pmap.c revision 1.61.12.2 1 /* $NetBSD: pmap.c,v 1.61.12.2 2011/01/17 07:45:59 matt Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.61.12.2 2011/01/17 07:45:59 matt Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83 #include <sys/atomic.h>
84
85 #include <uvm/uvm.h>
86
87 #include <machine/pcb.h>
88 #include <machine/powerpc.h>
89 #include <powerpc/spr.h>
90 #include <powerpc/oea/spr.h>
91 #include <powerpc/oea/sr_601.h>
92 #include <powerpc/bat.h>
93 #include <powerpc/stdarg.h>
94
95 #ifdef ALTIVEC
96 int pmap_use_altivec;
97 #endif
98
99 volatile struct pteg *pmap_pteg_table;
100 unsigned int pmap_pteg_cnt;
101 unsigned int pmap_pteg_mask;
102 #ifdef PMAP_MEMLIMIT
103 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
104 #else
105 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
106 #endif
107
108 struct pmap kernel_pmap_;
109 unsigned int pmap_pages_stolen;
110 u_long pmap_pte_valid;
111 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
112 u_long pmap_pvo_enter_depth;
113 u_long pmap_pvo_remove_depth;
114 #endif
115
116 int physmem;
117 #ifndef MSGBUFADDR
118 extern paddr_t msgbuf_paddr;
119 #endif
120
121 static struct mem_region *mem, *avail;
122 static u_int mem_cnt, avail_cnt;
123
124 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
125 # define PMAP_OEA 1
126 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
127 # define PMAPNAME(name) pmap_##name
128 # endif
129 #endif
130
131 #if defined(PMAP_OEA64)
132 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
133 # define PMAPNAME(name) pmap_##name
134 # endif
135 #endif
136
137 #if defined(PMAP_OEA64_BRIDGE)
138 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
139 # define PMAPNAME(name) pmap_##name
140 # endif
141 #endif
142
143 #if defined(PMAP_OEA)
144 #define _PRIxpte "lx"
145 #else
146 #define _PRIxpte PRIx64
147 #endif
148 #define _PRIxpa "lx"
149 #define _PRIxva "lx"
150 #define _PRIsr "lx"
151
152 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
153 #if defined(PMAP_OEA)
154 #define PMAPNAME(name) pmap32_##name
155 #elif defined(PMAP_OEA64)
156 #define PMAPNAME(name) pmap64_##name
157 #elif defined(PMAP_OEA64_BRIDGE)
158 #define PMAPNAME(name) pmap64bridge_##name
159 #else
160 #error unknown variant for pmap
161 #endif
162 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
163
164 #if defined(PMAPNAME)
165 #define STATIC static
166 #define pmap_pte_spill PMAPNAME(pte_spill)
167 #define pmap_real_memory PMAPNAME(real_memory)
168 #define pmap_init PMAPNAME(init)
169 #define pmap_virtual_space PMAPNAME(virtual_space)
170 #define pmap_create PMAPNAME(create)
171 #define pmap_reference PMAPNAME(reference)
172 #define pmap_destroy PMAPNAME(destroy)
173 #define pmap_copy PMAPNAME(copy)
174 #define pmap_update PMAPNAME(update)
175 #define pmap_collect PMAPNAME(collect)
176 #define pmap_enter PMAPNAME(enter)
177 #define pmap_remove PMAPNAME(remove)
178 #define pmap_kenter_pa PMAPNAME(kenter_pa)
179 #define pmap_kremove PMAPNAME(kremove)
180 #define pmap_extract PMAPNAME(extract)
181 #define pmap_protect PMAPNAME(protect)
182 #define pmap_unwire PMAPNAME(unwire)
183 #define pmap_page_protect PMAPNAME(page_protect)
184 #define pmap_query_bit PMAPNAME(query_bit)
185 #define pmap_clear_bit PMAPNAME(clear_bit)
186
187 #define pmap_activate PMAPNAME(activate)
188 #define pmap_deactivate PMAPNAME(deactivate)
189
190 #define pmap_pinit PMAPNAME(pinit)
191 #define pmap_procwr PMAPNAME(procwr)
192
193 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
194 #define pmap_pte_print PMAPNAME(pte_print)
195 #define pmap_pteg_check PMAPNAME(pteg_check)
196 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
197 #define pmap_print_pte PMAPNAME(print_pte)
198 #define pmap_pteg_dist PMAPNAME(pteg_dist)
199 #endif
200 #if defined(DEBUG) || defined(PMAPCHECK)
201 #define pmap_pvo_verify PMAPNAME(pvo_verify)
202 #define pmapcheck PMAPNAME(check)
203 #endif
204 #if defined(DEBUG) || defined(PMAPDEBUG)
205 #define pmapdebug PMAPNAME(debug)
206 #endif
207 #define pmap_steal_memory PMAPNAME(steal_memory)
208 #define pmap_bootstrap PMAPNAME(bootstrap)
209 #else
210 #define STATIC /* nothing */
211 #endif /* PMAPNAME */
212
213 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
214 STATIC void pmap_real_memory(paddr_t *, psize_t *);
215 STATIC void pmap_init(void);
216 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
217 STATIC pmap_t pmap_create(void);
218 STATIC void pmap_reference(pmap_t);
219 STATIC void pmap_destroy(pmap_t);
220 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
221 STATIC void pmap_update(pmap_t);
222 STATIC void pmap_collect(pmap_t);
223 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
224 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
225 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
226 STATIC void pmap_kremove(vaddr_t, vsize_t);
227 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
228
229 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
230 STATIC void pmap_unwire(pmap_t, vaddr_t);
231 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
232 STATIC bool pmap_query_bit(struct vm_page *, int);
233 STATIC bool pmap_clear_bit(struct vm_page *, int);
234
235 STATIC void pmap_activate(struct lwp *);
236 STATIC void pmap_deactivate(struct lwp *);
237
238 STATIC void pmap_pinit(pmap_t pm);
239 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
240
241 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
242 STATIC void pmap_pte_print(volatile struct pte *);
243 STATIC void pmap_pteg_check(void);
244 STATIC void pmap_print_mmuregs(void);
245 STATIC void pmap_print_pte(pmap_t, vaddr_t);
246 STATIC void pmap_pteg_dist(void);
247 #endif
248 #if defined(DEBUG) || defined(PMAPCHECK)
249 STATIC void pmap_pvo_verify(void);
250 #endif
251 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
252 STATIC void pmap_bootstrap(paddr_t, paddr_t);
253
254 #ifdef PMAPNAME
255 const struct pmap_ops PMAPNAME(ops) = {
256 .pmapop_pte_spill = pmap_pte_spill,
257 .pmapop_real_memory = pmap_real_memory,
258 .pmapop_init = pmap_init,
259 .pmapop_virtual_space = pmap_virtual_space,
260 .pmapop_create = pmap_create,
261 .pmapop_reference = pmap_reference,
262 .pmapop_destroy = pmap_destroy,
263 .pmapop_copy = pmap_copy,
264 .pmapop_update = pmap_update,
265 .pmapop_collect = pmap_collect,
266 .pmapop_enter = pmap_enter,
267 .pmapop_remove = pmap_remove,
268 .pmapop_kenter_pa = pmap_kenter_pa,
269 .pmapop_kremove = pmap_kremove,
270 .pmapop_extract = pmap_extract,
271 .pmapop_protect = pmap_protect,
272 .pmapop_unwire = pmap_unwire,
273 .pmapop_page_protect = pmap_page_protect,
274 .pmapop_query_bit = pmap_query_bit,
275 .pmapop_clear_bit = pmap_clear_bit,
276 .pmapop_activate = pmap_activate,
277 .pmapop_deactivate = pmap_deactivate,
278 .pmapop_pinit = pmap_pinit,
279 .pmapop_procwr = pmap_procwr,
280 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
281 .pmapop_pte_print = pmap_pte_print,
282 .pmapop_pteg_check = pmap_pteg_check,
283 .pmapop_print_mmuregs = pmap_print_mmuregs,
284 .pmapop_print_pte = pmap_print_pte,
285 .pmapop_pteg_dist = pmap_pteg_dist,
286 #else
287 .pmapop_pte_print = NULL,
288 .pmapop_pteg_check = NULL,
289 .pmapop_print_mmuregs = NULL,
290 .pmapop_print_pte = NULL,
291 .pmapop_pteg_dist = NULL,
292 #endif
293 #if defined(DEBUG) || defined(PMAPCHECK)
294 .pmapop_pvo_verify = pmap_pvo_verify,
295 #else
296 .pmapop_pvo_verify = NULL,
297 #endif
298 .pmapop_steal_memory = pmap_steal_memory,
299 .pmapop_bootstrap = pmap_bootstrap,
300 };
301 #endif /* !PMAPNAME */
302
303 /*
304 * The following structure is aligned to 32 bytes
305 */
306 struct pvo_entry {
307 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
308 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
309 struct pte pvo_pte; /* Prebuilt PTE */
310 pmap_t pvo_pmap; /* ptr to owning pmap */
311 vaddr_t pvo_vaddr; /* VA of entry */
312 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
313 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
314 #define PVO_WIRED 0x0010 /* PVO entry is wired */
315 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
316 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
317 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
318 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
319 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
320 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
321 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
322 #define PVO_SPILL_SET 2 /* PVO has been spilled */
323 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
324 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
325 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
326 #define PVO_REMOVE 6 /* PVO has been removed */
327 #define PVO_WHERE_MASK 15
328 #define PVO_WHERE_SHFT 8
329 } __attribute__ ((aligned (32)));
330 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
331 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
332 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
333 #define PVO_PTEGIDX_CLR(pvo) \
334 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
335 #define PVO_PTEGIDX_SET(pvo,i) \
336 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
337 #define PVO_WHERE(pvo,w) \
338 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
339 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
340
341 TAILQ_HEAD(pvo_tqhead, pvo_entry);
342 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
343 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
344 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
345
346 struct pool pmap_pool; /* pool for pmap structures */
347 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
348 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
349
350 /*
351 * We keep a cache of unmanaged pages to be used for pvo entries for
352 * unmanaged pages.
353 */
354 struct pvo_page {
355 SIMPLEQ_ENTRY(pvo_page) pvop_link;
356 };
357 SIMPLEQ_HEAD(pvop_head, pvo_page);
358 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
359 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
360 u_long pmap_upvop_free;
361 u_long pmap_upvop_maxfree;
362 u_long pmap_mpvop_free;
363 u_long pmap_mpvop_maxfree;
364
365 static void *pmap_pool_ualloc(struct pool *, int);
366 static void *pmap_pool_malloc(struct pool *, int);
367
368 static void pmap_pool_ufree(struct pool *, void *);
369 static void pmap_pool_mfree(struct pool *, void *);
370
371 static struct pool_allocator pmap_pool_mallocator = {
372 .pa_alloc = pmap_pool_malloc,
373 .pa_free = pmap_pool_mfree,
374 .pa_pagesz = 0,
375 };
376
377 static struct pool_allocator pmap_pool_uallocator = {
378 .pa_alloc = pmap_pool_ualloc,
379 .pa_free = pmap_pool_ufree,
380 .pa_pagesz = 0,
381 };
382
383 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
384 void pmap_pte_print(volatile struct pte *);
385 void pmap_pteg_check(void);
386 void pmap_pteg_dist(void);
387 void pmap_print_pte(pmap_t, vaddr_t);
388 void pmap_print_mmuregs(void);
389 #endif
390
391 #if defined(DEBUG) || defined(PMAPCHECK)
392 #ifdef PMAPCHECK
393 int pmapcheck = 1;
394 #else
395 int pmapcheck = 0;
396 #endif
397 void pmap_pvo_verify(void);
398 static void pmap_pvo_check(const struct pvo_entry *);
399 #define PMAP_PVO_CHECK(pvo) \
400 do { \
401 if (pmapcheck) \
402 pmap_pvo_check(pvo); \
403 } while (0)
404 #else
405 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
406 #endif
407 static int pmap_pte_insert(int, struct pte *);
408 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
409 vaddr_t, paddr_t, register_t, int);
410 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
411 static void pmap_pvo_free(struct pvo_entry *);
412 static void pmap_pvo_free_list(struct pvo_head *);
413 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
414 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
415 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
416 static void pvo_set_exec(struct pvo_entry *);
417 static void pvo_clear_exec(struct pvo_entry *);
418
419 static void tlbia(void);
420
421 static void pmap_release(pmap_t);
422 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
423
424 static uint32_t pmap_pvo_reclaim_nextidx;
425 #ifdef DEBUG
426 static int pmap_pvo_reclaim_debugctr;
427 #endif
428
429 #define VSID_NBPW (sizeof(uint32_t) * 8)
430 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
431
432 static int pmap_initialized;
433
434 #if defined(DEBUG) || defined(PMAPDEBUG)
435 #define PMAPDEBUG_BOOT 0x0001
436 #define PMAPDEBUG_PTE 0x0002
437 #define PMAPDEBUG_EXEC 0x0008
438 #define PMAPDEBUG_PVOENTER 0x0010
439 #define PMAPDEBUG_PVOREMOVE 0x0020
440 #define PMAPDEBUG_ACTIVATE 0x0100
441 #define PMAPDEBUG_CREATE 0x0200
442 #define PMAPDEBUG_ENTER 0x1000
443 #define PMAPDEBUG_KENTER 0x2000
444 #define PMAPDEBUG_KREMOVE 0x4000
445 #define PMAPDEBUG_REMOVE 0x8000
446
447 unsigned int pmapdebug = 0;
448
449 # define DPRINTF(x) printf x
450 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
451 #else
452 # define DPRINTF(x)
453 # define DPRINTFN(n, x)
454 #endif
455
456
457 #ifdef PMAPCOUNTERS
458 /*
459 * From pmap_subr.c
460 */
461 extern struct evcnt pmap_evcnt_mappings;
462 extern struct evcnt pmap_evcnt_unmappings;
463
464 extern struct evcnt pmap_evcnt_kernel_mappings;
465 extern struct evcnt pmap_evcnt_kernel_unmappings;
466
467 extern struct evcnt pmap_evcnt_mappings_replaced;
468
469 extern struct evcnt pmap_evcnt_exec_mappings;
470 extern struct evcnt pmap_evcnt_exec_cached;
471
472 extern struct evcnt pmap_evcnt_exec_synced;
473 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
474 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
475
476 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
477 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
478 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
479 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
480 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
481
482 extern struct evcnt pmap_evcnt_updates;
483 extern struct evcnt pmap_evcnt_collects;
484 extern struct evcnt pmap_evcnt_copies;
485
486 extern struct evcnt pmap_evcnt_ptes_spilled;
487 extern struct evcnt pmap_evcnt_ptes_unspilled;
488 extern struct evcnt pmap_evcnt_ptes_evicted;
489
490 extern struct evcnt pmap_evcnt_ptes_primary[8];
491 extern struct evcnt pmap_evcnt_ptes_secondary[8];
492 extern struct evcnt pmap_evcnt_ptes_removed;
493 extern struct evcnt pmap_evcnt_ptes_changed;
494 extern struct evcnt pmap_evcnt_pvos_reclaimed;
495 extern struct evcnt pmap_evcnt_pvos_failed;
496
497 extern struct evcnt pmap_evcnt_zeroed_pages;
498 extern struct evcnt pmap_evcnt_copied_pages;
499 extern struct evcnt pmap_evcnt_idlezeroed_pages;
500
501 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
502 #define PMAPCOUNT2(ev) ((ev).ev_count++)
503 #else
504 #define PMAPCOUNT(ev) ((void) 0)
505 #define PMAPCOUNT2(ev) ((void) 0)
506 #endif
507
508 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
509
510 /* XXXSL: this needs to be moved to assembler */
511 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
512
513 #define TLBSYNC() __asm volatile("tlbsync")
514 #define SYNC() __asm volatile("sync")
515 #define EIEIO() __asm volatile("eieio")
516 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
517 #define MFMSR() mfmsr()
518 #define MTMSR(psl) mtmsr(psl)
519 #define MFPVR() mfpvr()
520 #define MFSRIN(va) mfsrin(va)
521 #define MFTB() mfrtcltbl()
522
523 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
524 static inline register_t
525 mfsrin(vaddr_t va)
526 {
527 register_t sr;
528 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
529 return sr;
530 }
531 #endif /* PMAP_OEA*/
532
533 #if defined (PMAP_OEA64_BRIDGE)
534 extern void mfmsr64 (register64_t *result);
535 #endif /* PMAP_OEA64_BRIDGE */
536
537 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
538 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
539
540 static inline register_t
541 pmap_interrupts_off(void)
542 {
543 register_t msr = MFMSR();
544 if (msr & PSL_EE)
545 MTMSR(msr & ~PSL_EE);
546 return msr;
547 }
548
549 static void
550 pmap_interrupts_restore(register_t msr)
551 {
552 if (msr & PSL_EE)
553 MTMSR(msr);
554 }
555
556 static inline u_int32_t
557 mfrtcltbl(void)
558 {
559 #ifdef PPC_OEA601
560 if ((MFPVR() >> 16) == MPC601)
561 return (mfrtcl() >> 7);
562 else
563 #endif
564 return (mftbl());
565 }
566
567 /*
568 * These small routines may have to be replaced,
569 * if/when we support processors other that the 604.
570 */
571
572 void
573 tlbia(void)
574 {
575 char *i;
576
577 SYNC();
578 #if defined(PMAP_OEA)
579 /*
580 * Why not use "tlbia"? Because not all processors implement it.
581 *
582 * This needs to be a per-CPU callback to do the appropriate thing
583 * for the CPU. XXX
584 */
585 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
586 TLBIE(i);
587 EIEIO();
588 SYNC();
589 }
590 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
591 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
592 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
593 TLBIEL(i);
594 EIEIO();
595 SYNC();
596 }
597 #endif
598 TLBSYNC();
599 SYNC();
600 }
601
602 static inline register_t
603 va_to_vsid(const struct pmap *pm, vaddr_t addr)
604 {
605 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
606 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
607 #else /* PMAP_OEA64 */
608 #if 0
609 const struct ste *ste;
610 register_t hash;
611 int i;
612
613 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
614
615 /*
616 * Try the primary group first
617 */
618 ste = pm->pm_stes[hash].stes;
619 for (i = 0; i < 8; i++, ste++) {
620 if (ste->ste_hi & STE_V) &&
621 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
622 return ste;
623 }
624
625 /*
626 * Then the secondary group.
627 */
628 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
629 for (i = 0; i < 8; i++, ste++) {
630 if (ste->ste_hi & STE_V) &&
631 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
632 return addr;
633 }
634
635 return NULL;
636 #else
637 /*
638 * Rather than searching the STE groups for the VSID, we know
639 * how we generate that from the ESID and so do that.
640 */
641 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
642 #endif
643 #endif /* PMAP_OEA */
644 }
645
646 static inline register_t
647 va_to_pteg(const struct pmap *pm, vaddr_t addr)
648 {
649 register_t hash;
650
651 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
652 return hash & pmap_pteg_mask;
653 }
654
655 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
656 /*
657 * Given a PTE in the page table, calculate the VADDR that hashes to it.
658 * The only bit of magic is that the top 4 bits of the address doesn't
659 * technically exist in the PTE. But we know we reserved 4 bits of the
660 * VSID for it so that's how we get it.
661 */
662 static vaddr_t
663 pmap_pte_to_va(volatile const struct pte *pt)
664 {
665 vaddr_t va;
666 uintptr_t ptaddr = (uintptr_t) pt;
667
668 if (pt->pte_hi & PTE_HID)
669 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
670
671 /* PPC Bits 10-19 PPC64 Bits 42-51 */
672 #if defined(PMAP_OEA)
673 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
674 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
675 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
676 #endif
677 va <<= ADDR_PIDX_SHFT;
678
679 /* PPC Bits 4-9 PPC64 Bits 36-41 */
680 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
681
682 #if defined(PMAP_OEA64)
683 /* PPC63 Bits 0-35 */
684 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
685 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
686 /* PPC Bits 0-3 */
687 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
688 #endif
689
690 return va;
691 }
692 #endif
693
694 static inline struct pvo_head *
695 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
696 {
697 struct vm_page *pg;
698
699 pg = PHYS_TO_VM_PAGE(pa);
700 if (pg_p != NULL)
701 *pg_p = pg;
702 if (pg == NULL)
703 return &pmap_pvo_unmanaged;
704 return &pg->mdpage.mdpg_pvoh;
705 }
706
707 static inline struct pvo_head *
708 vm_page_to_pvoh(struct vm_page *pg)
709 {
710 return &pg->mdpage.mdpg_pvoh;
711 }
712
713
714 static inline void
715 pmap_attr_clear(struct vm_page *pg, int ptebit)
716 {
717 pg->mdpage.mdpg_attrs &= ~ptebit;
718 }
719
720 static inline int
721 pmap_attr_fetch(struct vm_page *pg)
722 {
723 return pg->mdpage.mdpg_attrs;
724 }
725
726 static inline void
727 pmap_attr_save(struct vm_page *pg, int ptebit)
728 {
729 pg->mdpage.mdpg_attrs |= ptebit;
730 }
731
732 static inline int
733 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
734 {
735 if (pt->pte_hi == pvo_pt->pte_hi
736 #if 0
737 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
738 ~(PTE_REF|PTE_CHG)) == 0
739 #endif
740 )
741 return 1;
742 return 0;
743 }
744
745 static inline void
746 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
747 {
748 /*
749 * Construct the PTE. Default to IMB initially. Valid bit
750 * only gets set when the real pte is set in memory.
751 *
752 * Note: Don't set the valid bit for correct operation of tlb update.
753 */
754 #if defined(PMAP_OEA)
755 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
756 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
757 pt->pte_lo = pte_lo;
758 #elif defined (PMAP_OEA64_BRIDGE)
759 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
760 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
761 pt->pte_lo = (u_int64_t) pte_lo;
762 #elif defined (PMAP_OEA64)
763 #error PMAP_OEA64 not supported
764 #endif /* PMAP_OEA */
765 }
766
767 static inline void
768 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
769 {
770 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
771 }
772
773 static inline void
774 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
775 {
776 /*
777 * As shown in Section 7.6.3.2.3
778 */
779 pt->pte_lo &= ~ptebit;
780 TLBIE(va);
781 SYNC();
782 EIEIO();
783 TLBSYNC();
784 SYNC();
785 #ifdef MULTIPROCESSOR
786 DCBST(pt);
787 #endif
788 }
789
790 static inline void
791 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
792 {
793 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
794 if (pvo_pt->pte_hi & PTE_VALID)
795 panic("pte_set: setting an already valid pte %p", pvo_pt);
796 #endif
797 pvo_pt->pte_hi |= PTE_VALID;
798
799 /*
800 * Update the PTE as defined in section 7.6.3.1
801 * Note that the REF/CHG bits are from pvo_pt and thus should
802 * have been saved so this routine can restore them (if desired).
803 */
804 pt->pte_lo = pvo_pt->pte_lo;
805 EIEIO();
806 pt->pte_hi = pvo_pt->pte_hi;
807 TLBSYNC();
808 SYNC();
809 #ifdef MULTIPROCESSOR
810 DCBST(pt);
811 #endif
812 pmap_pte_valid++;
813 }
814
815 static inline void
816 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
817 {
818 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
819 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
820 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
821 if ((pt->pte_hi & PTE_VALID) == 0)
822 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
823 #endif
824
825 pvo_pt->pte_hi &= ~PTE_VALID;
826 /*
827 * Force the ref & chg bits back into the PTEs.
828 */
829 SYNC();
830 /*
831 * Invalidate the pte ... (Section 7.6.3.3)
832 */
833 pt->pte_hi &= ~PTE_VALID;
834 SYNC();
835 TLBIE(va);
836 SYNC();
837 EIEIO();
838 TLBSYNC();
839 SYNC();
840 /*
841 * Save the ref & chg bits ...
842 */
843 pmap_pte_synch(pt, pvo_pt);
844 pmap_pte_valid--;
845 }
846
847 static inline void
848 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
849 {
850 /*
851 * Invalidate the PTE
852 */
853 pmap_pte_unset(pt, pvo_pt, va);
854 pmap_pte_set(pt, pvo_pt);
855 }
856
857 /*
858 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
859 * (either primary or secondary location).
860 *
861 * Note: both the destination and source PTEs must not have PTE_VALID set.
862 */
863
864 static int
865 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
866 {
867 volatile struct pte *pt;
868 int i;
869
870 #if defined(DEBUG)
871 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
872 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
873 #endif
874 /*
875 * First try primary hash.
876 */
877 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
878 if ((pt->pte_hi & PTE_VALID) == 0) {
879 pvo_pt->pte_hi &= ~PTE_HID;
880 pmap_pte_set(pt, pvo_pt);
881 return i;
882 }
883 }
884
885 /*
886 * Now try secondary hash.
887 */
888 ptegidx ^= pmap_pteg_mask;
889 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
890 if ((pt->pte_hi & PTE_VALID) == 0) {
891 pvo_pt->pte_hi |= PTE_HID;
892 pmap_pte_set(pt, pvo_pt);
893 return i;
894 }
895 }
896 return -1;
897 }
898
899 /*
900 * Spill handler.
901 *
902 * Tries to spill a page table entry from the overflow area.
903 * This runs in either real mode (if dealing with a exception spill)
904 * or virtual mode when dealing with manually spilling one of the
905 * kernel's pte entries. In either case, interrupts are already
906 * disabled.
907 */
908
909 int
910 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
911 {
912 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
913 struct pvo_entry *pvo;
914 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
915 struct pvo_tqhead *pvoh, *vpvoh = NULL;
916 int ptegidx, i, j;
917 volatile struct pteg *pteg;
918 volatile struct pte *pt;
919
920 PMAP_LOCK();
921
922 ptegidx = va_to_pteg(pm, addr);
923
924 /*
925 * Have to substitute some entry. Use the primary hash for this.
926 * Use low bits of timebase as random generator. Make sure we are
927 * not picking a kernel pte for replacement.
928 */
929 pteg = &pmap_pteg_table[ptegidx];
930 i = MFTB() & 7;
931 for (j = 0; j < 8; j++) {
932 pt = &pteg->pt[i];
933 if ((pt->pte_hi & PTE_VALID) == 0)
934 break;
935 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
936 < PHYSMAP_VSIDBITS)
937 break;
938 i = (i + 1) & 7;
939 }
940 KASSERT(j < 8);
941
942 source_pvo = NULL;
943 victim_pvo = NULL;
944 pvoh = &pmap_pvo_table[ptegidx];
945 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
946
947 /*
948 * We need to find pvo entry for this address...
949 */
950 PMAP_PVO_CHECK(pvo); /* sanity check */
951
952 /*
953 * If we haven't found the source and we come to a PVO with
954 * a valid PTE, then we know we can't find it because all
955 * evicted PVOs always are first in the list.
956 */
957 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
958 break;
959 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
960 addr == PVO_VADDR(pvo)) {
961
962 /*
963 * Now we have found the entry to be spilled into the
964 * pteg. Attempt to insert it into the page table.
965 */
966 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
967 if (j >= 0) {
968 PVO_PTEGIDX_SET(pvo, j);
969 PMAP_PVO_CHECK(pvo); /* sanity check */
970 PVO_WHERE(pvo, SPILL_INSERT);
971 pvo->pvo_pmap->pm_evictions--;
972 PMAPCOUNT(ptes_spilled);
973 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
974 ? pmap_evcnt_ptes_secondary
975 : pmap_evcnt_ptes_primary)[j]);
976
977 /*
978 * Since we keep the evicted entries at the
979 * from of the PVO list, we need move this
980 * (now resident) PVO after the evicted
981 * entries.
982 */
983 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
984
985 /*
986 * If we don't have to move (either we were the
987 * last entry or the next entry was valid),
988 * don't change our position. Otherwise
989 * move ourselves to the tail of the queue.
990 */
991 if (next_pvo != NULL &&
992 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
993 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
994 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
995 }
996 PMAP_UNLOCK();
997 return 1;
998 }
999 source_pvo = pvo;
1000 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1001 return 0;
1002 }
1003 if (victim_pvo != NULL)
1004 break;
1005 }
1006
1007 /*
1008 * We also need the pvo entry of the victim we are replacing
1009 * so save the R & C bits of the PTE.
1010 */
1011 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1012 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1013 vpvoh = pvoh; /* *1* */
1014 victim_pvo = pvo;
1015 if (source_pvo != NULL)
1016 break;
1017 }
1018 }
1019
1020 if (source_pvo == NULL) {
1021 PMAPCOUNT(ptes_unspilled);
1022 PMAP_UNLOCK();
1023 return 0;
1024 }
1025
1026 if (victim_pvo == NULL) {
1027 if ((pt->pte_hi & PTE_HID) == 0)
1028 panic("pmap_pte_spill: victim p-pte (%p) has "
1029 "no pvo entry!", pt);
1030
1031 /*
1032 * If this is a secondary PTE, we need to search
1033 * its primary pvo bucket for the matching PVO.
1034 */
1035 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1036 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1037 PMAP_PVO_CHECK(pvo); /* sanity check */
1038
1039 /*
1040 * We also need the pvo entry of the victim we are
1041 * replacing so save the R & C bits of the PTE.
1042 */
1043 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1044 victim_pvo = pvo;
1045 break;
1046 }
1047 }
1048 if (victim_pvo == NULL)
1049 panic("pmap_pte_spill: victim s-pte (%p) has "
1050 "no pvo entry!", pt);
1051 }
1052
1053 /*
1054 * The victim should be not be a kernel PVO/PTE entry.
1055 */
1056 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1057 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1058 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1059
1060 /*
1061 * We are invalidating the TLB entry for the EA for the
1062 * we are replacing even though its valid; If we don't
1063 * we lose any ref/chg bit changes contained in the TLB
1064 * entry.
1065 */
1066 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1067
1068 /*
1069 * To enforce the PVO list ordering constraint that all
1070 * evicted entries should come before all valid entries,
1071 * move the source PVO to the tail of its list and the
1072 * victim PVO to the head of its list (which might not be
1073 * the same list, if the victim was using the secondary hash).
1074 */
1075 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1076 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1077 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1078 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1079 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1080 pmap_pte_set(pt, &source_pvo->pvo_pte);
1081 victim_pvo->pvo_pmap->pm_evictions++;
1082 source_pvo->pvo_pmap->pm_evictions--;
1083 PVO_WHERE(victim_pvo, SPILL_UNSET);
1084 PVO_WHERE(source_pvo, SPILL_SET);
1085
1086 PVO_PTEGIDX_CLR(victim_pvo);
1087 PVO_PTEGIDX_SET(source_pvo, i);
1088 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1089 PMAPCOUNT(ptes_spilled);
1090 PMAPCOUNT(ptes_evicted);
1091 PMAPCOUNT(ptes_removed);
1092
1093 PMAP_PVO_CHECK(victim_pvo);
1094 PMAP_PVO_CHECK(source_pvo);
1095
1096 PMAP_UNLOCK();
1097 return 1;
1098 }
1099
1100 /*
1101 * Restrict given range to physical memory
1102 */
1103 void
1104 pmap_real_memory(paddr_t *start, psize_t *size)
1105 {
1106 struct mem_region *mp;
1107
1108 for (mp = mem; mp->size; mp++) {
1109 if (*start + *size > mp->start
1110 && *start < mp->start + mp->size) {
1111 if (*start < mp->start) {
1112 *size -= mp->start - *start;
1113 *start = mp->start;
1114 }
1115 if (*start + *size > mp->start + mp->size)
1116 *size = mp->start + mp->size - *start;
1117 return;
1118 }
1119 }
1120 *size = 0;
1121 }
1122
1123 /*
1124 * Initialize anything else for pmap handling.
1125 * Called during vm_init().
1126 */
1127 void
1128 pmap_init(void)
1129 {
1130 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1131 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1132 &pmap_pool_mallocator, IPL_NONE);
1133
1134 pool_setlowat(&pmap_mpvo_pool, 1008);
1135
1136 pmap_initialized = 1;
1137
1138 }
1139
1140 /*
1141 * How much virtual space does the kernel get?
1142 */
1143 void
1144 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1145 {
1146 /*
1147 * For now, reserve one segment (minus some overhead) for kernel
1148 * virtual memory
1149 */
1150 *start = VM_MIN_KERNEL_ADDRESS;
1151 *end = VM_MAX_KERNEL_ADDRESS;
1152 }
1153
1154 /*
1155 * Allocate, initialize, and return a new physical map.
1156 */
1157 pmap_t
1158 pmap_create(void)
1159 {
1160 pmap_t pm;
1161
1162 pm = pool_get(&pmap_pool, PR_WAITOK);
1163 memset((void *)pm, 0, sizeof *pm);
1164 pmap_pinit(pm);
1165
1166 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1167 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1168 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1169 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1170 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1171 pm,
1172 pm->pm_sr[0], pm->pm_sr[1],
1173 pm->pm_sr[2], pm->pm_sr[3],
1174 pm->pm_sr[4], pm->pm_sr[5],
1175 pm->pm_sr[6], pm->pm_sr[7],
1176 pm->pm_sr[8], pm->pm_sr[9],
1177 pm->pm_sr[10], pm->pm_sr[11],
1178 pm->pm_sr[12], pm->pm_sr[13],
1179 pm->pm_sr[14], pm->pm_sr[15]));
1180 return pm;
1181 }
1182
1183 /*
1184 * Initialize a preallocated and zeroed pmap structure.
1185 */
1186 void
1187 pmap_pinit(pmap_t pm)
1188 {
1189 register_t entropy = MFTB();
1190 register_t mask;
1191 int i;
1192
1193 /*
1194 * Allocate some segment registers for this pmap.
1195 */
1196 pm->pm_refs = 1;
1197 PMAP_LOCK();
1198 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1199 static register_t pmap_vsidcontext;
1200 register_t hash;
1201 unsigned int n;
1202
1203 /* Create a new value by multiplying by a prime adding in
1204 * entropy from the timebase register. This is to make the
1205 * VSID more random so that the PT Hash function collides
1206 * less often. (note that the prime causes gcc to do shifts
1207 * instead of a multiply)
1208 */
1209 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1210 hash = pmap_vsidcontext & (NPMAPS - 1);
1211 if (hash == 0) { /* 0 is special, avoid it */
1212 entropy += 0xbadf00d;
1213 continue;
1214 }
1215 n = hash >> 5;
1216 mask = 1L << (hash & (VSID_NBPW-1));
1217 hash = pmap_vsidcontext;
1218 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1219 /* anything free in this bucket? */
1220 if (~pmap_vsid_bitmap[n] == 0) {
1221 entropy = hash ^ (hash >> 16);
1222 continue;
1223 }
1224 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1225 mask = 1L << i;
1226 hash &= ~(VSID_NBPW-1);
1227 hash |= i;
1228 }
1229 hash &= PTE_VSID >> PTE_VSID_SHFT;
1230 pmap_vsid_bitmap[n] |= mask;
1231 pm->pm_vsid = hash;
1232 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1233 for (i = 0; i < 16; i++)
1234 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1235 SR_NOEXEC;
1236 #endif
1237 PMAP_UNLOCK();
1238 return;
1239 }
1240 PMAP_UNLOCK();
1241 panic("pmap_pinit: out of segments");
1242 }
1243
1244 /*
1245 * Add a reference to the given pmap.
1246 */
1247 void
1248 pmap_reference(pmap_t pm)
1249 {
1250 atomic_inc_uint(&pm->pm_refs);
1251 }
1252
1253 /*
1254 * Retire the given pmap from service.
1255 * Should only be called if the map contains no valid mappings.
1256 */
1257 void
1258 pmap_destroy(pmap_t pm)
1259 {
1260 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1261 pmap_release(pm);
1262 pool_put(&pmap_pool, pm);
1263 }
1264 }
1265
1266 /*
1267 * Release any resources held by the given physical map.
1268 * Called when a pmap initialized by pmap_pinit is being released.
1269 */
1270 void
1271 pmap_release(pmap_t pm)
1272 {
1273 int idx, mask;
1274
1275 KASSERT(pm->pm_stats.resident_count == 0);
1276 KASSERT(pm->pm_stats.wired_count == 0);
1277
1278 PMAP_LOCK();
1279 if (pm->pm_sr[0] == 0)
1280 panic("pmap_release");
1281 idx = pm->pm_vsid & (NPMAPS-1);
1282 mask = 1 << (idx % VSID_NBPW);
1283 idx /= VSID_NBPW;
1284
1285 KASSERT(pmap_vsid_bitmap[idx] & mask);
1286 pmap_vsid_bitmap[idx] &= ~mask;
1287 PMAP_UNLOCK();
1288 }
1289
1290 /*
1291 * Copy the range specified by src_addr/len
1292 * from the source map to the range dst_addr/len
1293 * in the destination map.
1294 *
1295 * This routine is only advisory and need not do anything.
1296 */
1297 void
1298 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1299 vsize_t len, vaddr_t src_addr)
1300 {
1301 PMAPCOUNT(copies);
1302 }
1303
1304 /*
1305 * Require that all active physical maps contain no
1306 * incorrect entries NOW.
1307 */
1308 void
1309 pmap_update(struct pmap *pmap)
1310 {
1311 PMAPCOUNT(updates);
1312 TLBSYNC();
1313 }
1314
1315 /*
1316 * Garbage collects the physical map system for
1317 * pages which are no longer used.
1318 * Success need not be guaranteed -- that is, there
1319 * may well be pages which are not referenced, but
1320 * others may be collected.
1321 * Called by the pageout daemon when pages are scarce.
1322 */
1323 void
1324 pmap_collect(pmap_t pm)
1325 {
1326 PMAPCOUNT(collects);
1327 }
1328
1329 static inline int
1330 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1331 {
1332 int pteidx;
1333 /*
1334 * We can find the actual pte entry without searching by
1335 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1336 * and by noticing the HID bit.
1337 */
1338 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1339 if (pvo->pvo_pte.pte_hi & PTE_HID)
1340 pteidx ^= pmap_pteg_mask * 8;
1341 return pteidx;
1342 }
1343
1344 volatile struct pte *
1345 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1346 {
1347 volatile struct pte *pt;
1348
1349 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1350 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1351 return NULL;
1352 #endif
1353
1354 /*
1355 * If we haven't been supplied the ptegidx, calculate it.
1356 */
1357 if (pteidx == -1) {
1358 int ptegidx;
1359 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1360 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1361 }
1362
1363 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1364
1365 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1366 return pt;
1367 #else
1368 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1369 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1370 "pvo but no valid pte index", pvo);
1371 }
1372 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1373 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1374 "pvo but no valid pte", pvo);
1375 }
1376
1377 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1378 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1379 #if defined(DEBUG) || defined(PMAPCHECK)
1380 pmap_pte_print(pt);
1381 #endif
1382 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1383 "pmap_pteg_table %p but invalid in pvo",
1384 pvo, pt);
1385 }
1386 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1387 #if defined(DEBUG) || defined(PMAPCHECK)
1388 pmap_pte_print(pt);
1389 #endif
1390 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1391 "not match pte %p in pmap_pteg_table",
1392 pvo, pt);
1393 }
1394 return pt;
1395 }
1396
1397 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1398 #if defined(DEBUG) || defined(PMAPCHECK)
1399 pmap_pte_print(pt);
1400 #endif
1401 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1402 "pmap_pteg_table but valid in pvo", pvo, pt);
1403 }
1404 return NULL;
1405 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1406 }
1407
1408 struct pvo_entry *
1409 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1410 {
1411 struct pvo_entry *pvo;
1412 int ptegidx;
1413
1414 va &= ~ADDR_POFF;
1415 ptegidx = va_to_pteg(pm, va);
1416
1417 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1418 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1419 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1420 panic("pmap_pvo_find_va: invalid pvo %p on "
1421 "list %#x (%p)", pvo, ptegidx,
1422 &pmap_pvo_table[ptegidx]);
1423 #endif
1424 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1425 if (pteidx_p)
1426 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1427 return pvo;
1428 }
1429 }
1430 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1431 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1432 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1433 return NULL;
1434 }
1435
1436 #if defined(DEBUG) || defined(PMAPCHECK)
1437 void
1438 pmap_pvo_check(const struct pvo_entry *pvo)
1439 {
1440 struct pvo_head *pvo_head;
1441 struct pvo_entry *pvo0;
1442 volatile struct pte *pt;
1443 int failed = 0;
1444
1445 PMAP_LOCK();
1446
1447 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1448 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1449
1450 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1451 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1452 pvo, pvo->pvo_pmap);
1453 failed = 1;
1454 }
1455
1456 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1457 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1458 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1459 pvo, TAILQ_NEXT(pvo, pvo_olink));
1460 failed = 1;
1461 }
1462
1463 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1464 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1465 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1466 pvo, LIST_NEXT(pvo, pvo_vlink));
1467 failed = 1;
1468 }
1469
1470 if (PVO_MANAGED_P(pvo)) {
1471 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1472 } else {
1473 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1474 printf("pmap_pvo_check: pvo %p: non kernel address "
1475 "on kernel unmanaged list\n", pvo);
1476 failed = 1;
1477 }
1478 pvo_head = &pmap_pvo_kunmanaged;
1479 }
1480 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1481 if (pvo0 == pvo)
1482 break;
1483 }
1484 if (pvo0 == NULL) {
1485 printf("pmap_pvo_check: pvo %p: not present "
1486 "on its vlist head %p\n", pvo, pvo_head);
1487 failed = 1;
1488 }
1489 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1490 printf("pmap_pvo_check: pvo %p: not present "
1491 "on its olist head\n", pvo);
1492 failed = 1;
1493 }
1494 pt = pmap_pvo_to_pte(pvo, -1);
1495 if (pt == NULL) {
1496 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1497 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1498 "no PTE\n", pvo);
1499 failed = 1;
1500 }
1501 } else {
1502 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1503 (uintptr_t) pt >=
1504 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1505 printf("pmap_pvo_check: pvo %p: pte %p not in "
1506 "pteg table\n", pvo, pt);
1507 failed = 1;
1508 }
1509 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1510 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1511 "no PTE\n", pvo);
1512 failed = 1;
1513 }
1514 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1515 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1516 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1517 pvo->pvo_pte.pte_hi,
1518 pt->pte_hi);
1519 failed = 1;
1520 }
1521 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1522 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1523 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1524 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1525 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1526 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1527 failed = 1;
1528 }
1529 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1530 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1531 " doesn't not match PVO's VA %#" _PRIxva "\n",
1532 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1533 failed = 1;
1534 }
1535 if (failed)
1536 pmap_pte_print(pt);
1537 }
1538 if (failed)
1539 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1540 pvo->pvo_pmap);
1541
1542 PMAP_UNLOCK();
1543 }
1544 #endif /* DEBUG || PMAPCHECK */
1545
1546 /*
1547 * Search the PVO table looking for a non-wired entry.
1548 * If we find one, remove it and return it.
1549 */
1550
1551 struct pvo_entry *
1552 pmap_pvo_reclaim(struct pmap *pm)
1553 {
1554 struct pvo_tqhead *pvoh;
1555 struct pvo_entry *pvo;
1556 uint32_t idx, endidx;
1557
1558 endidx = pmap_pvo_reclaim_nextidx;
1559 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1560 idx = (idx + 1) & pmap_pteg_mask) {
1561 pvoh = &pmap_pvo_table[idx];
1562 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1563 if (!PVO_WIRED_P(pvo)) {
1564 pmap_pvo_remove(pvo, -1, NULL);
1565 pmap_pvo_reclaim_nextidx = idx;
1566 PMAPCOUNT(pvos_reclaimed);
1567 return pvo;
1568 }
1569 }
1570 }
1571 return NULL;
1572 }
1573
1574 /*
1575 * This returns whether this is the first mapping of a page.
1576 */
1577 int
1578 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1579 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1580 {
1581 struct pvo_entry *pvo;
1582 struct pvo_tqhead *pvoh;
1583 register_t msr;
1584 int ptegidx;
1585 int i;
1586 int poolflags = PR_NOWAIT;
1587
1588 /*
1589 * Compute the PTE Group index.
1590 */
1591 va &= ~ADDR_POFF;
1592 ptegidx = va_to_pteg(pm, va);
1593
1594 msr = pmap_interrupts_off();
1595
1596 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1597 if (pmap_pvo_remove_depth > 0)
1598 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1599 if (++pmap_pvo_enter_depth > 1)
1600 panic("pmap_pvo_enter: called recursively!");
1601 #endif
1602
1603 /*
1604 * Remove any existing mapping for this page. Reuse the
1605 * pvo entry if there a mapping.
1606 */
1607 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1608 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1609 #ifdef DEBUG
1610 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1611 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1612 ~(PTE_REF|PTE_CHG)) == 0 &&
1613 va < VM_MIN_KERNEL_ADDRESS) {
1614 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1615 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1616 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1617 pvo->pvo_pte.pte_hi,
1618 pm->pm_sr[va >> ADDR_SR_SHFT]);
1619 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1620 #ifdef DDBX
1621 Debugger();
1622 #endif
1623 }
1624 #endif
1625 PMAPCOUNT(mappings_replaced);
1626 pmap_pvo_remove(pvo, -1, NULL);
1627 break;
1628 }
1629 }
1630
1631 /*
1632 * If we aren't overwriting an mapping, try to allocate
1633 */
1634 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1635 --pmap_pvo_enter_depth;
1636 #endif
1637 pmap_interrupts_restore(msr);
1638 if (pvo) {
1639 pmap_pvo_free(pvo);
1640 }
1641 pvo = pool_get(pl, poolflags);
1642
1643 #ifdef DEBUG
1644 /*
1645 * Exercise pmap_pvo_reclaim() a little.
1646 */
1647 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1648 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1649 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1650 pool_put(pl, pvo);
1651 pvo = NULL;
1652 }
1653 #endif
1654
1655 msr = pmap_interrupts_off();
1656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1657 ++pmap_pvo_enter_depth;
1658 #endif
1659 if (pvo == NULL) {
1660 pvo = pmap_pvo_reclaim(pm);
1661 if (pvo == NULL) {
1662 if ((flags & PMAP_CANFAIL) == 0)
1663 panic("pmap_pvo_enter: failed");
1664 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1665 pmap_pvo_enter_depth--;
1666 #endif
1667 PMAPCOUNT(pvos_failed);
1668 pmap_interrupts_restore(msr);
1669 return ENOMEM;
1670 }
1671 }
1672
1673 pvo->pvo_vaddr = va;
1674 pvo->pvo_pmap = pm;
1675 pvo->pvo_vaddr &= ~ADDR_POFF;
1676 if (flags & VM_PROT_EXECUTE) {
1677 PMAPCOUNT(exec_mappings);
1678 pvo_set_exec(pvo);
1679 }
1680 if (flags & PMAP_WIRED)
1681 pvo->pvo_vaddr |= PVO_WIRED;
1682 if (pvo_head != &pmap_pvo_kunmanaged) {
1683 pvo->pvo_vaddr |= PVO_MANAGED;
1684 PMAPCOUNT(mappings);
1685 } else {
1686 PMAPCOUNT(kernel_mappings);
1687 }
1688 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1689
1690 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1691 if (PVO_WIRED_P(pvo))
1692 pvo->pvo_pmap->pm_stats.wired_count++;
1693 pvo->pvo_pmap->pm_stats.resident_count++;
1694 #if defined(DEBUG)
1695 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1696 DPRINTFN(PVOENTER,
1697 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1698 pvo, pm, va, pa));
1699 #endif
1700
1701 /*
1702 * We hope this succeeds but it isn't required.
1703 */
1704 pvoh = &pmap_pvo_table[ptegidx];
1705 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1706 if (i >= 0) {
1707 PVO_PTEGIDX_SET(pvo, i);
1708 PVO_WHERE(pvo, ENTER_INSERT);
1709 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1710 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1711 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1712
1713 } else {
1714 /*
1715 * Since we didn't have room for this entry (which makes it
1716 * and evicted entry), place it at the head of the list.
1717 */
1718 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1719 PMAPCOUNT(ptes_evicted);
1720 pm->pm_evictions++;
1721 /*
1722 * If this is a kernel page, make sure it's active.
1723 */
1724 if (pm == pmap_kernel()) {
1725 i = pmap_pte_spill(pm, va, false);
1726 KASSERT(i);
1727 }
1728 }
1729 PMAP_PVO_CHECK(pvo); /* sanity check */
1730 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1731 pmap_pvo_enter_depth--;
1732 #endif
1733 pmap_interrupts_restore(msr);
1734 return 0;
1735 }
1736
1737 static void
1738 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1739 {
1740 volatile struct pte *pt;
1741 int ptegidx;
1742
1743 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1744 if (++pmap_pvo_remove_depth > 1)
1745 panic("pmap_pvo_remove: called recursively!");
1746 #endif
1747
1748 /*
1749 * If we haven't been supplied the ptegidx, calculate it.
1750 */
1751 if (pteidx == -1) {
1752 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1753 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1754 } else {
1755 ptegidx = pteidx >> 3;
1756 if (pvo->pvo_pte.pte_hi & PTE_HID)
1757 ptegidx ^= pmap_pteg_mask;
1758 }
1759 PMAP_PVO_CHECK(pvo); /* sanity check */
1760
1761 /*
1762 * If there is an active pte entry, we need to deactivate it
1763 * (and save the ref & chg bits).
1764 */
1765 pt = pmap_pvo_to_pte(pvo, pteidx);
1766 if (pt != NULL) {
1767 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1768 PVO_WHERE(pvo, REMOVE);
1769 PVO_PTEGIDX_CLR(pvo);
1770 PMAPCOUNT(ptes_removed);
1771 } else {
1772 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1773 pvo->pvo_pmap->pm_evictions--;
1774 }
1775
1776 /*
1777 * Account for executable mappings.
1778 */
1779 if (PVO_EXECUTABLE_P(pvo))
1780 pvo_clear_exec(pvo);
1781
1782 /*
1783 * Update our statistics.
1784 */
1785 pvo->pvo_pmap->pm_stats.resident_count--;
1786 if (PVO_WIRED_P(pvo))
1787 pvo->pvo_pmap->pm_stats.wired_count--;
1788
1789 /*
1790 * Save the REF/CHG bits into their cache if the page is managed.
1791 */
1792 if (PVO_MANAGED_P(pvo)) {
1793 register_t ptelo = pvo->pvo_pte.pte_lo;
1794 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1795
1796 if (pg != NULL) {
1797 /*
1798 * If this page was changed and it is mapped exec,
1799 * invalidate it.
1800 */
1801 if ((ptelo & PTE_CHG) &&
1802 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1803 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1804 if (LIST_EMPTY(pvoh)) {
1805 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1806 "%#" _PRIxpa ": clear-exec]\n",
1807 VM_PAGE_TO_PHYS(pg)));
1808 pmap_attr_clear(pg, PTE_EXEC);
1809 PMAPCOUNT(exec_uncached_pvo_remove);
1810 } else {
1811 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1812 "%#" _PRIxpa ": syncicache]\n",
1813 VM_PAGE_TO_PHYS(pg)));
1814 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1815 PAGE_SIZE);
1816 PMAPCOUNT(exec_synced_pvo_remove);
1817 }
1818 }
1819
1820 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1821 }
1822 PMAPCOUNT(unmappings);
1823 } else {
1824 PMAPCOUNT(kernel_unmappings);
1825 }
1826
1827 /*
1828 * Remove the PVO from its lists and return it to the pool.
1829 */
1830 LIST_REMOVE(pvo, pvo_vlink);
1831 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1832 if (pvol) {
1833 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1834 }
1835 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1836 pmap_pvo_remove_depth--;
1837 #endif
1838 }
1839
1840 void
1841 pmap_pvo_free(struct pvo_entry *pvo)
1842 {
1843
1844 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1845 }
1846
1847 void
1848 pmap_pvo_free_list(struct pvo_head *pvol)
1849 {
1850 struct pvo_entry *pvo, *npvo;
1851
1852 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1853 npvo = LIST_NEXT(pvo, pvo_vlink);
1854 LIST_REMOVE(pvo, pvo_vlink);
1855 pmap_pvo_free(pvo);
1856 }
1857 }
1858
1859 /*
1860 * Mark a mapping as executable.
1861 * If this is the first executable mapping in the segment,
1862 * clear the noexec flag.
1863 */
1864 static void
1865 pvo_set_exec(struct pvo_entry *pvo)
1866 {
1867 struct pmap *pm = pvo->pvo_pmap;
1868
1869 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1870 return;
1871 }
1872 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1873 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1874 {
1875 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1876 if (pm->pm_exec[sr]++ == 0) {
1877 pm->pm_sr[sr] &= ~SR_NOEXEC;
1878 }
1879 }
1880 #endif
1881 }
1882
1883 /*
1884 * Mark a mapping as non-executable.
1885 * If this was the last executable mapping in the segment,
1886 * set the noexec flag.
1887 */
1888 static void
1889 pvo_clear_exec(struct pvo_entry *pvo)
1890 {
1891 struct pmap *pm = pvo->pvo_pmap;
1892
1893 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1894 return;
1895 }
1896 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1897 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1898 {
1899 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1900 if (--pm->pm_exec[sr] == 0) {
1901 pm->pm_sr[sr] |= SR_NOEXEC;
1902 }
1903 }
1904 #endif
1905 }
1906
1907 /*
1908 * Insert physical page at pa into the given pmap at virtual address va.
1909 */
1910 int
1911 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1912 {
1913 struct mem_region *mp;
1914 struct pvo_head *pvo_head;
1915 struct vm_page *pg;
1916 struct pool *pl;
1917 register_t pte_lo;
1918 int error;
1919 u_int pvo_flags;
1920 u_int was_exec = 0;
1921
1922 PMAP_LOCK();
1923
1924 if (__predict_false(!pmap_initialized)) {
1925 pvo_head = &pmap_pvo_kunmanaged;
1926 pl = &pmap_upvo_pool;
1927 pvo_flags = 0;
1928 pg = NULL;
1929 was_exec = PTE_EXEC;
1930 } else {
1931 pvo_head = pa_to_pvoh(pa, &pg);
1932 pl = &pmap_mpvo_pool;
1933 pvo_flags = PVO_MANAGED;
1934 }
1935
1936 DPRINTFN(ENTER,
1937 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1938 pm, va, pa, prot, flags));
1939
1940 /*
1941 * If this is a managed page, and it's the first reference to the
1942 * page clear the execness of the page. Otherwise fetch the execness.
1943 */
1944 if (pg != NULL)
1945 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1946
1947 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1948
1949 /*
1950 * Assume the page is cache inhibited and access is guarded unless
1951 * it's in our available memory array. If it is in the memory array,
1952 * asssume it's in memory coherent memory.
1953 */
1954 pte_lo = PTE_IG;
1955 if ((flags & PMAP_NOCACHE) == 0) {
1956 for (mp = mem; mp->size; mp++) {
1957 if (pa >= mp->start && pa < mp->start + mp->size) {
1958 pte_lo = PTE_M;
1959 break;
1960 }
1961 }
1962 }
1963
1964 if (prot & VM_PROT_WRITE)
1965 pte_lo |= PTE_BW;
1966 else
1967 pte_lo |= PTE_BR;
1968
1969 /*
1970 * If this was in response to a fault, "pre-fault" the PTE's
1971 * changed/referenced bit appropriately.
1972 */
1973 if (flags & VM_PROT_WRITE)
1974 pte_lo |= PTE_CHG;
1975 if (flags & VM_PROT_ALL)
1976 pte_lo |= PTE_REF;
1977
1978 /*
1979 * We need to know if this page can be executable
1980 */
1981 flags |= (prot & VM_PROT_EXECUTE);
1982
1983 /*
1984 * Record mapping for later back-translation and pte spilling.
1985 * This will overwrite any existing mapping.
1986 */
1987 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1988
1989 /*
1990 * Flush the real page from the instruction cache if this page is
1991 * mapped executable and cacheable and has not been flushed since
1992 * the last time it was modified.
1993 */
1994 if (error == 0 &&
1995 (flags & VM_PROT_EXECUTE) &&
1996 (pte_lo & PTE_I) == 0 &&
1997 was_exec == 0) {
1998 DPRINTFN(ENTER, (" syncicache"));
1999 PMAPCOUNT(exec_synced);
2000 pmap_syncicache(pa, PAGE_SIZE);
2001 if (pg != NULL) {
2002 pmap_attr_save(pg, PTE_EXEC);
2003 PMAPCOUNT(exec_cached);
2004 #if defined(DEBUG) || defined(PMAPDEBUG)
2005 if (pmapdebug & PMAPDEBUG_ENTER)
2006 printf(" marked-as-exec");
2007 else if (pmapdebug & PMAPDEBUG_EXEC)
2008 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2009 VM_PAGE_TO_PHYS(pg));
2010
2011 #endif
2012 }
2013 }
2014
2015 DPRINTFN(ENTER, (": error=%d\n", error));
2016
2017 PMAP_UNLOCK();
2018
2019 return error;
2020 }
2021
2022 void
2023 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2024 {
2025 struct mem_region *mp;
2026 register_t pte_lo;
2027 int error;
2028
2029 #if defined (PMAP_OEA64_BRIDGE)
2030 if (va < VM_MIN_KERNEL_ADDRESS)
2031 panic("pmap_kenter_pa: attempt to enter "
2032 "non-kernel address %#" _PRIxva "!", va);
2033 #endif
2034
2035 DPRINTFN(KENTER,
2036 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2037
2038 PMAP_LOCK();
2039
2040 /*
2041 * Assume the page is cache inhibited and access is guarded unless
2042 * it's in our available memory array. If it is in the memory array,
2043 * asssume it's in memory coherent memory.
2044 */
2045 pte_lo = PTE_IG;
2046 if ((prot & PMAP_NOCACHE) == 0) {
2047 for (mp = mem; mp->size; mp++) {
2048 if (pa >= mp->start && pa < mp->start + mp->size) {
2049 pte_lo = PTE_M;
2050 break;
2051 }
2052 }
2053 }
2054
2055 if (prot & VM_PROT_WRITE)
2056 pte_lo |= PTE_BW;
2057 else
2058 pte_lo |= PTE_BR;
2059
2060 /*
2061 * We don't care about REF/CHG on PVOs on the unmanaged list.
2062 */
2063 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2064 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2065
2066 if (error != 0)
2067 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2068 va, pa, error);
2069
2070 PMAP_UNLOCK();
2071 }
2072
2073 void
2074 pmap_kremove(vaddr_t va, vsize_t len)
2075 {
2076 if (va < VM_MIN_KERNEL_ADDRESS)
2077 panic("pmap_kremove: attempt to remove "
2078 "non-kernel address %#" _PRIxva "!", va);
2079
2080 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2081 pmap_remove(pmap_kernel(), va, va + len);
2082 }
2083
2084 /*
2085 * Remove the given range of mapping entries.
2086 */
2087 void
2088 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2089 {
2090 struct pvo_head pvol;
2091 struct pvo_entry *pvo;
2092 register_t msr;
2093 int pteidx;
2094
2095 PMAP_LOCK();
2096 LIST_INIT(&pvol);
2097 msr = pmap_interrupts_off();
2098 for (; va < endva; va += PAGE_SIZE) {
2099 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2100 if (pvo != NULL) {
2101 pmap_pvo_remove(pvo, pteidx, &pvol);
2102 }
2103 }
2104 pmap_interrupts_restore(msr);
2105 pmap_pvo_free_list(&pvol);
2106 PMAP_UNLOCK();
2107 }
2108
2109 /*
2110 * Get the physical page address for the given pmap/virtual address.
2111 */
2112 bool
2113 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2114 {
2115 struct pvo_entry *pvo;
2116 register_t msr;
2117
2118 PMAP_LOCK();
2119
2120 /*
2121 * If this is a kernel pmap lookup, also check the battable
2122 * and if we get a hit, translate the VA to a PA using the
2123 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2124 * that will wrap back to 0.
2125 */
2126 if (pm == pmap_kernel() &&
2127 (va < VM_MIN_KERNEL_ADDRESS ||
2128 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2129 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2130 #if defined (PMAP_OEA)
2131 #ifdef PPC_OEA601
2132 if ((MFPVR() >> 16) == MPC601) {
2133 register_t batu = battable[va >> 23].batu;
2134 register_t batl = battable[va >> 23].batl;
2135 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2136 if (BAT601_VALID_P(batl) &&
2137 BAT601_VA_MATCH_P(batu, batl, va)) {
2138 register_t mask =
2139 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2140 if (pap)
2141 *pap = (batl & mask) | (va & ~mask);
2142 PMAP_UNLOCK();
2143 return true;
2144 } else if (SR601_VALID_P(sr) &&
2145 SR601_PA_MATCH_P(sr, va)) {
2146 if (pap)
2147 *pap = va;
2148 PMAP_UNLOCK();
2149 return true;
2150 }
2151 } else
2152 #endif /* PPC_OEA601 */
2153 {
2154 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2155 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2156 register_t batl =
2157 battable[va >> ADDR_SR_SHFT].batl;
2158 register_t mask =
2159 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2160 if (pap)
2161 *pap = (batl & mask) | (va & ~mask);
2162 PMAP_UNLOCK();
2163 return true;
2164 }
2165 }
2166 return false;
2167 #elif defined (PMAP_OEA64_BRIDGE)
2168 if (va >= SEGMENT_LENGTH)
2169 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2170 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2171 else {
2172 if (pap)
2173 *pap = va;
2174 PMAP_UNLOCK();
2175 return true;
2176 }
2177 #elif defined (PMAP_OEA64)
2178 #error PPC_OEA64 not supported
2179 #endif /* PPC_OEA */
2180 }
2181
2182 msr = pmap_interrupts_off();
2183 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2184 if (pvo != NULL) {
2185 PMAP_PVO_CHECK(pvo); /* sanity check */
2186 if (pap)
2187 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2188 | (va & ADDR_POFF);
2189 }
2190 pmap_interrupts_restore(msr);
2191 PMAP_UNLOCK();
2192 return pvo != NULL;
2193 }
2194
2195 /*
2196 * Lower the protection on the specified range of this pmap.
2197 */
2198 void
2199 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2200 {
2201 struct pvo_entry *pvo;
2202 volatile struct pte *pt;
2203 register_t msr;
2204 int pteidx;
2205
2206 /*
2207 * Since this routine only downgrades protection, we should
2208 * always be called with at least one bit not set.
2209 */
2210 KASSERT(prot != VM_PROT_ALL);
2211
2212 /*
2213 * If there is no protection, this is equivalent to
2214 * remove the pmap from the pmap.
2215 */
2216 if ((prot & VM_PROT_READ) == 0) {
2217 pmap_remove(pm, va, endva);
2218 return;
2219 }
2220
2221 PMAP_LOCK();
2222
2223 msr = pmap_interrupts_off();
2224 for (; va < endva; va += PAGE_SIZE) {
2225 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2226 if (pvo == NULL)
2227 continue;
2228 PMAP_PVO_CHECK(pvo); /* sanity check */
2229
2230 /*
2231 * Revoke executable if asked to do so.
2232 */
2233 if ((prot & VM_PROT_EXECUTE) == 0)
2234 pvo_clear_exec(pvo);
2235
2236 #if 0
2237 /*
2238 * If the page is already read-only, no change
2239 * needs to be made.
2240 */
2241 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2242 continue;
2243 #endif
2244 /*
2245 * Grab the PTE pointer before we diddle with
2246 * the cached PTE copy.
2247 */
2248 pt = pmap_pvo_to_pte(pvo, pteidx);
2249 /*
2250 * Change the protection of the page.
2251 */
2252 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2253 pvo->pvo_pte.pte_lo |= PTE_BR;
2254
2255 /*
2256 * If the PVO is in the page table, update
2257 * that pte at well.
2258 */
2259 if (pt != NULL) {
2260 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2261 PVO_WHERE(pvo, PMAP_PROTECT);
2262 PMAPCOUNT(ptes_changed);
2263 }
2264
2265 PMAP_PVO_CHECK(pvo); /* sanity check */
2266 }
2267 pmap_interrupts_restore(msr);
2268 PMAP_UNLOCK();
2269 }
2270
2271 void
2272 pmap_unwire(pmap_t pm, vaddr_t va)
2273 {
2274 struct pvo_entry *pvo;
2275 register_t msr;
2276
2277 PMAP_LOCK();
2278 msr = pmap_interrupts_off();
2279 pvo = pmap_pvo_find_va(pm, va, NULL);
2280 if (pvo != NULL) {
2281 if (PVO_WIRED_P(pvo)) {
2282 pvo->pvo_vaddr &= ~PVO_WIRED;
2283 pm->pm_stats.wired_count--;
2284 }
2285 PMAP_PVO_CHECK(pvo); /* sanity check */
2286 }
2287 pmap_interrupts_restore(msr);
2288 PMAP_UNLOCK();
2289 }
2290
2291 /*
2292 * Lower the protection on the specified physical page.
2293 */
2294 void
2295 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2296 {
2297 struct pvo_head *pvo_head, pvol;
2298 struct pvo_entry *pvo, *next_pvo;
2299 volatile struct pte *pt;
2300 register_t msr;
2301
2302 PMAP_LOCK();
2303
2304 KASSERT(prot != VM_PROT_ALL);
2305 LIST_INIT(&pvol);
2306 msr = pmap_interrupts_off();
2307
2308 /*
2309 * When UVM reuses a page, it does a pmap_page_protect with
2310 * VM_PROT_NONE. At that point, we can clear the exec flag
2311 * since we know the page will have different contents.
2312 */
2313 if ((prot & VM_PROT_READ) == 0) {
2314 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2315 VM_PAGE_TO_PHYS(pg)));
2316 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2317 PMAPCOUNT(exec_uncached_page_protect);
2318 pmap_attr_clear(pg, PTE_EXEC);
2319 }
2320 }
2321
2322 pvo_head = vm_page_to_pvoh(pg);
2323 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2324 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2325 PMAP_PVO_CHECK(pvo); /* sanity check */
2326
2327 /*
2328 * Downgrading to no mapping at all, we just remove the entry.
2329 */
2330 if ((prot & VM_PROT_READ) == 0) {
2331 pmap_pvo_remove(pvo, -1, &pvol);
2332 continue;
2333 }
2334
2335 /*
2336 * If EXEC permission is being revoked, just clear the
2337 * flag in the PVO.
2338 */
2339 if ((prot & VM_PROT_EXECUTE) == 0)
2340 pvo_clear_exec(pvo);
2341
2342 /*
2343 * If this entry is already RO, don't diddle with the
2344 * page table.
2345 */
2346 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2347 PMAP_PVO_CHECK(pvo);
2348 continue;
2349 }
2350
2351 /*
2352 * Grab the PTE before the we diddle the bits so
2353 * pvo_to_pte can verify the pte contents are as
2354 * expected.
2355 */
2356 pt = pmap_pvo_to_pte(pvo, -1);
2357 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2358 pvo->pvo_pte.pte_lo |= PTE_BR;
2359 if (pt != NULL) {
2360 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2361 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2362 PMAPCOUNT(ptes_changed);
2363 }
2364 PMAP_PVO_CHECK(pvo); /* sanity check */
2365 }
2366 pmap_interrupts_restore(msr);
2367 pmap_pvo_free_list(&pvol);
2368
2369 PMAP_UNLOCK();
2370 }
2371
2372 /*
2373 * Activate the address space for the specified process. If the process
2374 * is the current process, load the new MMU context.
2375 */
2376 void
2377 pmap_activate(struct lwp *l)
2378 {
2379 struct pcb *pcb = lwp_getpcb(l);
2380 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2381
2382 DPRINTFN(ACTIVATE,
2383 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2384
2385 /*
2386 * XXX Normally performed in cpu_fork().
2387 */
2388 pcb->pcb_pm = pmap;
2389
2390 /*
2391 * In theory, the SR registers need only be valid on return
2392 * to user space wait to do them there.
2393 */
2394 if (l == curlwp) {
2395 /* Store pointer to new current pmap. */
2396 curpm = pmap;
2397 }
2398 }
2399
2400 /*
2401 * Deactivate the specified process's address space.
2402 */
2403 void
2404 pmap_deactivate(struct lwp *l)
2405 {
2406 }
2407
2408 bool
2409 pmap_query_bit(struct vm_page *pg, int ptebit)
2410 {
2411 struct pvo_entry *pvo;
2412 volatile struct pte *pt;
2413 register_t msr;
2414
2415 PMAP_LOCK();
2416
2417 if (pmap_attr_fetch(pg) & ptebit) {
2418 PMAP_UNLOCK();
2419 return true;
2420 }
2421
2422 msr = pmap_interrupts_off();
2423 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2424 PMAP_PVO_CHECK(pvo); /* sanity check */
2425 /*
2426 * See if we saved the bit off. If so cache, it and return
2427 * success.
2428 */
2429 if (pvo->pvo_pte.pte_lo & ptebit) {
2430 pmap_attr_save(pg, ptebit);
2431 PMAP_PVO_CHECK(pvo); /* sanity check */
2432 pmap_interrupts_restore(msr);
2433 PMAP_UNLOCK();
2434 return true;
2435 }
2436 }
2437 /*
2438 * No luck, now go thru the hard part of looking at the ptes
2439 * themselves. Sync so any pending REF/CHG bits are flushed
2440 * to the PTEs.
2441 */
2442 SYNC();
2443 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2444 PMAP_PVO_CHECK(pvo); /* sanity check */
2445 /*
2446 * See if this pvo have a valid PTE. If so, fetch the
2447 * REF/CHG bits from the valid PTE. If the appropriate
2448 * ptebit is set, cache, it and return success.
2449 */
2450 pt = pmap_pvo_to_pte(pvo, -1);
2451 if (pt != NULL) {
2452 pmap_pte_synch(pt, &pvo->pvo_pte);
2453 if (pvo->pvo_pte.pte_lo & ptebit) {
2454 pmap_attr_save(pg, ptebit);
2455 PMAP_PVO_CHECK(pvo); /* sanity check */
2456 pmap_interrupts_restore(msr);
2457 PMAP_UNLOCK();
2458 return true;
2459 }
2460 }
2461 }
2462 pmap_interrupts_restore(msr);
2463 PMAP_UNLOCK();
2464 return false;
2465 }
2466
2467 bool
2468 pmap_clear_bit(struct vm_page *pg, int ptebit)
2469 {
2470 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2471 struct pvo_entry *pvo;
2472 volatile struct pte *pt;
2473 register_t msr;
2474 int rv = 0;
2475
2476 PMAP_LOCK();
2477 msr = pmap_interrupts_off();
2478
2479 /*
2480 * Fetch the cache value
2481 */
2482 rv |= pmap_attr_fetch(pg);
2483
2484 /*
2485 * Clear the cached value.
2486 */
2487 pmap_attr_clear(pg, ptebit);
2488
2489 /*
2490 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2491 * can reset the right ones). Note that since the pvo entries and
2492 * list heads are accessed via BAT0 and are never placed in the
2493 * page table, we don't have to worry about further accesses setting
2494 * the REF/CHG bits.
2495 */
2496 SYNC();
2497
2498 /*
2499 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2500 * valid PTE. If so, clear the ptebit from the valid PTE.
2501 */
2502 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2503 PMAP_PVO_CHECK(pvo); /* sanity check */
2504 pt = pmap_pvo_to_pte(pvo, -1);
2505 if (pt != NULL) {
2506 /*
2507 * Only sync the PTE if the bit we are looking
2508 * for is not already set.
2509 */
2510 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2511 pmap_pte_synch(pt, &pvo->pvo_pte);
2512 /*
2513 * If the bit we are looking for was already set,
2514 * clear that bit in the pte.
2515 */
2516 if (pvo->pvo_pte.pte_lo & ptebit)
2517 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2518 }
2519 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2520 pvo->pvo_pte.pte_lo &= ~ptebit;
2521 PMAP_PVO_CHECK(pvo); /* sanity check */
2522 }
2523 pmap_interrupts_restore(msr);
2524
2525 /*
2526 * If we are clearing the modify bit and this page was marked EXEC
2527 * and the user of the page thinks the page was modified, then we
2528 * need to clean it from the icache if it's mapped or clear the EXEC
2529 * bit if it's not mapped. The page itself might not have the CHG
2530 * bit set if the modification was done via DMA to the page.
2531 */
2532 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2533 if (LIST_EMPTY(pvoh)) {
2534 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2535 VM_PAGE_TO_PHYS(pg)));
2536 pmap_attr_clear(pg, PTE_EXEC);
2537 PMAPCOUNT(exec_uncached_clear_modify);
2538 } else {
2539 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2540 VM_PAGE_TO_PHYS(pg)));
2541 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2542 PMAPCOUNT(exec_synced_clear_modify);
2543 }
2544 }
2545 PMAP_UNLOCK();
2546 return (rv & ptebit) != 0;
2547 }
2548
2549 void
2550 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2551 {
2552 struct pvo_entry *pvo;
2553 size_t offset = va & ADDR_POFF;
2554 int s;
2555
2556 PMAP_LOCK();
2557 s = splvm();
2558 while (len > 0) {
2559 size_t seglen = PAGE_SIZE - offset;
2560 if (seglen > len)
2561 seglen = len;
2562 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2563 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2564 pmap_syncicache(
2565 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2566 PMAP_PVO_CHECK(pvo);
2567 }
2568 va += seglen;
2569 len -= seglen;
2570 offset = 0;
2571 }
2572 splx(s);
2573 PMAP_UNLOCK();
2574 }
2575
2576 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2577 void
2578 pmap_pte_print(volatile struct pte *pt)
2579 {
2580 printf("PTE %p: ", pt);
2581
2582 #if defined(PMAP_OEA)
2583 /* High word: */
2584 printf("%#" _PRIxpte ": [", pt->pte_hi);
2585 #else
2586 printf("%#" _PRIxpte ": [", pt->pte_hi);
2587 #endif /* PMAP_OEA */
2588
2589 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2590 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2591
2592 printf("%#" _PRIxpte " %#" _PRIxpte "",
2593 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2594 pt->pte_hi & PTE_API);
2595 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2596 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2597 #else
2598 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2599 #endif /* PMAP_OEA */
2600
2601 /* Low word: */
2602 #if defined (PMAP_OEA)
2603 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2604 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2605 #else
2606 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2607 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2608 #endif
2609 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2610 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2611 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2612 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2613 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2614 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2615 switch (pt->pte_lo & PTE_PP) {
2616 case PTE_BR: printf("br]\n"); break;
2617 case PTE_BW: printf("bw]\n"); break;
2618 case PTE_SO: printf("so]\n"); break;
2619 case PTE_SW: printf("sw]\n"); break;
2620 }
2621 }
2622 #endif
2623
2624 #if defined(DDB)
2625 void
2626 pmap_pteg_check(void)
2627 {
2628 volatile struct pte *pt;
2629 int i;
2630 int ptegidx;
2631 u_int p_valid = 0;
2632 u_int s_valid = 0;
2633 u_int invalid = 0;
2634
2635 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2636 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2637 if (pt->pte_hi & PTE_VALID) {
2638 if (pt->pte_hi & PTE_HID)
2639 s_valid++;
2640 else
2641 {
2642 p_valid++;
2643 }
2644 } else
2645 invalid++;
2646 }
2647 }
2648 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2649 p_valid, p_valid, s_valid, s_valid,
2650 invalid, invalid);
2651 }
2652
2653 void
2654 pmap_print_mmuregs(void)
2655 {
2656 int i;
2657 u_int cpuvers;
2658 #ifndef PMAP_OEA64
2659 vaddr_t addr;
2660 register_t soft_sr[16];
2661 #endif
2662 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2663 struct bat soft_ibat[4];
2664 struct bat soft_dbat[4];
2665 #endif
2666 paddr_t sdr1;
2667
2668 cpuvers = MFPVR() >> 16;
2669 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2670 #ifndef PMAP_OEA64
2671 addr = 0;
2672 for (i = 0; i < 16; i++) {
2673 soft_sr[i] = MFSRIN(addr);
2674 addr += (1 << ADDR_SR_SHFT);
2675 }
2676 #endif
2677
2678 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2679 /* read iBAT (601: uBAT) registers */
2680 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2681 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2682 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2683 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2684 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2685 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2686 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2687 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2688
2689
2690 if (cpuvers != MPC601) {
2691 /* read dBAT registers */
2692 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2693 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2694 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2695 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2696 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2697 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2698 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2699 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2700 }
2701 #endif
2702
2703 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2704 #ifndef PMAP_OEA64
2705 printf("SR[]:\t");
2706 for (i = 0; i < 4; i++)
2707 printf("0x%08lx, ", soft_sr[i]);
2708 printf("\n\t");
2709 for ( ; i < 8; i++)
2710 printf("0x%08lx, ", soft_sr[i]);
2711 printf("\n\t");
2712 for ( ; i < 12; i++)
2713 printf("0x%08lx, ", soft_sr[i]);
2714 printf("\n\t");
2715 for ( ; i < 16; i++)
2716 printf("0x%08lx, ", soft_sr[i]);
2717 printf("\n");
2718 #endif
2719
2720 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2721 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2722 for (i = 0; i < 4; i++) {
2723 printf("0x%08lx 0x%08lx, ",
2724 soft_ibat[i].batu, soft_ibat[i].batl);
2725 if (i == 1)
2726 printf("\n\t");
2727 }
2728 if (cpuvers != MPC601) {
2729 printf("\ndBAT[]:\t");
2730 for (i = 0; i < 4; i++) {
2731 printf("0x%08lx 0x%08lx, ",
2732 soft_dbat[i].batu, soft_dbat[i].batl);
2733 if (i == 1)
2734 printf("\n\t");
2735 }
2736 }
2737 printf("\n");
2738 #endif /* PMAP_OEA... */
2739 }
2740
2741 void
2742 pmap_print_pte(pmap_t pm, vaddr_t va)
2743 {
2744 struct pvo_entry *pvo;
2745 volatile struct pte *pt;
2746 int pteidx;
2747
2748 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2749 if (pvo != NULL) {
2750 pt = pmap_pvo_to_pte(pvo, pteidx);
2751 if (pt != NULL) {
2752 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2753 va, pt,
2754 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2755 pt->pte_hi, pt->pte_lo);
2756 } else {
2757 printf("No valid PTE found\n");
2758 }
2759 } else {
2760 printf("Address not in pmap\n");
2761 }
2762 }
2763
2764 void
2765 pmap_pteg_dist(void)
2766 {
2767 struct pvo_entry *pvo;
2768 int ptegidx;
2769 int depth;
2770 int max_depth = 0;
2771 unsigned int depths[64];
2772
2773 memset(depths, 0, sizeof(depths));
2774 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2775 depth = 0;
2776 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2777 depth++;
2778 }
2779 if (depth > max_depth)
2780 max_depth = depth;
2781 if (depth > 63)
2782 depth = 63;
2783 depths[depth]++;
2784 }
2785
2786 for (depth = 0; depth < 64; depth++) {
2787 printf(" [%2d]: %8u", depth, depths[depth]);
2788 if ((depth & 3) == 3)
2789 printf("\n");
2790 if (depth == max_depth)
2791 break;
2792 }
2793 if ((depth & 3) != 3)
2794 printf("\n");
2795 printf("Max depth found was %d\n", max_depth);
2796 }
2797 #endif /* DEBUG */
2798
2799 #if defined(PMAPCHECK) || defined(DEBUG)
2800 void
2801 pmap_pvo_verify(void)
2802 {
2803 int ptegidx;
2804 int s;
2805
2806 s = splvm();
2807 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2808 struct pvo_entry *pvo;
2809 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2810 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2811 panic("pmap_pvo_verify: invalid pvo %p "
2812 "on list %#x", pvo, ptegidx);
2813 pmap_pvo_check(pvo);
2814 }
2815 }
2816 splx(s);
2817 }
2818 #endif /* PMAPCHECK */
2819
2820
2821 void *
2822 pmap_pool_ualloc(struct pool *pp, int flags)
2823 {
2824 struct pvo_page *pvop;
2825
2826 if (uvm.page_init_done != true) {
2827 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2828 }
2829
2830 PMAP_LOCK();
2831 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2832 if (pvop != NULL) {
2833 pmap_upvop_free--;
2834 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2835 PMAP_UNLOCK();
2836 return pvop;
2837 }
2838 PMAP_UNLOCK();
2839 return pmap_pool_malloc(pp, flags);
2840 }
2841
2842 void *
2843 pmap_pool_malloc(struct pool *pp, int flags)
2844 {
2845 struct pvo_page *pvop;
2846 struct vm_page *pg;
2847
2848 PMAP_LOCK();
2849 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2850 if (pvop != NULL) {
2851 pmap_mpvop_free--;
2852 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2853 PMAP_UNLOCK();
2854 return pvop;
2855 }
2856 PMAP_UNLOCK();
2857 again:
2858 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2859 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2860 if (__predict_false(pg == NULL)) {
2861 if (flags & PR_WAITOK) {
2862 uvm_wait("plpg");
2863 goto again;
2864 } else {
2865 return (0);
2866 }
2867 }
2868 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2869 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2870 }
2871
2872 void
2873 pmap_pool_ufree(struct pool *pp, void *va)
2874 {
2875 struct pvo_page *pvop;
2876 #if 0
2877 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2878 pmap_pool_mfree(va, size, tag);
2879 return;
2880 }
2881 #endif
2882 PMAP_LOCK();
2883 pvop = va;
2884 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2885 pmap_upvop_free++;
2886 if (pmap_upvop_free > pmap_upvop_maxfree)
2887 pmap_upvop_maxfree = pmap_upvop_free;
2888 PMAP_UNLOCK();
2889 }
2890
2891 void
2892 pmap_pool_mfree(struct pool *pp, void *va)
2893 {
2894 struct pvo_page *pvop;
2895
2896 PMAP_LOCK();
2897 pvop = va;
2898 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2899 pmap_mpvop_free++;
2900 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2901 pmap_mpvop_maxfree = pmap_mpvop_free;
2902 PMAP_UNLOCK();
2903 #if 0
2904 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2905 #endif
2906 }
2907
2908 /*
2909 * This routine in bootstraping to steal to-be-managed memory (which will
2910 * then be unmanaged). We use it to grab from the first 256MB for our
2911 * pmap needs and above 256MB for other stuff.
2912 */
2913 vaddr_t
2914 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2915 {
2916 vsize_t size;
2917 vaddr_t va;
2918 paddr_t pa = 0;
2919 int npgs, bank;
2920 struct vm_physseg *ps;
2921
2922 if (uvm.page_init_done == true)
2923 panic("pmap_steal_memory: called _after_ bootstrap");
2924
2925 *vstartp = VM_MIN_KERNEL_ADDRESS;
2926 *vendp = VM_MAX_KERNEL_ADDRESS;
2927
2928 size = round_page(vsize);
2929 npgs = atop(size);
2930
2931 /*
2932 * PA 0 will never be among those given to UVM so we can use it
2933 * to indicate we couldn't steal any memory.
2934 */
2935 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2936 if (ps->free_list == VM_FREELIST_FIRST256 &&
2937 ps->avail_end - ps->avail_start >= npgs) {
2938 pa = ptoa(ps->avail_start);
2939 break;
2940 }
2941 }
2942
2943 if (pa == 0)
2944 panic("pmap_steal_memory: no approriate memory to steal!");
2945
2946 ps->avail_start += npgs;
2947 ps->start += npgs;
2948
2949 /*
2950 * If we've used up all the pages in the segment, remove it and
2951 * compact the list.
2952 */
2953 if (ps->avail_start == ps->end) {
2954 /*
2955 * If this was the last one, then a very bad thing has occurred
2956 */
2957 if (--vm_nphysseg == 0)
2958 panic("pmap_steal_memory: out of memory!");
2959
2960 printf("pmap_steal_memory: consumed bank %d\n", bank);
2961 for (; bank < vm_nphysseg; bank++, ps++) {
2962 ps[0] = ps[1];
2963 }
2964 }
2965
2966 va = (vaddr_t) pa;
2967 memset((void *) va, 0, size);
2968 pmap_pages_stolen += npgs;
2969 #ifdef DEBUG
2970 if (pmapdebug && npgs > 1) {
2971 u_int cnt = 0;
2972 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2973 cnt += ps->avail_end - ps->avail_start;
2974 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2975 npgs, pmap_pages_stolen, cnt);
2976 }
2977 #endif
2978
2979 return va;
2980 }
2981
2982 /*
2983 * Find a chuck of memory with right size and alignment.
2984 */
2985 paddr_t
2986 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2987 {
2988 struct mem_region *mp;
2989 paddr_t s, e;
2990 int i, j;
2991
2992 size = round_page(size);
2993
2994 DPRINTFN(BOOT,
2995 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2996 size, alignment, at_end));
2997
2998 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2999 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
3000 alignment);
3001
3002 if (at_end) {
3003 if (alignment != PAGE_SIZE)
3004 panic("pmap_boot_find_memory: invalid ending "
3005 "alignment %#" _PRIxpa, alignment);
3006
3007 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3008 s = mp->start + mp->size - size;
3009 if (s >= mp->start && mp->size >= size) {
3010 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3011 DPRINTFN(BOOT,
3012 ("pmap_boot_find_memory: b-avail[%d] start "
3013 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3014 mp->start, mp->size));
3015 mp->size -= size;
3016 DPRINTFN(BOOT,
3017 ("pmap_boot_find_memory: a-avail[%d] start "
3018 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3019 mp->start, mp->size));
3020 return s;
3021 }
3022 }
3023 panic("pmap_boot_find_memory: no available memory");
3024 }
3025
3026 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3027 s = (mp->start + alignment - 1) & ~(alignment-1);
3028 e = s + size;
3029
3030 /*
3031 * Is the calculated region entirely within the region?
3032 */
3033 if (s < mp->start || e > mp->start + mp->size)
3034 continue;
3035
3036 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3037 if (s == mp->start) {
3038 /*
3039 * If the block starts at the beginning of region,
3040 * adjust the size & start. (the region may now be
3041 * zero in length)
3042 */
3043 DPRINTFN(BOOT,
3044 ("pmap_boot_find_memory: b-avail[%d] start "
3045 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3046 mp->start += size;
3047 mp->size -= size;
3048 DPRINTFN(BOOT,
3049 ("pmap_boot_find_memory: a-avail[%d] start "
3050 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3051 } else if (e == mp->start + mp->size) {
3052 /*
3053 * If the block starts at the beginning of region,
3054 * adjust only the size.
3055 */
3056 DPRINTFN(BOOT,
3057 ("pmap_boot_find_memory: b-avail[%d] start "
3058 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3059 mp->size -= size;
3060 DPRINTFN(BOOT,
3061 ("pmap_boot_find_memory: a-avail[%d] start "
3062 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3063 } else {
3064 /*
3065 * Block is in the middle of the region, so we
3066 * have to split it in two.
3067 */
3068 for (j = avail_cnt; j > i + 1; j--) {
3069 avail[j] = avail[j-1];
3070 }
3071 DPRINTFN(BOOT,
3072 ("pmap_boot_find_memory: b-avail[%d] start "
3073 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3074 mp[1].start = e;
3075 mp[1].size = mp[0].start + mp[0].size - e;
3076 mp[0].size = s - mp[0].start;
3077 avail_cnt++;
3078 for (; i < avail_cnt; i++) {
3079 DPRINTFN(BOOT,
3080 ("pmap_boot_find_memory: a-avail[%d] "
3081 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3082 avail[i].start, avail[i].size));
3083 }
3084 }
3085 KASSERT(s == (uintptr_t) s);
3086 return s;
3087 }
3088 panic("pmap_boot_find_memory: not enough memory for "
3089 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3090 }
3091
3092 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3093 #if defined (PMAP_OEA64_BRIDGE)
3094 int
3095 pmap_setup_segment0_map(int use_large_pages, ...)
3096 {
3097 vaddr_t va;
3098
3099 register_t pte_lo = 0x0;
3100 int ptegidx = 0, i = 0;
3101 struct pte pte;
3102 va_list ap;
3103
3104 /* Coherent + Supervisor RW, no user access */
3105 pte_lo = PTE_M;
3106
3107 /* XXXSL
3108 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3109 * these have to take priority.
3110 */
3111 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3112 ptegidx = va_to_pteg(pmap_kernel(), va);
3113 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3114 i = pmap_pte_insert(ptegidx, &pte);
3115 }
3116
3117 va_start(ap, use_large_pages);
3118 while (1) {
3119 paddr_t pa;
3120 size_t size;
3121
3122 va = va_arg(ap, vaddr_t);
3123
3124 if (va == 0)
3125 break;
3126
3127 pa = va_arg(ap, paddr_t);
3128 size = va_arg(ap, size_t);
3129
3130 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3131 #if 0
3132 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3133 #endif
3134 ptegidx = va_to_pteg(pmap_kernel(), va);
3135 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3136 i = pmap_pte_insert(ptegidx, &pte);
3137 }
3138 }
3139
3140 TLBSYNC();
3141 SYNC();
3142 return (0);
3143 }
3144 #endif /* PMAP_OEA64_BRIDGE */
3145
3146 /*
3147 * This is not part of the defined PMAP interface and is specific to the
3148 * PowerPC architecture. This is called during initppc, before the system
3149 * is really initialized.
3150 */
3151 void
3152 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3153 {
3154 struct mem_region *mp, tmp;
3155 paddr_t s, e;
3156 psize_t size;
3157 int i, j;
3158
3159 /*
3160 * Get memory.
3161 */
3162 mem_regions(&mem, &avail);
3163 #if defined(DEBUG)
3164 if (pmapdebug & PMAPDEBUG_BOOT) {
3165 printf("pmap_bootstrap: memory configuration:\n");
3166 for (mp = mem; mp->size; mp++) {
3167 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3168 mp->start, mp->size);
3169 }
3170 for (mp = avail; mp->size; mp++) {
3171 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3172 mp->start, mp->size);
3173 }
3174 }
3175 #endif
3176
3177 /*
3178 * Find out how much physical memory we have and in how many chunks.
3179 */
3180 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3181 if (mp->start >= pmap_memlimit)
3182 continue;
3183 if (mp->start + mp->size > pmap_memlimit) {
3184 size = pmap_memlimit - mp->start;
3185 physmem += btoc(size);
3186 } else {
3187 physmem += btoc(mp->size);
3188 }
3189 mem_cnt++;
3190 }
3191
3192 /*
3193 * Count the number of available entries.
3194 */
3195 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3196 avail_cnt++;
3197
3198 /*
3199 * Page align all regions.
3200 */
3201 kernelstart = trunc_page(kernelstart);
3202 kernelend = round_page(kernelend);
3203 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3204 s = round_page(mp->start);
3205 mp->size -= (s - mp->start);
3206 mp->size = trunc_page(mp->size);
3207 mp->start = s;
3208 e = mp->start + mp->size;
3209
3210 DPRINTFN(BOOT,
3211 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3212 i, mp->start, mp->size));
3213
3214 /*
3215 * Don't allow the end to run beyond our artificial limit
3216 */
3217 if (e > pmap_memlimit)
3218 e = pmap_memlimit;
3219
3220 /*
3221 * Is this region empty or strange? skip it.
3222 */
3223 if (e <= s) {
3224 mp->start = 0;
3225 mp->size = 0;
3226 continue;
3227 }
3228
3229 /*
3230 * Does this overlap the beginning of kernel?
3231 * Does extend past the end of the kernel?
3232 */
3233 else if (s < kernelstart && e > kernelstart) {
3234 if (e > kernelend) {
3235 avail[avail_cnt].start = kernelend;
3236 avail[avail_cnt].size = e - kernelend;
3237 avail_cnt++;
3238 }
3239 mp->size = kernelstart - s;
3240 }
3241 /*
3242 * Check whether this region overlaps the end of the kernel.
3243 */
3244 else if (s < kernelend && e > kernelend) {
3245 mp->start = kernelend;
3246 mp->size = e - kernelend;
3247 }
3248 /*
3249 * Look whether this regions is completely inside the kernel.
3250 * Nuke it if it does.
3251 */
3252 else if (s >= kernelstart && e <= kernelend) {
3253 mp->start = 0;
3254 mp->size = 0;
3255 }
3256 /*
3257 * If the user imposed a memory limit, enforce it.
3258 */
3259 else if (s >= pmap_memlimit) {
3260 mp->start = -PAGE_SIZE; /* let's know why */
3261 mp->size = 0;
3262 }
3263 else {
3264 mp->start = s;
3265 mp->size = e - s;
3266 }
3267 DPRINTFN(BOOT,
3268 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3269 i, mp->start, mp->size));
3270 }
3271
3272 /*
3273 * Move (and uncount) all the null return to the end.
3274 */
3275 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3276 if (mp->size == 0) {
3277 tmp = avail[i];
3278 avail[i] = avail[--avail_cnt];
3279 avail[avail_cnt] = avail[i];
3280 }
3281 }
3282
3283 /*
3284 * (Bubble)sort them into ascending order.
3285 */
3286 for (i = 0; i < avail_cnt; i++) {
3287 for (j = i + 1; j < avail_cnt; j++) {
3288 if (avail[i].start > avail[j].start) {
3289 tmp = avail[i];
3290 avail[i] = avail[j];
3291 avail[j] = tmp;
3292 }
3293 }
3294 }
3295
3296 /*
3297 * Make sure they don't overlap.
3298 */
3299 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3300 if (mp[0].start + mp[0].size > mp[1].start) {
3301 mp[0].size = mp[1].start - mp[0].start;
3302 }
3303 DPRINTFN(BOOT,
3304 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3305 i, mp->start, mp->size));
3306 }
3307 DPRINTFN(BOOT,
3308 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3309 i, mp->start, mp->size));
3310
3311 #ifdef PTEGCOUNT
3312 pmap_pteg_cnt = PTEGCOUNT;
3313 #else /* PTEGCOUNT */
3314
3315 pmap_pteg_cnt = 0x1000;
3316
3317 while (pmap_pteg_cnt < physmem)
3318 pmap_pteg_cnt <<= 1;
3319
3320 pmap_pteg_cnt >>= 1;
3321 #endif /* PTEGCOUNT */
3322
3323 #ifdef DEBUG
3324 DPRINTFN(BOOT,
3325 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3326 #endif
3327
3328 /*
3329 * Find suitably aligned memory for PTEG hash table.
3330 */
3331 size = pmap_pteg_cnt * sizeof(struct pteg);
3332 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3333
3334 #ifdef DEBUG
3335 DPRINTFN(BOOT,
3336 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3337 #endif
3338
3339
3340 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3341 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3342 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3343 pmap_pteg_table, size);
3344 #endif
3345
3346 memset(__UNVOLATILE(pmap_pteg_table), 0,
3347 pmap_pteg_cnt * sizeof(struct pteg));
3348 pmap_pteg_mask = pmap_pteg_cnt - 1;
3349
3350 /*
3351 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3352 * with pages. So we just steal them before giving them to UVM.
3353 */
3354 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3355 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3356 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3357 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3358 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3359 pmap_pvo_table, size);
3360 #endif
3361
3362 for (i = 0; i < pmap_pteg_cnt; i++)
3363 TAILQ_INIT(&pmap_pvo_table[i]);
3364
3365 #ifndef MSGBUFADDR
3366 /*
3367 * Allocate msgbuf in high memory.
3368 */
3369 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3370 #endif
3371
3372 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3373 paddr_t pfstart = atop(mp->start);
3374 paddr_t pfend = atop(mp->start + mp->size);
3375 if (mp->size == 0)
3376 continue;
3377 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3378 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3379 VM_FREELIST_FIRST256);
3380 } else if (mp->start >= SEGMENT_LENGTH) {
3381 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3382 VM_FREELIST_DEFAULT);
3383 } else {
3384 pfend = atop(SEGMENT_LENGTH);
3385 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 VM_FREELIST_FIRST256);
3387 pfstart = atop(SEGMENT_LENGTH);
3388 pfend = atop(mp->start + mp->size);
3389 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3390 VM_FREELIST_DEFAULT);
3391 }
3392 }
3393
3394 /*
3395 * Make sure kernel vsid is allocated as well as VSID 0.
3396 */
3397 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3398 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3399 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3400 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3401 pmap_vsid_bitmap[0] |= 1;
3402
3403 /*
3404 * Initialize kernel pmap and hardware.
3405 */
3406
3407 /* PMAP_OEA64_BRIDGE does support these instructions */
3408 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3409 for (i = 0; i < 16; i++) {
3410 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3411 __asm volatile ("mtsrin %0,%1"
3412 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3413 }
3414
3415 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3416 __asm volatile ("mtsr %0,%1"
3417 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3418 #ifdef KERNEL2_SR
3419 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3420 __asm volatile ("mtsr %0,%1"
3421 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3422 #endif
3423 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3424 #if defined (PMAP_OEA)
3425 for (i = 0; i < 16; i++) {
3426 if (iosrtable[i] & SR601_T) {
3427 pmap_kernel()->pm_sr[i] = iosrtable[i];
3428 __asm volatile ("mtsrin %0,%1"
3429 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3430 }
3431 }
3432 __asm volatile ("sync; mtsdr1 %0; isync"
3433 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3434 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3435 __asm __volatile ("sync; mtsdr1 %0; isync"
3436 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3437 #endif
3438 tlbia();
3439
3440 #ifdef ALTIVEC
3441 pmap_use_altivec = cpu_altivec;
3442 #endif
3443
3444 #ifdef DEBUG
3445 if (pmapdebug & PMAPDEBUG_BOOT) {
3446 u_int cnt;
3447 int bank;
3448 char pbuf[9];
3449 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3450 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3451 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3452 bank,
3453 ptoa(vm_physmem[bank].avail_start),
3454 ptoa(vm_physmem[bank].avail_end),
3455 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3456 }
3457 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3458 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3459 pbuf, cnt);
3460 }
3461 #endif
3462
3463 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3464 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3465 &pmap_pool_uallocator, IPL_VM);
3466
3467 pool_setlowat(&pmap_upvo_pool, 252);
3468
3469 pool_init(&pmap_pool, sizeof(struct pmap),
3470 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3471 IPL_NONE);
3472
3473 #if defined(PMAP_NEED_MAPKERNEL) || 1
3474 {
3475 struct pmap *pm = pmap_kernel();
3476 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3477 extern int etext[], kernel_text[];
3478 vaddr_t va, va_etext = (paddr_t) etext;
3479 #endif
3480 paddr_t pa, pa_end;
3481 register_t sr;
3482 struct pte pt;
3483 unsigned int ptegidx;
3484 int bank;
3485
3486 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3487 pm->pm_sr[0] = sr;
3488
3489 for (bank = 0; bank < vm_nphysseg; bank++) {
3490 pa_end = ptoa(vm_physmem[bank].avail_end);
3491 pa = ptoa(vm_physmem[bank].avail_start);
3492 for (; pa < pa_end; pa += PAGE_SIZE) {
3493 ptegidx = va_to_pteg(pm, pa);
3494 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3495 pmap_pte_insert(ptegidx, &pt);
3496 }
3497 }
3498
3499 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3500 va = (vaddr_t) kernel_text;
3501
3502 for (pa = kernelstart; va < va_etext;
3503 pa += PAGE_SIZE, va += PAGE_SIZE) {
3504 ptegidx = va_to_pteg(pm, va);
3505 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3506 pmap_pte_insert(ptegidx, &pt);
3507 }
3508
3509 for (; pa < kernelend;
3510 pa += PAGE_SIZE, va += PAGE_SIZE) {
3511 ptegidx = va_to_pteg(pm, va);
3512 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3513 pmap_pte_insert(ptegidx, &pt);
3514 }
3515
3516 for (va = 0, pa = 0; va < kernelstart;
3517 pa += PAGE_SIZE, va += PAGE_SIZE) {
3518 ptegidx = va_to_pteg(pm, va);
3519 if (va < 0x3000)
3520 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3521 else
3522 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3523 pmap_pte_insert(ptegidx, &pt);
3524 }
3525 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3526 pa += PAGE_SIZE, va += PAGE_SIZE) {
3527 ptegidx = va_to_pteg(pm, va);
3528 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3529 pmap_pte_insert(ptegidx, &pt);
3530 }
3531 #endif
3532
3533 __asm volatile ("mtsrin %0,%1"
3534 :: "r"(sr), "r"(kernelstart));
3535 }
3536 #endif
3537 }
3538