Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.58
      1 /*	$NetBSD: pmap.c,v 1.58 2008/04/08 02:33:03 garbled Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *        This product includes software developed by the NetBSD
     23  *        Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*
     42  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     43  * Copyright (C) 1995, 1996 TooLs GmbH.
     44  * All rights reserved.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. All advertising materials mentioning features or use of this software
     55  *    must display the following acknowledgement:
     56  *	This product includes software developed by TooLs GmbH.
     57  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     58  *    derived from this software without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     61  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     62  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     64  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     65  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     66  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     67  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     68  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     69  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.58 2008/04/08 02:33:03 garbled Exp $");
     74 
     75 #define	PMAP_NOOPNAMES
     76 
     77 #include "opt_ppcarch.h"
     78 #include "opt_altivec.h"
     79 #include "opt_multiprocessor.h"
     80 #include "opt_pmap.h"
     81 
     82 #include <sys/param.h>
     83 #include <sys/malloc.h>
     84 #include <sys/proc.h>
     85 #include <sys/user.h>
     86 #include <sys/pool.h>
     87 #include <sys/queue.h>
     88 #include <sys/device.h>		/* for evcnt */
     89 #include <sys/systm.h>
     90 #include <sys/atomic.h>
     91 
     92 #include <uvm/uvm.h>
     93 
     94 #include <machine/pcb.h>
     95 #include <machine/powerpc.h>
     96 #include <powerpc/spr.h>
     97 #include <powerpc/oea/sr_601.h>
     98 #include <powerpc/bat.h>
     99 #include <powerpc/stdarg.h>
    100 
    101 #ifdef ALTIVEC
    102 int pmap_use_altivec;
    103 #endif
    104 
    105 volatile struct pteg *pmap_pteg_table;
    106 unsigned int pmap_pteg_cnt;
    107 unsigned int pmap_pteg_mask;
    108 #ifdef PMAP_MEMLIMIT
    109 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    110 #else
    111 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    112 #endif
    113 
    114 struct pmap kernel_pmap_;
    115 unsigned int pmap_pages_stolen;
    116 u_long pmap_pte_valid;
    117 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    118 u_long pmap_pvo_enter_depth;
    119 u_long pmap_pvo_remove_depth;
    120 #endif
    121 
    122 int physmem;
    123 #ifndef MSGBUFADDR
    124 extern paddr_t msgbuf_paddr;
    125 #endif
    126 
    127 static struct mem_region *mem, *avail;
    128 static u_int mem_cnt, avail_cnt;
    129 
    130 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    131 # define	PMAP_OEA 1
    132 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
    133 #  define	PMAPNAME(name)	pmap_##name
    134 # endif
    135 #endif
    136 
    137 #if defined(PMAP_OEA64)
    138 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
    139 #  define	PMAPNAME(name)	pmap_##name
    140 # endif
    141 #endif
    142 
    143 #if defined(PMAP_OEA64_BRIDGE)
    144 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
    145 #  define	PMAPNAME(name)	pmap_##name
    146 # endif
    147 #endif
    148 
    149 #if defined(PMAP_OEA)
    150 #define	_PRIxpte	"lx"
    151 #else
    152 #define	_PRIxpte	PRIx64
    153 #endif
    154 #define	_PRIxpa		"lx"
    155 #define	_PRIxva		"lx"
    156 #define	_PRIsr  	"lx"
    157 
    158 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
    159 #if defined(PMAP_OEA)
    160 #define	PMAPNAME(name)	pmap32_##name
    161 #elif defined(PMAP_OEA64)
    162 #define	PMAPNAME(name)	pmap64_##name
    163 #elif defined(PMAP_OEA64_BRIDGE)
    164 #define	PMAPNAME(name)	pmap64bridge_##name
    165 #else
    166 #error unknown variant for pmap
    167 #endif
    168 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
    169 
    170 #if defined(PMAPNAME)
    171 #define	STATIC			static
    172 #define pmap_pte_spill		PMAPNAME(pte_spill)
    173 #define pmap_real_memory	PMAPNAME(real_memory)
    174 #define pmap_init		PMAPNAME(init)
    175 #define pmap_virtual_space	PMAPNAME(virtual_space)
    176 #define pmap_create		PMAPNAME(create)
    177 #define pmap_reference		PMAPNAME(reference)
    178 #define pmap_destroy		PMAPNAME(destroy)
    179 #define pmap_copy		PMAPNAME(copy)
    180 #define pmap_update		PMAPNAME(update)
    181 #define pmap_collect		PMAPNAME(collect)
    182 #define pmap_enter		PMAPNAME(enter)
    183 #define pmap_remove		PMAPNAME(remove)
    184 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    185 #define pmap_kremove		PMAPNAME(kremove)
    186 #define pmap_extract		PMAPNAME(extract)
    187 #define pmap_protect		PMAPNAME(protect)
    188 #define pmap_unwire		PMAPNAME(unwire)
    189 #define pmap_page_protect	PMAPNAME(page_protect)
    190 #define pmap_query_bit		PMAPNAME(query_bit)
    191 #define pmap_clear_bit		PMAPNAME(clear_bit)
    192 
    193 #define pmap_activate		PMAPNAME(activate)
    194 #define pmap_deactivate		PMAPNAME(deactivate)
    195 
    196 #define pmap_pinit		PMAPNAME(pinit)
    197 #define pmap_procwr		PMAPNAME(procwr)
    198 
    199 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    200 #define pmap_pte_print		PMAPNAME(pte_print)
    201 #define pmap_pteg_check		PMAPNAME(pteg_check)
    202 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    203 #define pmap_print_pte		PMAPNAME(print_pte)
    204 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    205 #endif
    206 #if defined(DEBUG) || defined(PMAPCHECK)
    207 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    208 #define pmapcheck		PMAPNAME(check)
    209 #endif
    210 #if defined(DEBUG) || defined(PMAPDEBUG)
    211 #define pmapdebug		PMAPNAME(debug)
    212 #endif
    213 #define pmap_steal_memory	PMAPNAME(steal_memory)
    214 #define pmap_bootstrap		PMAPNAME(bootstrap)
    215 #else
    216 #define	STATIC			/* nothing */
    217 #endif /* PMAPNAME */
    218 
    219 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    220 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    221 STATIC void pmap_init(void);
    222 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    223 STATIC pmap_t pmap_create(void);
    224 STATIC void pmap_reference(pmap_t);
    225 STATIC void pmap_destroy(pmap_t);
    226 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    227 STATIC void pmap_update(pmap_t);
    228 STATIC void pmap_collect(pmap_t);
    229 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
    230 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    231 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
    232 STATIC void pmap_kremove(vaddr_t, vsize_t);
    233 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    234 
    235 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    236 STATIC void pmap_unwire(pmap_t, vaddr_t);
    237 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    238 STATIC bool pmap_query_bit(struct vm_page *, int);
    239 STATIC bool pmap_clear_bit(struct vm_page *, int);
    240 
    241 STATIC void pmap_activate(struct lwp *);
    242 STATIC void pmap_deactivate(struct lwp *);
    243 
    244 STATIC void pmap_pinit(pmap_t pm);
    245 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    246 
    247 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    248 STATIC void pmap_pte_print(volatile struct pte *);
    249 STATIC void pmap_pteg_check(void);
    250 STATIC void pmap_print_mmuregs(void);
    251 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    252 STATIC void pmap_pteg_dist(void);
    253 #endif
    254 #if defined(DEBUG) || defined(PMAPCHECK)
    255 STATIC void pmap_pvo_verify(void);
    256 #endif
    257 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    258 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    259 
    260 #ifdef PMAPNAME
    261 const struct pmap_ops PMAPNAME(ops) = {
    262 	.pmapop_pte_spill = pmap_pte_spill,
    263 	.pmapop_real_memory = pmap_real_memory,
    264 	.pmapop_init = pmap_init,
    265 	.pmapop_virtual_space = pmap_virtual_space,
    266 	.pmapop_create = pmap_create,
    267 	.pmapop_reference = pmap_reference,
    268 	.pmapop_destroy = pmap_destroy,
    269 	.pmapop_copy = pmap_copy,
    270 	.pmapop_update = pmap_update,
    271 	.pmapop_collect = pmap_collect,
    272 	.pmapop_enter = pmap_enter,
    273 	.pmapop_remove = pmap_remove,
    274 	.pmapop_kenter_pa = pmap_kenter_pa,
    275 	.pmapop_kremove = pmap_kremove,
    276 	.pmapop_extract = pmap_extract,
    277 	.pmapop_protect = pmap_protect,
    278 	.pmapop_unwire = pmap_unwire,
    279 	.pmapop_page_protect = pmap_page_protect,
    280 	.pmapop_query_bit = pmap_query_bit,
    281 	.pmapop_clear_bit = pmap_clear_bit,
    282 	.pmapop_activate = pmap_activate,
    283 	.pmapop_deactivate = pmap_deactivate,
    284 	.pmapop_pinit = pmap_pinit,
    285 	.pmapop_procwr = pmap_procwr,
    286 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    287 	.pmapop_pte_print = pmap_pte_print,
    288 	.pmapop_pteg_check = pmap_pteg_check,
    289 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    290 	.pmapop_print_pte = pmap_print_pte,
    291 	.pmapop_pteg_dist = pmap_pteg_dist,
    292 #else
    293 	.pmapop_pte_print = NULL,
    294 	.pmapop_pteg_check = NULL,
    295 	.pmapop_print_mmuregs = NULL,
    296 	.pmapop_print_pte = NULL,
    297 	.pmapop_pteg_dist = NULL,
    298 #endif
    299 #if defined(DEBUG) || defined(PMAPCHECK)
    300 	.pmapop_pvo_verify = pmap_pvo_verify,
    301 #else
    302 	.pmapop_pvo_verify = NULL,
    303 #endif
    304 	.pmapop_steal_memory = pmap_steal_memory,
    305 	.pmapop_bootstrap = pmap_bootstrap,
    306 };
    307 #endif /* !PMAPNAME */
    308 
    309 /*
    310  * The following structure is aligned to 32 bytes
    311  */
    312 struct pvo_entry {
    313 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    314 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    315 	struct pte pvo_pte;			/* Prebuilt PTE */
    316 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    317 	vaddr_t pvo_vaddr;			/* VA of entry */
    318 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    319 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    320 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    321 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    322 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    323 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    324 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    325 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    326 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    327 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    328 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    329 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    330 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    331 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    332 #define	PVO_REMOVE		6		/* PVO has been removed */
    333 #define	PVO_WHERE_MASK		15
    334 #define	PVO_WHERE_SHFT		8
    335 } __attribute__ ((aligned (32)));
    336 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    337 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    338 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    339 #define	PVO_PTEGIDX_CLR(pvo)	\
    340 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    341 #define	PVO_PTEGIDX_SET(pvo,i)	\
    342 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    343 #define	PVO_WHERE(pvo,w)	\
    344 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    345 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    346 
    347 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    348 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    349 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    350 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    351 
    352 struct pool pmap_pool;		/* pool for pmap structures */
    353 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    354 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    355 
    356 /*
    357  * We keep a cache of unmanaged pages to be used for pvo entries for
    358  * unmanaged pages.
    359  */
    360 struct pvo_page {
    361 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    362 };
    363 SIMPLEQ_HEAD(pvop_head, pvo_page);
    364 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    365 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    366 u_long pmap_upvop_free;
    367 u_long pmap_upvop_maxfree;
    368 u_long pmap_mpvop_free;
    369 u_long pmap_mpvop_maxfree;
    370 
    371 static void *pmap_pool_ualloc(struct pool *, int);
    372 static void *pmap_pool_malloc(struct pool *, int);
    373 
    374 static void pmap_pool_ufree(struct pool *, void *);
    375 static void pmap_pool_mfree(struct pool *, void *);
    376 
    377 static struct pool_allocator pmap_pool_mallocator = {
    378 	.pa_alloc = pmap_pool_malloc,
    379 	.pa_free = pmap_pool_mfree,
    380 	.pa_pagesz = 0,
    381 };
    382 
    383 static struct pool_allocator pmap_pool_uallocator = {
    384 	.pa_alloc = pmap_pool_ualloc,
    385 	.pa_free = pmap_pool_ufree,
    386 	.pa_pagesz = 0,
    387 };
    388 
    389 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    390 void pmap_pte_print(volatile struct pte *);
    391 void pmap_pteg_check(void);
    392 void pmap_pteg_dist(void);
    393 void pmap_print_pte(pmap_t, vaddr_t);
    394 void pmap_print_mmuregs(void);
    395 #endif
    396 
    397 #if defined(DEBUG) || defined(PMAPCHECK)
    398 #ifdef PMAPCHECK
    399 int pmapcheck = 1;
    400 #else
    401 int pmapcheck = 0;
    402 #endif
    403 void pmap_pvo_verify(void);
    404 static void pmap_pvo_check(const struct pvo_entry *);
    405 #define	PMAP_PVO_CHECK(pvo)	 		\
    406 	do {					\
    407 		if (pmapcheck)			\
    408 			pmap_pvo_check(pvo);	\
    409 	} while (0)
    410 #else
    411 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    412 #endif
    413 static int pmap_pte_insert(int, struct pte *);
    414 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    415 	vaddr_t, paddr_t, register_t, int);
    416 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    417 static void pmap_pvo_free(struct pvo_entry *);
    418 static void pmap_pvo_free_list(struct pvo_head *);
    419 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    420 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    421 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    422 static void pvo_set_exec(struct pvo_entry *);
    423 static void pvo_clear_exec(struct pvo_entry *);
    424 
    425 static void tlbia(void);
    426 
    427 static void pmap_release(pmap_t);
    428 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    429 
    430 static uint32_t pmap_pvo_reclaim_nextidx;
    431 #ifdef DEBUG
    432 static int pmap_pvo_reclaim_debugctr;
    433 #endif
    434 
    435 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    436 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    437 
    438 static int pmap_initialized;
    439 
    440 #if defined(DEBUG) || defined(PMAPDEBUG)
    441 #define	PMAPDEBUG_BOOT		0x0001
    442 #define	PMAPDEBUG_PTE		0x0002
    443 #define	PMAPDEBUG_EXEC		0x0008
    444 #define	PMAPDEBUG_PVOENTER	0x0010
    445 #define	PMAPDEBUG_PVOREMOVE	0x0020
    446 #define	PMAPDEBUG_ACTIVATE	0x0100
    447 #define	PMAPDEBUG_CREATE	0x0200
    448 #define	PMAPDEBUG_ENTER		0x1000
    449 #define	PMAPDEBUG_KENTER	0x2000
    450 #define	PMAPDEBUG_KREMOVE	0x4000
    451 #define	PMAPDEBUG_REMOVE	0x8000
    452 
    453 unsigned int pmapdebug = 0;
    454 
    455 # define DPRINTF(x)		printf x
    456 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    457 #else
    458 # define DPRINTF(x)
    459 # define DPRINTFN(n, x)
    460 #endif
    461 
    462 
    463 #ifdef PMAPCOUNTERS
    464 /*
    465  * From pmap_subr.c
    466  */
    467 extern struct evcnt pmap_evcnt_mappings;
    468 extern struct evcnt pmap_evcnt_unmappings;
    469 
    470 extern struct evcnt pmap_evcnt_kernel_mappings;
    471 extern struct evcnt pmap_evcnt_kernel_unmappings;
    472 
    473 extern struct evcnt pmap_evcnt_mappings_replaced;
    474 
    475 extern struct evcnt pmap_evcnt_exec_mappings;
    476 extern struct evcnt pmap_evcnt_exec_cached;
    477 
    478 extern struct evcnt pmap_evcnt_exec_synced;
    479 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    480 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    481 
    482 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    483 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    484 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    485 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    486 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    487 
    488 extern struct evcnt pmap_evcnt_updates;
    489 extern struct evcnt pmap_evcnt_collects;
    490 extern struct evcnt pmap_evcnt_copies;
    491 
    492 extern struct evcnt pmap_evcnt_ptes_spilled;
    493 extern struct evcnt pmap_evcnt_ptes_unspilled;
    494 extern struct evcnt pmap_evcnt_ptes_evicted;
    495 
    496 extern struct evcnt pmap_evcnt_ptes_primary[8];
    497 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    498 extern struct evcnt pmap_evcnt_ptes_removed;
    499 extern struct evcnt pmap_evcnt_ptes_changed;
    500 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    501 extern struct evcnt pmap_evcnt_pvos_failed;
    502 
    503 extern struct evcnt pmap_evcnt_zeroed_pages;
    504 extern struct evcnt pmap_evcnt_copied_pages;
    505 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    506 
    507 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    508 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    509 #else
    510 #define	PMAPCOUNT(ev)	((void) 0)
    511 #define	PMAPCOUNT2(ev)	((void) 0)
    512 #endif
    513 
    514 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    515 
    516 /* XXXSL: this needs to be moved to assembler */
    517 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    518 
    519 #define	TLBSYNC()	__asm volatile("tlbsync")
    520 #define	SYNC()		__asm volatile("sync")
    521 #define	EIEIO()		__asm volatile("eieio")
    522 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    523 #define	MFMSR()		mfmsr()
    524 #define	MTMSR(psl)	mtmsr(psl)
    525 #define	MFPVR()		mfpvr()
    526 #define	MFSRIN(va)	mfsrin(va)
    527 #define	MFTB()		mfrtcltbl()
    528 
    529 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    530 static inline register_t
    531 mfsrin(vaddr_t va)
    532 {
    533 	register_t sr;
    534 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    535 	return sr;
    536 }
    537 #endif	/* PMAP_OEA*/
    538 
    539 #if defined (PMAP_OEA64_BRIDGE)
    540 extern void mfmsr64 (register64_t *result);
    541 #endif /* PMAP_OEA64_BRIDGE */
    542 
    543 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    544 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    545 
    546 static inline register_t
    547 pmap_interrupts_off(void)
    548 {
    549 	register_t msr = MFMSR();
    550 	if (msr & PSL_EE)
    551 		MTMSR(msr & ~PSL_EE);
    552 	return msr;
    553 }
    554 
    555 static void
    556 pmap_interrupts_restore(register_t msr)
    557 {
    558 	if (msr & PSL_EE)
    559 		MTMSR(msr);
    560 }
    561 
    562 static inline u_int32_t
    563 mfrtcltbl(void)
    564 {
    565 #ifdef PPC_OEA601
    566 	if ((MFPVR() >> 16) == MPC601)
    567 		return (mfrtcl() >> 7);
    568 	else
    569 #endif
    570 		return (mftbl());
    571 }
    572 
    573 /*
    574  * These small routines may have to be replaced,
    575  * if/when we support processors other that the 604.
    576  */
    577 
    578 void
    579 tlbia(void)
    580 {
    581 	char *i;
    582 
    583 	SYNC();
    584 #if defined(PMAP_OEA)
    585 	/*
    586 	 * Why not use "tlbia"?  Because not all processors implement it.
    587 	 *
    588 	 * This needs to be a per-CPU callback to do the appropriate thing
    589 	 * for the CPU. XXX
    590 	 */
    591 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    592 		TLBIE(i);
    593 		EIEIO();
    594 		SYNC();
    595 	}
    596 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    597 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    598 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    599 		TLBIEL(i);
    600 		EIEIO();
    601 		SYNC();
    602 	}
    603 #endif
    604 	TLBSYNC();
    605 	SYNC();
    606 }
    607 
    608 static inline register_t
    609 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    610 {
    611 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    612 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    613 #else /* PMAP_OEA64 */
    614 #if 0
    615 	const struct ste *ste;
    616 	register_t hash;
    617 	int i;
    618 
    619 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    620 
    621 	/*
    622 	 * Try the primary group first
    623 	 */
    624 	ste = pm->pm_stes[hash].stes;
    625 	for (i = 0; i < 8; i++, ste++) {
    626 		if (ste->ste_hi & STE_V) &&
    627 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    628 			return ste;
    629 	}
    630 
    631 	/*
    632 	 * Then the secondary group.
    633 	 */
    634 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    635 	for (i = 0; i < 8; i++, ste++) {
    636 		if (ste->ste_hi & STE_V) &&
    637 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    638 			return addr;
    639 	}
    640 
    641 	return NULL;
    642 #else
    643 	/*
    644 	 * Rather than searching the STE groups for the VSID, we know
    645 	 * how we generate that from the ESID and so do that.
    646 	 */
    647 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    648 #endif
    649 #endif /* PMAP_OEA */
    650 }
    651 
    652 static inline register_t
    653 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    654 {
    655 	register_t hash;
    656 
    657 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    658 	return hash & pmap_pteg_mask;
    659 }
    660 
    661 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    662 /*
    663  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    664  * The only bit of magic is that the top 4 bits of the address doesn't
    665  * technically exist in the PTE.  But we know we reserved 4 bits of the
    666  * VSID for it so that's how we get it.
    667  */
    668 static vaddr_t
    669 pmap_pte_to_va(volatile const struct pte *pt)
    670 {
    671 	vaddr_t va;
    672 	uintptr_t ptaddr = (uintptr_t) pt;
    673 
    674 	if (pt->pte_hi & PTE_HID)
    675 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    676 
    677 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    678 #if defined(PMAP_OEA)
    679 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    680 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    681 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    682 #endif
    683 	va <<= ADDR_PIDX_SHFT;
    684 
    685 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    686 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    687 
    688 #if defined(PMAP_OEA64)
    689 	/* PPC63 Bits 0-35 */
    690 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    691 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    692 	/* PPC Bits 0-3 */
    693 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    694 #endif
    695 
    696 	return va;
    697 }
    698 #endif
    699 
    700 static inline struct pvo_head *
    701 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    702 {
    703 	struct vm_page *pg;
    704 
    705 	pg = PHYS_TO_VM_PAGE(pa);
    706 	if (pg_p != NULL)
    707 		*pg_p = pg;
    708 	if (pg == NULL)
    709 		return &pmap_pvo_unmanaged;
    710 	return &pg->mdpage.mdpg_pvoh;
    711 }
    712 
    713 static inline struct pvo_head *
    714 vm_page_to_pvoh(struct vm_page *pg)
    715 {
    716 	return &pg->mdpage.mdpg_pvoh;
    717 }
    718 
    719 
    720 static inline void
    721 pmap_attr_clear(struct vm_page *pg, int ptebit)
    722 {
    723 	pg->mdpage.mdpg_attrs &= ~ptebit;
    724 }
    725 
    726 static inline int
    727 pmap_attr_fetch(struct vm_page *pg)
    728 {
    729 	return pg->mdpage.mdpg_attrs;
    730 }
    731 
    732 static inline void
    733 pmap_attr_save(struct vm_page *pg, int ptebit)
    734 {
    735 	pg->mdpage.mdpg_attrs |= ptebit;
    736 }
    737 
    738 static inline int
    739 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    740 {
    741 	if (pt->pte_hi == pvo_pt->pte_hi
    742 #if 0
    743 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    744 	        ~(PTE_REF|PTE_CHG)) == 0
    745 #endif
    746 	    )
    747 		return 1;
    748 	return 0;
    749 }
    750 
    751 static inline void
    752 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    753 {
    754 	/*
    755 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    756 	 * only gets set when the real pte is set in memory.
    757 	 *
    758 	 * Note: Don't set the valid bit for correct operation of tlb update.
    759 	 */
    760 #if defined(PMAP_OEA)
    761 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    762 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    763 	pt->pte_lo = pte_lo;
    764 #elif defined (PMAP_OEA64_BRIDGE)
    765 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    766 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    767 	pt->pte_lo = (u_int64_t) pte_lo;
    768 #elif defined (PMAP_OEA64)
    769 #error PMAP_OEA64 not supported
    770 #endif /* PMAP_OEA */
    771 }
    772 
    773 static inline void
    774 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    775 {
    776 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    777 }
    778 
    779 static inline void
    780 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    781 {
    782 	/*
    783 	 * As shown in Section 7.6.3.2.3
    784 	 */
    785 	pt->pte_lo &= ~ptebit;
    786 	TLBIE(va);
    787 	SYNC();
    788 	EIEIO();
    789 	TLBSYNC();
    790 	SYNC();
    791 #ifdef MULTIPROCESSOR
    792 	DCBST(pt);
    793 #endif
    794 }
    795 
    796 static inline void
    797 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    798 {
    799 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    800 	if (pvo_pt->pte_hi & PTE_VALID)
    801 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    802 #endif
    803 	pvo_pt->pte_hi |= PTE_VALID;
    804 
    805 	/*
    806 	 * Update the PTE as defined in section 7.6.3.1
    807 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    808 	 * have been saved so this routine can restore them (if desired).
    809 	 */
    810 	pt->pte_lo = pvo_pt->pte_lo;
    811 	EIEIO();
    812 	pt->pte_hi = pvo_pt->pte_hi;
    813 	TLBSYNC();
    814 	SYNC();
    815 #ifdef MULTIPROCESSOR
    816 	DCBST(pt);
    817 #endif
    818 	pmap_pte_valid++;
    819 }
    820 
    821 static inline void
    822 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    823 {
    824 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    825 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    826 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    827 	if ((pt->pte_hi & PTE_VALID) == 0)
    828 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    829 #endif
    830 
    831 	pvo_pt->pte_hi &= ~PTE_VALID;
    832 	/*
    833 	 * Force the ref & chg bits back into the PTEs.
    834 	 */
    835 	SYNC();
    836 	/*
    837 	 * Invalidate the pte ... (Section 7.6.3.3)
    838 	 */
    839 	pt->pte_hi &= ~PTE_VALID;
    840 	SYNC();
    841 	TLBIE(va);
    842 	SYNC();
    843 	EIEIO();
    844 	TLBSYNC();
    845 	SYNC();
    846 	/*
    847 	 * Save the ref & chg bits ...
    848 	 */
    849 	pmap_pte_synch(pt, pvo_pt);
    850 	pmap_pte_valid--;
    851 }
    852 
    853 static inline void
    854 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    855 {
    856 	/*
    857 	 * Invalidate the PTE
    858 	 */
    859 	pmap_pte_unset(pt, pvo_pt, va);
    860 	pmap_pte_set(pt, pvo_pt);
    861 }
    862 
    863 /*
    864  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    865  * (either primary or secondary location).
    866  *
    867  * Note: both the destination and source PTEs must not have PTE_VALID set.
    868  */
    869 
    870 static int
    871 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    872 {
    873 	volatile struct pte *pt;
    874 	int i;
    875 
    876 #if defined(DEBUG)
    877 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    878 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    879 #endif
    880 	/*
    881 	 * First try primary hash.
    882 	 */
    883 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    884 		if ((pt->pte_hi & PTE_VALID) == 0) {
    885 			pvo_pt->pte_hi &= ~PTE_HID;
    886 			pmap_pte_set(pt, pvo_pt);
    887 			return i;
    888 		}
    889 	}
    890 
    891 	/*
    892 	 * Now try secondary hash.
    893 	 */
    894 	ptegidx ^= pmap_pteg_mask;
    895 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    896 		if ((pt->pte_hi & PTE_VALID) == 0) {
    897 			pvo_pt->pte_hi |= PTE_HID;
    898 			pmap_pte_set(pt, pvo_pt);
    899 			return i;
    900 		}
    901 	}
    902 	return -1;
    903 }
    904 
    905 /*
    906  * Spill handler.
    907  *
    908  * Tries to spill a page table entry from the overflow area.
    909  * This runs in either real mode (if dealing with a exception spill)
    910  * or virtual mode when dealing with manually spilling one of the
    911  * kernel's pte entries.  In either case, interrupts are already
    912  * disabled.
    913  */
    914 
    915 int
    916 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    917 {
    918 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    919 	struct pvo_entry *pvo;
    920 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    921 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    922 	int ptegidx, i, j;
    923 	volatile struct pteg *pteg;
    924 	volatile struct pte *pt;
    925 
    926 	PMAP_LOCK();
    927 
    928 	ptegidx = va_to_pteg(pm, addr);
    929 
    930 	/*
    931 	 * Have to substitute some entry. Use the primary hash for this.
    932 	 * Use low bits of timebase as random generator.  Make sure we are
    933 	 * not picking a kernel pte for replacement.
    934 	 */
    935 	pteg = &pmap_pteg_table[ptegidx];
    936 	i = MFTB() & 7;
    937 	for (j = 0; j < 8; j++) {
    938 		pt = &pteg->pt[i];
    939 		if ((pt->pte_hi & PTE_VALID) == 0)
    940 			break;
    941 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    942 				< PHYSMAP_VSIDBITS)
    943 			break;
    944 		i = (i + 1) & 7;
    945 	}
    946 	KASSERT(j < 8);
    947 
    948 	source_pvo = NULL;
    949 	victim_pvo = NULL;
    950 	pvoh = &pmap_pvo_table[ptegidx];
    951 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    952 
    953 		/*
    954 		 * We need to find pvo entry for this address...
    955 		 */
    956 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    957 
    958 		/*
    959 		 * If we haven't found the source and we come to a PVO with
    960 		 * a valid PTE, then we know we can't find it because all
    961 		 * evicted PVOs always are first in the list.
    962 		 */
    963 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    964 			break;
    965 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    966 		    addr == PVO_VADDR(pvo)) {
    967 
    968 			/*
    969 			 * Now we have found the entry to be spilled into the
    970 			 * pteg.  Attempt to insert it into the page table.
    971 			 */
    972 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    973 			if (j >= 0) {
    974 				PVO_PTEGIDX_SET(pvo, j);
    975 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    976 				PVO_WHERE(pvo, SPILL_INSERT);
    977 				pvo->pvo_pmap->pm_evictions--;
    978 				PMAPCOUNT(ptes_spilled);
    979 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    980 				    ? pmap_evcnt_ptes_secondary
    981 				    : pmap_evcnt_ptes_primary)[j]);
    982 
    983 				/*
    984 				 * Since we keep the evicted entries at the
    985 				 * from of the PVO list, we need move this
    986 				 * (now resident) PVO after the evicted
    987 				 * entries.
    988 				 */
    989 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    990 
    991 				/*
    992 				 * If we don't have to move (either we were the
    993 				 * last entry or the next entry was valid),
    994 				 * don't change our position.  Otherwise
    995 				 * move ourselves to the tail of the queue.
    996 				 */
    997 				if (next_pvo != NULL &&
    998 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    999 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
   1000 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1001 				}
   1002 				PMAP_UNLOCK();
   1003 				return 1;
   1004 			}
   1005 			source_pvo = pvo;
   1006 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
   1007 				return 0;
   1008 			}
   1009 			if (victim_pvo != NULL)
   1010 				break;
   1011 		}
   1012 
   1013 		/*
   1014 		 * We also need the pvo entry of the victim we are replacing
   1015 		 * so save the R & C bits of the PTE.
   1016 		 */
   1017 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1018 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1019 			vpvoh = pvoh;			/* *1* */
   1020 			victim_pvo = pvo;
   1021 			if (source_pvo != NULL)
   1022 				break;
   1023 		}
   1024 	}
   1025 
   1026 	if (source_pvo == NULL) {
   1027 		PMAPCOUNT(ptes_unspilled);
   1028 		PMAP_UNLOCK();
   1029 		return 0;
   1030 	}
   1031 
   1032 	if (victim_pvo == NULL) {
   1033 		if ((pt->pte_hi & PTE_HID) == 0)
   1034 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1035 			    "no pvo entry!", pt);
   1036 
   1037 		/*
   1038 		 * If this is a secondary PTE, we need to search
   1039 		 * its primary pvo bucket for the matching PVO.
   1040 		 */
   1041 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1042 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1043 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1044 
   1045 			/*
   1046 			 * We also need the pvo entry of the victim we are
   1047 			 * replacing so save the R & C bits of the PTE.
   1048 			 */
   1049 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1050 				victim_pvo = pvo;
   1051 				break;
   1052 			}
   1053 		}
   1054 		if (victim_pvo == NULL)
   1055 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1056 			    "no pvo entry!", pt);
   1057 	}
   1058 
   1059 	/*
   1060 	 * The victim should be not be a kernel PVO/PTE entry.
   1061 	 */
   1062 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1063 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1064 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1065 
   1066 	/*
   1067 	 * We are invalidating the TLB entry for the EA for the
   1068 	 * we are replacing even though its valid; If we don't
   1069 	 * we lose any ref/chg bit changes contained in the TLB
   1070 	 * entry.
   1071 	 */
   1072 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1073 
   1074 	/*
   1075 	 * To enforce the PVO list ordering constraint that all
   1076 	 * evicted entries should come before all valid entries,
   1077 	 * move the source PVO to the tail of its list and the
   1078 	 * victim PVO to the head of its list (which might not be
   1079 	 * the same list, if the victim was using the secondary hash).
   1080 	 */
   1081 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1082 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1083 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1084 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1085 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1086 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1087 	victim_pvo->pvo_pmap->pm_evictions++;
   1088 	source_pvo->pvo_pmap->pm_evictions--;
   1089 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1090 	PVO_WHERE(source_pvo, SPILL_SET);
   1091 
   1092 	PVO_PTEGIDX_CLR(victim_pvo);
   1093 	PVO_PTEGIDX_SET(source_pvo, i);
   1094 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1095 	PMAPCOUNT(ptes_spilled);
   1096 	PMAPCOUNT(ptes_evicted);
   1097 	PMAPCOUNT(ptes_removed);
   1098 
   1099 	PMAP_PVO_CHECK(victim_pvo);
   1100 	PMAP_PVO_CHECK(source_pvo);
   1101 
   1102 	PMAP_UNLOCK();
   1103 	return 1;
   1104 }
   1105 
   1106 /*
   1107  * Restrict given range to physical memory
   1108  */
   1109 void
   1110 pmap_real_memory(paddr_t *start, psize_t *size)
   1111 {
   1112 	struct mem_region *mp;
   1113 
   1114 	for (mp = mem; mp->size; mp++) {
   1115 		if (*start + *size > mp->start
   1116 		    && *start < mp->start + mp->size) {
   1117 			if (*start < mp->start) {
   1118 				*size -= mp->start - *start;
   1119 				*start = mp->start;
   1120 			}
   1121 			if (*start + *size > mp->start + mp->size)
   1122 				*size = mp->start + mp->size - *start;
   1123 			return;
   1124 		}
   1125 	}
   1126 	*size = 0;
   1127 }
   1128 
   1129 /*
   1130  * Initialize anything else for pmap handling.
   1131  * Called during vm_init().
   1132  */
   1133 void
   1134 pmap_init(void)
   1135 {
   1136 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1137 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1138 	    &pmap_pool_mallocator, IPL_NONE);
   1139 
   1140 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1141 
   1142 	pmap_initialized = 1;
   1143 
   1144 }
   1145 
   1146 /*
   1147  * How much virtual space does the kernel get?
   1148  */
   1149 void
   1150 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1151 {
   1152 	/*
   1153 	 * For now, reserve one segment (minus some overhead) for kernel
   1154 	 * virtual memory
   1155 	 */
   1156 	*start = VM_MIN_KERNEL_ADDRESS;
   1157 	*end = VM_MAX_KERNEL_ADDRESS;
   1158 }
   1159 
   1160 /*
   1161  * Allocate, initialize, and return a new physical map.
   1162  */
   1163 pmap_t
   1164 pmap_create(void)
   1165 {
   1166 	pmap_t pm;
   1167 
   1168 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1169 	memset((void *)pm, 0, sizeof *pm);
   1170 	pmap_pinit(pm);
   1171 
   1172 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1173 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1174 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1175 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1176 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1177 	    pm,
   1178 	    pm->pm_sr[0], pm->pm_sr[1],
   1179 	    pm->pm_sr[2], pm->pm_sr[3],
   1180 	    pm->pm_sr[4], pm->pm_sr[5],
   1181 	    pm->pm_sr[6], pm->pm_sr[7],
   1182 	    pm->pm_sr[8], pm->pm_sr[9],
   1183 	    pm->pm_sr[10], pm->pm_sr[11],
   1184 	    pm->pm_sr[12], pm->pm_sr[13],
   1185 	    pm->pm_sr[14], pm->pm_sr[15]));
   1186 	return pm;
   1187 }
   1188 
   1189 /*
   1190  * Initialize a preallocated and zeroed pmap structure.
   1191  */
   1192 void
   1193 pmap_pinit(pmap_t pm)
   1194 {
   1195 	register_t entropy = MFTB();
   1196 	register_t mask;
   1197 	int i;
   1198 
   1199 	/*
   1200 	 * Allocate some segment registers for this pmap.
   1201 	 */
   1202 	pm->pm_refs = 1;
   1203 	PMAP_LOCK();
   1204 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1205 		static register_t pmap_vsidcontext;
   1206 		register_t hash;
   1207 		unsigned int n;
   1208 
   1209 		/* Create a new value by multiplying by a prime adding in
   1210 		 * entropy from the timebase register.  This is to make the
   1211 		 * VSID more random so that the PT Hash function collides
   1212 		 * less often. (note that the prime causes gcc to do shifts
   1213 		 * instead of a multiply)
   1214 		 */
   1215 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1216 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1217 		if (hash == 0) {		/* 0 is special, avoid it */
   1218 			entropy += 0xbadf00d;
   1219 			continue;
   1220 		}
   1221 		n = hash >> 5;
   1222 		mask = 1L << (hash & (VSID_NBPW-1));
   1223 		hash = pmap_vsidcontext;
   1224 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1225 			/* anything free in this bucket? */
   1226 			if (~pmap_vsid_bitmap[n] == 0) {
   1227 				entropy = hash ^ (hash >> 16);
   1228 				continue;
   1229 			}
   1230 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1231 			mask = 1L << i;
   1232 			hash &= ~(VSID_NBPW-1);
   1233 			hash |= i;
   1234 		}
   1235 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1236 		pmap_vsid_bitmap[n] |= mask;
   1237 		pm->pm_vsid = hash;
   1238 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1239 		for (i = 0; i < 16; i++)
   1240 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1241 			    SR_NOEXEC;
   1242 #endif
   1243 		PMAP_UNLOCK();
   1244 		return;
   1245 	}
   1246 	PMAP_UNLOCK();
   1247 	panic("pmap_pinit: out of segments");
   1248 }
   1249 
   1250 /*
   1251  * Add a reference to the given pmap.
   1252  */
   1253 void
   1254 pmap_reference(pmap_t pm)
   1255 {
   1256 	atomic_inc_uint(&pm->pm_refs);
   1257 }
   1258 
   1259 /*
   1260  * Retire the given pmap from service.
   1261  * Should only be called if the map contains no valid mappings.
   1262  */
   1263 void
   1264 pmap_destroy(pmap_t pm)
   1265 {
   1266 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1267 		pmap_release(pm);
   1268 		pool_put(&pmap_pool, pm);
   1269 	}
   1270 }
   1271 
   1272 /*
   1273  * Release any resources held by the given physical map.
   1274  * Called when a pmap initialized by pmap_pinit is being released.
   1275  */
   1276 void
   1277 pmap_release(pmap_t pm)
   1278 {
   1279 	int idx, mask;
   1280 
   1281 	KASSERT(pm->pm_stats.resident_count == 0);
   1282 	KASSERT(pm->pm_stats.wired_count == 0);
   1283 
   1284 	PMAP_LOCK();
   1285 	if (pm->pm_sr[0] == 0)
   1286 		panic("pmap_release");
   1287 	idx = pm->pm_vsid & (NPMAPS-1);
   1288 	mask = 1 << (idx % VSID_NBPW);
   1289 	idx /= VSID_NBPW;
   1290 
   1291 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1292 	pmap_vsid_bitmap[idx] &= ~mask;
   1293 	PMAP_UNLOCK();
   1294 }
   1295 
   1296 /*
   1297  * Copy the range specified by src_addr/len
   1298  * from the source map to the range dst_addr/len
   1299  * in the destination map.
   1300  *
   1301  * This routine is only advisory and need not do anything.
   1302  */
   1303 void
   1304 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1305 	vsize_t len, vaddr_t src_addr)
   1306 {
   1307 	PMAPCOUNT(copies);
   1308 }
   1309 
   1310 /*
   1311  * Require that all active physical maps contain no
   1312  * incorrect entries NOW.
   1313  */
   1314 void
   1315 pmap_update(struct pmap *pmap)
   1316 {
   1317 	PMAPCOUNT(updates);
   1318 	TLBSYNC();
   1319 }
   1320 
   1321 /*
   1322  * Garbage collects the physical map system for
   1323  * pages which are no longer used.
   1324  * Success need not be guaranteed -- that is, there
   1325  * may well be pages which are not referenced, but
   1326  * others may be collected.
   1327  * Called by the pageout daemon when pages are scarce.
   1328  */
   1329 void
   1330 pmap_collect(pmap_t pm)
   1331 {
   1332 	PMAPCOUNT(collects);
   1333 }
   1334 
   1335 static inline int
   1336 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1337 {
   1338 	int pteidx;
   1339 	/*
   1340 	 * We can find the actual pte entry without searching by
   1341 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1342 	 * and by noticing the HID bit.
   1343 	 */
   1344 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1345 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1346 		pteidx ^= pmap_pteg_mask * 8;
   1347 	return pteidx;
   1348 }
   1349 
   1350 volatile struct pte *
   1351 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1352 {
   1353 	volatile struct pte *pt;
   1354 
   1355 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1356 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1357 		return NULL;
   1358 #endif
   1359 
   1360 	/*
   1361 	 * If we haven't been supplied the ptegidx, calculate it.
   1362 	 */
   1363 	if (pteidx == -1) {
   1364 		int ptegidx;
   1365 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1366 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1367 	}
   1368 
   1369 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1370 
   1371 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1372 	return pt;
   1373 #else
   1374 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1375 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1376 		    "pvo but no valid pte index", pvo);
   1377 	}
   1378 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1379 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1380 		    "pvo but no valid pte", pvo);
   1381 	}
   1382 
   1383 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1384 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1385 #if defined(DEBUG) || defined(PMAPCHECK)
   1386 			pmap_pte_print(pt);
   1387 #endif
   1388 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1389 			    "pmap_pteg_table %p but invalid in pvo",
   1390 			    pvo, pt);
   1391 		}
   1392 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1393 #if defined(DEBUG) || defined(PMAPCHECK)
   1394 			pmap_pte_print(pt);
   1395 #endif
   1396 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1397 			    "not match pte %p in pmap_pteg_table",
   1398 			    pvo, pt);
   1399 		}
   1400 		return pt;
   1401 	}
   1402 
   1403 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1404 #if defined(DEBUG) || defined(PMAPCHECK)
   1405 		pmap_pte_print(pt);
   1406 #endif
   1407 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1408 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1409 	}
   1410 	return NULL;
   1411 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1412 }
   1413 
   1414 struct pvo_entry *
   1415 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1416 {
   1417 	struct pvo_entry *pvo;
   1418 	int ptegidx;
   1419 
   1420 	va &= ~ADDR_POFF;
   1421 	ptegidx = va_to_pteg(pm, va);
   1422 
   1423 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1424 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1425 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1426 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1427 			    "list %#x (%p)", pvo, ptegidx,
   1428 			     &pmap_pvo_table[ptegidx]);
   1429 #endif
   1430 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1431 			if (pteidx_p)
   1432 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1433 			return pvo;
   1434 		}
   1435 	}
   1436 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1437 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1438 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1439 	return NULL;
   1440 }
   1441 
   1442 #if defined(DEBUG) || defined(PMAPCHECK)
   1443 void
   1444 pmap_pvo_check(const struct pvo_entry *pvo)
   1445 {
   1446 	struct pvo_head *pvo_head;
   1447 	struct pvo_entry *pvo0;
   1448 	volatile struct pte *pt;
   1449 	int failed = 0;
   1450 
   1451 	PMAP_LOCK();
   1452 
   1453 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1454 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1455 
   1456 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1457 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1458 		    pvo, pvo->pvo_pmap);
   1459 		failed = 1;
   1460 	}
   1461 
   1462 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1463 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1464 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1465 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1466 		failed = 1;
   1467 	}
   1468 
   1469 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1470 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1471 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1472 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1473 		failed = 1;
   1474 	}
   1475 
   1476 	if (PVO_MANAGED_P(pvo)) {
   1477 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1478 	} else {
   1479 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1480 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1481 			    "on kernel unmanaged list\n", pvo);
   1482 			failed = 1;
   1483 		}
   1484 		pvo_head = &pmap_pvo_kunmanaged;
   1485 	}
   1486 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1487 		if (pvo0 == pvo)
   1488 			break;
   1489 	}
   1490 	if (pvo0 == NULL) {
   1491 		printf("pmap_pvo_check: pvo %p: not present "
   1492 		    "on its vlist head %p\n", pvo, pvo_head);
   1493 		failed = 1;
   1494 	}
   1495 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1496 		printf("pmap_pvo_check: pvo %p: not present "
   1497 		    "on its olist head\n", pvo);
   1498 		failed = 1;
   1499 	}
   1500 	pt = pmap_pvo_to_pte(pvo, -1);
   1501 	if (pt == NULL) {
   1502 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1503 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1504 			    "no PTE\n", pvo);
   1505 			failed = 1;
   1506 		}
   1507 	} else {
   1508 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1509 		    (uintptr_t) pt >=
   1510 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1511 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1512 			    "pteg table\n", pvo, pt);
   1513 			failed = 1;
   1514 		}
   1515 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1516 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1517 			    "no PTE\n", pvo);
   1518 			failed = 1;
   1519 		}
   1520 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1521 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1522 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1523 			    pvo->pvo_pte.pte_hi,
   1524 			    pt->pte_hi);
   1525 			failed = 1;
   1526 		}
   1527 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1528 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1529 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1530 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1531 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1532 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1533 			failed = 1;
   1534 		}
   1535 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1536 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1537 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1538 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1539 			failed = 1;
   1540 		}
   1541 		if (failed)
   1542 			pmap_pte_print(pt);
   1543 	}
   1544 	if (failed)
   1545 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1546 		    pvo->pvo_pmap);
   1547 
   1548 	PMAP_UNLOCK();
   1549 }
   1550 #endif /* DEBUG || PMAPCHECK */
   1551 
   1552 /*
   1553  * Search the PVO table looking for a non-wired entry.
   1554  * If we find one, remove it and return it.
   1555  */
   1556 
   1557 struct pvo_entry *
   1558 pmap_pvo_reclaim(struct pmap *pm)
   1559 {
   1560 	struct pvo_tqhead *pvoh;
   1561 	struct pvo_entry *pvo;
   1562 	uint32_t idx, endidx;
   1563 
   1564 	endidx = pmap_pvo_reclaim_nextidx;
   1565 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1566 	     idx = (idx + 1) & pmap_pteg_mask) {
   1567 		pvoh = &pmap_pvo_table[idx];
   1568 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1569 			if (!PVO_WIRED_P(pvo)) {
   1570 				pmap_pvo_remove(pvo, -1, NULL);
   1571 				pmap_pvo_reclaim_nextidx = idx;
   1572 				PMAPCOUNT(pvos_reclaimed);
   1573 				return pvo;
   1574 			}
   1575 		}
   1576 	}
   1577 	return NULL;
   1578 }
   1579 
   1580 /*
   1581  * This returns whether this is the first mapping of a page.
   1582  */
   1583 int
   1584 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1585 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1586 {
   1587 	struct pvo_entry *pvo;
   1588 	struct pvo_tqhead *pvoh;
   1589 	register_t msr;
   1590 	int ptegidx;
   1591 	int i;
   1592 	int poolflags = PR_NOWAIT;
   1593 
   1594 	/*
   1595 	 * Compute the PTE Group index.
   1596 	 */
   1597 	va &= ~ADDR_POFF;
   1598 	ptegidx = va_to_pteg(pm, va);
   1599 
   1600 	msr = pmap_interrupts_off();
   1601 
   1602 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1603 	if (pmap_pvo_remove_depth > 0)
   1604 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1605 	if (++pmap_pvo_enter_depth > 1)
   1606 		panic("pmap_pvo_enter: called recursively!");
   1607 #endif
   1608 
   1609 	/*
   1610 	 * Remove any existing mapping for this page.  Reuse the
   1611 	 * pvo entry if there a mapping.
   1612 	 */
   1613 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1614 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1615 #ifdef DEBUG
   1616 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1617 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1618 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1619 			   va < VM_MIN_KERNEL_ADDRESS) {
   1620 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1621 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1622 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1623 				    pvo->pvo_pte.pte_hi,
   1624 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1625 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1626 #ifdef DDBX
   1627 				Debugger();
   1628 #endif
   1629 			}
   1630 #endif
   1631 			PMAPCOUNT(mappings_replaced);
   1632 			pmap_pvo_remove(pvo, -1, NULL);
   1633 			break;
   1634 		}
   1635 	}
   1636 
   1637 	/*
   1638 	 * If we aren't overwriting an mapping, try to allocate
   1639 	 */
   1640 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1641 	--pmap_pvo_enter_depth;
   1642 #endif
   1643 	pmap_interrupts_restore(msr);
   1644 	if (pvo) {
   1645 		pmap_pvo_free(pvo);
   1646 	}
   1647 	pvo = pool_get(pl, poolflags);
   1648 
   1649 #ifdef DEBUG
   1650 	/*
   1651 	 * Exercise pmap_pvo_reclaim() a little.
   1652 	 */
   1653 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1654 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1655 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1656 		pool_put(pl, pvo);
   1657 		pvo = NULL;
   1658 	}
   1659 #endif
   1660 
   1661 	msr = pmap_interrupts_off();
   1662 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1663 	++pmap_pvo_enter_depth;
   1664 #endif
   1665 	if (pvo == NULL) {
   1666 		pvo = pmap_pvo_reclaim(pm);
   1667 		if (pvo == NULL) {
   1668 			if ((flags & PMAP_CANFAIL) == 0)
   1669 				panic("pmap_pvo_enter: failed");
   1670 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1671 			pmap_pvo_enter_depth--;
   1672 #endif
   1673 			PMAPCOUNT(pvos_failed);
   1674 			pmap_interrupts_restore(msr);
   1675 			return ENOMEM;
   1676 		}
   1677 	}
   1678 
   1679 	pvo->pvo_vaddr = va;
   1680 	pvo->pvo_pmap = pm;
   1681 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1682 	if (flags & VM_PROT_EXECUTE) {
   1683 		PMAPCOUNT(exec_mappings);
   1684 		pvo_set_exec(pvo);
   1685 	}
   1686 	if (flags & PMAP_WIRED)
   1687 		pvo->pvo_vaddr |= PVO_WIRED;
   1688 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1689 		pvo->pvo_vaddr |= PVO_MANAGED;
   1690 		PMAPCOUNT(mappings);
   1691 	} else {
   1692 		PMAPCOUNT(kernel_mappings);
   1693 	}
   1694 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1695 
   1696 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1697 	if (PVO_WIRED_P(pvo))
   1698 		pvo->pvo_pmap->pm_stats.wired_count++;
   1699 	pvo->pvo_pmap->pm_stats.resident_count++;
   1700 #if defined(DEBUG)
   1701 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1702 		DPRINTFN(PVOENTER,
   1703 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1704 		    pvo, pm, va, pa));
   1705 #endif
   1706 
   1707 	/*
   1708 	 * We hope this succeeds but it isn't required.
   1709 	 */
   1710 	pvoh = &pmap_pvo_table[ptegidx];
   1711 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1712 	if (i >= 0) {
   1713 		PVO_PTEGIDX_SET(pvo, i);
   1714 		PVO_WHERE(pvo, ENTER_INSERT);
   1715 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1716 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1717 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1718 
   1719 	} else {
   1720 		/*
   1721 		 * Since we didn't have room for this entry (which makes it
   1722 		 * and evicted entry), place it at the head of the list.
   1723 		 */
   1724 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1725 		PMAPCOUNT(ptes_evicted);
   1726 		pm->pm_evictions++;
   1727 		/*
   1728 		 * If this is a kernel page, make sure it's active.
   1729 		 */
   1730 		if (pm == pmap_kernel()) {
   1731 			i = pmap_pte_spill(pm, va, false);
   1732 			KASSERT(i);
   1733 		}
   1734 	}
   1735 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1736 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1737 	pmap_pvo_enter_depth--;
   1738 #endif
   1739 	pmap_interrupts_restore(msr);
   1740 	return 0;
   1741 }
   1742 
   1743 static void
   1744 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1745 {
   1746 	volatile struct pte *pt;
   1747 	int ptegidx;
   1748 
   1749 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1750 	if (++pmap_pvo_remove_depth > 1)
   1751 		panic("pmap_pvo_remove: called recursively!");
   1752 #endif
   1753 
   1754 	/*
   1755 	 * If we haven't been supplied the ptegidx, calculate it.
   1756 	 */
   1757 	if (pteidx == -1) {
   1758 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1759 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1760 	} else {
   1761 		ptegidx = pteidx >> 3;
   1762 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1763 			ptegidx ^= pmap_pteg_mask;
   1764 	}
   1765 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1766 
   1767 	/*
   1768 	 * If there is an active pte entry, we need to deactivate it
   1769 	 * (and save the ref & chg bits).
   1770 	 */
   1771 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1772 	if (pt != NULL) {
   1773 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1774 		PVO_WHERE(pvo, REMOVE);
   1775 		PVO_PTEGIDX_CLR(pvo);
   1776 		PMAPCOUNT(ptes_removed);
   1777 	} else {
   1778 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1779 		pvo->pvo_pmap->pm_evictions--;
   1780 	}
   1781 
   1782 	/*
   1783 	 * Account for executable mappings.
   1784 	 */
   1785 	if (PVO_EXECUTABLE_P(pvo))
   1786 		pvo_clear_exec(pvo);
   1787 
   1788 	/*
   1789 	 * Update our statistics.
   1790 	 */
   1791 	pvo->pvo_pmap->pm_stats.resident_count--;
   1792 	if (PVO_WIRED_P(pvo))
   1793 		pvo->pvo_pmap->pm_stats.wired_count--;
   1794 
   1795 	/*
   1796 	 * Save the REF/CHG bits into their cache if the page is managed.
   1797 	 */
   1798 	if (PVO_MANAGED_P(pvo)) {
   1799 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1800 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1801 
   1802 		if (pg != NULL) {
   1803 			/*
   1804 			 * If this page was changed and it is mapped exec,
   1805 			 * invalidate it.
   1806 			 */
   1807 			if ((ptelo & PTE_CHG) &&
   1808 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1809 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1810 				if (LIST_EMPTY(pvoh)) {
   1811 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1812 					    "%#" _PRIxpa ": clear-exec]\n",
   1813 					    VM_PAGE_TO_PHYS(pg)));
   1814 					pmap_attr_clear(pg, PTE_EXEC);
   1815 					PMAPCOUNT(exec_uncached_pvo_remove);
   1816 				} else {
   1817 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1818 					    "%#" _PRIxpa ": syncicache]\n",
   1819 					    VM_PAGE_TO_PHYS(pg)));
   1820 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1821 					    PAGE_SIZE);
   1822 					PMAPCOUNT(exec_synced_pvo_remove);
   1823 				}
   1824 			}
   1825 
   1826 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1827 		}
   1828 		PMAPCOUNT(unmappings);
   1829 	} else {
   1830 		PMAPCOUNT(kernel_unmappings);
   1831 	}
   1832 
   1833 	/*
   1834 	 * Remove the PVO from its lists and return it to the pool.
   1835 	 */
   1836 	LIST_REMOVE(pvo, pvo_vlink);
   1837 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1838 	if (pvol) {
   1839 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1840 	}
   1841 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1842 	pmap_pvo_remove_depth--;
   1843 #endif
   1844 }
   1845 
   1846 void
   1847 pmap_pvo_free(struct pvo_entry *pvo)
   1848 {
   1849 
   1850 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1851 }
   1852 
   1853 void
   1854 pmap_pvo_free_list(struct pvo_head *pvol)
   1855 {
   1856 	struct pvo_entry *pvo, *npvo;
   1857 
   1858 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1859 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1860 		LIST_REMOVE(pvo, pvo_vlink);
   1861 		pmap_pvo_free(pvo);
   1862 	}
   1863 }
   1864 
   1865 /*
   1866  * Mark a mapping as executable.
   1867  * If this is the first executable mapping in the segment,
   1868  * clear the noexec flag.
   1869  */
   1870 static void
   1871 pvo_set_exec(struct pvo_entry *pvo)
   1872 {
   1873 	struct pmap *pm = pvo->pvo_pmap;
   1874 
   1875 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1876 		return;
   1877 	}
   1878 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1879 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1880 	{
   1881 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1882 		if (pm->pm_exec[sr]++ == 0) {
   1883 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1884 		}
   1885 	}
   1886 #endif
   1887 }
   1888 
   1889 /*
   1890  * Mark a mapping as non-executable.
   1891  * If this was the last executable mapping in the segment,
   1892  * set the noexec flag.
   1893  */
   1894 static void
   1895 pvo_clear_exec(struct pvo_entry *pvo)
   1896 {
   1897 	struct pmap *pm = pvo->pvo_pmap;
   1898 
   1899 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1900 		return;
   1901 	}
   1902 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1903 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1904 	{
   1905 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1906 		if (--pm->pm_exec[sr] == 0) {
   1907 			pm->pm_sr[sr] |= SR_NOEXEC;
   1908 		}
   1909 	}
   1910 #endif
   1911 }
   1912 
   1913 /*
   1914  * Insert physical page at pa into the given pmap at virtual address va.
   1915  */
   1916 int
   1917 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1918 {
   1919 	struct mem_region *mp;
   1920 	struct pvo_head *pvo_head;
   1921 	struct vm_page *pg;
   1922 	struct pool *pl;
   1923 	register_t pte_lo;
   1924 	int error;
   1925 	u_int pvo_flags;
   1926 	u_int was_exec = 0;
   1927 
   1928 	PMAP_LOCK();
   1929 
   1930 	if (__predict_false(!pmap_initialized)) {
   1931 		pvo_head = &pmap_pvo_kunmanaged;
   1932 		pl = &pmap_upvo_pool;
   1933 		pvo_flags = 0;
   1934 		pg = NULL;
   1935 		was_exec = PTE_EXEC;
   1936 	} else {
   1937 		pvo_head = pa_to_pvoh(pa, &pg);
   1938 		pl = &pmap_mpvo_pool;
   1939 		pvo_flags = PVO_MANAGED;
   1940 	}
   1941 
   1942 	DPRINTFN(ENTER,
   1943 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1944 	    pm, va, pa, prot, flags));
   1945 
   1946 	/*
   1947 	 * If this is a managed page, and it's the first reference to the
   1948 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1949 	 */
   1950 	if (pg != NULL)
   1951 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1952 
   1953 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1954 
   1955 	/*
   1956 	 * Assume the page is cache inhibited and access is guarded unless
   1957 	 * it's in our available memory array.  If it is in the memory array,
   1958 	 * asssume it's in memory coherent memory.
   1959 	 */
   1960 	pte_lo = PTE_IG;
   1961 	if ((flags & PMAP_NC) == 0) {
   1962 		for (mp = mem; mp->size; mp++) {
   1963 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1964 				pte_lo = PTE_M;
   1965 				break;
   1966 			}
   1967 		}
   1968 	}
   1969 
   1970 	if (prot & VM_PROT_WRITE)
   1971 		pte_lo |= PTE_BW;
   1972 	else
   1973 		pte_lo |= PTE_BR;
   1974 
   1975 	/*
   1976 	 * If this was in response to a fault, "pre-fault" the PTE's
   1977 	 * changed/referenced bit appropriately.
   1978 	 */
   1979 	if (flags & VM_PROT_WRITE)
   1980 		pte_lo |= PTE_CHG;
   1981 	if (flags & VM_PROT_ALL)
   1982 		pte_lo |= PTE_REF;
   1983 
   1984 	/*
   1985 	 * We need to know if this page can be executable
   1986 	 */
   1987 	flags |= (prot & VM_PROT_EXECUTE);
   1988 
   1989 	/*
   1990 	 * Record mapping for later back-translation and pte spilling.
   1991 	 * This will overwrite any existing mapping.
   1992 	 */
   1993 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1994 
   1995 	/*
   1996 	 * Flush the real page from the instruction cache if this page is
   1997 	 * mapped executable and cacheable and has not been flushed since
   1998 	 * the last time it was modified.
   1999 	 */
   2000 	if (error == 0 &&
   2001             (flags & VM_PROT_EXECUTE) &&
   2002             (pte_lo & PTE_I) == 0 &&
   2003 	    was_exec == 0) {
   2004 		DPRINTFN(ENTER, (" syncicache"));
   2005 		PMAPCOUNT(exec_synced);
   2006 		pmap_syncicache(pa, PAGE_SIZE);
   2007 		if (pg != NULL) {
   2008 			pmap_attr_save(pg, PTE_EXEC);
   2009 			PMAPCOUNT(exec_cached);
   2010 #if defined(DEBUG) || defined(PMAPDEBUG)
   2011 			if (pmapdebug & PMAPDEBUG_ENTER)
   2012 				printf(" marked-as-exec");
   2013 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2014 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   2015 				    VM_PAGE_TO_PHYS(pg));
   2016 
   2017 #endif
   2018 		}
   2019 	}
   2020 
   2021 	DPRINTFN(ENTER, (": error=%d\n", error));
   2022 
   2023 	PMAP_UNLOCK();
   2024 
   2025 	return error;
   2026 }
   2027 
   2028 void
   2029 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2030 {
   2031 	struct mem_region *mp;
   2032 	register_t pte_lo;
   2033 	int error;
   2034 
   2035 #if defined (PMAP_OEA64_BRIDGE)
   2036 	if (va < VM_MIN_KERNEL_ADDRESS)
   2037 		panic("pmap_kenter_pa: attempt to enter "
   2038 		    "non-kernel address %#" _PRIxva "!", va);
   2039 #endif
   2040 
   2041 	DPRINTFN(KENTER,
   2042 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2043 
   2044 	PMAP_LOCK();
   2045 
   2046 	/*
   2047 	 * Assume the page is cache inhibited and access is guarded unless
   2048 	 * it's in our available memory array.  If it is in the memory array,
   2049 	 * asssume it's in memory coherent memory.
   2050 	 */
   2051 	pte_lo = PTE_IG;
   2052 	if ((prot & PMAP_NC) == 0) {
   2053 		for (mp = mem; mp->size; mp++) {
   2054 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2055 				pte_lo = PTE_M;
   2056 				break;
   2057 			}
   2058 		}
   2059 	}
   2060 
   2061 	if (prot & VM_PROT_WRITE)
   2062 		pte_lo |= PTE_BW;
   2063 	else
   2064 		pte_lo |= PTE_BR;
   2065 
   2066 	/*
   2067 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2068 	 */
   2069 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2070 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2071 
   2072 	if (error != 0)
   2073 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2074 		      va, pa, error);
   2075 
   2076 	PMAP_UNLOCK();
   2077 }
   2078 
   2079 void
   2080 pmap_kremove(vaddr_t va, vsize_t len)
   2081 {
   2082 	if (va < VM_MIN_KERNEL_ADDRESS)
   2083 		panic("pmap_kremove: attempt to remove "
   2084 		    "non-kernel address %#" _PRIxva "!", va);
   2085 
   2086 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2087 	pmap_remove(pmap_kernel(), va, va + len);
   2088 }
   2089 
   2090 /*
   2091  * Remove the given range of mapping entries.
   2092  */
   2093 void
   2094 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2095 {
   2096 	struct pvo_head pvol;
   2097 	struct pvo_entry *pvo;
   2098 	register_t msr;
   2099 	int pteidx;
   2100 
   2101 	PMAP_LOCK();
   2102 	LIST_INIT(&pvol);
   2103 	msr = pmap_interrupts_off();
   2104 	for (; va < endva; va += PAGE_SIZE) {
   2105 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2106 		if (pvo != NULL) {
   2107 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2108 		}
   2109 	}
   2110 	pmap_interrupts_restore(msr);
   2111 	pmap_pvo_free_list(&pvol);
   2112 	PMAP_UNLOCK();
   2113 }
   2114 
   2115 /*
   2116  * Get the physical page address for the given pmap/virtual address.
   2117  */
   2118 bool
   2119 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2120 {
   2121 	struct pvo_entry *pvo;
   2122 	register_t msr;
   2123 
   2124 	PMAP_LOCK();
   2125 
   2126 	/*
   2127 	 * If this is a kernel pmap lookup, also check the battable
   2128 	 * and if we get a hit, translate the VA to a PA using the
   2129 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2130 	 * that will wrap back to 0.
   2131 	 */
   2132 	if (pm == pmap_kernel() &&
   2133 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2134 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2135 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2136 #if defined (PMAP_OEA)
   2137 #ifdef PPC_OEA601
   2138 		if ((MFPVR() >> 16) == MPC601) {
   2139 			register_t batu = battable[va >> 23].batu;
   2140 			register_t batl = battable[va >> 23].batl;
   2141 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2142 			if (BAT601_VALID_P(batl) &&
   2143 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2144 				register_t mask =
   2145 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2146 				if (pap)
   2147 					*pap = (batl & mask) | (va & ~mask);
   2148 				PMAP_UNLOCK();
   2149 				return true;
   2150 			} else if (SR601_VALID_P(sr) &&
   2151 				   SR601_PA_MATCH_P(sr, va)) {
   2152 				if (pap)
   2153 					*pap = va;
   2154 				PMAP_UNLOCK();
   2155 				return true;
   2156 			}
   2157 		} else
   2158 #endif /* PPC_OEA601 */
   2159 		{
   2160 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2161 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2162 				register_t batl =
   2163 				    battable[va >> ADDR_SR_SHFT].batl;
   2164 				register_t mask =
   2165 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2166 				if (pap)
   2167 					*pap = (batl & mask) | (va & ~mask);
   2168 				PMAP_UNLOCK();
   2169 				return true;
   2170 			}
   2171 		}
   2172 		return false;
   2173 #elif defined (PMAP_OEA64_BRIDGE)
   2174 	if (va >= SEGMENT_LENGTH)
   2175 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2176 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2177 	else {
   2178 		if (pap)
   2179 			*pap = va;
   2180 			PMAP_UNLOCK();
   2181 			return true;
   2182 	}
   2183 #elif defined (PMAP_OEA64)
   2184 #error PPC_OEA64 not supported
   2185 #endif /* PPC_OEA */
   2186 	}
   2187 
   2188 	msr = pmap_interrupts_off();
   2189 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2190 	if (pvo != NULL) {
   2191 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2192 		if (pap)
   2193 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2194 			    | (va & ADDR_POFF);
   2195 	}
   2196 	pmap_interrupts_restore(msr);
   2197 	PMAP_UNLOCK();
   2198 	return pvo != NULL;
   2199 }
   2200 
   2201 /*
   2202  * Lower the protection on the specified range of this pmap.
   2203  */
   2204 void
   2205 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2206 {
   2207 	struct pvo_entry *pvo;
   2208 	volatile struct pte *pt;
   2209 	register_t msr;
   2210 	int pteidx;
   2211 
   2212 	/*
   2213 	 * Since this routine only downgrades protection, we should
   2214 	 * always be called with at least one bit not set.
   2215 	 */
   2216 	KASSERT(prot != VM_PROT_ALL);
   2217 
   2218 	/*
   2219 	 * If there is no protection, this is equivalent to
   2220 	 * remove the pmap from the pmap.
   2221 	 */
   2222 	if ((prot & VM_PROT_READ) == 0) {
   2223 		pmap_remove(pm, va, endva);
   2224 		return;
   2225 	}
   2226 
   2227 	PMAP_LOCK();
   2228 
   2229 	msr = pmap_interrupts_off();
   2230 	for (; va < endva; va += PAGE_SIZE) {
   2231 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2232 		if (pvo == NULL)
   2233 			continue;
   2234 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2235 
   2236 		/*
   2237 		 * Revoke executable if asked to do so.
   2238 		 */
   2239 		if ((prot & VM_PROT_EXECUTE) == 0)
   2240 			pvo_clear_exec(pvo);
   2241 
   2242 #if 0
   2243 		/*
   2244 		 * If the page is already read-only, no change
   2245 		 * needs to be made.
   2246 		 */
   2247 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2248 			continue;
   2249 #endif
   2250 		/*
   2251 		 * Grab the PTE pointer before we diddle with
   2252 		 * the cached PTE copy.
   2253 		 */
   2254 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2255 		/*
   2256 		 * Change the protection of the page.
   2257 		 */
   2258 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2259 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2260 
   2261 		/*
   2262 		 * If the PVO is in the page table, update
   2263 		 * that pte at well.
   2264 		 */
   2265 		if (pt != NULL) {
   2266 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2267 			PVO_WHERE(pvo, PMAP_PROTECT);
   2268 			PMAPCOUNT(ptes_changed);
   2269 		}
   2270 
   2271 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2272 	}
   2273 	pmap_interrupts_restore(msr);
   2274 	PMAP_UNLOCK();
   2275 }
   2276 
   2277 void
   2278 pmap_unwire(pmap_t pm, vaddr_t va)
   2279 {
   2280 	struct pvo_entry *pvo;
   2281 	register_t msr;
   2282 
   2283 	PMAP_LOCK();
   2284 	msr = pmap_interrupts_off();
   2285 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2286 	if (pvo != NULL) {
   2287 		if (PVO_WIRED_P(pvo)) {
   2288 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2289 			pm->pm_stats.wired_count--;
   2290 		}
   2291 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2292 	}
   2293 	pmap_interrupts_restore(msr);
   2294 	PMAP_UNLOCK();
   2295 }
   2296 
   2297 /*
   2298  * Lower the protection on the specified physical page.
   2299  */
   2300 void
   2301 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2302 {
   2303 	struct pvo_head *pvo_head, pvol;
   2304 	struct pvo_entry *pvo, *next_pvo;
   2305 	volatile struct pte *pt;
   2306 	register_t msr;
   2307 
   2308 	PMAP_LOCK();
   2309 
   2310 	KASSERT(prot != VM_PROT_ALL);
   2311 	LIST_INIT(&pvol);
   2312 	msr = pmap_interrupts_off();
   2313 
   2314 	/*
   2315 	 * When UVM reuses a page, it does a pmap_page_protect with
   2316 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2317 	 * since we know the page will have different contents.
   2318 	 */
   2319 	if ((prot & VM_PROT_READ) == 0) {
   2320 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2321 		    VM_PAGE_TO_PHYS(pg)));
   2322 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2323 			PMAPCOUNT(exec_uncached_page_protect);
   2324 			pmap_attr_clear(pg, PTE_EXEC);
   2325 		}
   2326 	}
   2327 
   2328 	pvo_head = vm_page_to_pvoh(pg);
   2329 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2330 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2331 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2332 
   2333 		/*
   2334 		 * Downgrading to no mapping at all, we just remove the entry.
   2335 		 */
   2336 		if ((prot & VM_PROT_READ) == 0) {
   2337 			pmap_pvo_remove(pvo, -1, &pvol);
   2338 			continue;
   2339 		}
   2340 
   2341 		/*
   2342 		 * If EXEC permission is being revoked, just clear the
   2343 		 * flag in the PVO.
   2344 		 */
   2345 		if ((prot & VM_PROT_EXECUTE) == 0)
   2346 			pvo_clear_exec(pvo);
   2347 
   2348 		/*
   2349 		 * If this entry is already RO, don't diddle with the
   2350 		 * page table.
   2351 		 */
   2352 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2353 			PMAP_PVO_CHECK(pvo);
   2354 			continue;
   2355 		}
   2356 
   2357 		/*
   2358 		 * Grab the PTE before the we diddle the bits so
   2359 		 * pvo_to_pte can verify the pte contents are as
   2360 		 * expected.
   2361 		 */
   2362 		pt = pmap_pvo_to_pte(pvo, -1);
   2363 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2364 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2365 		if (pt != NULL) {
   2366 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2367 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2368 			PMAPCOUNT(ptes_changed);
   2369 		}
   2370 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2371 	}
   2372 	pmap_interrupts_restore(msr);
   2373 	pmap_pvo_free_list(&pvol);
   2374 
   2375 	PMAP_UNLOCK();
   2376 }
   2377 
   2378 /*
   2379  * Activate the address space for the specified process.  If the process
   2380  * is the current process, load the new MMU context.
   2381  */
   2382 void
   2383 pmap_activate(struct lwp *l)
   2384 {
   2385 	struct pcb *pcb = &l->l_addr->u_pcb;
   2386 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2387 
   2388 	DPRINTFN(ACTIVATE,
   2389 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2390 
   2391 	/*
   2392 	 * XXX Normally performed in cpu_fork().
   2393 	 */
   2394 	pcb->pcb_pm = pmap;
   2395 
   2396 	/*
   2397 	* In theory, the SR registers need only be valid on return
   2398 	* to user space wait to do them there.
   2399 	*/
   2400 	if (l == curlwp) {
   2401 		/* Store pointer to new current pmap. */
   2402 		curpm = pmap;
   2403 	}
   2404 }
   2405 
   2406 /*
   2407  * Deactivate the specified process's address space.
   2408  */
   2409 void
   2410 pmap_deactivate(struct lwp *l)
   2411 {
   2412 }
   2413 
   2414 bool
   2415 pmap_query_bit(struct vm_page *pg, int ptebit)
   2416 {
   2417 	struct pvo_entry *pvo;
   2418 	volatile struct pte *pt;
   2419 	register_t msr;
   2420 
   2421 	PMAP_LOCK();
   2422 
   2423 	if (pmap_attr_fetch(pg) & ptebit) {
   2424 		PMAP_UNLOCK();
   2425 		return true;
   2426 	}
   2427 
   2428 	msr = pmap_interrupts_off();
   2429 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2430 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2431 		/*
   2432 		 * See if we saved the bit off.  If so cache, it and return
   2433 		 * success.
   2434 		 */
   2435 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2436 			pmap_attr_save(pg, ptebit);
   2437 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2438 			pmap_interrupts_restore(msr);
   2439 			PMAP_UNLOCK();
   2440 			return true;
   2441 		}
   2442 	}
   2443 	/*
   2444 	 * No luck, now go thru the hard part of looking at the ptes
   2445 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2446 	 * to the PTEs.
   2447 	 */
   2448 	SYNC();
   2449 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2450 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2451 		/*
   2452 		 * See if this pvo have a valid PTE.  If so, fetch the
   2453 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2454 		 * ptebit is set, cache, it and return success.
   2455 		 */
   2456 		pt = pmap_pvo_to_pte(pvo, -1);
   2457 		if (pt != NULL) {
   2458 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2459 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2460 				pmap_attr_save(pg, ptebit);
   2461 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2462 				pmap_interrupts_restore(msr);
   2463 				PMAP_UNLOCK();
   2464 				return true;
   2465 			}
   2466 		}
   2467 	}
   2468 	pmap_interrupts_restore(msr);
   2469 	PMAP_UNLOCK();
   2470 	return false;
   2471 }
   2472 
   2473 bool
   2474 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2475 {
   2476 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2477 	struct pvo_entry *pvo;
   2478 	volatile struct pte *pt;
   2479 	register_t msr;
   2480 	int rv = 0;
   2481 
   2482 	PMAP_LOCK();
   2483 	msr = pmap_interrupts_off();
   2484 
   2485 	/*
   2486 	 * Fetch the cache value
   2487 	 */
   2488 	rv |= pmap_attr_fetch(pg);
   2489 
   2490 	/*
   2491 	 * Clear the cached value.
   2492 	 */
   2493 	pmap_attr_clear(pg, ptebit);
   2494 
   2495 	/*
   2496 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2497 	 * can reset the right ones).  Note that since the pvo entries and
   2498 	 * list heads are accessed via BAT0 and are never placed in the
   2499 	 * page table, we don't have to worry about further accesses setting
   2500 	 * the REF/CHG bits.
   2501 	 */
   2502 	SYNC();
   2503 
   2504 	/*
   2505 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2506 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2507 	 */
   2508 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2509 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2510 		pt = pmap_pvo_to_pte(pvo, -1);
   2511 		if (pt != NULL) {
   2512 			/*
   2513 			 * Only sync the PTE if the bit we are looking
   2514 			 * for is not already set.
   2515 			 */
   2516 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2517 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2518 			/*
   2519 			 * If the bit we are looking for was already set,
   2520 			 * clear that bit in the pte.
   2521 			 */
   2522 			if (pvo->pvo_pte.pte_lo & ptebit)
   2523 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2524 		}
   2525 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2526 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2527 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2528 	}
   2529 	pmap_interrupts_restore(msr);
   2530 
   2531 	/*
   2532 	 * If we are clearing the modify bit and this page was marked EXEC
   2533 	 * and the user of the page thinks the page was modified, then we
   2534 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2535 	 * bit if it's not mapped.  The page itself might not have the CHG
   2536 	 * bit set if the modification was done via DMA to the page.
   2537 	 */
   2538 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2539 		if (LIST_EMPTY(pvoh)) {
   2540 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2541 			    VM_PAGE_TO_PHYS(pg)));
   2542 			pmap_attr_clear(pg, PTE_EXEC);
   2543 			PMAPCOUNT(exec_uncached_clear_modify);
   2544 		} else {
   2545 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2546 			    VM_PAGE_TO_PHYS(pg)));
   2547 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2548 			PMAPCOUNT(exec_synced_clear_modify);
   2549 		}
   2550 	}
   2551 	PMAP_UNLOCK();
   2552 	return (rv & ptebit) != 0;
   2553 }
   2554 
   2555 void
   2556 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2557 {
   2558 	struct pvo_entry *pvo;
   2559 	size_t offset = va & ADDR_POFF;
   2560 	int s;
   2561 
   2562 	PMAP_LOCK();
   2563 	s = splvm();
   2564 	while (len > 0) {
   2565 		size_t seglen = PAGE_SIZE - offset;
   2566 		if (seglen > len)
   2567 			seglen = len;
   2568 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2569 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2570 			pmap_syncicache(
   2571 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2572 			PMAP_PVO_CHECK(pvo);
   2573 		}
   2574 		va += seglen;
   2575 		len -= seglen;
   2576 		offset = 0;
   2577 	}
   2578 	splx(s);
   2579 	PMAP_UNLOCK();
   2580 }
   2581 
   2582 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2583 void
   2584 pmap_pte_print(volatile struct pte *pt)
   2585 {
   2586 	printf("PTE %p: ", pt);
   2587 
   2588 #if defined(PMAP_OEA)
   2589 	/* High word: */
   2590 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2591 #else
   2592 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2593 #endif /* PMAP_OEA */
   2594 
   2595 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2596 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2597 
   2598 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2599 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2600 	    pt->pte_hi & PTE_API);
   2601 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2602 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2603 #else
   2604 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2605 #endif /* PMAP_OEA */
   2606 
   2607 	/* Low word: */
   2608 #if defined (PMAP_OEA)
   2609 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2610 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2611 #else
   2612 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2613 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2614 #endif
   2615 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2616 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2617 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2618 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2619 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2620 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2621 	switch (pt->pte_lo & PTE_PP) {
   2622 	case PTE_BR: printf("br]\n"); break;
   2623 	case PTE_BW: printf("bw]\n"); break;
   2624 	case PTE_SO: printf("so]\n"); break;
   2625 	case PTE_SW: printf("sw]\n"); break;
   2626 	}
   2627 }
   2628 #endif
   2629 
   2630 #if defined(DDB)
   2631 void
   2632 pmap_pteg_check(void)
   2633 {
   2634 	volatile struct pte *pt;
   2635 	int i;
   2636 	int ptegidx;
   2637 	u_int p_valid = 0;
   2638 	u_int s_valid = 0;
   2639 	u_int invalid = 0;
   2640 
   2641 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2642 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2643 			if (pt->pte_hi & PTE_VALID) {
   2644 				if (pt->pte_hi & PTE_HID)
   2645 					s_valid++;
   2646 				else
   2647 				{
   2648 					p_valid++;
   2649 				}
   2650 			} else
   2651 				invalid++;
   2652 		}
   2653 	}
   2654 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2655 		p_valid, p_valid, s_valid, s_valid,
   2656 		invalid, invalid);
   2657 }
   2658 
   2659 void
   2660 pmap_print_mmuregs(void)
   2661 {
   2662 	int i;
   2663 	u_int cpuvers;
   2664 #ifndef PMAP_OEA64
   2665 	vaddr_t addr;
   2666 	register_t soft_sr[16];
   2667 #endif
   2668 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2669 	struct bat soft_ibat[4];
   2670 	struct bat soft_dbat[4];
   2671 #endif
   2672 	paddr_t sdr1;
   2673 
   2674 	cpuvers = MFPVR() >> 16;
   2675 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2676 #ifndef PMAP_OEA64
   2677 	addr = 0;
   2678 	for (i = 0; i < 16; i++) {
   2679 		soft_sr[i] = MFSRIN(addr);
   2680 		addr += (1 << ADDR_SR_SHFT);
   2681 	}
   2682 #endif
   2683 
   2684 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2685 	/* read iBAT (601: uBAT) registers */
   2686 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2687 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2688 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2689 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2690 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2691 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2692 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2693 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2694 
   2695 
   2696 	if (cpuvers != MPC601) {
   2697 		/* read dBAT registers */
   2698 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2699 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2700 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2701 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2702 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2703 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2704 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2705 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2706 	}
   2707 #endif
   2708 
   2709 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2710 #ifndef PMAP_OEA64
   2711 	printf("SR[]:\t");
   2712 	for (i = 0; i < 4; i++)
   2713 		printf("0x%08lx,   ", soft_sr[i]);
   2714 	printf("\n\t");
   2715 	for ( ; i < 8; i++)
   2716 		printf("0x%08lx,   ", soft_sr[i]);
   2717 	printf("\n\t");
   2718 	for ( ; i < 12; i++)
   2719 		printf("0x%08lx,   ", soft_sr[i]);
   2720 	printf("\n\t");
   2721 	for ( ; i < 16; i++)
   2722 		printf("0x%08lx,   ", soft_sr[i]);
   2723 	printf("\n");
   2724 #endif
   2725 
   2726 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2727 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2728 	for (i = 0; i < 4; i++) {
   2729 		printf("0x%08lx 0x%08lx, ",
   2730 			soft_ibat[i].batu, soft_ibat[i].batl);
   2731 		if (i == 1)
   2732 			printf("\n\t");
   2733 	}
   2734 	if (cpuvers != MPC601) {
   2735 		printf("\ndBAT[]:\t");
   2736 		for (i = 0; i < 4; i++) {
   2737 			printf("0x%08lx 0x%08lx, ",
   2738 				soft_dbat[i].batu, soft_dbat[i].batl);
   2739 			if (i == 1)
   2740 				printf("\n\t");
   2741 		}
   2742 	}
   2743 	printf("\n");
   2744 #endif /* PMAP_OEA... */
   2745 }
   2746 
   2747 void
   2748 pmap_print_pte(pmap_t pm, vaddr_t va)
   2749 {
   2750 	struct pvo_entry *pvo;
   2751 	volatile struct pte *pt;
   2752 	int pteidx;
   2753 
   2754 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2755 	if (pvo != NULL) {
   2756 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2757 		if (pt != NULL) {
   2758 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2759 				va, pt,
   2760 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2761 				pt->pte_hi, pt->pte_lo);
   2762 		} else {
   2763 			printf("No valid PTE found\n");
   2764 		}
   2765 	} else {
   2766 		printf("Address not in pmap\n");
   2767 	}
   2768 }
   2769 
   2770 void
   2771 pmap_pteg_dist(void)
   2772 {
   2773 	struct pvo_entry *pvo;
   2774 	int ptegidx;
   2775 	int depth;
   2776 	int max_depth = 0;
   2777 	unsigned int depths[64];
   2778 
   2779 	memset(depths, 0, sizeof(depths));
   2780 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2781 		depth = 0;
   2782 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2783 			depth++;
   2784 		}
   2785 		if (depth > max_depth)
   2786 			max_depth = depth;
   2787 		if (depth > 63)
   2788 			depth = 63;
   2789 		depths[depth]++;
   2790 	}
   2791 
   2792 	for (depth = 0; depth < 64; depth++) {
   2793 		printf("  [%2d]: %8u", depth, depths[depth]);
   2794 		if ((depth & 3) == 3)
   2795 			printf("\n");
   2796 		if (depth == max_depth)
   2797 			break;
   2798 	}
   2799 	if ((depth & 3) != 3)
   2800 		printf("\n");
   2801 	printf("Max depth found was %d\n", max_depth);
   2802 }
   2803 #endif /* DEBUG */
   2804 
   2805 #if defined(PMAPCHECK) || defined(DEBUG)
   2806 void
   2807 pmap_pvo_verify(void)
   2808 {
   2809 	int ptegidx;
   2810 	int s;
   2811 
   2812 	s = splvm();
   2813 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2814 		struct pvo_entry *pvo;
   2815 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2816 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2817 				panic("pmap_pvo_verify: invalid pvo %p "
   2818 				    "on list %#x", pvo, ptegidx);
   2819 			pmap_pvo_check(pvo);
   2820 		}
   2821 	}
   2822 	splx(s);
   2823 }
   2824 #endif /* PMAPCHECK */
   2825 
   2826 
   2827 void *
   2828 pmap_pool_ualloc(struct pool *pp, int flags)
   2829 {
   2830 	struct pvo_page *pvop;
   2831 
   2832 	if (uvm.page_init_done != true) {
   2833 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2834 	}
   2835 
   2836 	PMAP_LOCK();
   2837 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2838 	if (pvop != NULL) {
   2839 		pmap_upvop_free--;
   2840 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2841 		PMAP_UNLOCK();
   2842 		return pvop;
   2843 	}
   2844 	PMAP_UNLOCK();
   2845 	return pmap_pool_malloc(pp, flags);
   2846 }
   2847 
   2848 void *
   2849 pmap_pool_malloc(struct pool *pp, int flags)
   2850 {
   2851 	struct pvo_page *pvop;
   2852 	struct vm_page *pg;
   2853 
   2854 	PMAP_LOCK();
   2855 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2856 	if (pvop != NULL) {
   2857 		pmap_mpvop_free--;
   2858 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2859 		PMAP_UNLOCK();
   2860 		return pvop;
   2861 	}
   2862 	PMAP_UNLOCK();
   2863  again:
   2864 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2865 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2866 	if (__predict_false(pg == NULL)) {
   2867 		if (flags & PR_WAITOK) {
   2868 			uvm_wait("plpg");
   2869 			goto again;
   2870 		} else {
   2871 			return (0);
   2872 		}
   2873 	}
   2874 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2875 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2876 }
   2877 
   2878 void
   2879 pmap_pool_ufree(struct pool *pp, void *va)
   2880 {
   2881 	struct pvo_page *pvop;
   2882 #if 0
   2883 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2884 		pmap_pool_mfree(va, size, tag);
   2885 		return;
   2886 	}
   2887 #endif
   2888 	PMAP_LOCK();
   2889 	pvop = va;
   2890 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2891 	pmap_upvop_free++;
   2892 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2893 		pmap_upvop_maxfree = pmap_upvop_free;
   2894 	PMAP_UNLOCK();
   2895 }
   2896 
   2897 void
   2898 pmap_pool_mfree(struct pool *pp, void *va)
   2899 {
   2900 	struct pvo_page *pvop;
   2901 
   2902 	PMAP_LOCK();
   2903 	pvop = va;
   2904 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2905 	pmap_mpvop_free++;
   2906 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2907 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2908 	PMAP_UNLOCK();
   2909 #if 0
   2910 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2911 #endif
   2912 }
   2913 
   2914 /*
   2915  * This routine in bootstraping to steal to-be-managed memory (which will
   2916  * then be unmanaged).  We use it to grab from the first 256MB for our
   2917  * pmap needs and above 256MB for other stuff.
   2918  */
   2919 vaddr_t
   2920 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2921 {
   2922 	vsize_t size;
   2923 	vaddr_t va;
   2924 	paddr_t pa = 0;
   2925 	int npgs, bank;
   2926 	struct vm_physseg *ps;
   2927 
   2928 	if (uvm.page_init_done == true)
   2929 		panic("pmap_steal_memory: called _after_ bootstrap");
   2930 
   2931 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2932 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2933 
   2934 	size = round_page(vsize);
   2935 	npgs = atop(size);
   2936 
   2937 	/*
   2938 	 * PA 0 will never be among those given to UVM so we can use it
   2939 	 * to indicate we couldn't steal any memory.
   2940 	 */
   2941 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2942 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2943 		    ps->avail_end - ps->avail_start >= npgs) {
   2944 			pa = ptoa(ps->avail_start);
   2945 			break;
   2946 		}
   2947 	}
   2948 
   2949 	if (pa == 0)
   2950 		panic("pmap_steal_memory: no approriate memory to steal!");
   2951 
   2952 	ps->avail_start += npgs;
   2953 	ps->start += npgs;
   2954 
   2955 	/*
   2956 	 * If we've used up all the pages in the segment, remove it and
   2957 	 * compact the list.
   2958 	 */
   2959 	if (ps->avail_start == ps->end) {
   2960 		/*
   2961 		 * If this was the last one, then a very bad thing has occurred
   2962 		 */
   2963 		if (--vm_nphysseg == 0)
   2964 			panic("pmap_steal_memory: out of memory!");
   2965 
   2966 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2967 		for (; bank < vm_nphysseg; bank++, ps++) {
   2968 			ps[0] = ps[1];
   2969 		}
   2970 	}
   2971 
   2972 	va = (vaddr_t) pa;
   2973 	memset((void *) va, 0, size);
   2974 	pmap_pages_stolen += npgs;
   2975 #ifdef DEBUG
   2976 	if (pmapdebug && npgs > 1) {
   2977 		u_int cnt = 0;
   2978 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2979 			cnt += ps->avail_end - ps->avail_start;
   2980 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2981 		    npgs, pmap_pages_stolen, cnt);
   2982 	}
   2983 #endif
   2984 
   2985 	return va;
   2986 }
   2987 
   2988 /*
   2989  * Find a chuck of memory with right size and alignment.
   2990  */
   2991 paddr_t
   2992 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2993 {
   2994 	struct mem_region *mp;
   2995 	paddr_t s, e;
   2996 	int i, j;
   2997 
   2998 	size = round_page(size);
   2999 
   3000 	DPRINTFN(BOOT,
   3001 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   3002 	    size, alignment, at_end));
   3003 
   3004 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   3005 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   3006 		    alignment);
   3007 
   3008 	if (at_end) {
   3009 		if (alignment != PAGE_SIZE)
   3010 			panic("pmap_boot_find_memory: invalid ending "
   3011 			    "alignment %#" _PRIxpa, alignment);
   3012 
   3013 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3014 			s = mp->start + mp->size - size;
   3015 			if (s >= mp->start && mp->size >= size) {
   3016 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3017 				DPRINTFN(BOOT,
   3018 				    ("pmap_boot_find_memory: b-avail[%d] start "
   3019 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3020 				     mp->start, mp->size));
   3021 				mp->size -= size;
   3022 				DPRINTFN(BOOT,
   3023 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3024 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3025 				     mp->start, mp->size));
   3026 				return s;
   3027 			}
   3028 		}
   3029 		panic("pmap_boot_find_memory: no available memory");
   3030 	}
   3031 
   3032 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3033 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3034 		e = s + size;
   3035 
   3036 		/*
   3037 		 * Is the calculated region entirely within the region?
   3038 		 */
   3039 		if (s < mp->start || e > mp->start + mp->size)
   3040 			continue;
   3041 
   3042 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3043 		if (s == mp->start) {
   3044 			/*
   3045 			 * If the block starts at the beginning of region,
   3046 			 * adjust the size & start. (the region may now be
   3047 			 * zero in length)
   3048 			 */
   3049 			DPRINTFN(BOOT,
   3050 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3051 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3052 			mp->start += size;
   3053 			mp->size -= size;
   3054 			DPRINTFN(BOOT,
   3055 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3056 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3057 		} else if (e == mp->start + mp->size) {
   3058 			/*
   3059 			 * If the block starts at the beginning of region,
   3060 			 * adjust only the size.
   3061 			 */
   3062 			DPRINTFN(BOOT,
   3063 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3064 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3065 			mp->size -= size;
   3066 			DPRINTFN(BOOT,
   3067 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3068 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3069 		} else {
   3070 			/*
   3071 			 * Block is in the middle of the region, so we
   3072 			 * have to split it in two.
   3073 			 */
   3074 			for (j = avail_cnt; j > i + 1; j--) {
   3075 				avail[j] = avail[j-1];
   3076 			}
   3077 			DPRINTFN(BOOT,
   3078 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3079 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3080 			mp[1].start = e;
   3081 			mp[1].size = mp[0].start + mp[0].size - e;
   3082 			mp[0].size = s - mp[0].start;
   3083 			avail_cnt++;
   3084 			for (; i < avail_cnt; i++) {
   3085 				DPRINTFN(BOOT,
   3086 				    ("pmap_boot_find_memory: a-avail[%d] "
   3087 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3088 				     avail[i].start, avail[i].size));
   3089 			}
   3090 		}
   3091 		KASSERT(s == (uintptr_t) s);
   3092 		return s;
   3093 	}
   3094 	panic("pmap_boot_find_memory: not enough memory for "
   3095 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3096 }
   3097 
   3098 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3099 #if defined (PMAP_OEA64_BRIDGE)
   3100 int
   3101 pmap_setup_segment0_map(int use_large_pages, ...)
   3102 {
   3103     vaddr_t va;
   3104 
   3105     register_t pte_lo = 0x0;
   3106     int ptegidx = 0, i = 0;
   3107     struct pte pte;
   3108     va_list ap;
   3109 
   3110     /* Coherent + Supervisor RW, no user access */
   3111     pte_lo = PTE_M;
   3112 
   3113     /* XXXSL
   3114      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3115      * these have to take priority.
   3116      */
   3117     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3118         ptegidx = va_to_pteg(pmap_kernel(), va);
   3119         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3120         i = pmap_pte_insert(ptegidx, &pte);
   3121     }
   3122 
   3123     va_start(ap, use_large_pages);
   3124     while (1) {
   3125         paddr_t pa;
   3126         size_t size;
   3127 
   3128         va = va_arg(ap, vaddr_t);
   3129 
   3130         if (va == 0)
   3131             break;
   3132 
   3133         pa = va_arg(ap, paddr_t);
   3134         size = va_arg(ap, size_t);
   3135 
   3136         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3137 #if 0
   3138 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3139 #endif
   3140             ptegidx = va_to_pteg(pmap_kernel(), va);
   3141             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3142             i = pmap_pte_insert(ptegidx, &pte);
   3143         }
   3144     }
   3145 
   3146     TLBSYNC();
   3147     SYNC();
   3148     return (0);
   3149 }
   3150 #endif /* PMAP_OEA64_BRIDGE */
   3151 
   3152 /*
   3153  * This is not part of the defined PMAP interface and is specific to the
   3154  * PowerPC architecture.  This is called during initppc, before the system
   3155  * is really initialized.
   3156  */
   3157 void
   3158 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3159 {
   3160 	struct mem_region *mp, tmp;
   3161 	paddr_t s, e;
   3162 	psize_t size;
   3163 	int i, j;
   3164 
   3165 	/*
   3166 	 * Get memory.
   3167 	 */
   3168 	mem_regions(&mem, &avail);
   3169 #if defined(DEBUG)
   3170 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3171 		printf("pmap_bootstrap: memory configuration:\n");
   3172 		for (mp = mem; mp->size; mp++) {
   3173 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3174 				mp->start, mp->size);
   3175 		}
   3176 		for (mp = avail; mp->size; mp++) {
   3177 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3178 				mp->start, mp->size);
   3179 		}
   3180 	}
   3181 #endif
   3182 
   3183 	/*
   3184 	 * Find out how much physical memory we have and in how many chunks.
   3185 	 */
   3186 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3187 		if (mp->start >= pmap_memlimit)
   3188 			continue;
   3189 		if (mp->start + mp->size > pmap_memlimit) {
   3190 			size = pmap_memlimit - mp->start;
   3191 			physmem += btoc(size);
   3192 		} else {
   3193 			physmem += btoc(mp->size);
   3194 		}
   3195 		mem_cnt++;
   3196 	}
   3197 
   3198 	/*
   3199 	 * Count the number of available entries.
   3200 	 */
   3201 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3202 		avail_cnt++;
   3203 
   3204 	/*
   3205 	 * Page align all regions.
   3206 	 */
   3207 	kernelstart = trunc_page(kernelstart);
   3208 	kernelend = round_page(kernelend);
   3209 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3210 		s = round_page(mp->start);
   3211 		mp->size -= (s - mp->start);
   3212 		mp->size = trunc_page(mp->size);
   3213 		mp->start = s;
   3214 		e = mp->start + mp->size;
   3215 
   3216 		DPRINTFN(BOOT,
   3217 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3218 		    i, mp->start, mp->size));
   3219 
   3220 		/*
   3221 		 * Don't allow the end to run beyond our artificial limit
   3222 		 */
   3223 		if (e > pmap_memlimit)
   3224 			e = pmap_memlimit;
   3225 
   3226 		/*
   3227 		 * Is this region empty or strange?  skip it.
   3228 		 */
   3229 		if (e <= s) {
   3230 			mp->start = 0;
   3231 			mp->size = 0;
   3232 			continue;
   3233 		}
   3234 
   3235 		/*
   3236 		 * Does this overlap the beginning of kernel?
   3237 		 *   Does extend past the end of the kernel?
   3238 		 */
   3239 		else if (s < kernelstart && e > kernelstart) {
   3240 			if (e > kernelend) {
   3241 				avail[avail_cnt].start = kernelend;
   3242 				avail[avail_cnt].size = e - kernelend;
   3243 				avail_cnt++;
   3244 			}
   3245 			mp->size = kernelstart - s;
   3246 		}
   3247 		/*
   3248 		 * Check whether this region overlaps the end of the kernel.
   3249 		 */
   3250 		else if (s < kernelend && e > kernelend) {
   3251 			mp->start = kernelend;
   3252 			mp->size = e - kernelend;
   3253 		}
   3254 		/*
   3255 		 * Look whether this regions is completely inside the kernel.
   3256 		 * Nuke it if it does.
   3257 		 */
   3258 		else if (s >= kernelstart && e <= kernelend) {
   3259 			mp->start = 0;
   3260 			mp->size = 0;
   3261 		}
   3262 		/*
   3263 		 * If the user imposed a memory limit, enforce it.
   3264 		 */
   3265 		else if (s >= pmap_memlimit) {
   3266 			mp->start = -PAGE_SIZE;	/* let's know why */
   3267 			mp->size = 0;
   3268 		}
   3269 		else {
   3270 			mp->start = s;
   3271 			mp->size = e - s;
   3272 		}
   3273 		DPRINTFN(BOOT,
   3274 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3275 		    i, mp->start, mp->size));
   3276 	}
   3277 
   3278 	/*
   3279 	 * Move (and uncount) all the null return to the end.
   3280 	 */
   3281 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3282 		if (mp->size == 0) {
   3283 			tmp = avail[i];
   3284 			avail[i] = avail[--avail_cnt];
   3285 			avail[avail_cnt] = avail[i];
   3286 		}
   3287 	}
   3288 
   3289 	/*
   3290 	 * (Bubble)sort them into asecnding order.
   3291 	 */
   3292 	for (i = 0; i < avail_cnt; i++) {
   3293 		for (j = i + 1; j < avail_cnt; j++) {
   3294 			if (avail[i].start > avail[j].start) {
   3295 				tmp = avail[i];
   3296 				avail[i] = avail[j];
   3297 				avail[j] = tmp;
   3298 			}
   3299 		}
   3300 	}
   3301 
   3302 	/*
   3303 	 * Make sure they don't overlap.
   3304 	 */
   3305 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3306 		if (mp[0].start + mp[0].size > mp[1].start) {
   3307 			mp[0].size = mp[1].start - mp[0].start;
   3308 		}
   3309 		DPRINTFN(BOOT,
   3310 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3311 		    i, mp->start, mp->size));
   3312 	}
   3313 	DPRINTFN(BOOT,
   3314 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3315 	    i, mp->start, mp->size));
   3316 
   3317 #ifdef	PTEGCOUNT
   3318 	pmap_pteg_cnt = PTEGCOUNT;
   3319 #else /* PTEGCOUNT */
   3320 
   3321 	pmap_pteg_cnt = 0x1000;
   3322 
   3323 	while (pmap_pteg_cnt < physmem)
   3324 		pmap_pteg_cnt <<= 1;
   3325 
   3326 	pmap_pteg_cnt >>= 1;
   3327 #endif /* PTEGCOUNT */
   3328 
   3329 #ifdef DEBUG
   3330 	DPRINTFN(BOOT,
   3331 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3332 #endif
   3333 
   3334 	/*
   3335 	 * Find suitably aligned memory for PTEG hash table.
   3336 	 */
   3337 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3338 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3339 
   3340 #ifdef DEBUG
   3341 	DPRINTFN(BOOT,
   3342 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3343 #endif
   3344 
   3345 
   3346 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3347 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3348 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3349 		    pmap_pteg_table, size);
   3350 #endif
   3351 
   3352 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3353 		pmap_pteg_cnt * sizeof(struct pteg));
   3354 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3355 
   3356 	/*
   3357 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3358 	 * with pages.  So we just steal them before giving them to UVM.
   3359 	 */
   3360 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3361 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3362 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3363 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3364 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3365 		    pmap_pvo_table, size);
   3366 #endif
   3367 
   3368 	for (i = 0; i < pmap_pteg_cnt; i++)
   3369 		TAILQ_INIT(&pmap_pvo_table[i]);
   3370 
   3371 #ifndef MSGBUFADDR
   3372 	/*
   3373 	 * Allocate msgbuf in high memory.
   3374 	 */
   3375 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3376 #endif
   3377 
   3378 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3379 		paddr_t pfstart = atop(mp->start);
   3380 		paddr_t pfend = atop(mp->start + mp->size);
   3381 		if (mp->size == 0)
   3382 			continue;
   3383 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3384 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3385 				VM_FREELIST_FIRST256);
   3386 		} else if (mp->start >= SEGMENT_LENGTH) {
   3387 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3388 				VM_FREELIST_DEFAULT);
   3389 		} else {
   3390 			pfend = atop(SEGMENT_LENGTH);
   3391 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3392 				VM_FREELIST_FIRST256);
   3393 			pfstart = atop(SEGMENT_LENGTH);
   3394 			pfend = atop(mp->start + mp->size);
   3395 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3396 				VM_FREELIST_DEFAULT);
   3397 		}
   3398 	}
   3399 
   3400 	/*
   3401 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3402 	 */
   3403 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3404 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3405 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3406 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3407 	pmap_vsid_bitmap[0] |= 1;
   3408 
   3409 	/*
   3410 	 * Initialize kernel pmap and hardware.
   3411 	 */
   3412 
   3413 /* PMAP_OEA64_BRIDGE does support these instructions */
   3414 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3415 	for (i = 0; i < 16; i++) {
   3416  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3417 		__asm volatile ("mtsrin %0,%1"
   3418  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3419 	}
   3420 
   3421 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3422 	__asm volatile ("mtsr %0,%1"
   3423 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3424 #ifdef KERNEL2_SR
   3425 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3426 	__asm volatile ("mtsr %0,%1"
   3427 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3428 #endif
   3429 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3430 #if defined (PMAP_OEA)
   3431 	for (i = 0; i < 16; i++) {
   3432 		if (iosrtable[i] & SR601_T) {
   3433 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3434 			__asm volatile ("mtsrin %0,%1"
   3435 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3436 		}
   3437 	}
   3438 	__asm volatile ("sync; mtsdr1 %0; isync"
   3439 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3440 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3441  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3442  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3443 #endif
   3444 	tlbia();
   3445 
   3446 #ifdef ALTIVEC
   3447 	pmap_use_altivec = cpu_altivec;
   3448 #endif
   3449 
   3450 #ifdef DEBUG
   3451 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3452 		u_int cnt;
   3453 		int bank;
   3454 		char pbuf[9];
   3455 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3456 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3457 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3458 			    bank,
   3459 			    ptoa(vm_physmem[bank].avail_start),
   3460 			    ptoa(vm_physmem[bank].avail_end),
   3461 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3462 		}
   3463 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3464 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3465 		    pbuf, cnt);
   3466 	}
   3467 #endif
   3468 
   3469 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3470 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3471 	    &pmap_pool_uallocator, IPL_NONE);
   3472 
   3473 	pool_setlowat(&pmap_upvo_pool, 252);
   3474 
   3475 	pool_init(&pmap_pool, sizeof(struct pmap),
   3476 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3477 	    IPL_NONE);
   3478 
   3479 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3480 	{
   3481 		struct pmap *pm = pmap_kernel();
   3482 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3483 		extern int etext[], kernel_text[];
   3484 		vaddr_t va, va_etext = (paddr_t) etext;
   3485 #endif
   3486 		paddr_t pa, pa_end;
   3487 		register_t sr;
   3488 		struct pte pt;
   3489 		unsigned int ptegidx;
   3490 		int bank;
   3491 
   3492 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3493 		pm->pm_sr[0] = sr;
   3494 
   3495 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3496 			pa_end = ptoa(vm_physmem[bank].avail_end);
   3497 			pa = ptoa(vm_physmem[bank].avail_start);
   3498 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3499 				ptegidx = va_to_pteg(pm, pa);
   3500 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3501 				pmap_pte_insert(ptegidx, &pt);
   3502 			}
   3503 		}
   3504 
   3505 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3506 		va = (vaddr_t) kernel_text;
   3507 
   3508 		for (pa = kernelstart; va < va_etext;
   3509 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3510 			ptegidx = va_to_pteg(pm, va);
   3511 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3512 			pmap_pte_insert(ptegidx, &pt);
   3513 		}
   3514 
   3515 		for (; pa < kernelend;
   3516 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3517 			ptegidx = va_to_pteg(pm, va);
   3518 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3519 			pmap_pte_insert(ptegidx, &pt);
   3520 		}
   3521 
   3522 		for (va = 0, pa = 0; va < kernelstart;
   3523 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3524 			ptegidx = va_to_pteg(pm, va);
   3525 			if (va < 0x3000)
   3526 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3527 			else
   3528 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3529 			pmap_pte_insert(ptegidx, &pt);
   3530 		}
   3531 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3532 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3533 			ptegidx = va_to_pteg(pm, va);
   3534 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3535 			pmap_pte_insert(ptegidx, &pt);
   3536 		}
   3537 #endif
   3538 
   3539 		__asm volatile ("mtsrin %0,%1"
   3540  			      :: "r"(sr), "r"(kernelstart));
   3541 	}
   3542 #endif
   3543 }
   3544