pmap.c revision 1.54 1 /* $NetBSD: pmap.c,v 1.54 2008/02/05 22:15:30 mlelstv Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43 * Copyright (C) 1995, 1996 TooLs GmbH.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by TooLs GmbH.
57 * 4. The name of TooLs GmbH may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.54 2008/02/05 22:15:30 mlelstv Exp $");
74
75 #define PMAP_NOOPNAMES
76
77 #include "opt_ppcarch.h"
78 #include "opt_altivec.h"
79 #include "opt_pmap.h"
80 #include <sys/param.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83 #include <sys/user.h>
84 #include <sys/pool.h>
85 #include <sys/queue.h>
86 #include <sys/device.h> /* for evcnt */
87 #include <sys/systm.h>
88 #include <sys/atomic.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97 #include <powerpc/stdarg.h>
98
99 #ifdef ALTIVEC
100 int pmap_use_altivec;
101 #endif
102
103 volatile struct pteg *pmap_pteg_table;
104 unsigned int pmap_pteg_cnt;
105 unsigned int pmap_pteg_mask;
106 #ifdef PMAP_MEMLIMIT
107 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
108 #else
109 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
110 #endif
111
112 struct pmap kernel_pmap_;
113 unsigned int pmap_pages_stolen;
114 u_long pmap_pte_valid;
115 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
116 u_long pmap_pvo_enter_depth;
117 u_long pmap_pvo_remove_depth;
118 #endif
119
120 int physmem;
121 #ifndef MSGBUFADDR
122 extern paddr_t msgbuf_paddr;
123 #endif
124
125 static struct mem_region *mem, *avail;
126 static u_int mem_cnt, avail_cnt;
127
128 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
129 # define PMAP_OEA 1
130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
131 # define PMAPNAME(name) pmap_##name
132 # endif
133 #endif
134
135 #if defined(PMAP_OEA64)
136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
137 # define PMAPNAME(name) pmap_##name
138 # endif
139 #endif
140
141 #if defined(PMAP_OEA64_BRIDGE)
142 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
143 # define PMAPNAME(name) pmap_##name
144 # endif
145 #endif
146
147 #if defined(PMAP_OEA)
148 #define _PRIxpte "lx"
149 #else
150 #define _PRIxpte PRIx64
151 #endif
152 #define _PRIxpa "lx"
153 #define _PRIxva "lx"
154 #define _PRIsr "lx"
155
156 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
157 #if defined(PMAP_OEA)
158 #define PMAPNAME(name) pmap32_##name
159 #elif defined(PMAP_OEA64)
160 #define PMAPNAME(name) pmap64_##name
161 #elif defined(PMAP_OEA64_BRIDGE)
162 #define PMAPNAME(name) pmap64bridge_##name
163 #else
164 #error unknown variant for pmap
165 #endif
166 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
167
168 #if defined(PMAPNAME)
169 #define STATIC static
170 #define pmap_pte_spill PMAPNAME(pte_spill)
171 #define pmap_real_memory PMAPNAME(real_memory)
172 #define pmap_init PMAPNAME(init)
173 #define pmap_virtual_space PMAPNAME(virtual_space)
174 #define pmap_create PMAPNAME(create)
175 #define pmap_reference PMAPNAME(reference)
176 #define pmap_destroy PMAPNAME(destroy)
177 #define pmap_copy PMAPNAME(copy)
178 #define pmap_update PMAPNAME(update)
179 #define pmap_collect PMAPNAME(collect)
180 #define pmap_enter PMAPNAME(enter)
181 #define pmap_remove PMAPNAME(remove)
182 #define pmap_kenter_pa PMAPNAME(kenter_pa)
183 #define pmap_kremove PMAPNAME(kremove)
184 #define pmap_extract PMAPNAME(extract)
185 #define pmap_protect PMAPNAME(protect)
186 #define pmap_unwire PMAPNAME(unwire)
187 #define pmap_page_protect PMAPNAME(page_protect)
188 #define pmap_query_bit PMAPNAME(query_bit)
189 #define pmap_clear_bit PMAPNAME(clear_bit)
190
191 #define pmap_activate PMAPNAME(activate)
192 #define pmap_deactivate PMAPNAME(deactivate)
193
194 #define pmap_pinit PMAPNAME(pinit)
195 #define pmap_procwr PMAPNAME(procwr)
196
197 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
198 #define pmap_pte_print PMAPNAME(pte_print)
199 #define pmap_pteg_check PMAPNAME(pteg_check)
200 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
201 #define pmap_print_pte PMAPNAME(print_pte)
202 #define pmap_pteg_dist PMAPNAME(pteg_dist)
203 #endif
204 #if defined(DEBUG) || defined(PMAPCHECK)
205 #define pmap_pvo_verify PMAPNAME(pvo_verify)
206 #endif
207 #define pmap_steal_memory PMAPNAME(steal_memory)
208 #define pmap_bootstrap PMAPNAME(bootstrap)
209 #else
210 #define STATIC /* nothing */
211 #endif /* PMAPNAME */
212
213 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
214 STATIC void pmap_real_memory(paddr_t *, psize_t *);
215 STATIC void pmap_init(void);
216 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
217 STATIC pmap_t pmap_create(void);
218 STATIC void pmap_reference(pmap_t);
219 STATIC void pmap_destroy(pmap_t);
220 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
221 STATIC void pmap_update(pmap_t);
222 STATIC void pmap_collect(pmap_t);
223 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
224 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
225 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
226 STATIC void pmap_kremove(vaddr_t, vsize_t);
227 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
228
229 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
230 STATIC void pmap_unwire(pmap_t, vaddr_t);
231 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
232 STATIC bool pmap_query_bit(struct vm_page *, int);
233 STATIC bool pmap_clear_bit(struct vm_page *, int);
234
235 STATIC void pmap_activate(struct lwp *);
236 STATIC void pmap_deactivate(struct lwp *);
237
238 STATIC void pmap_pinit(pmap_t pm);
239 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
240
241 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
242 STATIC void pmap_pte_print(volatile struct pte *);
243 STATIC void pmap_pteg_check(void);
244 STATIC void pmap_print_mmuregs(void);
245 STATIC void pmap_print_pte(pmap_t, vaddr_t);
246 STATIC void pmap_pteg_dist(void);
247 #endif
248 #if defined(DEBUG) || defined(PMAPCHECK)
249 STATIC void pmap_pvo_verify(void);
250 #endif
251 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
252 STATIC void pmap_bootstrap(paddr_t, paddr_t);
253
254 #ifdef PMAPNAME
255 const struct pmap_ops PMAPNAME(ops) = {
256 .pmapop_pte_spill = pmap_pte_spill,
257 .pmapop_real_memory = pmap_real_memory,
258 .pmapop_init = pmap_init,
259 .pmapop_virtual_space = pmap_virtual_space,
260 .pmapop_create = pmap_create,
261 .pmapop_reference = pmap_reference,
262 .pmapop_destroy = pmap_destroy,
263 .pmapop_copy = pmap_copy,
264 .pmapop_update = pmap_update,
265 .pmapop_collect = pmap_collect,
266 .pmapop_enter = pmap_enter,
267 .pmapop_remove = pmap_remove,
268 .pmapop_kenter_pa = pmap_kenter_pa,
269 .pmapop_kremove = pmap_kremove,
270 .pmapop_extract = pmap_extract,
271 .pmapop_protect = pmap_protect,
272 .pmapop_unwire = pmap_unwire,
273 .pmapop_page_protect = pmap_page_protect,
274 .pmapop_query_bit = pmap_query_bit,
275 .pmapop_clear_bit = pmap_clear_bit,
276 .pmapop_activate = pmap_activate,
277 .pmapop_deactivate = pmap_deactivate,
278 .pmapop_pinit = pmap_pinit,
279 .pmapop_procwr = pmap_procwr,
280 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
281 .pmapop_pte_print = pmap_pte_print,
282 .pmapop_pteg_check = pmap_pteg_check,
283 .pmapop_print_mmuregs = pmap_print_mmuregs,
284 .pmapop_print_pte = pmap_print_pte,
285 .pmapop_pteg_dist = pmap_pteg_dist,
286 #else
287 .pmapop_pte_print = NULL,
288 .pmapop_pteg_check = NULL,
289 .pmapop_print_mmuregs = NULL,
290 .pmapop_print_pte = NULL,
291 .pmapop_pteg_dist = NULL,
292 #endif
293 #if defined(DEBUG) || defined(PMAPCHECK)
294 .pmapop_pvo_verify = pmap_pvo_verify,
295 #else
296 .pmapop_pvo_verify = NULL,
297 #endif
298 .pmapop_steal_memory = pmap_steal_memory,
299 .pmapop_bootstrap = pmap_bootstrap,
300 };
301 #endif /* !PMAPNAME */
302
303 /*
304 * The following structure is aligned to 32 bytes
305 */
306 struct pvo_entry {
307 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
308 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
309 struct pte pvo_pte; /* Prebuilt PTE */
310 pmap_t pvo_pmap; /* ptr to owning pmap */
311 vaddr_t pvo_vaddr; /* VA of entry */
312 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
313 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
314 #define PVO_WIRED 0x0010 /* PVO entry is wired */
315 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
316 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
317 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
318 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
319 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
320 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
321 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
322 #define PVO_SPILL_SET 2 /* PVO has been spilled */
323 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
324 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
325 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
326 #define PVO_REMOVE 6 /* PVO has been removed */
327 #define PVO_WHERE_MASK 15
328 #define PVO_WHERE_SHFT 8
329 } __attribute__ ((aligned (32)));
330 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
331 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
332 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
333 #define PVO_PTEGIDX_CLR(pvo) \
334 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
335 #define PVO_PTEGIDX_SET(pvo,i) \
336 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
337 #define PVO_WHERE(pvo,w) \
338 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
339 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
340
341 TAILQ_HEAD(pvo_tqhead, pvo_entry);
342 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
343 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
344 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
345
346 struct pool pmap_pool; /* pool for pmap structures */
347 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
348 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
349
350 /*
351 * We keep a cache of unmanaged pages to be used for pvo entries for
352 * unmanaged pages.
353 */
354 struct pvo_page {
355 SIMPLEQ_ENTRY(pvo_page) pvop_link;
356 };
357 SIMPLEQ_HEAD(pvop_head, pvo_page);
358 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
359 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
360 u_long pmap_upvop_free;
361 u_long pmap_upvop_maxfree;
362 u_long pmap_mpvop_free;
363 u_long pmap_mpvop_maxfree;
364
365 static void *pmap_pool_ualloc(struct pool *, int);
366 static void *pmap_pool_malloc(struct pool *, int);
367
368 static void pmap_pool_ufree(struct pool *, void *);
369 static void pmap_pool_mfree(struct pool *, void *);
370
371 static struct pool_allocator pmap_pool_mallocator = {
372 .pa_alloc = pmap_pool_malloc,
373 .pa_free = pmap_pool_mfree,
374 .pa_pagesz = 0,
375 };
376
377 static struct pool_allocator pmap_pool_uallocator = {
378 .pa_alloc = pmap_pool_ualloc,
379 .pa_free = pmap_pool_ufree,
380 .pa_pagesz = 0,
381 };
382
383 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
384 void pmap_pte_print(volatile struct pte *);
385 void pmap_pteg_check(void);
386 void pmap_pteg_dist(void);
387 void pmap_print_pte(pmap_t, vaddr_t);
388 void pmap_print_mmuregs(void);
389 #endif
390
391 #if defined(DEBUG) || defined(PMAPCHECK)
392 #ifdef PMAPCHECK
393 int pmapcheck = 1;
394 #else
395 int pmapcheck = 0;
396 #endif
397 void pmap_pvo_verify(void);
398 static void pmap_pvo_check(const struct pvo_entry *);
399 #define PMAP_PVO_CHECK(pvo) \
400 do { \
401 if (pmapcheck) \
402 pmap_pvo_check(pvo); \
403 } while (0)
404 #else
405 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
406 #endif
407 static int pmap_pte_insert(int, struct pte *);
408 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
409 vaddr_t, paddr_t, register_t, int);
410 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
411 static void pmap_pvo_free(struct pvo_entry *);
412 static void pmap_pvo_free_list(struct pvo_head *);
413 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
414 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
415 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
416 static void pvo_set_exec(struct pvo_entry *);
417 static void pvo_clear_exec(struct pvo_entry *);
418
419 static void tlbia(void);
420
421 static void pmap_release(pmap_t);
422 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
423
424 static uint32_t pmap_pvo_reclaim_nextidx;
425 #ifdef DEBUG
426 static int pmap_pvo_reclaim_debugctr;
427 #endif
428
429 #define VSID_NBPW (sizeof(uint32_t) * 8)
430 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
431
432 static int pmap_initialized;
433
434 #if defined(DEBUG) || defined(PMAPDEBUG)
435 #define PMAPDEBUG_BOOT 0x0001
436 #define PMAPDEBUG_PTE 0x0002
437 #define PMAPDEBUG_EXEC 0x0008
438 #define PMAPDEBUG_PVOENTER 0x0010
439 #define PMAPDEBUG_PVOREMOVE 0x0020
440 #define PMAPDEBUG_ACTIVATE 0x0100
441 #define PMAPDEBUG_CREATE 0x0200
442 #define PMAPDEBUG_ENTER 0x1000
443 #define PMAPDEBUG_KENTER 0x2000
444 #define PMAPDEBUG_KREMOVE 0x4000
445 #define PMAPDEBUG_REMOVE 0x8000
446
447 unsigned int pmapdebug = 0;
448
449 # define DPRINTF(x) printf x
450 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
451 #else
452 # define DPRINTF(x)
453 # define DPRINTFN(n, x)
454 #endif
455
456
457 #ifdef PMAPCOUNTERS
458 /*
459 * From pmap_subr.c
460 */
461 extern struct evcnt pmap_evcnt_mappings;
462 extern struct evcnt pmap_evcnt_unmappings;
463
464 extern struct evcnt pmap_evcnt_kernel_mappings;
465 extern struct evcnt pmap_evcnt_kernel_unmappings;
466
467 extern struct evcnt pmap_evcnt_mappings_replaced;
468
469 extern struct evcnt pmap_evcnt_exec_mappings;
470 extern struct evcnt pmap_evcnt_exec_cached;
471
472 extern struct evcnt pmap_evcnt_exec_synced;
473 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
474 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
475
476 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
477 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
478 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
479 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
480 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
481
482 extern struct evcnt pmap_evcnt_updates;
483 extern struct evcnt pmap_evcnt_collects;
484 extern struct evcnt pmap_evcnt_copies;
485
486 extern struct evcnt pmap_evcnt_ptes_spilled;
487 extern struct evcnt pmap_evcnt_ptes_unspilled;
488 extern struct evcnt pmap_evcnt_ptes_evicted;
489
490 extern struct evcnt pmap_evcnt_ptes_primary[8];
491 extern struct evcnt pmap_evcnt_ptes_secondary[8];
492 extern struct evcnt pmap_evcnt_ptes_removed;
493 extern struct evcnt pmap_evcnt_ptes_changed;
494 extern struct evcnt pmap_evcnt_pvos_reclaimed;
495 extern struct evcnt pmap_evcnt_pvos_failed;
496
497 extern struct evcnt pmap_evcnt_zeroed_pages;
498 extern struct evcnt pmap_evcnt_copied_pages;
499 extern struct evcnt pmap_evcnt_idlezeroed_pages;
500
501 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
502 #define PMAPCOUNT2(ev) ((ev).ev_count++)
503 #else
504 #define PMAPCOUNT(ev) ((void) 0)
505 #define PMAPCOUNT2(ev) ((void) 0)
506 #endif
507
508 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
509
510 /* XXXSL: this needs to be moved to assembler */
511 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
512
513 #define TLBSYNC() __asm volatile("tlbsync")
514 #define SYNC() __asm volatile("sync")
515 #define EIEIO() __asm volatile("eieio")
516 #define MFMSR() mfmsr()
517 #define MTMSR(psl) mtmsr(psl)
518 #define MFPVR() mfpvr()
519 #define MFSRIN(va) mfsrin(va)
520 #define MFTB() mfrtcltbl()
521
522 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
523 static inline register_t
524 mfsrin(vaddr_t va)
525 {
526 register_t sr;
527 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
528 return sr;
529 }
530 #endif /* PMAP_OEA*/
531
532 #if defined (PMAP_OEA64_BRIDGE)
533 extern void mfmsr64 (register64_t *result);
534 #endif /* PMAP_OEA64_BRIDGE */
535
536 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
537 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
538
539 static inline register_t
540 pmap_interrupts_off(void)
541 {
542 register_t msr = MFMSR();
543 if (msr & PSL_EE)
544 MTMSR(msr & ~PSL_EE);
545 return msr;
546 }
547
548 static void
549 pmap_interrupts_restore(register_t msr)
550 {
551 if (msr & PSL_EE)
552 MTMSR(msr);
553 }
554
555 static inline u_int32_t
556 mfrtcltbl(void)
557 {
558
559 if ((MFPVR() >> 16) == MPC601)
560 return (mfrtcl() >> 7);
561 else
562 return (mftbl());
563 }
564
565 /*
566 * These small routines may have to be replaced,
567 * if/when we support processors other that the 604.
568 */
569
570 void
571 tlbia(void)
572 {
573 char *i;
574
575 SYNC();
576 #if defined(PMAP_OEA)
577 /*
578 * Why not use "tlbia"? Because not all processors implement it.
579 *
580 * This needs to be a per-CPU callback to do the appropriate thing
581 * for the CPU. XXX
582 */
583 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
584 TLBIE(i);
585 EIEIO();
586 SYNC();
587 }
588 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
589 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
590 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
591 TLBIEL(i);
592 EIEIO();
593 SYNC();
594 }
595 #endif
596 TLBSYNC();
597 SYNC();
598 }
599
600 static inline register_t
601 va_to_vsid(const struct pmap *pm, vaddr_t addr)
602 {
603 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
604 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
605 #else /* PMAP_OEA64 */
606 #if 0
607 const struct ste *ste;
608 register_t hash;
609 int i;
610
611 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
612
613 /*
614 * Try the primary group first
615 */
616 ste = pm->pm_stes[hash].stes;
617 for (i = 0; i < 8; i++, ste++) {
618 if (ste->ste_hi & STE_V) &&
619 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
620 return ste;
621 }
622
623 /*
624 * Then the secondary group.
625 */
626 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
627 for (i = 0; i < 8; i++, ste++) {
628 if (ste->ste_hi & STE_V) &&
629 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
630 return addr;
631 }
632
633 return NULL;
634 #else
635 /*
636 * Rather than searching the STE groups for the VSID, we know
637 * how we generate that from the ESID and so do that.
638 */
639 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
640 #endif
641 #endif /* PMAP_OEA */
642 }
643
644 static inline register_t
645 va_to_pteg(const struct pmap *pm, vaddr_t addr)
646 {
647 register_t hash;
648
649 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
650 return hash & pmap_pteg_mask;
651 }
652
653 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
654 /*
655 * Given a PTE in the page table, calculate the VADDR that hashes to it.
656 * The only bit of magic is that the top 4 bits of the address doesn't
657 * technically exist in the PTE. But we know we reserved 4 bits of the
658 * VSID for it so that's how we get it.
659 */
660 static vaddr_t
661 pmap_pte_to_va(volatile const struct pte *pt)
662 {
663 vaddr_t va;
664 uintptr_t ptaddr = (uintptr_t) pt;
665
666 if (pt->pte_hi & PTE_HID)
667 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
668
669 /* PPC Bits 10-19 PPC64 Bits 42-51 */
670 #if defined(PMAP_OEA)
671 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
672 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
673 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
674 #endif
675 va <<= ADDR_PIDX_SHFT;
676
677 /* PPC Bits 4-9 PPC64 Bits 36-41 */
678 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
679
680 #if defined(PMAP_OEA64)
681 /* PPC63 Bits 0-35 */
682 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
683 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
684 /* PPC Bits 0-3 */
685 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
686 #endif
687
688 return va;
689 }
690 #endif
691
692 static inline struct pvo_head *
693 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
694 {
695 struct vm_page *pg;
696
697 pg = PHYS_TO_VM_PAGE(pa);
698 if (pg_p != NULL)
699 *pg_p = pg;
700 if (pg == NULL)
701 return &pmap_pvo_unmanaged;
702 return &pg->mdpage.mdpg_pvoh;
703 }
704
705 static inline struct pvo_head *
706 vm_page_to_pvoh(struct vm_page *pg)
707 {
708 return &pg->mdpage.mdpg_pvoh;
709 }
710
711
712 static inline void
713 pmap_attr_clear(struct vm_page *pg, int ptebit)
714 {
715 pg->mdpage.mdpg_attrs &= ~ptebit;
716 }
717
718 static inline int
719 pmap_attr_fetch(struct vm_page *pg)
720 {
721 return pg->mdpage.mdpg_attrs;
722 }
723
724 static inline void
725 pmap_attr_save(struct vm_page *pg, int ptebit)
726 {
727 pg->mdpage.mdpg_attrs |= ptebit;
728 }
729
730 static inline int
731 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
732 {
733 if (pt->pte_hi == pvo_pt->pte_hi
734 #if 0
735 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
736 ~(PTE_REF|PTE_CHG)) == 0
737 #endif
738 )
739 return 1;
740 return 0;
741 }
742
743 static inline void
744 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
745 {
746 /*
747 * Construct the PTE. Default to IMB initially. Valid bit
748 * only gets set when the real pte is set in memory.
749 *
750 * Note: Don't set the valid bit for correct operation of tlb update.
751 */
752 #if defined(PMAP_OEA)
753 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
754 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
755 pt->pte_lo = pte_lo;
756 #elif defined (PMAP_OEA64_BRIDGE)
757 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
758 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
759 pt->pte_lo = (u_int64_t) pte_lo;
760 #elif defined (PMAP_OEA64)
761 #error PMAP_OEA64 not supported
762 #endif /* PMAP_OEA */
763 }
764
765 static inline void
766 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
767 {
768 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
769 }
770
771 static inline void
772 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
773 {
774 /*
775 * As shown in Section 7.6.3.2.3
776 */
777 pt->pte_lo &= ~ptebit;
778 TLBIE(va);
779 SYNC();
780 EIEIO();
781 TLBSYNC();
782 SYNC();
783 }
784
785 static inline void
786 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
787 {
788 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
789 if (pvo_pt->pte_hi & PTE_VALID)
790 panic("pte_set: setting an already valid pte %p", pvo_pt);
791 #endif
792 pvo_pt->pte_hi |= PTE_VALID;
793
794 /*
795 * Update the PTE as defined in section 7.6.3.1
796 * Note that the REF/CHG bits are from pvo_pt and thus should
797 * have been saved so this routine can restore them (if desired).
798 */
799 pt->pte_lo = pvo_pt->pte_lo;
800 EIEIO();
801 pt->pte_hi = pvo_pt->pte_hi;
802 TLBSYNC();
803 SYNC();
804 pmap_pte_valid++;
805 }
806
807 static inline void
808 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
809 {
810 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
811 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
812 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
813 if ((pt->pte_hi & PTE_VALID) == 0)
814 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
815 #endif
816
817 pvo_pt->pte_hi &= ~PTE_VALID;
818 /*
819 * Force the ref & chg bits back into the PTEs.
820 */
821 SYNC();
822 /*
823 * Invalidate the pte ... (Section 7.6.3.3)
824 */
825 pt->pte_hi &= ~PTE_VALID;
826 SYNC();
827 TLBIE(va);
828 SYNC();
829 EIEIO();
830 TLBSYNC();
831 SYNC();
832 /*
833 * Save the ref & chg bits ...
834 */
835 pmap_pte_synch(pt, pvo_pt);
836 pmap_pte_valid--;
837 }
838
839 static inline void
840 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
841 {
842 /*
843 * Invalidate the PTE
844 */
845 pmap_pte_unset(pt, pvo_pt, va);
846 pmap_pte_set(pt, pvo_pt);
847 }
848
849 /*
850 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
851 * (either primary or secondary location).
852 *
853 * Note: both the destination and source PTEs must not have PTE_VALID set.
854 */
855
856 static int
857 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
858 {
859 volatile struct pte *pt;
860 int i;
861
862 #if defined(DEBUG)
863 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
864 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
865 #endif
866 /*
867 * First try primary hash.
868 */
869 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
870 if ((pt->pte_hi & PTE_VALID) == 0) {
871 pvo_pt->pte_hi &= ~PTE_HID;
872 pmap_pte_set(pt, pvo_pt);
873 return i;
874 }
875 }
876
877 /*
878 * Now try secondary hash.
879 */
880 ptegidx ^= pmap_pteg_mask;
881 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
882 if ((pt->pte_hi & PTE_VALID) == 0) {
883 pvo_pt->pte_hi |= PTE_HID;
884 pmap_pte_set(pt, pvo_pt);
885 return i;
886 }
887 }
888 return -1;
889 }
890
891 /*
892 * Spill handler.
893 *
894 * Tries to spill a page table entry from the overflow area.
895 * This runs in either real mode (if dealing with a exception spill)
896 * or virtual mode when dealing with manually spilling one of the
897 * kernel's pte entries. In either case, interrupts are already
898 * disabled.
899 */
900
901 int
902 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
903 {
904 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
905 struct pvo_entry *pvo;
906 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
907 struct pvo_tqhead *pvoh, *vpvoh = NULL;
908 int ptegidx, i, j;
909 volatile struct pteg *pteg;
910 volatile struct pte *pt;
911
912 PMAP_LOCK();
913
914 ptegidx = va_to_pteg(pm, addr);
915
916 /*
917 * Have to substitute some entry. Use the primary hash for this.
918 * Use low bits of timebase as random generator. Make sure we are
919 * not picking a kernel pte for replacement.
920 */
921 pteg = &pmap_pteg_table[ptegidx];
922 i = MFTB() & 7;
923 for (j = 0; j < 8; j++) {
924 pt = &pteg->pt[i];
925 if ((pt->pte_hi & PTE_VALID) == 0)
926 break;
927 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
928 < PHYSMAP_VSIDBITS)
929 break;
930 i = (i + 1) & 7;
931 }
932 KASSERT(j < 8);
933
934 source_pvo = NULL;
935 victim_pvo = NULL;
936 pvoh = &pmap_pvo_table[ptegidx];
937 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
938
939 /*
940 * We need to find pvo entry for this address...
941 */
942 PMAP_PVO_CHECK(pvo); /* sanity check */
943
944 /*
945 * If we haven't found the source and we come to a PVO with
946 * a valid PTE, then we know we can't find it because all
947 * evicted PVOs always are first in the list.
948 */
949 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
950 break;
951 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
952 addr == PVO_VADDR(pvo)) {
953
954 /*
955 * Now we have found the entry to be spilled into the
956 * pteg. Attempt to insert it into the page table.
957 */
958 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
959 if (j >= 0) {
960 PVO_PTEGIDX_SET(pvo, j);
961 PMAP_PVO_CHECK(pvo); /* sanity check */
962 PVO_WHERE(pvo, SPILL_INSERT);
963 pvo->pvo_pmap->pm_evictions--;
964 PMAPCOUNT(ptes_spilled);
965 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
966 ? pmap_evcnt_ptes_secondary
967 : pmap_evcnt_ptes_primary)[j]);
968
969 /*
970 * Since we keep the evicted entries at the
971 * from of the PVO list, we need move this
972 * (now resident) PVO after the evicted
973 * entries.
974 */
975 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
976
977 /*
978 * If we don't have to move (either we were the
979 * last entry or the next entry was valid),
980 * don't change our position. Otherwise
981 * move ourselves to the tail of the queue.
982 */
983 if (next_pvo != NULL &&
984 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
985 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
986 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
987 }
988 PMAP_UNLOCK();
989 return 1;
990 }
991 source_pvo = pvo;
992 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
993 return 0;
994 }
995 if (victim_pvo != NULL)
996 break;
997 }
998
999 /*
1000 * We also need the pvo entry of the victim we are replacing
1001 * so save the R & C bits of the PTE.
1002 */
1003 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1004 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1005 vpvoh = pvoh; /* *1* */
1006 victim_pvo = pvo;
1007 if (source_pvo != NULL)
1008 break;
1009 }
1010 }
1011
1012 if (source_pvo == NULL) {
1013 PMAPCOUNT(ptes_unspilled);
1014 PMAP_UNLOCK();
1015 return 0;
1016 }
1017
1018 if (victim_pvo == NULL) {
1019 if ((pt->pte_hi & PTE_HID) == 0)
1020 panic("pmap_pte_spill: victim p-pte (%p) has "
1021 "no pvo entry!", pt);
1022
1023 /*
1024 * If this is a secondary PTE, we need to search
1025 * its primary pvo bucket for the matching PVO.
1026 */
1027 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1028 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1029 PMAP_PVO_CHECK(pvo); /* sanity check */
1030
1031 /*
1032 * We also need the pvo entry of the victim we are
1033 * replacing so save the R & C bits of the PTE.
1034 */
1035 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1036 victim_pvo = pvo;
1037 break;
1038 }
1039 }
1040 if (victim_pvo == NULL)
1041 panic("pmap_pte_spill: victim s-pte (%p) has "
1042 "no pvo entry!", pt);
1043 }
1044
1045 /*
1046 * The victim should be not be a kernel PVO/PTE entry.
1047 */
1048 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1049 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1050 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1051
1052 /*
1053 * We are invalidating the TLB entry for the EA for the
1054 * we are replacing even though its valid; If we don't
1055 * we lose any ref/chg bit changes contained in the TLB
1056 * entry.
1057 */
1058 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1059
1060 /*
1061 * To enforce the PVO list ordering constraint that all
1062 * evicted entries should come before all valid entries,
1063 * move the source PVO to the tail of its list and the
1064 * victim PVO to the head of its list (which might not be
1065 * the same list, if the victim was using the secondary hash).
1066 */
1067 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1068 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1069 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1070 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1071 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1072 pmap_pte_set(pt, &source_pvo->pvo_pte);
1073 victim_pvo->pvo_pmap->pm_evictions++;
1074 source_pvo->pvo_pmap->pm_evictions--;
1075 PVO_WHERE(victim_pvo, SPILL_UNSET);
1076 PVO_WHERE(source_pvo, SPILL_SET);
1077
1078 PVO_PTEGIDX_CLR(victim_pvo);
1079 PVO_PTEGIDX_SET(source_pvo, i);
1080 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1081 PMAPCOUNT(ptes_spilled);
1082 PMAPCOUNT(ptes_evicted);
1083 PMAPCOUNT(ptes_removed);
1084
1085 PMAP_PVO_CHECK(victim_pvo);
1086 PMAP_PVO_CHECK(source_pvo);
1087
1088 PMAP_UNLOCK();
1089 return 1;
1090 }
1091
1092 /*
1093 * Restrict given range to physical memory
1094 */
1095 void
1096 pmap_real_memory(paddr_t *start, psize_t *size)
1097 {
1098 struct mem_region *mp;
1099
1100 for (mp = mem; mp->size; mp++) {
1101 if (*start + *size > mp->start
1102 && *start < mp->start + mp->size) {
1103 if (*start < mp->start) {
1104 *size -= mp->start - *start;
1105 *start = mp->start;
1106 }
1107 if (*start + *size > mp->start + mp->size)
1108 *size = mp->start + mp->size - *start;
1109 return;
1110 }
1111 }
1112 *size = 0;
1113 }
1114
1115 /*
1116 * Initialize anything else for pmap handling.
1117 * Called during vm_init().
1118 */
1119 void
1120 pmap_init(void)
1121 {
1122 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1123 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1124 &pmap_pool_mallocator, IPL_NONE);
1125
1126 pool_setlowat(&pmap_mpvo_pool, 1008);
1127
1128 pmap_initialized = 1;
1129
1130 }
1131
1132 /*
1133 * How much virtual space does the kernel get?
1134 */
1135 void
1136 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1137 {
1138 /*
1139 * For now, reserve one segment (minus some overhead) for kernel
1140 * virtual memory
1141 */
1142 *start = VM_MIN_KERNEL_ADDRESS;
1143 *end = VM_MAX_KERNEL_ADDRESS;
1144 }
1145
1146 /*
1147 * Allocate, initialize, and return a new physical map.
1148 */
1149 pmap_t
1150 pmap_create(void)
1151 {
1152 pmap_t pm;
1153
1154 pm = pool_get(&pmap_pool, PR_WAITOK);
1155 memset((void *)pm, 0, sizeof *pm);
1156 pmap_pinit(pm);
1157
1158 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1159 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1160 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1161 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1162 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1163 pm,
1164 pm->pm_sr[0], pm->pm_sr[1],
1165 pm->pm_sr[2], pm->pm_sr[3],
1166 pm->pm_sr[4], pm->pm_sr[5],
1167 pm->pm_sr[6], pm->pm_sr[7],
1168 pm->pm_sr[8], pm->pm_sr[9],
1169 pm->pm_sr[10], pm->pm_sr[11],
1170 pm->pm_sr[12], pm->pm_sr[13],
1171 pm->pm_sr[14], pm->pm_sr[15]));
1172 return pm;
1173 }
1174
1175 /*
1176 * Initialize a preallocated and zeroed pmap structure.
1177 */
1178 void
1179 pmap_pinit(pmap_t pm)
1180 {
1181 register_t entropy = MFTB();
1182 register_t mask;
1183 int i;
1184
1185 /*
1186 * Allocate some segment registers for this pmap.
1187 */
1188 pm->pm_refs = 1;
1189 PMAP_LOCK();
1190 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1191 static register_t pmap_vsidcontext;
1192 register_t hash;
1193 unsigned int n;
1194
1195 /* Create a new value by multiplying by a prime adding in
1196 * entropy from the timebase register. This is to make the
1197 * VSID more random so that the PT Hash function collides
1198 * less often. (note that the prime causes gcc to do shifts
1199 * instead of a multiply)
1200 */
1201 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1202 hash = pmap_vsidcontext & (NPMAPS - 1);
1203 if (hash == 0) { /* 0 is special, avoid it */
1204 entropy += 0xbadf00d;
1205 continue;
1206 }
1207 n = hash >> 5;
1208 mask = 1L << (hash & (VSID_NBPW-1));
1209 hash = pmap_vsidcontext;
1210 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1211 /* anything free in this bucket? */
1212 if (~pmap_vsid_bitmap[n] == 0) {
1213 entropy = hash ^ (hash >> 16);
1214 continue;
1215 }
1216 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1217 mask = 1L << i;
1218 hash &= ~(VSID_NBPW-1);
1219 hash |= i;
1220 }
1221 hash &= PTE_VSID >> PTE_VSID_SHFT;
1222 pmap_vsid_bitmap[n] |= mask;
1223 pm->pm_vsid = hash;
1224 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1225 for (i = 0; i < 16; i++)
1226 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1227 SR_NOEXEC;
1228 #endif
1229 PMAP_UNLOCK();
1230 return;
1231 }
1232 PMAP_UNLOCK();
1233 panic("pmap_pinit: out of segments");
1234 }
1235
1236 /*
1237 * Add a reference to the given pmap.
1238 */
1239 void
1240 pmap_reference(pmap_t pm)
1241 {
1242 atomic_inc_uint(&pm->pm_refs);
1243 }
1244
1245 /*
1246 * Retire the given pmap from service.
1247 * Should only be called if the map contains no valid mappings.
1248 */
1249 void
1250 pmap_destroy(pmap_t pm)
1251 {
1252 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1253 pmap_release(pm);
1254 pool_put(&pmap_pool, pm);
1255 }
1256 }
1257
1258 /*
1259 * Release any resources held by the given physical map.
1260 * Called when a pmap initialized by pmap_pinit is being released.
1261 */
1262 void
1263 pmap_release(pmap_t pm)
1264 {
1265 int idx, mask;
1266
1267 KASSERT(pm->pm_stats.resident_count == 0);
1268 KASSERT(pm->pm_stats.wired_count == 0);
1269
1270 PMAP_LOCK();
1271 if (pm->pm_sr[0] == 0)
1272 panic("pmap_release");
1273 idx = pm->pm_vsid & (NPMAPS-1);
1274 mask = 1 << (idx % VSID_NBPW);
1275 idx /= VSID_NBPW;
1276
1277 KASSERT(pmap_vsid_bitmap[idx] & mask);
1278 pmap_vsid_bitmap[idx] &= ~mask;
1279 PMAP_UNLOCK();
1280 }
1281
1282 /*
1283 * Copy the range specified by src_addr/len
1284 * from the source map to the range dst_addr/len
1285 * in the destination map.
1286 *
1287 * This routine is only advisory and need not do anything.
1288 */
1289 void
1290 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1291 vsize_t len, vaddr_t src_addr)
1292 {
1293 PMAPCOUNT(copies);
1294 }
1295
1296 /*
1297 * Require that all active physical maps contain no
1298 * incorrect entries NOW.
1299 */
1300 void
1301 pmap_update(struct pmap *pmap)
1302 {
1303 PMAPCOUNT(updates);
1304 TLBSYNC();
1305 }
1306
1307 /*
1308 * Garbage collects the physical map system for
1309 * pages which are no longer used.
1310 * Success need not be guaranteed -- that is, there
1311 * may well be pages which are not referenced, but
1312 * others may be collected.
1313 * Called by the pageout daemon when pages are scarce.
1314 */
1315 void
1316 pmap_collect(pmap_t pm)
1317 {
1318 PMAPCOUNT(collects);
1319 }
1320
1321 static inline int
1322 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1323 {
1324 int pteidx;
1325 /*
1326 * We can find the actual pte entry without searching by
1327 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1328 * and by noticing the HID bit.
1329 */
1330 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1331 if (pvo->pvo_pte.pte_hi & PTE_HID)
1332 pteidx ^= pmap_pteg_mask * 8;
1333 return pteidx;
1334 }
1335
1336 volatile struct pte *
1337 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1338 {
1339 volatile struct pte *pt;
1340
1341 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1342 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1343 return NULL;
1344 #endif
1345
1346 /*
1347 * If we haven't been supplied the ptegidx, calculate it.
1348 */
1349 if (pteidx == -1) {
1350 int ptegidx;
1351 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1352 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1353 }
1354
1355 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1356
1357 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1358 return pt;
1359 #else
1360 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1361 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1362 "pvo but no valid pte index", pvo);
1363 }
1364 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1365 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1366 "pvo but no valid pte", pvo);
1367 }
1368
1369 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1370 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1371 #if defined(DEBUG) || defined(PMAPCHECK)
1372 pmap_pte_print(pt);
1373 #endif
1374 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1375 "pmap_pteg_table %p but invalid in pvo",
1376 pvo, pt);
1377 }
1378 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1379 #if defined(DEBUG) || defined(PMAPCHECK)
1380 pmap_pte_print(pt);
1381 #endif
1382 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1383 "not match pte %p in pmap_pteg_table",
1384 pvo, pt);
1385 }
1386 return pt;
1387 }
1388
1389 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1390 #if defined(DEBUG) || defined(PMAPCHECK)
1391 pmap_pte_print(pt);
1392 #endif
1393 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1394 "pmap_pteg_table but valid in pvo", pvo, pt);
1395 }
1396 return NULL;
1397 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1398 }
1399
1400 struct pvo_entry *
1401 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1402 {
1403 struct pvo_entry *pvo;
1404 int ptegidx;
1405
1406 va &= ~ADDR_POFF;
1407 ptegidx = va_to_pteg(pm, va);
1408
1409 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1410 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1411 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1412 panic("pmap_pvo_find_va: invalid pvo %p on "
1413 "list %#x (%p)", pvo, ptegidx,
1414 &pmap_pvo_table[ptegidx]);
1415 #endif
1416 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1417 if (pteidx_p)
1418 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1419 return pvo;
1420 }
1421 }
1422 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1423 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1424 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1425 return NULL;
1426 }
1427
1428 #if defined(DEBUG) || defined(PMAPCHECK)
1429 void
1430 pmap_pvo_check(const struct pvo_entry *pvo)
1431 {
1432 struct pvo_head *pvo_head;
1433 struct pvo_entry *pvo0;
1434 volatile struct pte *pt;
1435 int failed = 0;
1436
1437 PMAP_LOCK();
1438
1439 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1440 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1441
1442 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1443 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1444 pvo, pvo->pvo_pmap);
1445 failed = 1;
1446 }
1447
1448 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1449 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1450 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1451 pvo, TAILQ_NEXT(pvo, pvo_olink));
1452 failed = 1;
1453 }
1454
1455 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1456 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1457 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1458 pvo, LIST_NEXT(pvo, pvo_vlink));
1459 failed = 1;
1460 }
1461
1462 if (PVO_MANAGED_P(pvo)) {
1463 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1464 } else {
1465 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1466 printf("pmap_pvo_check: pvo %p: non kernel address "
1467 "on kernel unmanaged list\n", pvo);
1468 failed = 1;
1469 }
1470 pvo_head = &pmap_pvo_kunmanaged;
1471 }
1472 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1473 if (pvo0 == pvo)
1474 break;
1475 }
1476 if (pvo0 == NULL) {
1477 printf("pmap_pvo_check: pvo %p: not present "
1478 "on its vlist head %p\n", pvo, pvo_head);
1479 failed = 1;
1480 }
1481 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1482 printf("pmap_pvo_check: pvo %p: not present "
1483 "on its olist head\n", pvo);
1484 failed = 1;
1485 }
1486 pt = pmap_pvo_to_pte(pvo, -1);
1487 if (pt == NULL) {
1488 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1489 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1490 "no PTE\n", pvo);
1491 failed = 1;
1492 }
1493 } else {
1494 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1495 (uintptr_t) pt >=
1496 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1497 printf("pmap_pvo_check: pvo %p: pte %p not in "
1498 "pteg table\n", pvo, pt);
1499 failed = 1;
1500 }
1501 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1502 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1503 "no PTE\n", pvo);
1504 failed = 1;
1505 }
1506 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1507 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1508 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1509 pvo->pvo_pte.pte_hi,
1510 pt->pte_hi);
1511 failed = 1;
1512 }
1513 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1514 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1515 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1516 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1517 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1518 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1519 failed = 1;
1520 }
1521 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1522 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1523 " doesn't not match PVO's VA %#" _PRIxva "\n",
1524 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1525 failed = 1;
1526 }
1527 if (failed)
1528 pmap_pte_print(pt);
1529 }
1530 if (failed)
1531 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1532 pvo->pvo_pmap);
1533
1534 PMAP_UNLOCK();
1535 }
1536 #endif /* DEBUG || PMAPCHECK */
1537
1538 /*
1539 * Search the PVO table looking for a non-wired entry.
1540 * If we find one, remove it and return it.
1541 */
1542
1543 struct pvo_entry *
1544 pmap_pvo_reclaim(struct pmap *pm)
1545 {
1546 struct pvo_tqhead *pvoh;
1547 struct pvo_entry *pvo;
1548 uint32_t idx, endidx;
1549
1550 endidx = pmap_pvo_reclaim_nextidx;
1551 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1552 idx = (idx + 1) & pmap_pteg_mask) {
1553 pvoh = &pmap_pvo_table[idx];
1554 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1555 if (!PVO_WIRED_P(pvo)) {
1556 pmap_pvo_remove(pvo, -1, NULL);
1557 pmap_pvo_reclaim_nextidx = idx;
1558 PMAPCOUNT(pvos_reclaimed);
1559 return pvo;
1560 }
1561 }
1562 }
1563 return NULL;
1564 }
1565
1566 /*
1567 * This returns whether this is the first mapping of a page.
1568 */
1569 int
1570 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1571 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1572 {
1573 struct pvo_entry *pvo;
1574 struct pvo_tqhead *pvoh;
1575 register_t msr;
1576 int ptegidx;
1577 int i;
1578 int poolflags = PR_NOWAIT;
1579
1580 /*
1581 * Compute the PTE Group index.
1582 */
1583 va &= ~ADDR_POFF;
1584 ptegidx = va_to_pteg(pm, va);
1585
1586 msr = pmap_interrupts_off();
1587
1588 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1589 if (pmap_pvo_remove_depth > 0)
1590 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1591 if (++pmap_pvo_enter_depth > 1)
1592 panic("pmap_pvo_enter: called recursively!");
1593 #endif
1594
1595 /*
1596 * Remove any existing mapping for this page. Reuse the
1597 * pvo entry if there a mapping.
1598 */
1599 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1600 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1601 #ifdef DEBUG
1602 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1603 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1604 ~(PTE_REF|PTE_CHG)) == 0 &&
1605 va < VM_MIN_KERNEL_ADDRESS) {
1606 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpa "/%#" _PRIxpa "\n",
1607 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1608 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpa " sr=%#" _PRIsr "\n",
1609 pvo->pvo_pte.pte_hi,
1610 pm->pm_sr[va >> ADDR_SR_SHFT]);
1611 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1612 #ifdef DDBX
1613 Debugger();
1614 #endif
1615 }
1616 #endif
1617 PMAPCOUNT(mappings_replaced);
1618 pmap_pvo_remove(pvo, -1, NULL);
1619 break;
1620 }
1621 }
1622
1623 /*
1624 * If we aren't overwriting an mapping, try to allocate
1625 */
1626 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1627 --pmap_pvo_enter_depth;
1628 #endif
1629 pmap_interrupts_restore(msr);
1630 if (pvo) {
1631 pmap_pvo_free(pvo);
1632 }
1633 pvo = pool_get(pl, poolflags);
1634
1635 #ifdef DEBUG
1636 /*
1637 * Exercise pmap_pvo_reclaim() a little.
1638 */
1639 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1640 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1641 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1642 pool_put(pl, pvo);
1643 pvo = NULL;
1644 }
1645 #endif
1646
1647 msr = pmap_interrupts_off();
1648 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1649 ++pmap_pvo_enter_depth;
1650 #endif
1651 if (pvo == NULL) {
1652 pvo = pmap_pvo_reclaim(pm);
1653 if (pvo == NULL) {
1654 if ((flags & PMAP_CANFAIL) == 0)
1655 panic("pmap_pvo_enter: failed");
1656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1657 pmap_pvo_enter_depth--;
1658 #endif
1659 PMAPCOUNT(pvos_failed);
1660 pmap_interrupts_restore(msr);
1661 return ENOMEM;
1662 }
1663 }
1664
1665 pvo->pvo_vaddr = va;
1666 pvo->pvo_pmap = pm;
1667 pvo->pvo_vaddr &= ~ADDR_POFF;
1668 if (flags & VM_PROT_EXECUTE) {
1669 PMAPCOUNT(exec_mappings);
1670 pvo_set_exec(pvo);
1671 }
1672 if (flags & PMAP_WIRED)
1673 pvo->pvo_vaddr |= PVO_WIRED;
1674 if (pvo_head != &pmap_pvo_kunmanaged) {
1675 pvo->pvo_vaddr |= PVO_MANAGED;
1676 PMAPCOUNT(mappings);
1677 } else {
1678 PMAPCOUNT(kernel_mappings);
1679 }
1680 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1681
1682 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1683 if (PVO_WIRED_P(pvo))
1684 pvo->pvo_pmap->pm_stats.wired_count++;
1685 pvo->pvo_pmap->pm_stats.resident_count++;
1686 #if defined(DEBUG)
1687 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1688 DPRINTFN(PVOENTER,
1689 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1690 pvo, pm, va, pa));
1691 #endif
1692
1693 /*
1694 * We hope this succeeds but it isn't required.
1695 */
1696 pvoh = &pmap_pvo_table[ptegidx];
1697 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1698 if (i >= 0) {
1699 PVO_PTEGIDX_SET(pvo, i);
1700 PVO_WHERE(pvo, ENTER_INSERT);
1701 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1702 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1703 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1704
1705 } else {
1706 /*
1707 * Since we didn't have room for this entry (which makes it
1708 * and evicted entry), place it at the head of the list.
1709 */
1710 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1711 PMAPCOUNT(ptes_evicted);
1712 pm->pm_evictions++;
1713 /*
1714 * If this is a kernel page, make sure it's active.
1715 */
1716 if (pm == pmap_kernel()) {
1717 i = pmap_pte_spill(pm, va, false);
1718 KASSERT(i);
1719 }
1720 }
1721 PMAP_PVO_CHECK(pvo); /* sanity check */
1722 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1723 pmap_pvo_enter_depth--;
1724 #endif
1725 pmap_interrupts_restore(msr);
1726 return 0;
1727 }
1728
1729 static void
1730 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1731 {
1732 volatile struct pte *pt;
1733 int ptegidx;
1734
1735 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1736 if (++pmap_pvo_remove_depth > 1)
1737 panic("pmap_pvo_remove: called recursively!");
1738 #endif
1739
1740 /*
1741 * If we haven't been supplied the ptegidx, calculate it.
1742 */
1743 if (pteidx == -1) {
1744 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1745 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1746 } else {
1747 ptegidx = pteidx >> 3;
1748 if (pvo->pvo_pte.pte_hi & PTE_HID)
1749 ptegidx ^= pmap_pteg_mask;
1750 }
1751 PMAP_PVO_CHECK(pvo); /* sanity check */
1752
1753 /*
1754 * If there is an active pte entry, we need to deactivate it
1755 * (and save the ref & chg bits).
1756 */
1757 pt = pmap_pvo_to_pte(pvo, pteidx);
1758 if (pt != NULL) {
1759 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1760 PVO_WHERE(pvo, REMOVE);
1761 PVO_PTEGIDX_CLR(pvo);
1762 PMAPCOUNT(ptes_removed);
1763 } else {
1764 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1765 pvo->pvo_pmap->pm_evictions--;
1766 }
1767
1768 /*
1769 * Account for executable mappings.
1770 */
1771 if (PVO_EXECUTABLE_P(pvo))
1772 pvo_clear_exec(pvo);
1773
1774 /*
1775 * Update our statistics.
1776 */
1777 pvo->pvo_pmap->pm_stats.resident_count--;
1778 if (PVO_WIRED_P(pvo))
1779 pvo->pvo_pmap->pm_stats.wired_count--;
1780
1781 /*
1782 * Save the REF/CHG bits into their cache if the page is managed.
1783 */
1784 if (PVO_MANAGED_P(pvo)) {
1785 register_t ptelo = pvo->pvo_pte.pte_lo;
1786 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1787
1788 if (pg != NULL) {
1789 /*
1790 * If this page was changed and it is mapped exec,
1791 * invalidate it.
1792 */
1793 if ((ptelo & PTE_CHG) &&
1794 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1795 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1796 if (LIST_EMPTY(pvoh)) {
1797 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1798 "%#" _PRIxpa ": clear-exec]\n",
1799 VM_PAGE_TO_PHYS(pg)));
1800 pmap_attr_clear(pg, PTE_EXEC);
1801 PMAPCOUNT(exec_uncached_pvo_remove);
1802 } else {
1803 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1804 "%#" _PRIxpa ": syncicache]\n",
1805 VM_PAGE_TO_PHYS(pg)));
1806 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1807 PAGE_SIZE);
1808 PMAPCOUNT(exec_synced_pvo_remove);
1809 }
1810 }
1811
1812 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1813 }
1814 PMAPCOUNT(unmappings);
1815 } else {
1816 PMAPCOUNT(kernel_unmappings);
1817 }
1818
1819 /*
1820 * Remove the PVO from its lists and return it to the pool.
1821 */
1822 LIST_REMOVE(pvo, pvo_vlink);
1823 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1824 if (pvol) {
1825 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1826 }
1827 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1828 pmap_pvo_remove_depth--;
1829 #endif
1830 }
1831
1832 void
1833 pmap_pvo_free(struct pvo_entry *pvo)
1834 {
1835
1836 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1837 }
1838
1839 void
1840 pmap_pvo_free_list(struct pvo_head *pvol)
1841 {
1842 struct pvo_entry *pvo, *npvo;
1843
1844 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1845 npvo = LIST_NEXT(pvo, pvo_vlink);
1846 LIST_REMOVE(pvo, pvo_vlink);
1847 pmap_pvo_free(pvo);
1848 }
1849 }
1850
1851 /*
1852 * Mark a mapping as executable.
1853 * If this is the first executable mapping in the segment,
1854 * clear the noexec flag.
1855 */
1856 static void
1857 pvo_set_exec(struct pvo_entry *pvo)
1858 {
1859 struct pmap *pm = pvo->pvo_pmap;
1860
1861 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1862 return;
1863 }
1864 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1865 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1866 {
1867 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1868 if (pm->pm_exec[sr]++ == 0) {
1869 pm->pm_sr[sr] &= ~SR_NOEXEC;
1870 }
1871 }
1872 #endif
1873 }
1874
1875 /*
1876 * Mark a mapping as non-executable.
1877 * If this was the last executable mapping in the segment,
1878 * set the noexec flag.
1879 */
1880 static void
1881 pvo_clear_exec(struct pvo_entry *pvo)
1882 {
1883 struct pmap *pm = pvo->pvo_pmap;
1884
1885 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1886 return;
1887 }
1888 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1889 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1890 {
1891 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1892 if (--pm->pm_exec[sr] == 0) {
1893 pm->pm_sr[sr] |= SR_NOEXEC;
1894 }
1895 }
1896 #endif
1897 }
1898
1899 /*
1900 * Insert physical page at pa into the given pmap at virtual address va.
1901 */
1902 int
1903 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1904 {
1905 struct mem_region *mp;
1906 struct pvo_head *pvo_head;
1907 struct vm_page *pg;
1908 struct pool *pl;
1909 register_t pte_lo;
1910 int error;
1911 u_int pvo_flags;
1912 u_int was_exec = 0;
1913
1914 PMAP_LOCK();
1915
1916 if (__predict_false(!pmap_initialized)) {
1917 pvo_head = &pmap_pvo_kunmanaged;
1918 pl = &pmap_upvo_pool;
1919 pvo_flags = 0;
1920 pg = NULL;
1921 was_exec = PTE_EXEC;
1922 } else {
1923 pvo_head = pa_to_pvoh(pa, &pg);
1924 pl = &pmap_mpvo_pool;
1925 pvo_flags = PVO_MANAGED;
1926 }
1927
1928 DPRINTFN(ENTER,
1929 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1930 pm, va, pa, prot, flags));
1931
1932 /*
1933 * If this is a managed page, and it's the first reference to the
1934 * page clear the execness of the page. Otherwise fetch the execness.
1935 */
1936 if (pg != NULL)
1937 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1938
1939 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1940
1941 /*
1942 * Assume the page is cache inhibited and access is guarded unless
1943 * it's in our available memory array. If it is in the memory array,
1944 * asssume it's in memory coherent memory.
1945 */
1946 pte_lo = PTE_IG;
1947 if ((flags & PMAP_NC) == 0) {
1948 for (mp = mem; mp->size; mp++) {
1949 if (pa >= mp->start && pa < mp->start + mp->size) {
1950 pte_lo = PTE_M;
1951 break;
1952 }
1953 }
1954 }
1955
1956 if (prot & VM_PROT_WRITE)
1957 pte_lo |= PTE_BW;
1958 else
1959 pte_lo |= PTE_BR;
1960
1961 /*
1962 * If this was in response to a fault, "pre-fault" the PTE's
1963 * changed/referenced bit appropriately.
1964 */
1965 if (flags & VM_PROT_WRITE)
1966 pte_lo |= PTE_CHG;
1967 if (flags & VM_PROT_ALL)
1968 pte_lo |= PTE_REF;
1969
1970 /*
1971 * We need to know if this page can be executable
1972 */
1973 flags |= (prot & VM_PROT_EXECUTE);
1974
1975 /*
1976 * Record mapping for later back-translation and pte spilling.
1977 * This will overwrite any existing mapping.
1978 */
1979 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1980
1981 /*
1982 * Flush the real page from the instruction cache if this page is
1983 * mapped executable and cacheable and has not been flushed since
1984 * the last time it was modified.
1985 */
1986 if (error == 0 &&
1987 (flags & VM_PROT_EXECUTE) &&
1988 (pte_lo & PTE_I) == 0 &&
1989 was_exec == 0) {
1990 DPRINTFN(ENTER, (" syncicache"));
1991 PMAPCOUNT(exec_synced);
1992 pmap_syncicache(pa, PAGE_SIZE);
1993 if (pg != NULL) {
1994 pmap_attr_save(pg, PTE_EXEC);
1995 PMAPCOUNT(exec_cached);
1996 #if defined(DEBUG) || defined(PMAPDEBUG)
1997 if (pmapdebug & PMAPDEBUG_ENTER)
1998 printf(" marked-as-exec");
1999 else if (pmapdebug & PMAPDEBUG_EXEC)
2000 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2001 VM_PAGE_TO_PHYS(pg));
2002
2003 #endif
2004 }
2005 }
2006
2007 DPRINTFN(ENTER, (": error=%d\n", error));
2008
2009 PMAP_UNLOCK();
2010
2011 return error;
2012 }
2013
2014 void
2015 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2016 {
2017 struct mem_region *mp;
2018 register_t pte_lo;
2019 int error;
2020
2021 #if defined (PMAP_OEA64_BRIDGE)
2022 if (va < VM_MIN_KERNEL_ADDRESS)
2023 panic("pmap_kenter_pa: attempt to enter "
2024 "non-kernel address %#" _PRIxva "!", va);
2025 #endif
2026
2027 DPRINTFN(KENTER,
2028 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2029
2030 PMAP_LOCK();
2031
2032 /*
2033 * Assume the page is cache inhibited and access is guarded unless
2034 * it's in our available memory array. If it is in the memory array,
2035 * asssume it's in memory coherent memory.
2036 */
2037 pte_lo = PTE_IG;
2038 if ((prot & PMAP_NC) == 0) {
2039 for (mp = mem; mp->size; mp++) {
2040 if (pa >= mp->start && pa < mp->start + mp->size) {
2041 pte_lo = PTE_M;
2042 break;
2043 }
2044 }
2045 }
2046
2047 if (prot & VM_PROT_WRITE)
2048 pte_lo |= PTE_BW;
2049 else
2050 pte_lo |= PTE_BR;
2051
2052 /*
2053 * We don't care about REF/CHG on PVOs on the unmanaged list.
2054 */
2055 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2056 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2057
2058 if (error != 0)
2059 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2060 va, pa, error);
2061
2062 PMAP_UNLOCK();
2063 }
2064
2065 void
2066 pmap_kremove(vaddr_t va, vsize_t len)
2067 {
2068 if (va < VM_MIN_KERNEL_ADDRESS)
2069 panic("pmap_kremove: attempt to remove "
2070 "non-kernel address %#" _PRIxva "!", va);
2071
2072 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2073 pmap_remove(pmap_kernel(), va, va + len);
2074 }
2075
2076 /*
2077 * Remove the given range of mapping entries.
2078 */
2079 void
2080 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2081 {
2082 struct pvo_head pvol;
2083 struct pvo_entry *pvo;
2084 register_t msr;
2085 int pteidx;
2086
2087 PMAP_LOCK();
2088 LIST_INIT(&pvol);
2089 msr = pmap_interrupts_off();
2090 for (; va < endva; va += PAGE_SIZE) {
2091 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2092 if (pvo != NULL) {
2093 pmap_pvo_remove(pvo, pteidx, &pvol);
2094 }
2095 }
2096 pmap_interrupts_restore(msr);
2097 pmap_pvo_free_list(&pvol);
2098 PMAP_UNLOCK();
2099 }
2100
2101 /*
2102 * Get the physical page address for the given pmap/virtual address.
2103 */
2104 bool
2105 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2106 {
2107 struct pvo_entry *pvo;
2108 register_t msr;
2109
2110 PMAP_LOCK();
2111
2112 /*
2113 * If this is a kernel pmap lookup, also check the battable
2114 * and if we get a hit, translate the VA to a PA using the
2115 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2116 * that will wrap back to 0.
2117 */
2118 if (pm == pmap_kernel() &&
2119 (va < VM_MIN_KERNEL_ADDRESS ||
2120 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2121 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2122 #if defined (PMAP_OEA)
2123 if ((MFPVR() >> 16) != MPC601) {
2124 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2125 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2126 register_t batl =
2127 battable[va >> ADDR_SR_SHFT].batl;
2128 register_t mask =
2129 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2130 if (pap)
2131 *pap = (batl & mask) | (va & ~mask);
2132 PMAP_UNLOCK();
2133 return true;
2134 }
2135 } else {
2136 register_t batu = battable[va >> 23].batu;
2137 register_t batl = battable[va >> 23].batl;
2138 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2139 if (BAT601_VALID_P(batl) &&
2140 BAT601_VA_MATCH_P(batu, batl, va)) {
2141 register_t mask =
2142 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2143 if (pap)
2144 *pap = (batl & mask) | (va & ~mask);
2145 PMAP_UNLOCK();
2146 return true;
2147 } else if (SR601_VALID_P(sr) &&
2148 SR601_PA_MATCH_P(sr, va)) {
2149 if (pap)
2150 *pap = va;
2151 PMAP_UNLOCK();
2152 return true;
2153 }
2154 }
2155 return false;
2156 #elif defined (PMAP_OEA64_BRIDGE)
2157 if (va >= SEGMENT_LENGTH)
2158 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2159 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2160 else {
2161 if (pap)
2162 *pap = va;
2163 PMAP_UNLOCK();
2164 return true;
2165 }
2166 #elif defined (PMAP_OEA64)
2167 #error PPC_OEA64 not supported
2168 #endif /* PPC_OEA */
2169 }
2170
2171 msr = pmap_interrupts_off();
2172 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2173 if (pvo != NULL) {
2174 PMAP_PVO_CHECK(pvo); /* sanity check */
2175 if (pap)
2176 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2177 | (va & ADDR_POFF);
2178 }
2179 pmap_interrupts_restore(msr);
2180 PMAP_UNLOCK();
2181 return pvo != NULL;
2182 }
2183
2184 /*
2185 * Lower the protection on the specified range of this pmap.
2186 */
2187 void
2188 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2189 {
2190 struct pvo_entry *pvo;
2191 volatile struct pte *pt;
2192 register_t msr;
2193 int pteidx;
2194
2195 /*
2196 * Since this routine only downgrades protection, we should
2197 * always be called with at least one bit not set.
2198 */
2199 KASSERT(prot != VM_PROT_ALL);
2200
2201 /*
2202 * If there is no protection, this is equivalent to
2203 * remove the pmap from the pmap.
2204 */
2205 if ((prot & VM_PROT_READ) == 0) {
2206 pmap_remove(pm, va, endva);
2207 return;
2208 }
2209
2210 PMAP_LOCK();
2211
2212 msr = pmap_interrupts_off();
2213 for (; va < endva; va += PAGE_SIZE) {
2214 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2215 if (pvo == NULL)
2216 continue;
2217 PMAP_PVO_CHECK(pvo); /* sanity check */
2218
2219 /*
2220 * Revoke executable if asked to do so.
2221 */
2222 if ((prot & VM_PROT_EXECUTE) == 0)
2223 pvo_clear_exec(pvo);
2224
2225 #if 0
2226 /*
2227 * If the page is already read-only, no change
2228 * needs to be made.
2229 */
2230 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2231 continue;
2232 #endif
2233 /*
2234 * Grab the PTE pointer before we diddle with
2235 * the cached PTE copy.
2236 */
2237 pt = pmap_pvo_to_pte(pvo, pteidx);
2238 /*
2239 * Change the protection of the page.
2240 */
2241 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2242 pvo->pvo_pte.pte_lo |= PTE_BR;
2243
2244 /*
2245 * If the PVO is in the page table, update
2246 * that pte at well.
2247 */
2248 if (pt != NULL) {
2249 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2250 PVO_WHERE(pvo, PMAP_PROTECT);
2251 PMAPCOUNT(ptes_changed);
2252 }
2253
2254 PMAP_PVO_CHECK(pvo); /* sanity check */
2255 }
2256 pmap_interrupts_restore(msr);
2257 PMAP_UNLOCK();
2258 }
2259
2260 void
2261 pmap_unwire(pmap_t pm, vaddr_t va)
2262 {
2263 struct pvo_entry *pvo;
2264 register_t msr;
2265
2266 PMAP_LOCK();
2267 msr = pmap_interrupts_off();
2268 pvo = pmap_pvo_find_va(pm, va, NULL);
2269 if (pvo != NULL) {
2270 if (PVO_WIRED_P(pvo)) {
2271 pvo->pvo_vaddr &= ~PVO_WIRED;
2272 pm->pm_stats.wired_count--;
2273 }
2274 PMAP_PVO_CHECK(pvo); /* sanity check */
2275 }
2276 pmap_interrupts_restore(msr);
2277 PMAP_UNLOCK();
2278 }
2279
2280 /*
2281 * Lower the protection on the specified physical page.
2282 */
2283 void
2284 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2285 {
2286 struct pvo_head *pvo_head, pvol;
2287 struct pvo_entry *pvo, *next_pvo;
2288 volatile struct pte *pt;
2289 register_t msr;
2290
2291 PMAP_LOCK();
2292
2293 KASSERT(prot != VM_PROT_ALL);
2294 LIST_INIT(&pvol);
2295 msr = pmap_interrupts_off();
2296
2297 /*
2298 * When UVM reuses a page, it does a pmap_page_protect with
2299 * VM_PROT_NONE. At that point, we can clear the exec flag
2300 * since we know the page will have different contents.
2301 */
2302 if ((prot & VM_PROT_READ) == 0) {
2303 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2304 VM_PAGE_TO_PHYS(pg)));
2305 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2306 PMAPCOUNT(exec_uncached_page_protect);
2307 pmap_attr_clear(pg, PTE_EXEC);
2308 }
2309 }
2310
2311 pvo_head = vm_page_to_pvoh(pg);
2312 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2313 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2314 PMAP_PVO_CHECK(pvo); /* sanity check */
2315
2316 /*
2317 * Downgrading to no mapping at all, we just remove the entry.
2318 */
2319 if ((prot & VM_PROT_READ) == 0) {
2320 pmap_pvo_remove(pvo, -1, &pvol);
2321 continue;
2322 }
2323
2324 /*
2325 * If EXEC permission is being revoked, just clear the
2326 * flag in the PVO.
2327 */
2328 if ((prot & VM_PROT_EXECUTE) == 0)
2329 pvo_clear_exec(pvo);
2330
2331 /*
2332 * If this entry is already RO, don't diddle with the
2333 * page table.
2334 */
2335 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2336 PMAP_PVO_CHECK(pvo);
2337 continue;
2338 }
2339
2340 /*
2341 * Grab the PTE before the we diddle the bits so
2342 * pvo_to_pte can verify the pte contents are as
2343 * expected.
2344 */
2345 pt = pmap_pvo_to_pte(pvo, -1);
2346 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2347 pvo->pvo_pte.pte_lo |= PTE_BR;
2348 if (pt != NULL) {
2349 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2350 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2351 PMAPCOUNT(ptes_changed);
2352 }
2353 PMAP_PVO_CHECK(pvo); /* sanity check */
2354 }
2355 pmap_interrupts_restore(msr);
2356 pmap_pvo_free_list(&pvol);
2357
2358 PMAP_UNLOCK();
2359 }
2360
2361 /*
2362 * Activate the address space for the specified process. If the process
2363 * is the current process, load the new MMU context.
2364 */
2365 void
2366 pmap_activate(struct lwp *l)
2367 {
2368 struct pcb *pcb = &l->l_addr->u_pcb;
2369 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2370
2371 DPRINTFN(ACTIVATE,
2372 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2373
2374 /*
2375 * XXX Normally performed in cpu_fork().
2376 */
2377 pcb->pcb_pm = pmap;
2378
2379 /*
2380 * In theory, the SR registers need only be valid on return
2381 * to user space wait to do them there.
2382 */
2383 if (l == curlwp) {
2384 /* Store pointer to new current pmap. */
2385 curpm = pmap;
2386 }
2387 }
2388
2389 /*
2390 * Deactivate the specified process's address space.
2391 */
2392 void
2393 pmap_deactivate(struct lwp *l)
2394 {
2395 }
2396
2397 bool
2398 pmap_query_bit(struct vm_page *pg, int ptebit)
2399 {
2400 struct pvo_entry *pvo;
2401 volatile struct pte *pt;
2402 register_t msr;
2403
2404 PMAP_LOCK();
2405
2406 if (pmap_attr_fetch(pg) & ptebit) {
2407 PMAP_UNLOCK();
2408 return true;
2409 }
2410
2411 msr = pmap_interrupts_off();
2412 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2413 PMAP_PVO_CHECK(pvo); /* sanity check */
2414 /*
2415 * See if we saved the bit off. If so cache, it and return
2416 * success.
2417 */
2418 if (pvo->pvo_pte.pte_lo & ptebit) {
2419 pmap_attr_save(pg, ptebit);
2420 PMAP_PVO_CHECK(pvo); /* sanity check */
2421 pmap_interrupts_restore(msr);
2422 PMAP_UNLOCK();
2423 return true;
2424 }
2425 }
2426 /*
2427 * No luck, now go thru the hard part of looking at the ptes
2428 * themselves. Sync so any pending REF/CHG bits are flushed
2429 * to the PTEs.
2430 */
2431 SYNC();
2432 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2433 PMAP_PVO_CHECK(pvo); /* sanity check */
2434 /*
2435 * See if this pvo have a valid PTE. If so, fetch the
2436 * REF/CHG bits from the valid PTE. If the appropriate
2437 * ptebit is set, cache, it and return success.
2438 */
2439 pt = pmap_pvo_to_pte(pvo, -1);
2440 if (pt != NULL) {
2441 pmap_pte_synch(pt, &pvo->pvo_pte);
2442 if (pvo->pvo_pte.pte_lo & ptebit) {
2443 pmap_attr_save(pg, ptebit);
2444 PMAP_PVO_CHECK(pvo); /* sanity check */
2445 pmap_interrupts_restore(msr);
2446 PMAP_UNLOCK();
2447 return true;
2448 }
2449 }
2450 }
2451 pmap_interrupts_restore(msr);
2452 PMAP_UNLOCK();
2453 return false;
2454 }
2455
2456 bool
2457 pmap_clear_bit(struct vm_page *pg, int ptebit)
2458 {
2459 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2460 struct pvo_entry *pvo;
2461 volatile struct pte *pt;
2462 register_t msr;
2463 int rv = 0;
2464
2465 PMAP_LOCK();
2466 msr = pmap_interrupts_off();
2467
2468 /*
2469 * Fetch the cache value
2470 */
2471 rv |= pmap_attr_fetch(pg);
2472
2473 /*
2474 * Clear the cached value.
2475 */
2476 pmap_attr_clear(pg, ptebit);
2477
2478 /*
2479 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2480 * can reset the right ones). Note that since the pvo entries and
2481 * list heads are accessed via BAT0 and are never placed in the
2482 * page table, we don't have to worry about further accesses setting
2483 * the REF/CHG bits.
2484 */
2485 SYNC();
2486
2487 /*
2488 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2489 * valid PTE. If so, clear the ptebit from the valid PTE.
2490 */
2491 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2492 PMAP_PVO_CHECK(pvo); /* sanity check */
2493 pt = pmap_pvo_to_pte(pvo, -1);
2494 if (pt != NULL) {
2495 /*
2496 * Only sync the PTE if the bit we are looking
2497 * for is not already set.
2498 */
2499 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2500 pmap_pte_synch(pt, &pvo->pvo_pte);
2501 /*
2502 * If the bit we are looking for was already set,
2503 * clear that bit in the pte.
2504 */
2505 if (pvo->pvo_pte.pte_lo & ptebit)
2506 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2507 }
2508 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2509 pvo->pvo_pte.pte_lo &= ~ptebit;
2510 PMAP_PVO_CHECK(pvo); /* sanity check */
2511 }
2512 pmap_interrupts_restore(msr);
2513
2514 /*
2515 * If we are clearing the modify bit and this page was marked EXEC
2516 * and the user of the page thinks the page was modified, then we
2517 * need to clean it from the icache if it's mapped or clear the EXEC
2518 * bit if it's not mapped. The page itself might not have the CHG
2519 * bit set if the modification was done via DMA to the page.
2520 */
2521 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2522 if (LIST_EMPTY(pvoh)) {
2523 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2524 VM_PAGE_TO_PHYS(pg)));
2525 pmap_attr_clear(pg, PTE_EXEC);
2526 PMAPCOUNT(exec_uncached_clear_modify);
2527 } else {
2528 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2529 VM_PAGE_TO_PHYS(pg)));
2530 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2531 PMAPCOUNT(exec_synced_clear_modify);
2532 }
2533 }
2534 PMAP_UNLOCK();
2535 return (rv & ptebit) != 0;
2536 }
2537
2538 void
2539 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2540 {
2541 struct pvo_entry *pvo;
2542 size_t offset = va & ADDR_POFF;
2543 int s;
2544
2545 PMAP_LOCK();
2546 s = splvm();
2547 while (len > 0) {
2548 size_t seglen = PAGE_SIZE - offset;
2549 if (seglen > len)
2550 seglen = len;
2551 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2552 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2553 pmap_syncicache(
2554 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2555 PMAP_PVO_CHECK(pvo);
2556 }
2557 va += seglen;
2558 len -= seglen;
2559 offset = 0;
2560 }
2561 splx(s);
2562 PMAP_UNLOCK();
2563 }
2564
2565 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2566 void
2567 pmap_pte_print(volatile struct pte *pt)
2568 {
2569 printf("PTE %p: ", pt);
2570
2571 #if defined(PMAP_OEA)
2572 /* High word: */
2573 printf("%#" _PRIxpte ": [", pt->pte_hi);
2574 #else
2575 printf("%#" _PRIxpte ": [", pt->pte_hi);
2576 #endif /* PMAP_OEA */
2577
2578 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2579 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2580
2581 printf("%#" _PRIxpte " %#" _PRIxpte "",
2582 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2583 pt->pte_hi & PTE_API);
2584 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2585 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2586 #else
2587 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2588 #endif /* PMAP_OEA */
2589
2590 /* Low word: */
2591 #if defined (PMAP_OEA)
2592 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2593 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2594 #else
2595 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2596 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2597 #endif
2598 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2599 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2600 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2601 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2602 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2603 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2604 switch (pt->pte_lo & PTE_PP) {
2605 case PTE_BR: printf("br]\n"); break;
2606 case PTE_BW: printf("bw]\n"); break;
2607 case PTE_SO: printf("so]\n"); break;
2608 case PTE_SW: printf("sw]\n"); break;
2609 }
2610 }
2611 #endif
2612
2613 #if defined(DDB)
2614 void
2615 pmap_pteg_check(void)
2616 {
2617 volatile struct pte *pt;
2618 int i;
2619 int ptegidx;
2620 u_int p_valid = 0;
2621 u_int s_valid = 0;
2622 u_int invalid = 0;
2623
2624 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2625 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2626 if (pt->pte_hi & PTE_VALID) {
2627 if (pt->pte_hi & PTE_HID)
2628 s_valid++;
2629 else
2630 {
2631 p_valid++;
2632 }
2633 } else
2634 invalid++;
2635 }
2636 }
2637 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2638 p_valid, p_valid, s_valid, s_valid,
2639 invalid, invalid);
2640 }
2641
2642 void
2643 pmap_print_mmuregs(void)
2644 {
2645 int i;
2646 u_int cpuvers;
2647 #ifndef PMAP_OEA64
2648 vaddr_t addr;
2649 register_t soft_sr[16];
2650 #endif
2651 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2652 struct bat soft_ibat[4];
2653 struct bat soft_dbat[4];
2654 #endif
2655 paddr_t sdr1;
2656
2657 cpuvers = MFPVR() >> 16;
2658 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2659 #ifndef PMAP_OEA64
2660 addr = 0;
2661 for (i = 0; i < 16; i++) {
2662 soft_sr[i] = MFSRIN(addr);
2663 addr += (1 << ADDR_SR_SHFT);
2664 }
2665 #endif
2666
2667 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2668 /* read iBAT (601: uBAT) registers */
2669 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2670 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2671 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2672 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2673 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2674 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2675 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2676 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2677
2678
2679 if (cpuvers != MPC601) {
2680 /* read dBAT registers */
2681 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2682 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2683 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2684 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2685 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2686 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2687 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2688 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2689 }
2690 #endif
2691
2692 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2693 #ifndef PMAP_OEA64
2694 printf("SR[]:\t");
2695 for (i = 0; i < 4; i++)
2696 printf("0x%08lx, ", soft_sr[i]);
2697 printf("\n\t");
2698 for ( ; i < 8; i++)
2699 printf("0x%08lx, ", soft_sr[i]);
2700 printf("\n\t");
2701 for ( ; i < 12; i++)
2702 printf("0x%08lx, ", soft_sr[i]);
2703 printf("\n\t");
2704 for ( ; i < 16; i++)
2705 printf("0x%08lx, ", soft_sr[i]);
2706 printf("\n");
2707 #endif
2708
2709 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2710 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2711 for (i = 0; i < 4; i++) {
2712 printf("0x%08lx 0x%08lx, ",
2713 soft_ibat[i].batu, soft_ibat[i].batl);
2714 if (i == 1)
2715 printf("\n\t");
2716 }
2717 if (cpuvers != MPC601) {
2718 printf("\ndBAT[]:\t");
2719 for (i = 0; i < 4; i++) {
2720 printf("0x%08lx 0x%08lx, ",
2721 soft_dbat[i].batu, soft_dbat[i].batl);
2722 if (i == 1)
2723 printf("\n\t");
2724 }
2725 }
2726 printf("\n");
2727 #endif /* PMAP_OEA... */
2728 }
2729
2730 void
2731 pmap_print_pte(pmap_t pm, vaddr_t va)
2732 {
2733 struct pvo_entry *pvo;
2734 volatile struct pte *pt;
2735 int pteidx;
2736
2737 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2738 if (pvo != NULL) {
2739 pt = pmap_pvo_to_pte(pvo, pteidx);
2740 if (pt != NULL) {
2741 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2742 va, pt,
2743 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2744 pt->pte_hi, pt->pte_lo);
2745 } else {
2746 printf("No valid PTE found\n");
2747 }
2748 } else {
2749 printf("Address not in pmap\n");
2750 }
2751 }
2752
2753 void
2754 pmap_pteg_dist(void)
2755 {
2756 struct pvo_entry *pvo;
2757 int ptegidx;
2758 int depth;
2759 int max_depth = 0;
2760 unsigned int depths[64];
2761
2762 memset(depths, 0, sizeof(depths));
2763 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2764 depth = 0;
2765 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2766 depth++;
2767 }
2768 if (depth > max_depth)
2769 max_depth = depth;
2770 if (depth > 63)
2771 depth = 63;
2772 depths[depth]++;
2773 }
2774
2775 for (depth = 0; depth < 64; depth++) {
2776 printf(" [%2d]: %8u", depth, depths[depth]);
2777 if ((depth & 3) == 3)
2778 printf("\n");
2779 if (depth == max_depth)
2780 break;
2781 }
2782 if ((depth & 3) != 3)
2783 printf("\n");
2784 printf("Max depth found was %d\n", max_depth);
2785 }
2786 #endif /* DEBUG */
2787
2788 #if defined(PMAPCHECK) || defined(DEBUG)
2789 void
2790 pmap_pvo_verify(void)
2791 {
2792 int ptegidx;
2793 int s;
2794
2795 s = splvm();
2796 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2797 struct pvo_entry *pvo;
2798 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2799 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2800 panic("pmap_pvo_verify: invalid pvo %p "
2801 "on list %#x", pvo, ptegidx);
2802 pmap_pvo_check(pvo);
2803 }
2804 }
2805 splx(s);
2806 }
2807 #endif /* PMAPCHECK */
2808
2809
2810 void *
2811 pmap_pool_ualloc(struct pool *pp, int flags)
2812 {
2813 struct pvo_page *pvop;
2814
2815 if (uvm.page_init_done != true) {
2816 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2817 }
2818
2819 PMAP_LOCK();
2820 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2821 if (pvop != NULL) {
2822 pmap_upvop_free--;
2823 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2824 PMAP_UNLOCK();
2825 return pvop;
2826 }
2827 PMAP_UNLOCK();
2828 return pmap_pool_malloc(pp, flags);
2829 }
2830
2831 void *
2832 pmap_pool_malloc(struct pool *pp, int flags)
2833 {
2834 struct pvo_page *pvop;
2835 struct vm_page *pg;
2836
2837 PMAP_LOCK();
2838 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2839 if (pvop != NULL) {
2840 pmap_mpvop_free--;
2841 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2842 PMAP_UNLOCK();
2843 return pvop;
2844 }
2845 PMAP_UNLOCK();
2846 again:
2847 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2848 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2849 if (__predict_false(pg == NULL)) {
2850 if (flags & PR_WAITOK) {
2851 uvm_wait("plpg");
2852 goto again;
2853 } else {
2854 return (0);
2855 }
2856 }
2857 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2858 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2859 }
2860
2861 void
2862 pmap_pool_ufree(struct pool *pp, void *va)
2863 {
2864 struct pvo_page *pvop;
2865 #if 0
2866 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2867 pmap_pool_mfree(va, size, tag);
2868 return;
2869 }
2870 #endif
2871 PMAP_LOCK();
2872 pvop = va;
2873 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2874 pmap_upvop_free++;
2875 if (pmap_upvop_free > pmap_upvop_maxfree)
2876 pmap_upvop_maxfree = pmap_upvop_free;
2877 PMAP_UNLOCK();
2878 }
2879
2880 void
2881 pmap_pool_mfree(struct pool *pp, void *va)
2882 {
2883 struct pvo_page *pvop;
2884
2885 PMAP_LOCK();
2886 pvop = va;
2887 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2888 pmap_mpvop_free++;
2889 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2890 pmap_mpvop_maxfree = pmap_mpvop_free;
2891 PMAP_UNLOCK();
2892 #if 0
2893 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2894 #endif
2895 }
2896
2897 /*
2898 * This routine in bootstraping to steal to-be-managed memory (which will
2899 * then be unmanaged). We use it to grab from the first 256MB for our
2900 * pmap needs and above 256MB for other stuff.
2901 */
2902 vaddr_t
2903 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2904 {
2905 vsize_t size;
2906 vaddr_t va;
2907 paddr_t pa = 0;
2908 int npgs, bank;
2909 struct vm_physseg *ps;
2910
2911 if (uvm.page_init_done == true)
2912 panic("pmap_steal_memory: called _after_ bootstrap");
2913
2914 *vstartp = VM_MIN_KERNEL_ADDRESS;
2915 *vendp = VM_MAX_KERNEL_ADDRESS;
2916
2917 size = round_page(vsize);
2918 npgs = atop(size);
2919
2920 /*
2921 * PA 0 will never be among those given to UVM so we can use it
2922 * to indicate we couldn't steal any memory.
2923 */
2924 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2925 if (ps->free_list == VM_FREELIST_FIRST256 &&
2926 ps->avail_end - ps->avail_start >= npgs) {
2927 pa = ptoa(ps->avail_start);
2928 break;
2929 }
2930 }
2931
2932 if (pa == 0)
2933 panic("pmap_steal_memory: no approriate memory to steal!");
2934
2935 ps->avail_start += npgs;
2936 ps->start += npgs;
2937
2938 /*
2939 * If we've used up all the pages in the segment, remove it and
2940 * compact the list.
2941 */
2942 if (ps->avail_start == ps->end) {
2943 /*
2944 * If this was the last one, then a very bad thing has occurred
2945 */
2946 if (--vm_nphysseg == 0)
2947 panic("pmap_steal_memory: out of memory!");
2948
2949 printf("pmap_steal_memory: consumed bank %d\n", bank);
2950 for (; bank < vm_nphysseg; bank++, ps++) {
2951 ps[0] = ps[1];
2952 }
2953 }
2954
2955 va = (vaddr_t) pa;
2956 memset((void *) va, 0, size);
2957 pmap_pages_stolen += npgs;
2958 #ifdef DEBUG
2959 if (pmapdebug && npgs > 1) {
2960 u_int cnt = 0;
2961 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2962 cnt += ps->avail_end - ps->avail_start;
2963 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2964 npgs, pmap_pages_stolen, cnt);
2965 }
2966 #endif
2967
2968 return va;
2969 }
2970
2971 /*
2972 * Find a chuck of memory with right size and alignment.
2973 */
2974 paddr_t
2975 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2976 {
2977 struct mem_region *mp;
2978 paddr_t s, e;
2979 int i, j;
2980
2981 size = round_page(size);
2982
2983 DPRINTFN(BOOT,
2984 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2985 size, alignment, at_end));
2986
2987 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2988 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2989 alignment);
2990
2991 if (at_end) {
2992 if (alignment != PAGE_SIZE)
2993 panic("pmap_boot_find_memory: invalid ending "
2994 "alignment %#" _PRIxpa, alignment);
2995
2996 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2997 s = mp->start + mp->size - size;
2998 if (s >= mp->start && mp->size >= size) {
2999 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3000 DPRINTFN(BOOT,
3001 ("pmap_boot_find_memory: b-avail[%d] start "
3002 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3003 mp->start, mp->size));
3004 mp->size -= size;
3005 DPRINTFN(BOOT,
3006 ("pmap_boot_find_memory: a-avail[%d] start "
3007 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3008 mp->start, mp->size));
3009 return s;
3010 }
3011 }
3012 panic("pmap_boot_find_memory: no available memory");
3013 }
3014
3015 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3016 s = (mp->start + alignment - 1) & ~(alignment-1);
3017 e = s + size;
3018
3019 /*
3020 * Is the calculated region entirely within the region?
3021 */
3022 if (s < mp->start || e > mp->start + mp->size)
3023 continue;
3024
3025 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3026 if (s == mp->start) {
3027 /*
3028 * If the block starts at the beginning of region,
3029 * adjust the size & start. (the region may now be
3030 * zero in length)
3031 */
3032 DPRINTFN(BOOT,
3033 ("pmap_boot_find_memory: b-avail[%d] start "
3034 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3035 mp->start += size;
3036 mp->size -= size;
3037 DPRINTFN(BOOT,
3038 ("pmap_boot_find_memory: a-avail[%d] start "
3039 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3040 } else if (e == mp->start + mp->size) {
3041 /*
3042 * If the block starts at the beginning of region,
3043 * adjust only the size.
3044 */
3045 DPRINTFN(BOOT,
3046 ("pmap_boot_find_memory: b-avail[%d] start "
3047 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3048 mp->size -= size;
3049 DPRINTFN(BOOT,
3050 ("pmap_boot_find_memory: a-avail[%d] start "
3051 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3052 } else {
3053 /*
3054 * Block is in the middle of the region, so we
3055 * have to split it in two.
3056 */
3057 for (j = avail_cnt; j > i + 1; j--) {
3058 avail[j] = avail[j-1];
3059 }
3060 DPRINTFN(BOOT,
3061 ("pmap_boot_find_memory: b-avail[%d] start "
3062 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3063 mp[1].start = e;
3064 mp[1].size = mp[0].start + mp[0].size - e;
3065 mp[0].size = s - mp[0].start;
3066 avail_cnt++;
3067 for (; i < avail_cnt; i++) {
3068 DPRINTFN(BOOT,
3069 ("pmap_boot_find_memory: a-avail[%d] "
3070 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3071 avail[i].start, avail[i].size));
3072 }
3073 }
3074 KASSERT(s == (uintptr_t) s);
3075 return s;
3076 }
3077 panic("pmap_boot_find_memory: not enough memory for "
3078 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3079 }
3080
3081 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3082 #if defined (PMAP_OEA64_BRIDGE)
3083 int
3084 pmap_setup_segment0_map(int use_large_pages, ...)
3085 {
3086 vaddr_t va;
3087
3088 register_t pte_lo = 0x0;
3089 int ptegidx = 0, i = 0;
3090 struct pte pte;
3091 va_list ap;
3092
3093 /* Coherent + Supervisor RW, no user access */
3094 pte_lo = PTE_M;
3095
3096 /* XXXSL
3097 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3098 * these have to take priority.
3099 */
3100 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3101 ptegidx = va_to_pteg(pmap_kernel(), va);
3102 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3103 i = pmap_pte_insert(ptegidx, &pte);
3104 }
3105
3106 va_start(ap, use_large_pages);
3107 while (1) {
3108 paddr_t pa;
3109 size_t size;
3110
3111 va = va_arg(ap, vaddr_t);
3112
3113 if (va == 0)
3114 break;
3115
3116 pa = va_arg(ap, paddr_t);
3117 size = va_arg(ap, size_t);
3118
3119 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3120 #if 0
3121 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3122 #endif
3123 ptegidx = va_to_pteg(pmap_kernel(), va);
3124 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3125 i = pmap_pte_insert(ptegidx, &pte);
3126 }
3127 }
3128
3129 TLBSYNC();
3130 SYNC();
3131 return (0);
3132 }
3133 #endif /* PMAP_OEA64_BRIDGE */
3134
3135 /*
3136 * This is not part of the defined PMAP interface and is specific to the
3137 * PowerPC architecture. This is called during initppc, before the system
3138 * is really initialized.
3139 */
3140 void
3141 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3142 {
3143 struct mem_region *mp, tmp;
3144 paddr_t s, e;
3145 psize_t size;
3146 int i, j;
3147
3148 /*
3149 * Get memory.
3150 */
3151 mem_regions(&mem, &avail);
3152 #if defined(DEBUG)
3153 if (pmapdebug & PMAPDEBUG_BOOT) {
3154 printf("pmap_bootstrap: memory configuration:\n");
3155 for (mp = mem; mp->size; mp++) {
3156 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3157 mp->start, mp->size);
3158 }
3159 for (mp = avail; mp->size; mp++) {
3160 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3161 mp->start, mp->size);
3162 }
3163 }
3164 #endif
3165
3166 /*
3167 * Find out how much physical memory we have and in how many chunks.
3168 */
3169 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3170 if (mp->start >= pmap_memlimit)
3171 continue;
3172 if (mp->start + mp->size > pmap_memlimit) {
3173 size = pmap_memlimit - mp->start;
3174 physmem += btoc(size);
3175 } else {
3176 physmem += btoc(mp->size);
3177 }
3178 mem_cnt++;
3179 }
3180
3181 /*
3182 * Count the number of available entries.
3183 */
3184 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3185 avail_cnt++;
3186
3187 /*
3188 * Page align all regions.
3189 */
3190 kernelstart = trunc_page(kernelstart);
3191 kernelend = round_page(kernelend);
3192 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3193 s = round_page(mp->start);
3194 mp->size -= (s - mp->start);
3195 mp->size = trunc_page(mp->size);
3196 mp->start = s;
3197 e = mp->start + mp->size;
3198
3199 DPRINTFN(BOOT,
3200 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3201 i, mp->start, mp->size));
3202
3203 /*
3204 * Don't allow the end to run beyond our artificial limit
3205 */
3206 if (e > pmap_memlimit)
3207 e = pmap_memlimit;
3208
3209 /*
3210 * Is this region empty or strange? skip it.
3211 */
3212 if (e <= s) {
3213 mp->start = 0;
3214 mp->size = 0;
3215 continue;
3216 }
3217
3218 /*
3219 * Does this overlap the beginning of kernel?
3220 * Does extend past the end of the kernel?
3221 */
3222 else if (s < kernelstart && e > kernelstart) {
3223 if (e > kernelend) {
3224 avail[avail_cnt].start = kernelend;
3225 avail[avail_cnt].size = e - kernelend;
3226 avail_cnt++;
3227 }
3228 mp->size = kernelstart - s;
3229 }
3230 /*
3231 * Check whether this region overlaps the end of the kernel.
3232 */
3233 else if (s < kernelend && e > kernelend) {
3234 mp->start = kernelend;
3235 mp->size = e - kernelend;
3236 }
3237 /*
3238 * Look whether this regions is completely inside the kernel.
3239 * Nuke it if it does.
3240 */
3241 else if (s >= kernelstart && e <= kernelend) {
3242 mp->start = 0;
3243 mp->size = 0;
3244 }
3245 /*
3246 * If the user imposed a memory limit, enforce it.
3247 */
3248 else if (s >= pmap_memlimit) {
3249 mp->start = -PAGE_SIZE; /* let's know why */
3250 mp->size = 0;
3251 }
3252 else {
3253 mp->start = s;
3254 mp->size = e - s;
3255 }
3256 DPRINTFN(BOOT,
3257 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3258 i, mp->start, mp->size));
3259 }
3260
3261 /*
3262 * Move (and uncount) all the null return to the end.
3263 */
3264 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3265 if (mp->size == 0) {
3266 tmp = avail[i];
3267 avail[i] = avail[--avail_cnt];
3268 avail[avail_cnt] = avail[i];
3269 }
3270 }
3271
3272 /*
3273 * (Bubble)sort them into asecnding order.
3274 */
3275 for (i = 0; i < avail_cnt; i++) {
3276 for (j = i + 1; j < avail_cnt; j++) {
3277 if (avail[i].start > avail[j].start) {
3278 tmp = avail[i];
3279 avail[i] = avail[j];
3280 avail[j] = tmp;
3281 }
3282 }
3283 }
3284
3285 /*
3286 * Make sure they don't overlap.
3287 */
3288 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3289 if (mp[0].start + mp[0].size > mp[1].start) {
3290 mp[0].size = mp[1].start - mp[0].start;
3291 }
3292 DPRINTFN(BOOT,
3293 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3294 i, mp->start, mp->size));
3295 }
3296 DPRINTFN(BOOT,
3297 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3298 i, mp->start, mp->size));
3299
3300 #ifdef PTEGCOUNT
3301 pmap_pteg_cnt = PTEGCOUNT;
3302 #else /* PTEGCOUNT */
3303
3304 pmap_pteg_cnt = 0x1000;
3305
3306 while (pmap_pteg_cnt < physmem)
3307 pmap_pteg_cnt <<= 1;
3308
3309 pmap_pteg_cnt >>= 1;
3310 #endif /* PTEGCOUNT */
3311
3312 #ifdef DEBUG
3313 DPRINTFN(BOOT,
3314 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3315 #endif
3316
3317 /*
3318 * Find suitably aligned memory for PTEG hash table.
3319 */
3320 size = pmap_pteg_cnt * sizeof(struct pteg);
3321 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3322
3323 #ifdef DEBUG
3324 DPRINTFN(BOOT,
3325 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3326 #endif
3327
3328
3329 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3330 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3331 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3332 pmap_pteg_table, size);
3333 #endif
3334
3335 memset(__UNVOLATILE(pmap_pteg_table), 0,
3336 pmap_pteg_cnt * sizeof(struct pteg));
3337 pmap_pteg_mask = pmap_pteg_cnt - 1;
3338
3339 /*
3340 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3341 * with pages. So we just steal them before giving them to UVM.
3342 */
3343 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3344 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3345 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3346 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3347 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3348 pmap_pvo_table, size);
3349 #endif
3350
3351 for (i = 0; i < pmap_pteg_cnt; i++)
3352 TAILQ_INIT(&pmap_pvo_table[i]);
3353
3354 #ifndef MSGBUFADDR
3355 /*
3356 * Allocate msgbuf in high memory.
3357 */
3358 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3359 #endif
3360
3361 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3362 paddr_t pfstart = atop(mp->start);
3363 paddr_t pfend = atop(mp->start + mp->size);
3364 if (mp->size == 0)
3365 continue;
3366 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3367 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3368 VM_FREELIST_FIRST256);
3369 } else if (mp->start >= SEGMENT_LENGTH) {
3370 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3371 VM_FREELIST_DEFAULT);
3372 } else {
3373 pfend = atop(SEGMENT_LENGTH);
3374 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3375 VM_FREELIST_FIRST256);
3376 pfstart = atop(SEGMENT_LENGTH);
3377 pfend = atop(mp->start + mp->size);
3378 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3379 VM_FREELIST_DEFAULT);
3380 }
3381 }
3382
3383 /*
3384 * Make sure kernel vsid is allocated as well as VSID 0.
3385 */
3386 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3387 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3388 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3389 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3390 pmap_vsid_bitmap[0] |= 1;
3391
3392 /*
3393 * Initialize kernel pmap and hardware.
3394 */
3395
3396 /* PMAP_OEA64_BRIDGE does support these instructions */
3397 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3398 for (i = 0; i < 16; i++) {
3399 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3400 __asm volatile ("mtsrin %0,%1"
3401 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3402 }
3403
3404 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3405 __asm volatile ("mtsr %0,%1"
3406 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3407 #ifdef KERNEL2_SR
3408 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3409 __asm volatile ("mtsr %0,%1"
3410 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3411 #endif
3412 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3413 #if defined (PMAP_OEA)
3414 for (i = 0; i < 16; i++) {
3415 if (iosrtable[i] & SR601_T) {
3416 pmap_kernel()->pm_sr[i] = iosrtable[i];
3417 __asm volatile ("mtsrin %0,%1"
3418 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3419 }
3420 }
3421 __asm volatile ("sync; mtsdr1 %0; isync"
3422 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3423 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3424 __asm __volatile ("sync; mtsdr1 %0; isync"
3425 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3426 #endif
3427 tlbia();
3428
3429 #ifdef ALTIVEC
3430 pmap_use_altivec = cpu_altivec;
3431 #endif
3432
3433 #ifdef DEBUG
3434 if (pmapdebug & PMAPDEBUG_BOOT) {
3435 u_int cnt;
3436 int bank;
3437 char pbuf[9];
3438 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3439 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3440 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3441 bank,
3442 ptoa(vm_physmem[bank].avail_start),
3443 ptoa(vm_physmem[bank].avail_end),
3444 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3445 }
3446 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3447 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3448 pbuf, cnt);
3449 }
3450 #endif
3451
3452 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3453 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3454 &pmap_pool_uallocator, IPL_NONE);
3455
3456 pool_setlowat(&pmap_upvo_pool, 252);
3457
3458 pool_init(&pmap_pool, sizeof(struct pmap),
3459 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3460 IPL_NONE);
3461
3462 #if defined(PMAP_NEED_MAPKERNEL) || 1
3463 {
3464 struct pmap *pm = pmap_kernel();
3465 #if 0
3466 extern int etext[], kernel_text[];
3467 vaddr_t va, va_etext = (paddr_t) etext;
3468 #endif
3469 paddr_t pa, pa_end;
3470 register_t sr;
3471 struct pte pt;
3472 unsigned int ptegidx;
3473 int bank;
3474
3475 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3476 pm->pm_sr[0] = sr;
3477
3478 for (bank = 0; bank < vm_nphysseg; bank++) {
3479 pa_end = ptoa(vm_physmem[bank].avail_end);
3480 pa = ptoa(vm_physmem[bank].avail_start);
3481 for (; pa < pa_end; pa += PAGE_SIZE) {
3482 ptegidx = va_to_pteg(pm, pa);
3483 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3484 pmap_pte_insert(ptegidx, &pt);
3485 }
3486 }
3487
3488 #if 0
3489 va = (vaddr_t) kernel_text;
3490
3491 for (pa = kernelstart; va < va_etext;
3492 pa += PAGE_SIZE, va += PAGE_SIZE) {
3493 ptegidx = va_to_pteg(pm, va);
3494 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3495 pmap_pte_insert(ptegidx, &pt);
3496 }
3497
3498 for (; pa < kernelend;
3499 pa += PAGE_SIZE, va += PAGE_SIZE) {
3500 ptegidx = va_to_pteg(pm, va);
3501 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3502 pmap_pte_insert(ptegidx, &pt);
3503 }
3504
3505 for (va = 0, pa = 0; va < 0x3000;
3506 pa += PAGE_SIZE, va += PAGE_SIZE) {
3507 ptegidx = va_to_pteg(pm, va);
3508 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3509 pmap_pte_insert(ptegidx, &pt);
3510 }
3511 #endif
3512
3513 __asm volatile ("mtsrin %0,%1"
3514 :: "r"(sr), "r"(kernelstart));
3515 }
3516 #endif
3517 }
3518