pmap.c revision 1.55 1 /* $NetBSD: pmap.c,v 1.55 2008/02/05 22:31:49 garbled Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43 * Copyright (C) 1995, 1996 TooLs GmbH.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by TooLs GmbH.
57 * 4. The name of TooLs GmbH may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.55 2008/02/05 22:31:49 garbled Exp $");
74
75 #define PMAP_NOOPNAMES
76
77 #include "opt_ppcarch.h"
78 #include "opt_altivec.h"
79 #include "opt_pmap.h"
80 #include <sys/param.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83 #include <sys/user.h>
84 #include <sys/pool.h>
85 #include <sys/queue.h>
86 #include <sys/device.h> /* for evcnt */
87 #include <sys/systm.h>
88 #include <sys/atomic.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97 #include <powerpc/stdarg.h>
98
99 #ifdef ALTIVEC
100 int pmap_use_altivec;
101 #endif
102
103 volatile struct pteg *pmap_pteg_table;
104 unsigned int pmap_pteg_cnt;
105 unsigned int pmap_pteg_mask;
106 #ifdef PMAP_MEMLIMIT
107 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
108 #else
109 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
110 #endif
111
112 struct pmap kernel_pmap_;
113 unsigned int pmap_pages_stolen;
114 u_long pmap_pte_valid;
115 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
116 u_long pmap_pvo_enter_depth;
117 u_long pmap_pvo_remove_depth;
118 #endif
119
120 int physmem;
121 #ifndef MSGBUFADDR
122 extern paddr_t msgbuf_paddr;
123 #endif
124
125 static struct mem_region *mem, *avail;
126 static u_int mem_cnt, avail_cnt;
127
128 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
129 # define PMAP_OEA 1
130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
131 # define PMAPNAME(name) pmap_##name
132 # endif
133 #endif
134
135 #if defined(PMAP_OEA64)
136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
137 # define PMAPNAME(name) pmap_##name
138 # endif
139 #endif
140
141 #if defined(PMAP_OEA64_BRIDGE)
142 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
143 # define PMAPNAME(name) pmap_##name
144 # endif
145 #endif
146
147 #if defined(PMAP_OEA)
148 #define _PRIxpte "lx"
149 #else
150 #define _PRIxpte PRIx64
151 #endif
152 #define _PRIxpa "lx"
153 #define _PRIxva "lx"
154 #define _PRIsr "lx"
155
156 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
157 #if defined(PMAP_OEA)
158 #define PMAPNAME(name) pmap32_##name
159 #elif defined(PMAP_OEA64)
160 #define PMAPNAME(name) pmap64_##name
161 #elif defined(PMAP_OEA64_BRIDGE)
162 #define PMAPNAME(name) pmap64bridge_##name
163 #else
164 #error unknown variant for pmap
165 #endif
166 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
167
168 #if defined(PMAPNAME)
169 #define STATIC static
170 #define pmap_pte_spill PMAPNAME(pte_spill)
171 #define pmap_real_memory PMAPNAME(real_memory)
172 #define pmap_init PMAPNAME(init)
173 #define pmap_virtual_space PMAPNAME(virtual_space)
174 #define pmap_create PMAPNAME(create)
175 #define pmap_reference PMAPNAME(reference)
176 #define pmap_destroy PMAPNAME(destroy)
177 #define pmap_copy PMAPNAME(copy)
178 #define pmap_update PMAPNAME(update)
179 #define pmap_collect PMAPNAME(collect)
180 #define pmap_enter PMAPNAME(enter)
181 #define pmap_remove PMAPNAME(remove)
182 #define pmap_kenter_pa PMAPNAME(kenter_pa)
183 #define pmap_kremove PMAPNAME(kremove)
184 #define pmap_extract PMAPNAME(extract)
185 #define pmap_protect PMAPNAME(protect)
186 #define pmap_unwire PMAPNAME(unwire)
187 #define pmap_page_protect PMAPNAME(page_protect)
188 #define pmap_query_bit PMAPNAME(query_bit)
189 #define pmap_clear_bit PMAPNAME(clear_bit)
190
191 #define pmap_activate PMAPNAME(activate)
192 #define pmap_deactivate PMAPNAME(deactivate)
193
194 #define pmap_pinit PMAPNAME(pinit)
195 #define pmap_procwr PMAPNAME(procwr)
196
197 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
198 #define pmap_pte_print PMAPNAME(pte_print)
199 #define pmap_pteg_check PMAPNAME(pteg_check)
200 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
201 #define pmap_print_pte PMAPNAME(print_pte)
202 #define pmap_pteg_dist PMAPNAME(pteg_dist)
203 #endif
204 #if defined(DEBUG) || defined(PMAPCHECK)
205 #define pmap_pvo_verify PMAPNAME(pvo_verify)
206 #endif
207 #define pmap_steal_memory PMAPNAME(steal_memory)
208 #define pmap_bootstrap PMAPNAME(bootstrap)
209 #else
210 #define STATIC /* nothing */
211 #endif /* PMAPNAME */
212
213 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
214 STATIC void pmap_real_memory(paddr_t *, psize_t *);
215 STATIC void pmap_init(void);
216 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
217 STATIC pmap_t pmap_create(void);
218 STATIC void pmap_reference(pmap_t);
219 STATIC void pmap_destroy(pmap_t);
220 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
221 STATIC void pmap_update(pmap_t);
222 STATIC void pmap_collect(pmap_t);
223 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
224 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
225 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
226 STATIC void pmap_kremove(vaddr_t, vsize_t);
227 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
228
229 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
230 STATIC void pmap_unwire(pmap_t, vaddr_t);
231 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
232 STATIC bool pmap_query_bit(struct vm_page *, int);
233 STATIC bool pmap_clear_bit(struct vm_page *, int);
234
235 STATIC void pmap_activate(struct lwp *);
236 STATIC void pmap_deactivate(struct lwp *);
237
238 STATIC void pmap_pinit(pmap_t pm);
239 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
240
241 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
242 STATIC void pmap_pte_print(volatile struct pte *);
243 STATIC void pmap_pteg_check(void);
244 STATIC void pmap_print_mmuregs(void);
245 STATIC void pmap_print_pte(pmap_t, vaddr_t);
246 STATIC void pmap_pteg_dist(void);
247 #endif
248 #if defined(DEBUG) || defined(PMAPCHECK)
249 STATIC void pmap_pvo_verify(void);
250 #endif
251 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
252 STATIC void pmap_bootstrap(paddr_t, paddr_t);
253
254 #ifdef PMAPNAME
255 const struct pmap_ops PMAPNAME(ops) = {
256 .pmapop_pte_spill = pmap_pte_spill,
257 .pmapop_real_memory = pmap_real_memory,
258 .pmapop_init = pmap_init,
259 .pmapop_virtual_space = pmap_virtual_space,
260 .pmapop_create = pmap_create,
261 .pmapop_reference = pmap_reference,
262 .pmapop_destroy = pmap_destroy,
263 .pmapop_copy = pmap_copy,
264 .pmapop_update = pmap_update,
265 .pmapop_collect = pmap_collect,
266 .pmapop_enter = pmap_enter,
267 .pmapop_remove = pmap_remove,
268 .pmapop_kenter_pa = pmap_kenter_pa,
269 .pmapop_kremove = pmap_kremove,
270 .pmapop_extract = pmap_extract,
271 .pmapop_protect = pmap_protect,
272 .pmapop_unwire = pmap_unwire,
273 .pmapop_page_protect = pmap_page_protect,
274 .pmapop_query_bit = pmap_query_bit,
275 .pmapop_clear_bit = pmap_clear_bit,
276 .pmapop_activate = pmap_activate,
277 .pmapop_deactivate = pmap_deactivate,
278 .pmapop_pinit = pmap_pinit,
279 .pmapop_procwr = pmap_procwr,
280 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
281 .pmapop_pte_print = pmap_pte_print,
282 .pmapop_pteg_check = pmap_pteg_check,
283 .pmapop_print_mmuregs = pmap_print_mmuregs,
284 .pmapop_print_pte = pmap_print_pte,
285 .pmapop_pteg_dist = pmap_pteg_dist,
286 #else
287 .pmapop_pte_print = NULL,
288 .pmapop_pteg_check = NULL,
289 .pmapop_print_mmuregs = NULL,
290 .pmapop_print_pte = NULL,
291 .pmapop_pteg_dist = NULL,
292 #endif
293 #if defined(DEBUG) || defined(PMAPCHECK)
294 .pmapop_pvo_verify = pmap_pvo_verify,
295 #else
296 .pmapop_pvo_verify = NULL,
297 #endif
298 .pmapop_steal_memory = pmap_steal_memory,
299 .pmapop_bootstrap = pmap_bootstrap,
300 };
301 #endif /* !PMAPNAME */
302
303 /*
304 * The following structure is aligned to 32 bytes
305 */
306 struct pvo_entry {
307 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
308 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
309 struct pte pvo_pte; /* Prebuilt PTE */
310 pmap_t pvo_pmap; /* ptr to owning pmap */
311 vaddr_t pvo_vaddr; /* VA of entry */
312 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
313 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
314 #define PVO_WIRED 0x0010 /* PVO entry is wired */
315 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
316 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
317 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
318 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
319 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
320 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
321 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
322 #define PVO_SPILL_SET 2 /* PVO has been spilled */
323 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
324 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
325 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
326 #define PVO_REMOVE 6 /* PVO has been removed */
327 #define PVO_WHERE_MASK 15
328 #define PVO_WHERE_SHFT 8
329 } __attribute__ ((aligned (32)));
330 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
331 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
332 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
333 #define PVO_PTEGIDX_CLR(pvo) \
334 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
335 #define PVO_PTEGIDX_SET(pvo,i) \
336 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
337 #define PVO_WHERE(pvo,w) \
338 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
339 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
340
341 TAILQ_HEAD(pvo_tqhead, pvo_entry);
342 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
343 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
344 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
345
346 struct pool pmap_pool; /* pool for pmap structures */
347 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
348 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
349
350 /*
351 * We keep a cache of unmanaged pages to be used for pvo entries for
352 * unmanaged pages.
353 */
354 struct pvo_page {
355 SIMPLEQ_ENTRY(pvo_page) pvop_link;
356 };
357 SIMPLEQ_HEAD(pvop_head, pvo_page);
358 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
359 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
360 u_long pmap_upvop_free;
361 u_long pmap_upvop_maxfree;
362 u_long pmap_mpvop_free;
363 u_long pmap_mpvop_maxfree;
364
365 static void *pmap_pool_ualloc(struct pool *, int);
366 static void *pmap_pool_malloc(struct pool *, int);
367
368 static void pmap_pool_ufree(struct pool *, void *);
369 static void pmap_pool_mfree(struct pool *, void *);
370
371 static struct pool_allocator pmap_pool_mallocator = {
372 .pa_alloc = pmap_pool_malloc,
373 .pa_free = pmap_pool_mfree,
374 .pa_pagesz = 0,
375 };
376
377 static struct pool_allocator pmap_pool_uallocator = {
378 .pa_alloc = pmap_pool_ualloc,
379 .pa_free = pmap_pool_ufree,
380 .pa_pagesz = 0,
381 };
382
383 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
384 void pmap_pte_print(volatile struct pte *);
385 void pmap_pteg_check(void);
386 void pmap_pteg_dist(void);
387 void pmap_print_pte(pmap_t, vaddr_t);
388 void pmap_print_mmuregs(void);
389 #endif
390
391 #if defined(DEBUG) || defined(PMAPCHECK)
392 #ifdef PMAPCHECK
393 int pmapcheck = 1;
394 #else
395 int pmapcheck = 0;
396 #endif
397 void pmap_pvo_verify(void);
398 static void pmap_pvo_check(const struct pvo_entry *);
399 #define PMAP_PVO_CHECK(pvo) \
400 do { \
401 if (pmapcheck) \
402 pmap_pvo_check(pvo); \
403 } while (0)
404 #else
405 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
406 #endif
407 static int pmap_pte_insert(int, struct pte *);
408 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
409 vaddr_t, paddr_t, register_t, int);
410 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
411 static void pmap_pvo_free(struct pvo_entry *);
412 static void pmap_pvo_free_list(struct pvo_head *);
413 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
414 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
415 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
416 static void pvo_set_exec(struct pvo_entry *);
417 static void pvo_clear_exec(struct pvo_entry *);
418
419 static void tlbia(void);
420
421 static void pmap_release(pmap_t);
422 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
423
424 static uint32_t pmap_pvo_reclaim_nextidx;
425 #ifdef DEBUG
426 static int pmap_pvo_reclaim_debugctr;
427 #endif
428
429 #define VSID_NBPW (sizeof(uint32_t) * 8)
430 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
431
432 static int pmap_initialized;
433
434 #if defined(DEBUG) || defined(PMAPDEBUG)
435 #define PMAPDEBUG_BOOT 0x0001
436 #define PMAPDEBUG_PTE 0x0002
437 #define PMAPDEBUG_EXEC 0x0008
438 #define PMAPDEBUG_PVOENTER 0x0010
439 #define PMAPDEBUG_PVOREMOVE 0x0020
440 #define PMAPDEBUG_ACTIVATE 0x0100
441 #define PMAPDEBUG_CREATE 0x0200
442 #define PMAPDEBUG_ENTER 0x1000
443 #define PMAPDEBUG_KENTER 0x2000
444 #define PMAPDEBUG_KREMOVE 0x4000
445 #define PMAPDEBUG_REMOVE 0x8000
446
447 unsigned int pmapdebug = 0;
448
449 # define DPRINTF(x) printf x
450 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
451 #else
452 # define DPRINTF(x)
453 # define DPRINTFN(n, x)
454 #endif
455
456
457 #ifdef PMAPCOUNTERS
458 /*
459 * From pmap_subr.c
460 */
461 extern struct evcnt pmap_evcnt_mappings;
462 extern struct evcnt pmap_evcnt_unmappings;
463
464 extern struct evcnt pmap_evcnt_kernel_mappings;
465 extern struct evcnt pmap_evcnt_kernel_unmappings;
466
467 extern struct evcnt pmap_evcnt_mappings_replaced;
468
469 extern struct evcnt pmap_evcnt_exec_mappings;
470 extern struct evcnt pmap_evcnt_exec_cached;
471
472 extern struct evcnt pmap_evcnt_exec_synced;
473 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
474 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
475
476 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
477 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
478 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
479 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
480 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
481
482 extern struct evcnt pmap_evcnt_updates;
483 extern struct evcnt pmap_evcnt_collects;
484 extern struct evcnt pmap_evcnt_copies;
485
486 extern struct evcnt pmap_evcnt_ptes_spilled;
487 extern struct evcnt pmap_evcnt_ptes_unspilled;
488 extern struct evcnt pmap_evcnt_ptes_evicted;
489
490 extern struct evcnt pmap_evcnt_ptes_primary[8];
491 extern struct evcnt pmap_evcnt_ptes_secondary[8];
492 extern struct evcnt pmap_evcnt_ptes_removed;
493 extern struct evcnt pmap_evcnt_ptes_changed;
494 extern struct evcnt pmap_evcnt_pvos_reclaimed;
495 extern struct evcnt pmap_evcnt_pvos_failed;
496
497 extern struct evcnt pmap_evcnt_zeroed_pages;
498 extern struct evcnt pmap_evcnt_copied_pages;
499 extern struct evcnt pmap_evcnt_idlezeroed_pages;
500
501 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
502 #define PMAPCOUNT2(ev) ((ev).ev_count++)
503 #else
504 #define PMAPCOUNT(ev) ((void) 0)
505 #define PMAPCOUNT2(ev) ((void) 0)
506 #endif
507
508 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
509
510 /* XXXSL: this needs to be moved to assembler */
511 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
512
513 #define TLBSYNC() __asm volatile("tlbsync")
514 #define SYNC() __asm volatile("sync")
515 #define EIEIO() __asm volatile("eieio")
516 #define MFMSR() mfmsr()
517 #define MTMSR(psl) mtmsr(psl)
518 #define MFPVR() mfpvr()
519 #define MFSRIN(va) mfsrin(va)
520 #define MFTB() mfrtcltbl()
521
522 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
523 static inline register_t
524 mfsrin(vaddr_t va)
525 {
526 register_t sr;
527 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
528 return sr;
529 }
530 #endif /* PMAP_OEA*/
531
532 #if defined (PMAP_OEA64_BRIDGE)
533 extern void mfmsr64 (register64_t *result);
534 #endif /* PMAP_OEA64_BRIDGE */
535
536 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
537 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
538
539 static inline register_t
540 pmap_interrupts_off(void)
541 {
542 register_t msr = MFMSR();
543 if (msr & PSL_EE)
544 MTMSR(msr & ~PSL_EE);
545 return msr;
546 }
547
548 static void
549 pmap_interrupts_restore(register_t msr)
550 {
551 if (msr & PSL_EE)
552 MTMSR(msr);
553 }
554
555 static inline u_int32_t
556 mfrtcltbl(void)
557 {
558 #ifdef PPC_OEA601
559 if ((MFPVR() >> 16) == MPC601)
560 return (mfrtcl() >> 7);
561 else
562 #endif
563 return (mftbl());
564 }
565
566 /*
567 * These small routines may have to be replaced,
568 * if/when we support processors other that the 604.
569 */
570
571 void
572 tlbia(void)
573 {
574 char *i;
575
576 SYNC();
577 #if defined(PMAP_OEA)
578 /*
579 * Why not use "tlbia"? Because not all processors implement it.
580 *
581 * This needs to be a per-CPU callback to do the appropriate thing
582 * for the CPU. XXX
583 */
584 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
585 TLBIE(i);
586 EIEIO();
587 SYNC();
588 }
589 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
590 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
591 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
592 TLBIEL(i);
593 EIEIO();
594 SYNC();
595 }
596 #endif
597 TLBSYNC();
598 SYNC();
599 }
600
601 static inline register_t
602 va_to_vsid(const struct pmap *pm, vaddr_t addr)
603 {
604 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
605 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
606 #else /* PMAP_OEA64 */
607 #if 0
608 const struct ste *ste;
609 register_t hash;
610 int i;
611
612 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
613
614 /*
615 * Try the primary group first
616 */
617 ste = pm->pm_stes[hash].stes;
618 for (i = 0; i < 8; i++, ste++) {
619 if (ste->ste_hi & STE_V) &&
620 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
621 return ste;
622 }
623
624 /*
625 * Then the secondary group.
626 */
627 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
628 for (i = 0; i < 8; i++, ste++) {
629 if (ste->ste_hi & STE_V) &&
630 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
631 return addr;
632 }
633
634 return NULL;
635 #else
636 /*
637 * Rather than searching the STE groups for the VSID, we know
638 * how we generate that from the ESID and so do that.
639 */
640 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
641 #endif
642 #endif /* PMAP_OEA */
643 }
644
645 static inline register_t
646 va_to_pteg(const struct pmap *pm, vaddr_t addr)
647 {
648 register_t hash;
649
650 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
651 return hash & pmap_pteg_mask;
652 }
653
654 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
655 /*
656 * Given a PTE in the page table, calculate the VADDR that hashes to it.
657 * The only bit of magic is that the top 4 bits of the address doesn't
658 * technically exist in the PTE. But we know we reserved 4 bits of the
659 * VSID for it so that's how we get it.
660 */
661 static vaddr_t
662 pmap_pte_to_va(volatile const struct pte *pt)
663 {
664 vaddr_t va;
665 uintptr_t ptaddr = (uintptr_t) pt;
666
667 if (pt->pte_hi & PTE_HID)
668 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
669
670 /* PPC Bits 10-19 PPC64 Bits 42-51 */
671 #if defined(PMAP_OEA)
672 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
673 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
674 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
675 #endif
676 va <<= ADDR_PIDX_SHFT;
677
678 /* PPC Bits 4-9 PPC64 Bits 36-41 */
679 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
680
681 #if defined(PMAP_OEA64)
682 /* PPC63 Bits 0-35 */
683 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
684 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
685 /* PPC Bits 0-3 */
686 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
687 #endif
688
689 return va;
690 }
691 #endif
692
693 static inline struct pvo_head *
694 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
695 {
696 struct vm_page *pg;
697
698 pg = PHYS_TO_VM_PAGE(pa);
699 if (pg_p != NULL)
700 *pg_p = pg;
701 if (pg == NULL)
702 return &pmap_pvo_unmanaged;
703 return &pg->mdpage.mdpg_pvoh;
704 }
705
706 static inline struct pvo_head *
707 vm_page_to_pvoh(struct vm_page *pg)
708 {
709 return &pg->mdpage.mdpg_pvoh;
710 }
711
712
713 static inline void
714 pmap_attr_clear(struct vm_page *pg, int ptebit)
715 {
716 pg->mdpage.mdpg_attrs &= ~ptebit;
717 }
718
719 static inline int
720 pmap_attr_fetch(struct vm_page *pg)
721 {
722 return pg->mdpage.mdpg_attrs;
723 }
724
725 static inline void
726 pmap_attr_save(struct vm_page *pg, int ptebit)
727 {
728 pg->mdpage.mdpg_attrs |= ptebit;
729 }
730
731 static inline int
732 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
733 {
734 if (pt->pte_hi == pvo_pt->pte_hi
735 #if 0
736 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
737 ~(PTE_REF|PTE_CHG)) == 0
738 #endif
739 )
740 return 1;
741 return 0;
742 }
743
744 static inline void
745 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
746 {
747 /*
748 * Construct the PTE. Default to IMB initially. Valid bit
749 * only gets set when the real pte is set in memory.
750 *
751 * Note: Don't set the valid bit for correct operation of tlb update.
752 */
753 #if defined(PMAP_OEA)
754 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
755 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
756 pt->pte_lo = pte_lo;
757 #elif defined (PMAP_OEA64_BRIDGE)
758 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
759 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
760 pt->pte_lo = (u_int64_t) pte_lo;
761 #elif defined (PMAP_OEA64)
762 #error PMAP_OEA64 not supported
763 #endif /* PMAP_OEA */
764 }
765
766 static inline void
767 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
768 {
769 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
770 }
771
772 static inline void
773 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
774 {
775 /*
776 * As shown in Section 7.6.3.2.3
777 */
778 pt->pte_lo &= ~ptebit;
779 TLBIE(va);
780 SYNC();
781 EIEIO();
782 TLBSYNC();
783 SYNC();
784 }
785
786 static inline void
787 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
788 {
789 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
790 if (pvo_pt->pte_hi & PTE_VALID)
791 panic("pte_set: setting an already valid pte %p", pvo_pt);
792 #endif
793 pvo_pt->pte_hi |= PTE_VALID;
794
795 /*
796 * Update the PTE as defined in section 7.6.3.1
797 * Note that the REF/CHG bits are from pvo_pt and thus should
798 * have been saved so this routine can restore them (if desired).
799 */
800 pt->pte_lo = pvo_pt->pte_lo;
801 EIEIO();
802 pt->pte_hi = pvo_pt->pte_hi;
803 TLBSYNC();
804 SYNC();
805 pmap_pte_valid++;
806 }
807
808 static inline void
809 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
810 {
811 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
812 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
813 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
814 if ((pt->pte_hi & PTE_VALID) == 0)
815 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
816 #endif
817
818 pvo_pt->pte_hi &= ~PTE_VALID;
819 /*
820 * Force the ref & chg bits back into the PTEs.
821 */
822 SYNC();
823 /*
824 * Invalidate the pte ... (Section 7.6.3.3)
825 */
826 pt->pte_hi &= ~PTE_VALID;
827 SYNC();
828 TLBIE(va);
829 SYNC();
830 EIEIO();
831 TLBSYNC();
832 SYNC();
833 /*
834 * Save the ref & chg bits ...
835 */
836 pmap_pte_synch(pt, pvo_pt);
837 pmap_pte_valid--;
838 }
839
840 static inline void
841 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
842 {
843 /*
844 * Invalidate the PTE
845 */
846 pmap_pte_unset(pt, pvo_pt, va);
847 pmap_pte_set(pt, pvo_pt);
848 }
849
850 /*
851 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
852 * (either primary or secondary location).
853 *
854 * Note: both the destination and source PTEs must not have PTE_VALID set.
855 */
856
857 static int
858 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
859 {
860 volatile struct pte *pt;
861 int i;
862
863 #if defined(DEBUG)
864 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
865 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
866 #endif
867 /*
868 * First try primary hash.
869 */
870 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
871 if ((pt->pte_hi & PTE_VALID) == 0) {
872 pvo_pt->pte_hi &= ~PTE_HID;
873 pmap_pte_set(pt, pvo_pt);
874 return i;
875 }
876 }
877
878 /*
879 * Now try secondary hash.
880 */
881 ptegidx ^= pmap_pteg_mask;
882 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
883 if ((pt->pte_hi & PTE_VALID) == 0) {
884 pvo_pt->pte_hi |= PTE_HID;
885 pmap_pte_set(pt, pvo_pt);
886 return i;
887 }
888 }
889 return -1;
890 }
891
892 /*
893 * Spill handler.
894 *
895 * Tries to spill a page table entry from the overflow area.
896 * This runs in either real mode (if dealing with a exception spill)
897 * or virtual mode when dealing with manually spilling one of the
898 * kernel's pte entries. In either case, interrupts are already
899 * disabled.
900 */
901
902 int
903 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
904 {
905 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
906 struct pvo_entry *pvo;
907 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
908 struct pvo_tqhead *pvoh, *vpvoh = NULL;
909 int ptegidx, i, j;
910 volatile struct pteg *pteg;
911 volatile struct pte *pt;
912
913 PMAP_LOCK();
914
915 ptegidx = va_to_pteg(pm, addr);
916
917 /*
918 * Have to substitute some entry. Use the primary hash for this.
919 * Use low bits of timebase as random generator. Make sure we are
920 * not picking a kernel pte for replacement.
921 */
922 pteg = &pmap_pteg_table[ptegidx];
923 i = MFTB() & 7;
924 for (j = 0; j < 8; j++) {
925 pt = &pteg->pt[i];
926 if ((pt->pte_hi & PTE_VALID) == 0)
927 break;
928 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
929 < PHYSMAP_VSIDBITS)
930 break;
931 i = (i + 1) & 7;
932 }
933 KASSERT(j < 8);
934
935 source_pvo = NULL;
936 victim_pvo = NULL;
937 pvoh = &pmap_pvo_table[ptegidx];
938 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
939
940 /*
941 * We need to find pvo entry for this address...
942 */
943 PMAP_PVO_CHECK(pvo); /* sanity check */
944
945 /*
946 * If we haven't found the source and we come to a PVO with
947 * a valid PTE, then we know we can't find it because all
948 * evicted PVOs always are first in the list.
949 */
950 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
951 break;
952 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
953 addr == PVO_VADDR(pvo)) {
954
955 /*
956 * Now we have found the entry to be spilled into the
957 * pteg. Attempt to insert it into the page table.
958 */
959 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
960 if (j >= 0) {
961 PVO_PTEGIDX_SET(pvo, j);
962 PMAP_PVO_CHECK(pvo); /* sanity check */
963 PVO_WHERE(pvo, SPILL_INSERT);
964 pvo->pvo_pmap->pm_evictions--;
965 PMAPCOUNT(ptes_spilled);
966 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
967 ? pmap_evcnt_ptes_secondary
968 : pmap_evcnt_ptes_primary)[j]);
969
970 /*
971 * Since we keep the evicted entries at the
972 * from of the PVO list, we need move this
973 * (now resident) PVO after the evicted
974 * entries.
975 */
976 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
977
978 /*
979 * If we don't have to move (either we were the
980 * last entry or the next entry was valid),
981 * don't change our position. Otherwise
982 * move ourselves to the tail of the queue.
983 */
984 if (next_pvo != NULL &&
985 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
986 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
987 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
988 }
989 PMAP_UNLOCK();
990 return 1;
991 }
992 source_pvo = pvo;
993 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
994 return 0;
995 }
996 if (victim_pvo != NULL)
997 break;
998 }
999
1000 /*
1001 * We also need the pvo entry of the victim we are replacing
1002 * so save the R & C bits of the PTE.
1003 */
1004 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1005 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1006 vpvoh = pvoh; /* *1* */
1007 victim_pvo = pvo;
1008 if (source_pvo != NULL)
1009 break;
1010 }
1011 }
1012
1013 if (source_pvo == NULL) {
1014 PMAPCOUNT(ptes_unspilled);
1015 PMAP_UNLOCK();
1016 return 0;
1017 }
1018
1019 if (victim_pvo == NULL) {
1020 if ((pt->pte_hi & PTE_HID) == 0)
1021 panic("pmap_pte_spill: victim p-pte (%p) has "
1022 "no pvo entry!", pt);
1023
1024 /*
1025 * If this is a secondary PTE, we need to search
1026 * its primary pvo bucket for the matching PVO.
1027 */
1028 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1029 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1030 PMAP_PVO_CHECK(pvo); /* sanity check */
1031
1032 /*
1033 * We also need the pvo entry of the victim we are
1034 * replacing so save the R & C bits of the PTE.
1035 */
1036 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1037 victim_pvo = pvo;
1038 break;
1039 }
1040 }
1041 if (victim_pvo == NULL)
1042 panic("pmap_pte_spill: victim s-pte (%p) has "
1043 "no pvo entry!", pt);
1044 }
1045
1046 /*
1047 * The victim should be not be a kernel PVO/PTE entry.
1048 */
1049 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1050 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1051 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1052
1053 /*
1054 * We are invalidating the TLB entry for the EA for the
1055 * we are replacing even though its valid; If we don't
1056 * we lose any ref/chg bit changes contained in the TLB
1057 * entry.
1058 */
1059 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1060
1061 /*
1062 * To enforce the PVO list ordering constraint that all
1063 * evicted entries should come before all valid entries,
1064 * move the source PVO to the tail of its list and the
1065 * victim PVO to the head of its list (which might not be
1066 * the same list, if the victim was using the secondary hash).
1067 */
1068 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1069 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1070 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1071 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1072 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1073 pmap_pte_set(pt, &source_pvo->pvo_pte);
1074 victim_pvo->pvo_pmap->pm_evictions++;
1075 source_pvo->pvo_pmap->pm_evictions--;
1076 PVO_WHERE(victim_pvo, SPILL_UNSET);
1077 PVO_WHERE(source_pvo, SPILL_SET);
1078
1079 PVO_PTEGIDX_CLR(victim_pvo);
1080 PVO_PTEGIDX_SET(source_pvo, i);
1081 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1082 PMAPCOUNT(ptes_spilled);
1083 PMAPCOUNT(ptes_evicted);
1084 PMAPCOUNT(ptes_removed);
1085
1086 PMAP_PVO_CHECK(victim_pvo);
1087 PMAP_PVO_CHECK(source_pvo);
1088
1089 PMAP_UNLOCK();
1090 return 1;
1091 }
1092
1093 /*
1094 * Restrict given range to physical memory
1095 */
1096 void
1097 pmap_real_memory(paddr_t *start, psize_t *size)
1098 {
1099 struct mem_region *mp;
1100
1101 for (mp = mem; mp->size; mp++) {
1102 if (*start + *size > mp->start
1103 && *start < mp->start + mp->size) {
1104 if (*start < mp->start) {
1105 *size -= mp->start - *start;
1106 *start = mp->start;
1107 }
1108 if (*start + *size > mp->start + mp->size)
1109 *size = mp->start + mp->size - *start;
1110 return;
1111 }
1112 }
1113 *size = 0;
1114 }
1115
1116 /*
1117 * Initialize anything else for pmap handling.
1118 * Called during vm_init().
1119 */
1120 void
1121 pmap_init(void)
1122 {
1123 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1124 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1125 &pmap_pool_mallocator, IPL_NONE);
1126
1127 pool_setlowat(&pmap_mpvo_pool, 1008);
1128
1129 pmap_initialized = 1;
1130
1131 }
1132
1133 /*
1134 * How much virtual space does the kernel get?
1135 */
1136 void
1137 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1138 {
1139 /*
1140 * For now, reserve one segment (minus some overhead) for kernel
1141 * virtual memory
1142 */
1143 *start = VM_MIN_KERNEL_ADDRESS;
1144 *end = VM_MAX_KERNEL_ADDRESS;
1145 }
1146
1147 /*
1148 * Allocate, initialize, and return a new physical map.
1149 */
1150 pmap_t
1151 pmap_create(void)
1152 {
1153 pmap_t pm;
1154
1155 pm = pool_get(&pmap_pool, PR_WAITOK);
1156 memset((void *)pm, 0, sizeof *pm);
1157 pmap_pinit(pm);
1158
1159 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1160 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1161 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1162 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1163 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1164 pm,
1165 pm->pm_sr[0], pm->pm_sr[1],
1166 pm->pm_sr[2], pm->pm_sr[3],
1167 pm->pm_sr[4], pm->pm_sr[5],
1168 pm->pm_sr[6], pm->pm_sr[7],
1169 pm->pm_sr[8], pm->pm_sr[9],
1170 pm->pm_sr[10], pm->pm_sr[11],
1171 pm->pm_sr[12], pm->pm_sr[13],
1172 pm->pm_sr[14], pm->pm_sr[15]));
1173 return pm;
1174 }
1175
1176 /*
1177 * Initialize a preallocated and zeroed pmap structure.
1178 */
1179 void
1180 pmap_pinit(pmap_t pm)
1181 {
1182 register_t entropy = MFTB();
1183 register_t mask;
1184 int i;
1185
1186 /*
1187 * Allocate some segment registers for this pmap.
1188 */
1189 pm->pm_refs = 1;
1190 PMAP_LOCK();
1191 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1192 static register_t pmap_vsidcontext;
1193 register_t hash;
1194 unsigned int n;
1195
1196 /* Create a new value by multiplying by a prime adding in
1197 * entropy from the timebase register. This is to make the
1198 * VSID more random so that the PT Hash function collides
1199 * less often. (note that the prime causes gcc to do shifts
1200 * instead of a multiply)
1201 */
1202 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1203 hash = pmap_vsidcontext & (NPMAPS - 1);
1204 if (hash == 0) { /* 0 is special, avoid it */
1205 entropy += 0xbadf00d;
1206 continue;
1207 }
1208 n = hash >> 5;
1209 mask = 1L << (hash & (VSID_NBPW-1));
1210 hash = pmap_vsidcontext;
1211 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1212 /* anything free in this bucket? */
1213 if (~pmap_vsid_bitmap[n] == 0) {
1214 entropy = hash ^ (hash >> 16);
1215 continue;
1216 }
1217 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1218 mask = 1L << i;
1219 hash &= ~(VSID_NBPW-1);
1220 hash |= i;
1221 }
1222 hash &= PTE_VSID >> PTE_VSID_SHFT;
1223 pmap_vsid_bitmap[n] |= mask;
1224 pm->pm_vsid = hash;
1225 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1226 for (i = 0; i < 16; i++)
1227 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1228 SR_NOEXEC;
1229 #endif
1230 PMAP_UNLOCK();
1231 return;
1232 }
1233 PMAP_UNLOCK();
1234 panic("pmap_pinit: out of segments");
1235 }
1236
1237 /*
1238 * Add a reference to the given pmap.
1239 */
1240 void
1241 pmap_reference(pmap_t pm)
1242 {
1243 atomic_inc_uint(&pm->pm_refs);
1244 }
1245
1246 /*
1247 * Retire the given pmap from service.
1248 * Should only be called if the map contains no valid mappings.
1249 */
1250 void
1251 pmap_destroy(pmap_t pm)
1252 {
1253 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1254 pmap_release(pm);
1255 pool_put(&pmap_pool, pm);
1256 }
1257 }
1258
1259 /*
1260 * Release any resources held by the given physical map.
1261 * Called when a pmap initialized by pmap_pinit is being released.
1262 */
1263 void
1264 pmap_release(pmap_t pm)
1265 {
1266 int idx, mask;
1267
1268 KASSERT(pm->pm_stats.resident_count == 0);
1269 KASSERT(pm->pm_stats.wired_count == 0);
1270
1271 PMAP_LOCK();
1272 if (pm->pm_sr[0] == 0)
1273 panic("pmap_release");
1274 idx = pm->pm_vsid & (NPMAPS-1);
1275 mask = 1 << (idx % VSID_NBPW);
1276 idx /= VSID_NBPW;
1277
1278 KASSERT(pmap_vsid_bitmap[idx] & mask);
1279 pmap_vsid_bitmap[idx] &= ~mask;
1280 PMAP_UNLOCK();
1281 }
1282
1283 /*
1284 * Copy the range specified by src_addr/len
1285 * from the source map to the range dst_addr/len
1286 * in the destination map.
1287 *
1288 * This routine is only advisory and need not do anything.
1289 */
1290 void
1291 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1292 vsize_t len, vaddr_t src_addr)
1293 {
1294 PMAPCOUNT(copies);
1295 }
1296
1297 /*
1298 * Require that all active physical maps contain no
1299 * incorrect entries NOW.
1300 */
1301 void
1302 pmap_update(struct pmap *pmap)
1303 {
1304 PMAPCOUNT(updates);
1305 TLBSYNC();
1306 }
1307
1308 /*
1309 * Garbage collects the physical map system for
1310 * pages which are no longer used.
1311 * Success need not be guaranteed -- that is, there
1312 * may well be pages which are not referenced, but
1313 * others may be collected.
1314 * Called by the pageout daemon when pages are scarce.
1315 */
1316 void
1317 pmap_collect(pmap_t pm)
1318 {
1319 PMAPCOUNT(collects);
1320 }
1321
1322 static inline int
1323 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1324 {
1325 int pteidx;
1326 /*
1327 * We can find the actual pte entry without searching by
1328 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1329 * and by noticing the HID bit.
1330 */
1331 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1332 if (pvo->pvo_pte.pte_hi & PTE_HID)
1333 pteidx ^= pmap_pteg_mask * 8;
1334 return pteidx;
1335 }
1336
1337 volatile struct pte *
1338 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1339 {
1340 volatile struct pte *pt;
1341
1342 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1343 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1344 return NULL;
1345 #endif
1346
1347 /*
1348 * If we haven't been supplied the ptegidx, calculate it.
1349 */
1350 if (pteidx == -1) {
1351 int ptegidx;
1352 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1353 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1354 }
1355
1356 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1357
1358 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1359 return pt;
1360 #else
1361 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1362 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1363 "pvo but no valid pte index", pvo);
1364 }
1365 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1366 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1367 "pvo but no valid pte", pvo);
1368 }
1369
1370 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1371 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1372 #if defined(DEBUG) || defined(PMAPCHECK)
1373 pmap_pte_print(pt);
1374 #endif
1375 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1376 "pmap_pteg_table %p but invalid in pvo",
1377 pvo, pt);
1378 }
1379 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1380 #if defined(DEBUG) || defined(PMAPCHECK)
1381 pmap_pte_print(pt);
1382 #endif
1383 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1384 "not match pte %p in pmap_pteg_table",
1385 pvo, pt);
1386 }
1387 return pt;
1388 }
1389
1390 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1391 #if defined(DEBUG) || defined(PMAPCHECK)
1392 pmap_pte_print(pt);
1393 #endif
1394 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1395 "pmap_pteg_table but valid in pvo", pvo, pt);
1396 }
1397 return NULL;
1398 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1399 }
1400
1401 struct pvo_entry *
1402 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1403 {
1404 struct pvo_entry *pvo;
1405 int ptegidx;
1406
1407 va &= ~ADDR_POFF;
1408 ptegidx = va_to_pteg(pm, va);
1409
1410 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1411 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1412 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1413 panic("pmap_pvo_find_va: invalid pvo %p on "
1414 "list %#x (%p)", pvo, ptegidx,
1415 &pmap_pvo_table[ptegidx]);
1416 #endif
1417 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1418 if (pteidx_p)
1419 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1420 return pvo;
1421 }
1422 }
1423 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1424 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1425 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1426 return NULL;
1427 }
1428
1429 #if defined(DEBUG) || defined(PMAPCHECK)
1430 void
1431 pmap_pvo_check(const struct pvo_entry *pvo)
1432 {
1433 struct pvo_head *pvo_head;
1434 struct pvo_entry *pvo0;
1435 volatile struct pte *pt;
1436 int failed = 0;
1437
1438 PMAP_LOCK();
1439
1440 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1441 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1442
1443 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1444 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1445 pvo, pvo->pvo_pmap);
1446 failed = 1;
1447 }
1448
1449 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1450 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1451 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1452 pvo, TAILQ_NEXT(pvo, pvo_olink));
1453 failed = 1;
1454 }
1455
1456 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1457 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1458 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1459 pvo, LIST_NEXT(pvo, pvo_vlink));
1460 failed = 1;
1461 }
1462
1463 if (PVO_MANAGED_P(pvo)) {
1464 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1465 } else {
1466 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1467 printf("pmap_pvo_check: pvo %p: non kernel address "
1468 "on kernel unmanaged list\n", pvo);
1469 failed = 1;
1470 }
1471 pvo_head = &pmap_pvo_kunmanaged;
1472 }
1473 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1474 if (pvo0 == pvo)
1475 break;
1476 }
1477 if (pvo0 == NULL) {
1478 printf("pmap_pvo_check: pvo %p: not present "
1479 "on its vlist head %p\n", pvo, pvo_head);
1480 failed = 1;
1481 }
1482 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1483 printf("pmap_pvo_check: pvo %p: not present "
1484 "on its olist head\n", pvo);
1485 failed = 1;
1486 }
1487 pt = pmap_pvo_to_pte(pvo, -1);
1488 if (pt == NULL) {
1489 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1490 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1491 "no PTE\n", pvo);
1492 failed = 1;
1493 }
1494 } else {
1495 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1496 (uintptr_t) pt >=
1497 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1498 printf("pmap_pvo_check: pvo %p: pte %p not in "
1499 "pteg table\n", pvo, pt);
1500 failed = 1;
1501 }
1502 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1503 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1504 "no PTE\n", pvo);
1505 failed = 1;
1506 }
1507 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1508 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1509 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1510 pvo->pvo_pte.pte_hi,
1511 pt->pte_hi);
1512 failed = 1;
1513 }
1514 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1515 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1516 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1517 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1518 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1519 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1520 failed = 1;
1521 }
1522 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1523 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1524 " doesn't not match PVO's VA %#" _PRIxva "\n",
1525 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1526 failed = 1;
1527 }
1528 if (failed)
1529 pmap_pte_print(pt);
1530 }
1531 if (failed)
1532 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1533 pvo->pvo_pmap);
1534
1535 PMAP_UNLOCK();
1536 }
1537 #endif /* DEBUG || PMAPCHECK */
1538
1539 /*
1540 * Search the PVO table looking for a non-wired entry.
1541 * If we find one, remove it and return it.
1542 */
1543
1544 struct pvo_entry *
1545 pmap_pvo_reclaim(struct pmap *pm)
1546 {
1547 struct pvo_tqhead *pvoh;
1548 struct pvo_entry *pvo;
1549 uint32_t idx, endidx;
1550
1551 endidx = pmap_pvo_reclaim_nextidx;
1552 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1553 idx = (idx + 1) & pmap_pteg_mask) {
1554 pvoh = &pmap_pvo_table[idx];
1555 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1556 if (!PVO_WIRED_P(pvo)) {
1557 pmap_pvo_remove(pvo, -1, NULL);
1558 pmap_pvo_reclaim_nextidx = idx;
1559 PMAPCOUNT(pvos_reclaimed);
1560 return pvo;
1561 }
1562 }
1563 }
1564 return NULL;
1565 }
1566
1567 /*
1568 * This returns whether this is the first mapping of a page.
1569 */
1570 int
1571 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1572 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1573 {
1574 struct pvo_entry *pvo;
1575 struct pvo_tqhead *pvoh;
1576 register_t msr;
1577 int ptegidx;
1578 int i;
1579 int poolflags = PR_NOWAIT;
1580
1581 /*
1582 * Compute the PTE Group index.
1583 */
1584 va &= ~ADDR_POFF;
1585 ptegidx = va_to_pteg(pm, va);
1586
1587 msr = pmap_interrupts_off();
1588
1589 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1590 if (pmap_pvo_remove_depth > 0)
1591 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1592 if (++pmap_pvo_enter_depth > 1)
1593 panic("pmap_pvo_enter: called recursively!");
1594 #endif
1595
1596 /*
1597 * Remove any existing mapping for this page. Reuse the
1598 * pvo entry if there a mapping.
1599 */
1600 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1601 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1602 #ifdef DEBUG
1603 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1604 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1605 ~(PTE_REF|PTE_CHG)) == 0 &&
1606 va < VM_MIN_KERNEL_ADDRESS) {
1607 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpa "/%#" _PRIxpa "\n",
1608 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1609 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpa " sr=%#" _PRIsr "\n",
1610 pvo->pvo_pte.pte_hi,
1611 pm->pm_sr[va >> ADDR_SR_SHFT]);
1612 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1613 #ifdef DDBX
1614 Debugger();
1615 #endif
1616 }
1617 #endif
1618 PMAPCOUNT(mappings_replaced);
1619 pmap_pvo_remove(pvo, -1, NULL);
1620 break;
1621 }
1622 }
1623
1624 /*
1625 * If we aren't overwriting an mapping, try to allocate
1626 */
1627 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1628 --pmap_pvo_enter_depth;
1629 #endif
1630 pmap_interrupts_restore(msr);
1631 if (pvo) {
1632 pmap_pvo_free(pvo);
1633 }
1634 pvo = pool_get(pl, poolflags);
1635
1636 #ifdef DEBUG
1637 /*
1638 * Exercise pmap_pvo_reclaim() a little.
1639 */
1640 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1641 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1642 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1643 pool_put(pl, pvo);
1644 pvo = NULL;
1645 }
1646 #endif
1647
1648 msr = pmap_interrupts_off();
1649 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1650 ++pmap_pvo_enter_depth;
1651 #endif
1652 if (pvo == NULL) {
1653 pvo = pmap_pvo_reclaim(pm);
1654 if (pvo == NULL) {
1655 if ((flags & PMAP_CANFAIL) == 0)
1656 panic("pmap_pvo_enter: failed");
1657 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1658 pmap_pvo_enter_depth--;
1659 #endif
1660 PMAPCOUNT(pvos_failed);
1661 pmap_interrupts_restore(msr);
1662 return ENOMEM;
1663 }
1664 }
1665
1666 pvo->pvo_vaddr = va;
1667 pvo->pvo_pmap = pm;
1668 pvo->pvo_vaddr &= ~ADDR_POFF;
1669 if (flags & VM_PROT_EXECUTE) {
1670 PMAPCOUNT(exec_mappings);
1671 pvo_set_exec(pvo);
1672 }
1673 if (flags & PMAP_WIRED)
1674 pvo->pvo_vaddr |= PVO_WIRED;
1675 if (pvo_head != &pmap_pvo_kunmanaged) {
1676 pvo->pvo_vaddr |= PVO_MANAGED;
1677 PMAPCOUNT(mappings);
1678 } else {
1679 PMAPCOUNT(kernel_mappings);
1680 }
1681 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1682
1683 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1684 if (PVO_WIRED_P(pvo))
1685 pvo->pvo_pmap->pm_stats.wired_count++;
1686 pvo->pvo_pmap->pm_stats.resident_count++;
1687 #if defined(DEBUG)
1688 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1689 DPRINTFN(PVOENTER,
1690 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1691 pvo, pm, va, pa));
1692 #endif
1693
1694 /*
1695 * We hope this succeeds but it isn't required.
1696 */
1697 pvoh = &pmap_pvo_table[ptegidx];
1698 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1699 if (i >= 0) {
1700 PVO_PTEGIDX_SET(pvo, i);
1701 PVO_WHERE(pvo, ENTER_INSERT);
1702 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1703 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1704 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1705
1706 } else {
1707 /*
1708 * Since we didn't have room for this entry (which makes it
1709 * and evicted entry), place it at the head of the list.
1710 */
1711 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1712 PMAPCOUNT(ptes_evicted);
1713 pm->pm_evictions++;
1714 /*
1715 * If this is a kernel page, make sure it's active.
1716 */
1717 if (pm == pmap_kernel()) {
1718 i = pmap_pte_spill(pm, va, false);
1719 KASSERT(i);
1720 }
1721 }
1722 PMAP_PVO_CHECK(pvo); /* sanity check */
1723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1724 pmap_pvo_enter_depth--;
1725 #endif
1726 pmap_interrupts_restore(msr);
1727 return 0;
1728 }
1729
1730 static void
1731 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1732 {
1733 volatile struct pte *pt;
1734 int ptegidx;
1735
1736 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1737 if (++pmap_pvo_remove_depth > 1)
1738 panic("pmap_pvo_remove: called recursively!");
1739 #endif
1740
1741 /*
1742 * If we haven't been supplied the ptegidx, calculate it.
1743 */
1744 if (pteidx == -1) {
1745 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1746 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1747 } else {
1748 ptegidx = pteidx >> 3;
1749 if (pvo->pvo_pte.pte_hi & PTE_HID)
1750 ptegidx ^= pmap_pteg_mask;
1751 }
1752 PMAP_PVO_CHECK(pvo); /* sanity check */
1753
1754 /*
1755 * If there is an active pte entry, we need to deactivate it
1756 * (and save the ref & chg bits).
1757 */
1758 pt = pmap_pvo_to_pte(pvo, pteidx);
1759 if (pt != NULL) {
1760 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1761 PVO_WHERE(pvo, REMOVE);
1762 PVO_PTEGIDX_CLR(pvo);
1763 PMAPCOUNT(ptes_removed);
1764 } else {
1765 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1766 pvo->pvo_pmap->pm_evictions--;
1767 }
1768
1769 /*
1770 * Account for executable mappings.
1771 */
1772 if (PVO_EXECUTABLE_P(pvo))
1773 pvo_clear_exec(pvo);
1774
1775 /*
1776 * Update our statistics.
1777 */
1778 pvo->pvo_pmap->pm_stats.resident_count--;
1779 if (PVO_WIRED_P(pvo))
1780 pvo->pvo_pmap->pm_stats.wired_count--;
1781
1782 /*
1783 * Save the REF/CHG bits into their cache if the page is managed.
1784 */
1785 if (PVO_MANAGED_P(pvo)) {
1786 register_t ptelo = pvo->pvo_pte.pte_lo;
1787 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1788
1789 if (pg != NULL) {
1790 /*
1791 * If this page was changed and it is mapped exec,
1792 * invalidate it.
1793 */
1794 if ((ptelo & PTE_CHG) &&
1795 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1796 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1797 if (LIST_EMPTY(pvoh)) {
1798 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1799 "%#" _PRIxpa ": clear-exec]\n",
1800 VM_PAGE_TO_PHYS(pg)));
1801 pmap_attr_clear(pg, PTE_EXEC);
1802 PMAPCOUNT(exec_uncached_pvo_remove);
1803 } else {
1804 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1805 "%#" _PRIxpa ": syncicache]\n",
1806 VM_PAGE_TO_PHYS(pg)));
1807 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1808 PAGE_SIZE);
1809 PMAPCOUNT(exec_synced_pvo_remove);
1810 }
1811 }
1812
1813 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1814 }
1815 PMAPCOUNT(unmappings);
1816 } else {
1817 PMAPCOUNT(kernel_unmappings);
1818 }
1819
1820 /*
1821 * Remove the PVO from its lists and return it to the pool.
1822 */
1823 LIST_REMOVE(pvo, pvo_vlink);
1824 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1825 if (pvol) {
1826 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1827 }
1828 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1829 pmap_pvo_remove_depth--;
1830 #endif
1831 }
1832
1833 void
1834 pmap_pvo_free(struct pvo_entry *pvo)
1835 {
1836
1837 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1838 }
1839
1840 void
1841 pmap_pvo_free_list(struct pvo_head *pvol)
1842 {
1843 struct pvo_entry *pvo, *npvo;
1844
1845 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1846 npvo = LIST_NEXT(pvo, pvo_vlink);
1847 LIST_REMOVE(pvo, pvo_vlink);
1848 pmap_pvo_free(pvo);
1849 }
1850 }
1851
1852 /*
1853 * Mark a mapping as executable.
1854 * If this is the first executable mapping in the segment,
1855 * clear the noexec flag.
1856 */
1857 static void
1858 pvo_set_exec(struct pvo_entry *pvo)
1859 {
1860 struct pmap *pm = pvo->pvo_pmap;
1861
1862 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1863 return;
1864 }
1865 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1866 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1867 {
1868 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1869 if (pm->pm_exec[sr]++ == 0) {
1870 pm->pm_sr[sr] &= ~SR_NOEXEC;
1871 }
1872 }
1873 #endif
1874 }
1875
1876 /*
1877 * Mark a mapping as non-executable.
1878 * If this was the last executable mapping in the segment,
1879 * set the noexec flag.
1880 */
1881 static void
1882 pvo_clear_exec(struct pvo_entry *pvo)
1883 {
1884 struct pmap *pm = pvo->pvo_pmap;
1885
1886 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1887 return;
1888 }
1889 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1890 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1891 {
1892 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1893 if (--pm->pm_exec[sr] == 0) {
1894 pm->pm_sr[sr] |= SR_NOEXEC;
1895 }
1896 }
1897 #endif
1898 }
1899
1900 /*
1901 * Insert physical page at pa into the given pmap at virtual address va.
1902 */
1903 int
1904 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1905 {
1906 struct mem_region *mp;
1907 struct pvo_head *pvo_head;
1908 struct vm_page *pg;
1909 struct pool *pl;
1910 register_t pte_lo;
1911 int error;
1912 u_int pvo_flags;
1913 u_int was_exec = 0;
1914
1915 PMAP_LOCK();
1916
1917 if (__predict_false(!pmap_initialized)) {
1918 pvo_head = &pmap_pvo_kunmanaged;
1919 pl = &pmap_upvo_pool;
1920 pvo_flags = 0;
1921 pg = NULL;
1922 was_exec = PTE_EXEC;
1923 } else {
1924 pvo_head = pa_to_pvoh(pa, &pg);
1925 pl = &pmap_mpvo_pool;
1926 pvo_flags = PVO_MANAGED;
1927 }
1928
1929 DPRINTFN(ENTER,
1930 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1931 pm, va, pa, prot, flags));
1932
1933 /*
1934 * If this is a managed page, and it's the first reference to the
1935 * page clear the execness of the page. Otherwise fetch the execness.
1936 */
1937 if (pg != NULL)
1938 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1939
1940 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1941
1942 /*
1943 * Assume the page is cache inhibited and access is guarded unless
1944 * it's in our available memory array. If it is in the memory array,
1945 * asssume it's in memory coherent memory.
1946 */
1947 pte_lo = PTE_IG;
1948 if ((flags & PMAP_NC) == 0) {
1949 for (mp = mem; mp->size; mp++) {
1950 if (pa >= mp->start && pa < mp->start + mp->size) {
1951 pte_lo = PTE_M;
1952 break;
1953 }
1954 }
1955 }
1956
1957 if (prot & VM_PROT_WRITE)
1958 pte_lo |= PTE_BW;
1959 else
1960 pte_lo |= PTE_BR;
1961
1962 /*
1963 * If this was in response to a fault, "pre-fault" the PTE's
1964 * changed/referenced bit appropriately.
1965 */
1966 if (flags & VM_PROT_WRITE)
1967 pte_lo |= PTE_CHG;
1968 if (flags & VM_PROT_ALL)
1969 pte_lo |= PTE_REF;
1970
1971 /*
1972 * We need to know if this page can be executable
1973 */
1974 flags |= (prot & VM_PROT_EXECUTE);
1975
1976 /*
1977 * Record mapping for later back-translation and pte spilling.
1978 * This will overwrite any existing mapping.
1979 */
1980 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1981
1982 /*
1983 * Flush the real page from the instruction cache if this page is
1984 * mapped executable and cacheable and has not been flushed since
1985 * the last time it was modified.
1986 */
1987 if (error == 0 &&
1988 (flags & VM_PROT_EXECUTE) &&
1989 (pte_lo & PTE_I) == 0 &&
1990 was_exec == 0) {
1991 DPRINTFN(ENTER, (" syncicache"));
1992 PMAPCOUNT(exec_synced);
1993 pmap_syncicache(pa, PAGE_SIZE);
1994 if (pg != NULL) {
1995 pmap_attr_save(pg, PTE_EXEC);
1996 PMAPCOUNT(exec_cached);
1997 #if defined(DEBUG) || defined(PMAPDEBUG)
1998 if (pmapdebug & PMAPDEBUG_ENTER)
1999 printf(" marked-as-exec");
2000 else if (pmapdebug & PMAPDEBUG_EXEC)
2001 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2002 VM_PAGE_TO_PHYS(pg));
2003
2004 #endif
2005 }
2006 }
2007
2008 DPRINTFN(ENTER, (": error=%d\n", error));
2009
2010 PMAP_UNLOCK();
2011
2012 return error;
2013 }
2014
2015 void
2016 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2017 {
2018 struct mem_region *mp;
2019 register_t pte_lo;
2020 int error;
2021
2022 #if defined (PMAP_OEA64_BRIDGE)
2023 if (va < VM_MIN_KERNEL_ADDRESS)
2024 panic("pmap_kenter_pa: attempt to enter "
2025 "non-kernel address %#" _PRIxva "!", va);
2026 #endif
2027
2028 DPRINTFN(KENTER,
2029 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2030
2031 PMAP_LOCK();
2032
2033 /*
2034 * Assume the page is cache inhibited and access is guarded unless
2035 * it's in our available memory array. If it is in the memory array,
2036 * asssume it's in memory coherent memory.
2037 */
2038 pte_lo = PTE_IG;
2039 if ((prot & PMAP_NC) == 0) {
2040 for (mp = mem; mp->size; mp++) {
2041 if (pa >= mp->start && pa < mp->start + mp->size) {
2042 pte_lo = PTE_M;
2043 break;
2044 }
2045 }
2046 }
2047
2048 if (prot & VM_PROT_WRITE)
2049 pte_lo |= PTE_BW;
2050 else
2051 pte_lo |= PTE_BR;
2052
2053 /*
2054 * We don't care about REF/CHG on PVOs on the unmanaged list.
2055 */
2056 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2057 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2058
2059 if (error != 0)
2060 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2061 va, pa, error);
2062
2063 PMAP_UNLOCK();
2064 }
2065
2066 void
2067 pmap_kremove(vaddr_t va, vsize_t len)
2068 {
2069 if (va < VM_MIN_KERNEL_ADDRESS)
2070 panic("pmap_kremove: attempt to remove "
2071 "non-kernel address %#" _PRIxva "!", va);
2072
2073 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2074 pmap_remove(pmap_kernel(), va, va + len);
2075 }
2076
2077 /*
2078 * Remove the given range of mapping entries.
2079 */
2080 void
2081 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2082 {
2083 struct pvo_head pvol;
2084 struct pvo_entry *pvo;
2085 register_t msr;
2086 int pteidx;
2087
2088 PMAP_LOCK();
2089 LIST_INIT(&pvol);
2090 msr = pmap_interrupts_off();
2091 for (; va < endva; va += PAGE_SIZE) {
2092 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2093 if (pvo != NULL) {
2094 pmap_pvo_remove(pvo, pteidx, &pvol);
2095 }
2096 }
2097 pmap_interrupts_restore(msr);
2098 pmap_pvo_free_list(&pvol);
2099 PMAP_UNLOCK();
2100 }
2101
2102 /*
2103 * Get the physical page address for the given pmap/virtual address.
2104 */
2105 bool
2106 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2107 {
2108 struct pvo_entry *pvo;
2109 register_t msr;
2110
2111 PMAP_LOCK();
2112
2113 /*
2114 * If this is a kernel pmap lookup, also check the battable
2115 * and if we get a hit, translate the VA to a PA using the
2116 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2117 * that will wrap back to 0.
2118 */
2119 if (pm == pmap_kernel() &&
2120 (va < VM_MIN_KERNEL_ADDRESS ||
2121 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2122 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2123 #if defined (PMAP_OEA)
2124 #ifdef PPC_OEA601
2125 if ((MFPVR() >> 16) == MPC601) {
2126 register_t batu = battable[va >> 23].batu;
2127 register_t batl = battable[va >> 23].batl;
2128 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2129 if (BAT601_VALID_P(batl) &&
2130 BAT601_VA_MATCH_P(batu, batl, va)) {
2131 register_t mask =
2132 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2133 if (pap)
2134 *pap = (batl & mask) | (va & ~mask);
2135 PMAP_UNLOCK();
2136 return true;
2137 } else if (SR601_VALID_P(sr) &&
2138 SR601_PA_MATCH_P(sr, va)) {
2139 if (pap)
2140 *pap = va;
2141 PMAP_UNLOCK();
2142 return true;
2143 }
2144 } else
2145 #endif /* PPC_OEA601 */
2146 {
2147 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2148 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2149 register_t batl =
2150 battable[va >> ADDR_SR_SHFT].batl;
2151 register_t mask =
2152 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2153 if (pap)
2154 *pap = (batl & mask) | (va & ~mask);
2155 PMAP_UNLOCK();
2156 return true;
2157 }
2158 }
2159 return false;
2160 #elif defined (PMAP_OEA64_BRIDGE)
2161 if (va >= SEGMENT_LENGTH)
2162 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2163 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2164 else {
2165 if (pap)
2166 *pap = va;
2167 PMAP_UNLOCK();
2168 return true;
2169 }
2170 #elif defined (PMAP_OEA64)
2171 #error PPC_OEA64 not supported
2172 #endif /* PPC_OEA */
2173 }
2174
2175 msr = pmap_interrupts_off();
2176 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2177 if (pvo != NULL) {
2178 PMAP_PVO_CHECK(pvo); /* sanity check */
2179 if (pap)
2180 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2181 | (va & ADDR_POFF);
2182 }
2183 pmap_interrupts_restore(msr);
2184 PMAP_UNLOCK();
2185 return pvo != NULL;
2186 }
2187
2188 /*
2189 * Lower the protection on the specified range of this pmap.
2190 */
2191 void
2192 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2193 {
2194 struct pvo_entry *pvo;
2195 volatile struct pte *pt;
2196 register_t msr;
2197 int pteidx;
2198
2199 /*
2200 * Since this routine only downgrades protection, we should
2201 * always be called with at least one bit not set.
2202 */
2203 KASSERT(prot != VM_PROT_ALL);
2204
2205 /*
2206 * If there is no protection, this is equivalent to
2207 * remove the pmap from the pmap.
2208 */
2209 if ((prot & VM_PROT_READ) == 0) {
2210 pmap_remove(pm, va, endva);
2211 return;
2212 }
2213
2214 PMAP_LOCK();
2215
2216 msr = pmap_interrupts_off();
2217 for (; va < endva; va += PAGE_SIZE) {
2218 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2219 if (pvo == NULL)
2220 continue;
2221 PMAP_PVO_CHECK(pvo); /* sanity check */
2222
2223 /*
2224 * Revoke executable if asked to do so.
2225 */
2226 if ((prot & VM_PROT_EXECUTE) == 0)
2227 pvo_clear_exec(pvo);
2228
2229 #if 0
2230 /*
2231 * If the page is already read-only, no change
2232 * needs to be made.
2233 */
2234 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2235 continue;
2236 #endif
2237 /*
2238 * Grab the PTE pointer before we diddle with
2239 * the cached PTE copy.
2240 */
2241 pt = pmap_pvo_to_pte(pvo, pteidx);
2242 /*
2243 * Change the protection of the page.
2244 */
2245 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2246 pvo->pvo_pte.pte_lo |= PTE_BR;
2247
2248 /*
2249 * If the PVO is in the page table, update
2250 * that pte at well.
2251 */
2252 if (pt != NULL) {
2253 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2254 PVO_WHERE(pvo, PMAP_PROTECT);
2255 PMAPCOUNT(ptes_changed);
2256 }
2257
2258 PMAP_PVO_CHECK(pvo); /* sanity check */
2259 }
2260 pmap_interrupts_restore(msr);
2261 PMAP_UNLOCK();
2262 }
2263
2264 void
2265 pmap_unwire(pmap_t pm, vaddr_t va)
2266 {
2267 struct pvo_entry *pvo;
2268 register_t msr;
2269
2270 PMAP_LOCK();
2271 msr = pmap_interrupts_off();
2272 pvo = pmap_pvo_find_va(pm, va, NULL);
2273 if (pvo != NULL) {
2274 if (PVO_WIRED_P(pvo)) {
2275 pvo->pvo_vaddr &= ~PVO_WIRED;
2276 pm->pm_stats.wired_count--;
2277 }
2278 PMAP_PVO_CHECK(pvo); /* sanity check */
2279 }
2280 pmap_interrupts_restore(msr);
2281 PMAP_UNLOCK();
2282 }
2283
2284 /*
2285 * Lower the protection on the specified physical page.
2286 */
2287 void
2288 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2289 {
2290 struct pvo_head *pvo_head, pvol;
2291 struct pvo_entry *pvo, *next_pvo;
2292 volatile struct pte *pt;
2293 register_t msr;
2294
2295 PMAP_LOCK();
2296
2297 KASSERT(prot != VM_PROT_ALL);
2298 LIST_INIT(&pvol);
2299 msr = pmap_interrupts_off();
2300
2301 /*
2302 * When UVM reuses a page, it does a pmap_page_protect with
2303 * VM_PROT_NONE. At that point, we can clear the exec flag
2304 * since we know the page will have different contents.
2305 */
2306 if ((prot & VM_PROT_READ) == 0) {
2307 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2308 VM_PAGE_TO_PHYS(pg)));
2309 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2310 PMAPCOUNT(exec_uncached_page_protect);
2311 pmap_attr_clear(pg, PTE_EXEC);
2312 }
2313 }
2314
2315 pvo_head = vm_page_to_pvoh(pg);
2316 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2317 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2318 PMAP_PVO_CHECK(pvo); /* sanity check */
2319
2320 /*
2321 * Downgrading to no mapping at all, we just remove the entry.
2322 */
2323 if ((prot & VM_PROT_READ) == 0) {
2324 pmap_pvo_remove(pvo, -1, &pvol);
2325 continue;
2326 }
2327
2328 /*
2329 * If EXEC permission is being revoked, just clear the
2330 * flag in the PVO.
2331 */
2332 if ((prot & VM_PROT_EXECUTE) == 0)
2333 pvo_clear_exec(pvo);
2334
2335 /*
2336 * If this entry is already RO, don't diddle with the
2337 * page table.
2338 */
2339 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2340 PMAP_PVO_CHECK(pvo);
2341 continue;
2342 }
2343
2344 /*
2345 * Grab the PTE before the we diddle the bits so
2346 * pvo_to_pte can verify the pte contents are as
2347 * expected.
2348 */
2349 pt = pmap_pvo_to_pte(pvo, -1);
2350 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2351 pvo->pvo_pte.pte_lo |= PTE_BR;
2352 if (pt != NULL) {
2353 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2354 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2355 PMAPCOUNT(ptes_changed);
2356 }
2357 PMAP_PVO_CHECK(pvo); /* sanity check */
2358 }
2359 pmap_interrupts_restore(msr);
2360 pmap_pvo_free_list(&pvol);
2361
2362 PMAP_UNLOCK();
2363 }
2364
2365 /*
2366 * Activate the address space for the specified process. If the process
2367 * is the current process, load the new MMU context.
2368 */
2369 void
2370 pmap_activate(struct lwp *l)
2371 {
2372 struct pcb *pcb = &l->l_addr->u_pcb;
2373 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2374
2375 DPRINTFN(ACTIVATE,
2376 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2377
2378 /*
2379 * XXX Normally performed in cpu_fork().
2380 */
2381 pcb->pcb_pm = pmap;
2382
2383 /*
2384 * In theory, the SR registers need only be valid on return
2385 * to user space wait to do them there.
2386 */
2387 if (l == curlwp) {
2388 /* Store pointer to new current pmap. */
2389 curpm = pmap;
2390 }
2391 }
2392
2393 /*
2394 * Deactivate the specified process's address space.
2395 */
2396 void
2397 pmap_deactivate(struct lwp *l)
2398 {
2399 }
2400
2401 bool
2402 pmap_query_bit(struct vm_page *pg, int ptebit)
2403 {
2404 struct pvo_entry *pvo;
2405 volatile struct pte *pt;
2406 register_t msr;
2407
2408 PMAP_LOCK();
2409
2410 if (pmap_attr_fetch(pg) & ptebit) {
2411 PMAP_UNLOCK();
2412 return true;
2413 }
2414
2415 msr = pmap_interrupts_off();
2416 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2417 PMAP_PVO_CHECK(pvo); /* sanity check */
2418 /*
2419 * See if we saved the bit off. If so cache, it and return
2420 * success.
2421 */
2422 if (pvo->pvo_pte.pte_lo & ptebit) {
2423 pmap_attr_save(pg, ptebit);
2424 PMAP_PVO_CHECK(pvo); /* sanity check */
2425 pmap_interrupts_restore(msr);
2426 PMAP_UNLOCK();
2427 return true;
2428 }
2429 }
2430 /*
2431 * No luck, now go thru the hard part of looking at the ptes
2432 * themselves. Sync so any pending REF/CHG bits are flushed
2433 * to the PTEs.
2434 */
2435 SYNC();
2436 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2437 PMAP_PVO_CHECK(pvo); /* sanity check */
2438 /*
2439 * See if this pvo have a valid PTE. If so, fetch the
2440 * REF/CHG bits from the valid PTE. If the appropriate
2441 * ptebit is set, cache, it and return success.
2442 */
2443 pt = pmap_pvo_to_pte(pvo, -1);
2444 if (pt != NULL) {
2445 pmap_pte_synch(pt, &pvo->pvo_pte);
2446 if (pvo->pvo_pte.pte_lo & ptebit) {
2447 pmap_attr_save(pg, ptebit);
2448 PMAP_PVO_CHECK(pvo); /* sanity check */
2449 pmap_interrupts_restore(msr);
2450 PMAP_UNLOCK();
2451 return true;
2452 }
2453 }
2454 }
2455 pmap_interrupts_restore(msr);
2456 PMAP_UNLOCK();
2457 return false;
2458 }
2459
2460 bool
2461 pmap_clear_bit(struct vm_page *pg, int ptebit)
2462 {
2463 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2464 struct pvo_entry *pvo;
2465 volatile struct pte *pt;
2466 register_t msr;
2467 int rv = 0;
2468
2469 PMAP_LOCK();
2470 msr = pmap_interrupts_off();
2471
2472 /*
2473 * Fetch the cache value
2474 */
2475 rv |= pmap_attr_fetch(pg);
2476
2477 /*
2478 * Clear the cached value.
2479 */
2480 pmap_attr_clear(pg, ptebit);
2481
2482 /*
2483 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2484 * can reset the right ones). Note that since the pvo entries and
2485 * list heads are accessed via BAT0 and are never placed in the
2486 * page table, we don't have to worry about further accesses setting
2487 * the REF/CHG bits.
2488 */
2489 SYNC();
2490
2491 /*
2492 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2493 * valid PTE. If so, clear the ptebit from the valid PTE.
2494 */
2495 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2496 PMAP_PVO_CHECK(pvo); /* sanity check */
2497 pt = pmap_pvo_to_pte(pvo, -1);
2498 if (pt != NULL) {
2499 /*
2500 * Only sync the PTE if the bit we are looking
2501 * for is not already set.
2502 */
2503 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2504 pmap_pte_synch(pt, &pvo->pvo_pte);
2505 /*
2506 * If the bit we are looking for was already set,
2507 * clear that bit in the pte.
2508 */
2509 if (pvo->pvo_pte.pte_lo & ptebit)
2510 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2511 }
2512 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2513 pvo->pvo_pte.pte_lo &= ~ptebit;
2514 PMAP_PVO_CHECK(pvo); /* sanity check */
2515 }
2516 pmap_interrupts_restore(msr);
2517
2518 /*
2519 * If we are clearing the modify bit and this page was marked EXEC
2520 * and the user of the page thinks the page was modified, then we
2521 * need to clean it from the icache if it's mapped or clear the EXEC
2522 * bit if it's not mapped. The page itself might not have the CHG
2523 * bit set if the modification was done via DMA to the page.
2524 */
2525 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2526 if (LIST_EMPTY(pvoh)) {
2527 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2528 VM_PAGE_TO_PHYS(pg)));
2529 pmap_attr_clear(pg, PTE_EXEC);
2530 PMAPCOUNT(exec_uncached_clear_modify);
2531 } else {
2532 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2533 VM_PAGE_TO_PHYS(pg)));
2534 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2535 PMAPCOUNT(exec_synced_clear_modify);
2536 }
2537 }
2538 PMAP_UNLOCK();
2539 return (rv & ptebit) != 0;
2540 }
2541
2542 void
2543 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2544 {
2545 struct pvo_entry *pvo;
2546 size_t offset = va & ADDR_POFF;
2547 int s;
2548
2549 PMAP_LOCK();
2550 s = splvm();
2551 while (len > 0) {
2552 size_t seglen = PAGE_SIZE - offset;
2553 if (seglen > len)
2554 seglen = len;
2555 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2556 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2557 pmap_syncicache(
2558 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2559 PMAP_PVO_CHECK(pvo);
2560 }
2561 va += seglen;
2562 len -= seglen;
2563 offset = 0;
2564 }
2565 splx(s);
2566 PMAP_UNLOCK();
2567 }
2568
2569 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2570 void
2571 pmap_pte_print(volatile struct pte *pt)
2572 {
2573 printf("PTE %p: ", pt);
2574
2575 #if defined(PMAP_OEA)
2576 /* High word: */
2577 printf("%#" _PRIxpte ": [", pt->pte_hi);
2578 #else
2579 printf("%#" _PRIxpte ": [", pt->pte_hi);
2580 #endif /* PMAP_OEA */
2581
2582 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2583 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2584
2585 printf("%#" _PRIxpte " %#" _PRIxpte "",
2586 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2587 pt->pte_hi & PTE_API);
2588 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2589 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2590 #else
2591 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2592 #endif /* PMAP_OEA */
2593
2594 /* Low word: */
2595 #if defined (PMAP_OEA)
2596 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2597 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2598 #else
2599 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2600 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2601 #endif
2602 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2603 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2604 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2605 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2606 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2607 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2608 switch (pt->pte_lo & PTE_PP) {
2609 case PTE_BR: printf("br]\n"); break;
2610 case PTE_BW: printf("bw]\n"); break;
2611 case PTE_SO: printf("so]\n"); break;
2612 case PTE_SW: printf("sw]\n"); break;
2613 }
2614 }
2615 #endif
2616
2617 #if defined(DDB)
2618 void
2619 pmap_pteg_check(void)
2620 {
2621 volatile struct pte *pt;
2622 int i;
2623 int ptegidx;
2624 u_int p_valid = 0;
2625 u_int s_valid = 0;
2626 u_int invalid = 0;
2627
2628 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2629 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2630 if (pt->pte_hi & PTE_VALID) {
2631 if (pt->pte_hi & PTE_HID)
2632 s_valid++;
2633 else
2634 {
2635 p_valid++;
2636 }
2637 } else
2638 invalid++;
2639 }
2640 }
2641 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2642 p_valid, p_valid, s_valid, s_valid,
2643 invalid, invalid);
2644 }
2645
2646 void
2647 pmap_print_mmuregs(void)
2648 {
2649 int i;
2650 u_int cpuvers;
2651 #ifndef PMAP_OEA64
2652 vaddr_t addr;
2653 register_t soft_sr[16];
2654 #endif
2655 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2656 struct bat soft_ibat[4];
2657 struct bat soft_dbat[4];
2658 #endif
2659 paddr_t sdr1;
2660
2661 cpuvers = MFPVR() >> 16;
2662 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2663 #ifndef PMAP_OEA64
2664 addr = 0;
2665 for (i = 0; i < 16; i++) {
2666 soft_sr[i] = MFSRIN(addr);
2667 addr += (1 << ADDR_SR_SHFT);
2668 }
2669 #endif
2670
2671 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2672 /* read iBAT (601: uBAT) registers */
2673 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2674 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2675 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2676 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2677 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2678 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2679 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2680 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2681
2682
2683 if (cpuvers != MPC601) {
2684 /* read dBAT registers */
2685 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2686 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2687 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2688 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2689 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2690 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2691 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2692 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2693 }
2694 #endif
2695
2696 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2697 #ifndef PMAP_OEA64
2698 printf("SR[]:\t");
2699 for (i = 0; i < 4; i++)
2700 printf("0x%08lx, ", soft_sr[i]);
2701 printf("\n\t");
2702 for ( ; i < 8; i++)
2703 printf("0x%08lx, ", soft_sr[i]);
2704 printf("\n\t");
2705 for ( ; i < 12; i++)
2706 printf("0x%08lx, ", soft_sr[i]);
2707 printf("\n\t");
2708 for ( ; i < 16; i++)
2709 printf("0x%08lx, ", soft_sr[i]);
2710 printf("\n");
2711 #endif
2712
2713 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2714 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2715 for (i = 0; i < 4; i++) {
2716 printf("0x%08lx 0x%08lx, ",
2717 soft_ibat[i].batu, soft_ibat[i].batl);
2718 if (i == 1)
2719 printf("\n\t");
2720 }
2721 if (cpuvers != MPC601) {
2722 printf("\ndBAT[]:\t");
2723 for (i = 0; i < 4; i++) {
2724 printf("0x%08lx 0x%08lx, ",
2725 soft_dbat[i].batu, soft_dbat[i].batl);
2726 if (i == 1)
2727 printf("\n\t");
2728 }
2729 }
2730 printf("\n");
2731 #endif /* PMAP_OEA... */
2732 }
2733
2734 void
2735 pmap_print_pte(pmap_t pm, vaddr_t va)
2736 {
2737 struct pvo_entry *pvo;
2738 volatile struct pte *pt;
2739 int pteidx;
2740
2741 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2742 if (pvo != NULL) {
2743 pt = pmap_pvo_to_pte(pvo, pteidx);
2744 if (pt != NULL) {
2745 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2746 va, pt,
2747 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2748 pt->pte_hi, pt->pte_lo);
2749 } else {
2750 printf("No valid PTE found\n");
2751 }
2752 } else {
2753 printf("Address not in pmap\n");
2754 }
2755 }
2756
2757 void
2758 pmap_pteg_dist(void)
2759 {
2760 struct pvo_entry *pvo;
2761 int ptegidx;
2762 int depth;
2763 int max_depth = 0;
2764 unsigned int depths[64];
2765
2766 memset(depths, 0, sizeof(depths));
2767 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2768 depth = 0;
2769 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2770 depth++;
2771 }
2772 if (depth > max_depth)
2773 max_depth = depth;
2774 if (depth > 63)
2775 depth = 63;
2776 depths[depth]++;
2777 }
2778
2779 for (depth = 0; depth < 64; depth++) {
2780 printf(" [%2d]: %8u", depth, depths[depth]);
2781 if ((depth & 3) == 3)
2782 printf("\n");
2783 if (depth == max_depth)
2784 break;
2785 }
2786 if ((depth & 3) != 3)
2787 printf("\n");
2788 printf("Max depth found was %d\n", max_depth);
2789 }
2790 #endif /* DEBUG */
2791
2792 #if defined(PMAPCHECK) || defined(DEBUG)
2793 void
2794 pmap_pvo_verify(void)
2795 {
2796 int ptegidx;
2797 int s;
2798
2799 s = splvm();
2800 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2801 struct pvo_entry *pvo;
2802 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2803 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2804 panic("pmap_pvo_verify: invalid pvo %p "
2805 "on list %#x", pvo, ptegidx);
2806 pmap_pvo_check(pvo);
2807 }
2808 }
2809 splx(s);
2810 }
2811 #endif /* PMAPCHECK */
2812
2813
2814 void *
2815 pmap_pool_ualloc(struct pool *pp, int flags)
2816 {
2817 struct pvo_page *pvop;
2818
2819 if (uvm.page_init_done != true) {
2820 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2821 }
2822
2823 PMAP_LOCK();
2824 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2825 if (pvop != NULL) {
2826 pmap_upvop_free--;
2827 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2828 PMAP_UNLOCK();
2829 return pvop;
2830 }
2831 PMAP_UNLOCK();
2832 return pmap_pool_malloc(pp, flags);
2833 }
2834
2835 void *
2836 pmap_pool_malloc(struct pool *pp, int flags)
2837 {
2838 struct pvo_page *pvop;
2839 struct vm_page *pg;
2840
2841 PMAP_LOCK();
2842 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2843 if (pvop != NULL) {
2844 pmap_mpvop_free--;
2845 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2846 PMAP_UNLOCK();
2847 return pvop;
2848 }
2849 PMAP_UNLOCK();
2850 again:
2851 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2852 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2853 if (__predict_false(pg == NULL)) {
2854 if (flags & PR_WAITOK) {
2855 uvm_wait("plpg");
2856 goto again;
2857 } else {
2858 return (0);
2859 }
2860 }
2861 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2862 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2863 }
2864
2865 void
2866 pmap_pool_ufree(struct pool *pp, void *va)
2867 {
2868 struct pvo_page *pvop;
2869 #if 0
2870 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2871 pmap_pool_mfree(va, size, tag);
2872 return;
2873 }
2874 #endif
2875 PMAP_LOCK();
2876 pvop = va;
2877 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2878 pmap_upvop_free++;
2879 if (pmap_upvop_free > pmap_upvop_maxfree)
2880 pmap_upvop_maxfree = pmap_upvop_free;
2881 PMAP_UNLOCK();
2882 }
2883
2884 void
2885 pmap_pool_mfree(struct pool *pp, void *va)
2886 {
2887 struct pvo_page *pvop;
2888
2889 PMAP_LOCK();
2890 pvop = va;
2891 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2892 pmap_mpvop_free++;
2893 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2894 pmap_mpvop_maxfree = pmap_mpvop_free;
2895 PMAP_UNLOCK();
2896 #if 0
2897 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2898 #endif
2899 }
2900
2901 /*
2902 * This routine in bootstraping to steal to-be-managed memory (which will
2903 * then be unmanaged). We use it to grab from the first 256MB for our
2904 * pmap needs and above 256MB for other stuff.
2905 */
2906 vaddr_t
2907 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2908 {
2909 vsize_t size;
2910 vaddr_t va;
2911 paddr_t pa = 0;
2912 int npgs, bank;
2913 struct vm_physseg *ps;
2914
2915 if (uvm.page_init_done == true)
2916 panic("pmap_steal_memory: called _after_ bootstrap");
2917
2918 *vstartp = VM_MIN_KERNEL_ADDRESS;
2919 *vendp = VM_MAX_KERNEL_ADDRESS;
2920
2921 size = round_page(vsize);
2922 npgs = atop(size);
2923
2924 /*
2925 * PA 0 will never be among those given to UVM so we can use it
2926 * to indicate we couldn't steal any memory.
2927 */
2928 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2929 if (ps->free_list == VM_FREELIST_FIRST256 &&
2930 ps->avail_end - ps->avail_start >= npgs) {
2931 pa = ptoa(ps->avail_start);
2932 break;
2933 }
2934 }
2935
2936 if (pa == 0)
2937 panic("pmap_steal_memory: no approriate memory to steal!");
2938
2939 ps->avail_start += npgs;
2940 ps->start += npgs;
2941
2942 /*
2943 * If we've used up all the pages in the segment, remove it and
2944 * compact the list.
2945 */
2946 if (ps->avail_start == ps->end) {
2947 /*
2948 * If this was the last one, then a very bad thing has occurred
2949 */
2950 if (--vm_nphysseg == 0)
2951 panic("pmap_steal_memory: out of memory!");
2952
2953 printf("pmap_steal_memory: consumed bank %d\n", bank);
2954 for (; bank < vm_nphysseg; bank++, ps++) {
2955 ps[0] = ps[1];
2956 }
2957 }
2958
2959 va = (vaddr_t) pa;
2960 memset((void *) va, 0, size);
2961 pmap_pages_stolen += npgs;
2962 #ifdef DEBUG
2963 if (pmapdebug && npgs > 1) {
2964 u_int cnt = 0;
2965 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2966 cnt += ps->avail_end - ps->avail_start;
2967 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2968 npgs, pmap_pages_stolen, cnt);
2969 }
2970 #endif
2971
2972 return va;
2973 }
2974
2975 /*
2976 * Find a chuck of memory with right size and alignment.
2977 */
2978 paddr_t
2979 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2980 {
2981 struct mem_region *mp;
2982 paddr_t s, e;
2983 int i, j;
2984
2985 size = round_page(size);
2986
2987 DPRINTFN(BOOT,
2988 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2989 size, alignment, at_end));
2990
2991 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2992 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2993 alignment);
2994
2995 if (at_end) {
2996 if (alignment != PAGE_SIZE)
2997 panic("pmap_boot_find_memory: invalid ending "
2998 "alignment %#" _PRIxpa, alignment);
2999
3000 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3001 s = mp->start + mp->size - size;
3002 if (s >= mp->start && mp->size >= size) {
3003 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3004 DPRINTFN(BOOT,
3005 ("pmap_boot_find_memory: b-avail[%d] start "
3006 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3007 mp->start, mp->size));
3008 mp->size -= size;
3009 DPRINTFN(BOOT,
3010 ("pmap_boot_find_memory: a-avail[%d] start "
3011 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3012 mp->start, mp->size));
3013 return s;
3014 }
3015 }
3016 panic("pmap_boot_find_memory: no available memory");
3017 }
3018
3019 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3020 s = (mp->start + alignment - 1) & ~(alignment-1);
3021 e = s + size;
3022
3023 /*
3024 * Is the calculated region entirely within the region?
3025 */
3026 if (s < mp->start || e > mp->start + mp->size)
3027 continue;
3028
3029 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3030 if (s == mp->start) {
3031 /*
3032 * If the block starts at the beginning of region,
3033 * adjust the size & start. (the region may now be
3034 * zero in length)
3035 */
3036 DPRINTFN(BOOT,
3037 ("pmap_boot_find_memory: b-avail[%d] start "
3038 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3039 mp->start += size;
3040 mp->size -= size;
3041 DPRINTFN(BOOT,
3042 ("pmap_boot_find_memory: a-avail[%d] start "
3043 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3044 } else if (e == mp->start + mp->size) {
3045 /*
3046 * If the block starts at the beginning of region,
3047 * adjust only the size.
3048 */
3049 DPRINTFN(BOOT,
3050 ("pmap_boot_find_memory: b-avail[%d] start "
3051 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3052 mp->size -= size;
3053 DPRINTFN(BOOT,
3054 ("pmap_boot_find_memory: a-avail[%d] start "
3055 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3056 } else {
3057 /*
3058 * Block is in the middle of the region, so we
3059 * have to split it in two.
3060 */
3061 for (j = avail_cnt; j > i + 1; j--) {
3062 avail[j] = avail[j-1];
3063 }
3064 DPRINTFN(BOOT,
3065 ("pmap_boot_find_memory: b-avail[%d] start "
3066 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3067 mp[1].start = e;
3068 mp[1].size = mp[0].start + mp[0].size - e;
3069 mp[0].size = s - mp[0].start;
3070 avail_cnt++;
3071 for (; i < avail_cnt; i++) {
3072 DPRINTFN(BOOT,
3073 ("pmap_boot_find_memory: a-avail[%d] "
3074 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3075 avail[i].start, avail[i].size));
3076 }
3077 }
3078 KASSERT(s == (uintptr_t) s);
3079 return s;
3080 }
3081 panic("pmap_boot_find_memory: not enough memory for "
3082 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3083 }
3084
3085 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3086 #if defined (PMAP_OEA64_BRIDGE)
3087 int
3088 pmap_setup_segment0_map(int use_large_pages, ...)
3089 {
3090 vaddr_t va;
3091
3092 register_t pte_lo = 0x0;
3093 int ptegidx = 0, i = 0;
3094 struct pte pte;
3095 va_list ap;
3096
3097 /* Coherent + Supervisor RW, no user access */
3098 pte_lo = PTE_M;
3099
3100 /* XXXSL
3101 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3102 * these have to take priority.
3103 */
3104 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3105 ptegidx = va_to_pteg(pmap_kernel(), va);
3106 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3107 i = pmap_pte_insert(ptegidx, &pte);
3108 }
3109
3110 va_start(ap, use_large_pages);
3111 while (1) {
3112 paddr_t pa;
3113 size_t size;
3114
3115 va = va_arg(ap, vaddr_t);
3116
3117 if (va == 0)
3118 break;
3119
3120 pa = va_arg(ap, paddr_t);
3121 size = va_arg(ap, size_t);
3122
3123 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3124 #if 0
3125 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3126 #endif
3127 ptegidx = va_to_pteg(pmap_kernel(), va);
3128 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3129 i = pmap_pte_insert(ptegidx, &pte);
3130 }
3131 }
3132
3133 TLBSYNC();
3134 SYNC();
3135 return (0);
3136 }
3137 #endif /* PMAP_OEA64_BRIDGE */
3138
3139 /*
3140 * This is not part of the defined PMAP interface and is specific to the
3141 * PowerPC architecture. This is called during initppc, before the system
3142 * is really initialized.
3143 */
3144 void
3145 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3146 {
3147 struct mem_region *mp, tmp;
3148 paddr_t s, e;
3149 psize_t size;
3150 int i, j;
3151
3152 /*
3153 * Get memory.
3154 */
3155 mem_regions(&mem, &avail);
3156 #if defined(DEBUG)
3157 if (pmapdebug & PMAPDEBUG_BOOT) {
3158 printf("pmap_bootstrap: memory configuration:\n");
3159 for (mp = mem; mp->size; mp++) {
3160 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3161 mp->start, mp->size);
3162 }
3163 for (mp = avail; mp->size; mp++) {
3164 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3165 mp->start, mp->size);
3166 }
3167 }
3168 #endif
3169
3170 /*
3171 * Find out how much physical memory we have and in how many chunks.
3172 */
3173 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3174 if (mp->start >= pmap_memlimit)
3175 continue;
3176 if (mp->start + mp->size > pmap_memlimit) {
3177 size = pmap_memlimit - mp->start;
3178 physmem += btoc(size);
3179 } else {
3180 physmem += btoc(mp->size);
3181 }
3182 mem_cnt++;
3183 }
3184
3185 /*
3186 * Count the number of available entries.
3187 */
3188 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3189 avail_cnt++;
3190
3191 /*
3192 * Page align all regions.
3193 */
3194 kernelstart = trunc_page(kernelstart);
3195 kernelend = round_page(kernelend);
3196 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3197 s = round_page(mp->start);
3198 mp->size -= (s - mp->start);
3199 mp->size = trunc_page(mp->size);
3200 mp->start = s;
3201 e = mp->start + mp->size;
3202
3203 DPRINTFN(BOOT,
3204 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3205 i, mp->start, mp->size));
3206
3207 /*
3208 * Don't allow the end to run beyond our artificial limit
3209 */
3210 if (e > pmap_memlimit)
3211 e = pmap_memlimit;
3212
3213 /*
3214 * Is this region empty or strange? skip it.
3215 */
3216 if (e <= s) {
3217 mp->start = 0;
3218 mp->size = 0;
3219 continue;
3220 }
3221
3222 /*
3223 * Does this overlap the beginning of kernel?
3224 * Does extend past the end of the kernel?
3225 */
3226 else if (s < kernelstart && e > kernelstart) {
3227 if (e > kernelend) {
3228 avail[avail_cnt].start = kernelend;
3229 avail[avail_cnt].size = e - kernelend;
3230 avail_cnt++;
3231 }
3232 mp->size = kernelstart - s;
3233 }
3234 /*
3235 * Check whether this region overlaps the end of the kernel.
3236 */
3237 else if (s < kernelend && e > kernelend) {
3238 mp->start = kernelend;
3239 mp->size = e - kernelend;
3240 }
3241 /*
3242 * Look whether this regions is completely inside the kernel.
3243 * Nuke it if it does.
3244 */
3245 else if (s >= kernelstart && e <= kernelend) {
3246 mp->start = 0;
3247 mp->size = 0;
3248 }
3249 /*
3250 * If the user imposed a memory limit, enforce it.
3251 */
3252 else if (s >= pmap_memlimit) {
3253 mp->start = -PAGE_SIZE; /* let's know why */
3254 mp->size = 0;
3255 }
3256 else {
3257 mp->start = s;
3258 mp->size = e - s;
3259 }
3260 DPRINTFN(BOOT,
3261 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3262 i, mp->start, mp->size));
3263 }
3264
3265 /*
3266 * Move (and uncount) all the null return to the end.
3267 */
3268 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3269 if (mp->size == 0) {
3270 tmp = avail[i];
3271 avail[i] = avail[--avail_cnt];
3272 avail[avail_cnt] = avail[i];
3273 }
3274 }
3275
3276 /*
3277 * (Bubble)sort them into asecnding order.
3278 */
3279 for (i = 0; i < avail_cnt; i++) {
3280 for (j = i + 1; j < avail_cnt; j++) {
3281 if (avail[i].start > avail[j].start) {
3282 tmp = avail[i];
3283 avail[i] = avail[j];
3284 avail[j] = tmp;
3285 }
3286 }
3287 }
3288
3289 /*
3290 * Make sure they don't overlap.
3291 */
3292 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3293 if (mp[0].start + mp[0].size > mp[1].start) {
3294 mp[0].size = mp[1].start - mp[0].start;
3295 }
3296 DPRINTFN(BOOT,
3297 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3298 i, mp->start, mp->size));
3299 }
3300 DPRINTFN(BOOT,
3301 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3302 i, mp->start, mp->size));
3303
3304 #ifdef PTEGCOUNT
3305 pmap_pteg_cnt = PTEGCOUNT;
3306 #else /* PTEGCOUNT */
3307
3308 pmap_pteg_cnt = 0x1000;
3309
3310 while (pmap_pteg_cnt < physmem)
3311 pmap_pteg_cnt <<= 1;
3312
3313 pmap_pteg_cnt >>= 1;
3314 #endif /* PTEGCOUNT */
3315
3316 #ifdef DEBUG
3317 DPRINTFN(BOOT,
3318 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3319 #endif
3320
3321 /*
3322 * Find suitably aligned memory for PTEG hash table.
3323 */
3324 size = pmap_pteg_cnt * sizeof(struct pteg);
3325 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3326
3327 #ifdef DEBUG
3328 DPRINTFN(BOOT,
3329 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3330 #endif
3331
3332
3333 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3334 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3335 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3336 pmap_pteg_table, size);
3337 #endif
3338
3339 memset(__UNVOLATILE(pmap_pteg_table), 0,
3340 pmap_pteg_cnt * sizeof(struct pteg));
3341 pmap_pteg_mask = pmap_pteg_cnt - 1;
3342
3343 /*
3344 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3345 * with pages. So we just steal them before giving them to UVM.
3346 */
3347 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3348 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3349 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3350 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3351 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3352 pmap_pvo_table, size);
3353 #endif
3354
3355 for (i = 0; i < pmap_pteg_cnt; i++)
3356 TAILQ_INIT(&pmap_pvo_table[i]);
3357
3358 #ifndef MSGBUFADDR
3359 /*
3360 * Allocate msgbuf in high memory.
3361 */
3362 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3363 #endif
3364
3365 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3366 paddr_t pfstart = atop(mp->start);
3367 paddr_t pfend = atop(mp->start + mp->size);
3368 if (mp->size == 0)
3369 continue;
3370 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3371 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3372 VM_FREELIST_FIRST256);
3373 } else if (mp->start >= SEGMENT_LENGTH) {
3374 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3375 VM_FREELIST_DEFAULT);
3376 } else {
3377 pfend = atop(SEGMENT_LENGTH);
3378 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3379 VM_FREELIST_FIRST256);
3380 pfstart = atop(SEGMENT_LENGTH);
3381 pfend = atop(mp->start + mp->size);
3382 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3383 VM_FREELIST_DEFAULT);
3384 }
3385 }
3386
3387 /*
3388 * Make sure kernel vsid is allocated as well as VSID 0.
3389 */
3390 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3391 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3392 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3393 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3394 pmap_vsid_bitmap[0] |= 1;
3395
3396 /*
3397 * Initialize kernel pmap and hardware.
3398 */
3399
3400 /* PMAP_OEA64_BRIDGE does support these instructions */
3401 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3402 for (i = 0; i < 16; i++) {
3403 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3404 __asm volatile ("mtsrin %0,%1"
3405 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3406 }
3407
3408 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3409 __asm volatile ("mtsr %0,%1"
3410 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3411 #ifdef KERNEL2_SR
3412 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3413 __asm volatile ("mtsr %0,%1"
3414 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3415 #endif
3416 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3417 #if defined (PMAP_OEA)
3418 for (i = 0; i < 16; i++) {
3419 if (iosrtable[i] & SR601_T) {
3420 pmap_kernel()->pm_sr[i] = iosrtable[i];
3421 __asm volatile ("mtsrin %0,%1"
3422 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3423 }
3424 }
3425 __asm volatile ("sync; mtsdr1 %0; isync"
3426 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3427 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3428 __asm __volatile ("sync; mtsdr1 %0; isync"
3429 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3430 #endif
3431 tlbia();
3432
3433 #ifdef ALTIVEC
3434 pmap_use_altivec = cpu_altivec;
3435 #endif
3436
3437 #ifdef DEBUG
3438 if (pmapdebug & PMAPDEBUG_BOOT) {
3439 u_int cnt;
3440 int bank;
3441 char pbuf[9];
3442 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3443 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3444 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3445 bank,
3446 ptoa(vm_physmem[bank].avail_start),
3447 ptoa(vm_physmem[bank].avail_end),
3448 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3449 }
3450 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3451 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3452 pbuf, cnt);
3453 }
3454 #endif
3455
3456 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3457 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3458 &pmap_pool_uallocator, IPL_NONE);
3459
3460 pool_setlowat(&pmap_upvo_pool, 252);
3461
3462 pool_init(&pmap_pool, sizeof(struct pmap),
3463 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3464 IPL_NONE);
3465
3466 #if defined(PMAP_NEED_MAPKERNEL) || 1
3467 {
3468 struct pmap *pm = pmap_kernel();
3469 #if 0
3470 extern int etext[], kernel_text[];
3471 vaddr_t va, va_etext = (paddr_t) etext;
3472 #endif
3473 paddr_t pa, pa_end;
3474 register_t sr;
3475 struct pte pt;
3476 unsigned int ptegidx;
3477 int bank;
3478
3479 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3480 pm->pm_sr[0] = sr;
3481
3482 for (bank = 0; bank < vm_nphysseg; bank++) {
3483 pa_end = ptoa(vm_physmem[bank].avail_end);
3484 pa = ptoa(vm_physmem[bank].avail_start);
3485 for (; pa < pa_end; pa += PAGE_SIZE) {
3486 ptegidx = va_to_pteg(pm, pa);
3487 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3488 pmap_pte_insert(ptegidx, &pt);
3489 }
3490 }
3491
3492 #if 0
3493 va = (vaddr_t) kernel_text;
3494
3495 for (pa = kernelstart; va < va_etext;
3496 pa += PAGE_SIZE, va += PAGE_SIZE) {
3497 ptegidx = va_to_pteg(pm, va);
3498 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3499 pmap_pte_insert(ptegidx, &pt);
3500 }
3501
3502 for (; pa < kernelend;
3503 pa += PAGE_SIZE, va += PAGE_SIZE) {
3504 ptegidx = va_to_pteg(pm, va);
3505 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3506 pmap_pte_insert(ptegidx, &pt);
3507 }
3508
3509 for (va = 0, pa = 0; va < 0x3000;
3510 pa += PAGE_SIZE, va += PAGE_SIZE) {
3511 ptegidx = va_to_pteg(pm, va);
3512 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3513 pmap_pte_insert(ptegidx, &pt);
3514 }
3515 #endif
3516
3517 __asm volatile ("mtsrin %0,%1"
3518 :: "r"(sr), "r"(kernelstart));
3519 }
3520 #endif
3521 }
3522