC;
   1894 		}
   1895 	}
   1896 #endif
   1897 }
   1898 
   1899 /*
   1900  * Insert physical page at pa into the given pmap at virtual address va.
   1901  */
   1902 int
   1903 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1904 {
   1905 	struct mem_region *mp;
   1906 	struct pvo_head *pvo_head;
   1907 	struct vm_page *pg;
   1908 	struct pool *pl;
   1909 	register_t pte_lo;
   1910 	int error;
   1911 	u_int pvo_flags;
   1912 	u_int was_exec = 0;
   1913 
   1914 	PMAP_LOCK();
   1915 
   1916 	if (__predict_false(!pmap_initialized)) {
   1917 		pvo_head = &pmap_pvo_kunmanaged;
   1918 		pl = &pmap_upvo_pool;
   1919 		pvo_flags = 0;
   1920 		pg = NULL;
   1921 		was_exec = PTE_EXEC;
   1922 	} else {
   1923 		pvo_head = pa_to_pvoh(pa, &pg);
   1924 		pl = &pmap_mpvo_pool;
   1925 		pvo_flags = PVO_MANAGED;
   1926 	}
   1927 
   1928 	DPRINTFN(ENTER,
   1929 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1930 	    pm, va, pa, prot, flags));
   1931 
   1932 	/*
   1933 	 * If this is a managed page, and it's the first reference to the
   1934 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1935 	 */
   1936 	if (pg != NULL)
   1937 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1938 
   1939 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1940 
   1941 	/*
   1942 	 * Assume the page is cache inhibited and access is guarded unless
   1943 	 * it's in our available memory array.  If it is in the memory array,
   1944 	 * asssume it's in memory coherent memory.
   1945 	 */
   1946 	pte_lo = PTE_IG;
   1947 	if ((flags & PMAP_NC) == 0) {
   1948 		for (mp = mem; mp->size; mp++) {
   1949 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1950 				pte_lo = PTE_M;
   1951 				break;
   1952 			}
   1953 		}
   1954 	}
   1955 
   1956 	if (prot & VM_PROT_WRITE)
   1957 		pte_lo |= PTE_BW;
   1958 	else
   1959 		pte_lo |= PTE_BR;
   1960 
   1961 	/*
   1962 	 * If this was in response to a fault, "pre-fault" the PTE's
   1963 	 * changed/referenced bit appropriately.
   1964 	 */
   1965 	if (flags & VM_PROT_WRITE)
   1966 		pte_lo |= PTE_CHG;
   1967 	if (flags & VM_PROT_ALL)
   1968 		pte_lo |= PTE_REF;
   1969 
   1970 	/*
   1971 	 * We need to know if this page can be executable
   1972 	 */
   1973 	flags |= (prot & VM_PROT_EXECUTE);
   1974 
   1975 	/*
   1976 	 * Record mapping for later back-translation and pte spilling.
   1977 	 * This will overwrite any existing mapping.
   1978 	 */
   1979 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1980 
   1981 	/*
   1982 	 * Flush the real page from the instruction cache if this page is
   1983 	 * mapped executable and cacheable and has not been flushed since
   1984 	 * the last time it was modified.
   1985 	 */
   1986 	if (error == 0 &&
   1987             (flags & VM_PROT_EXECUTE) &&
   1988             (pte_lo & PTE_I) == 0 &&
   1989 	    was_exec == 0) {
   1990 		DPRINTFN(ENTER, (" syncicache"));
   1991 		PMAPCOUNT(exec_synced);
   1992 		pmap_syncicache(pa, PAGE_SIZE);
   1993 		if (pg != NULL) {
   1994 			pmap_attr_save(pg, PTE_EXEC);
   1995 			PMAPCOUNT(exec_cached);
   1996 #if defined(DEBUG) || defined(PMAPDEBUG)
   1997 			if (pmapdebug & PMAPDEBUG_ENTER)
   1998 				printf(" marked-as-exec");
   1999 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2000 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   2001 				    VM_PAGE_TO_PHYS(pg));
   2002 
   2003 #endif
   2004 		}
   2005 	}
   2006 
   2007 	DPRINTFN(ENTER, (": error=%d\n", error));
   2008 
   2009 	PMAP_UNLOCK();
   2010 
   2011 	return error;
   2012 }
   2013 
   2014 void
   2015 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2016 {
   2017 	struct mem_region *mp;
   2018 	register_t pte_lo;
   2019 	int error;
   2020 
   2021 #if defined (PMAP_OEA64_BRIDGE)
   2022 	if (va < VM_MIN_KERNEL_ADDRESS)
   2023 		panic("pmap_kenter_pa: attempt to enter "
   2024 		    "non-kernel address %#" _PRIxva "!", va);
   2025 #endif
   2026 
   2027 	DPRINTFN(KENTER,
   2028 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2029 
   2030 	PMAP_LOCK();
   2031 
   2032 	/*
   2033 	 * Assume the page is cache inhibited and access is guarded unless
   2034 	 * it's in our available memory array.  If it is in the memory array,
   2035 	 * asssume it's in memory coherent memory.
   2036 	 */
   2037 	pte_lo = PTE_IG;
   2038 	if ((prot & PMAP_NC) == 0) {
   2039 		for (mp = mem; mp->size; mp++) {
   2040 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2041 				pte_lo = PTE_M;
   2042 				break;
   2043 			}
   2044 		}
   2045 	}
   2046 
   2047 	if (prot & VM_PROT_WRITE)
   2048 		pte_lo |= PTE_BW;
   2049 	else
   2050 		pte_lo |= PTE_BR;
   2051 
   2052 	/*
   2053 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2054 	 */
   2055 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2056 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2057 
   2058 	if (error != 0)
   2059 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2060 		      va, pa, error);
   2061 
   2062 	PMAP_UNLOCK();
   2063 }
   2064 
   2065 void
   2066 pmap_kremove(vaddr_t va, vsize_t len)
   2067 {
   2068 	if (va < VM_MIN_KERNEL_ADDRESS)
   2069 		panic("pmap_kremove: attempt to remove "
   2070 		    "non-kernel address %#" _PRIxva "!", va);
   2071 
   2072 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2073 	pmap_remove(pmap_kernel(), va, va + len);
   2074 }
   2075 
   2076 /*
   2077  * Remove the given range of mapping entries.
   2078  */
   2079 void
   2080 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2081 {
   2082 	struct pvo_head pvol;
   2083 	struct pvo_entry *pvo;
   2084 	register_t msr;
   2085 	int pteidx;
   2086 
   2087 	PMAP_LOCK();
   2088 	LIST_INIT(&pvol);
   2089 	msr = pmap_interrupts_off();
   2090 	for (; va < endva; va += PAGE_SIZE) {
   2091 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2092 		if (pvo != NULL) {
   2093 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2094 		}
   2095 	}
   2096 	pmap_interrupts_restore(msr);
   2097 	pmap_pvo_free_list(&pvol);
   2098 	PMAP_UNLOCK();
   2099 }
   2100 
   2101 /*
   2102  * Get the physical page address for the given pmap/virtual address.
   2103  */
   2104 bool
   2105 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2106 {
   2107 	struct pvo_entry *pvo;
   2108 	register_t msr;
   2109 
   2110 	PMAP_LOCK();
   2111 
   2112 	/*
   2113 	 * If this is a kernel pmap lookup, also check the battable
   2114 	 * and if we get a hit, translate the VA to a PA using the
   2115 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2116 	 * that will wrap back to 0.
   2117 	 */
   2118 	if (pm == pmap_kernel() &&
   2119 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2120 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2121 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2122 #if defined (PMAP_OEA)
   2123 		if ((MFPVR() >> 16) != MPC601) {
   2124 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2125 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2126 				register_t batl =
   2127 				    battable[va >> ADDR_SR_SHFT].batl;
   2128 				register_t mask =
   2129 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2130 				if (pap)
   2131 					*pap = (batl & mask) | (va & ~mask);
   2132 				PMAP_UNLOCK();
   2133 				return true;
   2134 			}
   2135 		} else {
   2136 			register_t batu = battable[va >> 23].batu;
   2137 			register_t batl = battable[va >> 23].batl;
   2138 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2139 			if (BAT601_VALID_P(batl) &&
   2140 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2141 				register_t mask =
   2142 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2143 				if (pap)
   2144 					*pap = (batl & mask) | (va & ~mask);
   2145 				PMAP_UNLOCK();
   2146 				return true;
   2147 			} else if (SR601_VALID_P(sr) &&
   2148 				   SR601_PA_MATCH_P(sr, va)) {
   2149 				if (pap)
   2150 					*pap = va;
   2151 				PMAP_UNLOCK();
   2152 				return true;
   2153 			}
   2154 		}
   2155 		return false;
   2156 #elif defined (PMAP_OEA64_BRIDGE)
   2157 	if (va >= SEGMENT_LENGTH)
   2158 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2159 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2160 	else {
   2161 		if (pap)
   2162 			*pap = va;
   2163 			PMAP_UNLOCK();
   2164 			return true;
   2165 	}
   2166 #elif defined (PMAP_OEA64)
   2167 #error PPC_OEA64 not supported
   2168 #endif /* PPC_OEA */
   2169 	}
   2170 
   2171 	msr = pmap_interrupts_off();
   2172 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2173 	if (pvo != NULL) {
   2174 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2175 		if (pap)
   2176 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2177 			    | (va & ADDR_POFF);
   2178 	}
   2179 	pmap_interrupts_restore(msr);
   2180 	PMAP_UNLOCK();
   2181 	return pvo != NULL;
   2182 }
   2183 
   2184 /*
   2185  * Lower the protection on the specified range of this pmap.
   2186  */
   2187 void
   2188 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2189 {
   2190 	struct pvo_entry *pvo;
   2191 	volatile struct pte *pt;
   2192 	register_t msr;
   2193 	int pteidx;
   2194 
   2195 	/*
   2196 	 * Since this routine only downgrades protection, we should
   2197 	 * always be called with at least one bit not set.
   2198 	 */
   2199 	KASSERT(prot != VM_PROT_ALL);
   2200 
   2201 	/*
   2202 	 * If there is no protection, this is equivalent to
   2203 	 * remove the pmap from the pmap.
   2204 	 */
   2205 	if ((prot & VM_PROT_READ) == 0) {
   2206 		pmap_remove(pm, va, endva);
   2207 		return;
   2208 	}
   2209 
   2210 	PMAP_LOCK();
   2211 
   2212 	msr = pmap_interrupts_off();
   2213 	for (; va < endva; va += PAGE_SIZE) {
   2214 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2215 		if (pvo == NULL)
   2216 			continue;
   2217 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2218 
   2219 		/*
   2220 		 * Revoke executable if asked to do so.
   2221 		 */
   2222 		if ((prot & VM_PROT_EXECUTE) == 0)
   2223 			pvo_clear_exec(pvo);
   2224 
   2225 #if 0
   2226 		/*
   2227 		 * If the page is already read-only, no change
   2228 		 * needs to be made.
   2229 		 */
   2230 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2231 			continue;
   2232 #endif
   2233 		/*
   2234 		 * Grab the PTE pointer before we diddle with
   2235 		 * the cached PTE copy.
   2236 		 */
   2237 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2238 		/*
   2239 		 * Change the protection of the page.
   2240 		 */
   2241 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2242 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2243 
   2244 		/*
   2245 		 * If the PVO is in the page table, update
   2246 		 * that pte at well.
   2247 		 */
   2248 		if (pt != NULL) {
   2249 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2250 			PVO_WHERE(pvo, PMAP_PROTECT);
   2251 			PMAPCOUNT(ptes_changed);
   2252 		}
   2253 
   2254 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2255 	}
   2256 	pmap_interrupts_restore(msr);
   2257 	PMAP_UNLOCK();
   2258 }
   2259 
   2260 void
   2261 pmap_unwire(pmap_t pm, vaddr_t va)
   2262 {
   2263 	struct pvo_entry *pvo;
   2264 	register_t msr;
   2265 
   2266 	PMAP_LOCK();
   2267 	msr = pmap_interrupts_off();
   2268 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2269 	if (pvo != NULL) {
   2270 		if (PVO_WIRED_P(pvo)) {
   2271 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2272 			pm->pm_stats.wired_count--;
   2273 		}
   2274 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2275 	}
   2276 	pmap_interrupts_restore(msr);
   2277 	PMAP_UNLOCK();
   2278 }
   2279 
   2280 /*
   2281  * Lower the protection on the specified physical page.
   2282  */
   2283 void
   2284 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2285 {
   2286 	struct pvo_head *pvo_head, pvol;
   2287 	struct pvo_entry *pvo, *next_pvo;
   2288 	volatile struct pte *pt;
   2289 	register_t msr;
   2290 
   2291 	PMAP_LOCK();
   2292 
   2293 	KASSERT(prot != VM_PROT_ALL);
   2294 	LIST_INIT(&pvol);
   2295 	msr = pmap_interrupts_off();
   2296 
   2297 	/*
   2298 	 * When UVM reuses a page, it does a pmap_page_protect with
   2299 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2300 	 * since we know the page will have different contents.
   2301 	 */
   2302 	if ((prot & VM_PROT_READ) == 0) {
   2303 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2304 		    VM_PAGE_TO_PHYS(pg)));
   2305 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2306 			PMAPCOUNT(exec_uncached_page_protect);
   2307 			pmap_attr_clear(pg, PTE_EXEC);
   2308 		}
   2309 	}
   2310 
   2311 	pvo_head = vm_page_to_pvoh(pg);
   2312 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2313 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2314 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2315 
   2316 		/*
   2317 		 * Downgrading to no mapping at all, we just remove the entry.
   2318 		 */
   2319 		if ((prot & VM_PROT_READ) == 0) {
   2320 			pmap_pvo_remove(pvo, -1, &pvol);
   2321 			continue;
   2322 		}
   2323 
   2324 		/*
   2325 		 * If EXEC permission is being revoked, just clear the
   2326 		 * flag in the PVO.
   2327 		 */
   2328 		if ((prot & VM_PROT_EXECUTE) == 0)
   2329 			pvo_clear_exec(pvo);
   2330 
   2331 		/*
   2332 		 * If this entry is already RO, don't diddle with the
   2333 		 * page table.
   2334 		 */
   2335 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2336 			PMAP_PVO_CHECK(pvo);
   2337 			continue;
   2338 		}
   2339 
   2340 		/*
   2341 		 * Grab the PTE before the we diddle the bits so
   2342 		 * pvo_to_pte can verify the pte contents are as
   2343 		 * expected.
   2344 		 */
   2345 		pt = pmap_pvo_to_pte(pvo, -1);
   2346 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2347 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2348 		if (pt != NULL) {
   2349 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2350 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2351 			PMAPCOUNT(ptes_changed);
   2352 		}
   2353 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2354 	}
   2355 	pmap_interrupts_restore(msr);
   2356 	pmap_pvo_free_list(&pvol);
   2357 
   2358 	PMAP_UNLOCK();
   2359 }
   2360 
   2361 /*
   2362  * Activate the address space for the specified process.  If the process
   2363  * is the current process, load the new MMU context.
   2364  */
   2365 void
   2366 pmap_activate(struct lwp *l)
   2367 {
   2368 	struct pcb *pcb = &l->l_addr->u_pcb;
   2369 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2370 
   2371 	DPRINTFN(ACTIVATE,
   2372 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2373 
   2374 	/*
   2375 	 * XXX Normally performed in cpu_fork().
   2376 	 */
   2377 	pcb->pcb_pm = pmap;
   2378 
   2379 	/*
   2380 	* In theory, the SR registers need only be valid on return
   2381 	* to user space wait to do them there.
   2382 	*/
   2383 	if (l == curlwp) {
   2384 		/* Store pointer to new current pmap. */
   2385 		curpm = pmap;
   2386 	}
   2387 }
   2388 
   2389 /*
   2390  * Deactivate the specified process's address space.
   2391  */
   2392 void
   2393 pmap_deactivate(struct lwp *l)
   2394 {
   2395 }
   2396 
   2397 bool
   2398 pmap_query_bit(struct vm_page *pg, int ptebit)
   2399 {
   2400 	struct pvo_entry *pvo;
   2401 	volatile struct pte *pt;
   2402 	register_t msr;
   2403 
   2404 	PMAP_LOCK();
   2405 
   2406 	if (pmap_attr_fetch(pg) & ptebit) {
   2407 		PMAP_UNLOCK();
   2408 		return true;
   2409 	}
   2410 
   2411 	msr = pmap_interrupts_off();
   2412 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2413 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2414 		/*
   2415 		 * See if we saved the bit off.  If so cache, it and return
   2416 		 * success.
   2417 		 */
   2418 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2419 			pmap_attr_save(pg, ptebit);
   2420 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2421 			pmap_interrupts_restore(msr);
   2422 			PMAP_UNLOCK();
   2423 			return true;
   2424 		}
   2425 	}
   2426 	/*
   2427 	 * No luck, now go thru the hard part of looking at the ptes
   2428 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2429 	 * to the PTEs.
   2430 	 */
   2431 	SYNC();
   2432 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2433 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2434 		/*
   2435 		 * See if this pvo have a valid PTE.  If so, fetch the
   2436 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2437 		 * ptebit is set, cache, it and return success.
   2438 		 */
   2439 		pt = pmap_pvo_to_pte(pvo, -1);
   2440 		if (pt != NULL) {
   2441 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2442 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2443 				pmap_attr_save(pg, ptebit);
   2444 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2445 				pmap_interrupts_restore(msr);
   2446 				PMAP_UNLOCK();
   2447 				return true;
   2448 			}
   2449 		}
   2450 	}
   2451 	pmap_interrupts_restore(msr);
   2452 	PMAP_UNLOCK();
   2453 	return false;
   2454 }
   2455 
   2456 bool
   2457 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2458 {
   2459 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2460 	struct pvo_entry *pvo;
   2461 	volatile struct pte *pt;
   2462 	register_t msr;
   2463 	int rv = 0;
   2464 
   2465 	PMAP_LOCK();
   2466 	msr = pmap_interrupts_off();
   2467 
   2468 	/*
   2469 	 * Fetch the cache value
   2470 	 */
   2471 	rv |= pmap_attr_fetch(pg);
   2472 
   2473 	/*
   2474 	 * Clear the cached value.
   2475 	 */
   2476 	pmap_attr_clear(pg, ptebit);
   2477 
   2478 	/*
   2479 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2480 	 * can reset the right ones).  Note that since the pvo entries and
   2481 	 * list heads are accessed via BAT0 and are never placed in the
   2482 	 * page table, we don't have to worry about further accesses setting
   2483 	 * the REF/CHG bits.
   2484 	 */
   2485 	SYNC();
   2486 
   2487 	/*
   2488 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2489 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2490 	 */
   2491 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2492 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2493 		pt = pmap_pvo_to_pte(pvo, -1);
   2494 		if (pt != NULL) {
   2495 			/*
   2496 			 * Only sync the PTE if the bit we are looking
   2497 			 * for is not already set.
   2498 			 */
   2499 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2500 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2501 			/*
   2502 			 * If the bit we are looking for was already set,
   2503 			 * clear that bit in the pte.
   2504 			 */
   2505 			if (pvo->pvo_pte.pte_lo & ptebit)
   2506 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2507 		}
   2508 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2509 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2510 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2511 	}
   2512 	pmap_interrupts_restore(msr);
   2513 
   2514 	/*
   2515 	 * If we are clearing the modify bit and this page was marked EXEC
   2516 	 * and the user of the page thinks the page was modified, then we
   2517 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2518 	 * bit if it's not mapped.  The page itself might not have the CHG
   2519 	 * bit set if the modification was done via DMA to the page.
   2520 	 */
   2521 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2522 		if (LIST_EMPTY(pvoh)) {
   2523 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2524 			    VM_PAGE_TO_PHYS(pg)));
   2525 			pmap_attr_clear(pg, PTE_EXEC);
   2526 			PMAPCOUNT(exec_uncached_clear_modify);
   2527 		} else {
   2528 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2529 			    VM_PAGE_TO_PHYS(pg)));
   2530 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2531 			PMAPCOUNT(exec_synced_clear_modify);
   2532 		}
   2533 	}
   2534 	PMAP_UNLOCK();
   2535 	return (rv & ptebit) != 0;
   2536 }
   2537 
   2538 void
   2539 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2540 {
   2541 	struct pvo_entry *pvo;
   2542 	size_t offset = va & ADDR_POFF;
   2543 	int s;
   2544 
   2545 	PMAP_LOCK();
   2546 	s = splvm();
   2547 	while (len > 0) {
   2548 		size_t seglen = PAGE_SIZE - offset;
   2549 		if (seglen > len)
   2550 			seglen = len;
   2551 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2552 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2553 			pmap_syncicache(
   2554 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2555 			PMAP_PVO_CHECK(pvo);
   2556 		}
   2557 		va += seglen;
   2558 		len -= seglen;
   2559 		offset = 0;
   2560 	}
   2561 	splx(s);
   2562 	PMAP_UNLOCK();
   2563 }
   2564 
   2565 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2566 void
   2567 pmap_pte_print(volatile struct pte *pt)
   2568 {
   2569 	printf("PTE %p: ", pt);
   2570 
   2571 #if defined(PMAP_OEA)
   2572 	/* High word: */
   2573 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2574 #else
   2575 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2576 #endif /* PMAP_OEA */
   2577 
   2578 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2579 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2580 
   2581 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2582 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2583 	    pt->pte_hi & PTE_API);
   2584 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2585 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2586 #else
   2587 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2588 #endif /* PMAP_OEA */
   2589 
   2590 	/* Low word: */
   2591 #if defined (PMAP_OEA)
   2592 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2593 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2594 #else
   2595 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2596 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2597 #endif
   2598 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2599 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2600 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2601 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2602 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2603 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2604 	switch (pt->pte_lo & PTE_PP) {
   2605 	case PTE_BR: printf("br]\n"); break;
   2606 	case PTE_BW: printf("bw]\n"); break;
   2607 	case PTE_SO: printf("so]\n"); break;
   2608 	case PTE_SW: printf("sw]\n"); break;
   2609 	}
   2610 }
   2611 #endif
   2612 
   2613 #if defined(DDB)
   2614 void
   2615 pmap_pteg_check(void)
   2616 {
   2617 	volatile struct pte *pt;
   2618 	int i;
   2619 	int ptegidx;
   2620 	u_int p_valid = 0;
   2621 	u_int s_valid = 0;
   2622 	u_int invalid = 0;
   2623 
   2624 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2625 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2626 			if (pt->pte_hi & PTE_VALID) {
   2627 				if (pt->pte_hi & PTE_HID)
   2628 					s_valid++;
   2629 				else
   2630 				{
   2631 					p_valid++;
   2632 				}
   2633 			} else
   2634 				invalid++;
   2635 		}
   2636 	}
   2637 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2638 		p_valid, p_valid, s_valid, s_valid,
   2639 		invalid, invalid);
   2640 }
   2641 
   2642 void
   2643 pmap_print_mmuregs(void)
   2644 {
   2645 	int i;
   2646 	u_int cpuvers;
   2647 #ifndef PMAP_OEA64
   2648 	vaddr_t addr;
   2649 	register_t soft_sr[16];
   2650 #endif
   2651 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2652 	struct bat soft_ibat[4];
   2653 	struct bat soft_dbat[4];
   2654 #endif
   2655 	paddr_t sdr1;
   2656 
   2657 	cpuvers = MFPVR() >> 16;
   2658 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2659 #ifndef PMAP_OEA64
   2660 	addr = 0;
   2661 	for (i = 0; i < 16; i++) {
   2662 		soft_sr[i] = MFSRIN(addr);
   2663 		addr += (1 << ADDR_SR_SHFT);
   2664 	}
   2665 #endif
   2666 
   2667 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2668 	/* read iBAT (601: uBAT) registers */
   2669 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2670 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2671 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2672 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2673 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2674 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2675 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2676 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2677 
   2678 
   2679 	if (cpuvers != MPC601) {
   2680 		/* read dBAT registers */
   2681 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2682 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2683 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2684 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2685 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2686 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2687 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2688 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2689 	}
   2690 #endif
   2691 
   2692 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2693 #ifndef PMAP_OEA64
   2694 	printf("SR[]:\t");
   2695 	for (i = 0; i < 4; i++)
   2696 		printf("0x%08lx,   ", soft_sr[i]);
   2697 	printf("\n\t");
   2698 	for ( ; i < 8; i++)
   2699 		printf("0x%08lx,   ", soft_sr[i]);
   2700 	printf("\n\t");
   2701 	for ( ; i < 12; i++)
   2702 		printf("0x%08lx,   ", soft_sr[i]);
   2703 	printf("\n\t");
   2704 	for ( ; i < 16; i++)
   2705 		printf("0x%08lx,   ", soft_sr[i]);
   2706 	printf("\n");
   2707 #endif
   2708 
   2709 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2710 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2711 	for (i = 0; i < 4; i++) {
   2712 		printf("0x%08lx 0x%08lx, ",
   2713 			soft_ibat[i].batu, soft_ibat[i].batl);
   2714 		if (i == 1)
   2715 			printf("\n\t");
   2716 	}
   2717 	if (cpuvers != MPC601) {
   2718 		printf("\ndBAT[]:\t");
   2719 		for (i = 0; i < 4; i++) {
   2720 			printf("0x%08lx 0x%08lx, ",
   2721 				soft_dbat[i].batu, soft_dbat[i].batl);
   2722 			if (i == 1)
   2723 				printf("\n\t");
   2724 		}
   2725 	}
   2726 	printf("\n");
   2727 #endif /* PMAP_OEA... */
   2728 }
   2729 
   2730 void
   2731 pmap_print_pte(pmap_t pm, vaddr_t va)
   2732 {
   2733 	struct pvo_entry *pvo;
   2734 	volatile struct pte *pt;
   2735 	int pteidx;
   2736 
   2737 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2738 	if (pvo != NULL) {
   2739 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2740 		if (pt != NULL) {
   2741 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2742 				va, pt,
   2743 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2744 				pt->pte_hi, pt->pte_lo);
   2745 		} else {
   2746 			printf("No valid PTE found\n");
   2747 		}
   2748 	} else {
   2749 		printf("Address not in pmap\n");
   2750 	}
   2751 }
   2752 
   2753 void
   2754 pmap_pteg_dist(void)
   2755 {
   2756 	struct pvo_entry *pvo;
   2757 	int ptegidx;
   2758 	int depth;
   2759 	int max_depth = 0;
   2760 	unsigned int depths[64];
   2761 
   2762 	memset(depths, 0, sizeof(depths));
   2763 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2764 		depth = 0;
   2765 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2766 			depth++;
   2767 		}
   2768 		if (depth > max_depth)
   2769 			max_depth = depth;
   2770 		if (depth > 63)
   2771 			depth = 63;
   2772 		depths[depth]++;
   2773 	}
   2774 
   2775 	for (depth = 0; depth < 64; depth++) {
   2776 		printf("  [%2d]: %8u", depth, depths[depth]);
   2777 		if ((depth & 3) == 3)
   2778 			printf("\n");
   2779 		if (depth == max_depth)
   2780 			break;
   2781 	}
   2782 	if ((depth & 3) != 3)
   2783 		printf("\n");
   2784 	printf("Max depth found was %d\n", max_depth);
   2785 }
   2786 #endif /* DEBUG */
   2787 
   2788 #if defined(PMAPCHECK) || defined(DEBUG)
   2789 void
   2790 pmap_pvo_verify(void)
   2791 {
   2792 	int ptegidx;
   2793 	int s;
   2794 
   2795 	s = splvm();
   2796 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2797 		struct pvo_entry *pvo;
   2798 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2799 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2800 				panic("pmap_pvo_verify: invalid pvo %p "
   2801 				    "on list %#x", pvo, ptegidx);
   2802 			pmap_pvo_check(pvo);
   2803 		}
   2804 	}
   2805 	splx(s);
   2806 }
   2807 #endif /* PMAPCHECK */
   2808 
   2809 
   2810 void *
   2811 pmap_pool_ualloc(struct pool *pp, int flags)
   2812 {
   2813 	struct pvo_page *pvop;
   2814 
   2815 	if (uvm.page_init_done != true) {
   2816 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2817 	}
   2818 
   2819 	PMAP_LOCK();
   2820 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2821 	if (pvop != NULL) {
   2822 		pmap_upvop_free--;
   2823 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2824 		PMAP_UNLOCK();
   2825 		return pvop;
   2826 	}
   2827 	PMAP_UNLOCK();
   2828 	return pmap_pool_malloc(pp, flags);
   2829 }
   2830 
   2831 void *
   2832 pmap_pool_malloc(struct pool *pp, int flags)
   2833 {
   2834 	struct pvo_page *pvop;
   2835 	struct vm_page *pg;
   2836 
   2837 	PMAP_LOCK();
   2838 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2839 	if (pvop != NULL) {
   2840 		pmap_mpvop_free--;
   2841 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2842 		PMAP_UNLOCK();
   2843 		return pvop;
   2844 	}
   2845 	PMAP_UNLOCK();
   2846  again:
   2847 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2848 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2849 	if (__predict_false(pg == NULL)) {
   2850 		if (flags & PR_WAITOK) {
   2851 			uvm_wait("plpg");
   2852 			goto again;
   2853 		} else {
   2854 			return (0);
   2855 		}
   2856 	}
   2857 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2858 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2859 }
   2860 
   2861 void
   2862 pmap_pool_ufree(struct pool *pp, void *va)
   2863 {
   2864 	struct pvo_page *pvop;
   2865 #if 0
   2866 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2867 		pmap_pool_mfree(va, size, tag);
   2868 		return;
   2869 	}
   2870 #endif
   2871 	PMAP_LOCK();
   2872 	pvop = va;
   2873 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2874 	pmap_upvop_free++;
   2875 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2876 		pmap_upvop_maxfree = pmap_upvop_free;
   2877 	PMAP_UNLOCK();
   2878 }
   2879 
   2880 void
   2881 pmap_pool_mfree(struct pool *pp, void *va)
   2882 {
   2883 	struct pvo_page *pvop;
   2884 
   2885 	PMAP_LOCK();
   2886 	pvop = va;
   2887 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2888 	pmap_mpvop_free++;
   2889 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2890 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2891 	PMAP_UNLOCK();
   2892 #if 0
   2893 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2894 #endif
   2895 }
   2896 
   2897 /*
   2898  * This routine in bootstraping to steal to-be-managed memory (which will
   2899  * then be unmanaged).  We use it to grab from the first 256MB for our
   2900  * pmap needs and above 256MB for other stuff.
   2901  */
   2902 vaddr_t
   2903 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2904 {
   2905 	vsize_t size;
   2906 	vaddr_t va;
   2907 	paddr_t pa = 0;
   2908 	int npgs, bank;
   2909 	struct vm_physseg *ps;
   2910 
   2911 	if (uvm.page_init_done == true)
   2912 		panic("pmap_steal_memory: called _after_ bootstrap");
   2913 
   2914 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2915 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2916 
   2917 	size = round_page(vsize);
   2918 	npgs = atop(size);
   2919 
   2920 	/*
   2921 	 * PA 0 will never be among those given to UVM so we can use it
   2922 	 * to indicate we couldn't steal any memory.
   2923 	 */
   2924 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2925 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2926 		    ps->avail_end - ps->avail_start >= npgs) {
   2927 			pa = ptoa(ps->avail_start);
   2928 			break;
   2929 		}
   2930 	}
   2931 
   2932 	if (pa == 0)
   2933 		panic("pmap_steal_memory: no approriate memory to steal!");
   2934 
   2935 	ps->avail_start += npgs;
   2936 	ps->start += npgs;
   2937 
   2938 	/*
   2939 	 * If we've used up all the pages in the segment, remove it and
   2940 	 * compact the list.
   2941 	 */
   2942 	if (ps->avail_start == ps->end) {
   2943 		/*
   2944 		 * If this was the last one, then a very bad thing has occurred
   2945 		 */
   2946 		if (--vm_nphysseg == 0)
   2947 			panic("pmap_steal_memory: out of memory!");
   2948 
   2949 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2950 		for (; bank < vm_nphysseg; bank++, ps++) {
   2951 			ps[0] = ps[1];
   2952 		}
   2953 	}
   2954 
   2955 	va = (vaddr_t) pa;
   2956 	memset((void *) va, 0, size);
   2957 	pmap_pages_stolen += npgs;
   2958 #ifdef DEBUG
   2959 	if (pmapdebug && npgs > 1) {
   2960 		u_int cnt = 0;
   2961 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2962 			cnt += ps->avail_end - ps->avail_start;
   2963 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2964 		    npgs, pmap_pages_stolen, cnt);
   2965 	}
   2966 #endif
   2967 
   2968 	return va;
   2969 }
   2970 
   2971 /*
   2972  * Find a chuck of memory with right size and alignment.
   2973  */
   2974 paddr_t
   2975 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2976 {
   2977 	struct mem_region *mp;
   2978 	paddr_t s, e;
   2979 	int i, j;
   2980 
   2981 	size = round_page(size);
   2982 
   2983 	DPRINTFN(BOOT,
   2984 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2985 	    size, alignment, at_end));
   2986 
   2987 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2988 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2989 		    alignment);
   2990 
   2991 	if (at_end) {
   2992 		if (alignment != PAGE_SIZE)
   2993 			panic("pmap_boot_find_memory: invalid ending "
   2994 			    "alignment %#" _PRIxpa, alignment);
   2995 
   2996 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2997 			s = mp->start + mp->size - size;
   2998 			if (s >= mp->start && mp->size >= size) {
   2999 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3000 				DPRINTFN(BOOT,
   3001 				    ("pmap_boot_find_memory: b-avail[%d] start "
   3002 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3003 				     mp->start, mp->size));
   3004 				mp->size -= size;
   3005 				DPRINTFN(BOOT,
   3006 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3007 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3008 				     mp->start, mp->size));
   3009 				return s;
   3010 			}
   3011 		}
   3012 		panic("pmap_boot_find_memory: no available memory");
   3013 	}
   3014 
   3015 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3016 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3017 		e = s + size;
   3018 
   3019 		/*
   3020 		 * Is the calculated region entirely within the region?
   3021 		 */
   3022 		if (s < mp->start || e > mp->start + mp->size)
   3023 			continue;
   3024 
   3025 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3026 		if (s == mp->start) {
   3027 			/*
   3028 			 * If the block starts at the beginning of region,
   3029 			 * adjust the size & start. (the region may now be
   3030 			 * zero in length)
   3031 			 */
   3032 			DPRINTFN(BOOT,
   3033 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3034 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3035 			mp->start += size;
   3036 			mp->size -= size;
   3037 			DPRINTFN(BOOT,
   3038 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3039 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3040 		} else if (e == mp->start + mp->size) {
   3041 			/*
   3042 			 * If the block starts at the beginning of region,
   3043 			 * adjust only the size.
   3044 			 */
   3045 			DPRINTFN(BOOT,
   3046 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3047 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3048 			mp->size -= size;
   3049 			DPRINTFN(BOOT,
   3050 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3051 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3052 		} else {
   3053 			/*
   3054 			 * Block is in the middle of the region, so we
   3055 			 * have to split it in two.
   3056 			 */
   3057 			for (j = avail_cnt; j > i + 1; j--) {
   3058 				avail[j] = avail[j-1];
   3059 			}
   3060 			DPRINTFN(BOOT,
   3061 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3062 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3063 			mp[1].start = e;
   3064 			mp[1].size = mp[0].start + mp[0].size - e;
   3065 			mp[0].size = s - mp[0].start;
   3066 			avail_cnt++;
   3067 			for (; i < avail_cnt; i++) {
   3068 				DPRINTFN(BOOT,
   3069 				    ("pmap_boot_find_memory: a-avail[%d] "
   3070 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3071 				     avail[i].start, avail[i].size));
   3072 			}
   3073 		}
   3074 		KASSERT(s == (uintptr_t) s);
   3075 		return s;
   3076 	}
   3077 	panic("pmap_boot_find_memory: not enough memory for "
   3078 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3079 }
   3080 
   3081 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3082 #if defined (PMAP_OEA64_BRIDGE)
   3083 int
   3084 pmap_setup_segment0_map(int use_large_pages, ...)
   3085 {
   3086     vaddr_t va;
   3087 
   3088     register_t pte_lo = 0x0;
   3089     int ptegidx = 0, i = 0;
   3090     struct pte pte;
   3091     va_list ap;
   3092 
   3093     /* Coherent + Supervisor RW, no user access */
   3094     pte_lo = PTE_M;
   3095 
   3096     /* XXXSL
   3097      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3098      * these have to take priority.
   3099      */
   3100     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3101         ptegidx = va_to_pteg(pmap_kernel(), va);
   3102         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3103         i = pmap_pte_insert(ptegidx, &pte);
   3104     }
   3105 
   3106     va_start(ap, use_large_pages);
   3107     while (1) {
   3108         paddr_t pa;
   3109         size_t size;
   3110 
   3111         va = va_arg(ap, vaddr_t);
   3112 
   3113         if (va == 0)
   3114             break;
   3115 
   3116         pa = va_arg(ap, paddr_t);
   3117         size = va_arg(ap, size_t);
   3118 
   3119         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3120 #if 0
   3121 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3122 #endif
   3123             ptegidx = va_to_pteg(pmap_kernel(), va);
   3124             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3125             i = pmap_pte_insert(ptegidx, &pte);
   3126         }
   3127     }
   3128 
   3129     TLBSYNC();
   3130     SYNC();
   3131     return (0);
   3132 }
   3133 #endif /* PMAP_OEA64_BRIDGE */
   3134 
   3135 /*
   3136  * This is not part of the defined PMAP interface and is specific to the
   3137  * PowerPC architecture.  This is called during initppc, before the system
   3138  * is really initialized.
   3139  */
   3140 void
   3141 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3142 {
   3143 	struct mem_region *mp, tmp;
   3144 	paddr_t s, e;
   3145 	psize_t size;
   3146 	int i, j;
   3147 
   3148 	/*
   3149 	 * Get memory.
   3150 	 */
   3151 	mem_regions(&mem, &avail);
   3152 #if defined(DEBUG)
   3153 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3154 		printf("pmap_bootstrap: memory configuration:\n");
   3155 		for (mp = mem; mp->size; mp++) {
   3156 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3157 				mp->start, mp->size);
   3158 		}
   3159 		for (mp = avail; mp->size; mp++) {
   3160 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3161 				mp->start, mp->size);
   3162 		}
   3163 	}
   3164 #endif
   3165 
   3166 	/*
   3167 	 * Find out how much physical memory we have and in how many chunks.
   3168 	 */
   3169 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3170 		if (mp->start >= pmap_memlimit)
   3171 			continue;
   3172 		if (mp->start + mp->size > pmap_memlimit) {
   3173 			size = pmap_memlimit - mp->start;
   3174 			physmem += btoc(size);
   3175 		} else {
   3176 			physmem += btoc(mp->size);
   3177 		}
   3178 		mem_cnt++;
   3179 	}
   3180 
   3181 	/*
   3182 	 * Count the number of available entries.
   3183 	 */
   3184 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3185 		avail_cnt++;
   3186 
   3187 	/*
   3188 	 * Page align all regions.
   3189 	 */
   3190 	kernelstart = trunc_page(kernelstart);
   3191 	kernelend = round_page(kernelend);
   3192 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3193 		s = round_page(mp->start);
   3194 		mp->size -= (s - mp->start);
   3195 		mp->size = trunc_page(mp->size);
   3196 		mp->start = s;
   3197 		e = mp->start + mp->size;
   3198 
   3199 		DPRINTFN(BOOT,
   3200 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3201 		    i, mp->start, mp->size));
   3202 
   3203 		/*
   3204 		 * Don't allow the end to run beyond our artificial limit
   3205 		 */
   3206 		if (e > pmap_memlimit)
   3207 			e = pmap_memlimit;
   3208 
   3209 		/*
   3210 		 * Is this region empty or strange?  skip it.
   3211 		 */
   3212 		if (e <= s) {
   3213 			mp->start = 0;
   3214 			mp->size = 0;
   3215 			continue;
   3216 		}
   3217 
   3218 		/*
   3219 		 * Does this overlap the beginning of kernel?
   3220 		 *   Does extend past the end of the kernel?
   3221 		 */
   3222 		else if (s < kernelstart && e > kernelstart) {
   3223 			if (e > kernelend) {
   3224 				avail[avail_cnt].start = kernelend;
   3225 				avail[avail_cnt].size = e - kernelend;
   3226 				avail_cnt++;
   3227 			}
   3228 			mp->size = kernelstart - s;
   3229 		}
   3230 		/*
   3231 		 * Check whether this region overlaps the end of the kernel.
   3232 		 */
   3233 		else if (s < kernelend && e > kernelend) {
   3234 			mp->start = kernelend;
   3235 			mp->size = e - kernelend;
   3236 		}
   3237 		/*
   3238 		 * Look whether this regions is completely inside the kernel.
   3239 		 * Nuke it if it does.
   3240 		 */
   3241 		else if (s >= kernelstart && e <= kernelend) {
   3242 			mp->start = 0;
   3243 			mp->size = 0;
   3244 		}
   3245 		/*
   3246 		 * If the user imposed a memory limit, enforce it.
   3247 		 */
   3248 		else if (s >= pmap_memlimit) {
   3249 			mp->start = -PAGE_SIZE;	/* let's know why */
   3250 			mp->size = 0;
   3251 		}
   3252 		else {
   3253 			mp->start = s;
   3254 			mp->size = e - s;
   3255 		}
   3256 		DPRINTFN(BOOT,
   3257 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3258 		    i, mp->start, mp->size));
   3259 	}
   3260 
   3261 	/*
   3262 	 * Move (and uncount) all the null return to the end.
   3263 	 */
   3264 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3265 		if (mp->size == 0) {
   3266 			tmp = avail[i];
   3267 			avail[i] = avail[--avail_cnt];
   3268 			avail[avail_cnt] = avail[i];
   3269 		}
   3270 	}
   3271 
   3272 	/*
   3273 	 * (Bubble)sort them into asecnding order.
   3274 	 */
   3275 	for (i = 0; i < avail_cnt; i++) {
   3276 		for (j = i + 1; j < avail_cnt; j++) {
   3277 			if (avail[i].start > avail[j].start) {
   3278 				tmp = avail[i];
   3279 				avail[i] = avail[j];
   3280 				avail[j] = tmp;
   3281 			}
   3282 		}
   3283 	}
   3284 
   3285 	/*
   3286 	 * Make sure they don't overlap.
   3287 	 */
   3288 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3289 		if (mp[0].start + mp[0].size > mp[1].start) {
   3290 			mp[0].size = mp[1].start - mp[0].start;
   3291 		}
   3292 		DPRINTFN(BOOT,
   3293 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3294 		    i, mp->start, mp->size));
   3295 	}
   3296 	DPRINTFN(BOOT,
   3297 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3298 	    i, mp->start, mp->size));
   3299 
   3300 #ifdef	PTEGCOUNT
   3301 	pmap_pteg_cnt = PTEGCOUNT;
   3302 #else /* PTEGCOUNT */
   3303 
   3304 	pmap_pteg_cnt = 0x1000;
   3305 
   3306 	while (pmap_pteg_cnt < physmem)
   3307 		pmap_pteg_cnt <<= 1;
   3308 
   3309 	pmap_pteg_cnt >>= 1;
   3310 #endif /* PTEGCOUNT */
   3311 
   3312 #ifdef DEBUG
   3313 	DPRINTFN(BOOT,
   3314 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3315 #endif
   3316 
   3317 	/*
   3318 	 * Find suitably aligned memory for PTEG hash table.
   3319 	 */
   3320 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3321 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3322 
   3323 #ifdef DEBUG
   3324 	DPRINTFN(BOOT,
   3325 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3326 #endif
   3327 
   3328 
   3329 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3330 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3331 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3332 		    pmap_pteg_table, size);
   3333 #endif
   3334 
   3335 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3336 		pmap_pteg_cnt * sizeof(struct pteg));
   3337 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3338 
   3339 	/*
   3340 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3341 	 * with pages.  So we just steal them before giving them to UVM.
   3342 	 */
   3343 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3344 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3345 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3346 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3347 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3348 		    pmap_pvo_table, size);
   3349 #endif
   3350 
   3351 	for (i = 0; i < pmap_pteg_cnt; i++)
   3352 		TAILQ_INIT(&pmap_pvo_table[i]);
   3353 
   3354 #ifndef MSGBUFADDR
   3355 	/*
   3356 	 * Allocate msgbuf in high memory.
   3357 	 */
   3358 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3359 #endif
   3360 
   3361 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3362 		paddr_t pfstart = atop(mp->start);
   3363 		paddr_t pfend = atop(mp->start + mp->size);
   3364 		if (mp->size == 0)
   3365 			continue;
   3366 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3367 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3368 				VM_FREELIST_FIRST256);
   3369 		} else if (mp->start >= SEGMENT_LENGTH) {
   3370 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3371 				VM_FREELIST_DEFAULT);
   3372 		} else {
   3373 			pfend = atop(SEGMENT_LENGTH);
   3374 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3375 				VM_FREELIST_FIRST256);
   3376 			pfstart = atop(SEGMENT_LENGTH);
   3377 			pfend = atop(mp->start + mp->size);
   3378 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3379 				VM_FREELIST_DEFAULT);
   3380 		}
   3381 	}
   3382 
   3383 	/*
   3384 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3385 	 */
   3386 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3387 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3388 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3389 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3390 	pmap_vsid_bitmap[0] |= 1;
   3391 
   3392 	/*
   3393 	 * Initialize kernel pmap and hardware.
   3394 	 */
   3395 
   3396 /* PMAP_OEA64_BRIDGE does support these instructions */
   3397 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3398 	for (i = 0; i < 16; i++) {
   3399  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3400 		__asm volatile ("mtsrin %0,%1"
   3401  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3402 	}
   3403 
   3404 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3405 	__asm volatile ("mtsr %0,%1"
   3406 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3407 #ifdef KERNEL2_SR
   3408 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3409 	__asm volatile ("mtsr %0,%1"
   3410 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3411 #endif
   3412 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3413 #if defined (PMAP_OEA)
   3414 	for (i = 0; i < 16; i++) {
   3415 		if (iosrtable[i] & SR601_T) {
   3416 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3417 			__asm volatile ("mtsrin %0,%1"
   3418 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3419 		}
   3420 	}
   3421 	__asm volatile ("sync; mtsdr1 %0; isync"
   3422 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3423 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3424  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3425  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3426 #endif
   3427 	tlbia();
   3428 
   3429 #ifdef ALTIVEC
   3430 	pmap_use_altivec = cpu_altivec;
   3431 #endif
   3432 
   3433 #ifdef DEBUG
   3434 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3435 		u_int cnt;
   3436 		int bank;
   3437 		char pbuf[9];
   3438 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3439 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3440 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3441 			    bank,
   3442 			    ptoa(vm_physmem[bank].avail_start),
   3443 			    ptoa(vm_physmem[bank].avail_end),
   3444 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3445 		}
   3446 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3447 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3448 		    pbuf, cnt);
   3449 	}
   3450 #endif
   3451 
   3452 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3453 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3454 	    &pmap_pool_uallocator, IPL_NONE);
   3455 
   3456 	pool_setlowat(&pmap_upvo_pool, 252);
   3457 
   3458 	pool_init(&pmap_pool, sizeof(struct pmap),
   3459 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3460 	    IPL_NONE);
   3461 
   3462 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3463 	{
   3464 		struct pmap *pm = pmap_kernel();
   3465 #if 0
   3466 		extern int etext[], kernel_text[];
   3467 		vaddr_t va, va_etext = (paddr_t) etext;
   3468 #endif
   3469 		paddr_t pa, pa_end;
   3470 		register_t sr;
   3471 		struct pte pt;
   3472 		unsigned int ptegidx;
   3473 		int bank;
   3474 
   3475 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3476 		pm->pm_sr[0] = sr;
   3477 
   3478 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3479 			pa_end = ptoa(vm_physmem[bank].avail_end);
   3480 			pa = ptoa(vm_physmem[bank].avail_start);
   3481 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3482 				ptegidx = va_to_pteg(pm, pa);
   3483 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3484 				pmap_pte_insert(ptegidx, &pt);
   3485 			}
   3486 		}
   3487 
   3488 #if 0
   3489 		va = (vaddr_t) kernel_text;
   3490 
   3491 		for (pa = kernelstart; va < va_etext;
   3492 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3493 			ptegidx = va_to_pteg(pm, va);
   3494 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3495 			pmap_pte_insert(ptegidx, &pt);
   3496 		}
   3497 
   3498 		for (; pa < kernelend;
   3499 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3500 			ptegidx = va_to_pteg(pm, va);
   3501 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3502 			pmap_pte_insert(ptegidx, &pt);
   3503 		}
   3504 
   3505 		for (va = 0, pa = 0; va < 0x3000;
   3506 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3507 			ptegidx = va_to_pteg(pm, va);
   3508 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3509 			pmap_pte_insert(ptegidx, &pt);
   3510 		}
   3511 #endif
   3512 
   3513 		__asm volatile ("mtsrin %0,%1"
   3514  			      :: "r"(sr), "r"(kernelstart));
   3515 	}
   3516 #endif
   3517 }
   3518