pmap.c revision 1.60 1 /* $NetBSD: pmap.c,v 1.60 2008/05/05 04:40:53 chs Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.60 2008/05/05 04:40:53 chs Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83 #include <sys/atomic.h>
84
85 #include <uvm/uvm.h>
86
87 #include <machine/pcb.h>
88 #include <machine/powerpc.h>
89 #include <powerpc/spr.h>
90 #include <powerpc/oea/sr_601.h>
91 #include <powerpc/bat.h>
92 #include <powerpc/stdarg.h>
93
94 #ifdef ALTIVEC
95 int pmap_use_altivec;
96 #endif
97
98 volatile struct pteg *pmap_pteg_table;
99 unsigned int pmap_pteg_cnt;
100 unsigned int pmap_pteg_mask;
101 #ifdef PMAP_MEMLIMIT
102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
103 #else
104 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
105 #endif
106
107 struct pmap kernel_pmap_;
108 unsigned int pmap_pages_stolen;
109 u_long pmap_pte_valid;
110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
111 u_long pmap_pvo_enter_depth;
112 u_long pmap_pvo_remove_depth;
113 #endif
114
115 int physmem;
116 #ifndef MSGBUFADDR
117 extern paddr_t msgbuf_paddr;
118 #endif
119
120 static struct mem_region *mem, *avail;
121 static u_int mem_cnt, avail_cnt;
122
123 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
124 # define PMAP_OEA 1
125 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
126 # define PMAPNAME(name) pmap_##name
127 # endif
128 #endif
129
130 #if defined(PMAP_OEA64)
131 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
132 # define PMAPNAME(name) pmap_##name
133 # endif
134 #endif
135
136 #if defined(PMAP_OEA64_BRIDGE)
137 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
138 # define PMAPNAME(name) pmap_##name
139 # endif
140 #endif
141
142 #if defined(PMAP_OEA)
143 #define _PRIxpte "lx"
144 #else
145 #define _PRIxpte PRIx64
146 #endif
147 #define _PRIxpa "lx"
148 #define _PRIxva "lx"
149 #define _PRIsr "lx"
150
151 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
152 #if defined(PMAP_OEA)
153 #define PMAPNAME(name) pmap32_##name
154 #elif defined(PMAP_OEA64)
155 #define PMAPNAME(name) pmap64_##name
156 #elif defined(PMAP_OEA64_BRIDGE)
157 #define PMAPNAME(name) pmap64bridge_##name
158 #else
159 #error unknown variant for pmap
160 #endif
161 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
162
163 #if defined(PMAPNAME)
164 #define STATIC static
165 #define pmap_pte_spill PMAPNAME(pte_spill)
166 #define pmap_real_memory PMAPNAME(real_memory)
167 #define pmap_init PMAPNAME(init)
168 #define pmap_virtual_space PMAPNAME(virtual_space)
169 #define pmap_create PMAPNAME(create)
170 #define pmap_reference PMAPNAME(reference)
171 #define pmap_destroy PMAPNAME(destroy)
172 #define pmap_copy PMAPNAME(copy)
173 #define pmap_update PMAPNAME(update)
174 #define pmap_collect PMAPNAME(collect)
175 #define pmap_enter PMAPNAME(enter)
176 #define pmap_remove PMAPNAME(remove)
177 #define pmap_kenter_pa PMAPNAME(kenter_pa)
178 #define pmap_kremove PMAPNAME(kremove)
179 #define pmap_extract PMAPNAME(extract)
180 #define pmap_protect PMAPNAME(protect)
181 #define pmap_unwire PMAPNAME(unwire)
182 #define pmap_page_protect PMAPNAME(page_protect)
183 #define pmap_query_bit PMAPNAME(query_bit)
184 #define pmap_clear_bit PMAPNAME(clear_bit)
185
186 #define pmap_activate PMAPNAME(activate)
187 #define pmap_deactivate PMAPNAME(deactivate)
188
189 #define pmap_pinit PMAPNAME(pinit)
190 #define pmap_procwr PMAPNAME(procwr)
191
192 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
193 #define pmap_pte_print PMAPNAME(pte_print)
194 #define pmap_pteg_check PMAPNAME(pteg_check)
195 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
196 #define pmap_print_pte PMAPNAME(print_pte)
197 #define pmap_pteg_dist PMAPNAME(pteg_dist)
198 #endif
199 #if defined(DEBUG) || defined(PMAPCHECK)
200 #define pmap_pvo_verify PMAPNAME(pvo_verify)
201 #define pmapcheck PMAPNAME(check)
202 #endif
203 #if defined(DEBUG) || defined(PMAPDEBUG)
204 #define pmapdebug PMAPNAME(debug)
205 #endif
206 #define pmap_steal_memory PMAPNAME(steal_memory)
207 #define pmap_bootstrap PMAPNAME(bootstrap)
208 #else
209 #define STATIC /* nothing */
210 #endif /* PMAPNAME */
211
212 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
213 STATIC void pmap_real_memory(paddr_t *, psize_t *);
214 STATIC void pmap_init(void);
215 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
216 STATIC pmap_t pmap_create(void);
217 STATIC void pmap_reference(pmap_t);
218 STATIC void pmap_destroy(pmap_t);
219 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
220 STATIC void pmap_update(pmap_t);
221 STATIC void pmap_collect(pmap_t);
222 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
223 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
224 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
225 STATIC void pmap_kremove(vaddr_t, vsize_t);
226 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
227
228 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
229 STATIC void pmap_unwire(pmap_t, vaddr_t);
230 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
231 STATIC bool pmap_query_bit(struct vm_page *, int);
232 STATIC bool pmap_clear_bit(struct vm_page *, int);
233
234 STATIC void pmap_activate(struct lwp *);
235 STATIC void pmap_deactivate(struct lwp *);
236
237 STATIC void pmap_pinit(pmap_t pm);
238 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
239
240 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
241 STATIC void pmap_pte_print(volatile struct pte *);
242 STATIC void pmap_pteg_check(void);
243 STATIC void pmap_print_mmuregs(void);
244 STATIC void pmap_print_pte(pmap_t, vaddr_t);
245 STATIC void pmap_pteg_dist(void);
246 #endif
247 #if defined(DEBUG) || defined(PMAPCHECK)
248 STATIC void pmap_pvo_verify(void);
249 #endif
250 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
251 STATIC void pmap_bootstrap(paddr_t, paddr_t);
252
253 #ifdef PMAPNAME
254 const struct pmap_ops PMAPNAME(ops) = {
255 .pmapop_pte_spill = pmap_pte_spill,
256 .pmapop_real_memory = pmap_real_memory,
257 .pmapop_init = pmap_init,
258 .pmapop_virtual_space = pmap_virtual_space,
259 .pmapop_create = pmap_create,
260 .pmapop_reference = pmap_reference,
261 .pmapop_destroy = pmap_destroy,
262 .pmapop_copy = pmap_copy,
263 .pmapop_update = pmap_update,
264 .pmapop_collect = pmap_collect,
265 .pmapop_enter = pmap_enter,
266 .pmapop_remove = pmap_remove,
267 .pmapop_kenter_pa = pmap_kenter_pa,
268 .pmapop_kremove = pmap_kremove,
269 .pmapop_extract = pmap_extract,
270 .pmapop_protect = pmap_protect,
271 .pmapop_unwire = pmap_unwire,
272 .pmapop_page_protect = pmap_page_protect,
273 .pmapop_query_bit = pmap_query_bit,
274 .pmapop_clear_bit = pmap_clear_bit,
275 .pmapop_activate = pmap_activate,
276 .pmapop_deactivate = pmap_deactivate,
277 .pmapop_pinit = pmap_pinit,
278 .pmapop_procwr = pmap_procwr,
279 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
280 .pmapop_pte_print = pmap_pte_print,
281 .pmapop_pteg_check = pmap_pteg_check,
282 .pmapop_print_mmuregs = pmap_print_mmuregs,
283 .pmapop_print_pte = pmap_print_pte,
284 .pmapop_pteg_dist = pmap_pteg_dist,
285 #else
286 .pmapop_pte_print = NULL,
287 .pmapop_pteg_check = NULL,
288 .pmapop_print_mmuregs = NULL,
289 .pmapop_print_pte = NULL,
290 .pmapop_pteg_dist = NULL,
291 #endif
292 #if defined(DEBUG) || defined(PMAPCHECK)
293 .pmapop_pvo_verify = pmap_pvo_verify,
294 #else
295 .pmapop_pvo_verify = NULL,
296 #endif
297 .pmapop_steal_memory = pmap_steal_memory,
298 .pmapop_bootstrap = pmap_bootstrap,
299 };
300 #endif /* !PMAPNAME */
301
302 /*
303 * The following structure is aligned to 32 bytes
304 */
305 struct pvo_entry {
306 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
307 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
308 struct pte pvo_pte; /* Prebuilt PTE */
309 pmap_t pvo_pmap; /* ptr to owning pmap */
310 vaddr_t pvo_vaddr; /* VA of entry */
311 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
312 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
313 #define PVO_WIRED 0x0010 /* PVO entry is wired */
314 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
315 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
316 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
317 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
318 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
319 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
320 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
321 #define PVO_SPILL_SET 2 /* PVO has been spilled */
322 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
323 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
324 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
325 #define PVO_REMOVE 6 /* PVO has been removed */
326 #define PVO_WHERE_MASK 15
327 #define PVO_WHERE_SHFT 8
328 } __attribute__ ((aligned (32)));
329 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
330 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
331 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
332 #define PVO_PTEGIDX_CLR(pvo) \
333 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
334 #define PVO_PTEGIDX_SET(pvo,i) \
335 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
336 #define PVO_WHERE(pvo,w) \
337 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
338 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
339
340 TAILQ_HEAD(pvo_tqhead, pvo_entry);
341 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
342 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
343 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
344
345 struct pool pmap_pool; /* pool for pmap structures */
346 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
347 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
348
349 /*
350 * We keep a cache of unmanaged pages to be used for pvo entries for
351 * unmanaged pages.
352 */
353 struct pvo_page {
354 SIMPLEQ_ENTRY(pvo_page) pvop_link;
355 };
356 SIMPLEQ_HEAD(pvop_head, pvo_page);
357 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
358 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
359 u_long pmap_upvop_free;
360 u_long pmap_upvop_maxfree;
361 u_long pmap_mpvop_free;
362 u_long pmap_mpvop_maxfree;
363
364 static void *pmap_pool_ualloc(struct pool *, int);
365 static void *pmap_pool_malloc(struct pool *, int);
366
367 static void pmap_pool_ufree(struct pool *, void *);
368 static void pmap_pool_mfree(struct pool *, void *);
369
370 static struct pool_allocator pmap_pool_mallocator = {
371 .pa_alloc = pmap_pool_malloc,
372 .pa_free = pmap_pool_mfree,
373 .pa_pagesz = 0,
374 };
375
376 static struct pool_allocator pmap_pool_uallocator = {
377 .pa_alloc = pmap_pool_ualloc,
378 .pa_free = pmap_pool_ufree,
379 .pa_pagesz = 0,
380 };
381
382 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
383 void pmap_pte_print(volatile struct pte *);
384 void pmap_pteg_check(void);
385 void pmap_pteg_dist(void);
386 void pmap_print_pte(pmap_t, vaddr_t);
387 void pmap_print_mmuregs(void);
388 #endif
389
390 #if defined(DEBUG) || defined(PMAPCHECK)
391 #ifdef PMAPCHECK
392 int pmapcheck = 1;
393 #else
394 int pmapcheck = 0;
395 #endif
396 void pmap_pvo_verify(void);
397 static void pmap_pvo_check(const struct pvo_entry *);
398 #define PMAP_PVO_CHECK(pvo) \
399 do { \
400 if (pmapcheck) \
401 pmap_pvo_check(pvo); \
402 } while (0)
403 #else
404 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
405 #endif
406 static int pmap_pte_insert(int, struct pte *);
407 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
408 vaddr_t, paddr_t, register_t, int);
409 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
410 static void pmap_pvo_free(struct pvo_entry *);
411 static void pmap_pvo_free_list(struct pvo_head *);
412 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
413 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
414 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
415 static void pvo_set_exec(struct pvo_entry *);
416 static void pvo_clear_exec(struct pvo_entry *);
417
418 static void tlbia(void);
419
420 static void pmap_release(pmap_t);
421 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
422
423 static uint32_t pmap_pvo_reclaim_nextidx;
424 #ifdef DEBUG
425 static int pmap_pvo_reclaim_debugctr;
426 #endif
427
428 #define VSID_NBPW (sizeof(uint32_t) * 8)
429 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
430
431 static int pmap_initialized;
432
433 #if defined(DEBUG) || defined(PMAPDEBUG)
434 #define PMAPDEBUG_BOOT 0x0001
435 #define PMAPDEBUG_PTE 0x0002
436 #define PMAPDEBUG_EXEC 0x0008
437 #define PMAPDEBUG_PVOENTER 0x0010
438 #define PMAPDEBUG_PVOREMOVE 0x0020
439 #define PMAPDEBUG_ACTIVATE 0x0100
440 #define PMAPDEBUG_CREATE 0x0200
441 #define PMAPDEBUG_ENTER 0x1000
442 #define PMAPDEBUG_KENTER 0x2000
443 #define PMAPDEBUG_KREMOVE 0x4000
444 #define PMAPDEBUG_REMOVE 0x8000
445
446 unsigned int pmapdebug = 0;
447
448 # define DPRINTF(x) printf x
449 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
450 #else
451 # define DPRINTF(x)
452 # define DPRINTFN(n, x)
453 #endif
454
455
456 #ifdef PMAPCOUNTERS
457 /*
458 * From pmap_subr.c
459 */
460 extern struct evcnt pmap_evcnt_mappings;
461 extern struct evcnt pmap_evcnt_unmappings;
462
463 extern struct evcnt pmap_evcnt_kernel_mappings;
464 extern struct evcnt pmap_evcnt_kernel_unmappings;
465
466 extern struct evcnt pmap_evcnt_mappings_replaced;
467
468 extern struct evcnt pmap_evcnt_exec_mappings;
469 extern struct evcnt pmap_evcnt_exec_cached;
470
471 extern struct evcnt pmap_evcnt_exec_synced;
472 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
473 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
474
475 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
476 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
477 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
478 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
479 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
480
481 extern struct evcnt pmap_evcnt_updates;
482 extern struct evcnt pmap_evcnt_collects;
483 extern struct evcnt pmap_evcnt_copies;
484
485 extern struct evcnt pmap_evcnt_ptes_spilled;
486 extern struct evcnt pmap_evcnt_ptes_unspilled;
487 extern struct evcnt pmap_evcnt_ptes_evicted;
488
489 extern struct evcnt pmap_evcnt_ptes_primary[8];
490 extern struct evcnt pmap_evcnt_ptes_secondary[8];
491 extern struct evcnt pmap_evcnt_ptes_removed;
492 extern struct evcnt pmap_evcnt_ptes_changed;
493 extern struct evcnt pmap_evcnt_pvos_reclaimed;
494 extern struct evcnt pmap_evcnt_pvos_failed;
495
496 extern struct evcnt pmap_evcnt_zeroed_pages;
497 extern struct evcnt pmap_evcnt_copied_pages;
498 extern struct evcnt pmap_evcnt_idlezeroed_pages;
499
500 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
501 #define PMAPCOUNT2(ev) ((ev).ev_count++)
502 #else
503 #define PMAPCOUNT(ev) ((void) 0)
504 #define PMAPCOUNT2(ev) ((void) 0)
505 #endif
506
507 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
508
509 /* XXXSL: this needs to be moved to assembler */
510 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
511
512 #define TLBSYNC() __asm volatile("tlbsync")
513 #define SYNC() __asm volatile("sync")
514 #define EIEIO() __asm volatile("eieio")
515 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
516 #define MFMSR() mfmsr()
517 #define MTMSR(psl) mtmsr(psl)
518 #define MFPVR() mfpvr()
519 #define MFSRIN(va) mfsrin(va)
520 #define MFTB() mfrtcltbl()
521
522 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
523 static inline register_t
524 mfsrin(vaddr_t va)
525 {
526 register_t sr;
527 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
528 return sr;
529 }
530 #endif /* PMAP_OEA*/
531
532 #if defined (PMAP_OEA64_BRIDGE)
533 extern void mfmsr64 (register64_t *result);
534 #endif /* PMAP_OEA64_BRIDGE */
535
536 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
537 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
538
539 static inline register_t
540 pmap_interrupts_off(void)
541 {
542 register_t msr = MFMSR();
543 if (msr & PSL_EE)
544 MTMSR(msr & ~PSL_EE);
545 return msr;
546 }
547
548 static void
549 pmap_interrupts_restore(register_t msr)
550 {
551 if (msr & PSL_EE)
552 MTMSR(msr);
553 }
554
555 static inline u_int32_t
556 mfrtcltbl(void)
557 {
558 #ifdef PPC_OEA601
559 if ((MFPVR() >> 16) == MPC601)
560 return (mfrtcl() >> 7);
561 else
562 #endif
563 return (mftbl());
564 }
565
566 /*
567 * These small routines may have to be replaced,
568 * if/when we support processors other that the 604.
569 */
570
571 void
572 tlbia(void)
573 {
574 char *i;
575
576 SYNC();
577 #if defined(PMAP_OEA)
578 /*
579 * Why not use "tlbia"? Because not all processors implement it.
580 *
581 * This needs to be a per-CPU callback to do the appropriate thing
582 * for the CPU. XXX
583 */
584 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
585 TLBIE(i);
586 EIEIO();
587 SYNC();
588 }
589 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
590 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
591 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
592 TLBIEL(i);
593 EIEIO();
594 SYNC();
595 }
596 #endif
597 TLBSYNC();
598 SYNC();
599 }
600
601 static inline register_t
602 va_to_vsid(const struct pmap *pm, vaddr_t addr)
603 {
604 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
605 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
606 #else /* PMAP_OEA64 */
607 #if 0
608 const struct ste *ste;
609 register_t hash;
610 int i;
611
612 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
613
614 /*
615 * Try the primary group first
616 */
617 ste = pm->pm_stes[hash].stes;
618 for (i = 0; i < 8; i++, ste++) {
619 if (ste->ste_hi & STE_V) &&
620 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
621 return ste;
622 }
623
624 /*
625 * Then the secondary group.
626 */
627 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
628 for (i = 0; i < 8; i++, ste++) {
629 if (ste->ste_hi & STE_V) &&
630 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
631 return addr;
632 }
633
634 return NULL;
635 #else
636 /*
637 * Rather than searching the STE groups for the VSID, we know
638 * how we generate that from the ESID and so do that.
639 */
640 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
641 #endif
642 #endif /* PMAP_OEA */
643 }
644
645 static inline register_t
646 va_to_pteg(const struct pmap *pm, vaddr_t addr)
647 {
648 register_t hash;
649
650 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
651 return hash & pmap_pteg_mask;
652 }
653
654 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
655 /*
656 * Given a PTE in the page table, calculate the VADDR that hashes to it.
657 * The only bit of magic is that the top 4 bits of the address doesn't
658 * technically exist in the PTE. But we know we reserved 4 bits of the
659 * VSID for it so that's how we get it.
660 */
661 static vaddr_t
662 pmap_pte_to_va(volatile const struct pte *pt)
663 {
664 vaddr_t va;
665 uintptr_t ptaddr = (uintptr_t) pt;
666
667 if (pt->pte_hi & PTE_HID)
668 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
669
670 /* PPC Bits 10-19 PPC64 Bits 42-51 */
671 #if defined(PMAP_OEA)
672 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
673 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
674 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
675 #endif
676 va <<= ADDR_PIDX_SHFT;
677
678 /* PPC Bits 4-9 PPC64 Bits 36-41 */
679 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
680
681 #if defined(PMAP_OEA64)
682 /* PPC63 Bits 0-35 */
683 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
684 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
685 /* PPC Bits 0-3 */
686 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
687 #endif
688
689 return va;
690 }
691 #endif
692
693 static inline struct pvo_head *
694 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
695 {
696 struct vm_page *pg;
697
698 pg = PHYS_TO_VM_PAGE(pa);
699 if (pg_p != NULL)
700 *pg_p = pg;
701 if (pg == NULL)
702 return &pmap_pvo_unmanaged;
703 return &pg->mdpage.mdpg_pvoh;
704 }
705
706 static inline struct pvo_head *
707 vm_page_to_pvoh(struct vm_page *pg)
708 {
709 return &pg->mdpage.mdpg_pvoh;
710 }
711
712
713 static inline void
714 pmap_attr_clear(struct vm_page *pg, int ptebit)
715 {
716 pg->mdpage.mdpg_attrs &= ~ptebit;
717 }
718
719 static inline int
720 pmap_attr_fetch(struct vm_page *pg)
721 {
722 return pg->mdpage.mdpg_attrs;
723 }
724
725 static inline void
726 pmap_attr_save(struct vm_page *pg, int ptebit)
727 {
728 pg->mdpage.mdpg_attrs |= ptebit;
729 }
730
731 static inline int
732 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
733 {
734 if (pt->pte_hi == pvo_pt->pte_hi
735 #if 0
736 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
737 ~(PTE_REF|PTE_CHG)) == 0
738 #endif
739 )
740 return 1;
741 return 0;
742 }
743
744 static inline void
745 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
746 {
747 /*
748 * Construct the PTE. Default to IMB initially. Valid bit
749 * only gets set when the real pte is set in memory.
750 *
751 * Note: Don't set the valid bit for correct operation of tlb update.
752 */
753 #if defined(PMAP_OEA)
754 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
755 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
756 pt->pte_lo = pte_lo;
757 #elif defined (PMAP_OEA64_BRIDGE)
758 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
759 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
760 pt->pte_lo = (u_int64_t) pte_lo;
761 #elif defined (PMAP_OEA64)
762 #error PMAP_OEA64 not supported
763 #endif /* PMAP_OEA */
764 }
765
766 static inline void
767 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
768 {
769 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
770 }
771
772 static inline void
773 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
774 {
775 /*
776 * As shown in Section 7.6.3.2.3
777 */
778 pt->pte_lo &= ~ptebit;
779 TLBIE(va);
780 SYNC();
781 EIEIO();
782 TLBSYNC();
783 SYNC();
784 #ifdef MULTIPROCESSOR
785 DCBST(pt);
786 #endif
787 }
788
789 static inline void
790 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
791 {
792 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
793 if (pvo_pt->pte_hi & PTE_VALID)
794 panic("pte_set: setting an already valid pte %p", pvo_pt);
795 #endif
796 pvo_pt->pte_hi |= PTE_VALID;
797
798 /*
799 * Update the PTE as defined in section 7.6.3.1
800 * Note that the REF/CHG bits are from pvo_pt and thus should
801 * have been saved so this routine can restore them (if desired).
802 */
803 pt->pte_lo = pvo_pt->pte_lo;
804 EIEIO();
805 pt->pte_hi = pvo_pt->pte_hi;
806 TLBSYNC();
807 SYNC();
808 #ifdef MULTIPROCESSOR
809 DCBST(pt);
810 #endif
811 pmap_pte_valid++;
812 }
813
814 static inline void
815 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
816 {
817 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
818 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
819 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
820 if ((pt->pte_hi & PTE_VALID) == 0)
821 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
822 #endif
823
824 pvo_pt->pte_hi &= ~PTE_VALID;
825 /*
826 * Force the ref & chg bits back into the PTEs.
827 */
828 SYNC();
829 /*
830 * Invalidate the pte ... (Section 7.6.3.3)
831 */
832 pt->pte_hi &= ~PTE_VALID;
833 SYNC();
834 TLBIE(va);
835 SYNC();
836 EIEIO();
837 TLBSYNC();
838 SYNC();
839 /*
840 * Save the ref & chg bits ...
841 */
842 pmap_pte_synch(pt, pvo_pt);
843 pmap_pte_valid--;
844 }
845
846 static inline void
847 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
848 {
849 /*
850 * Invalidate the PTE
851 */
852 pmap_pte_unset(pt, pvo_pt, va);
853 pmap_pte_set(pt, pvo_pt);
854 }
855
856 /*
857 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
858 * (either primary or secondary location).
859 *
860 * Note: both the destination and source PTEs must not have PTE_VALID set.
861 */
862
863 static int
864 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
865 {
866 volatile struct pte *pt;
867 int i;
868
869 #if defined(DEBUG)
870 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
871 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
872 #endif
873 /*
874 * First try primary hash.
875 */
876 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
877 if ((pt->pte_hi & PTE_VALID) == 0) {
878 pvo_pt->pte_hi &= ~PTE_HID;
879 pmap_pte_set(pt, pvo_pt);
880 return i;
881 }
882 }
883
884 /*
885 * Now try secondary hash.
886 */
887 ptegidx ^= pmap_pteg_mask;
888 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
889 if ((pt->pte_hi & PTE_VALID) == 0) {
890 pvo_pt->pte_hi |= PTE_HID;
891 pmap_pte_set(pt, pvo_pt);
892 return i;
893 }
894 }
895 return -1;
896 }
897
898 /*
899 * Spill handler.
900 *
901 * Tries to spill a page table entry from the overflow area.
902 * This runs in either real mode (if dealing with a exception spill)
903 * or virtual mode when dealing with manually spilling one of the
904 * kernel's pte entries. In either case, interrupts are already
905 * disabled.
906 */
907
908 int
909 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
910 {
911 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
912 struct pvo_entry *pvo;
913 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
914 struct pvo_tqhead *pvoh, *vpvoh = NULL;
915 int ptegidx, i, j;
916 volatile struct pteg *pteg;
917 volatile struct pte *pt;
918
919 PMAP_LOCK();
920
921 ptegidx = va_to_pteg(pm, addr);
922
923 /*
924 * Have to substitute some entry. Use the primary hash for this.
925 * Use low bits of timebase as random generator. Make sure we are
926 * not picking a kernel pte for replacement.
927 */
928 pteg = &pmap_pteg_table[ptegidx];
929 i = MFTB() & 7;
930 for (j = 0; j < 8; j++) {
931 pt = &pteg->pt[i];
932 if ((pt->pte_hi & PTE_VALID) == 0)
933 break;
934 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
935 < PHYSMAP_VSIDBITS)
936 break;
937 i = (i + 1) & 7;
938 }
939 KASSERT(j < 8);
940
941 source_pvo = NULL;
942 victim_pvo = NULL;
943 pvoh = &pmap_pvo_table[ptegidx];
944 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
945
946 /*
947 * We need to find pvo entry for this address...
948 */
949 PMAP_PVO_CHECK(pvo); /* sanity check */
950
951 /*
952 * If we haven't found the source and we come to a PVO with
953 * a valid PTE, then we know we can't find it because all
954 * evicted PVOs always are first in the list.
955 */
956 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
957 break;
958 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
959 addr == PVO_VADDR(pvo)) {
960
961 /*
962 * Now we have found the entry to be spilled into the
963 * pteg. Attempt to insert it into the page table.
964 */
965 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
966 if (j >= 0) {
967 PVO_PTEGIDX_SET(pvo, j);
968 PMAP_PVO_CHECK(pvo); /* sanity check */
969 PVO_WHERE(pvo, SPILL_INSERT);
970 pvo->pvo_pmap->pm_evictions--;
971 PMAPCOUNT(ptes_spilled);
972 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
973 ? pmap_evcnt_ptes_secondary
974 : pmap_evcnt_ptes_primary)[j]);
975
976 /*
977 * Since we keep the evicted entries at the
978 * from of the PVO list, we need move this
979 * (now resident) PVO after the evicted
980 * entries.
981 */
982 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
983
984 /*
985 * If we don't have to move (either we were the
986 * last entry or the next entry was valid),
987 * don't change our position. Otherwise
988 * move ourselves to the tail of the queue.
989 */
990 if (next_pvo != NULL &&
991 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
992 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
993 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
994 }
995 PMAP_UNLOCK();
996 return 1;
997 }
998 source_pvo = pvo;
999 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1000 return 0;
1001 }
1002 if (victim_pvo != NULL)
1003 break;
1004 }
1005
1006 /*
1007 * We also need the pvo entry of the victim we are replacing
1008 * so save the R & C bits of the PTE.
1009 */
1010 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1011 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1012 vpvoh = pvoh; /* *1* */
1013 victim_pvo = pvo;
1014 if (source_pvo != NULL)
1015 break;
1016 }
1017 }
1018
1019 if (source_pvo == NULL) {
1020 PMAPCOUNT(ptes_unspilled);
1021 PMAP_UNLOCK();
1022 return 0;
1023 }
1024
1025 if (victim_pvo == NULL) {
1026 if ((pt->pte_hi & PTE_HID) == 0)
1027 panic("pmap_pte_spill: victim p-pte (%p) has "
1028 "no pvo entry!", pt);
1029
1030 /*
1031 * If this is a secondary PTE, we need to search
1032 * its primary pvo bucket for the matching PVO.
1033 */
1034 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1035 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1036 PMAP_PVO_CHECK(pvo); /* sanity check */
1037
1038 /*
1039 * We also need the pvo entry of the victim we are
1040 * replacing so save the R & C bits of the PTE.
1041 */
1042 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1043 victim_pvo = pvo;
1044 break;
1045 }
1046 }
1047 if (victim_pvo == NULL)
1048 panic("pmap_pte_spill: victim s-pte (%p) has "
1049 "no pvo entry!", pt);
1050 }
1051
1052 /*
1053 * The victim should be not be a kernel PVO/PTE entry.
1054 */
1055 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1056 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1057 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1058
1059 /*
1060 * We are invalidating the TLB entry for the EA for the
1061 * we are replacing even though its valid; If we don't
1062 * we lose any ref/chg bit changes contained in the TLB
1063 * entry.
1064 */
1065 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1066
1067 /*
1068 * To enforce the PVO list ordering constraint that all
1069 * evicted entries should come before all valid entries,
1070 * move the source PVO to the tail of its list and the
1071 * victim PVO to the head of its list (which might not be
1072 * the same list, if the victim was using the secondary hash).
1073 */
1074 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1075 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1076 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1077 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1078 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1079 pmap_pte_set(pt, &source_pvo->pvo_pte);
1080 victim_pvo->pvo_pmap->pm_evictions++;
1081 source_pvo->pvo_pmap->pm_evictions--;
1082 PVO_WHERE(victim_pvo, SPILL_UNSET);
1083 PVO_WHERE(source_pvo, SPILL_SET);
1084
1085 PVO_PTEGIDX_CLR(victim_pvo);
1086 PVO_PTEGIDX_SET(source_pvo, i);
1087 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1088 PMAPCOUNT(ptes_spilled);
1089 PMAPCOUNT(ptes_evicted);
1090 PMAPCOUNT(ptes_removed);
1091
1092 PMAP_PVO_CHECK(victim_pvo);
1093 PMAP_PVO_CHECK(source_pvo);
1094
1095 PMAP_UNLOCK();
1096 return 1;
1097 }
1098
1099 /*
1100 * Restrict given range to physical memory
1101 */
1102 void
1103 pmap_real_memory(paddr_t *start, psize_t *size)
1104 {
1105 struct mem_region *mp;
1106
1107 for (mp = mem; mp->size; mp++) {
1108 if (*start + *size > mp->start
1109 && *start < mp->start + mp->size) {
1110 if (*start < mp->start) {
1111 *size -= mp->start - *start;
1112 *start = mp->start;
1113 }
1114 if (*start + *size > mp->start + mp->size)
1115 *size = mp->start + mp->size - *start;
1116 return;
1117 }
1118 }
1119 *size = 0;
1120 }
1121
1122 /*
1123 * Initialize anything else for pmap handling.
1124 * Called during vm_init().
1125 */
1126 void
1127 pmap_init(void)
1128 {
1129 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1130 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1131 &pmap_pool_mallocator, IPL_NONE);
1132
1133 pool_setlowat(&pmap_mpvo_pool, 1008);
1134
1135 pmap_initialized = 1;
1136
1137 }
1138
1139 /*
1140 * How much virtual space does the kernel get?
1141 */
1142 void
1143 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1144 {
1145 /*
1146 * For now, reserve one segment (minus some overhead) for kernel
1147 * virtual memory
1148 */
1149 *start = VM_MIN_KERNEL_ADDRESS;
1150 *end = VM_MAX_KERNEL_ADDRESS;
1151 }
1152
1153 /*
1154 * Allocate, initialize, and return a new physical map.
1155 */
1156 pmap_t
1157 pmap_create(void)
1158 {
1159 pmap_t pm;
1160
1161 pm = pool_get(&pmap_pool, PR_WAITOK);
1162 memset((void *)pm, 0, sizeof *pm);
1163 pmap_pinit(pm);
1164
1165 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1166 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1167 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1168 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1169 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1170 pm,
1171 pm->pm_sr[0], pm->pm_sr[1],
1172 pm->pm_sr[2], pm->pm_sr[3],
1173 pm->pm_sr[4], pm->pm_sr[5],
1174 pm->pm_sr[6], pm->pm_sr[7],
1175 pm->pm_sr[8], pm->pm_sr[9],
1176 pm->pm_sr[10], pm->pm_sr[11],
1177 pm->pm_sr[12], pm->pm_sr[13],
1178 pm->pm_sr[14], pm->pm_sr[15]));
1179 return pm;
1180 }
1181
1182 /*
1183 * Initialize a preallocated and zeroed pmap structure.
1184 */
1185 void
1186 pmap_pinit(pmap_t pm)
1187 {
1188 register_t entropy = MFTB();
1189 register_t mask;
1190 int i;
1191
1192 /*
1193 * Allocate some segment registers for this pmap.
1194 */
1195 pm->pm_refs = 1;
1196 PMAP_LOCK();
1197 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1198 static register_t pmap_vsidcontext;
1199 register_t hash;
1200 unsigned int n;
1201
1202 /* Create a new value by multiplying by a prime adding in
1203 * entropy from the timebase register. This is to make the
1204 * VSID more random so that the PT Hash function collides
1205 * less often. (note that the prime causes gcc to do shifts
1206 * instead of a multiply)
1207 */
1208 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1209 hash = pmap_vsidcontext & (NPMAPS - 1);
1210 if (hash == 0) { /* 0 is special, avoid it */
1211 entropy += 0xbadf00d;
1212 continue;
1213 }
1214 n = hash >> 5;
1215 mask = 1L << (hash & (VSID_NBPW-1));
1216 hash = pmap_vsidcontext;
1217 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1218 /* anything free in this bucket? */
1219 if (~pmap_vsid_bitmap[n] == 0) {
1220 entropy = hash ^ (hash >> 16);
1221 continue;
1222 }
1223 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1224 mask = 1L << i;
1225 hash &= ~(VSID_NBPW-1);
1226 hash |= i;
1227 }
1228 hash &= PTE_VSID >> PTE_VSID_SHFT;
1229 pmap_vsid_bitmap[n] |= mask;
1230 pm->pm_vsid = hash;
1231 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1232 for (i = 0; i < 16; i++)
1233 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1234 SR_NOEXEC;
1235 #endif
1236 PMAP_UNLOCK();
1237 return;
1238 }
1239 PMAP_UNLOCK();
1240 panic("pmap_pinit: out of segments");
1241 }
1242
1243 /*
1244 * Add a reference to the given pmap.
1245 */
1246 void
1247 pmap_reference(pmap_t pm)
1248 {
1249 atomic_inc_uint(&pm->pm_refs);
1250 }
1251
1252 /*
1253 * Retire the given pmap from service.
1254 * Should only be called if the map contains no valid mappings.
1255 */
1256 void
1257 pmap_destroy(pmap_t pm)
1258 {
1259 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1260 pmap_release(pm);
1261 pool_put(&pmap_pool, pm);
1262 }
1263 }
1264
1265 /*
1266 * Release any resources held by the given physical map.
1267 * Called when a pmap initialized by pmap_pinit is being released.
1268 */
1269 void
1270 pmap_release(pmap_t pm)
1271 {
1272 int idx, mask;
1273
1274 KASSERT(pm->pm_stats.resident_count == 0);
1275 KASSERT(pm->pm_stats.wired_count == 0);
1276
1277 PMAP_LOCK();
1278 if (pm->pm_sr[0] == 0)
1279 panic("pmap_release");
1280 idx = pm->pm_vsid & (NPMAPS-1);
1281 mask = 1 << (idx % VSID_NBPW);
1282 idx /= VSID_NBPW;
1283
1284 KASSERT(pmap_vsid_bitmap[idx] & mask);
1285 pmap_vsid_bitmap[idx] &= ~mask;
1286 PMAP_UNLOCK();
1287 }
1288
1289 /*
1290 * Copy the range specified by src_addr/len
1291 * from the source map to the range dst_addr/len
1292 * in the destination map.
1293 *
1294 * This routine is only advisory and need not do anything.
1295 */
1296 void
1297 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1298 vsize_t len, vaddr_t src_addr)
1299 {
1300 PMAPCOUNT(copies);
1301 }
1302
1303 /*
1304 * Require that all active physical maps contain no
1305 * incorrect entries NOW.
1306 */
1307 void
1308 pmap_update(struct pmap *pmap)
1309 {
1310 PMAPCOUNT(updates);
1311 TLBSYNC();
1312 }
1313
1314 /*
1315 * Garbage collects the physical map system for
1316 * pages which are no longer used.
1317 * Success need not be guaranteed -- that is, there
1318 * may well be pages which are not referenced, but
1319 * others may be collected.
1320 * Called by the pageout daemon when pages are scarce.
1321 */
1322 void
1323 pmap_collect(pmap_t pm)
1324 {
1325 PMAPCOUNT(collects);
1326 }
1327
1328 static inline int
1329 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1330 {
1331 int pteidx;
1332 /*
1333 * We can find the actual pte entry without searching by
1334 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1335 * and by noticing the HID bit.
1336 */
1337 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1338 if (pvo->pvo_pte.pte_hi & PTE_HID)
1339 pteidx ^= pmap_pteg_mask * 8;
1340 return pteidx;
1341 }
1342
1343 volatile struct pte *
1344 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1345 {
1346 volatile struct pte *pt;
1347
1348 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1349 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1350 return NULL;
1351 #endif
1352
1353 /*
1354 * If we haven't been supplied the ptegidx, calculate it.
1355 */
1356 if (pteidx == -1) {
1357 int ptegidx;
1358 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1359 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1360 }
1361
1362 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1363
1364 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1365 return pt;
1366 #else
1367 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1368 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1369 "pvo but no valid pte index", pvo);
1370 }
1371 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1372 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1373 "pvo but no valid pte", pvo);
1374 }
1375
1376 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1377 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1378 #if defined(DEBUG) || defined(PMAPCHECK)
1379 pmap_pte_print(pt);
1380 #endif
1381 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1382 "pmap_pteg_table %p but invalid in pvo",
1383 pvo, pt);
1384 }
1385 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1386 #if defined(DEBUG) || defined(PMAPCHECK)
1387 pmap_pte_print(pt);
1388 #endif
1389 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1390 "not match pte %p in pmap_pteg_table",
1391 pvo, pt);
1392 }
1393 return pt;
1394 }
1395
1396 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1397 #if defined(DEBUG) || defined(PMAPCHECK)
1398 pmap_pte_print(pt);
1399 #endif
1400 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1401 "pmap_pteg_table but valid in pvo", pvo, pt);
1402 }
1403 return NULL;
1404 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1405 }
1406
1407 struct pvo_entry *
1408 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1409 {
1410 struct pvo_entry *pvo;
1411 int ptegidx;
1412
1413 va &= ~ADDR_POFF;
1414 ptegidx = va_to_pteg(pm, va);
1415
1416 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1417 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1418 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1419 panic("pmap_pvo_find_va: invalid pvo %p on "
1420 "list %#x (%p)", pvo, ptegidx,
1421 &pmap_pvo_table[ptegidx]);
1422 #endif
1423 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1424 if (pteidx_p)
1425 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1426 return pvo;
1427 }
1428 }
1429 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1430 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1431 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1432 return NULL;
1433 }
1434
1435 #if defined(DEBUG) || defined(PMAPCHECK)
1436 void
1437 pmap_pvo_check(const struct pvo_entry *pvo)
1438 {
1439 struct pvo_head *pvo_head;
1440 struct pvo_entry *pvo0;
1441 volatile struct pte *pt;
1442 int failed = 0;
1443
1444 PMAP_LOCK();
1445
1446 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1447 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1448
1449 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1450 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1451 pvo, pvo->pvo_pmap);
1452 failed = 1;
1453 }
1454
1455 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1456 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1457 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1458 pvo, TAILQ_NEXT(pvo, pvo_olink));
1459 failed = 1;
1460 }
1461
1462 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1463 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1464 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1465 pvo, LIST_NEXT(pvo, pvo_vlink));
1466 failed = 1;
1467 }
1468
1469 if (PVO_MANAGED_P(pvo)) {
1470 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1471 } else {
1472 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1473 printf("pmap_pvo_check: pvo %p: non kernel address "
1474 "on kernel unmanaged list\n", pvo);
1475 failed = 1;
1476 }
1477 pvo_head = &pmap_pvo_kunmanaged;
1478 }
1479 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1480 if (pvo0 == pvo)
1481 break;
1482 }
1483 if (pvo0 == NULL) {
1484 printf("pmap_pvo_check: pvo %p: not present "
1485 "on its vlist head %p\n", pvo, pvo_head);
1486 failed = 1;
1487 }
1488 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1489 printf("pmap_pvo_check: pvo %p: not present "
1490 "on its olist head\n", pvo);
1491 failed = 1;
1492 }
1493 pt = pmap_pvo_to_pte(pvo, -1);
1494 if (pt == NULL) {
1495 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1496 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1497 "no PTE\n", pvo);
1498 failed = 1;
1499 }
1500 } else {
1501 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1502 (uintptr_t) pt >=
1503 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1504 printf("pmap_pvo_check: pvo %p: pte %p not in "
1505 "pteg table\n", pvo, pt);
1506 failed = 1;
1507 }
1508 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1509 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1510 "no PTE\n", pvo);
1511 failed = 1;
1512 }
1513 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1514 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1515 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1516 pvo->pvo_pte.pte_hi,
1517 pt->pte_hi);
1518 failed = 1;
1519 }
1520 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1521 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1522 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1523 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1524 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1525 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1526 failed = 1;
1527 }
1528 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1529 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1530 " doesn't not match PVO's VA %#" _PRIxva "\n",
1531 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1532 failed = 1;
1533 }
1534 if (failed)
1535 pmap_pte_print(pt);
1536 }
1537 if (failed)
1538 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1539 pvo->pvo_pmap);
1540
1541 PMAP_UNLOCK();
1542 }
1543 #endif /* DEBUG || PMAPCHECK */
1544
1545 /*
1546 * Search the PVO table looking for a non-wired entry.
1547 * If we find one, remove it and return it.
1548 */
1549
1550 struct pvo_entry *
1551 pmap_pvo_reclaim(struct pmap *pm)
1552 {
1553 struct pvo_tqhead *pvoh;
1554 struct pvo_entry *pvo;
1555 uint32_t idx, endidx;
1556
1557 endidx = pmap_pvo_reclaim_nextidx;
1558 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1559 idx = (idx + 1) & pmap_pteg_mask) {
1560 pvoh = &pmap_pvo_table[idx];
1561 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1562 if (!PVO_WIRED_P(pvo)) {
1563 pmap_pvo_remove(pvo, -1, NULL);
1564 pmap_pvo_reclaim_nextidx = idx;
1565 PMAPCOUNT(pvos_reclaimed);
1566 return pvo;
1567 }
1568 }
1569 }
1570 return NULL;
1571 }
1572
1573 /*
1574 * This returns whether this is the first mapping of a page.
1575 */
1576 int
1577 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1578 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1579 {
1580 struct pvo_entry *pvo;
1581 struct pvo_tqhead *pvoh;
1582 register_t msr;
1583 int ptegidx;
1584 int i;
1585 int poolflags = PR_NOWAIT;
1586
1587 /*
1588 * Compute the PTE Group index.
1589 */
1590 va &= ~ADDR_POFF;
1591 ptegidx = va_to_pteg(pm, va);
1592
1593 msr = pmap_interrupts_off();
1594
1595 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1596 if (pmap_pvo_remove_depth > 0)
1597 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1598 if (++pmap_pvo_enter_depth > 1)
1599 panic("pmap_pvo_enter: called recursively!");
1600 #endif
1601
1602 /*
1603 * Remove any existing mapping for this page. Reuse the
1604 * pvo entry if there a mapping.
1605 */
1606 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1607 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1608 #ifdef DEBUG
1609 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1610 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1611 ~(PTE_REF|PTE_CHG)) == 0 &&
1612 va < VM_MIN_KERNEL_ADDRESS) {
1613 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1614 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1615 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1616 pvo->pvo_pte.pte_hi,
1617 pm->pm_sr[va >> ADDR_SR_SHFT]);
1618 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1619 #ifdef DDBX
1620 Debugger();
1621 #endif
1622 }
1623 #endif
1624 PMAPCOUNT(mappings_replaced);
1625 pmap_pvo_remove(pvo, -1, NULL);
1626 break;
1627 }
1628 }
1629
1630 /*
1631 * If we aren't overwriting an mapping, try to allocate
1632 */
1633 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1634 --pmap_pvo_enter_depth;
1635 #endif
1636 pmap_interrupts_restore(msr);
1637 if (pvo) {
1638 pmap_pvo_free(pvo);
1639 }
1640 pvo = pool_get(pl, poolflags);
1641
1642 #ifdef DEBUG
1643 /*
1644 * Exercise pmap_pvo_reclaim() a little.
1645 */
1646 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1647 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1648 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1649 pool_put(pl, pvo);
1650 pvo = NULL;
1651 }
1652 #endif
1653
1654 msr = pmap_interrupts_off();
1655 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1656 ++pmap_pvo_enter_depth;
1657 #endif
1658 if (pvo == NULL) {
1659 pvo = pmap_pvo_reclaim(pm);
1660 if (pvo == NULL) {
1661 if ((flags & PMAP_CANFAIL) == 0)
1662 panic("pmap_pvo_enter: failed");
1663 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1664 pmap_pvo_enter_depth--;
1665 #endif
1666 PMAPCOUNT(pvos_failed);
1667 pmap_interrupts_restore(msr);
1668 return ENOMEM;
1669 }
1670 }
1671
1672 pvo->pvo_vaddr = va;
1673 pvo->pvo_pmap = pm;
1674 pvo->pvo_vaddr &= ~ADDR_POFF;
1675 if (flags & VM_PROT_EXECUTE) {
1676 PMAPCOUNT(exec_mappings);
1677 pvo_set_exec(pvo);
1678 }
1679 if (flags & PMAP_WIRED)
1680 pvo->pvo_vaddr |= PVO_WIRED;
1681 if (pvo_head != &pmap_pvo_kunmanaged) {
1682 pvo->pvo_vaddr |= PVO_MANAGED;
1683 PMAPCOUNT(mappings);
1684 } else {
1685 PMAPCOUNT(kernel_mappings);
1686 }
1687 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1688
1689 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1690 if (PVO_WIRED_P(pvo))
1691 pvo->pvo_pmap->pm_stats.wired_count++;
1692 pvo->pvo_pmap->pm_stats.resident_count++;
1693 #if defined(DEBUG)
1694 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1695 DPRINTFN(PVOENTER,
1696 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1697 pvo, pm, va, pa));
1698 #endif
1699
1700 /*
1701 * We hope this succeeds but it isn't required.
1702 */
1703 pvoh = &pmap_pvo_table[ptegidx];
1704 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1705 if (i >= 0) {
1706 PVO_PTEGIDX_SET(pvo, i);
1707 PVO_WHERE(pvo, ENTER_INSERT);
1708 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1709 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1710 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1711
1712 } else {
1713 /*
1714 * Since we didn't have room for this entry (which makes it
1715 * and evicted entry), place it at the head of the list.
1716 */
1717 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1718 PMAPCOUNT(ptes_evicted);
1719 pm->pm_evictions++;
1720 /*
1721 * If this is a kernel page, make sure it's active.
1722 */
1723 if (pm == pmap_kernel()) {
1724 i = pmap_pte_spill(pm, va, false);
1725 KASSERT(i);
1726 }
1727 }
1728 PMAP_PVO_CHECK(pvo); /* sanity check */
1729 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1730 pmap_pvo_enter_depth--;
1731 #endif
1732 pmap_interrupts_restore(msr);
1733 return 0;
1734 }
1735
1736 static void
1737 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1738 {
1739 volatile struct pte *pt;
1740 int ptegidx;
1741
1742 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1743 if (++pmap_pvo_remove_depth > 1)
1744 panic("pmap_pvo_remove: called recursively!");
1745 #endif
1746
1747 /*
1748 * If we haven't been supplied the ptegidx, calculate it.
1749 */
1750 if (pteidx == -1) {
1751 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1752 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1753 } else {
1754 ptegidx = pteidx >> 3;
1755 if (pvo->pvo_pte.pte_hi & PTE_HID)
1756 ptegidx ^= pmap_pteg_mask;
1757 }
1758 PMAP_PVO_CHECK(pvo); /* sanity check */
1759
1760 /*
1761 * If there is an active pte entry, we need to deactivate it
1762 * (and save the ref & chg bits).
1763 */
1764 pt = pmap_pvo_to_pte(pvo, pteidx);
1765 if (pt != NULL) {
1766 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1767 PVO_WHERE(pvo, REMOVE);
1768 PVO_PTEGIDX_CLR(pvo);
1769 PMAPCOUNT(ptes_removed);
1770 } else {
1771 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1772 pvo->pvo_pmap->pm_evictions--;
1773 }
1774
1775 /*
1776 * Account for executable mappings.
1777 */
1778 if (PVO_EXECUTABLE_P(pvo))
1779 pvo_clear_exec(pvo);
1780
1781 /*
1782 * Update our statistics.
1783 */
1784 pvo->pvo_pmap->pm_stats.resident_count--;
1785 if (PVO_WIRED_P(pvo))
1786 pvo->pvo_pmap->pm_stats.wired_count--;
1787
1788 /*
1789 * Save the REF/CHG bits into their cache if the page is managed.
1790 */
1791 if (PVO_MANAGED_P(pvo)) {
1792 register_t ptelo = pvo->pvo_pte.pte_lo;
1793 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1794
1795 if (pg != NULL) {
1796 /*
1797 * If this page was changed and it is mapped exec,
1798 * invalidate it.
1799 */
1800 if ((ptelo & PTE_CHG) &&
1801 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1802 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1803 if (LIST_EMPTY(pvoh)) {
1804 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1805 "%#" _PRIxpa ": clear-exec]\n",
1806 VM_PAGE_TO_PHYS(pg)));
1807 pmap_attr_clear(pg, PTE_EXEC);
1808 PMAPCOUNT(exec_uncached_pvo_remove);
1809 } else {
1810 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1811 "%#" _PRIxpa ": syncicache]\n",
1812 VM_PAGE_TO_PHYS(pg)));
1813 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1814 PAGE_SIZE);
1815 PMAPCOUNT(exec_synced_pvo_remove);
1816 }
1817 }
1818
1819 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1820 }
1821 PMAPCOUNT(unmappings);
1822 } else {
1823 PMAPCOUNT(kernel_unmappings);
1824 }
1825
1826 /*
1827 * Remove the PVO from its lists and return it to the pool.
1828 */
1829 LIST_REMOVE(pvo, pvo_vlink);
1830 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1831 if (pvol) {
1832 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1833 }
1834 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1835 pmap_pvo_remove_depth--;
1836 #endif
1837 }
1838
1839 void
1840 pmap_pvo_free(struct pvo_entry *pvo)
1841 {
1842
1843 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1844 }
1845
1846 void
1847 pmap_pvo_free_list(struct pvo_head *pvol)
1848 {
1849 struct pvo_entry *pvo, *npvo;
1850
1851 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1852 npvo = LIST_NEXT(pvo, pvo_vlink);
1853 LIST_REMOVE(pvo, pvo_vlink);
1854 pmap_pvo_free(pvo);
1855 }
1856 }
1857
1858 /*
1859 * Mark a mapping as executable.
1860 * If this is the first executable mapping in the segment,
1861 * clear the noexec flag.
1862 */
1863 static void
1864 pvo_set_exec(struct pvo_entry *pvo)
1865 {
1866 struct pmap *pm = pvo->pvo_pmap;
1867
1868 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1869 return;
1870 }
1871 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1872 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1873 {
1874 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1875 if (pm->pm_exec[sr]++ == 0) {
1876 pm->pm_sr[sr] &= ~SR_NOEXEC;
1877 }
1878 }
1879 #endif
1880 }
1881
1882 /*
1883 * Mark a mapping as non-executable.
1884 * If this was the last executable mapping in the segment,
1885 * set the noexec flag.
1886 */
1887 static void
1888 pvo_clear_exec(struct pvo_entry *pvo)
1889 {
1890 struct pmap *pm = pvo->pvo_pmap;
1891
1892 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1893 return;
1894 }
1895 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1896 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1897 {
1898 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1899 if (--pm->pm_exec[sr] == 0) {
1900 pm->pm_sr[sr] |= SR_NOEXEC;
1901 }
1902 }
1903 #endif
1904 }
1905
1906 /*
1907 * Insert physical page at pa into the given pmap at virtual address va.
1908 */
1909 int
1910 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1911 {
1912 struct mem_region *mp;
1913 struct pvo_head *pvo_head;
1914 struct vm_page *pg;
1915 struct pool *pl;
1916 register_t pte_lo;
1917 int error;
1918 u_int pvo_flags;
1919 u_int was_exec = 0;
1920
1921 PMAP_LOCK();
1922
1923 if (__predict_false(!pmap_initialized)) {
1924 pvo_head = &pmap_pvo_kunmanaged;
1925 pl = &pmap_upvo_pool;
1926 pvo_flags = 0;
1927 pg = NULL;
1928 was_exec = PTE_EXEC;
1929 } else {
1930 pvo_head = pa_to_pvoh(pa, &pg);
1931 pl = &pmap_mpvo_pool;
1932 pvo_flags = PVO_MANAGED;
1933 }
1934
1935 DPRINTFN(ENTER,
1936 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1937 pm, va, pa, prot, flags));
1938
1939 /*
1940 * If this is a managed page, and it's the first reference to the
1941 * page clear the execness of the page. Otherwise fetch the execness.
1942 */
1943 if (pg != NULL)
1944 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1945
1946 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1947
1948 /*
1949 * Assume the page is cache inhibited and access is guarded unless
1950 * it's in our available memory array. If it is in the memory array,
1951 * asssume it's in memory coherent memory.
1952 */
1953 pte_lo = PTE_IG;
1954 if ((flags & PMAP_NC) == 0) {
1955 for (mp = mem; mp->size; mp++) {
1956 if (pa >= mp->start && pa < mp->start + mp->size) {
1957 pte_lo = PTE_M;
1958 break;
1959 }
1960 }
1961 }
1962
1963 if (prot & VM_PROT_WRITE)
1964 pte_lo |= PTE_BW;
1965 else
1966 pte_lo |= PTE_BR;
1967
1968 /*
1969 * If this was in response to a fault, "pre-fault" the PTE's
1970 * changed/referenced bit appropriately.
1971 */
1972 if (flags & VM_PROT_WRITE)
1973 pte_lo |= PTE_CHG;
1974 if (flags & VM_PROT_ALL)
1975 pte_lo |= PTE_REF;
1976
1977 /*
1978 * We need to know if this page can be executable
1979 */
1980 flags |= (prot & VM_PROT_EXECUTE);
1981
1982 /*
1983 * Record mapping for later back-translation and pte spilling.
1984 * This will overwrite any existing mapping.
1985 */
1986 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1987
1988 /*
1989 * Flush the real page from the instruction cache if this page is
1990 * mapped executable and cacheable and has not been flushed since
1991 * the last time it was modified.
1992 */
1993 if (error == 0 &&
1994 (flags & VM_PROT_EXECUTE) &&
1995 (pte_lo & PTE_I) == 0 &&
1996 was_exec == 0) {
1997 DPRINTFN(ENTER, (" syncicache"));
1998 PMAPCOUNT(exec_synced);
1999 pmap_syncicache(pa, PAGE_SIZE);
2000 if (pg != NULL) {
2001 pmap_attr_save(pg, PTE_EXEC);
2002 PMAPCOUNT(exec_cached);
2003 #if defined(DEBUG) || defined(PMAPDEBUG)
2004 if (pmapdebug & PMAPDEBUG_ENTER)
2005 printf(" marked-as-exec");
2006 else if (pmapdebug & PMAPDEBUG_EXEC)
2007 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2008 VM_PAGE_TO_PHYS(pg));
2009
2010 #endif
2011 }
2012 }
2013
2014 DPRINTFN(ENTER, (": error=%d\n", error));
2015
2016 PMAP_UNLOCK();
2017
2018 return error;
2019 }
2020
2021 void
2022 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2023 {
2024 struct mem_region *mp;
2025 register_t pte_lo;
2026 int error;
2027
2028 #if defined (PMAP_OEA64_BRIDGE)
2029 if (va < VM_MIN_KERNEL_ADDRESS)
2030 panic("pmap_kenter_pa: attempt to enter "
2031 "non-kernel address %#" _PRIxva "!", va);
2032 #endif
2033
2034 DPRINTFN(KENTER,
2035 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2036
2037 PMAP_LOCK();
2038
2039 /*
2040 * Assume the page is cache inhibited and access is guarded unless
2041 * it's in our available memory array. If it is in the memory array,
2042 * asssume it's in memory coherent memory.
2043 */
2044 pte_lo = PTE_IG;
2045 if ((prot & PMAP_NC) == 0) {
2046 for (mp = mem; mp->size; mp++) {
2047 if (pa >= mp->start && pa < mp->start + mp->size) {
2048 pte_lo = PTE_M;
2049 break;
2050 }
2051 }
2052 }
2053
2054 if (prot & VM_PROT_WRITE)
2055 pte_lo |= PTE_BW;
2056 else
2057 pte_lo |= PTE_BR;
2058
2059 /*
2060 * We don't care about REF/CHG on PVOs on the unmanaged list.
2061 */
2062 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2063 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2064
2065 if (error != 0)
2066 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2067 va, pa, error);
2068
2069 PMAP_UNLOCK();
2070 }
2071
2072 void
2073 pmap_kremove(vaddr_t va, vsize_t len)
2074 {
2075 if (va < VM_MIN_KERNEL_ADDRESS)
2076 panic("pmap_kremove: attempt to remove "
2077 "non-kernel address %#" _PRIxva "!", va);
2078
2079 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2080 pmap_remove(pmap_kernel(), va, va + len);
2081 }
2082
2083 /*
2084 * Remove the given range of mapping entries.
2085 */
2086 void
2087 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2088 {
2089 struct pvo_head pvol;
2090 struct pvo_entry *pvo;
2091 register_t msr;
2092 int pteidx;
2093
2094 PMAP_LOCK();
2095 LIST_INIT(&pvol);
2096 msr = pmap_interrupts_off();
2097 for (; va < endva; va += PAGE_SIZE) {
2098 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2099 if (pvo != NULL) {
2100 pmap_pvo_remove(pvo, pteidx, &pvol);
2101 }
2102 }
2103 pmap_interrupts_restore(msr);
2104 pmap_pvo_free_list(&pvol);
2105 PMAP_UNLOCK();
2106 }
2107
2108 /*
2109 * Get the physical page address for the given pmap/virtual address.
2110 */
2111 bool
2112 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2113 {
2114 struct pvo_entry *pvo;
2115 register_t msr;
2116
2117 PMAP_LOCK();
2118
2119 /*
2120 * If this is a kernel pmap lookup, also check the battable
2121 * and if we get a hit, translate the VA to a PA using the
2122 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2123 * that will wrap back to 0.
2124 */
2125 if (pm == pmap_kernel() &&
2126 (va < VM_MIN_KERNEL_ADDRESS ||
2127 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2128 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2129 #if defined (PMAP_OEA)
2130 #ifdef PPC_OEA601
2131 if ((MFPVR() >> 16) == MPC601) {
2132 register_t batu = battable[va >> 23].batu;
2133 register_t batl = battable[va >> 23].batl;
2134 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2135 if (BAT601_VALID_P(batl) &&
2136 BAT601_VA_MATCH_P(batu, batl, va)) {
2137 register_t mask =
2138 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2139 if (pap)
2140 *pap = (batl & mask) | (va & ~mask);
2141 PMAP_UNLOCK();
2142 return true;
2143 } else if (SR601_VALID_P(sr) &&
2144 SR601_PA_MATCH_P(sr, va)) {
2145 if (pap)
2146 *pap = va;
2147 PMAP_UNLOCK();
2148 return true;
2149 }
2150 } else
2151 #endif /* PPC_OEA601 */
2152 {
2153 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2154 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2155 register_t batl =
2156 battable[va >> ADDR_SR_SHFT].batl;
2157 register_t mask =
2158 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2159 if (pap)
2160 *pap = (batl & mask) | (va & ~mask);
2161 PMAP_UNLOCK();
2162 return true;
2163 }
2164 }
2165 return false;
2166 #elif defined (PMAP_OEA64_BRIDGE)
2167 if (va >= SEGMENT_LENGTH)
2168 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2169 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2170 else {
2171 if (pap)
2172 *pap = va;
2173 PMAP_UNLOCK();
2174 return true;
2175 }
2176 #elif defined (PMAP_OEA64)
2177 #error PPC_OEA64 not supported
2178 #endif /* PPC_OEA */
2179 }
2180
2181 msr = pmap_interrupts_off();
2182 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2183 if (pvo != NULL) {
2184 PMAP_PVO_CHECK(pvo); /* sanity check */
2185 if (pap)
2186 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2187 | (va & ADDR_POFF);
2188 }
2189 pmap_interrupts_restore(msr);
2190 PMAP_UNLOCK();
2191 return pvo != NULL;
2192 }
2193
2194 /*
2195 * Lower the protection on the specified range of this pmap.
2196 */
2197 void
2198 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2199 {
2200 struct pvo_entry *pvo;
2201 volatile struct pte *pt;
2202 register_t msr;
2203 int pteidx;
2204
2205 /*
2206 * Since this routine only downgrades protection, we should
2207 * always be called with at least one bit not set.
2208 */
2209 KASSERT(prot != VM_PROT_ALL);
2210
2211 /*
2212 * If there is no protection, this is equivalent to
2213 * remove the pmap from the pmap.
2214 */
2215 if ((prot & VM_PROT_READ) == 0) {
2216 pmap_remove(pm, va, endva);
2217 return;
2218 }
2219
2220 PMAP_LOCK();
2221
2222 msr = pmap_interrupts_off();
2223 for (; va < endva; va += PAGE_SIZE) {
2224 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2225 if (pvo == NULL)
2226 continue;
2227 PMAP_PVO_CHECK(pvo); /* sanity check */
2228
2229 /*
2230 * Revoke executable if asked to do so.
2231 */
2232 if ((prot & VM_PROT_EXECUTE) == 0)
2233 pvo_clear_exec(pvo);
2234
2235 #if 0
2236 /*
2237 * If the page is already read-only, no change
2238 * needs to be made.
2239 */
2240 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2241 continue;
2242 #endif
2243 /*
2244 * Grab the PTE pointer before we diddle with
2245 * the cached PTE copy.
2246 */
2247 pt = pmap_pvo_to_pte(pvo, pteidx);
2248 /*
2249 * Change the protection of the page.
2250 */
2251 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2252 pvo->pvo_pte.pte_lo |= PTE_BR;
2253
2254 /*
2255 * If the PVO is in the page table, update
2256 * that pte at well.
2257 */
2258 if (pt != NULL) {
2259 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2260 PVO_WHERE(pvo, PMAP_PROTECT);
2261 PMAPCOUNT(ptes_changed);
2262 }
2263
2264 PMAP_PVO_CHECK(pvo); /* sanity check */
2265 }
2266 pmap_interrupts_restore(msr);
2267 PMAP_UNLOCK();
2268 }
2269
2270 void
2271 pmap_unwire(pmap_t pm, vaddr_t va)
2272 {
2273 struct pvo_entry *pvo;
2274 register_t msr;
2275
2276 PMAP_LOCK();
2277 msr = pmap_interrupts_off();
2278 pvo = pmap_pvo_find_va(pm, va, NULL);
2279 if (pvo != NULL) {
2280 if (PVO_WIRED_P(pvo)) {
2281 pvo->pvo_vaddr &= ~PVO_WIRED;
2282 pm->pm_stats.wired_count--;
2283 }
2284 PMAP_PVO_CHECK(pvo); /* sanity check */
2285 }
2286 pmap_interrupts_restore(msr);
2287 PMAP_UNLOCK();
2288 }
2289
2290 /*
2291 * Lower the protection on the specified physical page.
2292 */
2293 void
2294 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2295 {
2296 struct pvo_head *pvo_head, pvol;
2297 struct pvo_entry *pvo, *next_pvo;
2298 volatile struct pte *pt;
2299 register_t msr;
2300
2301 PMAP_LOCK();
2302
2303 KASSERT(prot != VM_PROT_ALL);
2304 LIST_INIT(&pvol);
2305 msr = pmap_interrupts_off();
2306
2307 /*
2308 * When UVM reuses a page, it does a pmap_page_protect with
2309 * VM_PROT_NONE. At that point, we can clear the exec flag
2310 * since we know the page will have different contents.
2311 */
2312 if ((prot & VM_PROT_READ) == 0) {
2313 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2314 VM_PAGE_TO_PHYS(pg)));
2315 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2316 PMAPCOUNT(exec_uncached_page_protect);
2317 pmap_attr_clear(pg, PTE_EXEC);
2318 }
2319 }
2320
2321 pvo_head = vm_page_to_pvoh(pg);
2322 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2323 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2324 PMAP_PVO_CHECK(pvo); /* sanity check */
2325
2326 /*
2327 * Downgrading to no mapping at all, we just remove the entry.
2328 */
2329 if ((prot & VM_PROT_READ) == 0) {
2330 pmap_pvo_remove(pvo, -1, &pvol);
2331 continue;
2332 }
2333
2334 /*
2335 * If EXEC permission is being revoked, just clear the
2336 * flag in the PVO.
2337 */
2338 if ((prot & VM_PROT_EXECUTE) == 0)
2339 pvo_clear_exec(pvo);
2340
2341 /*
2342 * If this entry is already RO, don't diddle with the
2343 * page table.
2344 */
2345 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2346 PMAP_PVO_CHECK(pvo);
2347 continue;
2348 }
2349
2350 /*
2351 * Grab the PTE before the we diddle the bits so
2352 * pvo_to_pte can verify the pte contents are as
2353 * expected.
2354 */
2355 pt = pmap_pvo_to_pte(pvo, -1);
2356 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2357 pvo->pvo_pte.pte_lo |= PTE_BR;
2358 if (pt != NULL) {
2359 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2360 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2361 PMAPCOUNT(ptes_changed);
2362 }
2363 PMAP_PVO_CHECK(pvo); /* sanity check */
2364 }
2365 pmap_interrupts_restore(msr);
2366 pmap_pvo_free_list(&pvol);
2367
2368 PMAP_UNLOCK();
2369 }
2370
2371 /*
2372 * Activate the address space for the specified process. If the process
2373 * is the current process, load the new MMU context.
2374 */
2375 void
2376 pmap_activate(struct lwp *l)
2377 {
2378 struct pcb *pcb = &l->l_addr->u_pcb;
2379 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2380
2381 DPRINTFN(ACTIVATE,
2382 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2383
2384 /*
2385 * XXX Normally performed in cpu_fork().
2386 */
2387 pcb->pcb_pm = pmap;
2388
2389 /*
2390 * In theory, the SR registers need only be valid on return
2391 * to user space wait to do them there.
2392 */
2393 if (l == curlwp) {
2394 /* Store pointer to new current pmap. */
2395 curpm = pmap;
2396 }
2397 }
2398
2399 /*
2400 * Deactivate the specified process's address space.
2401 */
2402 void
2403 pmap_deactivate(struct lwp *l)
2404 {
2405 }
2406
2407 bool
2408 pmap_query_bit(struct vm_page *pg, int ptebit)
2409 {
2410 struct pvo_entry *pvo;
2411 volatile struct pte *pt;
2412 register_t msr;
2413
2414 PMAP_LOCK();
2415
2416 if (pmap_attr_fetch(pg) & ptebit) {
2417 PMAP_UNLOCK();
2418 return true;
2419 }
2420
2421 msr = pmap_interrupts_off();
2422 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2423 PMAP_PVO_CHECK(pvo); /* sanity check */
2424 /*
2425 * See if we saved the bit off. If so cache, it and return
2426 * success.
2427 */
2428 if (pvo->pvo_pte.pte_lo & ptebit) {
2429 pmap_attr_save(pg, ptebit);
2430 PMAP_PVO_CHECK(pvo); /* sanity check */
2431 pmap_interrupts_restore(msr);
2432 PMAP_UNLOCK();
2433 return true;
2434 }
2435 }
2436 /*
2437 * No luck, now go thru the hard part of looking at the ptes
2438 * themselves. Sync so any pending REF/CHG bits are flushed
2439 * to the PTEs.
2440 */
2441 SYNC();
2442 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2443 PMAP_PVO_CHECK(pvo); /* sanity check */
2444 /*
2445 * See if this pvo have a valid PTE. If so, fetch the
2446 * REF/CHG bits from the valid PTE. If the appropriate
2447 * ptebit is set, cache, it and return success.
2448 */
2449 pt = pmap_pvo_to_pte(pvo, -1);
2450 if (pt != NULL) {
2451 pmap_pte_synch(pt, &pvo->pvo_pte);
2452 if (pvo->pvo_pte.pte_lo & ptebit) {
2453 pmap_attr_save(pg, ptebit);
2454 PMAP_PVO_CHECK(pvo); /* sanity check */
2455 pmap_interrupts_restore(msr);
2456 PMAP_UNLOCK();
2457 return true;
2458 }
2459 }
2460 }
2461 pmap_interrupts_restore(msr);
2462 PMAP_UNLOCK();
2463 return false;
2464 }
2465
2466 bool
2467 pmap_clear_bit(struct vm_page *pg, int ptebit)
2468 {
2469 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2470 struct pvo_entry *pvo;
2471 volatile struct pte *pt;
2472 register_t msr;
2473 int rv = 0;
2474
2475 PMAP_LOCK();
2476 msr = pmap_interrupts_off();
2477
2478 /*
2479 * Fetch the cache value
2480 */
2481 rv |= pmap_attr_fetch(pg);
2482
2483 /*
2484 * Clear the cached value.
2485 */
2486 pmap_attr_clear(pg, ptebit);
2487
2488 /*
2489 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2490 * can reset the right ones). Note that since the pvo entries and
2491 * list heads are accessed via BAT0 and are never placed in the
2492 * page table, we don't have to worry about further accesses setting
2493 * the REF/CHG bits.
2494 */
2495 SYNC();
2496
2497 /*
2498 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2499 * valid PTE. If so, clear the ptebit from the valid PTE.
2500 */
2501 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2502 PMAP_PVO_CHECK(pvo); /* sanity check */
2503 pt = pmap_pvo_to_pte(pvo, -1);
2504 if (pt != NULL) {
2505 /*
2506 * Only sync the PTE if the bit we are looking
2507 * for is not already set.
2508 */
2509 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2510 pmap_pte_synch(pt, &pvo->pvo_pte);
2511 /*
2512 * If the bit we are looking for was already set,
2513 * clear that bit in the pte.
2514 */
2515 if (pvo->pvo_pte.pte_lo & ptebit)
2516 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2517 }
2518 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2519 pvo->pvo_pte.pte_lo &= ~ptebit;
2520 PMAP_PVO_CHECK(pvo); /* sanity check */
2521 }
2522 pmap_interrupts_restore(msr);
2523
2524 /*
2525 * If we are clearing the modify bit and this page was marked EXEC
2526 * and the user of the page thinks the page was modified, then we
2527 * need to clean it from the icache if it's mapped or clear the EXEC
2528 * bit if it's not mapped. The page itself might not have the CHG
2529 * bit set if the modification was done via DMA to the page.
2530 */
2531 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2532 if (LIST_EMPTY(pvoh)) {
2533 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2534 VM_PAGE_TO_PHYS(pg)));
2535 pmap_attr_clear(pg, PTE_EXEC);
2536 PMAPCOUNT(exec_uncached_clear_modify);
2537 } else {
2538 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2539 VM_PAGE_TO_PHYS(pg)));
2540 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2541 PMAPCOUNT(exec_synced_clear_modify);
2542 }
2543 }
2544 PMAP_UNLOCK();
2545 return (rv & ptebit) != 0;
2546 }
2547
2548 void
2549 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2550 {
2551 struct pvo_entry *pvo;
2552 size_t offset = va & ADDR_POFF;
2553 int s;
2554
2555 PMAP_LOCK();
2556 s = splvm();
2557 while (len > 0) {
2558 size_t seglen = PAGE_SIZE - offset;
2559 if (seglen > len)
2560 seglen = len;
2561 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2562 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2563 pmap_syncicache(
2564 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2565 PMAP_PVO_CHECK(pvo);
2566 }
2567 va += seglen;
2568 len -= seglen;
2569 offset = 0;
2570 }
2571 splx(s);
2572 PMAP_UNLOCK();
2573 }
2574
2575 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2576 void
2577 pmap_pte_print(volatile struct pte *pt)
2578 {
2579 printf("PTE %p: ", pt);
2580
2581 #if defined(PMAP_OEA)
2582 /* High word: */
2583 printf("%#" _PRIxpte ": [", pt->pte_hi);
2584 #else
2585 printf("%#" _PRIxpte ": [", pt->pte_hi);
2586 #endif /* PMAP_OEA */
2587
2588 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2589 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2590
2591 printf("%#" _PRIxpte " %#" _PRIxpte "",
2592 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2593 pt->pte_hi & PTE_API);
2594 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2595 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2596 #else
2597 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2598 #endif /* PMAP_OEA */
2599
2600 /* Low word: */
2601 #if defined (PMAP_OEA)
2602 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2603 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2604 #else
2605 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2606 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2607 #endif
2608 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2609 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2610 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2611 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2612 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2613 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2614 switch (pt->pte_lo & PTE_PP) {
2615 case PTE_BR: printf("br]\n"); break;
2616 case PTE_BW: printf("bw]\n"); break;
2617 case PTE_SO: printf("so]\n"); break;
2618 case PTE_SW: printf("sw]\n"); break;
2619 }
2620 }
2621 #endif
2622
2623 #if defined(DDB)
2624 void
2625 pmap_pteg_check(void)
2626 {
2627 volatile struct pte *pt;
2628 int i;
2629 int ptegidx;
2630 u_int p_valid = 0;
2631 u_int s_valid = 0;
2632 u_int invalid = 0;
2633
2634 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2635 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2636 if (pt->pte_hi & PTE_VALID) {
2637 if (pt->pte_hi & PTE_HID)
2638 s_valid++;
2639 else
2640 {
2641 p_valid++;
2642 }
2643 } else
2644 invalid++;
2645 }
2646 }
2647 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2648 p_valid, p_valid, s_valid, s_valid,
2649 invalid, invalid);
2650 }
2651
2652 void
2653 pmap_print_mmuregs(void)
2654 {
2655 int i;
2656 u_int cpuvers;
2657 #ifndef PMAP_OEA64
2658 vaddr_t addr;
2659 register_t soft_sr[16];
2660 #endif
2661 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2662 struct bat soft_ibat[4];
2663 struct bat soft_dbat[4];
2664 #endif
2665 paddr_t sdr1;
2666
2667 cpuvers = MFPVR() >> 16;
2668 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2669 #ifndef PMAP_OEA64
2670 addr = 0;
2671 for (i = 0; i < 16; i++) {
2672 soft_sr[i] = MFSRIN(addr);
2673 addr += (1 << ADDR_SR_SHFT);
2674 }
2675 #endif
2676
2677 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2678 /* read iBAT (601: uBAT) registers */
2679 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2680 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2681 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2682 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2683 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2684 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2685 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2686 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2687
2688
2689 if (cpuvers != MPC601) {
2690 /* read dBAT registers */
2691 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2692 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2693 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2694 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2695 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2696 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2697 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2698 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2699 }
2700 #endif
2701
2702 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2703 #ifndef PMAP_OEA64
2704 printf("SR[]:\t");
2705 for (i = 0; i < 4; i++)
2706 printf("0x%08lx, ", soft_sr[i]);
2707 printf("\n\t");
2708 for ( ; i < 8; i++)
2709 printf("0x%08lx, ", soft_sr[i]);
2710 printf("\n\t");
2711 for ( ; i < 12; i++)
2712 printf("0x%08lx, ", soft_sr[i]);
2713 printf("\n\t");
2714 for ( ; i < 16; i++)
2715 printf("0x%08lx, ", soft_sr[i]);
2716 printf("\n");
2717 #endif
2718
2719 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2720 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2721 for (i = 0; i < 4; i++) {
2722 printf("0x%08lx 0x%08lx, ",
2723 soft_ibat[i].batu, soft_ibat[i].batl);
2724 if (i == 1)
2725 printf("\n\t");
2726 }
2727 if (cpuvers != MPC601) {
2728 printf("\ndBAT[]:\t");
2729 for (i = 0; i < 4; i++) {
2730 printf("0x%08lx 0x%08lx, ",
2731 soft_dbat[i].batu, soft_dbat[i].batl);
2732 if (i == 1)
2733 printf("\n\t");
2734 }
2735 }
2736 printf("\n");
2737 #endif /* PMAP_OEA... */
2738 }
2739
2740 void
2741 pmap_print_pte(pmap_t pm, vaddr_t va)
2742 {
2743 struct pvo_entry *pvo;
2744 volatile struct pte *pt;
2745 int pteidx;
2746
2747 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2748 if (pvo != NULL) {
2749 pt = pmap_pvo_to_pte(pvo, pteidx);
2750 if (pt != NULL) {
2751 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2752 va, pt,
2753 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2754 pt->pte_hi, pt->pte_lo);
2755 } else {
2756 printf("No valid PTE found\n");
2757 }
2758 } else {
2759 printf("Address not in pmap\n");
2760 }
2761 }
2762
2763 void
2764 pmap_pteg_dist(void)
2765 {
2766 struct pvo_entry *pvo;
2767 int ptegidx;
2768 int depth;
2769 int max_depth = 0;
2770 unsigned int depths[64];
2771
2772 memset(depths, 0, sizeof(depths));
2773 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2774 depth = 0;
2775 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2776 depth++;
2777 }
2778 if (depth > max_depth)
2779 max_depth = depth;
2780 if (depth > 63)
2781 depth = 63;
2782 depths[depth]++;
2783 }
2784
2785 for (depth = 0; depth < 64; depth++) {
2786 printf(" [%2d]: %8u", depth, depths[depth]);
2787 if ((depth & 3) == 3)
2788 printf("\n");
2789 if (depth == max_depth)
2790 break;
2791 }
2792 if ((depth & 3) != 3)
2793 printf("\n");
2794 printf("Max depth found was %d\n", max_depth);
2795 }
2796 #endif /* DEBUG */
2797
2798 #if defined(PMAPCHECK) || defined(DEBUG)
2799 void
2800 pmap_pvo_verify(void)
2801 {
2802 int ptegidx;
2803 int s;
2804
2805 s = splvm();
2806 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2807 struct pvo_entry *pvo;
2808 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2809 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2810 panic("pmap_pvo_verify: invalid pvo %p "
2811 "on list %#x", pvo, ptegidx);
2812 pmap_pvo_check(pvo);
2813 }
2814 }
2815 splx(s);
2816 }
2817 #endif /* PMAPCHECK */
2818
2819
2820 void *
2821 pmap_pool_ualloc(struct pool *pp, int flags)
2822 {
2823 struct pvo_page *pvop;
2824
2825 if (uvm.page_init_done != true) {
2826 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2827 }
2828
2829 PMAP_LOCK();
2830 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2831 if (pvop != NULL) {
2832 pmap_upvop_free--;
2833 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2834 PMAP_UNLOCK();
2835 return pvop;
2836 }
2837 PMAP_UNLOCK();
2838 return pmap_pool_malloc(pp, flags);
2839 }
2840
2841 void *
2842 pmap_pool_malloc(struct pool *pp, int flags)
2843 {
2844 struct pvo_page *pvop;
2845 struct vm_page *pg;
2846
2847 PMAP_LOCK();
2848 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2849 if (pvop != NULL) {
2850 pmap_mpvop_free--;
2851 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2852 PMAP_UNLOCK();
2853 return pvop;
2854 }
2855 PMAP_UNLOCK();
2856 again:
2857 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2858 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2859 if (__predict_false(pg == NULL)) {
2860 if (flags & PR_WAITOK) {
2861 uvm_wait("plpg");
2862 goto again;
2863 } else {
2864 return (0);
2865 }
2866 }
2867 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2868 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2869 }
2870
2871 void
2872 pmap_pool_ufree(struct pool *pp, void *va)
2873 {
2874 struct pvo_page *pvop;
2875 #if 0
2876 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2877 pmap_pool_mfree(va, size, tag);
2878 return;
2879 }
2880 #endif
2881 PMAP_LOCK();
2882 pvop = va;
2883 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2884 pmap_upvop_free++;
2885 if (pmap_upvop_free > pmap_upvop_maxfree)
2886 pmap_upvop_maxfree = pmap_upvop_free;
2887 PMAP_UNLOCK();
2888 }
2889
2890 void
2891 pmap_pool_mfree(struct pool *pp, void *va)
2892 {
2893 struct pvo_page *pvop;
2894
2895 PMAP_LOCK();
2896 pvop = va;
2897 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2898 pmap_mpvop_free++;
2899 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2900 pmap_mpvop_maxfree = pmap_mpvop_free;
2901 PMAP_UNLOCK();
2902 #if 0
2903 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2904 #endif
2905 }
2906
2907 /*
2908 * This routine in bootstraping to steal to-be-managed memory (which will
2909 * then be unmanaged). We use it to grab from the first 256MB for our
2910 * pmap needs and above 256MB for other stuff.
2911 */
2912 vaddr_t
2913 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2914 {
2915 vsize_t size;
2916 vaddr_t va;
2917 paddr_t pa = 0;
2918 int npgs, bank;
2919 struct vm_physseg *ps;
2920
2921 if (uvm.page_init_done == true)
2922 panic("pmap_steal_memory: called _after_ bootstrap");
2923
2924 *vstartp = VM_MIN_KERNEL_ADDRESS;
2925 *vendp = VM_MAX_KERNEL_ADDRESS;
2926
2927 size = round_page(vsize);
2928 npgs = atop(size);
2929
2930 /*
2931 * PA 0 will never be among those given to UVM so we can use it
2932 * to indicate we couldn't steal any memory.
2933 */
2934 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2935 if (ps->free_list == VM_FREELIST_FIRST256 &&
2936 ps->avail_end - ps->avail_start >= npgs) {
2937 pa = ptoa(ps->avail_start);
2938 break;
2939 }
2940 }
2941
2942 if (pa == 0)
2943 panic("pmap_steal_memory: no approriate memory to steal!");
2944
2945 ps->avail_start += npgs;
2946 ps->start += npgs;
2947
2948 /*
2949 * If we've used up all the pages in the segment, remove it and
2950 * compact the list.
2951 */
2952 if (ps->avail_start == ps->end) {
2953 /*
2954 * If this was the last one, then a very bad thing has occurred
2955 */
2956 if (--vm_nphysseg == 0)
2957 panic("pmap_steal_memory: out of memory!");
2958
2959 printf("pmap_steal_memory: consumed bank %d\n", bank);
2960 for (; bank < vm_nphysseg; bank++, ps++) {
2961 ps[0] = ps[1];
2962 }
2963 }
2964
2965 va = (vaddr_t) pa;
2966 memset((void *) va, 0, size);
2967 pmap_pages_stolen += npgs;
2968 #ifdef DEBUG
2969 if (pmapdebug && npgs > 1) {
2970 u_int cnt = 0;
2971 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2972 cnt += ps->avail_end - ps->avail_start;
2973 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2974 npgs, pmap_pages_stolen, cnt);
2975 }
2976 #endif
2977
2978 return va;
2979 }
2980
2981 /*
2982 * Find a chuck of memory with right size and alignment.
2983 */
2984 paddr_t
2985 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2986 {
2987 struct mem_region *mp;
2988 paddr_t s, e;
2989 int i, j;
2990
2991 size = round_page(size);
2992
2993 DPRINTFN(BOOT,
2994 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2995 size, alignment, at_end));
2996
2997 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2998 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2999 alignment);
3000
3001 if (at_end) {
3002 if (alignment != PAGE_SIZE)
3003 panic("pmap_boot_find_memory: invalid ending "
3004 "alignment %#" _PRIxpa, alignment);
3005
3006 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3007 s = mp->start + mp->size - size;
3008 if (s >= mp->start && mp->size >= size) {
3009 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3010 DPRINTFN(BOOT,
3011 ("pmap_boot_find_memory: b-avail[%d] start "
3012 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3013 mp->start, mp->size));
3014 mp->size -= size;
3015 DPRINTFN(BOOT,
3016 ("pmap_boot_find_memory: a-avail[%d] start "
3017 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3018 mp->start, mp->size));
3019 return s;
3020 }
3021 }
3022 panic("pmap_boot_find_memory: no available memory");
3023 }
3024
3025 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3026 s = (mp->start + alignment - 1) & ~(alignment-1);
3027 e = s + size;
3028
3029 /*
3030 * Is the calculated region entirely within the region?
3031 */
3032 if (s < mp->start || e > mp->start + mp->size)
3033 continue;
3034
3035 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3036 if (s == mp->start) {
3037 /*
3038 * If the block starts at the beginning of region,
3039 * adjust the size & start. (the region may now be
3040 * zero in length)
3041 */
3042 DPRINTFN(BOOT,
3043 ("pmap_boot_find_memory: b-avail[%d] start "
3044 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3045 mp->start += size;
3046 mp->size -= size;
3047 DPRINTFN(BOOT,
3048 ("pmap_boot_find_memory: a-avail[%d] start "
3049 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3050 } else if (e == mp->start + mp->size) {
3051 /*
3052 * If the block starts at the beginning of region,
3053 * adjust only the size.
3054 */
3055 DPRINTFN(BOOT,
3056 ("pmap_boot_find_memory: b-avail[%d] start "
3057 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3058 mp->size -= size;
3059 DPRINTFN(BOOT,
3060 ("pmap_boot_find_memory: a-avail[%d] start "
3061 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3062 } else {
3063 /*
3064 * Block is in the middle of the region, so we
3065 * have to split it in two.
3066 */
3067 for (j = avail_cnt; j > i + 1; j--) {
3068 avail[j] = avail[j-1];
3069 }
3070 DPRINTFN(BOOT,
3071 ("pmap_boot_find_memory: b-avail[%d] start "
3072 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3073 mp[1].start = e;
3074 mp[1].size = mp[0].start + mp[0].size - e;
3075 mp[0].size = s - mp[0].start;
3076 avail_cnt++;
3077 for (; i < avail_cnt; i++) {
3078 DPRINTFN(BOOT,
3079 ("pmap_boot_find_memory: a-avail[%d] "
3080 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3081 avail[i].start, avail[i].size));
3082 }
3083 }
3084 KASSERT(s == (uintptr_t) s);
3085 return s;
3086 }
3087 panic("pmap_boot_find_memory: not enough memory for "
3088 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3089 }
3090
3091 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3092 #if defined (PMAP_OEA64_BRIDGE)
3093 int
3094 pmap_setup_segment0_map(int use_large_pages, ...)
3095 {
3096 vaddr_t va;
3097
3098 register_t pte_lo = 0x0;
3099 int ptegidx = 0, i = 0;
3100 struct pte pte;
3101 va_list ap;
3102
3103 /* Coherent + Supervisor RW, no user access */
3104 pte_lo = PTE_M;
3105
3106 /* XXXSL
3107 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3108 * these have to take priority.
3109 */
3110 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3111 ptegidx = va_to_pteg(pmap_kernel(), va);
3112 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3113 i = pmap_pte_insert(ptegidx, &pte);
3114 }
3115
3116 va_start(ap, use_large_pages);
3117 while (1) {
3118 paddr_t pa;
3119 size_t size;
3120
3121 va = va_arg(ap, vaddr_t);
3122
3123 if (va == 0)
3124 break;
3125
3126 pa = va_arg(ap, paddr_t);
3127 size = va_arg(ap, size_t);
3128
3129 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3130 #if 0
3131 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3132 #endif
3133 ptegidx = va_to_pteg(pmap_kernel(), va);
3134 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3135 i = pmap_pte_insert(ptegidx, &pte);
3136 }
3137 }
3138
3139 TLBSYNC();
3140 SYNC();
3141 return (0);
3142 }
3143 #endif /* PMAP_OEA64_BRIDGE */
3144
3145 /*
3146 * This is not part of the defined PMAP interface and is specific to the
3147 * PowerPC architecture. This is called during initppc, before the system
3148 * is really initialized.
3149 */
3150 void
3151 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3152 {
3153 struct mem_region *mp, tmp;
3154 paddr_t s, e;
3155 psize_t size;
3156 int i, j;
3157
3158 /*
3159 * Get memory.
3160 */
3161 mem_regions(&mem, &avail);
3162 #if defined(DEBUG)
3163 if (pmapdebug & PMAPDEBUG_BOOT) {
3164 printf("pmap_bootstrap: memory configuration:\n");
3165 for (mp = mem; mp->size; mp++) {
3166 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3167 mp->start, mp->size);
3168 }
3169 for (mp = avail; mp->size; mp++) {
3170 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3171 mp->start, mp->size);
3172 }
3173 }
3174 #endif
3175
3176 /*
3177 * Find out how much physical memory we have and in how many chunks.
3178 */
3179 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3180 if (mp->start >= pmap_memlimit)
3181 continue;
3182 if (mp->start + mp->size > pmap_memlimit) {
3183 size = pmap_memlimit - mp->start;
3184 physmem += btoc(size);
3185 } else {
3186 physmem += btoc(mp->size);
3187 }
3188 mem_cnt++;
3189 }
3190
3191 /*
3192 * Count the number of available entries.
3193 */
3194 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3195 avail_cnt++;
3196
3197 /*
3198 * Page align all regions.
3199 */
3200 kernelstart = trunc_page(kernelstart);
3201 kernelend = round_page(kernelend);
3202 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3203 s = round_page(mp->start);
3204 mp->size -= (s - mp->start);
3205 mp->size = trunc_page(mp->size);
3206 mp->start = s;
3207 e = mp->start + mp->size;
3208
3209 DPRINTFN(BOOT,
3210 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3211 i, mp->start, mp->size));
3212
3213 /*
3214 * Don't allow the end to run beyond our artificial limit
3215 */
3216 if (e > pmap_memlimit)
3217 e = pmap_memlimit;
3218
3219 /*
3220 * Is this region empty or strange? skip it.
3221 */
3222 if (e <= s) {
3223 mp->start = 0;
3224 mp->size = 0;
3225 continue;
3226 }
3227
3228 /*
3229 * Does this overlap the beginning of kernel?
3230 * Does extend past the end of the kernel?
3231 */
3232 else if (s < kernelstart && e > kernelstart) {
3233 if (e > kernelend) {
3234 avail[avail_cnt].start = kernelend;
3235 avail[avail_cnt].size = e - kernelend;
3236 avail_cnt++;
3237 }
3238 mp->size = kernelstart - s;
3239 }
3240 /*
3241 * Check whether this region overlaps the end of the kernel.
3242 */
3243 else if (s < kernelend && e > kernelend) {
3244 mp->start = kernelend;
3245 mp->size = e - kernelend;
3246 }
3247 /*
3248 * Look whether this regions is completely inside the kernel.
3249 * Nuke it if it does.
3250 */
3251 else if (s >= kernelstart && e <= kernelend) {
3252 mp->start = 0;
3253 mp->size = 0;
3254 }
3255 /*
3256 * If the user imposed a memory limit, enforce it.
3257 */
3258 else if (s >= pmap_memlimit) {
3259 mp->start = -PAGE_SIZE; /* let's know why */
3260 mp->size = 0;
3261 }
3262 else {
3263 mp->start = s;
3264 mp->size = e - s;
3265 }
3266 DPRINTFN(BOOT,
3267 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3268 i, mp->start, mp->size));
3269 }
3270
3271 /*
3272 * Move (and uncount) all the null return to the end.
3273 */
3274 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3275 if (mp->size == 0) {
3276 tmp = avail[i];
3277 avail[i] = avail[--avail_cnt];
3278 avail[avail_cnt] = avail[i];
3279 }
3280 }
3281
3282 /*
3283 * (Bubble)sort them into asecnding order.
3284 */
3285 for (i = 0; i < avail_cnt; i++) {
3286 for (j = i + 1; j < avail_cnt; j++) {
3287 if (avail[i].start > avail[j].start) {
3288 tmp = avail[i];
3289 avail[i] = avail[j];
3290 avail[j] = tmp;
3291 }
3292 }
3293 }
3294
3295 /*
3296 * Make sure they don't overlap.
3297 */
3298 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3299 if (mp[0].start + mp[0].size > mp[1].start) {
3300 mp[0].size = mp[1].start - mp[0].start;
3301 }
3302 DPRINTFN(BOOT,
3303 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3304 i, mp->start, mp->size));
3305 }
3306 DPRINTFN(BOOT,
3307 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3308 i, mp->start, mp->size));
3309
3310 #ifdef PTEGCOUNT
3311 pmap_pteg_cnt = PTEGCOUNT;
3312 #else /* PTEGCOUNT */
3313
3314 pmap_pteg_cnt = 0x1000;
3315
3316 while (pmap_pteg_cnt < physmem)
3317 pmap_pteg_cnt <<= 1;
3318
3319 pmap_pteg_cnt >>= 1;
3320 #endif /* PTEGCOUNT */
3321
3322 #ifdef DEBUG
3323 DPRINTFN(BOOT,
3324 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3325 #endif
3326
3327 /*
3328 * Find suitably aligned memory for PTEG hash table.
3329 */
3330 size = pmap_pteg_cnt * sizeof(struct pteg);
3331 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3332
3333 #ifdef DEBUG
3334 DPRINTFN(BOOT,
3335 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3336 #endif
3337
3338
3339 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3340 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3341 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3342 pmap_pteg_table, size);
3343 #endif
3344
3345 memset(__UNVOLATILE(pmap_pteg_table), 0,
3346 pmap_pteg_cnt * sizeof(struct pteg));
3347 pmap_pteg_mask = pmap_pteg_cnt - 1;
3348
3349 /*
3350 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3351 * with pages. So we just steal them before giving them to UVM.
3352 */
3353 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3354 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3355 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3356 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3357 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3358 pmap_pvo_table, size);
3359 #endif
3360
3361 for (i = 0; i < pmap_pteg_cnt; i++)
3362 TAILQ_INIT(&pmap_pvo_table[i]);
3363
3364 #ifndef MSGBUFADDR
3365 /*
3366 * Allocate msgbuf in high memory.
3367 */
3368 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3369 #endif
3370
3371 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3372 paddr_t pfstart = atop(mp->start);
3373 paddr_t pfend = atop(mp->start + mp->size);
3374 if (mp->size == 0)
3375 continue;
3376 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3377 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3378 VM_FREELIST_FIRST256);
3379 } else if (mp->start >= SEGMENT_LENGTH) {
3380 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3381 VM_FREELIST_DEFAULT);
3382 } else {
3383 pfend = atop(SEGMENT_LENGTH);
3384 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3385 VM_FREELIST_FIRST256);
3386 pfstart = atop(SEGMENT_LENGTH);
3387 pfend = atop(mp->start + mp->size);
3388 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3389 VM_FREELIST_DEFAULT);
3390 }
3391 }
3392
3393 /*
3394 * Make sure kernel vsid is allocated as well as VSID 0.
3395 */
3396 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3397 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3398 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3399 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3400 pmap_vsid_bitmap[0] |= 1;
3401
3402 /*
3403 * Initialize kernel pmap and hardware.
3404 */
3405
3406 /* PMAP_OEA64_BRIDGE does support these instructions */
3407 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3408 for (i = 0; i < 16; i++) {
3409 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3410 __asm volatile ("mtsrin %0,%1"
3411 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3412 }
3413
3414 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3415 __asm volatile ("mtsr %0,%1"
3416 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3417 #ifdef KERNEL2_SR
3418 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3419 __asm volatile ("mtsr %0,%1"
3420 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3421 #endif
3422 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3423 #if defined (PMAP_OEA)
3424 for (i = 0; i < 16; i++) {
3425 if (iosrtable[i] & SR601_T) {
3426 pmap_kernel()->pm_sr[i] = iosrtable[i];
3427 __asm volatile ("mtsrin %0,%1"
3428 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3429 }
3430 }
3431 __asm volatile ("sync; mtsdr1 %0; isync"
3432 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3433 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3434 __asm __volatile ("sync; mtsdr1 %0; isync"
3435 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3436 #endif
3437 tlbia();
3438
3439 #ifdef ALTIVEC
3440 pmap_use_altivec = cpu_altivec;
3441 #endif
3442
3443 #ifdef DEBUG
3444 if (pmapdebug & PMAPDEBUG_BOOT) {
3445 u_int cnt;
3446 int bank;
3447 char pbuf[9];
3448 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3449 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3450 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3451 bank,
3452 ptoa(vm_physmem[bank].avail_start),
3453 ptoa(vm_physmem[bank].avail_end),
3454 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3455 }
3456 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3457 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3458 pbuf, cnt);
3459 }
3460 #endif
3461
3462 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3463 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3464 &pmap_pool_uallocator, IPL_VM);
3465
3466 pool_setlowat(&pmap_upvo_pool, 252);
3467
3468 pool_init(&pmap_pool, sizeof(struct pmap),
3469 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3470 IPL_NONE);
3471
3472 #if defined(PMAP_NEED_MAPKERNEL) || 1
3473 {
3474 struct pmap *pm = pmap_kernel();
3475 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3476 extern int etext[], kernel_text[];
3477 vaddr_t va, va_etext = (paddr_t) etext;
3478 #endif
3479 paddr_t pa, pa_end;
3480 register_t sr;
3481 struct pte pt;
3482 unsigned int ptegidx;
3483 int bank;
3484
3485 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3486 pm->pm_sr[0] = sr;
3487
3488 for (bank = 0; bank < vm_nphysseg; bank++) {
3489 pa_end = ptoa(vm_physmem[bank].avail_end);
3490 pa = ptoa(vm_physmem[bank].avail_start);
3491 for (; pa < pa_end; pa += PAGE_SIZE) {
3492 ptegidx = va_to_pteg(pm, pa);
3493 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3494 pmap_pte_insert(ptegidx, &pt);
3495 }
3496 }
3497
3498 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3499 va = (vaddr_t) kernel_text;
3500
3501 for (pa = kernelstart; va < va_etext;
3502 pa += PAGE_SIZE, va += PAGE_SIZE) {
3503 ptegidx = va_to_pteg(pm, va);
3504 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3505 pmap_pte_insert(ptegidx, &pt);
3506 }
3507
3508 for (; pa < kernelend;
3509 pa += PAGE_SIZE, va += PAGE_SIZE) {
3510 ptegidx = va_to_pteg(pm, va);
3511 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3512 pmap_pte_insert(ptegidx, &pt);
3513 }
3514
3515 for (va = 0, pa = 0; va < kernelstart;
3516 pa += PAGE_SIZE, va += PAGE_SIZE) {
3517 ptegidx = va_to_pteg(pm, va);
3518 if (va < 0x3000)
3519 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3520 else
3521 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3522 pmap_pte_insert(ptegidx, &pt);
3523 }
3524 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3525 pa += PAGE_SIZE, va += PAGE_SIZE) {
3526 ptegidx = va_to_pteg(pm, va);
3527 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3528 pmap_pte_insert(ptegidx, &pt);
3529 }
3530 #endif
3531
3532 __asm volatile ("mtsrin %0,%1"
3533 :: "r"(sr), "r"(kernelstart));
3534 }
3535 #endif
3536 }
3537