pmap.c revision 1.58 1 /* $NetBSD: pmap.c,v 1.58 2008/04/08 02:33:03 garbled Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43 * Copyright (C) 1995, 1996 TooLs GmbH.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by TooLs GmbH.
57 * 4. The name of TooLs GmbH may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.58 2008/04/08 02:33:03 garbled Exp $");
74
75 #define PMAP_NOOPNAMES
76
77 #include "opt_ppcarch.h"
78 #include "opt_altivec.h"
79 #include "opt_multiprocessor.h"
80 #include "opt_pmap.h"
81
82 #include <sys/param.h>
83 #include <sys/malloc.h>
84 #include <sys/proc.h>
85 #include <sys/user.h>
86 #include <sys/pool.h>
87 #include <sys/queue.h>
88 #include <sys/device.h> /* for evcnt */
89 #include <sys/systm.h>
90 #include <sys/atomic.h>
91
92 #include <uvm/uvm.h>
93
94 #include <machine/pcb.h>
95 #include <machine/powerpc.h>
96 #include <powerpc/spr.h>
97 #include <powerpc/oea/sr_601.h>
98 #include <powerpc/bat.h>
99 #include <powerpc/stdarg.h>
100
101 #ifdef ALTIVEC
102 int pmap_use_altivec;
103 #endif
104
105 volatile struct pteg *pmap_pteg_table;
106 unsigned int pmap_pteg_cnt;
107 unsigned int pmap_pteg_mask;
108 #ifdef PMAP_MEMLIMIT
109 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
110 #else
111 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
112 #endif
113
114 struct pmap kernel_pmap_;
115 unsigned int pmap_pages_stolen;
116 u_long pmap_pte_valid;
117 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
118 u_long pmap_pvo_enter_depth;
119 u_long pmap_pvo_remove_depth;
120 #endif
121
122 int physmem;
123 #ifndef MSGBUFADDR
124 extern paddr_t msgbuf_paddr;
125 #endif
126
127 static struct mem_region *mem, *avail;
128 static u_int mem_cnt, avail_cnt;
129
130 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
131 # define PMAP_OEA 1
132 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
133 # define PMAPNAME(name) pmap_##name
134 # endif
135 #endif
136
137 #if defined(PMAP_OEA64)
138 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
139 # define PMAPNAME(name) pmap_##name
140 # endif
141 #endif
142
143 #if defined(PMAP_OEA64_BRIDGE)
144 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
145 # define PMAPNAME(name) pmap_##name
146 # endif
147 #endif
148
149 #if defined(PMAP_OEA)
150 #define _PRIxpte "lx"
151 #else
152 #define _PRIxpte PRIx64
153 #endif
154 #define _PRIxpa "lx"
155 #define _PRIxva "lx"
156 #define _PRIsr "lx"
157
158 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
159 #if defined(PMAP_OEA)
160 #define PMAPNAME(name) pmap32_##name
161 #elif defined(PMAP_OEA64)
162 #define PMAPNAME(name) pmap64_##name
163 #elif defined(PMAP_OEA64_BRIDGE)
164 #define PMAPNAME(name) pmap64bridge_##name
165 #else
166 #error unknown variant for pmap
167 #endif
168 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
169
170 #if defined(PMAPNAME)
171 #define STATIC static
172 #define pmap_pte_spill PMAPNAME(pte_spill)
173 #define pmap_real_memory PMAPNAME(real_memory)
174 #define pmap_init PMAPNAME(init)
175 #define pmap_virtual_space PMAPNAME(virtual_space)
176 #define pmap_create PMAPNAME(create)
177 #define pmap_reference PMAPNAME(reference)
178 #define pmap_destroy PMAPNAME(destroy)
179 #define pmap_copy PMAPNAME(copy)
180 #define pmap_update PMAPNAME(update)
181 #define pmap_collect PMAPNAME(collect)
182 #define pmap_enter PMAPNAME(enter)
183 #define pmap_remove PMAPNAME(remove)
184 #define pmap_kenter_pa PMAPNAME(kenter_pa)
185 #define pmap_kremove PMAPNAME(kremove)
186 #define pmap_extract PMAPNAME(extract)
187 #define pmap_protect PMAPNAME(protect)
188 #define pmap_unwire PMAPNAME(unwire)
189 #define pmap_page_protect PMAPNAME(page_protect)
190 #define pmap_query_bit PMAPNAME(query_bit)
191 #define pmap_clear_bit PMAPNAME(clear_bit)
192
193 #define pmap_activate PMAPNAME(activate)
194 #define pmap_deactivate PMAPNAME(deactivate)
195
196 #define pmap_pinit PMAPNAME(pinit)
197 #define pmap_procwr PMAPNAME(procwr)
198
199 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
200 #define pmap_pte_print PMAPNAME(pte_print)
201 #define pmap_pteg_check PMAPNAME(pteg_check)
202 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
203 #define pmap_print_pte PMAPNAME(print_pte)
204 #define pmap_pteg_dist PMAPNAME(pteg_dist)
205 #endif
206 #if defined(DEBUG) || defined(PMAPCHECK)
207 #define pmap_pvo_verify PMAPNAME(pvo_verify)
208 #define pmapcheck PMAPNAME(check)
209 #endif
210 #if defined(DEBUG) || defined(PMAPDEBUG)
211 #define pmapdebug PMAPNAME(debug)
212 #endif
213 #define pmap_steal_memory PMAPNAME(steal_memory)
214 #define pmap_bootstrap PMAPNAME(bootstrap)
215 #else
216 #define STATIC /* nothing */
217 #endif /* PMAPNAME */
218
219 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
220 STATIC void pmap_real_memory(paddr_t *, psize_t *);
221 STATIC void pmap_init(void);
222 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
223 STATIC pmap_t pmap_create(void);
224 STATIC void pmap_reference(pmap_t);
225 STATIC void pmap_destroy(pmap_t);
226 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
227 STATIC void pmap_update(pmap_t);
228 STATIC void pmap_collect(pmap_t);
229 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
230 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
231 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
232 STATIC void pmap_kremove(vaddr_t, vsize_t);
233 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
234
235 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
236 STATIC void pmap_unwire(pmap_t, vaddr_t);
237 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
238 STATIC bool pmap_query_bit(struct vm_page *, int);
239 STATIC bool pmap_clear_bit(struct vm_page *, int);
240
241 STATIC void pmap_activate(struct lwp *);
242 STATIC void pmap_deactivate(struct lwp *);
243
244 STATIC void pmap_pinit(pmap_t pm);
245 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
246
247 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
248 STATIC void pmap_pte_print(volatile struct pte *);
249 STATIC void pmap_pteg_check(void);
250 STATIC void pmap_print_mmuregs(void);
251 STATIC void pmap_print_pte(pmap_t, vaddr_t);
252 STATIC void pmap_pteg_dist(void);
253 #endif
254 #if defined(DEBUG) || defined(PMAPCHECK)
255 STATIC void pmap_pvo_verify(void);
256 #endif
257 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
258 STATIC void pmap_bootstrap(paddr_t, paddr_t);
259
260 #ifdef PMAPNAME
261 const struct pmap_ops PMAPNAME(ops) = {
262 .pmapop_pte_spill = pmap_pte_spill,
263 .pmapop_real_memory = pmap_real_memory,
264 .pmapop_init = pmap_init,
265 .pmapop_virtual_space = pmap_virtual_space,
266 .pmapop_create = pmap_create,
267 .pmapop_reference = pmap_reference,
268 .pmapop_destroy = pmap_destroy,
269 .pmapop_copy = pmap_copy,
270 .pmapop_update = pmap_update,
271 .pmapop_collect = pmap_collect,
272 .pmapop_enter = pmap_enter,
273 .pmapop_remove = pmap_remove,
274 .pmapop_kenter_pa = pmap_kenter_pa,
275 .pmapop_kremove = pmap_kremove,
276 .pmapop_extract = pmap_extract,
277 .pmapop_protect = pmap_protect,
278 .pmapop_unwire = pmap_unwire,
279 .pmapop_page_protect = pmap_page_protect,
280 .pmapop_query_bit = pmap_query_bit,
281 .pmapop_clear_bit = pmap_clear_bit,
282 .pmapop_activate = pmap_activate,
283 .pmapop_deactivate = pmap_deactivate,
284 .pmapop_pinit = pmap_pinit,
285 .pmapop_procwr = pmap_procwr,
286 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
287 .pmapop_pte_print = pmap_pte_print,
288 .pmapop_pteg_check = pmap_pteg_check,
289 .pmapop_print_mmuregs = pmap_print_mmuregs,
290 .pmapop_print_pte = pmap_print_pte,
291 .pmapop_pteg_dist = pmap_pteg_dist,
292 #else
293 .pmapop_pte_print = NULL,
294 .pmapop_pteg_check = NULL,
295 .pmapop_print_mmuregs = NULL,
296 .pmapop_print_pte = NULL,
297 .pmapop_pteg_dist = NULL,
298 #endif
299 #if defined(DEBUG) || defined(PMAPCHECK)
300 .pmapop_pvo_verify = pmap_pvo_verify,
301 #else
302 .pmapop_pvo_verify = NULL,
303 #endif
304 .pmapop_steal_memory = pmap_steal_memory,
305 .pmapop_bootstrap = pmap_bootstrap,
306 };
307 #endif /* !PMAPNAME */
308
309 /*
310 * The following structure is aligned to 32 bytes
311 */
312 struct pvo_entry {
313 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
314 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
315 struct pte pvo_pte; /* Prebuilt PTE */
316 pmap_t pvo_pmap; /* ptr to owning pmap */
317 vaddr_t pvo_vaddr; /* VA of entry */
318 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
319 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
320 #define PVO_WIRED 0x0010 /* PVO entry is wired */
321 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
322 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
323 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
324 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
325 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
326 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
327 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
328 #define PVO_SPILL_SET 2 /* PVO has been spilled */
329 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
330 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
331 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
332 #define PVO_REMOVE 6 /* PVO has been removed */
333 #define PVO_WHERE_MASK 15
334 #define PVO_WHERE_SHFT 8
335 } __attribute__ ((aligned (32)));
336 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
337 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
338 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
339 #define PVO_PTEGIDX_CLR(pvo) \
340 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
341 #define PVO_PTEGIDX_SET(pvo,i) \
342 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
343 #define PVO_WHERE(pvo,w) \
344 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
345 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
346
347 TAILQ_HEAD(pvo_tqhead, pvo_entry);
348 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
349 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
350 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
351
352 struct pool pmap_pool; /* pool for pmap structures */
353 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
354 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
355
356 /*
357 * We keep a cache of unmanaged pages to be used for pvo entries for
358 * unmanaged pages.
359 */
360 struct pvo_page {
361 SIMPLEQ_ENTRY(pvo_page) pvop_link;
362 };
363 SIMPLEQ_HEAD(pvop_head, pvo_page);
364 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
365 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
366 u_long pmap_upvop_free;
367 u_long pmap_upvop_maxfree;
368 u_long pmap_mpvop_free;
369 u_long pmap_mpvop_maxfree;
370
371 static void *pmap_pool_ualloc(struct pool *, int);
372 static void *pmap_pool_malloc(struct pool *, int);
373
374 static void pmap_pool_ufree(struct pool *, void *);
375 static void pmap_pool_mfree(struct pool *, void *);
376
377 static struct pool_allocator pmap_pool_mallocator = {
378 .pa_alloc = pmap_pool_malloc,
379 .pa_free = pmap_pool_mfree,
380 .pa_pagesz = 0,
381 };
382
383 static struct pool_allocator pmap_pool_uallocator = {
384 .pa_alloc = pmap_pool_ualloc,
385 .pa_free = pmap_pool_ufree,
386 .pa_pagesz = 0,
387 };
388
389 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
390 void pmap_pte_print(volatile struct pte *);
391 void pmap_pteg_check(void);
392 void pmap_pteg_dist(void);
393 void pmap_print_pte(pmap_t, vaddr_t);
394 void pmap_print_mmuregs(void);
395 #endif
396
397 #if defined(DEBUG) || defined(PMAPCHECK)
398 #ifdef PMAPCHECK
399 int pmapcheck = 1;
400 #else
401 int pmapcheck = 0;
402 #endif
403 void pmap_pvo_verify(void);
404 static void pmap_pvo_check(const struct pvo_entry *);
405 #define PMAP_PVO_CHECK(pvo) \
406 do { \
407 if (pmapcheck) \
408 pmap_pvo_check(pvo); \
409 } while (0)
410 #else
411 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
412 #endif
413 static int pmap_pte_insert(int, struct pte *);
414 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
415 vaddr_t, paddr_t, register_t, int);
416 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
417 static void pmap_pvo_free(struct pvo_entry *);
418 static void pmap_pvo_free_list(struct pvo_head *);
419 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
420 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
421 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
422 static void pvo_set_exec(struct pvo_entry *);
423 static void pvo_clear_exec(struct pvo_entry *);
424
425 static void tlbia(void);
426
427 static void pmap_release(pmap_t);
428 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
429
430 static uint32_t pmap_pvo_reclaim_nextidx;
431 #ifdef DEBUG
432 static int pmap_pvo_reclaim_debugctr;
433 #endif
434
435 #define VSID_NBPW (sizeof(uint32_t) * 8)
436 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
437
438 static int pmap_initialized;
439
440 #if defined(DEBUG) || defined(PMAPDEBUG)
441 #define PMAPDEBUG_BOOT 0x0001
442 #define PMAPDEBUG_PTE 0x0002
443 #define PMAPDEBUG_EXEC 0x0008
444 #define PMAPDEBUG_PVOENTER 0x0010
445 #define PMAPDEBUG_PVOREMOVE 0x0020
446 #define PMAPDEBUG_ACTIVATE 0x0100
447 #define PMAPDEBUG_CREATE 0x0200
448 #define PMAPDEBUG_ENTER 0x1000
449 #define PMAPDEBUG_KENTER 0x2000
450 #define PMAPDEBUG_KREMOVE 0x4000
451 #define PMAPDEBUG_REMOVE 0x8000
452
453 unsigned int pmapdebug = 0;
454
455 # define DPRINTF(x) printf x
456 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
457 #else
458 # define DPRINTF(x)
459 # define DPRINTFN(n, x)
460 #endif
461
462
463 #ifdef PMAPCOUNTERS
464 /*
465 * From pmap_subr.c
466 */
467 extern struct evcnt pmap_evcnt_mappings;
468 extern struct evcnt pmap_evcnt_unmappings;
469
470 extern struct evcnt pmap_evcnt_kernel_mappings;
471 extern struct evcnt pmap_evcnt_kernel_unmappings;
472
473 extern struct evcnt pmap_evcnt_mappings_replaced;
474
475 extern struct evcnt pmap_evcnt_exec_mappings;
476 extern struct evcnt pmap_evcnt_exec_cached;
477
478 extern struct evcnt pmap_evcnt_exec_synced;
479 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
480 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
481
482 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
483 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
484 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
485 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
486 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
487
488 extern struct evcnt pmap_evcnt_updates;
489 extern struct evcnt pmap_evcnt_collects;
490 extern struct evcnt pmap_evcnt_copies;
491
492 extern struct evcnt pmap_evcnt_ptes_spilled;
493 extern struct evcnt pmap_evcnt_ptes_unspilled;
494 extern struct evcnt pmap_evcnt_ptes_evicted;
495
496 extern struct evcnt pmap_evcnt_ptes_primary[8];
497 extern struct evcnt pmap_evcnt_ptes_secondary[8];
498 extern struct evcnt pmap_evcnt_ptes_removed;
499 extern struct evcnt pmap_evcnt_ptes_changed;
500 extern struct evcnt pmap_evcnt_pvos_reclaimed;
501 extern struct evcnt pmap_evcnt_pvos_failed;
502
503 extern struct evcnt pmap_evcnt_zeroed_pages;
504 extern struct evcnt pmap_evcnt_copied_pages;
505 extern struct evcnt pmap_evcnt_idlezeroed_pages;
506
507 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
508 #define PMAPCOUNT2(ev) ((ev).ev_count++)
509 #else
510 #define PMAPCOUNT(ev) ((void) 0)
511 #define PMAPCOUNT2(ev) ((void) 0)
512 #endif
513
514 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
515
516 /* XXXSL: this needs to be moved to assembler */
517 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
518
519 #define TLBSYNC() __asm volatile("tlbsync")
520 #define SYNC() __asm volatile("sync")
521 #define EIEIO() __asm volatile("eieio")
522 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
523 #define MFMSR() mfmsr()
524 #define MTMSR(psl) mtmsr(psl)
525 #define MFPVR() mfpvr()
526 #define MFSRIN(va) mfsrin(va)
527 #define MFTB() mfrtcltbl()
528
529 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
530 static inline register_t
531 mfsrin(vaddr_t va)
532 {
533 register_t sr;
534 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
535 return sr;
536 }
537 #endif /* PMAP_OEA*/
538
539 #if defined (PMAP_OEA64_BRIDGE)
540 extern void mfmsr64 (register64_t *result);
541 #endif /* PMAP_OEA64_BRIDGE */
542
543 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
544 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
545
546 static inline register_t
547 pmap_interrupts_off(void)
548 {
549 register_t msr = MFMSR();
550 if (msr & PSL_EE)
551 MTMSR(msr & ~PSL_EE);
552 return msr;
553 }
554
555 static void
556 pmap_interrupts_restore(register_t msr)
557 {
558 if (msr & PSL_EE)
559 MTMSR(msr);
560 }
561
562 static inline u_int32_t
563 mfrtcltbl(void)
564 {
565 #ifdef PPC_OEA601
566 if ((MFPVR() >> 16) == MPC601)
567 return (mfrtcl() >> 7);
568 else
569 #endif
570 return (mftbl());
571 }
572
573 /*
574 * These small routines may have to be replaced,
575 * if/when we support processors other that the 604.
576 */
577
578 void
579 tlbia(void)
580 {
581 char *i;
582
583 SYNC();
584 #if defined(PMAP_OEA)
585 /*
586 * Why not use "tlbia"? Because not all processors implement it.
587 *
588 * This needs to be a per-CPU callback to do the appropriate thing
589 * for the CPU. XXX
590 */
591 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
592 TLBIE(i);
593 EIEIO();
594 SYNC();
595 }
596 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
597 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
598 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
599 TLBIEL(i);
600 EIEIO();
601 SYNC();
602 }
603 #endif
604 TLBSYNC();
605 SYNC();
606 }
607
608 static inline register_t
609 va_to_vsid(const struct pmap *pm, vaddr_t addr)
610 {
611 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
612 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
613 #else /* PMAP_OEA64 */
614 #if 0
615 const struct ste *ste;
616 register_t hash;
617 int i;
618
619 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
620
621 /*
622 * Try the primary group first
623 */
624 ste = pm->pm_stes[hash].stes;
625 for (i = 0; i < 8; i++, ste++) {
626 if (ste->ste_hi & STE_V) &&
627 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
628 return ste;
629 }
630
631 /*
632 * Then the secondary group.
633 */
634 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
635 for (i = 0; i < 8; i++, ste++) {
636 if (ste->ste_hi & STE_V) &&
637 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
638 return addr;
639 }
640
641 return NULL;
642 #else
643 /*
644 * Rather than searching the STE groups for the VSID, we know
645 * how we generate that from the ESID and so do that.
646 */
647 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
648 #endif
649 #endif /* PMAP_OEA */
650 }
651
652 static inline register_t
653 va_to_pteg(const struct pmap *pm, vaddr_t addr)
654 {
655 register_t hash;
656
657 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
658 return hash & pmap_pteg_mask;
659 }
660
661 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
662 /*
663 * Given a PTE in the page table, calculate the VADDR that hashes to it.
664 * The only bit of magic is that the top 4 bits of the address doesn't
665 * technically exist in the PTE. But we know we reserved 4 bits of the
666 * VSID for it so that's how we get it.
667 */
668 static vaddr_t
669 pmap_pte_to_va(volatile const struct pte *pt)
670 {
671 vaddr_t va;
672 uintptr_t ptaddr = (uintptr_t) pt;
673
674 if (pt->pte_hi & PTE_HID)
675 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
676
677 /* PPC Bits 10-19 PPC64 Bits 42-51 */
678 #if defined(PMAP_OEA)
679 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
680 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
681 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
682 #endif
683 va <<= ADDR_PIDX_SHFT;
684
685 /* PPC Bits 4-9 PPC64 Bits 36-41 */
686 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
687
688 #if defined(PMAP_OEA64)
689 /* PPC63 Bits 0-35 */
690 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
691 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
692 /* PPC Bits 0-3 */
693 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
694 #endif
695
696 return va;
697 }
698 #endif
699
700 static inline struct pvo_head *
701 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
702 {
703 struct vm_page *pg;
704
705 pg = PHYS_TO_VM_PAGE(pa);
706 if (pg_p != NULL)
707 *pg_p = pg;
708 if (pg == NULL)
709 return &pmap_pvo_unmanaged;
710 return &pg->mdpage.mdpg_pvoh;
711 }
712
713 static inline struct pvo_head *
714 vm_page_to_pvoh(struct vm_page *pg)
715 {
716 return &pg->mdpage.mdpg_pvoh;
717 }
718
719
720 static inline void
721 pmap_attr_clear(struct vm_page *pg, int ptebit)
722 {
723 pg->mdpage.mdpg_attrs &= ~ptebit;
724 }
725
726 static inline int
727 pmap_attr_fetch(struct vm_page *pg)
728 {
729 return pg->mdpage.mdpg_attrs;
730 }
731
732 static inline void
733 pmap_attr_save(struct vm_page *pg, int ptebit)
734 {
735 pg->mdpage.mdpg_attrs |= ptebit;
736 }
737
738 static inline int
739 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
740 {
741 if (pt->pte_hi == pvo_pt->pte_hi
742 #if 0
743 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
744 ~(PTE_REF|PTE_CHG)) == 0
745 #endif
746 )
747 return 1;
748 return 0;
749 }
750
751 static inline void
752 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
753 {
754 /*
755 * Construct the PTE. Default to IMB initially. Valid bit
756 * only gets set when the real pte is set in memory.
757 *
758 * Note: Don't set the valid bit for correct operation of tlb update.
759 */
760 #if defined(PMAP_OEA)
761 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
762 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
763 pt->pte_lo = pte_lo;
764 #elif defined (PMAP_OEA64_BRIDGE)
765 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
766 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
767 pt->pte_lo = (u_int64_t) pte_lo;
768 #elif defined (PMAP_OEA64)
769 #error PMAP_OEA64 not supported
770 #endif /* PMAP_OEA */
771 }
772
773 static inline void
774 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
775 {
776 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
777 }
778
779 static inline void
780 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
781 {
782 /*
783 * As shown in Section 7.6.3.2.3
784 */
785 pt->pte_lo &= ~ptebit;
786 TLBIE(va);
787 SYNC();
788 EIEIO();
789 TLBSYNC();
790 SYNC();
791 #ifdef MULTIPROCESSOR
792 DCBST(pt);
793 #endif
794 }
795
796 static inline void
797 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
798 {
799 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
800 if (pvo_pt->pte_hi & PTE_VALID)
801 panic("pte_set: setting an already valid pte %p", pvo_pt);
802 #endif
803 pvo_pt->pte_hi |= PTE_VALID;
804
805 /*
806 * Update the PTE as defined in section 7.6.3.1
807 * Note that the REF/CHG bits are from pvo_pt and thus should
808 * have been saved so this routine can restore them (if desired).
809 */
810 pt->pte_lo = pvo_pt->pte_lo;
811 EIEIO();
812 pt->pte_hi = pvo_pt->pte_hi;
813 TLBSYNC();
814 SYNC();
815 #ifdef MULTIPROCESSOR
816 DCBST(pt);
817 #endif
818 pmap_pte_valid++;
819 }
820
821 static inline void
822 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
823 {
824 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
825 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
826 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
827 if ((pt->pte_hi & PTE_VALID) == 0)
828 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
829 #endif
830
831 pvo_pt->pte_hi &= ~PTE_VALID;
832 /*
833 * Force the ref & chg bits back into the PTEs.
834 */
835 SYNC();
836 /*
837 * Invalidate the pte ... (Section 7.6.3.3)
838 */
839 pt->pte_hi &= ~PTE_VALID;
840 SYNC();
841 TLBIE(va);
842 SYNC();
843 EIEIO();
844 TLBSYNC();
845 SYNC();
846 /*
847 * Save the ref & chg bits ...
848 */
849 pmap_pte_synch(pt, pvo_pt);
850 pmap_pte_valid--;
851 }
852
853 static inline void
854 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
855 {
856 /*
857 * Invalidate the PTE
858 */
859 pmap_pte_unset(pt, pvo_pt, va);
860 pmap_pte_set(pt, pvo_pt);
861 }
862
863 /*
864 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
865 * (either primary or secondary location).
866 *
867 * Note: both the destination and source PTEs must not have PTE_VALID set.
868 */
869
870 static int
871 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
872 {
873 volatile struct pte *pt;
874 int i;
875
876 #if defined(DEBUG)
877 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
878 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
879 #endif
880 /*
881 * First try primary hash.
882 */
883 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
884 if ((pt->pte_hi & PTE_VALID) == 0) {
885 pvo_pt->pte_hi &= ~PTE_HID;
886 pmap_pte_set(pt, pvo_pt);
887 return i;
888 }
889 }
890
891 /*
892 * Now try secondary hash.
893 */
894 ptegidx ^= pmap_pteg_mask;
895 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
896 if ((pt->pte_hi & PTE_VALID) == 0) {
897 pvo_pt->pte_hi |= PTE_HID;
898 pmap_pte_set(pt, pvo_pt);
899 return i;
900 }
901 }
902 return -1;
903 }
904
905 /*
906 * Spill handler.
907 *
908 * Tries to spill a page table entry from the overflow area.
909 * This runs in either real mode (if dealing with a exception spill)
910 * or virtual mode when dealing with manually spilling one of the
911 * kernel's pte entries. In either case, interrupts are already
912 * disabled.
913 */
914
915 int
916 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
917 {
918 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
919 struct pvo_entry *pvo;
920 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
921 struct pvo_tqhead *pvoh, *vpvoh = NULL;
922 int ptegidx, i, j;
923 volatile struct pteg *pteg;
924 volatile struct pte *pt;
925
926 PMAP_LOCK();
927
928 ptegidx = va_to_pteg(pm, addr);
929
930 /*
931 * Have to substitute some entry. Use the primary hash for this.
932 * Use low bits of timebase as random generator. Make sure we are
933 * not picking a kernel pte for replacement.
934 */
935 pteg = &pmap_pteg_table[ptegidx];
936 i = MFTB() & 7;
937 for (j = 0; j < 8; j++) {
938 pt = &pteg->pt[i];
939 if ((pt->pte_hi & PTE_VALID) == 0)
940 break;
941 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
942 < PHYSMAP_VSIDBITS)
943 break;
944 i = (i + 1) & 7;
945 }
946 KASSERT(j < 8);
947
948 source_pvo = NULL;
949 victim_pvo = NULL;
950 pvoh = &pmap_pvo_table[ptegidx];
951 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
952
953 /*
954 * We need to find pvo entry for this address...
955 */
956 PMAP_PVO_CHECK(pvo); /* sanity check */
957
958 /*
959 * If we haven't found the source and we come to a PVO with
960 * a valid PTE, then we know we can't find it because all
961 * evicted PVOs always are first in the list.
962 */
963 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
964 break;
965 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
966 addr == PVO_VADDR(pvo)) {
967
968 /*
969 * Now we have found the entry to be spilled into the
970 * pteg. Attempt to insert it into the page table.
971 */
972 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
973 if (j >= 0) {
974 PVO_PTEGIDX_SET(pvo, j);
975 PMAP_PVO_CHECK(pvo); /* sanity check */
976 PVO_WHERE(pvo, SPILL_INSERT);
977 pvo->pvo_pmap->pm_evictions--;
978 PMAPCOUNT(ptes_spilled);
979 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
980 ? pmap_evcnt_ptes_secondary
981 : pmap_evcnt_ptes_primary)[j]);
982
983 /*
984 * Since we keep the evicted entries at the
985 * from of the PVO list, we need move this
986 * (now resident) PVO after the evicted
987 * entries.
988 */
989 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
990
991 /*
992 * If we don't have to move (either we were the
993 * last entry or the next entry was valid),
994 * don't change our position. Otherwise
995 * move ourselves to the tail of the queue.
996 */
997 if (next_pvo != NULL &&
998 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
999 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
1000 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1001 }
1002 PMAP_UNLOCK();
1003 return 1;
1004 }
1005 source_pvo = pvo;
1006 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1007 return 0;
1008 }
1009 if (victim_pvo != NULL)
1010 break;
1011 }
1012
1013 /*
1014 * We also need the pvo entry of the victim we are replacing
1015 * so save the R & C bits of the PTE.
1016 */
1017 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1018 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1019 vpvoh = pvoh; /* *1* */
1020 victim_pvo = pvo;
1021 if (source_pvo != NULL)
1022 break;
1023 }
1024 }
1025
1026 if (source_pvo == NULL) {
1027 PMAPCOUNT(ptes_unspilled);
1028 PMAP_UNLOCK();
1029 return 0;
1030 }
1031
1032 if (victim_pvo == NULL) {
1033 if ((pt->pte_hi & PTE_HID) == 0)
1034 panic("pmap_pte_spill: victim p-pte (%p) has "
1035 "no pvo entry!", pt);
1036
1037 /*
1038 * If this is a secondary PTE, we need to search
1039 * its primary pvo bucket for the matching PVO.
1040 */
1041 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1042 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1043 PMAP_PVO_CHECK(pvo); /* sanity check */
1044
1045 /*
1046 * We also need the pvo entry of the victim we are
1047 * replacing so save the R & C bits of the PTE.
1048 */
1049 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1050 victim_pvo = pvo;
1051 break;
1052 }
1053 }
1054 if (victim_pvo == NULL)
1055 panic("pmap_pte_spill: victim s-pte (%p) has "
1056 "no pvo entry!", pt);
1057 }
1058
1059 /*
1060 * The victim should be not be a kernel PVO/PTE entry.
1061 */
1062 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1063 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1064 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1065
1066 /*
1067 * We are invalidating the TLB entry for the EA for the
1068 * we are replacing even though its valid; If we don't
1069 * we lose any ref/chg bit changes contained in the TLB
1070 * entry.
1071 */
1072 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1073
1074 /*
1075 * To enforce the PVO list ordering constraint that all
1076 * evicted entries should come before all valid entries,
1077 * move the source PVO to the tail of its list and the
1078 * victim PVO to the head of its list (which might not be
1079 * the same list, if the victim was using the secondary hash).
1080 */
1081 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1082 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1083 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1084 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1085 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1086 pmap_pte_set(pt, &source_pvo->pvo_pte);
1087 victim_pvo->pvo_pmap->pm_evictions++;
1088 source_pvo->pvo_pmap->pm_evictions--;
1089 PVO_WHERE(victim_pvo, SPILL_UNSET);
1090 PVO_WHERE(source_pvo, SPILL_SET);
1091
1092 PVO_PTEGIDX_CLR(victim_pvo);
1093 PVO_PTEGIDX_SET(source_pvo, i);
1094 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1095 PMAPCOUNT(ptes_spilled);
1096 PMAPCOUNT(ptes_evicted);
1097 PMAPCOUNT(ptes_removed);
1098
1099 PMAP_PVO_CHECK(victim_pvo);
1100 PMAP_PVO_CHECK(source_pvo);
1101
1102 PMAP_UNLOCK();
1103 return 1;
1104 }
1105
1106 /*
1107 * Restrict given range to physical memory
1108 */
1109 void
1110 pmap_real_memory(paddr_t *start, psize_t *size)
1111 {
1112 struct mem_region *mp;
1113
1114 for (mp = mem; mp->size; mp++) {
1115 if (*start + *size > mp->start
1116 && *start < mp->start + mp->size) {
1117 if (*start < mp->start) {
1118 *size -= mp->start - *start;
1119 *start = mp->start;
1120 }
1121 if (*start + *size > mp->start + mp->size)
1122 *size = mp->start + mp->size - *start;
1123 return;
1124 }
1125 }
1126 *size = 0;
1127 }
1128
1129 /*
1130 * Initialize anything else for pmap handling.
1131 * Called during vm_init().
1132 */
1133 void
1134 pmap_init(void)
1135 {
1136 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1137 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1138 &pmap_pool_mallocator, IPL_NONE);
1139
1140 pool_setlowat(&pmap_mpvo_pool, 1008);
1141
1142 pmap_initialized = 1;
1143
1144 }
1145
1146 /*
1147 * How much virtual space does the kernel get?
1148 */
1149 void
1150 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1151 {
1152 /*
1153 * For now, reserve one segment (minus some overhead) for kernel
1154 * virtual memory
1155 */
1156 *start = VM_MIN_KERNEL_ADDRESS;
1157 *end = VM_MAX_KERNEL_ADDRESS;
1158 }
1159
1160 /*
1161 * Allocate, initialize, and return a new physical map.
1162 */
1163 pmap_t
1164 pmap_create(void)
1165 {
1166 pmap_t pm;
1167
1168 pm = pool_get(&pmap_pool, PR_WAITOK);
1169 memset((void *)pm, 0, sizeof *pm);
1170 pmap_pinit(pm);
1171
1172 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1173 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1174 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1175 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1176 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1177 pm,
1178 pm->pm_sr[0], pm->pm_sr[1],
1179 pm->pm_sr[2], pm->pm_sr[3],
1180 pm->pm_sr[4], pm->pm_sr[5],
1181 pm->pm_sr[6], pm->pm_sr[7],
1182 pm->pm_sr[8], pm->pm_sr[9],
1183 pm->pm_sr[10], pm->pm_sr[11],
1184 pm->pm_sr[12], pm->pm_sr[13],
1185 pm->pm_sr[14], pm->pm_sr[15]));
1186 return pm;
1187 }
1188
1189 /*
1190 * Initialize a preallocated and zeroed pmap structure.
1191 */
1192 void
1193 pmap_pinit(pmap_t pm)
1194 {
1195 register_t entropy = MFTB();
1196 register_t mask;
1197 int i;
1198
1199 /*
1200 * Allocate some segment registers for this pmap.
1201 */
1202 pm->pm_refs = 1;
1203 PMAP_LOCK();
1204 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1205 static register_t pmap_vsidcontext;
1206 register_t hash;
1207 unsigned int n;
1208
1209 /* Create a new value by multiplying by a prime adding in
1210 * entropy from the timebase register. This is to make the
1211 * VSID more random so that the PT Hash function collides
1212 * less often. (note that the prime causes gcc to do shifts
1213 * instead of a multiply)
1214 */
1215 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1216 hash = pmap_vsidcontext & (NPMAPS - 1);
1217 if (hash == 0) { /* 0 is special, avoid it */
1218 entropy += 0xbadf00d;
1219 continue;
1220 }
1221 n = hash >> 5;
1222 mask = 1L << (hash & (VSID_NBPW-1));
1223 hash = pmap_vsidcontext;
1224 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1225 /* anything free in this bucket? */
1226 if (~pmap_vsid_bitmap[n] == 0) {
1227 entropy = hash ^ (hash >> 16);
1228 continue;
1229 }
1230 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1231 mask = 1L << i;
1232 hash &= ~(VSID_NBPW-1);
1233 hash |= i;
1234 }
1235 hash &= PTE_VSID >> PTE_VSID_SHFT;
1236 pmap_vsid_bitmap[n] |= mask;
1237 pm->pm_vsid = hash;
1238 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1239 for (i = 0; i < 16; i++)
1240 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1241 SR_NOEXEC;
1242 #endif
1243 PMAP_UNLOCK();
1244 return;
1245 }
1246 PMAP_UNLOCK();
1247 panic("pmap_pinit: out of segments");
1248 }
1249
1250 /*
1251 * Add a reference to the given pmap.
1252 */
1253 void
1254 pmap_reference(pmap_t pm)
1255 {
1256 atomic_inc_uint(&pm->pm_refs);
1257 }
1258
1259 /*
1260 * Retire the given pmap from service.
1261 * Should only be called if the map contains no valid mappings.
1262 */
1263 void
1264 pmap_destroy(pmap_t pm)
1265 {
1266 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1267 pmap_release(pm);
1268 pool_put(&pmap_pool, pm);
1269 }
1270 }
1271
1272 /*
1273 * Release any resources held by the given physical map.
1274 * Called when a pmap initialized by pmap_pinit is being released.
1275 */
1276 void
1277 pmap_release(pmap_t pm)
1278 {
1279 int idx, mask;
1280
1281 KASSERT(pm->pm_stats.resident_count == 0);
1282 KASSERT(pm->pm_stats.wired_count == 0);
1283
1284 PMAP_LOCK();
1285 if (pm->pm_sr[0] == 0)
1286 panic("pmap_release");
1287 idx = pm->pm_vsid & (NPMAPS-1);
1288 mask = 1 << (idx % VSID_NBPW);
1289 idx /= VSID_NBPW;
1290
1291 KASSERT(pmap_vsid_bitmap[idx] & mask);
1292 pmap_vsid_bitmap[idx] &= ~mask;
1293 PMAP_UNLOCK();
1294 }
1295
1296 /*
1297 * Copy the range specified by src_addr/len
1298 * from the source map to the range dst_addr/len
1299 * in the destination map.
1300 *
1301 * This routine is only advisory and need not do anything.
1302 */
1303 void
1304 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1305 vsize_t len, vaddr_t src_addr)
1306 {
1307 PMAPCOUNT(copies);
1308 }
1309
1310 /*
1311 * Require that all active physical maps contain no
1312 * incorrect entries NOW.
1313 */
1314 void
1315 pmap_update(struct pmap *pmap)
1316 {
1317 PMAPCOUNT(updates);
1318 TLBSYNC();
1319 }
1320
1321 /*
1322 * Garbage collects the physical map system for
1323 * pages which are no longer used.
1324 * Success need not be guaranteed -- that is, there
1325 * may well be pages which are not referenced, but
1326 * others may be collected.
1327 * Called by the pageout daemon when pages are scarce.
1328 */
1329 void
1330 pmap_collect(pmap_t pm)
1331 {
1332 PMAPCOUNT(collects);
1333 }
1334
1335 static inline int
1336 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1337 {
1338 int pteidx;
1339 /*
1340 * We can find the actual pte entry without searching by
1341 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1342 * and by noticing the HID bit.
1343 */
1344 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1345 if (pvo->pvo_pte.pte_hi & PTE_HID)
1346 pteidx ^= pmap_pteg_mask * 8;
1347 return pteidx;
1348 }
1349
1350 volatile struct pte *
1351 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1352 {
1353 volatile struct pte *pt;
1354
1355 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1356 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1357 return NULL;
1358 #endif
1359
1360 /*
1361 * If we haven't been supplied the ptegidx, calculate it.
1362 */
1363 if (pteidx == -1) {
1364 int ptegidx;
1365 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1366 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1367 }
1368
1369 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1370
1371 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1372 return pt;
1373 #else
1374 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1375 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1376 "pvo but no valid pte index", pvo);
1377 }
1378 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1379 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1380 "pvo but no valid pte", pvo);
1381 }
1382
1383 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1384 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1385 #if defined(DEBUG) || defined(PMAPCHECK)
1386 pmap_pte_print(pt);
1387 #endif
1388 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1389 "pmap_pteg_table %p but invalid in pvo",
1390 pvo, pt);
1391 }
1392 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1393 #if defined(DEBUG) || defined(PMAPCHECK)
1394 pmap_pte_print(pt);
1395 #endif
1396 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1397 "not match pte %p in pmap_pteg_table",
1398 pvo, pt);
1399 }
1400 return pt;
1401 }
1402
1403 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1404 #if defined(DEBUG) || defined(PMAPCHECK)
1405 pmap_pte_print(pt);
1406 #endif
1407 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1408 "pmap_pteg_table but valid in pvo", pvo, pt);
1409 }
1410 return NULL;
1411 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1412 }
1413
1414 struct pvo_entry *
1415 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1416 {
1417 struct pvo_entry *pvo;
1418 int ptegidx;
1419
1420 va &= ~ADDR_POFF;
1421 ptegidx = va_to_pteg(pm, va);
1422
1423 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1424 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1425 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1426 panic("pmap_pvo_find_va: invalid pvo %p on "
1427 "list %#x (%p)", pvo, ptegidx,
1428 &pmap_pvo_table[ptegidx]);
1429 #endif
1430 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1431 if (pteidx_p)
1432 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1433 return pvo;
1434 }
1435 }
1436 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1437 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1438 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1439 return NULL;
1440 }
1441
1442 #if defined(DEBUG) || defined(PMAPCHECK)
1443 void
1444 pmap_pvo_check(const struct pvo_entry *pvo)
1445 {
1446 struct pvo_head *pvo_head;
1447 struct pvo_entry *pvo0;
1448 volatile struct pte *pt;
1449 int failed = 0;
1450
1451 PMAP_LOCK();
1452
1453 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1454 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1455
1456 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1457 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1458 pvo, pvo->pvo_pmap);
1459 failed = 1;
1460 }
1461
1462 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1463 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1464 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1465 pvo, TAILQ_NEXT(pvo, pvo_olink));
1466 failed = 1;
1467 }
1468
1469 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1470 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1471 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1472 pvo, LIST_NEXT(pvo, pvo_vlink));
1473 failed = 1;
1474 }
1475
1476 if (PVO_MANAGED_P(pvo)) {
1477 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1478 } else {
1479 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1480 printf("pmap_pvo_check: pvo %p: non kernel address "
1481 "on kernel unmanaged list\n", pvo);
1482 failed = 1;
1483 }
1484 pvo_head = &pmap_pvo_kunmanaged;
1485 }
1486 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1487 if (pvo0 == pvo)
1488 break;
1489 }
1490 if (pvo0 == NULL) {
1491 printf("pmap_pvo_check: pvo %p: not present "
1492 "on its vlist head %p\n", pvo, pvo_head);
1493 failed = 1;
1494 }
1495 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1496 printf("pmap_pvo_check: pvo %p: not present "
1497 "on its olist head\n", pvo);
1498 failed = 1;
1499 }
1500 pt = pmap_pvo_to_pte(pvo, -1);
1501 if (pt == NULL) {
1502 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1503 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1504 "no PTE\n", pvo);
1505 failed = 1;
1506 }
1507 } else {
1508 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1509 (uintptr_t) pt >=
1510 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1511 printf("pmap_pvo_check: pvo %p: pte %p not in "
1512 "pteg table\n", pvo, pt);
1513 failed = 1;
1514 }
1515 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1516 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1517 "no PTE\n", pvo);
1518 failed = 1;
1519 }
1520 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1521 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1522 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1523 pvo->pvo_pte.pte_hi,
1524 pt->pte_hi);
1525 failed = 1;
1526 }
1527 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1528 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1529 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1530 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1531 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1532 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1533 failed = 1;
1534 }
1535 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1536 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1537 " doesn't not match PVO's VA %#" _PRIxva "\n",
1538 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1539 failed = 1;
1540 }
1541 if (failed)
1542 pmap_pte_print(pt);
1543 }
1544 if (failed)
1545 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1546 pvo->pvo_pmap);
1547
1548 PMAP_UNLOCK();
1549 }
1550 #endif /* DEBUG || PMAPCHECK */
1551
1552 /*
1553 * Search the PVO table looking for a non-wired entry.
1554 * If we find one, remove it and return it.
1555 */
1556
1557 struct pvo_entry *
1558 pmap_pvo_reclaim(struct pmap *pm)
1559 {
1560 struct pvo_tqhead *pvoh;
1561 struct pvo_entry *pvo;
1562 uint32_t idx, endidx;
1563
1564 endidx = pmap_pvo_reclaim_nextidx;
1565 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1566 idx = (idx + 1) & pmap_pteg_mask) {
1567 pvoh = &pmap_pvo_table[idx];
1568 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1569 if (!PVO_WIRED_P(pvo)) {
1570 pmap_pvo_remove(pvo, -1, NULL);
1571 pmap_pvo_reclaim_nextidx = idx;
1572 PMAPCOUNT(pvos_reclaimed);
1573 return pvo;
1574 }
1575 }
1576 }
1577 return NULL;
1578 }
1579
1580 /*
1581 * This returns whether this is the first mapping of a page.
1582 */
1583 int
1584 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1585 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1586 {
1587 struct pvo_entry *pvo;
1588 struct pvo_tqhead *pvoh;
1589 register_t msr;
1590 int ptegidx;
1591 int i;
1592 int poolflags = PR_NOWAIT;
1593
1594 /*
1595 * Compute the PTE Group index.
1596 */
1597 va &= ~ADDR_POFF;
1598 ptegidx = va_to_pteg(pm, va);
1599
1600 msr = pmap_interrupts_off();
1601
1602 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1603 if (pmap_pvo_remove_depth > 0)
1604 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1605 if (++pmap_pvo_enter_depth > 1)
1606 panic("pmap_pvo_enter: called recursively!");
1607 #endif
1608
1609 /*
1610 * Remove any existing mapping for this page. Reuse the
1611 * pvo entry if there a mapping.
1612 */
1613 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1614 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1615 #ifdef DEBUG
1616 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1617 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1618 ~(PTE_REF|PTE_CHG)) == 0 &&
1619 va < VM_MIN_KERNEL_ADDRESS) {
1620 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1621 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1622 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1623 pvo->pvo_pte.pte_hi,
1624 pm->pm_sr[va >> ADDR_SR_SHFT]);
1625 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1626 #ifdef DDBX
1627 Debugger();
1628 #endif
1629 }
1630 #endif
1631 PMAPCOUNT(mappings_replaced);
1632 pmap_pvo_remove(pvo, -1, NULL);
1633 break;
1634 }
1635 }
1636
1637 /*
1638 * If we aren't overwriting an mapping, try to allocate
1639 */
1640 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1641 --pmap_pvo_enter_depth;
1642 #endif
1643 pmap_interrupts_restore(msr);
1644 if (pvo) {
1645 pmap_pvo_free(pvo);
1646 }
1647 pvo = pool_get(pl, poolflags);
1648
1649 #ifdef DEBUG
1650 /*
1651 * Exercise pmap_pvo_reclaim() a little.
1652 */
1653 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1654 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1655 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1656 pool_put(pl, pvo);
1657 pvo = NULL;
1658 }
1659 #endif
1660
1661 msr = pmap_interrupts_off();
1662 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1663 ++pmap_pvo_enter_depth;
1664 #endif
1665 if (pvo == NULL) {
1666 pvo = pmap_pvo_reclaim(pm);
1667 if (pvo == NULL) {
1668 if ((flags & PMAP_CANFAIL) == 0)
1669 panic("pmap_pvo_enter: failed");
1670 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1671 pmap_pvo_enter_depth--;
1672 #endif
1673 PMAPCOUNT(pvos_failed);
1674 pmap_interrupts_restore(msr);
1675 return ENOMEM;
1676 }
1677 }
1678
1679 pvo->pvo_vaddr = va;
1680 pvo->pvo_pmap = pm;
1681 pvo->pvo_vaddr &= ~ADDR_POFF;
1682 if (flags & VM_PROT_EXECUTE) {
1683 PMAPCOUNT(exec_mappings);
1684 pvo_set_exec(pvo);
1685 }
1686 if (flags & PMAP_WIRED)
1687 pvo->pvo_vaddr |= PVO_WIRED;
1688 if (pvo_head != &pmap_pvo_kunmanaged) {
1689 pvo->pvo_vaddr |= PVO_MANAGED;
1690 PMAPCOUNT(mappings);
1691 } else {
1692 PMAPCOUNT(kernel_mappings);
1693 }
1694 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1695
1696 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1697 if (PVO_WIRED_P(pvo))
1698 pvo->pvo_pmap->pm_stats.wired_count++;
1699 pvo->pvo_pmap->pm_stats.resident_count++;
1700 #if defined(DEBUG)
1701 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1702 DPRINTFN(PVOENTER,
1703 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1704 pvo, pm, va, pa));
1705 #endif
1706
1707 /*
1708 * We hope this succeeds but it isn't required.
1709 */
1710 pvoh = &pmap_pvo_table[ptegidx];
1711 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1712 if (i >= 0) {
1713 PVO_PTEGIDX_SET(pvo, i);
1714 PVO_WHERE(pvo, ENTER_INSERT);
1715 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1716 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1717 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1718
1719 } else {
1720 /*
1721 * Since we didn't have room for this entry (which makes it
1722 * and evicted entry), place it at the head of the list.
1723 */
1724 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1725 PMAPCOUNT(ptes_evicted);
1726 pm->pm_evictions++;
1727 /*
1728 * If this is a kernel page, make sure it's active.
1729 */
1730 if (pm == pmap_kernel()) {
1731 i = pmap_pte_spill(pm, va, false);
1732 KASSERT(i);
1733 }
1734 }
1735 PMAP_PVO_CHECK(pvo); /* sanity check */
1736 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1737 pmap_pvo_enter_depth--;
1738 #endif
1739 pmap_interrupts_restore(msr);
1740 return 0;
1741 }
1742
1743 static void
1744 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1745 {
1746 volatile struct pte *pt;
1747 int ptegidx;
1748
1749 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1750 if (++pmap_pvo_remove_depth > 1)
1751 panic("pmap_pvo_remove: called recursively!");
1752 #endif
1753
1754 /*
1755 * If we haven't been supplied the ptegidx, calculate it.
1756 */
1757 if (pteidx == -1) {
1758 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1759 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1760 } else {
1761 ptegidx = pteidx >> 3;
1762 if (pvo->pvo_pte.pte_hi & PTE_HID)
1763 ptegidx ^= pmap_pteg_mask;
1764 }
1765 PMAP_PVO_CHECK(pvo); /* sanity check */
1766
1767 /*
1768 * If there is an active pte entry, we need to deactivate it
1769 * (and save the ref & chg bits).
1770 */
1771 pt = pmap_pvo_to_pte(pvo, pteidx);
1772 if (pt != NULL) {
1773 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1774 PVO_WHERE(pvo, REMOVE);
1775 PVO_PTEGIDX_CLR(pvo);
1776 PMAPCOUNT(ptes_removed);
1777 } else {
1778 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1779 pvo->pvo_pmap->pm_evictions--;
1780 }
1781
1782 /*
1783 * Account for executable mappings.
1784 */
1785 if (PVO_EXECUTABLE_P(pvo))
1786 pvo_clear_exec(pvo);
1787
1788 /*
1789 * Update our statistics.
1790 */
1791 pvo->pvo_pmap->pm_stats.resident_count--;
1792 if (PVO_WIRED_P(pvo))
1793 pvo->pvo_pmap->pm_stats.wired_count--;
1794
1795 /*
1796 * Save the REF/CHG bits into their cache if the page is managed.
1797 */
1798 if (PVO_MANAGED_P(pvo)) {
1799 register_t ptelo = pvo->pvo_pte.pte_lo;
1800 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1801
1802 if (pg != NULL) {
1803 /*
1804 * If this page was changed and it is mapped exec,
1805 * invalidate it.
1806 */
1807 if ((ptelo & PTE_CHG) &&
1808 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1809 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1810 if (LIST_EMPTY(pvoh)) {
1811 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1812 "%#" _PRIxpa ": clear-exec]\n",
1813 VM_PAGE_TO_PHYS(pg)));
1814 pmap_attr_clear(pg, PTE_EXEC);
1815 PMAPCOUNT(exec_uncached_pvo_remove);
1816 } else {
1817 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1818 "%#" _PRIxpa ": syncicache]\n",
1819 VM_PAGE_TO_PHYS(pg)));
1820 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1821 PAGE_SIZE);
1822 PMAPCOUNT(exec_synced_pvo_remove);
1823 }
1824 }
1825
1826 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1827 }
1828 PMAPCOUNT(unmappings);
1829 } else {
1830 PMAPCOUNT(kernel_unmappings);
1831 }
1832
1833 /*
1834 * Remove the PVO from its lists and return it to the pool.
1835 */
1836 LIST_REMOVE(pvo, pvo_vlink);
1837 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1838 if (pvol) {
1839 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1840 }
1841 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1842 pmap_pvo_remove_depth--;
1843 #endif
1844 }
1845
1846 void
1847 pmap_pvo_free(struct pvo_entry *pvo)
1848 {
1849
1850 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1851 }
1852
1853 void
1854 pmap_pvo_free_list(struct pvo_head *pvol)
1855 {
1856 struct pvo_entry *pvo, *npvo;
1857
1858 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1859 npvo = LIST_NEXT(pvo, pvo_vlink);
1860 LIST_REMOVE(pvo, pvo_vlink);
1861 pmap_pvo_free(pvo);
1862 }
1863 }
1864
1865 /*
1866 * Mark a mapping as executable.
1867 * If this is the first executable mapping in the segment,
1868 * clear the noexec flag.
1869 */
1870 static void
1871 pvo_set_exec(struct pvo_entry *pvo)
1872 {
1873 struct pmap *pm = pvo->pvo_pmap;
1874
1875 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1876 return;
1877 }
1878 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1879 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1880 {
1881 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1882 if (pm->pm_exec[sr]++ == 0) {
1883 pm->pm_sr[sr] &= ~SR_NOEXEC;
1884 }
1885 }
1886 #endif
1887 }
1888
1889 /*
1890 * Mark a mapping as non-executable.
1891 * If this was the last executable mapping in the segment,
1892 * set the noexec flag.
1893 */
1894 static void
1895 pvo_clear_exec(struct pvo_entry *pvo)
1896 {
1897 struct pmap *pm = pvo->pvo_pmap;
1898
1899 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1900 return;
1901 }
1902 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1903 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1904 {
1905 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1906 if (--pm->pm_exec[sr] == 0) {
1907 pm->pm_sr[sr] |= SR_NOEXEC;
1908 }
1909 }
1910 #endif
1911 }
1912
1913 /*
1914 * Insert physical page at pa into the given pmap at virtual address va.
1915 */
1916 int
1917 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1918 {
1919 struct mem_region *mp;
1920 struct pvo_head *pvo_head;
1921 struct vm_page *pg;
1922 struct pool *pl;
1923 register_t pte_lo;
1924 int error;
1925 u_int pvo_flags;
1926 u_int was_exec = 0;
1927
1928 PMAP_LOCK();
1929
1930 if (__predict_false(!pmap_initialized)) {
1931 pvo_head = &pmap_pvo_kunmanaged;
1932 pl = &pmap_upvo_pool;
1933 pvo_flags = 0;
1934 pg = NULL;
1935 was_exec = PTE_EXEC;
1936 } else {
1937 pvo_head = pa_to_pvoh(pa, &pg);
1938 pl = &pmap_mpvo_pool;
1939 pvo_flags = PVO_MANAGED;
1940 }
1941
1942 DPRINTFN(ENTER,
1943 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1944 pm, va, pa, prot, flags));
1945
1946 /*
1947 * If this is a managed page, and it's the first reference to the
1948 * page clear the execness of the page. Otherwise fetch the execness.
1949 */
1950 if (pg != NULL)
1951 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1952
1953 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1954
1955 /*
1956 * Assume the page is cache inhibited and access is guarded unless
1957 * it's in our available memory array. If it is in the memory array,
1958 * asssume it's in memory coherent memory.
1959 */
1960 pte_lo = PTE_IG;
1961 if ((flags & PMAP_NC) == 0) {
1962 for (mp = mem; mp->size; mp++) {
1963 if (pa >= mp->start && pa < mp->start + mp->size) {
1964 pte_lo = PTE_M;
1965 break;
1966 }
1967 }
1968 }
1969
1970 if (prot & VM_PROT_WRITE)
1971 pte_lo |= PTE_BW;
1972 else
1973 pte_lo |= PTE_BR;
1974
1975 /*
1976 * If this was in response to a fault, "pre-fault" the PTE's
1977 * changed/referenced bit appropriately.
1978 */
1979 if (flags & VM_PROT_WRITE)
1980 pte_lo |= PTE_CHG;
1981 if (flags & VM_PROT_ALL)
1982 pte_lo |= PTE_REF;
1983
1984 /*
1985 * We need to know if this page can be executable
1986 */
1987 flags |= (prot & VM_PROT_EXECUTE);
1988
1989 /*
1990 * Record mapping for later back-translation and pte spilling.
1991 * This will overwrite any existing mapping.
1992 */
1993 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1994
1995 /*
1996 * Flush the real page from the instruction cache if this page is
1997 * mapped executable and cacheable and has not been flushed since
1998 * the last time it was modified.
1999 */
2000 if (error == 0 &&
2001 (flags & VM_PROT_EXECUTE) &&
2002 (pte_lo & PTE_I) == 0 &&
2003 was_exec == 0) {
2004 DPRINTFN(ENTER, (" syncicache"));
2005 PMAPCOUNT(exec_synced);
2006 pmap_syncicache(pa, PAGE_SIZE);
2007 if (pg != NULL) {
2008 pmap_attr_save(pg, PTE_EXEC);
2009 PMAPCOUNT(exec_cached);
2010 #if defined(DEBUG) || defined(PMAPDEBUG)
2011 if (pmapdebug & PMAPDEBUG_ENTER)
2012 printf(" marked-as-exec");
2013 else if (pmapdebug & PMAPDEBUG_EXEC)
2014 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2015 VM_PAGE_TO_PHYS(pg));
2016
2017 #endif
2018 }
2019 }
2020
2021 DPRINTFN(ENTER, (": error=%d\n", error));
2022
2023 PMAP_UNLOCK();
2024
2025 return error;
2026 }
2027
2028 void
2029 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2030 {
2031 struct mem_region *mp;
2032 register_t pte_lo;
2033 int error;
2034
2035 #if defined (PMAP_OEA64_BRIDGE)
2036 if (va < VM_MIN_KERNEL_ADDRESS)
2037 panic("pmap_kenter_pa: attempt to enter "
2038 "non-kernel address %#" _PRIxva "!", va);
2039 #endif
2040
2041 DPRINTFN(KENTER,
2042 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2043
2044 PMAP_LOCK();
2045
2046 /*
2047 * Assume the page is cache inhibited and access is guarded unless
2048 * it's in our available memory array. If it is in the memory array,
2049 * asssume it's in memory coherent memory.
2050 */
2051 pte_lo = PTE_IG;
2052 if ((prot & PMAP_NC) == 0) {
2053 for (mp = mem; mp->size; mp++) {
2054 if (pa >= mp->start && pa < mp->start + mp->size) {
2055 pte_lo = PTE_M;
2056 break;
2057 }
2058 }
2059 }
2060
2061 if (prot & VM_PROT_WRITE)
2062 pte_lo |= PTE_BW;
2063 else
2064 pte_lo |= PTE_BR;
2065
2066 /*
2067 * We don't care about REF/CHG on PVOs on the unmanaged list.
2068 */
2069 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2070 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2071
2072 if (error != 0)
2073 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2074 va, pa, error);
2075
2076 PMAP_UNLOCK();
2077 }
2078
2079 void
2080 pmap_kremove(vaddr_t va, vsize_t len)
2081 {
2082 if (va < VM_MIN_KERNEL_ADDRESS)
2083 panic("pmap_kremove: attempt to remove "
2084 "non-kernel address %#" _PRIxva "!", va);
2085
2086 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2087 pmap_remove(pmap_kernel(), va, va + len);
2088 }
2089
2090 /*
2091 * Remove the given range of mapping entries.
2092 */
2093 void
2094 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2095 {
2096 struct pvo_head pvol;
2097 struct pvo_entry *pvo;
2098 register_t msr;
2099 int pteidx;
2100
2101 PMAP_LOCK();
2102 LIST_INIT(&pvol);
2103 msr = pmap_interrupts_off();
2104 for (; va < endva; va += PAGE_SIZE) {
2105 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2106 if (pvo != NULL) {
2107 pmap_pvo_remove(pvo, pteidx, &pvol);
2108 }
2109 }
2110 pmap_interrupts_restore(msr);
2111 pmap_pvo_free_list(&pvol);
2112 PMAP_UNLOCK();
2113 }
2114
2115 /*
2116 * Get the physical page address for the given pmap/virtual address.
2117 */
2118 bool
2119 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2120 {
2121 struct pvo_entry *pvo;
2122 register_t msr;
2123
2124 PMAP_LOCK();
2125
2126 /*
2127 * If this is a kernel pmap lookup, also check the battable
2128 * and if we get a hit, translate the VA to a PA using the
2129 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2130 * that will wrap back to 0.
2131 */
2132 if (pm == pmap_kernel() &&
2133 (va < VM_MIN_KERNEL_ADDRESS ||
2134 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2135 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2136 #if defined (PMAP_OEA)
2137 #ifdef PPC_OEA601
2138 if ((MFPVR() >> 16) == MPC601) {
2139 register_t batu = battable[va >> 23].batu;
2140 register_t batl = battable[va >> 23].batl;
2141 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2142 if (BAT601_VALID_P(batl) &&
2143 BAT601_VA_MATCH_P(batu, batl, va)) {
2144 register_t mask =
2145 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2146 if (pap)
2147 *pap = (batl & mask) | (va & ~mask);
2148 PMAP_UNLOCK();
2149 return true;
2150 } else if (SR601_VALID_P(sr) &&
2151 SR601_PA_MATCH_P(sr, va)) {
2152 if (pap)
2153 *pap = va;
2154 PMAP_UNLOCK();
2155 return true;
2156 }
2157 } else
2158 #endif /* PPC_OEA601 */
2159 {
2160 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2161 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2162 register_t batl =
2163 battable[va >> ADDR_SR_SHFT].batl;
2164 register_t mask =
2165 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2166 if (pap)
2167 *pap = (batl & mask) | (va & ~mask);
2168 PMAP_UNLOCK();
2169 return true;
2170 }
2171 }
2172 return false;
2173 #elif defined (PMAP_OEA64_BRIDGE)
2174 if (va >= SEGMENT_LENGTH)
2175 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2176 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2177 else {
2178 if (pap)
2179 *pap = va;
2180 PMAP_UNLOCK();
2181 return true;
2182 }
2183 #elif defined (PMAP_OEA64)
2184 #error PPC_OEA64 not supported
2185 #endif /* PPC_OEA */
2186 }
2187
2188 msr = pmap_interrupts_off();
2189 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2190 if (pvo != NULL) {
2191 PMAP_PVO_CHECK(pvo); /* sanity check */
2192 if (pap)
2193 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2194 | (va & ADDR_POFF);
2195 }
2196 pmap_interrupts_restore(msr);
2197 PMAP_UNLOCK();
2198 return pvo != NULL;
2199 }
2200
2201 /*
2202 * Lower the protection on the specified range of this pmap.
2203 */
2204 void
2205 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2206 {
2207 struct pvo_entry *pvo;
2208 volatile struct pte *pt;
2209 register_t msr;
2210 int pteidx;
2211
2212 /*
2213 * Since this routine only downgrades protection, we should
2214 * always be called with at least one bit not set.
2215 */
2216 KASSERT(prot != VM_PROT_ALL);
2217
2218 /*
2219 * If there is no protection, this is equivalent to
2220 * remove the pmap from the pmap.
2221 */
2222 if ((prot & VM_PROT_READ) == 0) {
2223 pmap_remove(pm, va, endva);
2224 return;
2225 }
2226
2227 PMAP_LOCK();
2228
2229 msr = pmap_interrupts_off();
2230 for (; va < endva; va += PAGE_SIZE) {
2231 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2232 if (pvo == NULL)
2233 continue;
2234 PMAP_PVO_CHECK(pvo); /* sanity check */
2235
2236 /*
2237 * Revoke executable if asked to do so.
2238 */
2239 if ((prot & VM_PROT_EXECUTE) == 0)
2240 pvo_clear_exec(pvo);
2241
2242 #if 0
2243 /*
2244 * If the page is already read-only, no change
2245 * needs to be made.
2246 */
2247 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2248 continue;
2249 #endif
2250 /*
2251 * Grab the PTE pointer before we diddle with
2252 * the cached PTE copy.
2253 */
2254 pt = pmap_pvo_to_pte(pvo, pteidx);
2255 /*
2256 * Change the protection of the page.
2257 */
2258 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2259 pvo->pvo_pte.pte_lo |= PTE_BR;
2260
2261 /*
2262 * If the PVO is in the page table, update
2263 * that pte at well.
2264 */
2265 if (pt != NULL) {
2266 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2267 PVO_WHERE(pvo, PMAP_PROTECT);
2268 PMAPCOUNT(ptes_changed);
2269 }
2270
2271 PMAP_PVO_CHECK(pvo); /* sanity check */
2272 }
2273 pmap_interrupts_restore(msr);
2274 PMAP_UNLOCK();
2275 }
2276
2277 void
2278 pmap_unwire(pmap_t pm, vaddr_t va)
2279 {
2280 struct pvo_entry *pvo;
2281 register_t msr;
2282
2283 PMAP_LOCK();
2284 msr = pmap_interrupts_off();
2285 pvo = pmap_pvo_find_va(pm, va, NULL);
2286 if (pvo != NULL) {
2287 if (PVO_WIRED_P(pvo)) {
2288 pvo->pvo_vaddr &= ~PVO_WIRED;
2289 pm->pm_stats.wired_count--;
2290 }
2291 PMAP_PVO_CHECK(pvo); /* sanity check */
2292 }
2293 pmap_interrupts_restore(msr);
2294 PMAP_UNLOCK();
2295 }
2296
2297 /*
2298 * Lower the protection on the specified physical page.
2299 */
2300 void
2301 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2302 {
2303 struct pvo_head *pvo_head, pvol;
2304 struct pvo_entry *pvo, *next_pvo;
2305 volatile struct pte *pt;
2306 register_t msr;
2307
2308 PMAP_LOCK();
2309
2310 KASSERT(prot != VM_PROT_ALL);
2311 LIST_INIT(&pvol);
2312 msr = pmap_interrupts_off();
2313
2314 /*
2315 * When UVM reuses a page, it does a pmap_page_protect with
2316 * VM_PROT_NONE. At that point, we can clear the exec flag
2317 * since we know the page will have different contents.
2318 */
2319 if ((prot & VM_PROT_READ) == 0) {
2320 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2321 VM_PAGE_TO_PHYS(pg)));
2322 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2323 PMAPCOUNT(exec_uncached_page_protect);
2324 pmap_attr_clear(pg, PTE_EXEC);
2325 }
2326 }
2327
2328 pvo_head = vm_page_to_pvoh(pg);
2329 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2330 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2331 PMAP_PVO_CHECK(pvo); /* sanity check */
2332
2333 /*
2334 * Downgrading to no mapping at all, we just remove the entry.
2335 */
2336 if ((prot & VM_PROT_READ) == 0) {
2337 pmap_pvo_remove(pvo, -1, &pvol);
2338 continue;
2339 }
2340
2341 /*
2342 * If EXEC permission is being revoked, just clear the
2343 * flag in the PVO.
2344 */
2345 if ((prot & VM_PROT_EXECUTE) == 0)
2346 pvo_clear_exec(pvo);
2347
2348 /*
2349 * If this entry is already RO, don't diddle with the
2350 * page table.
2351 */
2352 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2353 PMAP_PVO_CHECK(pvo);
2354 continue;
2355 }
2356
2357 /*
2358 * Grab the PTE before the we diddle the bits so
2359 * pvo_to_pte can verify the pte contents are as
2360 * expected.
2361 */
2362 pt = pmap_pvo_to_pte(pvo, -1);
2363 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2364 pvo->pvo_pte.pte_lo |= PTE_BR;
2365 if (pt != NULL) {
2366 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2367 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2368 PMAPCOUNT(ptes_changed);
2369 }
2370 PMAP_PVO_CHECK(pvo); /* sanity check */
2371 }
2372 pmap_interrupts_restore(msr);
2373 pmap_pvo_free_list(&pvol);
2374
2375 PMAP_UNLOCK();
2376 }
2377
2378 /*
2379 * Activate the address space for the specified process. If the process
2380 * is the current process, load the new MMU context.
2381 */
2382 void
2383 pmap_activate(struct lwp *l)
2384 {
2385 struct pcb *pcb = &l->l_addr->u_pcb;
2386 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2387
2388 DPRINTFN(ACTIVATE,
2389 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2390
2391 /*
2392 * XXX Normally performed in cpu_fork().
2393 */
2394 pcb->pcb_pm = pmap;
2395
2396 /*
2397 * In theory, the SR registers need only be valid on return
2398 * to user space wait to do them there.
2399 */
2400 if (l == curlwp) {
2401 /* Store pointer to new current pmap. */
2402 curpm = pmap;
2403 }
2404 }
2405
2406 /*
2407 * Deactivate the specified process's address space.
2408 */
2409 void
2410 pmap_deactivate(struct lwp *l)
2411 {
2412 }
2413
2414 bool
2415 pmap_query_bit(struct vm_page *pg, int ptebit)
2416 {
2417 struct pvo_entry *pvo;
2418 volatile struct pte *pt;
2419 register_t msr;
2420
2421 PMAP_LOCK();
2422
2423 if (pmap_attr_fetch(pg) & ptebit) {
2424 PMAP_UNLOCK();
2425 return true;
2426 }
2427
2428 msr = pmap_interrupts_off();
2429 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2430 PMAP_PVO_CHECK(pvo); /* sanity check */
2431 /*
2432 * See if we saved the bit off. If so cache, it and return
2433 * success.
2434 */
2435 if (pvo->pvo_pte.pte_lo & ptebit) {
2436 pmap_attr_save(pg, ptebit);
2437 PMAP_PVO_CHECK(pvo); /* sanity check */
2438 pmap_interrupts_restore(msr);
2439 PMAP_UNLOCK();
2440 return true;
2441 }
2442 }
2443 /*
2444 * No luck, now go thru the hard part of looking at the ptes
2445 * themselves. Sync so any pending REF/CHG bits are flushed
2446 * to the PTEs.
2447 */
2448 SYNC();
2449 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2450 PMAP_PVO_CHECK(pvo); /* sanity check */
2451 /*
2452 * See if this pvo have a valid PTE. If so, fetch the
2453 * REF/CHG bits from the valid PTE. If the appropriate
2454 * ptebit is set, cache, it and return success.
2455 */
2456 pt = pmap_pvo_to_pte(pvo, -1);
2457 if (pt != NULL) {
2458 pmap_pte_synch(pt, &pvo->pvo_pte);
2459 if (pvo->pvo_pte.pte_lo & ptebit) {
2460 pmap_attr_save(pg, ptebit);
2461 PMAP_PVO_CHECK(pvo); /* sanity check */
2462 pmap_interrupts_restore(msr);
2463 PMAP_UNLOCK();
2464 return true;
2465 }
2466 }
2467 }
2468 pmap_interrupts_restore(msr);
2469 PMAP_UNLOCK();
2470 return false;
2471 }
2472
2473 bool
2474 pmap_clear_bit(struct vm_page *pg, int ptebit)
2475 {
2476 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2477 struct pvo_entry *pvo;
2478 volatile struct pte *pt;
2479 register_t msr;
2480 int rv = 0;
2481
2482 PMAP_LOCK();
2483 msr = pmap_interrupts_off();
2484
2485 /*
2486 * Fetch the cache value
2487 */
2488 rv |= pmap_attr_fetch(pg);
2489
2490 /*
2491 * Clear the cached value.
2492 */
2493 pmap_attr_clear(pg, ptebit);
2494
2495 /*
2496 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2497 * can reset the right ones). Note that since the pvo entries and
2498 * list heads are accessed via BAT0 and are never placed in the
2499 * page table, we don't have to worry about further accesses setting
2500 * the REF/CHG bits.
2501 */
2502 SYNC();
2503
2504 /*
2505 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2506 * valid PTE. If so, clear the ptebit from the valid PTE.
2507 */
2508 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2509 PMAP_PVO_CHECK(pvo); /* sanity check */
2510 pt = pmap_pvo_to_pte(pvo, -1);
2511 if (pt != NULL) {
2512 /*
2513 * Only sync the PTE if the bit we are looking
2514 * for is not already set.
2515 */
2516 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2517 pmap_pte_synch(pt, &pvo->pvo_pte);
2518 /*
2519 * If the bit we are looking for was already set,
2520 * clear that bit in the pte.
2521 */
2522 if (pvo->pvo_pte.pte_lo & ptebit)
2523 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2524 }
2525 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2526 pvo->pvo_pte.pte_lo &= ~ptebit;
2527 PMAP_PVO_CHECK(pvo); /* sanity check */
2528 }
2529 pmap_interrupts_restore(msr);
2530
2531 /*
2532 * If we are clearing the modify bit and this page was marked EXEC
2533 * and the user of the page thinks the page was modified, then we
2534 * need to clean it from the icache if it's mapped or clear the EXEC
2535 * bit if it's not mapped. The page itself might not have the CHG
2536 * bit set if the modification was done via DMA to the page.
2537 */
2538 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2539 if (LIST_EMPTY(pvoh)) {
2540 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2541 VM_PAGE_TO_PHYS(pg)));
2542 pmap_attr_clear(pg, PTE_EXEC);
2543 PMAPCOUNT(exec_uncached_clear_modify);
2544 } else {
2545 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2546 VM_PAGE_TO_PHYS(pg)));
2547 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2548 PMAPCOUNT(exec_synced_clear_modify);
2549 }
2550 }
2551 PMAP_UNLOCK();
2552 return (rv & ptebit) != 0;
2553 }
2554
2555 void
2556 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2557 {
2558 struct pvo_entry *pvo;
2559 size_t offset = va & ADDR_POFF;
2560 int s;
2561
2562 PMAP_LOCK();
2563 s = splvm();
2564 while (len > 0) {
2565 size_t seglen = PAGE_SIZE - offset;
2566 if (seglen > len)
2567 seglen = len;
2568 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2569 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2570 pmap_syncicache(
2571 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2572 PMAP_PVO_CHECK(pvo);
2573 }
2574 va += seglen;
2575 len -= seglen;
2576 offset = 0;
2577 }
2578 splx(s);
2579 PMAP_UNLOCK();
2580 }
2581
2582 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2583 void
2584 pmap_pte_print(volatile struct pte *pt)
2585 {
2586 printf("PTE %p: ", pt);
2587
2588 #if defined(PMAP_OEA)
2589 /* High word: */
2590 printf("%#" _PRIxpte ": [", pt->pte_hi);
2591 #else
2592 printf("%#" _PRIxpte ": [", pt->pte_hi);
2593 #endif /* PMAP_OEA */
2594
2595 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2596 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2597
2598 printf("%#" _PRIxpte " %#" _PRIxpte "",
2599 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2600 pt->pte_hi & PTE_API);
2601 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2602 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2603 #else
2604 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2605 #endif /* PMAP_OEA */
2606
2607 /* Low word: */
2608 #if defined (PMAP_OEA)
2609 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2610 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2611 #else
2612 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2613 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2614 #endif
2615 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2616 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2617 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2618 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2619 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2620 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2621 switch (pt->pte_lo & PTE_PP) {
2622 case PTE_BR: printf("br]\n"); break;
2623 case PTE_BW: printf("bw]\n"); break;
2624 case PTE_SO: printf("so]\n"); break;
2625 case PTE_SW: printf("sw]\n"); break;
2626 }
2627 }
2628 #endif
2629
2630 #if defined(DDB)
2631 void
2632 pmap_pteg_check(void)
2633 {
2634 volatile struct pte *pt;
2635 int i;
2636 int ptegidx;
2637 u_int p_valid = 0;
2638 u_int s_valid = 0;
2639 u_int invalid = 0;
2640
2641 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2642 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2643 if (pt->pte_hi & PTE_VALID) {
2644 if (pt->pte_hi & PTE_HID)
2645 s_valid++;
2646 else
2647 {
2648 p_valid++;
2649 }
2650 } else
2651 invalid++;
2652 }
2653 }
2654 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2655 p_valid, p_valid, s_valid, s_valid,
2656 invalid, invalid);
2657 }
2658
2659 void
2660 pmap_print_mmuregs(void)
2661 {
2662 int i;
2663 u_int cpuvers;
2664 #ifndef PMAP_OEA64
2665 vaddr_t addr;
2666 register_t soft_sr[16];
2667 #endif
2668 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2669 struct bat soft_ibat[4];
2670 struct bat soft_dbat[4];
2671 #endif
2672 paddr_t sdr1;
2673
2674 cpuvers = MFPVR() >> 16;
2675 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2676 #ifndef PMAP_OEA64
2677 addr = 0;
2678 for (i = 0; i < 16; i++) {
2679 soft_sr[i] = MFSRIN(addr);
2680 addr += (1 << ADDR_SR_SHFT);
2681 }
2682 #endif
2683
2684 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2685 /* read iBAT (601: uBAT) registers */
2686 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2687 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2688 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2689 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2690 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2691 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2692 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2693 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2694
2695
2696 if (cpuvers != MPC601) {
2697 /* read dBAT registers */
2698 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2699 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2700 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2701 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2702 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2703 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2704 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2705 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2706 }
2707 #endif
2708
2709 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2710 #ifndef PMAP_OEA64
2711 printf("SR[]:\t");
2712 for (i = 0; i < 4; i++)
2713 printf("0x%08lx, ", soft_sr[i]);
2714 printf("\n\t");
2715 for ( ; i < 8; i++)
2716 printf("0x%08lx, ", soft_sr[i]);
2717 printf("\n\t");
2718 for ( ; i < 12; i++)
2719 printf("0x%08lx, ", soft_sr[i]);
2720 printf("\n\t");
2721 for ( ; i < 16; i++)
2722 printf("0x%08lx, ", soft_sr[i]);
2723 printf("\n");
2724 #endif
2725
2726 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2727 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2728 for (i = 0; i < 4; i++) {
2729 printf("0x%08lx 0x%08lx, ",
2730 soft_ibat[i].batu, soft_ibat[i].batl);
2731 if (i == 1)
2732 printf("\n\t");
2733 }
2734 if (cpuvers != MPC601) {
2735 printf("\ndBAT[]:\t");
2736 for (i = 0; i < 4; i++) {
2737 printf("0x%08lx 0x%08lx, ",
2738 soft_dbat[i].batu, soft_dbat[i].batl);
2739 if (i == 1)
2740 printf("\n\t");
2741 }
2742 }
2743 printf("\n");
2744 #endif /* PMAP_OEA... */
2745 }
2746
2747 void
2748 pmap_print_pte(pmap_t pm, vaddr_t va)
2749 {
2750 struct pvo_entry *pvo;
2751 volatile struct pte *pt;
2752 int pteidx;
2753
2754 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2755 if (pvo != NULL) {
2756 pt = pmap_pvo_to_pte(pvo, pteidx);
2757 if (pt != NULL) {
2758 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2759 va, pt,
2760 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2761 pt->pte_hi, pt->pte_lo);
2762 } else {
2763 printf("No valid PTE found\n");
2764 }
2765 } else {
2766 printf("Address not in pmap\n");
2767 }
2768 }
2769
2770 void
2771 pmap_pteg_dist(void)
2772 {
2773 struct pvo_entry *pvo;
2774 int ptegidx;
2775 int depth;
2776 int max_depth = 0;
2777 unsigned int depths[64];
2778
2779 memset(depths, 0, sizeof(depths));
2780 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2781 depth = 0;
2782 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2783 depth++;
2784 }
2785 if (depth > max_depth)
2786 max_depth = depth;
2787 if (depth > 63)
2788 depth = 63;
2789 depths[depth]++;
2790 }
2791
2792 for (depth = 0; depth < 64; depth++) {
2793 printf(" [%2d]: %8u", depth, depths[depth]);
2794 if ((depth & 3) == 3)
2795 printf("\n");
2796 if (depth == max_depth)
2797 break;
2798 }
2799 if ((depth & 3) != 3)
2800 printf("\n");
2801 printf("Max depth found was %d\n", max_depth);
2802 }
2803 #endif /* DEBUG */
2804
2805 #if defined(PMAPCHECK) || defined(DEBUG)
2806 void
2807 pmap_pvo_verify(void)
2808 {
2809 int ptegidx;
2810 int s;
2811
2812 s = splvm();
2813 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2814 struct pvo_entry *pvo;
2815 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2816 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2817 panic("pmap_pvo_verify: invalid pvo %p "
2818 "on list %#x", pvo, ptegidx);
2819 pmap_pvo_check(pvo);
2820 }
2821 }
2822 splx(s);
2823 }
2824 #endif /* PMAPCHECK */
2825
2826
2827 void *
2828 pmap_pool_ualloc(struct pool *pp, int flags)
2829 {
2830 struct pvo_page *pvop;
2831
2832 if (uvm.page_init_done != true) {
2833 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2834 }
2835
2836 PMAP_LOCK();
2837 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2838 if (pvop != NULL) {
2839 pmap_upvop_free--;
2840 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2841 PMAP_UNLOCK();
2842 return pvop;
2843 }
2844 PMAP_UNLOCK();
2845 return pmap_pool_malloc(pp, flags);
2846 }
2847
2848 void *
2849 pmap_pool_malloc(struct pool *pp, int flags)
2850 {
2851 struct pvo_page *pvop;
2852 struct vm_page *pg;
2853
2854 PMAP_LOCK();
2855 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2856 if (pvop != NULL) {
2857 pmap_mpvop_free--;
2858 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2859 PMAP_UNLOCK();
2860 return pvop;
2861 }
2862 PMAP_UNLOCK();
2863 again:
2864 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2865 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2866 if (__predict_false(pg == NULL)) {
2867 if (flags & PR_WAITOK) {
2868 uvm_wait("plpg");
2869 goto again;
2870 } else {
2871 return (0);
2872 }
2873 }
2874 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2875 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2876 }
2877
2878 void
2879 pmap_pool_ufree(struct pool *pp, void *va)
2880 {
2881 struct pvo_page *pvop;
2882 #if 0
2883 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2884 pmap_pool_mfree(va, size, tag);
2885 return;
2886 }
2887 #endif
2888 PMAP_LOCK();
2889 pvop = va;
2890 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2891 pmap_upvop_free++;
2892 if (pmap_upvop_free > pmap_upvop_maxfree)
2893 pmap_upvop_maxfree = pmap_upvop_free;
2894 PMAP_UNLOCK();
2895 }
2896
2897 void
2898 pmap_pool_mfree(struct pool *pp, void *va)
2899 {
2900 struct pvo_page *pvop;
2901
2902 PMAP_LOCK();
2903 pvop = va;
2904 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2905 pmap_mpvop_free++;
2906 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2907 pmap_mpvop_maxfree = pmap_mpvop_free;
2908 PMAP_UNLOCK();
2909 #if 0
2910 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2911 #endif
2912 }
2913
2914 /*
2915 * This routine in bootstraping to steal to-be-managed memory (which will
2916 * then be unmanaged). We use it to grab from the first 256MB for our
2917 * pmap needs and above 256MB for other stuff.
2918 */
2919 vaddr_t
2920 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2921 {
2922 vsize_t size;
2923 vaddr_t va;
2924 paddr_t pa = 0;
2925 int npgs, bank;
2926 struct vm_physseg *ps;
2927
2928 if (uvm.page_init_done == true)
2929 panic("pmap_steal_memory: called _after_ bootstrap");
2930
2931 *vstartp = VM_MIN_KERNEL_ADDRESS;
2932 *vendp = VM_MAX_KERNEL_ADDRESS;
2933
2934 size = round_page(vsize);
2935 npgs = atop(size);
2936
2937 /*
2938 * PA 0 will never be among those given to UVM so we can use it
2939 * to indicate we couldn't steal any memory.
2940 */
2941 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2942 if (ps->free_list == VM_FREELIST_FIRST256 &&
2943 ps->avail_end - ps->avail_start >= npgs) {
2944 pa = ptoa(ps->avail_start);
2945 break;
2946 }
2947 }
2948
2949 if (pa == 0)
2950 panic("pmap_steal_memory: no approriate memory to steal!");
2951
2952 ps->avail_start += npgs;
2953 ps->start += npgs;
2954
2955 /*
2956 * If we've used up all the pages in the segment, remove it and
2957 * compact the list.
2958 */
2959 if (ps->avail_start == ps->end) {
2960 /*
2961 * If this was the last one, then a very bad thing has occurred
2962 */
2963 if (--vm_nphysseg == 0)
2964 panic("pmap_steal_memory: out of memory!");
2965
2966 printf("pmap_steal_memory: consumed bank %d\n", bank);
2967 for (; bank < vm_nphysseg; bank++, ps++) {
2968 ps[0] = ps[1];
2969 }
2970 }
2971
2972 va = (vaddr_t) pa;
2973 memset((void *) va, 0, size);
2974 pmap_pages_stolen += npgs;
2975 #ifdef DEBUG
2976 if (pmapdebug && npgs > 1) {
2977 u_int cnt = 0;
2978 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2979 cnt += ps->avail_end - ps->avail_start;
2980 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2981 npgs, pmap_pages_stolen, cnt);
2982 }
2983 #endif
2984
2985 return va;
2986 }
2987
2988 /*
2989 * Find a chuck of memory with right size and alignment.
2990 */
2991 paddr_t
2992 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2993 {
2994 struct mem_region *mp;
2995 paddr_t s, e;
2996 int i, j;
2997
2998 size = round_page(size);
2999
3000 DPRINTFN(BOOT,
3001 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
3002 size, alignment, at_end));
3003
3004 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
3005 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
3006 alignment);
3007
3008 if (at_end) {
3009 if (alignment != PAGE_SIZE)
3010 panic("pmap_boot_find_memory: invalid ending "
3011 "alignment %#" _PRIxpa, alignment);
3012
3013 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3014 s = mp->start + mp->size - size;
3015 if (s >= mp->start && mp->size >= size) {
3016 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3017 DPRINTFN(BOOT,
3018 ("pmap_boot_find_memory: b-avail[%d] start "
3019 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3020 mp->start, mp->size));
3021 mp->size -= size;
3022 DPRINTFN(BOOT,
3023 ("pmap_boot_find_memory: a-avail[%d] start "
3024 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3025 mp->start, mp->size));
3026 return s;
3027 }
3028 }
3029 panic("pmap_boot_find_memory: no available memory");
3030 }
3031
3032 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3033 s = (mp->start + alignment - 1) & ~(alignment-1);
3034 e = s + size;
3035
3036 /*
3037 * Is the calculated region entirely within the region?
3038 */
3039 if (s < mp->start || e > mp->start + mp->size)
3040 continue;
3041
3042 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3043 if (s == mp->start) {
3044 /*
3045 * If the block starts at the beginning of region,
3046 * adjust the size & start. (the region may now be
3047 * zero in length)
3048 */
3049 DPRINTFN(BOOT,
3050 ("pmap_boot_find_memory: b-avail[%d] start "
3051 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3052 mp->start += size;
3053 mp->size -= size;
3054 DPRINTFN(BOOT,
3055 ("pmap_boot_find_memory: a-avail[%d] start "
3056 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3057 } else if (e == mp->start + mp->size) {
3058 /*
3059 * If the block starts at the beginning of region,
3060 * adjust only the size.
3061 */
3062 DPRINTFN(BOOT,
3063 ("pmap_boot_find_memory: b-avail[%d] start "
3064 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3065 mp->size -= size;
3066 DPRINTFN(BOOT,
3067 ("pmap_boot_find_memory: a-avail[%d] start "
3068 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3069 } else {
3070 /*
3071 * Block is in the middle of the region, so we
3072 * have to split it in two.
3073 */
3074 for (j = avail_cnt; j > i + 1; j--) {
3075 avail[j] = avail[j-1];
3076 }
3077 DPRINTFN(BOOT,
3078 ("pmap_boot_find_memory: b-avail[%d] start "
3079 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3080 mp[1].start = e;
3081 mp[1].size = mp[0].start + mp[0].size - e;
3082 mp[0].size = s - mp[0].start;
3083 avail_cnt++;
3084 for (; i < avail_cnt; i++) {
3085 DPRINTFN(BOOT,
3086 ("pmap_boot_find_memory: a-avail[%d] "
3087 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3088 avail[i].start, avail[i].size));
3089 }
3090 }
3091 KASSERT(s == (uintptr_t) s);
3092 return s;
3093 }
3094 panic("pmap_boot_find_memory: not enough memory for "
3095 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3096 }
3097
3098 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3099 #if defined (PMAP_OEA64_BRIDGE)
3100 int
3101 pmap_setup_segment0_map(int use_large_pages, ...)
3102 {
3103 vaddr_t va;
3104
3105 register_t pte_lo = 0x0;
3106 int ptegidx = 0, i = 0;
3107 struct pte pte;
3108 va_list ap;
3109
3110 /* Coherent + Supervisor RW, no user access */
3111 pte_lo = PTE_M;
3112
3113 /* XXXSL
3114 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3115 * these have to take priority.
3116 */
3117 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3118 ptegidx = va_to_pteg(pmap_kernel(), va);
3119 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3120 i = pmap_pte_insert(ptegidx, &pte);
3121 }
3122
3123 va_start(ap, use_large_pages);
3124 while (1) {
3125 paddr_t pa;
3126 size_t size;
3127
3128 va = va_arg(ap, vaddr_t);
3129
3130 if (va == 0)
3131 break;
3132
3133 pa = va_arg(ap, paddr_t);
3134 size = va_arg(ap, size_t);
3135
3136 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3137 #if 0
3138 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3139 #endif
3140 ptegidx = va_to_pteg(pmap_kernel(), va);
3141 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3142 i = pmap_pte_insert(ptegidx, &pte);
3143 }
3144 }
3145
3146 TLBSYNC();
3147 SYNC();
3148 return (0);
3149 }
3150 #endif /* PMAP_OEA64_BRIDGE */
3151
3152 /*
3153 * This is not part of the defined PMAP interface and is specific to the
3154 * PowerPC architecture. This is called during initppc, before the system
3155 * is really initialized.
3156 */
3157 void
3158 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3159 {
3160 struct mem_region *mp, tmp;
3161 paddr_t s, e;
3162 psize_t size;
3163 int i, j;
3164
3165 /*
3166 * Get memory.
3167 */
3168 mem_regions(&mem, &avail);
3169 #if defined(DEBUG)
3170 if (pmapdebug & PMAPDEBUG_BOOT) {
3171 printf("pmap_bootstrap: memory configuration:\n");
3172 for (mp = mem; mp->size; mp++) {
3173 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3174 mp->start, mp->size);
3175 }
3176 for (mp = avail; mp->size; mp++) {
3177 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3178 mp->start, mp->size);
3179 }
3180 }
3181 #endif
3182
3183 /*
3184 * Find out how much physical memory we have and in how many chunks.
3185 */
3186 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3187 if (mp->start >= pmap_memlimit)
3188 continue;
3189 if (mp->start + mp->size > pmap_memlimit) {
3190 size = pmap_memlimit - mp->start;
3191 physmem += btoc(size);
3192 } else {
3193 physmem += btoc(mp->size);
3194 }
3195 mem_cnt++;
3196 }
3197
3198 /*
3199 * Count the number of available entries.
3200 */
3201 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3202 avail_cnt++;
3203
3204 /*
3205 * Page align all regions.
3206 */
3207 kernelstart = trunc_page(kernelstart);
3208 kernelend = round_page(kernelend);
3209 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3210 s = round_page(mp->start);
3211 mp->size -= (s - mp->start);
3212 mp->size = trunc_page(mp->size);
3213 mp->start = s;
3214 e = mp->start + mp->size;
3215
3216 DPRINTFN(BOOT,
3217 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3218 i, mp->start, mp->size));
3219
3220 /*
3221 * Don't allow the end to run beyond our artificial limit
3222 */
3223 if (e > pmap_memlimit)
3224 e = pmap_memlimit;
3225
3226 /*
3227 * Is this region empty or strange? skip it.
3228 */
3229 if (e <= s) {
3230 mp->start = 0;
3231 mp->size = 0;
3232 continue;
3233 }
3234
3235 /*
3236 * Does this overlap the beginning of kernel?
3237 * Does extend past the end of the kernel?
3238 */
3239 else if (s < kernelstart && e > kernelstart) {
3240 if (e > kernelend) {
3241 avail[avail_cnt].start = kernelend;
3242 avail[avail_cnt].size = e - kernelend;
3243 avail_cnt++;
3244 }
3245 mp->size = kernelstart - s;
3246 }
3247 /*
3248 * Check whether this region overlaps the end of the kernel.
3249 */
3250 else if (s < kernelend && e > kernelend) {
3251 mp->start = kernelend;
3252 mp->size = e - kernelend;
3253 }
3254 /*
3255 * Look whether this regions is completely inside the kernel.
3256 * Nuke it if it does.
3257 */
3258 else if (s >= kernelstart && e <= kernelend) {
3259 mp->start = 0;
3260 mp->size = 0;
3261 }
3262 /*
3263 * If the user imposed a memory limit, enforce it.
3264 */
3265 else if (s >= pmap_memlimit) {
3266 mp->start = -PAGE_SIZE; /* let's know why */
3267 mp->size = 0;
3268 }
3269 else {
3270 mp->start = s;
3271 mp->size = e - s;
3272 }
3273 DPRINTFN(BOOT,
3274 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3275 i, mp->start, mp->size));
3276 }
3277
3278 /*
3279 * Move (and uncount) all the null return to the end.
3280 */
3281 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3282 if (mp->size == 0) {
3283 tmp = avail[i];
3284 avail[i] = avail[--avail_cnt];
3285 avail[avail_cnt] = avail[i];
3286 }
3287 }
3288
3289 /*
3290 * (Bubble)sort them into asecnding order.
3291 */
3292 for (i = 0; i < avail_cnt; i++) {
3293 for (j = i + 1; j < avail_cnt; j++) {
3294 if (avail[i].start > avail[j].start) {
3295 tmp = avail[i];
3296 avail[i] = avail[j];
3297 avail[j] = tmp;
3298 }
3299 }
3300 }
3301
3302 /*
3303 * Make sure they don't overlap.
3304 */
3305 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3306 if (mp[0].start + mp[0].size > mp[1].start) {
3307 mp[0].size = mp[1].start - mp[0].start;
3308 }
3309 DPRINTFN(BOOT,
3310 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3311 i, mp->start, mp->size));
3312 }
3313 DPRINTFN(BOOT,
3314 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3315 i, mp->start, mp->size));
3316
3317 #ifdef PTEGCOUNT
3318 pmap_pteg_cnt = PTEGCOUNT;
3319 #else /* PTEGCOUNT */
3320
3321 pmap_pteg_cnt = 0x1000;
3322
3323 while (pmap_pteg_cnt < physmem)
3324 pmap_pteg_cnt <<= 1;
3325
3326 pmap_pteg_cnt >>= 1;
3327 #endif /* PTEGCOUNT */
3328
3329 #ifdef DEBUG
3330 DPRINTFN(BOOT,
3331 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3332 #endif
3333
3334 /*
3335 * Find suitably aligned memory for PTEG hash table.
3336 */
3337 size = pmap_pteg_cnt * sizeof(struct pteg);
3338 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3339
3340 #ifdef DEBUG
3341 DPRINTFN(BOOT,
3342 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3343 #endif
3344
3345
3346 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3347 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3348 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3349 pmap_pteg_table, size);
3350 #endif
3351
3352 memset(__UNVOLATILE(pmap_pteg_table), 0,
3353 pmap_pteg_cnt * sizeof(struct pteg));
3354 pmap_pteg_mask = pmap_pteg_cnt - 1;
3355
3356 /*
3357 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3358 * with pages. So we just steal them before giving them to UVM.
3359 */
3360 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3361 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3362 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3363 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3364 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3365 pmap_pvo_table, size);
3366 #endif
3367
3368 for (i = 0; i < pmap_pteg_cnt; i++)
3369 TAILQ_INIT(&pmap_pvo_table[i]);
3370
3371 #ifndef MSGBUFADDR
3372 /*
3373 * Allocate msgbuf in high memory.
3374 */
3375 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3376 #endif
3377
3378 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3379 paddr_t pfstart = atop(mp->start);
3380 paddr_t pfend = atop(mp->start + mp->size);
3381 if (mp->size == 0)
3382 continue;
3383 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3384 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3385 VM_FREELIST_FIRST256);
3386 } else if (mp->start >= SEGMENT_LENGTH) {
3387 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3388 VM_FREELIST_DEFAULT);
3389 } else {
3390 pfend = atop(SEGMENT_LENGTH);
3391 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3392 VM_FREELIST_FIRST256);
3393 pfstart = atop(SEGMENT_LENGTH);
3394 pfend = atop(mp->start + mp->size);
3395 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3396 VM_FREELIST_DEFAULT);
3397 }
3398 }
3399
3400 /*
3401 * Make sure kernel vsid is allocated as well as VSID 0.
3402 */
3403 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3404 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3405 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3406 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3407 pmap_vsid_bitmap[0] |= 1;
3408
3409 /*
3410 * Initialize kernel pmap and hardware.
3411 */
3412
3413 /* PMAP_OEA64_BRIDGE does support these instructions */
3414 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3415 for (i = 0; i < 16; i++) {
3416 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3417 __asm volatile ("mtsrin %0,%1"
3418 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3419 }
3420
3421 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3422 __asm volatile ("mtsr %0,%1"
3423 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3424 #ifdef KERNEL2_SR
3425 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3426 __asm volatile ("mtsr %0,%1"
3427 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3428 #endif
3429 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3430 #if defined (PMAP_OEA)
3431 for (i = 0; i < 16; i++) {
3432 if (iosrtable[i] & SR601_T) {
3433 pmap_kernel()->pm_sr[i] = iosrtable[i];
3434 __asm volatile ("mtsrin %0,%1"
3435 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3436 }
3437 }
3438 __asm volatile ("sync; mtsdr1 %0; isync"
3439 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3440 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3441 __asm __volatile ("sync; mtsdr1 %0; isync"
3442 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3443 #endif
3444 tlbia();
3445
3446 #ifdef ALTIVEC
3447 pmap_use_altivec = cpu_altivec;
3448 #endif
3449
3450 #ifdef DEBUG
3451 if (pmapdebug & PMAPDEBUG_BOOT) {
3452 u_int cnt;
3453 int bank;
3454 char pbuf[9];
3455 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3456 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3457 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3458 bank,
3459 ptoa(vm_physmem[bank].avail_start),
3460 ptoa(vm_physmem[bank].avail_end),
3461 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3462 }
3463 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3464 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3465 pbuf, cnt);
3466 }
3467 #endif
3468
3469 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3470 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3471 &pmap_pool_uallocator, IPL_NONE);
3472
3473 pool_setlowat(&pmap_upvo_pool, 252);
3474
3475 pool_init(&pmap_pool, sizeof(struct pmap),
3476 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3477 IPL_NONE);
3478
3479 #if defined(PMAP_NEED_MAPKERNEL) || 1
3480 {
3481 struct pmap *pm = pmap_kernel();
3482 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3483 extern int etext[], kernel_text[];
3484 vaddr_t va, va_etext = (paddr_t) etext;
3485 #endif
3486 paddr_t pa, pa_end;
3487 register_t sr;
3488 struct pte pt;
3489 unsigned int ptegidx;
3490 int bank;
3491
3492 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3493 pm->pm_sr[0] = sr;
3494
3495 for (bank = 0; bank < vm_nphysseg; bank++) {
3496 pa_end = ptoa(vm_physmem[bank].avail_end);
3497 pa = ptoa(vm_physmem[bank].avail_start);
3498 for (; pa < pa_end; pa += PAGE_SIZE) {
3499 ptegidx = va_to_pteg(pm, pa);
3500 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3501 pmap_pte_insert(ptegidx, &pt);
3502 }
3503 }
3504
3505 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3506 va = (vaddr_t) kernel_text;
3507
3508 for (pa = kernelstart; va < va_etext;
3509 pa += PAGE_SIZE, va += PAGE_SIZE) {
3510 ptegidx = va_to_pteg(pm, va);
3511 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3512 pmap_pte_insert(ptegidx, &pt);
3513 }
3514
3515 for (; pa < kernelend;
3516 pa += PAGE_SIZE, va += PAGE_SIZE) {
3517 ptegidx = va_to_pteg(pm, va);
3518 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3519 pmap_pte_insert(ptegidx, &pt);
3520 }
3521
3522 for (va = 0, pa = 0; va < kernelstart;
3523 pa += PAGE_SIZE, va += PAGE_SIZE) {
3524 ptegidx = va_to_pteg(pm, va);
3525 if (va < 0x3000)
3526 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3527 else
3528 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3529 pmap_pte_insert(ptegidx, &pt);
3530 }
3531 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3532 pa += PAGE_SIZE, va += PAGE_SIZE) {
3533 ptegidx = va_to_pteg(pm, va);
3534 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3535 pmap_pte_insert(ptegidx, &pt);
3536 }
3537 #endif
3538
3539 __asm volatile ("mtsrin %0,%1"
3540 :: "r"(sr), "r"(kernelstart));
3541 }
3542 #endif
3543 }
3544