pmap.c revision 1.56 1 /* $NetBSD: pmap.c,v 1.56 2008/02/17 18:16:42 phx Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43 * Copyright (C) 1995, 1996 TooLs GmbH.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by TooLs GmbH.
57 * 4. The name of TooLs GmbH may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.56 2008/02/17 18:16:42 phx Exp $");
74
75 #define PMAP_NOOPNAMES
76
77 #include "opt_ppcarch.h"
78 #include "opt_altivec.h"
79 #include "opt_pmap.h"
80 #include <sys/param.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83 #include <sys/user.h>
84 #include <sys/pool.h>
85 #include <sys/queue.h>
86 #include <sys/device.h> /* for evcnt */
87 #include <sys/systm.h>
88 #include <sys/atomic.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97 #include <powerpc/stdarg.h>
98
99 #ifdef ALTIVEC
100 int pmap_use_altivec;
101 #endif
102
103 volatile struct pteg *pmap_pteg_table;
104 unsigned int pmap_pteg_cnt;
105 unsigned int pmap_pteg_mask;
106 #ifdef PMAP_MEMLIMIT
107 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
108 #else
109 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
110 #endif
111
112 struct pmap kernel_pmap_;
113 unsigned int pmap_pages_stolen;
114 u_long pmap_pte_valid;
115 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
116 u_long pmap_pvo_enter_depth;
117 u_long pmap_pvo_remove_depth;
118 #endif
119
120 int physmem;
121 #ifndef MSGBUFADDR
122 extern paddr_t msgbuf_paddr;
123 #endif
124
125 static struct mem_region *mem, *avail;
126 static u_int mem_cnt, avail_cnt;
127
128 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
129 # define PMAP_OEA 1
130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
131 # define PMAPNAME(name) pmap_##name
132 # endif
133 #endif
134
135 #if defined(PMAP_OEA64)
136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
137 # define PMAPNAME(name) pmap_##name
138 # endif
139 #endif
140
141 #if defined(PMAP_OEA64_BRIDGE)
142 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
143 # define PMAPNAME(name) pmap_##name
144 # endif
145 #endif
146
147 #if defined(PMAP_OEA)
148 #define _PRIxpte "lx"
149 #else
150 #define _PRIxpte PRIx64
151 #endif
152 #define _PRIxpa "lx"
153 #define _PRIxva "lx"
154 #define _PRIsr "lx"
155
156 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
157 #if defined(PMAP_OEA)
158 #define PMAPNAME(name) pmap32_##name
159 #elif defined(PMAP_OEA64)
160 #define PMAPNAME(name) pmap64_##name
161 #elif defined(PMAP_OEA64_BRIDGE)
162 #define PMAPNAME(name) pmap64bridge_##name
163 #else
164 #error unknown variant for pmap
165 #endif
166 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
167
168 #if defined(PMAPNAME)
169 #define STATIC static
170 #define pmap_pte_spill PMAPNAME(pte_spill)
171 #define pmap_real_memory PMAPNAME(real_memory)
172 #define pmap_init PMAPNAME(init)
173 #define pmap_virtual_space PMAPNAME(virtual_space)
174 #define pmap_create PMAPNAME(create)
175 #define pmap_reference PMAPNAME(reference)
176 #define pmap_destroy PMAPNAME(destroy)
177 #define pmap_copy PMAPNAME(copy)
178 #define pmap_update PMAPNAME(update)
179 #define pmap_collect PMAPNAME(collect)
180 #define pmap_enter PMAPNAME(enter)
181 #define pmap_remove PMAPNAME(remove)
182 #define pmap_kenter_pa PMAPNAME(kenter_pa)
183 #define pmap_kremove PMAPNAME(kremove)
184 #define pmap_extract PMAPNAME(extract)
185 #define pmap_protect PMAPNAME(protect)
186 #define pmap_unwire PMAPNAME(unwire)
187 #define pmap_page_protect PMAPNAME(page_protect)
188 #define pmap_query_bit PMAPNAME(query_bit)
189 #define pmap_clear_bit PMAPNAME(clear_bit)
190
191 #define pmap_activate PMAPNAME(activate)
192 #define pmap_deactivate PMAPNAME(deactivate)
193
194 #define pmap_pinit PMAPNAME(pinit)
195 #define pmap_procwr PMAPNAME(procwr)
196
197 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
198 #define pmap_pte_print PMAPNAME(pte_print)
199 #define pmap_pteg_check PMAPNAME(pteg_check)
200 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
201 #define pmap_print_pte PMAPNAME(print_pte)
202 #define pmap_pteg_dist PMAPNAME(pteg_dist)
203 #endif
204 #if defined(DEBUG) || defined(PMAPCHECK)
205 #define pmap_pvo_verify PMAPNAME(pvo_verify)
206 #define pmapcheck PMAPNAME(check)
207 #endif
208 #if defined(DEBUG) || defined(PMAPDEBUG)
209 #define pmapdebug PMAPNAME(debug)
210 #endif
211 #define pmap_steal_memory PMAPNAME(steal_memory)
212 #define pmap_bootstrap PMAPNAME(bootstrap)
213 #else
214 #define STATIC /* nothing */
215 #endif /* PMAPNAME */
216
217 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
218 STATIC void pmap_real_memory(paddr_t *, psize_t *);
219 STATIC void pmap_init(void);
220 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
221 STATIC pmap_t pmap_create(void);
222 STATIC void pmap_reference(pmap_t);
223 STATIC void pmap_destroy(pmap_t);
224 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
225 STATIC void pmap_update(pmap_t);
226 STATIC void pmap_collect(pmap_t);
227 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
228 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
229 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
230 STATIC void pmap_kremove(vaddr_t, vsize_t);
231 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
232
233 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
234 STATIC void pmap_unwire(pmap_t, vaddr_t);
235 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
236 STATIC bool pmap_query_bit(struct vm_page *, int);
237 STATIC bool pmap_clear_bit(struct vm_page *, int);
238
239 STATIC void pmap_activate(struct lwp *);
240 STATIC void pmap_deactivate(struct lwp *);
241
242 STATIC void pmap_pinit(pmap_t pm);
243 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
244
245 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
246 STATIC void pmap_pte_print(volatile struct pte *);
247 STATIC void pmap_pteg_check(void);
248 STATIC void pmap_print_mmuregs(void);
249 STATIC void pmap_print_pte(pmap_t, vaddr_t);
250 STATIC void pmap_pteg_dist(void);
251 #endif
252 #if defined(DEBUG) || defined(PMAPCHECK)
253 STATIC void pmap_pvo_verify(void);
254 #endif
255 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
256 STATIC void pmap_bootstrap(paddr_t, paddr_t);
257
258 #ifdef PMAPNAME
259 const struct pmap_ops PMAPNAME(ops) = {
260 .pmapop_pte_spill = pmap_pte_spill,
261 .pmapop_real_memory = pmap_real_memory,
262 .pmapop_init = pmap_init,
263 .pmapop_virtual_space = pmap_virtual_space,
264 .pmapop_create = pmap_create,
265 .pmapop_reference = pmap_reference,
266 .pmapop_destroy = pmap_destroy,
267 .pmapop_copy = pmap_copy,
268 .pmapop_update = pmap_update,
269 .pmapop_collect = pmap_collect,
270 .pmapop_enter = pmap_enter,
271 .pmapop_remove = pmap_remove,
272 .pmapop_kenter_pa = pmap_kenter_pa,
273 .pmapop_kremove = pmap_kremove,
274 .pmapop_extract = pmap_extract,
275 .pmapop_protect = pmap_protect,
276 .pmapop_unwire = pmap_unwire,
277 .pmapop_page_protect = pmap_page_protect,
278 .pmapop_query_bit = pmap_query_bit,
279 .pmapop_clear_bit = pmap_clear_bit,
280 .pmapop_activate = pmap_activate,
281 .pmapop_deactivate = pmap_deactivate,
282 .pmapop_pinit = pmap_pinit,
283 .pmapop_procwr = pmap_procwr,
284 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
285 .pmapop_pte_print = pmap_pte_print,
286 .pmapop_pteg_check = pmap_pteg_check,
287 .pmapop_print_mmuregs = pmap_print_mmuregs,
288 .pmapop_print_pte = pmap_print_pte,
289 .pmapop_pteg_dist = pmap_pteg_dist,
290 #else
291 .pmapop_pte_print = NULL,
292 .pmapop_pteg_check = NULL,
293 .pmapop_print_mmuregs = NULL,
294 .pmapop_print_pte = NULL,
295 .pmapop_pteg_dist = NULL,
296 #endif
297 #if defined(DEBUG) || defined(PMAPCHECK)
298 .pmapop_pvo_verify = pmap_pvo_verify,
299 #else
300 .pmapop_pvo_verify = NULL,
301 #endif
302 .pmapop_steal_memory = pmap_steal_memory,
303 .pmapop_bootstrap = pmap_bootstrap,
304 };
305 #endif /* !PMAPNAME */
306
307 /*
308 * The following structure is aligned to 32 bytes
309 */
310 struct pvo_entry {
311 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
312 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
313 struct pte pvo_pte; /* Prebuilt PTE */
314 pmap_t pvo_pmap; /* ptr to owning pmap */
315 vaddr_t pvo_vaddr; /* VA of entry */
316 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
317 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
318 #define PVO_WIRED 0x0010 /* PVO entry is wired */
319 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
320 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
321 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
322 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
323 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
324 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
325 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
326 #define PVO_SPILL_SET 2 /* PVO has been spilled */
327 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
328 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
329 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
330 #define PVO_REMOVE 6 /* PVO has been removed */
331 #define PVO_WHERE_MASK 15
332 #define PVO_WHERE_SHFT 8
333 } __attribute__ ((aligned (32)));
334 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
335 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
336 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
337 #define PVO_PTEGIDX_CLR(pvo) \
338 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
339 #define PVO_PTEGIDX_SET(pvo,i) \
340 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
341 #define PVO_WHERE(pvo,w) \
342 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
343 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
344
345 TAILQ_HEAD(pvo_tqhead, pvo_entry);
346 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
347 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
348 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
349
350 struct pool pmap_pool; /* pool for pmap structures */
351 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
352 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
353
354 /*
355 * We keep a cache of unmanaged pages to be used for pvo entries for
356 * unmanaged pages.
357 */
358 struct pvo_page {
359 SIMPLEQ_ENTRY(pvo_page) pvop_link;
360 };
361 SIMPLEQ_HEAD(pvop_head, pvo_page);
362 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
363 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
364 u_long pmap_upvop_free;
365 u_long pmap_upvop_maxfree;
366 u_long pmap_mpvop_free;
367 u_long pmap_mpvop_maxfree;
368
369 static void *pmap_pool_ualloc(struct pool *, int);
370 static void *pmap_pool_malloc(struct pool *, int);
371
372 static void pmap_pool_ufree(struct pool *, void *);
373 static void pmap_pool_mfree(struct pool *, void *);
374
375 static struct pool_allocator pmap_pool_mallocator = {
376 .pa_alloc = pmap_pool_malloc,
377 .pa_free = pmap_pool_mfree,
378 .pa_pagesz = 0,
379 };
380
381 static struct pool_allocator pmap_pool_uallocator = {
382 .pa_alloc = pmap_pool_ualloc,
383 .pa_free = pmap_pool_ufree,
384 .pa_pagesz = 0,
385 };
386
387 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
388 void pmap_pte_print(volatile struct pte *);
389 void pmap_pteg_check(void);
390 void pmap_pteg_dist(void);
391 void pmap_print_pte(pmap_t, vaddr_t);
392 void pmap_print_mmuregs(void);
393 #endif
394
395 #if defined(DEBUG) || defined(PMAPCHECK)
396 #ifdef PMAPCHECK
397 int pmapcheck = 1;
398 #else
399 int pmapcheck = 0;
400 #endif
401 void pmap_pvo_verify(void);
402 static void pmap_pvo_check(const struct pvo_entry *);
403 #define PMAP_PVO_CHECK(pvo) \
404 do { \
405 if (pmapcheck) \
406 pmap_pvo_check(pvo); \
407 } while (0)
408 #else
409 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
410 #endif
411 static int pmap_pte_insert(int, struct pte *);
412 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
413 vaddr_t, paddr_t, register_t, int);
414 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
415 static void pmap_pvo_free(struct pvo_entry *);
416 static void pmap_pvo_free_list(struct pvo_head *);
417 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
418 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
419 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
420 static void pvo_set_exec(struct pvo_entry *);
421 static void pvo_clear_exec(struct pvo_entry *);
422
423 static void tlbia(void);
424
425 static void pmap_release(pmap_t);
426 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
427
428 static uint32_t pmap_pvo_reclaim_nextidx;
429 #ifdef DEBUG
430 static int pmap_pvo_reclaim_debugctr;
431 #endif
432
433 #define VSID_NBPW (sizeof(uint32_t) * 8)
434 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
435
436 static int pmap_initialized;
437
438 #if defined(DEBUG) || defined(PMAPDEBUG)
439 #define PMAPDEBUG_BOOT 0x0001
440 #define PMAPDEBUG_PTE 0x0002
441 #define PMAPDEBUG_EXEC 0x0008
442 #define PMAPDEBUG_PVOENTER 0x0010
443 #define PMAPDEBUG_PVOREMOVE 0x0020
444 #define PMAPDEBUG_ACTIVATE 0x0100
445 #define PMAPDEBUG_CREATE 0x0200
446 #define PMAPDEBUG_ENTER 0x1000
447 #define PMAPDEBUG_KENTER 0x2000
448 #define PMAPDEBUG_KREMOVE 0x4000
449 #define PMAPDEBUG_REMOVE 0x8000
450
451 unsigned int pmapdebug = 0;
452
453 # define DPRINTF(x) printf x
454 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
455 #else
456 # define DPRINTF(x)
457 # define DPRINTFN(n, x)
458 #endif
459
460
461 #ifdef PMAPCOUNTERS
462 /*
463 * From pmap_subr.c
464 */
465 extern struct evcnt pmap_evcnt_mappings;
466 extern struct evcnt pmap_evcnt_unmappings;
467
468 extern struct evcnt pmap_evcnt_kernel_mappings;
469 extern struct evcnt pmap_evcnt_kernel_unmappings;
470
471 extern struct evcnt pmap_evcnt_mappings_replaced;
472
473 extern struct evcnt pmap_evcnt_exec_mappings;
474 extern struct evcnt pmap_evcnt_exec_cached;
475
476 extern struct evcnt pmap_evcnt_exec_synced;
477 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
478 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
479
480 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
481 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
482 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
483 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
484 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
485
486 extern struct evcnt pmap_evcnt_updates;
487 extern struct evcnt pmap_evcnt_collects;
488 extern struct evcnt pmap_evcnt_copies;
489
490 extern struct evcnt pmap_evcnt_ptes_spilled;
491 extern struct evcnt pmap_evcnt_ptes_unspilled;
492 extern struct evcnt pmap_evcnt_ptes_evicted;
493
494 extern struct evcnt pmap_evcnt_ptes_primary[8];
495 extern struct evcnt pmap_evcnt_ptes_secondary[8];
496 extern struct evcnt pmap_evcnt_ptes_removed;
497 extern struct evcnt pmap_evcnt_ptes_changed;
498 extern struct evcnt pmap_evcnt_pvos_reclaimed;
499 extern struct evcnt pmap_evcnt_pvos_failed;
500
501 extern struct evcnt pmap_evcnt_zeroed_pages;
502 extern struct evcnt pmap_evcnt_copied_pages;
503 extern struct evcnt pmap_evcnt_idlezeroed_pages;
504
505 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
506 #define PMAPCOUNT2(ev) ((ev).ev_count++)
507 #else
508 #define PMAPCOUNT(ev) ((void) 0)
509 #define PMAPCOUNT2(ev) ((void) 0)
510 #endif
511
512 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
513
514 /* XXXSL: this needs to be moved to assembler */
515 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
516
517 #define TLBSYNC() __asm volatile("tlbsync")
518 #define SYNC() __asm volatile("sync")
519 #define EIEIO() __asm volatile("eieio")
520 #define MFMSR() mfmsr()
521 #define MTMSR(psl) mtmsr(psl)
522 #define MFPVR() mfpvr()
523 #define MFSRIN(va) mfsrin(va)
524 #define MFTB() mfrtcltbl()
525
526 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
527 static inline register_t
528 mfsrin(vaddr_t va)
529 {
530 register_t sr;
531 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
532 return sr;
533 }
534 #endif /* PMAP_OEA*/
535
536 #if defined (PMAP_OEA64_BRIDGE)
537 extern void mfmsr64 (register64_t *result);
538 #endif /* PMAP_OEA64_BRIDGE */
539
540 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
541 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
542
543 static inline register_t
544 pmap_interrupts_off(void)
545 {
546 register_t msr = MFMSR();
547 if (msr & PSL_EE)
548 MTMSR(msr & ~PSL_EE);
549 return msr;
550 }
551
552 static void
553 pmap_interrupts_restore(register_t msr)
554 {
555 if (msr & PSL_EE)
556 MTMSR(msr);
557 }
558
559 static inline u_int32_t
560 mfrtcltbl(void)
561 {
562 #ifdef PPC_OEA601
563 if ((MFPVR() >> 16) == MPC601)
564 return (mfrtcl() >> 7);
565 else
566 #endif
567 return (mftbl());
568 }
569
570 /*
571 * These small routines may have to be replaced,
572 * if/when we support processors other that the 604.
573 */
574
575 void
576 tlbia(void)
577 {
578 char *i;
579
580 SYNC();
581 #if defined(PMAP_OEA)
582 /*
583 * Why not use "tlbia"? Because not all processors implement it.
584 *
585 * This needs to be a per-CPU callback to do the appropriate thing
586 * for the CPU. XXX
587 */
588 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
589 TLBIE(i);
590 EIEIO();
591 SYNC();
592 }
593 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
594 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
595 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
596 TLBIEL(i);
597 EIEIO();
598 SYNC();
599 }
600 #endif
601 TLBSYNC();
602 SYNC();
603 }
604
605 static inline register_t
606 va_to_vsid(const struct pmap *pm, vaddr_t addr)
607 {
608 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
609 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
610 #else /* PMAP_OEA64 */
611 #if 0
612 const struct ste *ste;
613 register_t hash;
614 int i;
615
616 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
617
618 /*
619 * Try the primary group first
620 */
621 ste = pm->pm_stes[hash].stes;
622 for (i = 0; i < 8; i++, ste++) {
623 if (ste->ste_hi & STE_V) &&
624 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
625 return ste;
626 }
627
628 /*
629 * Then the secondary group.
630 */
631 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
632 for (i = 0; i < 8; i++, ste++) {
633 if (ste->ste_hi & STE_V) &&
634 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
635 return addr;
636 }
637
638 return NULL;
639 #else
640 /*
641 * Rather than searching the STE groups for the VSID, we know
642 * how we generate that from the ESID and so do that.
643 */
644 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
645 #endif
646 #endif /* PMAP_OEA */
647 }
648
649 static inline register_t
650 va_to_pteg(const struct pmap *pm, vaddr_t addr)
651 {
652 register_t hash;
653
654 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
655 return hash & pmap_pteg_mask;
656 }
657
658 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
659 /*
660 * Given a PTE in the page table, calculate the VADDR that hashes to it.
661 * The only bit of magic is that the top 4 bits of the address doesn't
662 * technically exist in the PTE. But we know we reserved 4 bits of the
663 * VSID for it so that's how we get it.
664 */
665 static vaddr_t
666 pmap_pte_to_va(volatile const struct pte *pt)
667 {
668 vaddr_t va;
669 uintptr_t ptaddr = (uintptr_t) pt;
670
671 if (pt->pte_hi & PTE_HID)
672 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
673
674 /* PPC Bits 10-19 PPC64 Bits 42-51 */
675 #if defined(PMAP_OEA)
676 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
677 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
678 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
679 #endif
680 va <<= ADDR_PIDX_SHFT;
681
682 /* PPC Bits 4-9 PPC64 Bits 36-41 */
683 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
684
685 #if defined(PMAP_OEA64)
686 /* PPC63 Bits 0-35 */
687 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
688 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
689 /* PPC Bits 0-3 */
690 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
691 #endif
692
693 return va;
694 }
695 #endif
696
697 static inline struct pvo_head *
698 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
699 {
700 struct vm_page *pg;
701
702 pg = PHYS_TO_VM_PAGE(pa);
703 if (pg_p != NULL)
704 *pg_p = pg;
705 if (pg == NULL)
706 return &pmap_pvo_unmanaged;
707 return &pg->mdpage.mdpg_pvoh;
708 }
709
710 static inline struct pvo_head *
711 vm_page_to_pvoh(struct vm_page *pg)
712 {
713 return &pg->mdpage.mdpg_pvoh;
714 }
715
716
717 static inline void
718 pmap_attr_clear(struct vm_page *pg, int ptebit)
719 {
720 pg->mdpage.mdpg_attrs &= ~ptebit;
721 }
722
723 static inline int
724 pmap_attr_fetch(struct vm_page *pg)
725 {
726 return pg->mdpage.mdpg_attrs;
727 }
728
729 static inline void
730 pmap_attr_save(struct vm_page *pg, int ptebit)
731 {
732 pg->mdpage.mdpg_attrs |= ptebit;
733 }
734
735 static inline int
736 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
737 {
738 if (pt->pte_hi == pvo_pt->pte_hi
739 #if 0
740 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
741 ~(PTE_REF|PTE_CHG)) == 0
742 #endif
743 )
744 return 1;
745 return 0;
746 }
747
748 static inline void
749 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
750 {
751 /*
752 * Construct the PTE. Default to IMB initially. Valid bit
753 * only gets set when the real pte is set in memory.
754 *
755 * Note: Don't set the valid bit for correct operation of tlb update.
756 */
757 #if defined(PMAP_OEA)
758 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
759 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
760 pt->pte_lo = pte_lo;
761 #elif defined (PMAP_OEA64_BRIDGE)
762 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
763 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
764 pt->pte_lo = (u_int64_t) pte_lo;
765 #elif defined (PMAP_OEA64)
766 #error PMAP_OEA64 not supported
767 #endif /* PMAP_OEA */
768 }
769
770 static inline void
771 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
772 {
773 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
774 }
775
776 static inline void
777 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
778 {
779 /*
780 * As shown in Section 7.6.3.2.3
781 */
782 pt->pte_lo &= ~ptebit;
783 TLBIE(va);
784 SYNC();
785 EIEIO();
786 TLBSYNC();
787 SYNC();
788 }
789
790 static inline void
791 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
792 {
793 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
794 if (pvo_pt->pte_hi & PTE_VALID)
795 panic("pte_set: setting an already valid pte %p", pvo_pt);
796 #endif
797 pvo_pt->pte_hi |= PTE_VALID;
798
799 /*
800 * Update the PTE as defined in section 7.6.3.1
801 * Note that the REF/CHG bits are from pvo_pt and thus should
802 * have been saved so this routine can restore them (if desired).
803 */
804 pt->pte_lo = pvo_pt->pte_lo;
805 EIEIO();
806 pt->pte_hi = pvo_pt->pte_hi;
807 TLBSYNC();
808 SYNC();
809 pmap_pte_valid++;
810 }
811
812 static inline void
813 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
814 {
815 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
816 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
817 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
818 if ((pt->pte_hi & PTE_VALID) == 0)
819 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
820 #endif
821
822 pvo_pt->pte_hi &= ~PTE_VALID;
823 /*
824 * Force the ref & chg bits back into the PTEs.
825 */
826 SYNC();
827 /*
828 * Invalidate the pte ... (Section 7.6.3.3)
829 */
830 pt->pte_hi &= ~PTE_VALID;
831 SYNC();
832 TLBIE(va);
833 SYNC();
834 EIEIO();
835 TLBSYNC();
836 SYNC();
837 /*
838 * Save the ref & chg bits ...
839 */
840 pmap_pte_synch(pt, pvo_pt);
841 pmap_pte_valid--;
842 }
843
844 static inline void
845 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
846 {
847 /*
848 * Invalidate the PTE
849 */
850 pmap_pte_unset(pt, pvo_pt, va);
851 pmap_pte_set(pt, pvo_pt);
852 }
853
854 /*
855 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
856 * (either primary or secondary location).
857 *
858 * Note: both the destination and source PTEs must not have PTE_VALID set.
859 */
860
861 static int
862 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
863 {
864 volatile struct pte *pt;
865 int i;
866
867 #if defined(DEBUG)
868 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
869 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
870 #endif
871 /*
872 * First try primary hash.
873 */
874 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
875 if ((pt->pte_hi & PTE_VALID) == 0) {
876 pvo_pt->pte_hi &= ~PTE_HID;
877 pmap_pte_set(pt, pvo_pt);
878 return i;
879 }
880 }
881
882 /*
883 * Now try secondary hash.
884 */
885 ptegidx ^= pmap_pteg_mask;
886 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
887 if ((pt->pte_hi & PTE_VALID) == 0) {
888 pvo_pt->pte_hi |= PTE_HID;
889 pmap_pte_set(pt, pvo_pt);
890 return i;
891 }
892 }
893 return -1;
894 }
895
896 /*
897 * Spill handler.
898 *
899 * Tries to spill a page table entry from the overflow area.
900 * This runs in either real mode (if dealing with a exception spill)
901 * or virtual mode when dealing with manually spilling one of the
902 * kernel's pte entries. In either case, interrupts are already
903 * disabled.
904 */
905
906 int
907 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
908 {
909 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
910 struct pvo_entry *pvo;
911 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
912 struct pvo_tqhead *pvoh, *vpvoh = NULL;
913 int ptegidx, i, j;
914 volatile struct pteg *pteg;
915 volatile struct pte *pt;
916
917 PMAP_LOCK();
918
919 ptegidx = va_to_pteg(pm, addr);
920
921 /*
922 * Have to substitute some entry. Use the primary hash for this.
923 * Use low bits of timebase as random generator. Make sure we are
924 * not picking a kernel pte for replacement.
925 */
926 pteg = &pmap_pteg_table[ptegidx];
927 i = MFTB() & 7;
928 for (j = 0; j < 8; j++) {
929 pt = &pteg->pt[i];
930 if ((pt->pte_hi & PTE_VALID) == 0)
931 break;
932 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
933 < PHYSMAP_VSIDBITS)
934 break;
935 i = (i + 1) & 7;
936 }
937 KASSERT(j < 8);
938
939 source_pvo = NULL;
940 victim_pvo = NULL;
941 pvoh = &pmap_pvo_table[ptegidx];
942 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
943
944 /*
945 * We need to find pvo entry for this address...
946 */
947 PMAP_PVO_CHECK(pvo); /* sanity check */
948
949 /*
950 * If we haven't found the source and we come to a PVO with
951 * a valid PTE, then we know we can't find it because all
952 * evicted PVOs always are first in the list.
953 */
954 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
955 break;
956 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
957 addr == PVO_VADDR(pvo)) {
958
959 /*
960 * Now we have found the entry to be spilled into the
961 * pteg. Attempt to insert it into the page table.
962 */
963 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
964 if (j >= 0) {
965 PVO_PTEGIDX_SET(pvo, j);
966 PMAP_PVO_CHECK(pvo); /* sanity check */
967 PVO_WHERE(pvo, SPILL_INSERT);
968 pvo->pvo_pmap->pm_evictions--;
969 PMAPCOUNT(ptes_spilled);
970 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
971 ? pmap_evcnt_ptes_secondary
972 : pmap_evcnt_ptes_primary)[j]);
973
974 /*
975 * Since we keep the evicted entries at the
976 * from of the PVO list, we need move this
977 * (now resident) PVO after the evicted
978 * entries.
979 */
980 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
981
982 /*
983 * If we don't have to move (either we were the
984 * last entry or the next entry was valid),
985 * don't change our position. Otherwise
986 * move ourselves to the tail of the queue.
987 */
988 if (next_pvo != NULL &&
989 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
990 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
991 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
992 }
993 PMAP_UNLOCK();
994 return 1;
995 }
996 source_pvo = pvo;
997 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
998 return 0;
999 }
1000 if (victim_pvo != NULL)
1001 break;
1002 }
1003
1004 /*
1005 * We also need the pvo entry of the victim we are replacing
1006 * so save the R & C bits of the PTE.
1007 */
1008 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1009 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1010 vpvoh = pvoh; /* *1* */
1011 victim_pvo = pvo;
1012 if (source_pvo != NULL)
1013 break;
1014 }
1015 }
1016
1017 if (source_pvo == NULL) {
1018 PMAPCOUNT(ptes_unspilled);
1019 PMAP_UNLOCK();
1020 return 0;
1021 }
1022
1023 if (victim_pvo == NULL) {
1024 if ((pt->pte_hi & PTE_HID) == 0)
1025 panic("pmap_pte_spill: victim p-pte (%p) has "
1026 "no pvo entry!", pt);
1027
1028 /*
1029 * If this is a secondary PTE, we need to search
1030 * its primary pvo bucket for the matching PVO.
1031 */
1032 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1033 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1034 PMAP_PVO_CHECK(pvo); /* sanity check */
1035
1036 /*
1037 * We also need the pvo entry of the victim we are
1038 * replacing so save the R & C bits of the PTE.
1039 */
1040 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1041 victim_pvo = pvo;
1042 break;
1043 }
1044 }
1045 if (victim_pvo == NULL)
1046 panic("pmap_pte_spill: victim s-pte (%p) has "
1047 "no pvo entry!", pt);
1048 }
1049
1050 /*
1051 * The victim should be not be a kernel PVO/PTE entry.
1052 */
1053 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1054 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1055 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1056
1057 /*
1058 * We are invalidating the TLB entry for the EA for the
1059 * we are replacing even though its valid; If we don't
1060 * we lose any ref/chg bit changes contained in the TLB
1061 * entry.
1062 */
1063 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1064
1065 /*
1066 * To enforce the PVO list ordering constraint that all
1067 * evicted entries should come before all valid entries,
1068 * move the source PVO to the tail of its list and the
1069 * victim PVO to the head of its list (which might not be
1070 * the same list, if the victim was using the secondary hash).
1071 */
1072 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1073 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1074 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1075 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1076 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1077 pmap_pte_set(pt, &source_pvo->pvo_pte);
1078 victim_pvo->pvo_pmap->pm_evictions++;
1079 source_pvo->pvo_pmap->pm_evictions--;
1080 PVO_WHERE(victim_pvo, SPILL_UNSET);
1081 PVO_WHERE(source_pvo, SPILL_SET);
1082
1083 PVO_PTEGIDX_CLR(victim_pvo);
1084 PVO_PTEGIDX_SET(source_pvo, i);
1085 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1086 PMAPCOUNT(ptes_spilled);
1087 PMAPCOUNT(ptes_evicted);
1088 PMAPCOUNT(ptes_removed);
1089
1090 PMAP_PVO_CHECK(victim_pvo);
1091 PMAP_PVO_CHECK(source_pvo);
1092
1093 PMAP_UNLOCK();
1094 return 1;
1095 }
1096
1097 /*
1098 * Restrict given range to physical memory
1099 */
1100 void
1101 pmap_real_memory(paddr_t *start, psize_t *size)
1102 {
1103 struct mem_region *mp;
1104
1105 for (mp = mem; mp->size; mp++) {
1106 if (*start + *size > mp->start
1107 && *start < mp->start + mp->size) {
1108 if (*start < mp->start) {
1109 *size -= mp->start - *start;
1110 *start = mp->start;
1111 }
1112 if (*start + *size > mp->start + mp->size)
1113 *size = mp->start + mp->size - *start;
1114 return;
1115 }
1116 }
1117 *size = 0;
1118 }
1119
1120 /*
1121 * Initialize anything else for pmap handling.
1122 * Called during vm_init().
1123 */
1124 void
1125 pmap_init(void)
1126 {
1127 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1128 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1129 &pmap_pool_mallocator, IPL_NONE);
1130
1131 pool_setlowat(&pmap_mpvo_pool, 1008);
1132
1133 pmap_initialized = 1;
1134
1135 }
1136
1137 /*
1138 * How much virtual space does the kernel get?
1139 */
1140 void
1141 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1142 {
1143 /*
1144 * For now, reserve one segment (minus some overhead) for kernel
1145 * virtual memory
1146 */
1147 *start = VM_MIN_KERNEL_ADDRESS;
1148 *end = VM_MAX_KERNEL_ADDRESS;
1149 }
1150
1151 /*
1152 * Allocate, initialize, and return a new physical map.
1153 */
1154 pmap_t
1155 pmap_create(void)
1156 {
1157 pmap_t pm;
1158
1159 pm = pool_get(&pmap_pool, PR_WAITOK);
1160 memset((void *)pm, 0, sizeof *pm);
1161 pmap_pinit(pm);
1162
1163 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1164 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1165 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1166 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1167 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1168 pm,
1169 pm->pm_sr[0], pm->pm_sr[1],
1170 pm->pm_sr[2], pm->pm_sr[3],
1171 pm->pm_sr[4], pm->pm_sr[5],
1172 pm->pm_sr[6], pm->pm_sr[7],
1173 pm->pm_sr[8], pm->pm_sr[9],
1174 pm->pm_sr[10], pm->pm_sr[11],
1175 pm->pm_sr[12], pm->pm_sr[13],
1176 pm->pm_sr[14], pm->pm_sr[15]));
1177 return pm;
1178 }
1179
1180 /*
1181 * Initialize a preallocated and zeroed pmap structure.
1182 */
1183 void
1184 pmap_pinit(pmap_t pm)
1185 {
1186 register_t entropy = MFTB();
1187 register_t mask;
1188 int i;
1189
1190 /*
1191 * Allocate some segment registers for this pmap.
1192 */
1193 pm->pm_refs = 1;
1194 PMAP_LOCK();
1195 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1196 static register_t pmap_vsidcontext;
1197 register_t hash;
1198 unsigned int n;
1199
1200 /* Create a new value by multiplying by a prime adding in
1201 * entropy from the timebase register. This is to make the
1202 * VSID more random so that the PT Hash function collides
1203 * less often. (note that the prime causes gcc to do shifts
1204 * instead of a multiply)
1205 */
1206 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1207 hash = pmap_vsidcontext & (NPMAPS - 1);
1208 if (hash == 0) { /* 0 is special, avoid it */
1209 entropy += 0xbadf00d;
1210 continue;
1211 }
1212 n = hash >> 5;
1213 mask = 1L << (hash & (VSID_NBPW-1));
1214 hash = pmap_vsidcontext;
1215 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1216 /* anything free in this bucket? */
1217 if (~pmap_vsid_bitmap[n] == 0) {
1218 entropy = hash ^ (hash >> 16);
1219 continue;
1220 }
1221 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1222 mask = 1L << i;
1223 hash &= ~(VSID_NBPW-1);
1224 hash |= i;
1225 }
1226 hash &= PTE_VSID >> PTE_VSID_SHFT;
1227 pmap_vsid_bitmap[n] |= mask;
1228 pm->pm_vsid = hash;
1229 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1230 for (i = 0; i < 16; i++)
1231 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1232 SR_NOEXEC;
1233 #endif
1234 PMAP_UNLOCK();
1235 return;
1236 }
1237 PMAP_UNLOCK();
1238 panic("pmap_pinit: out of segments");
1239 }
1240
1241 /*
1242 * Add a reference to the given pmap.
1243 */
1244 void
1245 pmap_reference(pmap_t pm)
1246 {
1247 atomic_inc_uint(&pm->pm_refs);
1248 }
1249
1250 /*
1251 * Retire the given pmap from service.
1252 * Should only be called if the map contains no valid mappings.
1253 */
1254 void
1255 pmap_destroy(pmap_t pm)
1256 {
1257 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1258 pmap_release(pm);
1259 pool_put(&pmap_pool, pm);
1260 }
1261 }
1262
1263 /*
1264 * Release any resources held by the given physical map.
1265 * Called when a pmap initialized by pmap_pinit is being released.
1266 */
1267 void
1268 pmap_release(pmap_t pm)
1269 {
1270 int idx, mask;
1271
1272 KASSERT(pm->pm_stats.resident_count == 0);
1273 KASSERT(pm->pm_stats.wired_count == 0);
1274
1275 PMAP_LOCK();
1276 if (pm->pm_sr[0] == 0)
1277 panic("pmap_release");
1278 idx = pm->pm_vsid & (NPMAPS-1);
1279 mask = 1 << (idx % VSID_NBPW);
1280 idx /= VSID_NBPW;
1281
1282 KASSERT(pmap_vsid_bitmap[idx] & mask);
1283 pmap_vsid_bitmap[idx] &= ~mask;
1284 PMAP_UNLOCK();
1285 }
1286
1287 /*
1288 * Copy the range specified by src_addr/len
1289 * from the source map to the range dst_addr/len
1290 * in the destination map.
1291 *
1292 * This routine is only advisory and need not do anything.
1293 */
1294 void
1295 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1296 vsize_t len, vaddr_t src_addr)
1297 {
1298 PMAPCOUNT(copies);
1299 }
1300
1301 /*
1302 * Require that all active physical maps contain no
1303 * incorrect entries NOW.
1304 */
1305 void
1306 pmap_update(struct pmap *pmap)
1307 {
1308 PMAPCOUNT(updates);
1309 TLBSYNC();
1310 }
1311
1312 /*
1313 * Garbage collects the physical map system for
1314 * pages which are no longer used.
1315 * Success need not be guaranteed -- that is, there
1316 * may well be pages which are not referenced, but
1317 * others may be collected.
1318 * Called by the pageout daemon when pages are scarce.
1319 */
1320 void
1321 pmap_collect(pmap_t pm)
1322 {
1323 PMAPCOUNT(collects);
1324 }
1325
1326 static inline int
1327 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1328 {
1329 int pteidx;
1330 /*
1331 * We can find the actual pte entry without searching by
1332 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1333 * and by noticing the HID bit.
1334 */
1335 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1336 if (pvo->pvo_pte.pte_hi & PTE_HID)
1337 pteidx ^= pmap_pteg_mask * 8;
1338 return pteidx;
1339 }
1340
1341 volatile struct pte *
1342 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1343 {
1344 volatile struct pte *pt;
1345
1346 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1347 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1348 return NULL;
1349 #endif
1350
1351 /*
1352 * If we haven't been supplied the ptegidx, calculate it.
1353 */
1354 if (pteidx == -1) {
1355 int ptegidx;
1356 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1357 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1358 }
1359
1360 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1361
1362 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1363 return pt;
1364 #else
1365 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1366 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1367 "pvo but no valid pte index", pvo);
1368 }
1369 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1370 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1371 "pvo but no valid pte", pvo);
1372 }
1373
1374 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1375 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1376 #if defined(DEBUG) || defined(PMAPCHECK)
1377 pmap_pte_print(pt);
1378 #endif
1379 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1380 "pmap_pteg_table %p but invalid in pvo",
1381 pvo, pt);
1382 }
1383 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1384 #if defined(DEBUG) || defined(PMAPCHECK)
1385 pmap_pte_print(pt);
1386 #endif
1387 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1388 "not match pte %p in pmap_pteg_table",
1389 pvo, pt);
1390 }
1391 return pt;
1392 }
1393
1394 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1395 #if defined(DEBUG) || defined(PMAPCHECK)
1396 pmap_pte_print(pt);
1397 #endif
1398 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1399 "pmap_pteg_table but valid in pvo", pvo, pt);
1400 }
1401 return NULL;
1402 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1403 }
1404
1405 struct pvo_entry *
1406 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1407 {
1408 struct pvo_entry *pvo;
1409 int ptegidx;
1410
1411 va &= ~ADDR_POFF;
1412 ptegidx = va_to_pteg(pm, va);
1413
1414 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1415 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1416 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1417 panic("pmap_pvo_find_va: invalid pvo %p on "
1418 "list %#x (%p)", pvo, ptegidx,
1419 &pmap_pvo_table[ptegidx]);
1420 #endif
1421 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1422 if (pteidx_p)
1423 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1424 return pvo;
1425 }
1426 }
1427 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1428 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1429 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1430 return NULL;
1431 }
1432
1433 #if defined(DEBUG) || defined(PMAPCHECK)
1434 void
1435 pmap_pvo_check(const struct pvo_entry *pvo)
1436 {
1437 struct pvo_head *pvo_head;
1438 struct pvo_entry *pvo0;
1439 volatile struct pte *pt;
1440 int failed = 0;
1441
1442 PMAP_LOCK();
1443
1444 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1445 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1446
1447 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1448 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1449 pvo, pvo->pvo_pmap);
1450 failed = 1;
1451 }
1452
1453 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1454 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1455 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1456 pvo, TAILQ_NEXT(pvo, pvo_olink));
1457 failed = 1;
1458 }
1459
1460 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1461 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1462 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1463 pvo, LIST_NEXT(pvo, pvo_vlink));
1464 failed = 1;
1465 }
1466
1467 if (PVO_MANAGED_P(pvo)) {
1468 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1469 } else {
1470 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1471 printf("pmap_pvo_check: pvo %p: non kernel address "
1472 "on kernel unmanaged list\n", pvo);
1473 failed = 1;
1474 }
1475 pvo_head = &pmap_pvo_kunmanaged;
1476 }
1477 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1478 if (pvo0 == pvo)
1479 break;
1480 }
1481 if (pvo0 == NULL) {
1482 printf("pmap_pvo_check: pvo %p: not present "
1483 "on its vlist head %p\n", pvo, pvo_head);
1484 failed = 1;
1485 }
1486 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1487 printf("pmap_pvo_check: pvo %p: not present "
1488 "on its olist head\n", pvo);
1489 failed = 1;
1490 }
1491 pt = pmap_pvo_to_pte(pvo, -1);
1492 if (pt == NULL) {
1493 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1494 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1495 "no PTE\n", pvo);
1496 failed = 1;
1497 }
1498 } else {
1499 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1500 (uintptr_t) pt >=
1501 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1502 printf("pmap_pvo_check: pvo %p: pte %p not in "
1503 "pteg table\n", pvo, pt);
1504 failed = 1;
1505 }
1506 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1507 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1508 "no PTE\n", pvo);
1509 failed = 1;
1510 }
1511 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1512 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1513 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1514 pvo->pvo_pte.pte_hi,
1515 pt->pte_hi);
1516 failed = 1;
1517 }
1518 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1519 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1520 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1521 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1522 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1523 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1524 failed = 1;
1525 }
1526 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1527 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1528 " doesn't not match PVO's VA %#" _PRIxva "\n",
1529 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1530 failed = 1;
1531 }
1532 if (failed)
1533 pmap_pte_print(pt);
1534 }
1535 if (failed)
1536 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1537 pvo->pvo_pmap);
1538
1539 PMAP_UNLOCK();
1540 }
1541 #endif /* DEBUG || PMAPCHECK */
1542
1543 /*
1544 * Search the PVO table looking for a non-wired entry.
1545 * If we find one, remove it and return it.
1546 */
1547
1548 struct pvo_entry *
1549 pmap_pvo_reclaim(struct pmap *pm)
1550 {
1551 struct pvo_tqhead *pvoh;
1552 struct pvo_entry *pvo;
1553 uint32_t idx, endidx;
1554
1555 endidx = pmap_pvo_reclaim_nextidx;
1556 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1557 idx = (idx + 1) & pmap_pteg_mask) {
1558 pvoh = &pmap_pvo_table[idx];
1559 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1560 if (!PVO_WIRED_P(pvo)) {
1561 pmap_pvo_remove(pvo, -1, NULL);
1562 pmap_pvo_reclaim_nextidx = idx;
1563 PMAPCOUNT(pvos_reclaimed);
1564 return pvo;
1565 }
1566 }
1567 }
1568 return NULL;
1569 }
1570
1571 /*
1572 * This returns whether this is the first mapping of a page.
1573 */
1574 int
1575 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1576 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1577 {
1578 struct pvo_entry *pvo;
1579 struct pvo_tqhead *pvoh;
1580 register_t msr;
1581 int ptegidx;
1582 int i;
1583 int poolflags = PR_NOWAIT;
1584
1585 /*
1586 * Compute the PTE Group index.
1587 */
1588 va &= ~ADDR_POFF;
1589 ptegidx = va_to_pteg(pm, va);
1590
1591 msr = pmap_interrupts_off();
1592
1593 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1594 if (pmap_pvo_remove_depth > 0)
1595 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1596 if (++pmap_pvo_enter_depth > 1)
1597 panic("pmap_pvo_enter: called recursively!");
1598 #endif
1599
1600 /*
1601 * Remove any existing mapping for this page. Reuse the
1602 * pvo entry if there a mapping.
1603 */
1604 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1605 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1606 #ifdef DEBUG
1607 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1608 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1609 ~(PTE_REF|PTE_CHG)) == 0 &&
1610 va < VM_MIN_KERNEL_ADDRESS) {
1611 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1612 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1613 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1614 pvo->pvo_pte.pte_hi,
1615 pm->pm_sr[va >> ADDR_SR_SHFT]);
1616 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1617 #ifdef DDBX
1618 Debugger();
1619 #endif
1620 }
1621 #endif
1622 PMAPCOUNT(mappings_replaced);
1623 pmap_pvo_remove(pvo, -1, NULL);
1624 break;
1625 }
1626 }
1627
1628 /*
1629 * If we aren't overwriting an mapping, try to allocate
1630 */
1631 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1632 --pmap_pvo_enter_depth;
1633 #endif
1634 pmap_interrupts_restore(msr);
1635 if (pvo) {
1636 pmap_pvo_free(pvo);
1637 }
1638 pvo = pool_get(pl, poolflags);
1639
1640 #ifdef DEBUG
1641 /*
1642 * Exercise pmap_pvo_reclaim() a little.
1643 */
1644 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1645 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1646 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1647 pool_put(pl, pvo);
1648 pvo = NULL;
1649 }
1650 #endif
1651
1652 msr = pmap_interrupts_off();
1653 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1654 ++pmap_pvo_enter_depth;
1655 #endif
1656 if (pvo == NULL) {
1657 pvo = pmap_pvo_reclaim(pm);
1658 if (pvo == NULL) {
1659 if ((flags & PMAP_CANFAIL) == 0)
1660 panic("pmap_pvo_enter: failed");
1661 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1662 pmap_pvo_enter_depth--;
1663 #endif
1664 PMAPCOUNT(pvos_failed);
1665 pmap_interrupts_restore(msr);
1666 return ENOMEM;
1667 }
1668 }
1669
1670 pvo->pvo_vaddr = va;
1671 pvo->pvo_pmap = pm;
1672 pvo->pvo_vaddr &= ~ADDR_POFF;
1673 if (flags & VM_PROT_EXECUTE) {
1674 PMAPCOUNT(exec_mappings);
1675 pvo_set_exec(pvo);
1676 }
1677 if (flags & PMAP_WIRED)
1678 pvo->pvo_vaddr |= PVO_WIRED;
1679 if (pvo_head != &pmap_pvo_kunmanaged) {
1680 pvo->pvo_vaddr |= PVO_MANAGED;
1681 PMAPCOUNT(mappings);
1682 } else {
1683 PMAPCOUNT(kernel_mappings);
1684 }
1685 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1686
1687 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1688 if (PVO_WIRED_P(pvo))
1689 pvo->pvo_pmap->pm_stats.wired_count++;
1690 pvo->pvo_pmap->pm_stats.resident_count++;
1691 #if defined(DEBUG)
1692 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1693 DPRINTFN(PVOENTER,
1694 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1695 pvo, pm, va, pa));
1696 #endif
1697
1698 /*
1699 * We hope this succeeds but it isn't required.
1700 */
1701 pvoh = &pmap_pvo_table[ptegidx];
1702 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1703 if (i >= 0) {
1704 PVO_PTEGIDX_SET(pvo, i);
1705 PVO_WHERE(pvo, ENTER_INSERT);
1706 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1707 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1708 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1709
1710 } else {
1711 /*
1712 * Since we didn't have room for this entry (which makes it
1713 * and evicted entry), place it at the head of the list.
1714 */
1715 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1716 PMAPCOUNT(ptes_evicted);
1717 pm->pm_evictions++;
1718 /*
1719 * If this is a kernel page, make sure it's active.
1720 */
1721 if (pm == pmap_kernel()) {
1722 i = pmap_pte_spill(pm, va, false);
1723 KASSERT(i);
1724 }
1725 }
1726 PMAP_PVO_CHECK(pvo); /* sanity check */
1727 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1728 pmap_pvo_enter_depth--;
1729 #endif
1730 pmap_interrupts_restore(msr);
1731 return 0;
1732 }
1733
1734 static void
1735 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1736 {
1737 volatile struct pte *pt;
1738 int ptegidx;
1739
1740 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1741 if (++pmap_pvo_remove_depth > 1)
1742 panic("pmap_pvo_remove: called recursively!");
1743 #endif
1744
1745 /*
1746 * If we haven't been supplied the ptegidx, calculate it.
1747 */
1748 if (pteidx == -1) {
1749 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1750 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1751 } else {
1752 ptegidx = pteidx >> 3;
1753 if (pvo->pvo_pte.pte_hi & PTE_HID)
1754 ptegidx ^= pmap_pteg_mask;
1755 }
1756 PMAP_PVO_CHECK(pvo); /* sanity check */
1757
1758 /*
1759 * If there is an active pte entry, we need to deactivate it
1760 * (and save the ref & chg bits).
1761 */
1762 pt = pmap_pvo_to_pte(pvo, pteidx);
1763 if (pt != NULL) {
1764 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1765 PVO_WHERE(pvo, REMOVE);
1766 PVO_PTEGIDX_CLR(pvo);
1767 PMAPCOUNT(ptes_removed);
1768 } else {
1769 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1770 pvo->pvo_pmap->pm_evictions--;
1771 }
1772
1773 /*
1774 * Account for executable mappings.
1775 */
1776 if (PVO_EXECUTABLE_P(pvo))
1777 pvo_clear_exec(pvo);
1778
1779 /*
1780 * Update our statistics.
1781 */
1782 pvo->pvo_pmap->pm_stats.resident_count--;
1783 if (PVO_WIRED_P(pvo))
1784 pvo->pvo_pmap->pm_stats.wired_count--;
1785
1786 /*
1787 * Save the REF/CHG bits into their cache if the page is managed.
1788 */
1789 if (PVO_MANAGED_P(pvo)) {
1790 register_t ptelo = pvo->pvo_pte.pte_lo;
1791 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1792
1793 if (pg != NULL) {
1794 /*
1795 * If this page was changed and it is mapped exec,
1796 * invalidate it.
1797 */
1798 if ((ptelo & PTE_CHG) &&
1799 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1800 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1801 if (LIST_EMPTY(pvoh)) {
1802 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1803 "%#" _PRIxpa ": clear-exec]\n",
1804 VM_PAGE_TO_PHYS(pg)));
1805 pmap_attr_clear(pg, PTE_EXEC);
1806 PMAPCOUNT(exec_uncached_pvo_remove);
1807 } else {
1808 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1809 "%#" _PRIxpa ": syncicache]\n",
1810 VM_PAGE_TO_PHYS(pg)));
1811 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1812 PAGE_SIZE);
1813 PMAPCOUNT(exec_synced_pvo_remove);
1814 }
1815 }
1816
1817 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1818 }
1819 PMAPCOUNT(unmappings);
1820 } else {
1821 PMAPCOUNT(kernel_unmappings);
1822 }
1823
1824 /*
1825 * Remove the PVO from its lists and return it to the pool.
1826 */
1827 LIST_REMOVE(pvo, pvo_vlink);
1828 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1829 if (pvol) {
1830 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1831 }
1832 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1833 pmap_pvo_remove_depth--;
1834 #endif
1835 }
1836
1837 void
1838 pmap_pvo_free(struct pvo_entry *pvo)
1839 {
1840
1841 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1842 }
1843
1844 void
1845 pmap_pvo_free_list(struct pvo_head *pvol)
1846 {
1847 struct pvo_entry *pvo, *npvo;
1848
1849 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1850 npvo = LIST_NEXT(pvo, pvo_vlink);
1851 LIST_REMOVE(pvo, pvo_vlink);
1852 pmap_pvo_free(pvo);
1853 }
1854 }
1855
1856 /*
1857 * Mark a mapping as executable.
1858 * If this is the first executable mapping in the segment,
1859 * clear the noexec flag.
1860 */
1861 static void
1862 pvo_set_exec(struct pvo_entry *pvo)
1863 {
1864 struct pmap *pm = pvo->pvo_pmap;
1865
1866 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1867 return;
1868 }
1869 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1870 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1871 {
1872 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1873 if (pm->pm_exec[sr]++ == 0) {
1874 pm->pm_sr[sr] &= ~SR_NOEXEC;
1875 }
1876 }
1877 #endif
1878 }
1879
1880 /*
1881 * Mark a mapping as non-executable.
1882 * If this was the last executable mapping in the segment,
1883 * set the noexec flag.
1884 */
1885 static void
1886 pvo_clear_exec(struct pvo_entry *pvo)
1887 {
1888 struct pmap *pm = pvo->pvo_pmap;
1889
1890 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1891 return;
1892 }
1893 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1894 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1895 {
1896 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1897 if (--pm->pm_exec[sr] == 0) {
1898 pm->pm_sr[sr] |= SR_NOEXEC;
1899 }
1900 }
1901 #endif
1902 }
1903
1904 /*
1905 * Insert physical page at pa into the given pmap at virtual address va.
1906 */
1907 int
1908 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1909 {
1910 struct mem_region *mp;
1911 struct pvo_head *pvo_head;
1912 struct vm_page *pg;
1913 struct pool *pl;
1914 register_t pte_lo;
1915 int error;
1916 u_int pvo_flags;
1917 u_int was_exec = 0;
1918
1919 PMAP_LOCK();
1920
1921 if (__predict_false(!pmap_initialized)) {
1922 pvo_head = &pmap_pvo_kunmanaged;
1923 pl = &pmap_upvo_pool;
1924 pvo_flags = 0;
1925 pg = NULL;
1926 was_exec = PTE_EXEC;
1927 } else {
1928 pvo_head = pa_to_pvoh(pa, &pg);
1929 pl = &pmap_mpvo_pool;
1930 pvo_flags = PVO_MANAGED;
1931 }
1932
1933 DPRINTFN(ENTER,
1934 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1935 pm, va, pa, prot, flags));
1936
1937 /*
1938 * If this is a managed page, and it's the first reference to the
1939 * page clear the execness of the page. Otherwise fetch the execness.
1940 */
1941 if (pg != NULL)
1942 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1943
1944 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1945
1946 /*
1947 * Assume the page is cache inhibited and access is guarded unless
1948 * it's in our available memory array. If it is in the memory array,
1949 * asssume it's in memory coherent memory.
1950 */
1951 pte_lo = PTE_IG;
1952 if ((flags & PMAP_NC) == 0) {
1953 for (mp = mem; mp->size; mp++) {
1954 if (pa >= mp->start && pa < mp->start + mp->size) {
1955 pte_lo = PTE_M;
1956 break;
1957 }
1958 }
1959 }
1960
1961 if (prot & VM_PROT_WRITE)
1962 pte_lo |= PTE_BW;
1963 else
1964 pte_lo |= PTE_BR;
1965
1966 /*
1967 * If this was in response to a fault, "pre-fault" the PTE's
1968 * changed/referenced bit appropriately.
1969 */
1970 if (flags & VM_PROT_WRITE)
1971 pte_lo |= PTE_CHG;
1972 if (flags & VM_PROT_ALL)
1973 pte_lo |= PTE_REF;
1974
1975 /*
1976 * We need to know if this page can be executable
1977 */
1978 flags |= (prot & VM_PROT_EXECUTE);
1979
1980 /*
1981 * Record mapping for later back-translation and pte spilling.
1982 * This will overwrite any existing mapping.
1983 */
1984 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1985
1986 /*
1987 * Flush the real page from the instruction cache if this page is
1988 * mapped executable and cacheable and has not been flushed since
1989 * the last time it was modified.
1990 */
1991 if (error == 0 &&
1992 (flags & VM_PROT_EXECUTE) &&
1993 (pte_lo & PTE_I) == 0 &&
1994 was_exec == 0) {
1995 DPRINTFN(ENTER, (" syncicache"));
1996 PMAPCOUNT(exec_synced);
1997 pmap_syncicache(pa, PAGE_SIZE);
1998 if (pg != NULL) {
1999 pmap_attr_save(pg, PTE_EXEC);
2000 PMAPCOUNT(exec_cached);
2001 #if defined(DEBUG) || defined(PMAPDEBUG)
2002 if (pmapdebug & PMAPDEBUG_ENTER)
2003 printf(" marked-as-exec");
2004 else if (pmapdebug & PMAPDEBUG_EXEC)
2005 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2006 VM_PAGE_TO_PHYS(pg));
2007
2008 #endif
2009 }
2010 }
2011
2012 DPRINTFN(ENTER, (": error=%d\n", error));
2013
2014 PMAP_UNLOCK();
2015
2016 return error;
2017 }
2018
2019 void
2020 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2021 {
2022 struct mem_region *mp;
2023 register_t pte_lo;
2024 int error;
2025
2026 #if defined (PMAP_OEA64_BRIDGE)
2027 if (va < VM_MIN_KERNEL_ADDRESS)
2028 panic("pmap_kenter_pa: attempt to enter "
2029 "non-kernel address %#" _PRIxva "!", va);
2030 #endif
2031
2032 DPRINTFN(KENTER,
2033 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2034
2035 PMAP_LOCK();
2036
2037 /*
2038 * Assume the page is cache inhibited and access is guarded unless
2039 * it's in our available memory array. If it is in the memory array,
2040 * asssume it's in memory coherent memory.
2041 */
2042 pte_lo = PTE_IG;
2043 if ((prot & PMAP_NC) == 0) {
2044 for (mp = mem; mp->size; mp++) {
2045 if (pa >= mp->start && pa < mp->start + mp->size) {
2046 pte_lo = PTE_M;
2047 break;
2048 }
2049 }
2050 }
2051
2052 if (prot & VM_PROT_WRITE)
2053 pte_lo |= PTE_BW;
2054 else
2055 pte_lo |= PTE_BR;
2056
2057 /*
2058 * We don't care about REF/CHG on PVOs on the unmanaged list.
2059 */
2060 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2061 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2062
2063 if (error != 0)
2064 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2065 va, pa, error);
2066
2067 PMAP_UNLOCK();
2068 }
2069
2070 void
2071 pmap_kremove(vaddr_t va, vsize_t len)
2072 {
2073 if (va < VM_MIN_KERNEL_ADDRESS)
2074 panic("pmap_kremove: attempt to remove "
2075 "non-kernel address %#" _PRIxva "!", va);
2076
2077 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2078 pmap_remove(pmap_kernel(), va, va + len);
2079 }
2080
2081 /*
2082 * Remove the given range of mapping entries.
2083 */
2084 void
2085 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2086 {
2087 struct pvo_head pvol;
2088 struct pvo_entry *pvo;
2089 register_t msr;
2090 int pteidx;
2091
2092 PMAP_LOCK();
2093 LIST_INIT(&pvol);
2094 msr = pmap_interrupts_off();
2095 for (; va < endva; va += PAGE_SIZE) {
2096 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2097 if (pvo != NULL) {
2098 pmap_pvo_remove(pvo, pteidx, &pvol);
2099 }
2100 }
2101 pmap_interrupts_restore(msr);
2102 pmap_pvo_free_list(&pvol);
2103 PMAP_UNLOCK();
2104 }
2105
2106 /*
2107 * Get the physical page address for the given pmap/virtual address.
2108 */
2109 bool
2110 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2111 {
2112 struct pvo_entry *pvo;
2113 register_t msr;
2114
2115 PMAP_LOCK();
2116
2117 /*
2118 * If this is a kernel pmap lookup, also check the battable
2119 * and if we get a hit, translate the VA to a PA using the
2120 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2121 * that will wrap back to 0.
2122 */
2123 if (pm == pmap_kernel() &&
2124 (va < VM_MIN_KERNEL_ADDRESS ||
2125 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2126 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2127 #if defined (PMAP_OEA)
2128 #ifdef PPC_OEA601
2129 if ((MFPVR() >> 16) == MPC601) {
2130 register_t batu = battable[va >> 23].batu;
2131 register_t batl = battable[va >> 23].batl;
2132 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2133 if (BAT601_VALID_P(batl) &&
2134 BAT601_VA_MATCH_P(batu, batl, va)) {
2135 register_t mask =
2136 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2137 if (pap)
2138 *pap = (batl & mask) | (va & ~mask);
2139 PMAP_UNLOCK();
2140 return true;
2141 } else if (SR601_VALID_P(sr) &&
2142 SR601_PA_MATCH_P(sr, va)) {
2143 if (pap)
2144 *pap = va;
2145 PMAP_UNLOCK();
2146 return true;
2147 }
2148 } else
2149 #endif /* PPC_OEA601 */
2150 {
2151 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2152 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2153 register_t batl =
2154 battable[va >> ADDR_SR_SHFT].batl;
2155 register_t mask =
2156 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2157 if (pap)
2158 *pap = (batl & mask) | (va & ~mask);
2159 PMAP_UNLOCK();
2160 return true;
2161 }
2162 }
2163 return false;
2164 #elif defined (PMAP_OEA64_BRIDGE)
2165 if (va >= SEGMENT_LENGTH)
2166 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2167 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2168 else {
2169 if (pap)
2170 *pap = va;
2171 PMAP_UNLOCK();
2172 return true;
2173 }
2174 #elif defined (PMAP_OEA64)
2175 #error PPC_OEA64 not supported
2176 #endif /* PPC_OEA */
2177 }
2178
2179 msr = pmap_interrupts_off();
2180 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2181 if (pvo != NULL) {
2182 PMAP_PVO_CHECK(pvo); /* sanity check */
2183 if (pap)
2184 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2185 | (va & ADDR_POFF);
2186 }
2187 pmap_interrupts_restore(msr);
2188 PMAP_UNLOCK();
2189 return pvo != NULL;
2190 }
2191
2192 /*
2193 * Lower the protection on the specified range of this pmap.
2194 */
2195 void
2196 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2197 {
2198 struct pvo_entry *pvo;
2199 volatile struct pte *pt;
2200 register_t msr;
2201 int pteidx;
2202
2203 /*
2204 * Since this routine only downgrades protection, we should
2205 * always be called with at least one bit not set.
2206 */
2207 KASSERT(prot != VM_PROT_ALL);
2208
2209 /*
2210 * If there is no protection, this is equivalent to
2211 * remove the pmap from the pmap.
2212 */
2213 if ((prot & VM_PROT_READ) == 0) {
2214 pmap_remove(pm, va, endva);
2215 return;
2216 }
2217
2218 PMAP_LOCK();
2219
2220 msr = pmap_interrupts_off();
2221 for (; va < endva; va += PAGE_SIZE) {
2222 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2223 if (pvo == NULL)
2224 continue;
2225 PMAP_PVO_CHECK(pvo); /* sanity check */
2226
2227 /*
2228 * Revoke executable if asked to do so.
2229 */
2230 if ((prot & VM_PROT_EXECUTE) == 0)
2231 pvo_clear_exec(pvo);
2232
2233 #if 0
2234 /*
2235 * If the page is already read-only, no change
2236 * needs to be made.
2237 */
2238 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2239 continue;
2240 #endif
2241 /*
2242 * Grab the PTE pointer before we diddle with
2243 * the cached PTE copy.
2244 */
2245 pt = pmap_pvo_to_pte(pvo, pteidx);
2246 /*
2247 * Change the protection of the page.
2248 */
2249 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2250 pvo->pvo_pte.pte_lo |= PTE_BR;
2251
2252 /*
2253 * If the PVO is in the page table, update
2254 * that pte at well.
2255 */
2256 if (pt != NULL) {
2257 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2258 PVO_WHERE(pvo, PMAP_PROTECT);
2259 PMAPCOUNT(ptes_changed);
2260 }
2261
2262 PMAP_PVO_CHECK(pvo); /* sanity check */
2263 }
2264 pmap_interrupts_restore(msr);
2265 PMAP_UNLOCK();
2266 }
2267
2268 void
2269 pmap_unwire(pmap_t pm, vaddr_t va)
2270 {
2271 struct pvo_entry *pvo;
2272 register_t msr;
2273
2274 PMAP_LOCK();
2275 msr = pmap_interrupts_off();
2276 pvo = pmap_pvo_find_va(pm, va, NULL);
2277 if (pvo != NULL) {
2278 if (PVO_WIRED_P(pvo)) {
2279 pvo->pvo_vaddr &= ~PVO_WIRED;
2280 pm->pm_stats.wired_count--;
2281 }
2282 PMAP_PVO_CHECK(pvo); /* sanity check */
2283 }
2284 pmap_interrupts_restore(msr);
2285 PMAP_UNLOCK();
2286 }
2287
2288 /*
2289 * Lower the protection on the specified physical page.
2290 */
2291 void
2292 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2293 {
2294 struct pvo_head *pvo_head, pvol;
2295 struct pvo_entry *pvo, *next_pvo;
2296 volatile struct pte *pt;
2297 register_t msr;
2298
2299 PMAP_LOCK();
2300
2301 KASSERT(prot != VM_PROT_ALL);
2302 LIST_INIT(&pvol);
2303 msr = pmap_interrupts_off();
2304
2305 /*
2306 * When UVM reuses a page, it does a pmap_page_protect with
2307 * VM_PROT_NONE. At that point, we can clear the exec flag
2308 * since we know the page will have different contents.
2309 */
2310 if ((prot & VM_PROT_READ) == 0) {
2311 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2312 VM_PAGE_TO_PHYS(pg)));
2313 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2314 PMAPCOUNT(exec_uncached_page_protect);
2315 pmap_attr_clear(pg, PTE_EXEC);
2316 }
2317 }
2318
2319 pvo_head = vm_page_to_pvoh(pg);
2320 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2321 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2322 PMAP_PVO_CHECK(pvo); /* sanity check */
2323
2324 /*
2325 * Downgrading to no mapping at all, we just remove the entry.
2326 */
2327 if ((prot & VM_PROT_READ) == 0) {
2328 pmap_pvo_remove(pvo, -1, &pvol);
2329 continue;
2330 }
2331
2332 /*
2333 * If EXEC permission is being revoked, just clear the
2334 * flag in the PVO.
2335 */
2336 if ((prot & VM_PROT_EXECUTE) == 0)
2337 pvo_clear_exec(pvo);
2338
2339 /*
2340 * If this entry is already RO, don't diddle with the
2341 * page table.
2342 */
2343 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2344 PMAP_PVO_CHECK(pvo);
2345 continue;
2346 }
2347
2348 /*
2349 * Grab the PTE before the we diddle the bits so
2350 * pvo_to_pte can verify the pte contents are as
2351 * expected.
2352 */
2353 pt = pmap_pvo_to_pte(pvo, -1);
2354 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2355 pvo->pvo_pte.pte_lo |= PTE_BR;
2356 if (pt != NULL) {
2357 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2358 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2359 PMAPCOUNT(ptes_changed);
2360 }
2361 PMAP_PVO_CHECK(pvo); /* sanity check */
2362 }
2363 pmap_interrupts_restore(msr);
2364 pmap_pvo_free_list(&pvol);
2365
2366 PMAP_UNLOCK();
2367 }
2368
2369 /*
2370 * Activate the address space for the specified process. If the process
2371 * is the current process, load the new MMU context.
2372 */
2373 void
2374 pmap_activate(struct lwp *l)
2375 {
2376 struct pcb *pcb = &l->l_addr->u_pcb;
2377 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2378
2379 DPRINTFN(ACTIVATE,
2380 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2381
2382 /*
2383 * XXX Normally performed in cpu_fork().
2384 */
2385 pcb->pcb_pm = pmap;
2386
2387 /*
2388 * In theory, the SR registers need only be valid on return
2389 * to user space wait to do them there.
2390 */
2391 if (l == curlwp) {
2392 /* Store pointer to new current pmap. */
2393 curpm = pmap;
2394 }
2395 }
2396
2397 /*
2398 * Deactivate the specified process's address space.
2399 */
2400 void
2401 pmap_deactivate(struct lwp *l)
2402 {
2403 }
2404
2405 bool
2406 pmap_query_bit(struct vm_page *pg, int ptebit)
2407 {
2408 struct pvo_entry *pvo;
2409 volatile struct pte *pt;
2410 register_t msr;
2411
2412 PMAP_LOCK();
2413
2414 if (pmap_attr_fetch(pg) & ptebit) {
2415 PMAP_UNLOCK();
2416 return true;
2417 }
2418
2419 msr = pmap_interrupts_off();
2420 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2421 PMAP_PVO_CHECK(pvo); /* sanity check */
2422 /*
2423 * See if we saved the bit off. If so cache, it and return
2424 * success.
2425 */
2426 if (pvo->pvo_pte.pte_lo & ptebit) {
2427 pmap_attr_save(pg, ptebit);
2428 PMAP_PVO_CHECK(pvo); /* sanity check */
2429 pmap_interrupts_restore(msr);
2430 PMAP_UNLOCK();
2431 return true;
2432 }
2433 }
2434 /*
2435 * No luck, now go thru the hard part of looking at the ptes
2436 * themselves. Sync so any pending REF/CHG bits are flushed
2437 * to the PTEs.
2438 */
2439 SYNC();
2440 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2441 PMAP_PVO_CHECK(pvo); /* sanity check */
2442 /*
2443 * See if this pvo have a valid PTE. If so, fetch the
2444 * REF/CHG bits from the valid PTE. If the appropriate
2445 * ptebit is set, cache, it and return success.
2446 */
2447 pt = pmap_pvo_to_pte(pvo, -1);
2448 if (pt != NULL) {
2449 pmap_pte_synch(pt, &pvo->pvo_pte);
2450 if (pvo->pvo_pte.pte_lo & ptebit) {
2451 pmap_attr_save(pg, ptebit);
2452 PMAP_PVO_CHECK(pvo); /* sanity check */
2453 pmap_interrupts_restore(msr);
2454 PMAP_UNLOCK();
2455 return true;
2456 }
2457 }
2458 }
2459 pmap_interrupts_restore(msr);
2460 PMAP_UNLOCK();
2461 return false;
2462 }
2463
2464 bool
2465 pmap_clear_bit(struct vm_page *pg, int ptebit)
2466 {
2467 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2468 struct pvo_entry *pvo;
2469 volatile struct pte *pt;
2470 register_t msr;
2471 int rv = 0;
2472
2473 PMAP_LOCK();
2474 msr = pmap_interrupts_off();
2475
2476 /*
2477 * Fetch the cache value
2478 */
2479 rv |= pmap_attr_fetch(pg);
2480
2481 /*
2482 * Clear the cached value.
2483 */
2484 pmap_attr_clear(pg, ptebit);
2485
2486 /*
2487 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2488 * can reset the right ones). Note that since the pvo entries and
2489 * list heads are accessed via BAT0 and are never placed in the
2490 * page table, we don't have to worry about further accesses setting
2491 * the REF/CHG bits.
2492 */
2493 SYNC();
2494
2495 /*
2496 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2497 * valid PTE. If so, clear the ptebit from the valid PTE.
2498 */
2499 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2500 PMAP_PVO_CHECK(pvo); /* sanity check */
2501 pt = pmap_pvo_to_pte(pvo, -1);
2502 if (pt != NULL) {
2503 /*
2504 * Only sync the PTE if the bit we are looking
2505 * for is not already set.
2506 */
2507 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2508 pmap_pte_synch(pt, &pvo->pvo_pte);
2509 /*
2510 * If the bit we are looking for was already set,
2511 * clear that bit in the pte.
2512 */
2513 if (pvo->pvo_pte.pte_lo & ptebit)
2514 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2515 }
2516 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2517 pvo->pvo_pte.pte_lo &= ~ptebit;
2518 PMAP_PVO_CHECK(pvo); /* sanity check */
2519 }
2520 pmap_interrupts_restore(msr);
2521
2522 /*
2523 * If we are clearing the modify bit and this page was marked EXEC
2524 * and the user of the page thinks the page was modified, then we
2525 * need to clean it from the icache if it's mapped or clear the EXEC
2526 * bit if it's not mapped. The page itself might not have the CHG
2527 * bit set if the modification was done via DMA to the page.
2528 */
2529 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2530 if (LIST_EMPTY(pvoh)) {
2531 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2532 VM_PAGE_TO_PHYS(pg)));
2533 pmap_attr_clear(pg, PTE_EXEC);
2534 PMAPCOUNT(exec_uncached_clear_modify);
2535 } else {
2536 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2537 VM_PAGE_TO_PHYS(pg)));
2538 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2539 PMAPCOUNT(exec_synced_clear_modify);
2540 }
2541 }
2542 PMAP_UNLOCK();
2543 return (rv & ptebit) != 0;
2544 }
2545
2546 void
2547 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2548 {
2549 struct pvo_entry *pvo;
2550 size_t offset = va & ADDR_POFF;
2551 int s;
2552
2553 PMAP_LOCK();
2554 s = splvm();
2555 while (len > 0) {
2556 size_t seglen = PAGE_SIZE - offset;
2557 if (seglen > len)
2558 seglen = len;
2559 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2560 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2561 pmap_syncicache(
2562 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2563 PMAP_PVO_CHECK(pvo);
2564 }
2565 va += seglen;
2566 len -= seglen;
2567 offset = 0;
2568 }
2569 splx(s);
2570 PMAP_UNLOCK();
2571 }
2572
2573 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2574 void
2575 pmap_pte_print(volatile struct pte *pt)
2576 {
2577 printf("PTE %p: ", pt);
2578
2579 #if defined(PMAP_OEA)
2580 /* High word: */
2581 printf("%#" _PRIxpte ": [", pt->pte_hi);
2582 #else
2583 printf("%#" _PRIxpte ": [", pt->pte_hi);
2584 #endif /* PMAP_OEA */
2585
2586 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2587 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2588
2589 printf("%#" _PRIxpte " %#" _PRIxpte "",
2590 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2591 pt->pte_hi & PTE_API);
2592 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2593 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2594 #else
2595 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2596 #endif /* PMAP_OEA */
2597
2598 /* Low word: */
2599 #if defined (PMAP_OEA)
2600 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2601 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2602 #else
2603 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2604 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2605 #endif
2606 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2607 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2608 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2609 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2610 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2611 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2612 switch (pt->pte_lo & PTE_PP) {
2613 case PTE_BR: printf("br]\n"); break;
2614 case PTE_BW: printf("bw]\n"); break;
2615 case PTE_SO: printf("so]\n"); break;
2616 case PTE_SW: printf("sw]\n"); break;
2617 }
2618 }
2619 #endif
2620
2621 #if defined(DDB)
2622 void
2623 pmap_pteg_check(void)
2624 {
2625 volatile struct pte *pt;
2626 int i;
2627 int ptegidx;
2628 u_int p_valid = 0;
2629 u_int s_valid = 0;
2630 u_int invalid = 0;
2631
2632 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2633 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2634 if (pt->pte_hi & PTE_VALID) {
2635 if (pt->pte_hi & PTE_HID)
2636 s_valid++;
2637 else
2638 {
2639 p_valid++;
2640 }
2641 } else
2642 invalid++;
2643 }
2644 }
2645 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2646 p_valid, p_valid, s_valid, s_valid,
2647 invalid, invalid);
2648 }
2649
2650 void
2651 pmap_print_mmuregs(void)
2652 {
2653 int i;
2654 u_int cpuvers;
2655 #ifndef PMAP_OEA64
2656 vaddr_t addr;
2657 register_t soft_sr[16];
2658 #endif
2659 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2660 struct bat soft_ibat[4];
2661 struct bat soft_dbat[4];
2662 #endif
2663 paddr_t sdr1;
2664
2665 cpuvers = MFPVR() >> 16;
2666 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2667 #ifndef PMAP_OEA64
2668 addr = 0;
2669 for (i = 0; i < 16; i++) {
2670 soft_sr[i] = MFSRIN(addr);
2671 addr += (1 << ADDR_SR_SHFT);
2672 }
2673 #endif
2674
2675 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2676 /* read iBAT (601: uBAT) registers */
2677 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2678 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2679 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2680 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2681 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2682 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2683 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2684 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2685
2686
2687 if (cpuvers != MPC601) {
2688 /* read dBAT registers */
2689 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2690 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2691 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2692 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2693 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2694 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2695 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2696 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2697 }
2698 #endif
2699
2700 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2701 #ifndef PMAP_OEA64
2702 printf("SR[]:\t");
2703 for (i = 0; i < 4; i++)
2704 printf("0x%08lx, ", soft_sr[i]);
2705 printf("\n\t");
2706 for ( ; i < 8; i++)
2707 printf("0x%08lx, ", soft_sr[i]);
2708 printf("\n\t");
2709 for ( ; i < 12; i++)
2710 printf("0x%08lx, ", soft_sr[i]);
2711 printf("\n\t");
2712 for ( ; i < 16; i++)
2713 printf("0x%08lx, ", soft_sr[i]);
2714 printf("\n");
2715 #endif
2716
2717 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2718 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2719 for (i = 0; i < 4; i++) {
2720 printf("0x%08lx 0x%08lx, ",
2721 soft_ibat[i].batu, soft_ibat[i].batl);
2722 if (i == 1)
2723 printf("\n\t");
2724 }
2725 if (cpuvers != MPC601) {
2726 printf("\ndBAT[]:\t");
2727 for (i = 0; i < 4; i++) {
2728 printf("0x%08lx 0x%08lx, ",
2729 soft_dbat[i].batu, soft_dbat[i].batl);
2730 if (i == 1)
2731 printf("\n\t");
2732 }
2733 }
2734 printf("\n");
2735 #endif /* PMAP_OEA... */
2736 }
2737
2738 void
2739 pmap_print_pte(pmap_t pm, vaddr_t va)
2740 {
2741 struct pvo_entry *pvo;
2742 volatile struct pte *pt;
2743 int pteidx;
2744
2745 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2746 if (pvo != NULL) {
2747 pt = pmap_pvo_to_pte(pvo, pteidx);
2748 if (pt != NULL) {
2749 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2750 va, pt,
2751 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2752 pt->pte_hi, pt->pte_lo);
2753 } else {
2754 printf("No valid PTE found\n");
2755 }
2756 } else {
2757 printf("Address not in pmap\n");
2758 }
2759 }
2760
2761 void
2762 pmap_pteg_dist(void)
2763 {
2764 struct pvo_entry *pvo;
2765 int ptegidx;
2766 int depth;
2767 int max_depth = 0;
2768 unsigned int depths[64];
2769
2770 memset(depths, 0, sizeof(depths));
2771 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2772 depth = 0;
2773 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2774 depth++;
2775 }
2776 if (depth > max_depth)
2777 max_depth = depth;
2778 if (depth > 63)
2779 depth = 63;
2780 depths[depth]++;
2781 }
2782
2783 for (depth = 0; depth < 64; depth++) {
2784 printf(" [%2d]: %8u", depth, depths[depth]);
2785 if ((depth & 3) == 3)
2786 printf("\n");
2787 if (depth == max_depth)
2788 break;
2789 }
2790 if ((depth & 3) != 3)
2791 printf("\n");
2792 printf("Max depth found was %d\n", max_depth);
2793 }
2794 #endif /* DEBUG */
2795
2796 #if defined(PMAPCHECK) || defined(DEBUG)
2797 void
2798 pmap_pvo_verify(void)
2799 {
2800 int ptegidx;
2801 int s;
2802
2803 s = splvm();
2804 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2805 struct pvo_entry *pvo;
2806 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2807 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2808 panic("pmap_pvo_verify: invalid pvo %p "
2809 "on list %#x", pvo, ptegidx);
2810 pmap_pvo_check(pvo);
2811 }
2812 }
2813 splx(s);
2814 }
2815 #endif /* PMAPCHECK */
2816
2817
2818 void *
2819 pmap_pool_ualloc(struct pool *pp, int flags)
2820 {
2821 struct pvo_page *pvop;
2822
2823 if (uvm.page_init_done != true) {
2824 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2825 }
2826
2827 PMAP_LOCK();
2828 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2829 if (pvop != NULL) {
2830 pmap_upvop_free--;
2831 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2832 PMAP_UNLOCK();
2833 return pvop;
2834 }
2835 PMAP_UNLOCK();
2836 return pmap_pool_malloc(pp, flags);
2837 }
2838
2839 void *
2840 pmap_pool_malloc(struct pool *pp, int flags)
2841 {
2842 struct pvo_page *pvop;
2843 struct vm_page *pg;
2844
2845 PMAP_LOCK();
2846 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2847 if (pvop != NULL) {
2848 pmap_mpvop_free--;
2849 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2850 PMAP_UNLOCK();
2851 return pvop;
2852 }
2853 PMAP_UNLOCK();
2854 again:
2855 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2856 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2857 if (__predict_false(pg == NULL)) {
2858 if (flags & PR_WAITOK) {
2859 uvm_wait("plpg");
2860 goto again;
2861 } else {
2862 return (0);
2863 }
2864 }
2865 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2866 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2867 }
2868
2869 void
2870 pmap_pool_ufree(struct pool *pp, void *va)
2871 {
2872 struct pvo_page *pvop;
2873 #if 0
2874 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2875 pmap_pool_mfree(va, size, tag);
2876 return;
2877 }
2878 #endif
2879 PMAP_LOCK();
2880 pvop = va;
2881 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2882 pmap_upvop_free++;
2883 if (pmap_upvop_free > pmap_upvop_maxfree)
2884 pmap_upvop_maxfree = pmap_upvop_free;
2885 PMAP_UNLOCK();
2886 }
2887
2888 void
2889 pmap_pool_mfree(struct pool *pp, void *va)
2890 {
2891 struct pvo_page *pvop;
2892
2893 PMAP_LOCK();
2894 pvop = va;
2895 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2896 pmap_mpvop_free++;
2897 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2898 pmap_mpvop_maxfree = pmap_mpvop_free;
2899 PMAP_UNLOCK();
2900 #if 0
2901 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2902 #endif
2903 }
2904
2905 /*
2906 * This routine in bootstraping to steal to-be-managed memory (which will
2907 * then be unmanaged). We use it to grab from the first 256MB for our
2908 * pmap needs and above 256MB for other stuff.
2909 */
2910 vaddr_t
2911 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2912 {
2913 vsize_t size;
2914 vaddr_t va;
2915 paddr_t pa = 0;
2916 int npgs, bank;
2917 struct vm_physseg *ps;
2918
2919 if (uvm.page_init_done == true)
2920 panic("pmap_steal_memory: called _after_ bootstrap");
2921
2922 *vstartp = VM_MIN_KERNEL_ADDRESS;
2923 *vendp = VM_MAX_KERNEL_ADDRESS;
2924
2925 size = round_page(vsize);
2926 npgs = atop(size);
2927
2928 /*
2929 * PA 0 will never be among those given to UVM so we can use it
2930 * to indicate we couldn't steal any memory.
2931 */
2932 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2933 if (ps->free_list == VM_FREELIST_FIRST256 &&
2934 ps->avail_end - ps->avail_start >= npgs) {
2935 pa = ptoa(ps->avail_start);
2936 break;
2937 }
2938 }
2939
2940 if (pa == 0)
2941 panic("pmap_steal_memory: no approriate memory to steal!");
2942
2943 ps->avail_start += npgs;
2944 ps->start += npgs;
2945
2946 /*
2947 * If we've used up all the pages in the segment, remove it and
2948 * compact the list.
2949 */
2950 if (ps->avail_start == ps->end) {
2951 /*
2952 * If this was the last one, then a very bad thing has occurred
2953 */
2954 if (--vm_nphysseg == 0)
2955 panic("pmap_steal_memory: out of memory!");
2956
2957 printf("pmap_steal_memory: consumed bank %d\n", bank);
2958 for (; bank < vm_nphysseg; bank++, ps++) {
2959 ps[0] = ps[1];
2960 }
2961 }
2962
2963 va = (vaddr_t) pa;
2964 memset((void *) va, 0, size);
2965 pmap_pages_stolen += npgs;
2966 #ifdef DEBUG
2967 if (pmapdebug && npgs > 1) {
2968 u_int cnt = 0;
2969 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2970 cnt += ps->avail_end - ps->avail_start;
2971 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2972 npgs, pmap_pages_stolen, cnt);
2973 }
2974 #endif
2975
2976 return va;
2977 }
2978
2979 /*
2980 * Find a chuck of memory with right size and alignment.
2981 */
2982 paddr_t
2983 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2984 {
2985 struct mem_region *mp;
2986 paddr_t s, e;
2987 int i, j;
2988
2989 size = round_page(size);
2990
2991 DPRINTFN(BOOT,
2992 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2993 size, alignment, at_end));
2994
2995 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2996 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2997 alignment);
2998
2999 if (at_end) {
3000 if (alignment != PAGE_SIZE)
3001 panic("pmap_boot_find_memory: invalid ending "
3002 "alignment %#" _PRIxpa, alignment);
3003
3004 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3005 s = mp->start + mp->size - size;
3006 if (s >= mp->start && mp->size >= size) {
3007 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3008 DPRINTFN(BOOT,
3009 ("pmap_boot_find_memory: b-avail[%d] start "
3010 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3011 mp->start, mp->size));
3012 mp->size -= size;
3013 DPRINTFN(BOOT,
3014 ("pmap_boot_find_memory: a-avail[%d] start "
3015 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3016 mp->start, mp->size));
3017 return s;
3018 }
3019 }
3020 panic("pmap_boot_find_memory: no available memory");
3021 }
3022
3023 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3024 s = (mp->start + alignment - 1) & ~(alignment-1);
3025 e = s + size;
3026
3027 /*
3028 * Is the calculated region entirely within the region?
3029 */
3030 if (s < mp->start || e > mp->start + mp->size)
3031 continue;
3032
3033 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3034 if (s == mp->start) {
3035 /*
3036 * If the block starts at the beginning of region,
3037 * adjust the size & start. (the region may now be
3038 * zero in length)
3039 */
3040 DPRINTFN(BOOT,
3041 ("pmap_boot_find_memory: b-avail[%d] start "
3042 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3043 mp->start += size;
3044 mp->size -= size;
3045 DPRINTFN(BOOT,
3046 ("pmap_boot_find_memory: a-avail[%d] start "
3047 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3048 } else if (e == mp->start + mp->size) {
3049 /*
3050 * If the block starts at the beginning of region,
3051 * adjust only the size.
3052 */
3053 DPRINTFN(BOOT,
3054 ("pmap_boot_find_memory: b-avail[%d] start "
3055 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3056 mp->size -= size;
3057 DPRINTFN(BOOT,
3058 ("pmap_boot_find_memory: a-avail[%d] start "
3059 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3060 } else {
3061 /*
3062 * Block is in the middle of the region, so we
3063 * have to split it in two.
3064 */
3065 for (j = avail_cnt; j > i + 1; j--) {
3066 avail[j] = avail[j-1];
3067 }
3068 DPRINTFN(BOOT,
3069 ("pmap_boot_find_memory: b-avail[%d] start "
3070 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3071 mp[1].start = e;
3072 mp[1].size = mp[0].start + mp[0].size - e;
3073 mp[0].size = s - mp[0].start;
3074 avail_cnt++;
3075 for (; i < avail_cnt; i++) {
3076 DPRINTFN(BOOT,
3077 ("pmap_boot_find_memory: a-avail[%d] "
3078 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3079 avail[i].start, avail[i].size));
3080 }
3081 }
3082 KASSERT(s == (uintptr_t) s);
3083 return s;
3084 }
3085 panic("pmap_boot_find_memory: not enough memory for "
3086 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3087 }
3088
3089 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3090 #if defined (PMAP_OEA64_BRIDGE)
3091 int
3092 pmap_setup_segment0_map(int use_large_pages, ...)
3093 {
3094 vaddr_t va;
3095
3096 register_t pte_lo = 0x0;
3097 int ptegidx = 0, i = 0;
3098 struct pte pte;
3099 va_list ap;
3100
3101 /* Coherent + Supervisor RW, no user access */
3102 pte_lo = PTE_M;
3103
3104 /* XXXSL
3105 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3106 * these have to take priority.
3107 */
3108 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3109 ptegidx = va_to_pteg(pmap_kernel(), va);
3110 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3111 i = pmap_pte_insert(ptegidx, &pte);
3112 }
3113
3114 va_start(ap, use_large_pages);
3115 while (1) {
3116 paddr_t pa;
3117 size_t size;
3118
3119 va = va_arg(ap, vaddr_t);
3120
3121 if (va == 0)
3122 break;
3123
3124 pa = va_arg(ap, paddr_t);
3125 size = va_arg(ap, size_t);
3126
3127 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3128 #if 0
3129 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3130 #endif
3131 ptegidx = va_to_pteg(pmap_kernel(), va);
3132 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3133 i = pmap_pte_insert(ptegidx, &pte);
3134 }
3135 }
3136
3137 TLBSYNC();
3138 SYNC();
3139 return (0);
3140 }
3141 #endif /* PMAP_OEA64_BRIDGE */
3142
3143 /*
3144 * This is not part of the defined PMAP interface and is specific to the
3145 * PowerPC architecture. This is called during initppc, before the system
3146 * is really initialized.
3147 */
3148 void
3149 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3150 {
3151 struct mem_region *mp, tmp;
3152 paddr_t s, e;
3153 psize_t size;
3154 int i, j;
3155
3156 /*
3157 * Get memory.
3158 */
3159 mem_regions(&mem, &avail);
3160 #if defined(DEBUG)
3161 if (pmapdebug & PMAPDEBUG_BOOT) {
3162 printf("pmap_bootstrap: memory configuration:\n");
3163 for (mp = mem; mp->size; mp++) {
3164 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3165 mp->start, mp->size);
3166 }
3167 for (mp = avail; mp->size; mp++) {
3168 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3169 mp->start, mp->size);
3170 }
3171 }
3172 #endif
3173
3174 /*
3175 * Find out how much physical memory we have and in how many chunks.
3176 */
3177 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3178 if (mp->start >= pmap_memlimit)
3179 continue;
3180 if (mp->start + mp->size > pmap_memlimit) {
3181 size = pmap_memlimit - mp->start;
3182 physmem += btoc(size);
3183 } else {
3184 physmem += btoc(mp->size);
3185 }
3186 mem_cnt++;
3187 }
3188
3189 /*
3190 * Count the number of available entries.
3191 */
3192 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3193 avail_cnt++;
3194
3195 /*
3196 * Page align all regions.
3197 */
3198 kernelstart = trunc_page(kernelstart);
3199 kernelend = round_page(kernelend);
3200 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3201 s = round_page(mp->start);
3202 mp->size -= (s - mp->start);
3203 mp->size = trunc_page(mp->size);
3204 mp->start = s;
3205 e = mp->start + mp->size;
3206
3207 DPRINTFN(BOOT,
3208 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3209 i, mp->start, mp->size));
3210
3211 /*
3212 * Don't allow the end to run beyond our artificial limit
3213 */
3214 if (e > pmap_memlimit)
3215 e = pmap_memlimit;
3216
3217 /*
3218 * Is this region empty or strange? skip it.
3219 */
3220 if (e <= s) {
3221 mp->start = 0;
3222 mp->size = 0;
3223 continue;
3224 }
3225
3226 /*
3227 * Does this overlap the beginning of kernel?
3228 * Does extend past the end of the kernel?
3229 */
3230 else if (s < kernelstart && e > kernelstart) {
3231 if (e > kernelend) {
3232 avail[avail_cnt].start = kernelend;
3233 avail[avail_cnt].size = e - kernelend;
3234 avail_cnt++;
3235 }
3236 mp->size = kernelstart - s;
3237 }
3238 /*
3239 * Check whether this region overlaps the end of the kernel.
3240 */
3241 else if (s < kernelend && e > kernelend) {
3242 mp->start = kernelend;
3243 mp->size = e - kernelend;
3244 }
3245 /*
3246 * Look whether this regions is completely inside the kernel.
3247 * Nuke it if it does.
3248 */
3249 else if (s >= kernelstart && e <= kernelend) {
3250 mp->start = 0;
3251 mp->size = 0;
3252 }
3253 /*
3254 * If the user imposed a memory limit, enforce it.
3255 */
3256 else if (s >= pmap_memlimit) {
3257 mp->start = -PAGE_SIZE; /* let's know why */
3258 mp->size = 0;
3259 }
3260 else {
3261 mp->start = s;
3262 mp->size = e - s;
3263 }
3264 DPRINTFN(BOOT,
3265 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3266 i, mp->start, mp->size));
3267 }
3268
3269 /*
3270 * Move (and uncount) all the null return to the end.
3271 */
3272 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3273 if (mp->size == 0) {
3274 tmp = avail[i];
3275 avail[i] = avail[--avail_cnt];
3276 avail[avail_cnt] = avail[i];
3277 }
3278 }
3279
3280 /*
3281 * (Bubble)sort them into asecnding order.
3282 */
3283 for (i = 0; i < avail_cnt; i++) {
3284 for (j = i + 1; j < avail_cnt; j++) {
3285 if (avail[i].start > avail[j].start) {
3286 tmp = avail[i];
3287 avail[i] = avail[j];
3288 avail[j] = tmp;
3289 }
3290 }
3291 }
3292
3293 /*
3294 * Make sure they don't overlap.
3295 */
3296 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3297 if (mp[0].start + mp[0].size > mp[1].start) {
3298 mp[0].size = mp[1].start - mp[0].start;
3299 }
3300 DPRINTFN(BOOT,
3301 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3302 i, mp->start, mp->size));
3303 }
3304 DPRINTFN(BOOT,
3305 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3306 i, mp->start, mp->size));
3307
3308 #ifdef PTEGCOUNT
3309 pmap_pteg_cnt = PTEGCOUNT;
3310 #else /* PTEGCOUNT */
3311
3312 pmap_pteg_cnt = 0x1000;
3313
3314 while (pmap_pteg_cnt < physmem)
3315 pmap_pteg_cnt <<= 1;
3316
3317 pmap_pteg_cnt >>= 1;
3318 #endif /* PTEGCOUNT */
3319
3320 #ifdef DEBUG
3321 DPRINTFN(BOOT,
3322 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3323 #endif
3324
3325 /*
3326 * Find suitably aligned memory for PTEG hash table.
3327 */
3328 size = pmap_pteg_cnt * sizeof(struct pteg);
3329 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3330
3331 #ifdef DEBUG
3332 DPRINTFN(BOOT,
3333 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3334 #endif
3335
3336
3337 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3338 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3339 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3340 pmap_pteg_table, size);
3341 #endif
3342
3343 memset(__UNVOLATILE(pmap_pteg_table), 0,
3344 pmap_pteg_cnt * sizeof(struct pteg));
3345 pmap_pteg_mask = pmap_pteg_cnt - 1;
3346
3347 /*
3348 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3349 * with pages. So we just steal them before giving them to UVM.
3350 */
3351 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3352 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3353 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3354 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3355 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3356 pmap_pvo_table, size);
3357 #endif
3358
3359 for (i = 0; i < pmap_pteg_cnt; i++)
3360 TAILQ_INIT(&pmap_pvo_table[i]);
3361
3362 #ifndef MSGBUFADDR
3363 /*
3364 * Allocate msgbuf in high memory.
3365 */
3366 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3367 #endif
3368
3369 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3370 paddr_t pfstart = atop(mp->start);
3371 paddr_t pfend = atop(mp->start + mp->size);
3372 if (mp->size == 0)
3373 continue;
3374 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3375 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3376 VM_FREELIST_FIRST256);
3377 } else if (mp->start >= SEGMENT_LENGTH) {
3378 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3379 VM_FREELIST_DEFAULT);
3380 } else {
3381 pfend = atop(SEGMENT_LENGTH);
3382 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3383 VM_FREELIST_FIRST256);
3384 pfstart = atop(SEGMENT_LENGTH);
3385 pfend = atop(mp->start + mp->size);
3386 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3387 VM_FREELIST_DEFAULT);
3388 }
3389 }
3390
3391 /*
3392 * Make sure kernel vsid is allocated as well as VSID 0.
3393 */
3394 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3395 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3396 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3397 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3398 pmap_vsid_bitmap[0] |= 1;
3399
3400 /*
3401 * Initialize kernel pmap and hardware.
3402 */
3403
3404 /* PMAP_OEA64_BRIDGE does support these instructions */
3405 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3406 for (i = 0; i < 16; i++) {
3407 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3408 __asm volatile ("mtsrin %0,%1"
3409 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3410 }
3411
3412 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3413 __asm volatile ("mtsr %0,%1"
3414 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3415 #ifdef KERNEL2_SR
3416 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3417 __asm volatile ("mtsr %0,%1"
3418 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3419 #endif
3420 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3421 #if defined (PMAP_OEA)
3422 for (i = 0; i < 16; i++) {
3423 if (iosrtable[i] & SR601_T) {
3424 pmap_kernel()->pm_sr[i] = iosrtable[i];
3425 __asm volatile ("mtsrin %0,%1"
3426 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3427 }
3428 }
3429 __asm volatile ("sync; mtsdr1 %0; isync"
3430 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3431 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3432 __asm __volatile ("sync; mtsdr1 %0; isync"
3433 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3434 #endif
3435 tlbia();
3436
3437 #ifdef ALTIVEC
3438 pmap_use_altivec = cpu_altivec;
3439 #endif
3440
3441 #ifdef DEBUG
3442 if (pmapdebug & PMAPDEBUG_BOOT) {
3443 u_int cnt;
3444 int bank;
3445 char pbuf[9];
3446 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3447 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3448 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3449 bank,
3450 ptoa(vm_physmem[bank].avail_start),
3451 ptoa(vm_physmem[bank].avail_end),
3452 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3453 }
3454 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3455 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3456 pbuf, cnt);
3457 }
3458 #endif
3459
3460 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3461 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3462 &pmap_pool_uallocator, IPL_NONE);
3463
3464 pool_setlowat(&pmap_upvo_pool, 252);
3465
3466 pool_init(&pmap_pool, sizeof(struct pmap),
3467 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3468 IPL_NONE);
3469
3470 #if defined(PMAP_NEED_MAPKERNEL) || 1
3471 {
3472 struct pmap *pm = pmap_kernel();
3473 #if 0
3474 extern int etext[], kernel_text[];
3475 vaddr_t va, va_etext = (paddr_t) etext;
3476 #endif
3477 paddr_t pa, pa_end;
3478 register_t sr;
3479 struct pte pt;
3480 unsigned int ptegidx;
3481 int bank;
3482
3483 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3484 pm->pm_sr[0] = sr;
3485
3486 for (bank = 0; bank < vm_nphysseg; bank++) {
3487 pa_end = ptoa(vm_physmem[bank].avail_end);
3488 pa = ptoa(vm_physmem[bank].avail_start);
3489 for (; pa < pa_end; pa += PAGE_SIZE) {
3490 ptegidx = va_to_pteg(pm, pa);
3491 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3492 pmap_pte_insert(ptegidx, &pt);
3493 }
3494 }
3495
3496 #if 0
3497 va = (vaddr_t) kernel_text;
3498
3499 for (pa = kernelstart; va < va_etext;
3500 pa += PAGE_SIZE, va += PAGE_SIZE) {
3501 ptegidx = va_to_pteg(pm, va);
3502 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3503 pmap_pte_insert(ptegidx, &pt);
3504 }
3505
3506 for (; pa < kernelend;
3507 pa += PAGE_SIZE, va += PAGE_SIZE) {
3508 ptegidx = va_to_pteg(pm, va);
3509 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3510 pmap_pte_insert(ptegidx, &pt);
3511 }
3512
3513 for (va = 0, pa = 0; va < 0x3000;
3514 pa += PAGE_SIZE, va += PAGE_SIZE) {
3515 ptegidx = va_to_pteg(pm, va);
3516 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3517 pmap_pte_insert(ptegidx, &pt);
3518 }
3519 #endif
3520
3521 __asm volatile ("mtsrin %0,%1"
3522 :: "r"(sr), "r"(kernelstart));
3523 }
3524 #endif
3525 }
3526